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rich and complex dynamics of this simplest among all chaotic circuits.

1 Introduction

1.1 Historical Background

The circuit shown in Fig.1(a) was synthesized to be the simplest autonomous (i.e., no input

signals) electronic circuit generator of chaotic signals. The history on the conception of this

circuit and its systematic synthesis procedure are summarized in Ref.[l], which is based in

part on the author's opening lecture given at the Workshop on Nonlinear Theory and its

Applications (NOLTA' 92), held at Waseda University, Tokyo, in January 1992. The chaotic

nature of this circuit was first verified by computer simulation1 by Matsumoto, who named it

Chua's circuit [2], and confirmed experimentally by Zhong and Ayrom [3]. The author was not

involved in these two publications because shortly after he had designed the circuit of Fig.l,

he was rushed to a hospitalin Tokyo for major surgery, an illness that took him almost a year

to recuperate.

A comprehensive mathematical analysis of Chua's circuit and the first rigorous proof of

its chaotic property are given in Ref.[4]. Because Chua's circuit was, and still is, the only

known physical system whose mathematical model is capable of duplicating all experimentally

observed chaotic and bifurcation phenomena, and which has yielded to a rigorous mathemat

ical proof, it has generated worldwide interests not only among electrical engineers, but also

mathematicians and physicists, as evidenced by the extensive literature on this circuit (see the

Chronological Bibliography in Section 7). These publications, which covers extensively the ex

perimental, numerical, and mathematical aspects of this circuit, has made Chua's circuit the

*The episode leading to this event was vividly described in Ref.[l]. Matsumoto's role at that point in time

was that of a programmer, implementing the instructions from the author. However, Matsumoto's strong

leadership in relentlessly driving his entire team of students to crank out, by brute-force computer calculations,

the cross section of the strange attractorhad led to the promptidentification of its double-spiral structure. The

subsequent eigenvalue and eigenspace calculations were made by Matsumoto, following the analysis made by

Komuro.
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SUMMARY

By adding a small linear resistor in series with the inductor in Chua's circuit, we obtain

a circuit whose state equation is topologically conjugate (i.e., equivalent) to a 21-parameter

family C of continuous odd-symmetric piecewise-linear equations in H3. In particular, every

system or vector field belonging to the family C, can be mapped via an explicit non-singular

linear transformation into this circuit, which is uniquely determined by 7 parameters. Since

no circuit with less than 7 parameters has this property, this augmented circuit is called an

unfolding of Chua's circuit—it is analogous to that of "unfolding a vector field" in a small

neighborhood of a singular point. Our unfolding, however, is globalsince it applies to the entire

state space V?.

The significance of the unfolded Chua's Circuit is that the qualitative dynamics of every

autonomous 3re?-order chaotic circuit, system, and differential equation, containing one odd-

symmetric 3-segment piecewise-linear function can be mapped into this circuit, thereby making

their separate analysis unnecessary. This immense power of unification reduces the investiga

tion of the many heretofore unrelated publications on chaotic circuits and systems to the

analysis of only one canonical circuit. This unified approach is illustrated by many examples

selected from a zoo of more than 30 strange attractors extracted from the literature. In addi

tion, a gallery of 18 strange attractors in full color is included to demonstrate the immensely

*The author is with the Department of Electrical Engineering and Computer Sciences, University of Califor

nia, Berkeley, CA 94720 USA.

1



best understood—in terms of its nonlinear dynamics—among all known chaotic systems,

and has triggered an avalanche of recent research activities on the applications of chaos, as

documented in a recent Special Session of the Midwest Symposium on Circuits and Systems

devoted to "Chua's Circuits," [5] and in two Special Issues of the Journal of Circuits, Systems,

and Computers, entitled, "Chua's circuit: A Paradigm for chaos", and edited by R. N. Madan

[6]-[7].

1.2 Recent Applications

In spite of their extreme sensitivities to initial conditions, two identical Chua's circuits and/or

their subcircuits, can be operated in phase synchronization, even when operating in a chaotic

regime [8]-[9]. In addition, several methods have been developed for controlling chaos in Chua's

circuit [10]-[15]. The possibility for synchronizing and controlling chaos has already been ex

ploited in the design of secure communication systems [16]-[17]. Moreover, a new phenomenon

called "Stochastic Resonance" has recently been discovered in Chua's circuit [18]-[19], which

can be applied to design novel amplifiers whose output SNR (signal-to-noise ratio) is consid

erably greaterthan the input SNR, an impressive feat that can not be achieved by any linear

amplifier whose output SNR is always less than that of the input because the internal amplifier

noise will degrade the SNR further.

Although the nonlinear resistor in the circuit of Fig.1(a) can be easily built using only

a dual op-amp package and 6 linear resistors [20]-[21], an integrated circuit version of this

nonlinear device, powered by a single 9-V battery, has been built [22]. Therefore, even the

nonlinear resistor in Fig.1(a) can be mass produced as off-the-shelf components for future large

scale industrial applications.

1.3 Recent generalizations

Chua's circuit has recently been generalized in many directions. One direction simply substi

tutes the piecewise-linear function of the nonlinear resistor by a smooth function, such as a

polynomial [23]. Another direction models Chua's circuit by various 1-D maps [24]-[25]. A



third direction investigates a CNN (Cellular Neural Network) array of Chua's circuits [26]-

[27]. Still another direction increases the dimension of the state space but retaining the single

scalar nonlinearity. For example, Ref.[28] uses a finite number of discrete lossy transmission

line sections as the resonator, Ref.[29] uses a terminated coaxial cable as the resonator, and

Ref.[30] uses a delay line as the resonator. Yet another direction of generalization focuses on

an in-depth mathematical characterization of the geometrical structure of the strange attrac

tors [31]-[32]. All of these generalizations are fascinating and could give rise to many novel

applications. For example, Ref.[33] uses a cubic nonlinearity and the normal form theory for

low-level visual sensing, and Ref.[34] makes use of a delay-line resonator to synthesize novel

tones and music.

2 Strange Attractors from Chua's Circuit

2.1 Concept of Equivalence of Dynamic Nonlinear Circuits

Table 1 shows 6 non-periodic attractors so far found from Chua's circuit of Fig.l.2 There

are several other 3rd-order circuits [35]-[40] and systems [41]-[43] which are also known to

have strange attractors. All of these circuits and systems are described by a continuous, odd-

symmetric (with respect to somepoint of symmetry) piecewise-linear vector field in Ttz. While

all of these attractors appear to be different from each other, it is natural to ask whether a

homeomorphic image of some, if not all, of these attractors might also be found in Chua's

circuit with an appropriate choice of the 6 circuit parameters {Ci, Ci, L> R, Gtt, Gb}. In partic

ular, if such a homeomorphism holds globally in the entire state space for all trajectories, the

two systems are identical from a dynamical point of view, and the two circuits are therefore

said to be equivalent. To answer this question, let (^i,/i2,^3) denote the eigenvalues associated

with the linear vector field in the region Do corresponding to the inner segment through the

origin (with slope Gj = Ga) in Fig.l(b). Let (vi,v2,vz) denote the eigenvalues associated with

the affine vector field in the regions D\ and D_i corresponding to the outer segments (with

In Table 1-5, we have scaled the circuit parameters to a reasonable range for readers who wish to observe

the attractors in a real circuit implementation.
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identical slope Gj = Gb) in Fig.l(b). Let (/ii,/i2j/%)> and (vitV2li/3) be the eigenvalues of

the corresponding linear and affine vector fields, respectively, of any circuit candidate from

Ref.[35]-[40], or system candidate from Ref.[41]-[43]. It follows from Theorem 3.1 (p.1078) of

Ref.[4] that this candidate is equivalent, or topologically conjugate to be precise [44], to Chua's

circuit if, and only if, ji• = \ij, and Vj —Uj, j = 1, 2, 3. Hence, the following algorithm can be

used to find the parameters so that Chua's circuit has an attractor which is homeomorphic to

that of a given circuit or system candidate:3

Equivalent Chua's Circuit Algorithm

1. Calculate the eigenvalues (/£i,/42,/43), and {vl,v2tuz) associated with the linear

and affine vector fields, respectively, of the circuit or system candidate whose

attractor is being mapped into Chua's circuit, up to a homeomorphism (i.e.,

linear conjugacy).

2. Find a set of circuit parameters {C\,C2, L,R,Ga,Gb} so that the resulting

eigenvalues fij, i/j for Chua's circuit satisfy fj,j = fi/ and i/j = 1//, j = 1, 2, 3.

2.2 Eigenvalue Constraints in Chua*s Circuit

Unfortunately, in general, the circuit parameters in step 2 do not exist for an arbitrarily given

set of eigenvalues {a*i>A42>M3>*/i>*/2>'/3}- To uncover the reason, consider the following charac

teristic polynomial associated with the Jacobian matrix in regions Do, and D\, D-\, respec

tively:

(s - fii)(s - fi2)(s - n3) = s3-p1s2+P2S-P3 (1)

(s - ui)(s - u2)(s - u3) = s3 - qxs2 + q2s - q3 (2)

The proof of Theorem 3.1 in Ref.[4] is given for the case where the circuit has a pair of complex-conjugate

eigenvalues in the linear and affine regions. It can be easily shown that the theorem holds also when all 3

eigenvalues are real numbers.



where

Pi = Pi + to + to 9i = V\ + v2 + 1^3

P2 = Ml^2 +M2M3 +/*3^1 92 = ^1^2 +^2^3 +^l f (3)
P3 = A*lM2M3 93 = VXV2Uz

Since the set {p\,p2, p$\ q\, q2, 93} is uniquely determined by the eigenvalues {pi, fi2y A*3i vi»v*->

vz\ via Eq.(3), we will henceforth refer to it as the "equivalent eigenvalue parameters." These

parameters are more convenient to work with in practice not only because they are just the

coefficients of the characteristic polynomials (1) and (2), thereby simplifying the subsequent

algebra in deriving the circuit parameters, but also because they are real numbers, whereas the

associated eigenvalues may be complex numbers. Now it is shown in Ref.[45] that there exists

a set of circuit parameters {C1,C2iL,R,Ga,Gb} in step 2 of the Equivalent Chua's Circuit

Algorithm only if the equivalent eigenvalue parameters satisfy the constraint (see Eq.(21) of

Ref.[45]):

KPi>P2,2>3, qu 92,93) = (P2 - 92XP3 - 93) - (Pi - 9i)(P39i - 93Pi) = 0 (4)

Equation (4) defines a 5-dimensional surface in 7£6. Only those circuit candidates from Ref.[35]-

[40], or system candidates from Ref.[41]-[43], whose equivalent eigenvalue parameters fall on

this surface can have an equivalent Chua's circuit. It follows from this analysis that the class

of circuits and systems which are equivalent to Chua's circuit is relatively small. This result

has led to a search for the simplestcircuit which is equivalent to all circuits and systems from

Ref.[35]-[44], as well as Chua's circuit and others. The first circuit found with this property,

except for a set of measure zero, is given in Ref.[45]. Such a circuit is said to be canonical

because it contains only 7 circuit parameters, which can be shown to be the minimum number

needed for any circuit satisfying step 2 of the "equivalent Chua's Circuit Algorithm".

3 ' Unfolding Chua's Circuit

Although the circuit in Ref.(45), as well as several other circuits having 7 parameters, which

have since been found to be also canonical in the above sense, they are not obtained by aug

menting a new circuit element to the circuit of Fig.l and hence can not be reduced to Chua's



circuit by replacing one of the elements by an open or a short circuit. Our main result of

this paper is to prove that the circuit shown in Fig.2, obtained by inserting a linear resistor

J?o in series with the inductor in Chua's circuit, is also canonical. The state equation for this

augmented circuit is given by

where

and

din
dt

dt

d%3 _
"dt ~

£[G(»l-»2) +»3]

~x(»2 + Rok)

G = R

fM = G6t;1 + -(Ga-Gl){K + i;|-|»1-i;|}

(5)

(6)

denotes the odd-symmetric v —i characteristic shownin Fig.2(b) of the nonlinear resistorwith

a slope equal to Ga in the inner region, and Gb in the outer regions. The voltage E is the

breakpoint voltage which can be assumed to be equal to unity without any loss of generality

in so far as the qualitative dynamics is concerned. On the other hand, the two slopes Ga and

Gb may assume any sign and value.

Equation (5) is called a global unfolding of Chua's circuit because of its analogy to the

mathematical theory of the "unfolding of a singularity" of a vector field [44], where a minimum

number of parameters is added in order to observe the dynamics near the singular point in its

full generality. However, in contrast to the normal form theory of unfolding, which is a local

theory applicable only to a small neighborhood of a singular point, our unfolded equation (5)

is defined over the entire state space 1Z3, and hence it is called a global unfolding. Indeed, we

will prove in Section 3 that the unfolded Chua's circuit in Fig.2 is canonicalm. the sense that it

is imbued with every possible qualitative dynamics of an extremely large family C of piecewise-

linear differential equations in V? to be defined precisely in Section 4. But, first, we will show



that the unfolded Chua's circuit in Fig.2 contains enough circuit parameters for it to realize

any prescribed set of eigenvalues {a*i,^2,^3^1,^2,^3}, except for a set of measure zero. Let

us calculate the Jacobian matrix Ma in region D0 and Mb in region D\ and D-\, respectively:

M,- =

G+Gj G
0

G G 1

0 1

L -4

(7)

where j = a in region Do, and j =6 in regions D\ and D-\. The characteristic polynomial of

Mj is given by:

det(5l-Mj) = sa + [
C\ C2

{[GGj +G+GJR^ +GRo +J_]s +RoGGj +G+Gj
C\C2 C\L C2L C2L C\C2L

Identifying the coefficients of s2, s1, and 5° in Eqs.(l) and (2) with Eq.(8) where j = a in D0,

and j = 6 in D\ and D_i, we obtain:

G + Ga , G Rq
-ct+c;+t = _Pi

GGa . (j -f- G0 „ . C?.fto . 1— + -^-r-R0 + — +

which hold in the inner region Do, and

C\h C2L C2L
RoGGa + G + Cza

C\C2L

= P2

= -P3

G + Gb G t Ro
-cT + c-2 +T = ~qi

GGb , G+ Gbn ^GRq^ 1
C\C2 C\L C2L C2L

RoGGb + G + Gb
C\C2L

which hold in the outer regions D\ and D-\.

Equations (9)-(14) constitute a system of 6 independent equations involving 7 unknown

circuit parameters {Ci,C2lL,R,Ro,Ga,Gb} and 6 known (prescribed) equivalent eigenvalue

parameters {pi,P2>P3,9i,92>93}- Hence, we can assign a convenient value to one of the circuit

8

= ?2

= -?3

(8)

(9)

(10)

(12)

(13)



parameters and solvefor the rest. After some involved algebra, we obtain the following explicit

formulas:

d = i

L = -
*̂4

* = "ft

Ga = -ft-(»)+i

Gi = -ft-(g=JJ) +fe

(14)

where {pi,P2>P3>9i>92>93} are the "equivalent eigenvalue parameters" defined in Eq.(3), and

ki = -p3 + {Si=XL){vi + S2=32-)i ft i Vgj-p^V/'X -r qi-plJ

kn =

k3 £ (£2=21) _4l

fc4 = -*i*3 + fc2(*?E£)

(15)

It follows from the explicit formulas in Eqs.(15)-(16) that the "unfolded" Chua's circuit in

Fig.2 can realize any eigenvalues parameters { pi,P2>P3» 9i» 92*93 }» except for a set of measure

zero C 7£6 where some denominators in Eqs.15-16 vanish. In particular, any set of eigenvalue

parameters satisfying the following constraints has an associated vector field belonging to €q'.

Pi ~9i

p2 _ (2ar£l) + (22=31 )(£2Z22. + p{)
ft \qi-PlS T Vgi-pi /Vgi-pi ^ri)

fP?-?2\ _ ki
V9l-Ply *2

(16)

Observe from Eqs.(15) and (16) that Ro = 0 when ki = 0, which is exactly Eq.(4). In other

words, when the prescribed eigenvalue parameters belong to the original Chua's circuit in

Fig.l, the calculated value of ifo will be zero, as it should.

Since the set of eigenvalue parameters C 1Z6 which can not be realized by the unfolded

Chua's circuit in Fig.2 has measure zero, we can make an arbitrarily small perturbation of any



unrealizable eigenvalues belonging to this set to obtain an unfolded Chua's circuit having the

"perturbed" eigenvalues

{to + &to, to + fy*2, to + fy*3, v\ + foi, v2 + bv2, u3 + 6u3] (17)

Since the solution of any system of ordinary differential equations [46]

x = f(x;p), ftfeC1 (18)

is a continuous function of its parameter vector p, it follows that for every circuit or system

belonging to the family C, we can find an unfolded Chua's circuit which has exactly the same

dynamic behaviors.

4 Topological Conjugacy

The vector field defined by Eq.(5) is but a special case of a much larger family of vector fields

which we define next.

Definition: Family C

A circuit, system, or vector field defined by a state equation

x = f(x), x<ER3 (19)

is said to belong to Family C iff

(a) /(•) is continuous

(b) /(•) is odd-symmetric, i.e.,4

f(x) = -f(-x)

(c) TZ3 is partitioned by 2 parallel boundary planes Ui and U-i into an inner region Do

containing the origin, and two outer regions D\ and D-\.

4we can relax this condition further by allowing the symmetry to be with respect to a point different from

the origin, as in the case of Sparrow's system [43].

10



Although the boundary planes U\ and U-\ can have any orientation, we will, without loss

of generality, assume that a set of coordinate systems has been chosen so that U\ and U-\ are

defined as follow (x = (xi,x2,x3)T):

Ut'.Xi = 1

U-i : Xi = -1

Under this assumption, every member of the family C can be represented by

where

x = Ax + b,

= A0x,

On <*12 aw

A = 021 c22 ^23

<*31 O32 (I33

x\ > 1 or xi < —1

-1 < si < 1

b =

defines an affine vector field in the outer regions D\ and £>_i, and

Oil 0!i2 ai3

An = «21 "22 <*23

Q!31 a32 O33

h

b3

(20)

(21)

(22)

(23)

(24)

(25)

defines a linear vector field in the inner region Do-

Equations (23)-(26) define a 21-parameter family of ordinary differential equations. How

ever, since the vector field in the family C is continuous, not all of these 21 parameters can be

arbitrarily specified [4]. In fact, by imposing the continuity constraint, it is easy to show that

Eq.22 can be recast into the following equivalent but much more compact explicit form [47]:

x = Ax+-{| < w,x> +1|-| < w,x> -l|}b (26)

11



where A and b are as defined in Eq.(23), w = (1,0,0)T, and <,> denotes the vector dot

product. Obsreve that for \x\ >1, Eq.(27) reduces to Eq.(23). Similarly, when \x\ <1, Eq.(27)

reduces to Eq.(24), upon identifying

A0 = A +

61 0 0

62 0 0

63 0 0

(27)

In other words, the continuity of the vector fields in the family C implies that the last two

columns of the matrices A and Ao must be identical, and that their first columns must differ

by the constant vector b. It follows from Eq.(28) that the family C of vector fields represents

in fact a 12-parameter familty of ordinary differential equations without constraints among the

parameters, or a 21-parameter family where 9 of the 21 parameters {ay, o;tj, 6,-; i,j = 1, 2, 3 }

are constrained via Eq.(28).

Since we have given the explicit formulas (Eqs.(15)-(16)) for calculating the 7 circuit pa

rameters for the unfolded Chua's circuit in Fig.2 to have any prescribed eigenvalues, except

for a set of measure zero, we can conclude via Theorem 3.1 from Ref.[4] that every member

of the family C of vector fields outside of the set So ( to be defined shortly ) is topologically

conjugate to an unfolded Chua's circuit. The proof of Theorem 3.1 in Ref.[4] assumes that

both Ao and A have a pair of complex-conjugate eigenvalues because it was intended mainly

for the double scroll attractor. A similar proof can be easily given when the eigenvalues of Ao

and/or A are all real numbers. We will now restate this fundmental theorem precisely and

give a self-contained and simpler proof.

The Global Unfolding Theorem

Let { /£i,/£2>A£3>z/i>z/2?I/3 } be the eigenvalues associated with a vector field F(x) 6 C \ So,

where So is a set of vector fields whose eigenvalue parameters are constrained by Eq. (17), and

by det K = 0, where K is defined by the following Eq.(30). Then the unfolded Chua's circuit

with parameters defined by Eqs.(15)-(16) is linearly-conjugate, and hence equivalent, to this

12



vector field.

Proof. Without loss of generality, assume that F(x) is defined by Eq.(27), with A and b

defined by Eq.(25). Define the non-singular transformation

where

and

Since F(x) £ So,

y = Kx

1 0 0

K = an aw ai3

#31 #32 #33

#3t = 2J aiiai«'
3=1

i- 1,2,3

det K = ai2-fir33 - ai3#32 ^ 0

Hence, K-1 exists and Eq.(27) transforms into

(28)

(29)

(30)

(31)

(32)

y = (KAK-1)y + -{|<(K-1)rw,y>+l|-|<(K-1)Tw,y>-l|}Kb (33)

where

KAK"1 =

0 1 0

0 0 1 ^A

Pz -P2 Pi

.

13
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is the companion matrix of A,

Kb =

(K^fw = A „
= w = w

Pi ~9i

-P2 + 92 + 9i(Pi ~ 9i)

P3 - 93 - 92(Pi - 9i) + 9i[~P2 + 92 + 9i(Pi ~ 9i)]

Hence, the transformed vector field simplifies to

y = Ay + -{|<w,y>+l|-|<w,y>-l|}b

(35)

^b (36)

(37)

henceforth called the companion vector field. Observe that both A and b are uniquely de

termined by the prescribed eigenvalues { Mi,/^/^,^,^^ } via their equivalent eigenvalue

parameters

{Pi» P2, P3, 9i» 92, 93} (38)

We have therefore shown that the given vector field F(x) is topologically conjugate to the

companion vector field F(y) defined by Eq.(38).

NowF(x) 6 C \ So implies that there exists an unfolded Chua's circuit defined by the vector

field f(x) with x = (v\,v2,iz)T via Eq.(5) that has the same prescribed set of eigenvalues as

those of F(x). We can recast Eq.(5), with E = 1, into the canonical piecewise-linear form

where

x = Ax + -{| < w,x>+l|-| < w,x> -l|}b

w = (1,0, Of

14
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A =

0\-(^)

_G
c2 C72 <?2 b =

•*

There exists a corresponding non-singular linear transformation

y = Kx

Go — Gb

0

0

(41)

(42)

which transforms Eq.(40) into its corresponding companion vector field by Eq.(38), with y

replaced by y, where

and

0 0

K =
-(G±G<,

W ft

K.31 #32 #33

•K*3i = Snail + S12&21 + 613631 = (G+Gb\2. G2
) +C\ C\C2

G(G + Gb) G2
#^32 = anai2 + a\2a22 + 613632 = —

#33 = anai3 + 612623 + 613633 =
G

Ci

C\Ci

C\C2

(43)

(44)

(45)

(46)

But since A and b in Eq.(42) are determined uniquely by only the equivalent eigenvalue

parameters {pi,P2>P3,9i>92,93}> it follows that both F (x) and f(x) must transform into one

and the same companion vector field. Hence, we have y =y. It follows from Eqs.(29) and (43)

that

vi

x = T v2 (47)

13
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where

T = K_1K (48)* xr-ii

transforms every circuit, system, or vector field belonging to the family C\ So into an unfolded

Chua's circuit. This completes the proof of our main theorem. •

Remarks:

1. The unfolded Chua's circuit in the global unfolding theorem is unique, modulo a nor

malization constant C\, which was assumed to be unity in Eq.(15(a)) for convenience.

Using the language from linear circuit theory, this normalization corresponds to setting

the "impedance level" of the linearized small-signal equivalent circuit.

2. Any unrealizable vector field belonging to the set So can be perturbed to a qualitatively

identical vector field belonging to the family C, and hence once again realizable by an

unfolded Chua's circuit. In practice, to avoid numerical ill conditioning, it is more con

venient to perturb the equivalent eigenvalue parameters from {pi,P2jP3>9i592>93} into

{pi + Spi,p2 + Sp2,p3 + 6p3,qi + Sqi,q2 + Sq2,q3 + 6q3}, where 6pi and Sqi are chosen to

be sufficiently small (at least one must be non-zero).

3. The condition given in Eq.(33) is equivalent to the assumption that there is no plane

or line parallel to the boundary planes which is invariant under the action of the linear

vector field in the middle region.

5 Applications of the Unfolded Canonical Chua's Circuit

5.1 Mapping Chaotic Circuits from Family C

We can now easily "map" any chaotic circuit belonging to the family of vector fields C

\ So into the unfolded canonical Chua's circuit shown in Fig.2 by applying Stepl of the

Equivalent Chua's Circuit Algorithm from Section 2.1 and calculating the circuit parameters

{d,C2,L,R,Ro,Ga,Gb} using Eqs.(15)-(16).

16



The purpose of this section is to illustrate this procedure by selecting a few chaotic circuits

belonging to C \ So and demonstrate the immense advantage of this unifying approach via a

single circuit of universal utility.

Esample 1. Consider the chaotic circuit given in Fig.l of Ref.[38], and its strange attractor

in Fig.3 which we reproduce below in Fig.3(a). Using the circuit parameters provided in

Ref.[38], we have calculated the following eigenvalues:

to = 0.367929, to = -0.283965 + jl.1306, fi3 = -0.283965 - jl.1306

vi = -10.9656, v2 = 0.132777 + jO.945683, v3 = 0.132777 - jO.945683

The corresponding equivalent eigenvalue parameters calculated from Eq.(3) are given by:

Pi = -0.188575, P2 = -1.406646, P3 = -0.04406605

ft = -10.699046, «fe = -3.7886455, ft = 9.6133946

(49)

(50)

Substituting the parameters from Eq.(51) into Eqs.(15)-(16), we obtain the following parame

ters for the equivalent "unfolded" canonical Chua's circuit:

d = 1, C2 = -0.0326059, L = -2.760292

R = -10.11087, G = -0.098903457, ifo = 9.200877,

Ga = 0.5989046, Gb = 11.09895

(51)

The strange attractor associated with Eq.(52) is shown in Fig.3(b). While the 2 attractors in

Fig.3 are not identical to each other, they are in fact equivalent in view of the global unfolded

theorem from the preceding section. In fact, they are related by the transformation matrix T

= K^K in Eq.(49), where

1 0 0 0 0

K = -6 -10 0 -1 (52)

S +S ^ £-6(a-6) 110 1 10.7
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and

K = -11.000047 -0.0989035 0

120.7010302 1.387946472 3.033299403

(53)

where e, a, and bare parameters from Ref.[38].

To verify that the 2 strange attractors in Fig.3 are in fact one and the same attractor

expressed in different coordinate systems, we multiply the coordinates {x\,x2,x3)= {v\,v2,i3)

of the time series of the attractor in Fig.3(b) from the canonical Chua's circuit by the matrix

T, and obtain the attractor shown in Fig.3(a), as expected.

Example 2. Period-Doubling Route to Chaos

Table 2 shows the waveform and spectrum of v±(t) and its associated attractor obtained

from previous publications on Chua's circuit. Table 2.1 shows a pair of periodic orbits which

bifurcated from two stable equlibrium points P+ € D\ and P~ € jD-i, via Hopf bifurcation.

As we vary a single parameter C\ from C\ = 11.364nF down to C\ = 10.204 nF, while keeping

all other parameters fixed, we obtain the well-known period-doubling route to chaos, as shown

in Tables 2.2 (period 2), 2.3 (period 4), 2.4 (period 8), 2.5 (Rossler attractor), and 2.6 (Double

Scroll Attractor). If we substitute the eigenvalues associated with each attractor in Table 2 into

Eqs.(15)-(16), we would obtain the corresponding parameters indicated in this table (scaled by

a factor to obtain reasonable circuit parameters). Notice that ifo = 0 in each case, as expected.

Example 3. Intermittency Route to Chaos

Table 3 shows the waveform and spectrum of v\(t) and its associated attractor obtained

by mapping corresponding attractors from the earlier canonical Chua's circuit in Ref.[45].

Using the eigenvalues calculated from Eq.(3) in Ref.[45] for the attractors shown in Figs.3

(a),(b),(c),(d), and (e) of Ref.[45], we obtain the corresponding attractors using the unfolded

canonical Chua's circuit, as shown in Table 3.1, 3.2, 3.3, 3.5, and 3.6. Note that while some of
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these attractors may not look very similar to their corresponding attractor in Fig.3 of Ref.(45),

they are in fact related by the transformation matrix T defined in Eq.(49). Table 3.4 provides

another attractor not given in Ref.[45] but which illustrates the evolution of the intermittency

phenomenon in greater detail.

Example 4- Torus Breakdown Route to Chaos

Table 4 shows the waveform and spectrum of vi(t) and its associated attractor obtained

by mapping corresponding attractors from the torus circuit given in Ref.[35].5 Using the

eigenvalues calculated from Eq.(l) of Ref.[35] for the attractors shown in Fig.5 of Ref.[35],

we found these eigenvalues belong to the set of unrealizable eigenvalues (as defined by Eq.

(17)). Using the slightly perturbed eigenvalues shown in Table 4 (scaled to obtain reasonable

parameter values), we obtain the corresponding attractors shown in Tables 4.1-4.6.

5.2 Mapping Chaotic Systems from Family C

Consider the chaotic feedback system given by Brockett in Ref.[42], and its strange attractor

given in Fig.9 (page 936), which we reproduce in Fig.4(a). Using the system parameters

provided in Ref.[42], we have calculated the following eigenvalues:

to = 0.721965, fi2 = -0.860982 + jl.3236, to = -0.860982 - jl.3236

vx = -1.61109, v2 = 0.305544 + jl.46327, v3 = 0.305544 - jl.46327

The corresponding equivalent eigenvalue parameters calculated from Eq.(3) are given by:

pi = -1, p2 = 1.25, p3 = 1.8

9i = -1, 92 = 1.25, 93 = -3.6

Observe that pi = q\ and hence Brockett's system also belongs to the set So. To obtain a

qualitatively similar strange attractor using the unfolded canonical Chua's circuit from Fig.2,

we add a small perturbation Spi = 0.05 and 6q\ = -0.05 to obtain

p/ = -0.95, p2 = 1.25, p3 =1.8

9i' = -1.05, q2 = 1.25, q3 = -3.6

5This circuit was discovered and studied extensively by R. Tokunaga.
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These equivalent eigenvalue parameters corresponds to the following set of perturbed eigenval

ues

to = 0.728163, to = -0.839081 + il.3296, to = -0.839081 - jl.3296

vi' = -1.6337, v2 = -0.2918491 + il.45548, v3 = -0.2918491 - jl.45548

Substituting Eq.(52) into Eqs.(15)-(16), weobtain the following parameters for the equivalent

"unfolded" canonical Chua's circuit:

Ci = 1, C2 = 54.08314, L = 0.0003490195

R = -0.01907856, Rq = 0.0003512879,

Ga = 53.36472, Gb = 53.46473

The strange attractor associated with the parameters in Eq.(59) is shown in Fig.4(b). Again,

to map Fig.4(b) into Fig.4(a), we calculate the transformation matrix T = K_1K in Eq.(49),

where

and

K =

K =

1 0 0

0 1 0

0 0 1

-1.049873 -52.414857

51.90026889 4.230907969 -0.956509787

(57)

(58)

(59)

(60)

Multiplying the coordinates (xi,x2,x3) = (vi,v2,i3) of the time series of the attractor in

Fig.4(b) from the canonical Chua's circuit by the matrix T, we obtain an attractor which is

qualitatively similar to that of Fig.4(a), as expected.

5.3 A Zoo of Strange Attractors from FamilyC

More than 30 non-periodic attractors from the family C of vector fields have been observed

from many 3rd-order electronic circuits and systems, and from computer simulations. Table 5
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shows a sample of some of these attractors which have been mapped into the unfolded canonical

Chua's circuit of Fig.2. Many of these attractors mapped are from those presented in Ref.[45].

For example, Tables 5.1, 5.2, 5.3, 5.4, 5.5, 5.7, 5.10, 5.12, 5.13 correspond to the attractors

given in Figs. 19, 18, 20, 8, 9, 12, 14, 7 in Ref.[45] respectively. A gallery of 18 multi-color

strange attractors from this table and table 1 (projected into the v\ —v2 plane) is shown in

Table 6.

6 Concluding Remarks

All waveforms and attractors in this paper are calculated numerically using the user-friendly

software package INSITE [48]. Since the circuit parameters for all attractors in Table 1-5 are

given, and scaled to within therange of practical component values, experimentalobservations

of these attractors can be made by building the unfolded Chua's Circuit with the corresponding

circuit parameters. Those parameters which are negative can be realized with the help of a

negative impedance converter ( NIC ) having a large enough linear dynamic range. The vr —ip,

characteristic of the nonlinear resistor ( Chua's Diode [21]) can be realized by various nonlinear

circuit synthesis techniques, such as those given in [49 - 52].

The circuit presented in Fig.2 of this paper, as well as that given in Fig.4 of Ref.(45)

are both canonicaland equivalent to each other. It is interesting to observe that these two

circuits can be interpreted as a global unfolding of the 2 chaotic circuit candidates (Figs.4(g)

and (h), p.252) which have been derived by a systematicnonlinear circuit synthesis procedure,

as described in Ref.[l]. Both unfoldings are obtained by adding a linear resistor in series with

the inductor. In fact, many other canonical circuits can also be derived by connecting a linear

resistor, by a plier or soldering-iron entry with other elements in these 2 circuits. Since all

of these canonical circuits are equivalent to each other, only one circuit need to be studied

in depth, at least from a theoretical point of view. Since many papers have already been

published on Chua's circuit (Fig.l), the unfolded Chua's circuit in Fig.2 will be the circuit of

choice in our future research on nonlinear dynamics of this circuit. Such a research program

is important because any future result or breakthrough applies to the entire family C of 21-
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parameter family of vector fields, including all of the chaotic circuits from Refs.[35]-[40], and

chaotic systems from Refs.[41]-[43]. In fact, it is natural for us to allow the scalar nonlinear

function in Fig.2 to be any piecewise continuous function (e.g., polynomial, signum function,

etc.) which need not be piecewise-linear or symmetric. We conjecture that most autonomous

3reorder chaotic circuits and systems with polynomial, signum, and hysteretic nonlinearities

can be accurately modeled by the above generalization. It is the universality and unifying

potentials of the unfolded canonical Chua's circuit that has made it a fundamental and general

tool for understanding and applying chaotic dynamics for future applications in science and

technology.
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Figure Captions

Fig.l. (a) Chua's circuit.

(b) v-i characteristic of the nonlinear resistor(drawn with Ga < Gb < 0)

Fig.2. (a) unfolded canonical circuit. The nonlinear resistor may be characterized by any

piecewise continuous function. For the family C of vector fields studied in this paper,

this is assumed to be piecewise-linear, such as shown in Fig.1(b), where

Ga<Gb< 0, or

(b) Gh<Ga< 0,

(c) Ga < 0, Gb> 0,

(d) Gb>Ga> 0,

(e) Ga > 0, Gb < 0, and

(f) Ga>Gb> 0.

Fig.3. (a) Strange attractor reproduced from Fig.3 of Ref.[38].

(b) Equivalent strange attractor generated by the unfolded Chua's Circuit with param

eters given by Eq.(48).

Fig.4. (a) Strange attractor reproduced from Fig.9 (page 936) of Ref.[42].

(b) Qualitatively similar Equivalent strange attractor generated by the unfolded Chua's

Circuit with parameters given by Eq.(50).
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Fig. 3 (a) Strange attractor reproduced from Fig. 3 of Ref. [38]. (b) Equivalent strange
attractor generated by the unfolded Chua's circuit with parameters given by Eq. (48).
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Fig. 4 (a) Strange attractor reproduced from Fig. 9 (page 936) ofRef. [42]. (b) Qualitatively
similar strange attractor generated by the unfolded Chua's circuit with parameters given by
Eq. (50).
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Table 1 Attractors from Chua's circuit. In the 3-D phase portraits, the units on the Vi and V2 axes are volts, and
the units on the Is axis is milliamps. E = Iv.

Waveform of VI

Waveform of "VI

Waveform of VI

1 .1

1

Spectrum of VI

0.1

AwJuk ,A ' "*
0.01 |#

0.001 Y
II 1 IiV mi "i A^rtlVw »a i

0.0001 • ' ' ill n^
. 1

O 0.2 0.-4 0.6 0.8 1 1.2 1.4- 1.6 1.8
Frequcnoy (KHz)

1.1 C*i = -149nF, C2 = l^F, L = -658m//,
Ga = -1.14mS, Gb = -OJUmS, R = 1KQ.
Eigenvalues: ^1 = 16.4, /z2 = -1.08 x 103 +
2.33 x 103j, nz = -1.08 x 103 - 2.33 x 103j, v\ =
-672, i/2 = 796+1.93xl03j, 1/3 = 796-1.93xl03j.

Spectrum of "VI

1.2 C\ = -245nF, C2 = IfiF, L = -500m//,
Ga = -1.14292mS, Gb = -0.7142mS, R = IKQ.
Eigenvalues: px = 599,//2 = -1.67 xl03-f 1.74x
103i, n3 = -1.67 x 103-1.74 xl03j, vx = -1.06 x
103, ja> = 612+ 1.35x 103;, u3 = 612-1.35 x 103j.

Specirum of "VI

1.3 Cx = -203nF, C2 = lfiF, L = -21AmH,
Ga = -2.497ms, Gb = -0.9301m5\ R = IKQ.
Eigenvalues: {i\ = -6.34xl03,/i2 = -3.31 xlO3,
^3= 1.28xl03,^, = -992,2/2= 168+1.11 xl03j,
u3 = 168-1.11 x 103j.
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1.5

1

2" o.s
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& -O.S

-1

-1.5
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1 rl A
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Waveform of "VI

Wkvofotm of VI

Wawoform of VI

•1
i i i

AO 60
Time (ma)

Y

A

0.5

V2

fi t\
li UV
80 lOO

Spootrum of VI

1.4 d = 120nF, C2 = IfiF, L = 83.9m#, Ga =
-0.7048mS, Gb = -1.146mS, R = IKQ.
Eigenvalues: m = -3.86 xlO3, fx2 = 200+2.75 x
103i, /i3 = 200 - 2.75 x 103i, i/i = 2.18 x 103,
i/2 = -982 + 2.39 x 103j, i/3 = -982-2.39 x 103j.

Spootrum of VI

1.S 2 2.S
Frequency (KHz)

1.5 Ci = 64.1nF, C2 = IfiF, L = 35m#, Ga =
-1.143mS, Gb = -0.7143mS, R = 1KSI. Initial
Conditions: »i = 1.8035v, v2 = 0.1804v, i3 =
-1.8797mA

Eigenvalues: Hi = 7.95 x 103, \i2 = —1.12 x
10s+ 4.48x 103j, fi3 = -1.12 x 103 - 4.48x 103;,
i/i = -6.05 x 103, i/2 = 298 + 4.58 x 103j, 1/3 =
298-4.58 xl03j.

Speosum of VI

1.5 2 2.5
Frequency (KHz)

1.6 Ci = 64.1nF, C2 = 1/iF, I = 35m//, Ga =
-1.143mS, Gj = -0.7143mS, R = ltfQ. Initial
Conditions: t>i = 1.1638v, v2 = -0.09723, t3 =
-0.90565mA.

Eigenvalues: m = 7.95 x 103, fi2 = -1.12 x
103 + 4.48x 103j, Hz = -1.12 x 103-4.48 x 103j,
vx - -6.05 x 103, i/2 = 298 + 4.58 x 103j, u3 =
298- 4.58 xl03j.



Table 2 Period doubling route to Chaos. The fixed parameters are Rq = OQ, R = 1KQ, L = 6.25m//, Ga =
-1.143mS, Gb = -0.714m,?, C2 = lOOnF, E = lv. In the 3-D phase portraits, the units on the Vi and V2 axes are
volts, and the units on the 73 axis is milliamps.

Waveform ofVI

Waveform ofVI

^JZT -o-s^j o.s

W»vofonn of VI

Spootrum of VI

1 1.5 2
Froquonoy (lOe+4 Hz)

2.1 Control parameter: CI = llMAnF.
Eigenvalues: pi = 2.07 x 104, fi2 =
-9.68 x 103 + 2.98 x 104j, /i3 = -9.68 x
103 - 2.98 x 104j, vi = -3.77 x 104,
v2 = 1.27 x 103 + 3.27 x 104j, vz =
1.27x 103 - 3.27 x 104j.

Spootrum of VI

1 1.5 2
Froquonoy (!Oo*4 Hz)

2.2 Control parameter: CI = 11.050nF.
Eigenvalues: fii = 2.15 x 104, \i2 =
-9.27 x 103 + 2.97 x 104j, ^3 = -9.27 x
103 - 2.97 x 104i, j/j = -3.88 x 104,
i/2 = 1.40 x 10s + 3.26 x 104i, i/3 =
1.40 x 103 - 3.26 x 104j.

Spootrum of VI

1 1.5 2
Froquonoy (10o«4 Hz)

2.3 Control parameter: C\ = lOMbnF.
Eigenvalues: fii — 2.17 x 104, n2 —
-9.32 x 103 + 2.96 x 104j, /x3 = -9.32 x
103 - 2.96 x 104i, i/i = -3.91 x 104,
i/2 = 1.51 x 103 + 3.26 x 104j, u3 =
1.51 xlO3-3.26 xl04j.
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2.4 Control parameter: CI = 10.915nF.
Eigenvalues: fj-i = 2.18 x 104, /z2 =
-9.36 x 103 + 2.96 x 104j, [i3 = -9.36 x
103 - 2.96 x 104j, vi = -3.93 x 104,
i/2 = 1.54 x 103 + 3.26 x 104i, i/3 =
1.54 x 103-3.26x 104j.

Spectrum of VI

X X.J ^

Frequency (lOe-nl Hz)

2.5 Control parameter: CI = 10.753nF.

Eigenvalues: Hi — 2.22 x 104, /*2 =
-9.46 x 103+ 2.95 x 104j, fi3 = -9.46 x
103 - 2.95 x 104i, vi = -3.99 x 104,
v2 = 1.64 x 103 + 3.26 x 104j, i/3 =
1.64 xlO3-3.26 x 104j.

Spectrum of VI

Frequency (lOe+4 Hz)

2.6 Control parameter: CI = 10.204nF.
Eigenvalues: \i\ — 2.37 x 104, \x2 =
-9.84 x 103 + 2.91 x 104i, /i3 = -9.84 x
103 - 2.91 x 104i, i/i = -4.20 x 104,
v2 = 1.99 x 103 + 3.26 x 104j, i/3 =
1.99 x 103-3.26x 104j.



Table 3 Intermittency route to Chaos. The fixed parameters are C2 = IpF, C\ = -13.33nF, R = IKSl,
R0 = -100ft, Ga = -0.987715, Gb = -2AmS, E = lv. In the 3-D phase portraits, the units on the Vi and
V2 axes are volts, and the units on the I3 axis is milliamps. In 3.2, the asymmetric attractor and its twin
are both shown in the phase portrait.
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3.1 Control parameter: L = 16.67m//.
Eigenvalues: \i\ = 4-19 x 103, /x2 = 1.16 X
103+ 1.12xl04i,/i3 = 1.16xl03-1.12xl04j,
vi = -1.04 x10s, iv2 = 2.14xl03+6.74xl03j,
i/3 = 2.14 x 103 - 6.74 x 103j.

Spectrum of "VI

Frequency • K l l-- >

3.2 Control parameter: L = 22.32m.ff.
Eigenvalues: ^ = 3.44 X 103, fi2 = 770 +
1.07 x 104i, fi3 = 770 - 1.07 x 104j, vx =
-1.04 x 105, iv2 = 1.38 x 103 + 5.96 x 103j,
7/3 = 1.38 x 103-5.96x 103j.

Spectrum of VI

Frequency <!•; I I .- >

3.3 Control parameter: L = 22.73m//.
Eigenvalues: y,\ = 3.40 X 103, fi2 = 751 +
1.07 x 104j, fi3 = 751 - 1.07 x 104i, 7/, =
-1.04 x 105, u2 = 1.34 x 103 + 5.91 x 103j,
u3= 1.34 x 103 - 5.91 x 103j.



Waveform of VI

0.3

Waveform of VI

Waveform of VI

T 0.3

O.l

O.Ol

O.OOl

O.OOOl

le-OS

I0-O6

SrV
Spectrum of VI

«fWt*tm

Frequency (KHz)

3.4 Control parameter: L = 28.80mH.
Eigenvalues: fa = 2.88 X 103, \i2 = 548 +
1.03 x 104i, n3 = 548 - 1.03 x 104j, vx =
-1.04 x 105, vi = 874 + 5.31 x 103j, u3 =
874-5.31 x 103j.

um of VI

Frequenoy (KHz)

3.5 Control parameter: L = 31.50ml/.
Eigenvalues: /ii = 2.70 X 103, /i2 = 489 +
1.02 x 104i, us = 489 - 1.02 x 104j, vx =
-1.04 x 105, i/2 = 725 + 5.10 x 103j, vz =
725 - 5.10 x 103j.

Spectrum of VI

Frequency (KHz)

3.6 Control parameter: L = 32.00m//.
Eigenvalues: fa = 2.67 x 103, /i2 = 480 +
1.02 x 104i, n3 = 480 - 1.02 x 104j, vx =
-1.04 x 105, u2 = 700 + 5.06 x 103j, v3 =
700 - 5.06 x 103j.



Table 4 Torus breakdown route to Chaos. The fixed parameters are C2 = 1/iF, R =
Ga = 0.856ms1, Gb = 1.1mS, L = 0.667m//, E = lv. In the 3-D phase portraits, the units
are volts, and the units on the h axis is milliamps.

-IKQ,
on the

Ro =
V\ and

0.651Q,
V2 axes

Waveform of VI

eform of VI

Waveform of VI

Time (ms)

VI 1 2 T-T

Spectri

Frequency (KHz)

4.1 Control parameter: C\ — \QnF.
Eigenvalues: fa - 1.53xlO4, fa = -459+3.76 x
104i, fa = -459 - 3.76 x 104j, 14 = -1.06 x 104,
z/2 = 311 + 3.75 x 104j, i/3 = 311 - 3.75 x 104j.

Spectrum of "VI

Frequency (KHz)

4.2 Control parameter: C\ = Q.OnF.
Eigenvalues: fa = 2.61 x 104, fa = -1.03 x
103 + 3.72 x 104j, fa = -1.03 x 103-3.72x 104i,
7/1 = -1.82 x 104, t/2 = 797 + 3.69 x 104j, i/3 =
797-3.69 x 104;.

Spectrur

enoy (KHz)

4.3 Control parameter: C\ = b.lnF.
Eigenvalues: fa = 3.08 x 104, fa = -1.26 x
103 + 3.71 x 104i, fa = -1.26 x 103-3.71 x 104i,
Vi = -2.17 x 104, v2 = 1.04 x 103 + 3.67 x 104j,
7/3 = 1.04 x 103-3.67x 104j.



Waveform ofVl

3 4

Wnvoform of VI

0.5

V2

Waveform of VI

0.5

Spectrum of VI

4.4 Control parameter: C\ = b.OnF.
Eigenvalues: fa = 3.14 x 104, /72 = -1.29 x
103 + 3.71 x 104i, fa = -1.29 x 103 - 3.71 x 104j,
V\ = -2.21 x 104, i/2
7/3 = 1.08 x 103-3.67x 104j.

= 1.08 x 103+ 3.67x 104i,

Sp«"

Frequency (KHz)

4.5 Control parameter: C\ = 3.5nF.
Eigenvalues: fa = 4.49 x 104, fa = —1.85 x
103+ 3.71x 104j, fa = -1.85 x 103-3.71x 104;,
7/j = -3.21 x 104, t/2 = 1.77 x 103+ 3.64 x 104;',
7/3 = 1.77 x 103-3.64x 104j.

Spectrum of VI

Frequcnoy (KHz)

4.6 Control parameter: C\ = 2.9AnF.
Eigenvalues: fa = 5.33 x 104, fa = -2.12 x
103 + 3.72 x 104i, fa = -2.12 x 103- 3.72 x 104;',
7/1 = -3.83 x 104, i/2 = 2.15 x 103 + 3.63 x 104i,
7/3 = 2.15 x 103 - 3.63 x 104j.



Table 5 A gallery of attractors from the unfolded Chua's circuit. In the 3-D phase portraits, the units on the Vi
and V2 axes are volts, and the units on the /3 axis is milliamps. E = Iv.
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Frequency (MHz)

1.2 l.<*

5.1 C\ = -768.6pF, C2 = InF, L = -73.5m//,
R = IKQ, Ro = 2.1SKQ, Ga = 0.169ms, Gh =
-0.477mS.

Eigenvalues: fa = 7.84 x 105, fa = -3.37 x 105,
fa = 1.03 x 105, vi = 1.52 x 104, v2 = -1.53 x
105 + 7.61 x lO5;', u3 = -1.53 x 105 - 7.61 x 105j.

Specnrum of VI

5.2 Ci = 57.5?iF, C2 = -XflF, L = -708m//,
R = IKQ, Ro = 740ft, Ga = -1.525m5', Gb =
-0.458mS.

Eigenvalues: fa = 5.56 x 103, fa = 3.61 x 103,
fa = 1.57 x 103, i/j = -7.40 x 103, v2 = -18.2 +
854j, 1/3 = -18.2 - 854j.

col f|
O.OOl

O.OOOl

le-OS

Spectrum of "VI

jWgjjrjri
0.2 0.4 0.6 0.8 1

Frequency OVIHz)
1.2 1.4

5.3 Ci = 735pF, C2 = -hiF, L = 11.44m//,
R = IKQ, Rq = 3.56/02, Ga = 1.292ms, Gb =
-0.497mS.

Eigenvalues: fa = -2.75 x 106, fa = 7.30 x 105,
fa = -4.08 x 105, vi = -2.67 x 105, v2 = 1.36 x
105 + 7.38 x 105j, i/3 = 1.36 x 105 - 7.38 x 105j.
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5.4 C\ = 684pF, C2 = -lriF, L = 10.6m//,
R = 1KQ, Ro = 3.43KQ, Ga = 1.219mS, Gb =
-0.514mS.

Eigenvalues: fa = -2.86 x 106, fa = 7.22 x 105,
fa = -4.27 x 105, i/j = -2.79 x 105, v2 =
1.22xl05+7.85xl05i, vz = 1.22xl05-7.85xl05j.

Spectrum of VI

0.-4 0.6
Frequency QVXHz)

5.5 Ci = 811pF, C2 = -InF, L = -138m//,
R = 1KQ, Ro = 12.1KQ, Ga = -0.177mS, Gb =
-0.02mS.

Eigenvalues: fa = 5.28 x 104, fa = 1.00 x 104 +
4.72 x 105i, fa = 1.00 x 104 - 4.72 x 105j, i/j =
-2.08 x 105, i/2 = 4.35 x 104+ 1.73 x 105j, z/3 =
4.35 x 104 - 1.73 x 105j.

O.l

O.Ol 1-'

O.OOl •

O.OOOl -

lo-OS

Spectrum of "VI

3 4 5
Frequency (KHz)

5.6 Ci = -13.33nF, C2 = IfiF, L = 32m//,
R = IKQ, Ro = -100ft, Ga = -0.98mS, Gb =
-2.4mS.

Eigenvalues: fa = 2.67 x 103, fa = 480+ 1.02 x
104i, fa = 480 - 1.02 x 104j, */, = -1.04 x 105,
i/2 = 700 + 5.06 x 103j, u3 = 700 - 5.06 x 103j.
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5.7 Ci = 758pF, C2 = -InF, L =
R = IKQ, Ro = 10.6/vQ, Ga = -
Gb = -0.02811mS.
Eigenvalues: fa = 8.75 x 104, fa
104 + 5.50 x 105j, fa = 1.10 x 104 - 5
i/i = -2.64 x 105, u2 = 5.74 x 104 + 1

-79.6m//,

0.2241mS,

= 1.10 x

.50 x 105i,
,98 x 105i,

7/3 = 5.74 x 104-1.< 105j.

Spectrum of VI

5.8 Ci = -702pF, C2 = InF, L = 33.96m//, R =
IKQ, Ro = ll.Otfft, Ga = -0.0715mS, Gb =
-0.1817mS.

Eigenvalues: fa = 1.33 x 105, fa = -6.72 x
104 + 2.00 x I05j, fa = -6.72 x 104 - 2.00 x 105j,
vx = -2.03 x 105, t/2 = 2.25 x 104 + 4.93 x 105i,
vz = 2.25 x 104 - 4.93 x 105j.

Spootrum of VI

10 IS 20
Frequency (KHz)

5.9 Ci = OMnF, C2 = 1/iF, L = 0.1m//,
R = IKQ, Ro = 0ft, Ga = -1.026mS, Gb =
-0.982mS.

Eigenvalues: fa = 5.39 x 104, /72 = -4.21 x
103 + 9.28 x 104i, fa = -4.21 x 103 - 9.28 x 104j,
i/i = -3.81 x 104, i/2 = 2.48 x 103 + 9.18 x 104i,
2/3 = 2.48 x 103—9.18 x 104j.
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Spectrum of VI

5.10 Ci = 75.InF, C2 = 1/xF, L = 4.7m//,
R = -IKQ, Ro = 4.41ft, Ga = -0.474mS,
Gb = 2.039mS.
Eigenvalues: fa = 2.01xlO4, fa = -197+1.44x
104i, fa = -197-1.44 x 104j, vx = -1.43 x 104,
v2 = 244 + 1.43 x 104i, 7/3 = 244 - 1.43 x 104j.
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5.11 Ci = 19.21nF, C2 = 1/iF, L = 18.42m//,
/? = -IKQ, Ro = 18.4ft, Ca = 1.018mS, Gb =
1.02mS.

Eigenvalues: fa = 794, ii2 = -865+1.36 x 104j,
fa = -865 - 1.36 x 104j, 7/! = -1.61 x 103, u2 =
287+1.40 x 103i, i/3 = 287- 1.40 x 103j.

Spectrum of VI

O.8 1
cy OVIHz)

5.12 Cx = -641pF, C2 = InF, L = 63.9m//,
R = -IKQ, Ro = -10.1/Cft, Ga = 0.2438mS,
Gb = 0.0425mS.
Eigenvalues: fa = 1.09 x 105, fa = -6.54 x
104 + 6.14x 105i, fa = -6.54 x 104 - 6.14 x 105j,
Ul = -4.05 x 105, v2 = 3.45 x 104 + 1.75 x lO5;",
7/3 = 3.45 x 104 - 1.75 x 105j.
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Spectrum of VI
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Frequency (GHz)

5.13 Cx = -0.92pF, C2 = lpF, L = 10.32m//,
R = -IKQ, Ro = -75.6KQ, Ga = 0.0941 lmS,
Gb = 0.1899/iS.
Eigenvalues: fa = 6.39 x 106, fa = 8.14 x 106 +
3.2 x 108i, fa = 8.14 x 106 - 3.2 x 108j, vx =
-9.46 x 107, i/2 = 7.56 x 106 + 3.23 x 107j, i/3 =
7.56 x 106-3.23x 107j.

Speotri

Frequency (KHz)

5.14 Ci = 269.6nF, C2 = lpF, L = 41.5m//,
/e = 1/^ft, ivo = -35.7ft, Ga = -2.764mS, Gb =
0.1805mS.

Eigenvalues: /7! = 6.86xlO3, fa = -226+4.65 x
103j, fa = -226 - 4.65 x 103j, vx = -4.84 x 103,
i/2 = 160+ 4.65 x 103j, t/3 = 160 - 4.65 x 103j.

Speotri

Frequency (KHz)

5.15 Ci = 31.72nF, C2 = IfiF, L = 15.6m//,
R = -IKQ, Ro = 10.4ft, Ga = 0.9926mS, Gb =
1.023mS.

Eigenvalues: fa = 1.10 x 103, fa = -226 +
5.70 x 103j, fa = -226 - 5.70 x 103?', vi = -781,
v2 = 195 + 5.65 x 103j, i/3 = 195 - 5.65 x 103j.



Waveform of VI

Waveform of VI

v25*-

Waveform of VI

O 50 lOO ISO 200 2SO 300 350 -*00 450 500
Time (microseconds)

V2

Spectri

Freq
1.5 2
cy (KHz)

5.16 Cx = 9.98nF, C2 = -luF, L = 10.12m//,
R = IKQ, Ro = 10.12ft, Ga = -0.99002mS,
Gb = -0.9893mS.
Eigenvalues: fa = -1.6 xlO3, fa = 308+1.13 x
103j, fa = 308 - 1.13 x 103i, i/i = 1.54 x 103,
i/2 = -1.31 x 103 + 1.65 x 103i, i/3 = -1.31 x
103- 1.65 x 103j.

Spect

Frequency (KHz)

5.17 Ci = -13.33n/^, C2 = lfiF, L = 31.5m//,
R = IKQ, Ro = -100ft, Ga = -2.4mS, Gb =
-0.98mS.

Eigenvalues: fa = -1.04 x 105, fa = 725+5.06 x
103j, fa = 725 - 5.06 x 103i, t/j = 2.70 x 103,
i/2 = 489 + 1.02 x 103i, t/3 = 489 - 1.02 x 103;.

Spectrum of VI

1.5 2 2.5
Frequency (MHz)

5.18 Ci = -621.5pF, C2 = InF, L = 14.2m//,
R = IKQ, Ro = 4.22/Yft, Ga = -0.1392mS,
Gb = -0.2175mS.
Eigenvalues: fa = 1.61 x 104, fa = -3.68 x
104+ 4.36 x 105j, fa = -3.68 x 104 - 4.36 x 105j,
i/j = -4.46 x 104, i/2 = 3.25 x 103 + 5.86 x 105j,
i/3 = 3.25 x 103 - 5.86 x 105;'.



Table 6

Gallery of selected strange attractors from
Unfolded Chua's Circuit.
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