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MODELING ELECTRONEGATIVE PLASMA DISCHARGES

by

A. J. Lichtenberg, V. Vahedi, M. A. Lieberman
Department of Electrical Engineering and Computer Sciences

and the Electronics Research Laboratory
University of California, Berkeley, CA 94720

and
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Abstract

A macroscopic analytic model for a three-component electronegative
plasma has been developed. Assuming the negative ions to be in Boltz-
mann equilibrium, a positive ion ambipolar diffusion equation is found.
The electron density is nearly uniform, allowing a parabolic approximation
to the plasma profile to be employed. The resulting equilibrium equations
are solved analytically and matched to an electropositive edge plasma. The
solutions are compared to a simulation of a parallel-plane r.f. driven oxy
gen plasma for two cases: (1) p = 50 mTorr, neo = 2.4 x 1015 m-3, and (2)
10 mTorr, nt0 = 1.0 x 1016 m"3. In the simulation, for the low power case
(1), the ratio of negative ion to electron density was found to be ao « 8,
while in the higher power case ao « 1.3. Using an electron energy distribu
tion that approximates the simulation distribution by a two-temperature
Maxwellian, the analytic values of a0 are found to be close to, but somewhat
larger, than the simulation values. The average electron temperature found
self-consistently in the model is close to that in the simulation. The results
indicate the need for determining a two-temperature electron distribution
self-consistently within the model.



2 Modeling Electronegative Plasma Discharges

I Introduction

The equilibrium of a parallel-plane two-species low pressure plasma (positive

ions and Maxwellian electrons) is well characterized by: (1) an ion diffusion equation

determining the electron temperature and the plasma profile; and (2) power balance

equation determining the central density in terms of the total energy absorbed by

the electrons. The equilibrium analysis assumes the Bohm velocity is attained at

the plasma edge with the position of the edge known [1]. This is not, of course,

a complete self-consistent characterization unless the heating mechanism is also

specified. Much recent work has been done in analyzing the heating mechanism in

plane-parallel r.f. discharges at 13.56 MHz. At that frequency the electrons respond

to the r.f. fields while the ions respond to the average fields. The heating can be

obtained in terms of the r.f. current, which together with the Child Langmuir

relation for the ion current in the sheath, relates these currents to sheath voltages

and an average sheath thickness. The self-consistent picture was first developed for

ohmic heating [2,3] and later for stochastic sheath heating, which dominates in low

pressure discharges [4,5]. However, results from the self-consistent analytic models

do not agree closely with experiments [1]. This is primarily because the sheath

heating creates two temperature time-dependent electron energy distributions, as

seen in simulations [6,7,8]. Analytic theory including these effects has brought

theory and experiment much closer together [8].
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No comparable analysis exists for electronegative plasmas. An ambipolar dif

fusion coefficient has been obtained for a three component plasma (positive ions,

negative ions, and electrons) under the assumption that the electrons and negative

ions are in Boltzmann equilibrium [9]. The Bohm condition at the sheath edge

has also been modified to account for the presence of negative ions [10,11,12], and

checked against simulation [13]. The continuity and force equations for the three

species have been solved numerically to obtain the equilibrium for a positive col

umn [14]. However, a complicated solution of this type gives little insight into the

importance of various terms in the equations, and the scaling with parameters. A

simpler set of equations has been used to solve qualitatively for the parameters of

a negative ion source [15]. It is not straightforward to extend these analyses to a

self consistent treatment, including power input and sheath formation, as has been

done for two-species plasmas.

In order to make a realistic calculation of electronegative plasma equilibrium

the reaction rate constants must be known. Furthermore, these rate constants

must be consistent with the approximation of a three-component plasma if that

approximation is to be used. There is a wealth of information on reaction rates of

the various components that aregenerated from particular feedstock gases. For this

study we consider 02 as the feedstock gas. The rate constants for this gas [16] have

been compiled for use in a simulation code [17]. The size of the rate constants and

the results of simulations indicate that it is a good approximation to consider that
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the equilibrium dynamics are controlled by three plasma species and the neutral

gas. The important reaction-rate constants for the charged particles are

Kis s 2.13 •10-,4exp(-14.5/re) m3/s (1.1)
Kan = 7.89 •10-17exp(-3.07/re) m3/s (1.2)
/Tree = 1.4 10"13 m3/sec (1.3)
tf« = 3.95-10-16 m3/sec, (1.4)

where Kit, KaU, Krtct Ka are the rate constants for the reactions

02 + e —¥ 0} + 2e, (ionization) (1.5)

02+ e — O' + O, (dissociative attachment) (1.6)

ot+o- — 02 + 0, (recombination) (1.7)

0} + 02 — 0{+02, (scattering)

OJ + O2 - 02 + Oj, (charge exchange) (1.8)

O- + O2 — O- + O2. (scattering) (1.9)

The latter 3 reactions lead to effective diffusion coefficients for positiveand negative

ion species. The rule constant for charge transfer of O" on O2 is small because the

threshold energy required for this process is ~ 1.0 eV, which is much higher than

the thermal energy of the heavy particles; hence this process is unimportant. The

simulations include many other reactions, e.g. vibrational excitations, which mainly

go into the calculation of the energy loss per ionization, which we will take here as

a known quantity.

The goal of this paper is to develop the simplest analytical model that can

predict the values oftheplasma quantities such as electron and negative ion densities

and electron temperature, as the neutral pressure and power to the plasma are
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varied. By comparing the results against simulations the effects of the various

approximations can be evaluated. In Section II we develop the basic equilibrium

equations for a three-component plasma. In Section III approximate solutions are

obtained for these equations. In Section IV these solutions are compared to results

of simulations. In Section V the significance of the results is discussed indicating

the additional information that is needed to obtain a fully self-consistent model.

II Energy and Particle Balance in Electronegative Plasmas

As in electropositive plasmas, for each charged species we can write a flux

equation

Ti = -DiVnt + nmiEi (2.1)

where A = kTi/mn/i, m = \qi\frmui, with i/, the total momentum transfer collision

frequency. In equilibrium the sum of the currents must balance:

n

£*T,- =0, (2.2)
$=i

where the summation is over the n charged species. From charge neutrality we also

have

n

£>-n, =0, (2.3)
»=i

which is the usual plasma approximation.

To make the algebra relatively simple we consider an oxygen plasma in which

only three species need be considered: Of, created by electron impact ioniza

tion, O", created by dissociative attachment, and electrons. All species are singly
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charged, so that (2.2) becomes

r+ = r_ + re, (2.4)

(2.3) becomes

n+ = n-+nc, (2.5)

and the equations of (2.1) are

T+ = -D+Vn+ + n+fi+E,

T. = -ILVn_ - n-fi-E, (2.6)
Te = -jDeVne - nefieE.

Using these five equations we can eliminate T_, re, n+, ne, and E to obtain an

equation in T+, a = n~/nCi and the gradients

(/ie +/i_a)D+ +/i+(l +a)£>e|^l +/i+(l +a)£>_^
+ T I 7TH—\ ±-Vn+. (2.7)/ie+/i-ar + /i+(l + a) + v '

We have factored out Vn+ to put the equation formally in the usual form of an

ambipolar diffusion coefficient

T+ = -D+aVn+, (2.8)

but we note that this is not equivalent to Da for electropositive plasmas as D+a is

a function of position both through a and through the gradients.

The form (2.7) was derived by Rogoff [18] and also, implicitly, by Thompson

[9]. However, because (2.8) depends explicitly on the other variables it cannot be
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independently solved for n+, but is coupled to n_ and ne. In this form three diffusion

equations must be written for the three variables, and solved simultaneously. This

is clearly a difficult numerical procedure. Thompson [9] attempted to circumvent

this difficulty by assuming that both negative species are in Boltzmann equilibrium

and thus thelogarithmic gradients are related bytheir temperature ratio. Although

this assumption is valid for the mobile electrons, it is not necessarily valid for the

negative ions. With this caveat, we introduce the temperature ratio

l = Tt/Ti, (2.9)

where 7* is the temperature of both ionic species; typically 7 ~ 100 > 1. Then the

Boltzmann relation applied to each species yields

= y-r1- (210)
n« n

Using (2.10) together with

we obtain the ratios

Vn+ = Vn. + Vne,

Vne _ 1 Vn_ _ 7a
Vn+ "" 1+7a' Vn+ "~ 1+ ya

Substituting (2.11), together with the Einstein relations

E^ = £l El- ill
JD+ fi+ ' D+ 7/i+'

(2.11)
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into (2.7), then we obtain, after a little algebra,

(l +7+27a)(l +a^>)
A.+ =D+ ^ *flZ-T' (212)

(l +7a)(l+£±(l+a) +^)
V Mt fie J

which is the form given by Thompson. We note immediately, since /*-//ie, t*+/i*e <

1, that for all reasonable cases the second parenthesis in both the numerator and

denominator are approximately equal to one, yielding

Thompson [9] plotted Da+ from (2.12) with o as a parameter. The structure is easily

seen from the simpler form (2.13). For a > 1,7 cancels such that Da+ a 2D+. When

a decreases below 1, but 70 » 1, Da+ S D+/a such that Da+ increases inversely

with decreasing a. For 7a < 1, Da+ £ yD+, which is the usual ambipolar diffusion

without negative ions. For plasmas in which a > 1 is initially the entire transition

region takes place over a small range of 1/7 < a < 1, such that the simpler value of

Da+ = 2Z?+ holds over most of the plasma, except near n_ as 0.

Consider now the positive ion diffusion equation, keeping only the dominant

reaction rate constants. For simplicity we also restrict our attention to the one-

dimensional plane-parallel geometry. We have

~di \Da+^lhJ =Ki*n°ne ~#recn+n_, (2.14)
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where n0 is the neutral gas density. Equation (2.14) can not be solved directly, as

it is a function of n_ and nt (through a) as well as n+. However, we can integrate

(2.10) to obtain

from which we can eliminate ne. We can then use charge neutrality (2.5) toeliminate

n_, such that (2.14) becomes

~fo (Da+(n+)~^r) =Ki*none(n+) - /^r«n+n_(n+) (2.16)

where Da+(n+) is a rather complicated function of n+ and one arbitrary constant

o0 = n_0/neo, the ratio of n_ to ne at the plasma center. It is now possible to

integrate (2.16) numerically, given the arbitrary constants. From (2.15) we can set

ne £ ne0 in (2.16).

In electropositive plasma we have two constants ne0 and Tt. We now have an

additional constant, o0. We therefore need three relations rather than the two,

power balance and particle balance for positive ions, required for electropositive

plasmas. A relation that we have not yet used is the particle balance of negative

ions. Assuming the negative ion flux goes to zero at the sheath edge, we then have

the equations: positive ion particle balance,

= / Kitn0nedx- / tfreen+n_(n+)<fr; (2.17)
ssst JO Jo
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negative ion particle balance,

/ Kattn0nedx- I Krcen+n-(n+)dx =0; (2.18)

and energy balance for the electrons,

Pah, = 2€c J Ki,n0nedx] (2.19)
Jo

where Se(Te) the electron energy lost per electron-positive ion pair created, is a

known function of Te. Given the plasma length 2£, and power Pabt, the three equa

tions can besimultaneously solved for thethree unknowns Te, a0, and n+0. However,

the plasma edge £is not exactlyknown, but is dependent on the Bohm flux condition

[10-13]

-D,o+

dn+
dx

= n+(*)«B(re,:r<,a), (2.20)

which indicates where the sheath begins. The Bohm velocity in (2.20) has a more

general form than the usual expression uB = (cTe/M+)1/2 [10,13] since negative ions

may be present when (2.20) is satisfied.

The more general form is

rcTe(l + a)l

For a > 1/7, the negative ions significantly reduce the Bohm velocity.

There are actually three different electronegative discharge equilibrium regimes

depending on neutral pressure and applied power. (1) At low pressure and high
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power, <*0 is small. The negative ion density becomes quite small well within the

plasma volume, such that much of the edge region behaves essentially electropos-

itively. (2) In the opposite limit of high pressure and low power, a0 > 1 and a

significant density ofnegative ions may exist where (2.20) is satisfied, giving a sig

nificantly depressed Bohm velocity. (3) We might expect alarge intermediate region

to exist where the central a may be quite large but the edge a is near zero, allow

ing the usual Bohm velocity to be used. We examine this further in the following

section, where we compare the solutions of (2.17)-(2.20) to plasma simulations. We

find that there is usually asignificant edge region in which the plasma is essentially

electropositive.

If oo is large, then Da+ = 2D+ over most of the plasma. We might then ask

whether a simpler solution with D0+ = 2D+ and ne = ne0 might be adequate to

describe the bulk plasma. Numerical calculations (see next section) indicate that

this is reasonable. However, there is not much to gain over solving the more com

plete equations, as the nonlinearity in the third term of (2.16) does not permit an

analytical solution for n+ to be given explicitly.

Ill Approximate Solutions

Equations (2.17)-(2.20) are difficult to solve simultaneously. In this section

we make the necessary assumptions to obtain approximate analytic solutions. The

justification will be the comparison with simulations in the following section.
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Consider the simpler problem in which a is sufficiently large that Da+ ^ 2D+,

but the effect of recombination can be neglected in determining the spatial distri

bution. The diffusion equation (2.16) then takes the simple form

2Z>+-^j£ =Kt,n0ne0t (3.1)

where (2.15) allows us to set ne 2* ne0. In this approximation n+(x) has a simple

parabolic solution of the form

£ =«,(,_£) +,, (3.2)

where £ is the nominal position where o = 0. We would not normally expect

the Bohm flux condition to be met within the validity of this solution, so the

a > 1 solution must be matched to an o = 0 electropositive solution which in turn

determines the position of the plasma edge satisfying (2.20).

We further simplify our analysis by assuming that ne0 is known. The absorbed

power Pah, is then obtained a posteriori from (2.19). If Pab, is specified rather than

ne0, then nco can be obtained iteratively, as is done for temperature, as described

below.

Substituting (3.2) in (2.17) and (2.18) and integrating, we obtain, respectively,

Ki,n0£=Krecfieo (jgftj +|a0) £+̂ ±21, (3.3)
Kattno =Kreeneo Ijeqo +qao J, (3.4)
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where the integration is only over thestrongly electronegative plasma. At * = / this

electronegative solution is matched to the usual electropositive solution [1]

n+ = ne = n cos[k(x —xo)]

where k= (uiz/Da)1^ with vit = Kitn0 and Da S yD+i from (2.13). The matching

conditions, at x = £, for density and ion flux are

n cos[k(* - x0)] = ne0 (3.5)

and

DaKfi sin(* - xo) =4£>+»°w'° (3.6)

The Bohm flux condition in the electropositive region is

DaK8\n[K(£p - x0)] = cos[k{£p - x0)]uB(Te) (3.7)

where £, is the nominal plasma edge. Equations (3.3)-(3.7) are five relations for

the five unknowns Te, <*0, &•> *», and x0.

Although the above set can be readily solved numerically, further insight into

the form and scaling of the solution can be obtained from an additional approxima

tion to obtain an algebraic form. We approximate the electropositive region with a

parabolic solution



14 Modeling Electronegative Plasma Discharges

such that the matching condition between the electronegative and electropositive

regions, (3.5) and (3.6), are simplified to

n2(1~FJ=ne0 (3*9)

and

2Dan2£/£\ =4D+a0ne0/£. (3.10)

The Bohm flux condition (3.7) simplifies to

2Da£p/£\ =(l -| JuB. (3.11)

We can now eliminate the intermediate variables n2 and £2 from (3.9) and (3.10)

and use the Bohm flux condition to solve for £:

Equation (3.12) can now be used, together with (3.3) and (3.4) to obtain the three

variables of our problem ao, Te, and £.

The above equations are solved readily by noting that Ku is a strong exponential

function of Te, such that the temperature is essentially clamped by the particle

balance of positive ions. We can therefore take the temperature as given from (3.3)

and solve for a0 in (3.4). With this value of a0, £ is obtained from (3.12) and a new

temperature obtained from (3.3) after substituting the initial values of a0 and £. In
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this way the complete solution is obtained by iteration. The important scaling is

obtained from (3.4). Solving for a0 we obtain

a0 -W(i)"^fe£
For large ao this reduces to

-•(HKT-
Taking n_0 c* n+0, we substitute ne0 a n+0/a0 into (3.13b), and solving for a0 yields

15 Katt no

"^TkZ^o- <313c>

From (3.13c) we see the essential scaling of a0, which increases as n0 with increas

ing pressure, and decreases with increasing power. The exact scaling with power

depends on whether the surface losses are large or small compared to the volume

losses. Using (2.19) we rewrite (2.17) as

Pah, — "~ScDat~-\—
dx

+ / Kreen+n-dx.
x=t Jo

(3.14)

Considering all temperature dependences as weak, and taking n_0 ^ n-0, as previ

ously, we see that the scaling of n+0 with Pah, varies from n+0 a Pah, (surface losses

dominating) which determines the scaling of a0 with power in (3.13c).

Before turning to a comparison of the analytic model with simulations, wenote

an additional complication that is important for low pressure capacitively coupled

r.f. discharges, which may also be present in other types of discharges. In both
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experiments and simulations the electron distribution is found to be non-Maxwellian

with higher temperature tails [8]. Because of the strong exponential dependence

of the ionization cross sections, the higher temperature tails may dominate the

positive ion particle balance, while only having a modest effect on the negative

ion balance. Assuming this situation to hold, which we shall justify in the next

section, we separate the electron distribution into a two-component Maxwellian.

The normalized densities of the two components are written as aeh = neh/ne and

<*tw = new/ne with nefc and new being the hot tail and warm bulk components, both

taken as Maxwellian. The electron temperature dependent reactions are designated

as Katth, Kattwy ^i*fc, and KiXW. In terms of these new variables and coefficients,

(3.3) and (3.4) are rewritten

(Kithaeh +Kixwaew)n0£ =Krecne0 (—a\ +-a0j £+4D+Q° (315)

and

(KatthOieh +KottwOtew)no =KreeneQ I~-al +-a0 J. (3.16)

Comparing the terms on the L.H.S. of (3.15) it is clear with the strong exponential

temperature dependence of Ku that the hot component will dominate the ionization

for modest temperature separations and tail densities that are a significant fraction

of the whole. For example, using Kiz from (1.1) and nominal values of Tth = 3eV,
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Tew = 1.5eV and aeh/aev> = 0.25, similar to those of the simulation in the next

section, we find

Ki,h<*eh _ 1 exp(-14.5/3) _nt
Kitwaew " 4exp(-14.5/1.5) " * * {6U)

which indicates that essentially all ionization is by the hot species. From (3.15),

with ao large, we obtain

- - \K(KaUhath + Kattwatw) 11/2
*°-l¥ K^nTo n°J * (318)

Using the same values as above, we find

KauhQceh _ 1 exp(-3.07/3)
KatUuatw 4exp(-3.07/1.5) ~ ' ^'^}

i.e. the two terms are comparable. The result is that with a smaller value of aehi

in the two temperature case, ao will also be smaller, while the positive ion balance

equation will not be much changed.

IV Comparison With Simulation

We compare our analytic theory with simulation of a capacitive parallel-plate

capacitive r.f. discharge in oxygen. The simulations were done with one-dimensional

dynamics using a particle-in-cell code (PDP1) [17], which included the most impor

tant collisional processes using Monte Carlo methods. The principle macroscopic

coefficients used in the simulation and the analytic model have been given in the

introduction. The details of the simulation and the results are given elsewhere [19].
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For the purpose of comparison with the analytic model, two cases with widely

differing parameters have been chosen: (1) p= 50 mTorr (n0 = 1.6 •1021 m~3) at low

power (ne0 = 2.4 •1015 m"3); and (2) p = 10 mTorr (n0 = 3.2 •1020 nr3) at higher

power (neo = 10 •1016 m~3). For both cases a 13.56 MHz constant current source

is used in the simulation to supply the power. The plate spadngs used were 4.5

cm and 6 cm, respectively, in the two cases. As we are concerned here with the

comparison of equilibrium dynamics, the plasma width to the sheath edge (u = uB)

will be the comparison length, rather than the plate spadng. The sheath thickness

can be calculated a posteriori using the r.f. voltage measured in the simulation,

but is not part of the present comparison.

As weare interested in the accuracy of the various components of the theory, we

separately check these components, using simulation data. Our first check concerns

the applicability of the basic diffusion coefficient (2.13) in the presence of signifi

cant recombination. To determine this we use the values Da+, 7, a0, found from the

simulations and integrate (2.16) numerically from the plasma center. We compare

the plasma profile with that found in the simulation. This is done for the high

pressure, low power case, in which the effect of recombination is most important.

The comparison is shown in Fig. 1, indicating good agreement between simulation

and numerical integration of (2.16) in the electronegative regime, but disagreement

in the electropositive edge region. The implication for the electronegative region is
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that the analytical modd holds reasonably well for negative ions, even in the pres

ence of high recombination (in this case a0 = 8). Here the ionization is by the hot

electron spedes, and the diffusion coefficient is determined by the ion temperature,

both of which are well characterized. In the dectropositive region, on the other

hand, the ambipolar diffusion coeffident is determined by the lower dectron tem

perature of the colder electron spedes, which gives a more rapid density variation

in the simulation. The result indicates the need for a two-temperature description

of the dectron distribution, as described by (3.15) and (3.16), and more fully below.

A second test of the analytic theory is to see how well the approximation of

a parabolic profile agrees with the simulation. This is shown in Fig. 2 (dashed

curve) in the dectronegative region. We find a reasonable agreement for a > 2. For

smaller a, the variation of Da(a) with nearly constant flux results in a variation of

dn/dx is not captured by the parabolic approximation. For large ao this is mainly

an edge effect and should only have a minor impact on the integrated solutions. As

seen bdow, the greater test of the approximation comes for a0 = 2 when Da+(a), in

(2.13) is continuously varying.

For the complete comparison of the equilibria we use the approximate analytic

results derived in Section III. We approximate the dectron distribution with two

Maxwellian dasses. For the two cases we are considering, the simulation results for

the energy distributions are shown in Fig. 3 [19]. Using the first change in slope to
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distinguish these distributions we can estimate ratios of temperatures and densities

of the two spedes:

^2 1.9, ^ S3.9 (p =50 mTorr), (4.1a)
*tv> nth

^2 2.8 ^2! S10 (p= 10 mTorr). (4.16)
Jew neh v '

We note that this approximation is not unique, and that hotter electron distribu

tions at much lower density could also be added. We discuss this point further in

Section V.

Considering first the high pressure case. We "short circuit" the iterative proce

dure, by choosing areasonable initial guess ofTefc = 3eV. Using the two-temperature

expression for a0 in (3.18) we find a0 = 11.1, which is approximately 30 percent

higher than the simulation value. FVom (3.12) we obtain £= 0.69 £p. Using (3.14)

we find that Tefc = 3.3 eV, which is ten percent higher than the Tth assumed. Since

the values of a0 and £/£p found using Tth = 3 eV are only weakly dependent on Tth,

we do not perform the iteration on Tth- The average electron temperature in the

simulation is found to be Te S 2eV, which is in reasonable agreement with Tt = 2.05

eV predicted by the modd. The profile which we have calculated (dashed curve) is

compared with the simulation in Fig. 4, showing reasonable agreement.

FYom (3.14), we can compare the integrated recombination flux rree (first term

on the RHS), with the flux Tt leaving the electronegative region (second term on

the RHS). Substituting the numbers from ournumerical case we find Trec/Tt = 0.26.
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This is apparently suffidently small that the parabolic form (3.2) of the profile,

which is exact in the limit of rrec = 0, fits quite well.

The condition that the negative ions are in Boltzmann equilibrium is checked

by comparing the particle flux for n.

r~(*)= / Kattn0nedx- JKrecn+n-dx, (4.2)

with the terms on the right in the flux equation

T_ = -D_Vn_ - n-n-E. (4.3)

Since Boltzmann equilibrium is calculated by setting the R.H.S. of (4.3) equal to

zero, the condition is that

|r-|<

where r_ is obtained from (4.2).

For our model in the negative ion region, ne = n<0, n+ is given by (3.2), n_ =

n+ - n<0, and Katt n0 in (4.1) is given by (3.4). Making these substitutions and

perform the integration in (4.2) weobtain, approximatdy, for a >1 and x2/*2 < 1

T-a —Krecn2eo<*l* (4.5)

Substituting (4.5) in (4.4) and evaluating %- we obtain

yjT Krecnloalx <2ne0a0 D_ -^. (4.6)

-£ (4.4)
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We see that the factor neoa0x cancds in (4.6) such that the Boltzmann condition is

satisfied independent of x. Substituting the numbers for our example, we find the

ratio of the two terms in (4.6) to $ve

7KreeneoQ0

30D./P "047

which reasonably satisfies the inequality.

We now compare the analytic solution to the simulation for the low pressure,

high power case, for which a0 is expected to be much smaller. FVom (4.6) we see

that the Boltzmann equilibrium is well satisfied, but the approximation of constant

Da+ S 2D+ is seen from (2.13) to be quite poor. FVom (4.9b) the hot component

is a much smaller fraction of the total electron density, and thus to obtain particle

balance we would expect a significantly higher temperature. We take Teh ^ 4.5 eV

as a nominal first guess. Repeating the steps for the higher pressure case, from

(3.13a) we find a0 = 1.52. FVom (2.13) we find

A,+(a0) = 2.7D+. (4.10)

lUpladng 2D+ with Da+{a0) in (3.12) and taking £p = 1.8 cm and Tew S 1.5 eV we

find £/£p = 0.31. FVom (3.14) we obtain Tth = 4.9 eV, which is again approximately

10 percent higher than the assumed re*, and within the accuracy of the calculation;

hence we do not iterate. The analytic and simulation profiles for n_ are compared

in Fig. 5. The difference in shape is accounted for by the continuous variation of

Da+y as a decreases.
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The results from two-component theory can be used at the plasma edge to

determine all plasma parameters in terms ofP,/, and asingle electrical parameter in

a capadtive r.f. discharge. Assuming that the r.f. driving voltage is the parameter,

we can obtain the sheath thickness from a modified Child-Langmuir law for r.f.

driven plasmas [5]

where we have equated the ion flux in the sheath to the Bohm flux. We have

substituted Vde - Vrj which is the approximate condition for average electron and

positive ion flux to be equal at the sheath edge. FVom (4.11) with VrJ known we

can calculate the sheath width s0. Taking Vrj = 222 volts from the simulation, and

calculating n, = 0.26ne0 from (3.9) and (3.11), we obtain s0 = 1.1 cm. Comparing

this result to the distance between the sheath edge u,- = uB and the electrode surface

in Fig. 4 we find good agreement. To compute the power lost by the electrons from

(2.19), we must know £c(Te), which depends on acomplicated integration ofa large

number ofrate constants for different processes over the distribution [17]. the power

lost by the ions is calculated from

Pi~entuBVrj. (4.12)

We do not do these numerical calculations here.

In order to determine all plasma quantities in terms of Vrjt p, and £ we must

have one additional rdation between ne0 and Vrj. Such a relationship involves the
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heating mechanisms [4,5] and has been used in obtaining analytic solutions to two

component plasmas [1,8]. These calculations involve considerable complications

and only give approximate values of ne0. We do not perform the calculation here.

V Conclusion and Discussion

Wehave devdoped the macroscopic equations that are required for determining

the equilibrium of an electronegative plasma, based on the Thompson [9] form of

the electronegative ambipolar diffusion coefficient which assumes that the negative

ions are in Boltzmann equilibrium with the fields. The approximations that are

necessary to obtain the model have been examined by comparison with a particle-

in-cell simulation of an oxygen plasma in a plane-parallel configuration. It was

found that, over a wide range of parameters, the model is in agreement with the

simulations, even though the negative ions are not in Boltzmann equilibrium with

the internal dectric fields. Themodel results in an dectron density that isessentially

damped to a constant value in all but a thin edge region. For this situation, and for

strongly dectronegative plasmas, a parabolic approximation to the density profile

can be made, leading to a simplified set of equations that can be treated fully

analytically.

Over a wide range of parameters, the flux at the edge of the dectronegative re

gion, a = n-/ne < 1,is well bdowthemodified Bohm flux, requiring the matching of

the dectronegative plasma to an dectropositive edge plasma. Since the two spedes

dectropositive plasma is well characterized, this matching is straightforward. The
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edge region has the usual profile expressed in terms ofsinusoids. A simple analytical

solution to the two-region problem can be obtained by expanding the sinusoids to

quadratic order. This does notgive the correct edge profile, but allows areasonably

accurate calculation of the plasma parameters in the dectronegative central plasma

region. The main limitation of the theory is the tendency for low pressure capaci-

tivdy coupled r.f. discharges to develop non-Maxwellian temperature distributions.

In particular, effident sheath heating tends to develop higher temperature tails to

the distribution which effectivdy control the ionization rate. These distributions

have been observed experimentally, and in both electropositive and electronegative

plasma simulations [8,19]. They have been shown to significantly affect the sdf-

consistent equilibrium of dectropositive plasmas, while not being readily amenable

to a self-consistent analytical determination [8]. We have found a similar situation

to hold for dectronegative plasmas, and have used the ratios of the temperatures

and densities for the hot tail and the cooler bulk distributions, found in simulation,

as input parameters for our analytic modeling.

As can be seen from the dectron energy distribution functions in Fig. 3, the as

sumption of a two-temperature Maxwellian is somewhat arbitrary. In fact, the high

temperature tails of the distribution fit better to a power law in energy, appropri-

atdy truncated at low energies. Power law distributions also have somejustification

from the theory of sheath heating [20] and increase the value of dectron density,

obtained from energy balance, in an electropositive plasma, giving betteragreement
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with simulation [8], However, the assumption of a power law removes the simplicity

of the exponential factors in the reaction rates, and also the use of the Boltzmann

factors in the basic equations.

Rather than attempt such a basic overhaul of the theory, we re-examine the

high pressure case in which a third, higher temperature tail to the distribution

is employed. FVom Fig. 3 we estimate a higher temperature tail is a factor of

2 higher than the intermediate temperature with a density a factor of 26 bdow

that of the main distribution. Using a0 = 11.1 and £/£p = 0.69, from the previous

calculation, which arenot expected to change much, the new dectron temperatures

are calculated from (3.14), in which the two hotter distributions are used on the

left hand side, and the ionization from the warm bulk is neglected. The result gives

Teh = 5.6 eV and Tev> = 2.8 eV. Recalculating a0 from (3.15) but now neglecting

both hot distributions, we obtain ao= 10.5, a small improvement over the previous

result, when compared to the simulation. We condude that small improvements in

the equilibrium can be obtained by improving the approximation to the electron

energy distribution function, but these improvements are not essential.

Finally, it is dear that for a fully self-consistent analytic modd, a method for

calculating the density and temperature ratios for the two dectron distributions

will need to be devised. This is equally true for dectropositive and dectronegative

plasmas. At higher neutral pressures, or in other types of discharges in which ohmic

dissipation is the dominant heating mechanism, a single temperature Maxwellian
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is a good approximation to the dectron energy distribution function. In these

situations, theanalytic model developed here should adequately describe the plasma

equilibrium.
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Figure Captions

Fig. 1 Comparison of the density profiles of the simulation with the numerical
solution of (2.16); ne0 and o0 = n-o/»*eo are matched to the simulation
values in the numerical solution.

Fig. 2 Comparison of the density profile of n_ ofthe simulation with the parabolic
analytical approximation (3.2).

Fig. 3 Two-temperature dectron energy distributions obtained for (a) p = 50
mTorrneutral pressure, lower density plasma; and (b) p= 10 mTorr neutral
pressure, higher density plasma.

Fig. 4 Comparison ofanalytic solution with simulation; ne0 and £p{ya = uB) for
the analytic solution are matched to the simulation results; p = 50 mTorr
(large a) case.

Fig. 5 Comparison ofanalytic solution with simulation; neo and a0 are matched;
p = 10 mTorr (small a) case.
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ERRATA

Modeling Electronegative Plasma Discharges

by

A. J. Lichtenberg, V. Vahedi, M. A. Lieberman, and T. Rognlien

pg 4, middle: "rule" should read "rate"

pg 5, Eq (2.1):
Tt- = -DiVnt- ± nmiEi

pg 11, 1st para: "following section" should read "section IV"

pg 12, Eq (3.1):

on d2n+ t~ZL,+ ~j~2~ = A«'*nOneO,

pg 15, Eq (3.14):

4- 2£c / Krecn+ri—dx.
Jo

P u _ 9o n dn+
•* aba — •^t/c-L/a+

dx
x=e

pg 15, below Eq (3.14): n_0 ^ n+0

pg 17, below Eq (3.17): (3.15) should read (3.16)

pg 20, 2nd & 3rd para: (3.14) should read (3.15)

pg 21, last para: (4.1) should read (4.2)

pg 22, 2nd para: (4.9b) should read (4.1b)

(3.14) should read (3.15)
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