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Figure captions

Figure 1 Communication system based on synchronizing master-slave configuration.

Figure 2 Block diagram of secure communication system.

Figure 3 Chua's circuit.

Figure 4 Secure conununication system using Chua's circuit and coding function ci. The

diamond-shaped sources are dependent sources. The voltage-controlled voltage source

[Chua et a/., 1987] senses the voltage vr across the nonlinear resistor in the transmitter

and gives an output voltage vr. The current-controlled current source senses the

current iR through the nonlinear resistor in the receiver and gives an output current

in-

Figure 5 Simulation of communication system in Fig. 4. (a) Time waveforms of and

vi(f). (b) Recovered information signal m{t).

Figure 6 Effects of parameter mismatch and channel noise, (a) Recovered information

signal rri{t) using the same setup as for Fig. 5b, except R in the receiver is increcised

by 0.02%. (b) Recovered information signal m{t) using the same setup as for Fig. 5b,

except the additive channel noise is a sine wave with frequency and amplitude

0.001.

Figure 7 Secure commimication system using the Lorenz system, (a) Time waveforms of

x(<) and x{t), (b) Recovered information signal m(t).



Abstract

Inthis paper, we give ascheme for synthesizing synchronizing circuits and systems. Synchronization of
drive and response system is proved trivially without theneed for computing numerically theconditional
Lyapunov exponents. We give a definition ofthedriving and response system having the same functional
form, which is more general than the concept of homogeneous driving of Pecora and Carroll [Pecora
& Carroll, 1991]. Finally, we show how synchronization coupled with chaos can be used to implement
secure conununication systems. Thisis illustrated with examples ofsecure communication systems which
is inherently error-free in contrast with thesignal-masking schemes proposed in [Cuomo &Oppenheim,
1993a,b; Kocarev et al., 1992]

1 Introduction

In [Pecora &Carroll 1990,1991; Carroll &Pecora 1991] Pecora and Carroll showed that two chaotic systems
in a master-slave configuration can be made to synchronize (i.e. the slave system follows the trajectories of
the master system) only if the conditional Lyapunov exponents ofthe slave system are all negative. This is
also a sufficient condition for a large class ofsystems. In [He & Vaidya, 1992], it was shown by means ofa
Lyapunov function how systems can be synthesized that will synchronize.

In this paper we will present another way to design nonlinear systems which will synchronize. For the
subclass of these systems which are chaotic, we show how secure communication systems can be realized
similar to the schemes proposed in [Cuomo Sc Oppenheim, 1993a,b; Kocarev ei o/., 1992; Oppenheim ei al.
1992; Parlitz ei al, 1992; Halle ei al 1993].

2 Synchronization of Systems in Master-slave Configuration

Pecora and Carroll [Pecora &Carroll, 1991] considered the master-slave synchronization scheme given by:

V = f(v,u) (1)

« = 9(v,u) (2)

w = h(v,w) (3)

where v € R"*, u € R*,w € R'.
The system (l)-(2) is referred to as the drive system and thesystem (3) is the response system.
In [Pecora k Carroll, 1991], the driving in (l)-(3) is called homogeneous driving when k—l and ^(•, •) =

h{', •). This form ofdriving isconsidered in detail in [Pecora k Carroll, 1991; He k Vaidya, 1992]. In [Cuomo
k Oppenheim, 1993a,b], this homogeneous driving is used in communication systems by augmenting the
response system to have the same dimension as the driving system and setting

( w,\where u> = I I. Thus the response system has the same Torm" as the driving system.



Wegeneralize this concept and define the drive and response system to have the same functional form if
the drive and response system have the same dimension (m+ ib = /) and for all u, v the following eciuation
is satisfied

The master-slave system (l)-(3) satisfying (5) is more general than the homogeneous driving (condition
(4)) in [Pecora & Carroll 1990,1991; Carroll & Pecora 1991 ;He it Vaidya, 1992; Cuomo & Oppenheim,
1993a,b] in that homogeneous driving is a special case of the system (l)-(3) satisfying (5). In fact, the
synchronization scheme that we discuss in this paper satisfies (5), but cannot be written as (4).

Here we say that the system (l)-(3) synchronizes if xv{jL) —♦ ( ] as f —» oo* for initial condition
\ «(0 /

ti/Q in aneighborhood of ( ° ). We call e= ly —( ^ | the synchronization error. If the origin for the
\ / V " /

error dynamics is asymptotically stable, then the system will synchronize. In [Be & Vaidya, 1992;C'Uomo &
Oppenheim, 1993a,b], the error dynamics is shown to be linear time-varying(nonautonomous), and by using

a Lyapunov function the error is shown to converge to zero asymptotically.

To obtain systems which can more easily be shown to synchronize, we want the error dynamics to be

linear and autonomous. In particular, we will assume that the master system is of the form;

x = Ax-l-f(xp) (6)

where A has all its eigenvalues in the open left half plane (i.e. x = Ax is globally asymptotically stable.)

and Xp = (xi, X2> •••IXpY € is a subvector of the state vector x.
We then have the following drive-response system:

X = Ax-l-f(xp)

X = Ax + f(xp)

where x is the state vector of the driving system and x is the state vector of the response system. In terms

of the notation of (l)-(3), t; =x^, ^ '̂̂ rrx and w=x. It is clear that
^?^^=A(x-x) (8)

Since A has all its eigenvalues in the open left half plane, x —^ x as f —» oo. Therefore the system will

synchronize (globally). The rate of convergence can be readily found from the eigenvalues of A. Note that

even though the response system is not autonomous, the error system is autonomous.

'With this notation, we mean ti;(t) - ^ ^ 0as I-♦



3 Communication Systems Utilizing Chaos

In communication schemes proposed in [Oppenheim ti ai, 1992; Kocarev ei ai, 1992, Parlitz ei al. 1992,
Cuomo k. Oppenheim, 1993a,b; Halle et al. 1993], the driving system isthe transmitter, theresponse system
is the receiver and a subvector Xp of the state vector x is transmitted causing the receiver to synchronize
with the transmitter. This is shown in Fig. 1.

All systems can be put in the form (6), for example, by choosing A = 0 and Xp = x, but practically,
it would be desirable to have p, the number ofcomponent ofXp, to be as small as possible, as then less of
the state needs to be transmitted. For example, when p = 1, Xp = and only xi needs to be transmitted.
The synchronization scheme (7) is simple and straightforward, and many chaotic systems in the literature
[Arneodo et ai 1981; Brockett, 1982; Sparrow, 1981; Chua, 1992; Ogorzaiek, 1989; Nishio ei ai, 1990] has
state equations which can be put in the form (6) such that Xp = xi and thus a communication system in a
master-slave conhguration using these chaotic systems can bemade to synchronize by using solely X] as the
transmitted signal.

Given that the driving system behaves in a chaotic manner, we can implement the following secure
communication scheme:

The information signal m(0 is coded with the chaotic signal Xp{t) using a coding function s(/) =

j. such that we can decode the information signal uniquely through m(<) = (f(xp(2),s(/)) =
d(xp(f),c(xp(t),m(<))). We assume that d is continuous in the variable Xp. The choice ofc(-, •) and rf(-, •)
must satisfy s(<) « Xp(t) for all appropriate information signals m(/) for two reasons. First, we want the
driving system to remain chaotic and as we see in Fig. 2, s(t) is fed back in place ofXp(i) in the driving
system. To ensure that the driving system remains chaotic, we want s(t) « Xp(t). Second, when we want
the communication system to be secure, we want 8(<) « Xp(t) so that the occurence ofm(i) is not appar
ent from looking at s(<)- The signal s(<) is then transmitted to the receiving system. The overall secure
communication system is shown in Fig. 2.

The equations governing the system are given by:

X = Ax-l-f(s)

i = Ax+ f(s)

Again we have = A(x - x) so that x(<) x(t) and thus m(<) = d(xp(t),s(i)) -»• m(() as t oo
by continuity of d. Note that in the receiving circuit of this system the information signal is recovered
completely without degradation, when the circuits are perfectly matched and there are no noise added during
transmission, in contrast to the signal masking schemes in [Kocarev ei ai, 1992; Cuomo k Oppenheim,
1992a,b] where x-/*x.



3.1 Example: Chua's Circuit

Chua's circuit (Fig. 3)[Kennedy, 1992a,b; Madan, 1993a,b] isa simple electronic circuit capable ofgenerating
chaos and other bifurcation phenomena. The state equationsof Chua's circuit are:

where

and

dt

dvn
dt

dt

^[C?(t;2-t;i)-/(t;,)]
^[G(vi - V2) + t's)

_ 1
= -iV2

^ R

f{vi) = G6t;i + i(Go-G6){lt;i + £:|-|t;i-f;|}

(10)

(11)

Equations (10) can be decomposed into the form (6) in several different ways. For example, in [Balle et
al.y 1993] and in the x-drive configuration in [Chua ei ai, 1993], equations (10) are decomposed as;

0 ^ 0

0 -i 0

This corresponds to homogeneous driving.^

We will decompose (10) as follows:

Thus A =

G

C3

0

f \

G

~c,
1

L

dvi
dt

din
dt

1

Ca

0

~Ci

C3

0

and Xp = vi.

G

G

1

"I

1

C2

0

V2

V '3 /

V2

is j

+ fl(Vl,V2,i3)

Ci

0

0

(12)

(13)

V
*For positive Ci, C2, Ry and L, the matrix A has all its eigenvalues in the open left half plane since they

correspond to the linear passive part of the circuit [Chua et a/, 1987]. Note that equation (13) when used in
(7) results in a system which is of the form (5), but not of the form (4).

For information signals m{t) with small amplitude, two possible coding functions are ci(vi(f),m(f)) =
vi(0 + m{t) and C2(t;i(<),m(<)) = vi(<)(l + m(<)).3

The circuit for implementingthe secure communication system using c\ as the codingfunction is shown

^lu fact, the first equation is not used in the receiver.
3Por C2, the decoding function doesnot exist when vi(t) s 0. In this case, some error will occur when vi(() —» 0. For the

double-scroD Chua's attractor in Chua's circuit, vi (t) goes through zero rather quickly, and the error occur in a short time
interval plalle et al. 1993].



inFig. 4. The coding function ci injects thesignal ni(t) into the transmitting circuit. As was shown in [Halle
et a/., 1992], ni(<) gets amplified by the circuit, and for sinusoidal m(t) in a certain frequency amplitude
range, the inclusion of m(<) can be apparent from the spectrum of On the other hand, a sinusoid
contains very little information, and for an information signal with a broad spectrum, this effect will not be
apparent. Nevertheless, we will use ci in our computer simulation to illustrate the operation of our system.

Figure 5 shows computer simulations of the synchronization scheme in Fig. 4. The parameters used in
boththe transmitting andreceiving system areC\ = 5.56 x10~®, C2 = 50x 10~®, R = 1428, L = 7.14 x IQ-^,

Ga ——0-8 X10~®, Gft = —0.5 x 10"^ and .£ = 1. A square wave ofamplitude 0.001 and frequency
is used as the information signal m(f). Figure 5a shows the time waveform oft;i(f) in the transmitter and
vi{t) in the receiver. In Fig. 5b we show the recovered information waveform m(f). We see that after some
transient behavior, the recovered waveform m(<) approaches the square wave m(f).

3.2 Parameter Mismatch and Channel Noise

The transmitterand the receiver system synchronize under the assumption that the two systems are perfectly
matched and that there is no noise introduced during transmission. We ask the question whether the

synchronization is robust in the sense that if there is a small mismatch between the transmitter and receiver

and the channel noise is small, would the error induced also be small?

Here we provide a simple analysis of the effect of parameter mismatch between the transmitter and

receiver and additive channel noise on the synchronization error for the communication system (9). The
complete state equations when parameter mismatch and additive channel noise are accounted for are:

" = (14)
X = Ax + f (s + ns)

where ns is the noise signal. Then the error system is:

d(x —x)
dt

= A(x - x) - (A - A)x + (f(s + ns) - f(s)) - (f(s) - f(s)) (15)

Thus (x —x) is the response ofa linear system with external input equal to -(A —A)x + (f(s + ns) -

^(s)) - (f(s) - f(s)). We assume that f is continuous and that the chaotic signal x in the transmitter is
bounded. Since A has all its eigenvalues in the open left halfplane, the error (x - x) will be small (as
f "*• 00)as longas A » A and f » f and ns is small. Thus for smallparameter mismatch and small additive
channel noise, the error will be small.

Equation (15) also indicate that the contribution of the channel noise ns to the error is small iff is small.

This is intuitive asf determines how much the receiver is "driven" by the transmitted signal Xp.
In Fig. 6a we show the recovered signal in the same setup as in Fig. 5b, except that the linear resistor

R in the receiver is increased by 0.02%. In Fig. 6b we use the samesetup as in Fig. 5b, with ns equal to a
sine wavewith frequency equal to and amplitude equal to 0.001.



3.3 Secure Communication System Using the Lorenz System

Toillustrate that this method ofconstructing secure communication systems is not restricted to system of
the form (6), we will demonstrate a secure communication system based on the Lorenz System [Lorenz, 1963;
Cuomo & Oppenheim, 1993a,b] in which there is no degradation in the recovered signal. Furthermore, to
illustrate that not all synchronization schemes satisfy (4), we will use a synchronization scheme which is of
the form (5) but not of the form (4).

The master-slave conhguration will have the following state equations:

^ = <r(y-x)
If = (r - /i)(x + m{t)) -I- /IX - y- (x + m(<))z
§ = (x+ m(0)y-6r

f = -(y-i)
^ = (r - /i)(x -I- m(<)) /ix - y- (x -I- m{t))z
If = (a? + m(t))y - bz

where cr = 16, r = 45.6, ft = 0.98, and 6 = 4. To show that x(t) —*• x(<), we use a Lyapunov function as in

[Cuomo ic Oppenheim, 1993a,b]. Setting ei = x —x, C2 = y —y, 63 = z —z, the error dynamics are given
by the equations:

ei = <r(e2-ei) (17)

62 = /<ei - C2 - (x-I-m(t))c3 (18)

es = (x + m(t))c2 - 6e3 (19)

The Lyapunov function is given by E(t) = 5(761 +63 + C3), which is a continuously differentiable
decrescent positive definite function. Then the derivate of £ along trajectories is

£(t) = -cJ + 1.98eiC2-ei-6e| (20)

= -(ei-0.99c2)^-0.0199ei-6ei (21)

Thus —£(1) is a positive definite function and by Lyapunov's direct method [Vidyasagar, 1978], the origin
of the error system is (uniformly) asymptotically stable and ei —y 0 as ( —> 0.

Figure 7 shows computer simulations of the synchronization scheme (16). A sine wave of amplitude

0.01 and frequency ^ is used as the information signal m(i). Figure 7a shows the time waveform of
x(<) in the transmitter and x(<) in the receiver. In Fig. 7b we show the recovered information waveform
m(f) = x(f)-|-m(f)—x(f). Wesee that after some transient behavior, the recovered waveform m(<) approaches
the sine wave m(f).
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