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Abstract

We address the problem of minimizing collections of interacting finite state machines that
arise in the context of formal verification. Typically much of the behavior of the system is re
dundant with respect to a given property being verified, and so the system can be replaced by
substantially simpler representations. These redundancies can be captured by a series of equiva
lence relations on the state space. Directly minimizing the system requires forming the complete
product machine which can be very large. We describe hierarchical procedures that minimize the

system with respect to explicit and implicit representations. We present experimental results on
some standard verification examples to show that our algorithms allow the product machine to
be represented by very small implicit or explicit representations. We conclude with some further

directions.
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1 Introduction

We are concerned with the problem of formally verifying properties of a system of interacting finite
state machines. There are two popular approaches— model checking using temporal logic [1, 2] and
language containment [3, 4]. It has been shown these two approaches are complementary in nature

and both have certain advantages[5].

Large designs arising in practice are invariably the product of small interacting finite state

machines. Industrial experience indicates that few components, even in large designs, have more

than a hundred states[6]. However, taking the product of these components to form the product
machine leads to the state explosion problem[7, 8]. Informally, this refers to the fact that given n
Finite State Machines (FSMs) {M\, M2,..., M„}, the number of states in the product machine is the

product of the number of states in each individual machine. As a result algorithms that explicitly

operate on the state space of the product machine may have exponential time and space complexity.

Coping with the explosion of states has been at the forefront of synthesis and verification. Binary

Decision Diagrams [9] are extensively used to implicitly represent states and transition relations.
BDD-based methods are widely used for formal verification [10,11]. However, on designs with many
components these standard BDD-based techniques also reach their limit.

The complexity of systems of interacting finite state machines has been investigated [12, 13]. It

was proved in [13] that such systems are substantially more difficult to synthesize and verify than
single machines. As an example, simply determining if a state is reachable from a given starting

state is P-space complete for a product machine, whereas the corresponding problem for a single

machine can be solved in linear time.

We propose strategies to cope with this problem of explosion of state space. We multiply the

components of the designs iteratively and at each iteration we compute an equivalence relationship

on the resulting state state. Using this equivalence relation we reduce the current product. Applying

these minimizations iteratively we are able to construct a smaller final product machine and also the

intermediate product machines are smaller than observed without these minimizations. We also use

the current properties being verified to give us more flexibility in the equivalence relation, and thus

smaller product machines. Our approach allows us to utilize information about the environment,

to achieve greater minimization. We formulate these computations both for model checking and

language containment.

We tested some of our algorithms on some studied examples in literature as well as a few real

industrial examples. The results demonstrate the effectiveness of the method.

In section 2 we define finite state machines, and assign semantics to their interaction. In section 3,

we describe our method for hierarchical minimization in detail. In particular, we define various



equivalence relations on the state space, and discuss their complexity. Issues related to partitioning

sequential systems and using equivalent and reached states to minimize BDD representations of a

transition system are discussed. We report our experimental results in section 4, and conclude with

future work in section 5.

2 Definitions

In this section we define finite state machines and the semantics of their interaction. The definitions

are motivated by the desire to model hardware designs. At the early stages of VLSI design, compo

nents may be incompletely specified, and the wires and states may not be encoded. Our definition

allows this flexibility. Non-determinism is commonly used to abstract the environment or parts of

the designs, and is reflected in the use of transition relations rather than functions to represent the

state dynamics.

Definition 1 A finite state machine with state space S, inputs I, and output alphabet 0 is

characterized by its transition relation T C S x I x S and output relation 0 C S x O, as illustrated

in Figure 1.

We allow machines to be non-deterministic and incompletely specified.

At the early stages of a design, it is necessary to abstract the behavior of the some of the

components or the environment. Fairness conditions, defined below, are used to disallow portions

of the system's infinitary behavior that are inconsistent with the eventual design. A single machine

may have more than one fairness constraint.

Definition 2 A Buchi Fairness condition on a finite state machine M is a subset of the state

space F C S. Given a state sq € S, and an input sequence i € Iut the sequence of states s 6 Sw is

said to be a run of i if

• Wo = <s0

. VkT([s]k,[i]k,[s]k+1)

The run is said to be fair if inj[s) n F ^ <f>, where inj[s) is the set of states in the sequence s
that occur infinitely often. An output sequence corresponding to a run s is simply any sequence o

such that VkQ([s\k[o]k). Basically this definition constrains fair runs to be those which visit certain
subsets of the state space infinitely often.
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Figure 1: An FSM on states 51,52,53, with inputs 0,1, and outputs a,6,c.

The fairness constraints imposed above are very simple. However, any u;-regular set can be

described by such machines, although there may be other ways of forming the fairness constraints

that yield more compact representations. We shall expand on this when equivalences are defined in

the presence of Street-Rabin fairness constraints.

Systems are described as a collections of hardware units, communicating through a set of wires,

and driven in lockstep by a single clock; this is the basis for the definition of product machine.

Consider a system of n interacting machines Afi,M2 ,Mn. We assume there are no external

inputs. Any external inputs Iext can be modeled by adding a one state FSM such that this FSM non-

deterministically outputs any of the inputs from Iext. Each component machine Mi has present state

sMi, next state variable tM\ andtakes asinput oext,t (some subset ofoutputs ofthe other machines).
Basically, we are dealing with non-deterministic Moore machines with transition predicates on the

edges. A run through the product machine is fair if it is fair in each component machine; thus the

fair subsets of the product machine are the fair subsets of the component machines lifted to the

product state space.

Definition 3 The product machine M = M\ <£• M2 <8> • • • <8> Mn is the machine on state space

S = SMl x 5Ma x ... x SMn and output space 0 = 0Ml x 0M* x ... x 0Mn, characterized by

• Output relation 0M(xM,oM) = n?=i QMi(xMi,oMi)

• Transition relationTM{xM\yM) = (3z)[n?=i T^(a:M*,i,y^)-0M*(a;MSoM* )-{i= [oMl.. .oM»]))



where the present state variable xM = [xMlxM*... xMn], and the next state variable yM = [yMl yM*... yMn].
We assume the sets 0Mi,0M> are disjoint for all i,j.

Given an initial state so the FSM as described defines a mapping from input sequences to output

sequences:

Definition 4 The behavior of the FSM at state so is a relation Bs° C Jw X Ow, where the output

sequence a is related to t if there is a fair run of the machine starting at state so on input i which

corresponds to a

Observe that a given input sequence may generate no output sequences, or multiple output se

quences.

3 Hierarchical Verification Using State Minimization

The intractability results proved in [13] imply the need for heuristics for dealing with the state

explosion problem. One heuristic is to incrementally form the product and minimize the incremental

machines generated. For example, it is known that states that are bisimulation equivalent are

exactly those that satisfy the same set of CTL formulae [14]. Thus one procedure for minimizing the

component machines prior to performing CTL model checking would be to compute the bisimulation

relation on each component machine and minimize the component state space with respect to this

equivalence. Similarly trace equivalence could be used to minimize component machines prior to

language containment.

In general the minimization can be hierarchical, i.e. the minimized components can be clustered,

and minimization could be performed again. It may be possible to answer the verification problem

posed before the product is completely formed, in which case the procedure would return the result.

A generic procedure for this form of verification is described below in figure 2

Remark 1: Observe that bisimulation and trace equivalence preserve all CTL and language prop

erties. Thus the equivalence that we get is finer than that defined with respect to a specific property.

In fact much of the system dynamics will be irrelevant with respect to the property being checked,

and so by using the property to define equivalences on the state space one can get much coarser

equivalences. We elaborate on this in section 3.1.

Remark 2: As pointed out in the introduction, large sequential designs sometimes arise as the

product of interacting FSMs. Identifying these components in large sequential netlists is a significant

problem. A natural way of identifying the components is by partitioning the design (and hence the

state space) into interacting machines based on minimizing some cost function. This is discussed

further in section 3.2.



function incrementally_minimize_and.verify(Mo,.. .,Mn_i, Property)
M[,..., M\ = cluster_and_partition(Mo,..., Mn_i, Property);
for( i = 0; i < I; i + + )

M* = minimize(M/, Property);
if fasLpass( Mf,..., M* )

return PASS;
\ifast.fail{ MJ,...,Mf)

return FAIL;
return( incrementally_minimize_and_verify(Afi,..., M* ) );

Figure 2: A generic procedure for hierarchical minimization

Remark 3: When designs are represented explicitly, the minimum state machine is the minimum

representation for the design. In the case of implicit representations, such as BDDs, there is no

correlation between the number of states and the size of the BDD for the transition relation. As a

result, it is very difficult to pick a compatible representation. Methods for deriving a small BDD

are described in section 3.3.

3.1 State Equivalences

The notion of state equivalence comes up in various contexts. The classical Myhill-Nerode pro

cedure for minimizing DFAs proceeds by computing equivalent states; it then forms the quotient

machine which is proved to be the minimum state DFA for the language. Bisimulation equivalence,

described in [15], is used in verification to show an implementation satisfies its specification. State
equivalence in sequential logic networks is used as don't care information to minimize the associated

combinational logic for the next state and output functions.

We will define various equivalences on the state spaces of component machines. Equivalences

need to take into account fairness constraints, the nature of the environment, and the property being

verified. Coarser equivalences are harder to calculate than finer ones; there is a trade-off between the

more succinct representations derived from coarser equivalences, and the added cost of computing

them.

In section 3.1.1 we describe equivalent state calculations in the context of language containment

for systems of interacting machines; in section 3.1.2 we do the same for model checking.



3.1.1 Equivalence with respect to Output Traces

In this section we develop heuristics for performing language containment. Specifically, given a

system of interacting machines Mi,.. .,Mn, possibly with fairness constraints, and a set of outputs

Qobs q j0^ 0ny being observed, we address the problem offinding small state machines that have
equivalent behavior.

Given a machine M and an equivalence relation £(«i,S2) C SM x SM on the state space of M,
we define the notion of a quotient machine and a quotient state space.

Definition 5 Given a component machine M, a formula <f>, and the equivalence relation £^(#, y),
a quotient state space is a maximal subset of SM (the state space of M) such no two elements
are equivalent modulo E*.

We will abuse notation and refer to the quotient state space since all such spaces are isomorphic

under the natural map derived from £^(z,y).

Definition 6 Given a component machine M, a formula <f>, and the equivalence relation S^(x,y),
a quotient machine is a machine defined on the quotient state space with transitions from s\ to

«2 under predicate p iff there is a transition from some ti € EQ^(si) to some ^2 € EQ^fa) under
predicate p.

We will abuse notation and refer to the quotient machine since all such machines are isomorphic

under the natural map derived from £*(a,t/).
One can define equivalence on the state space of a machine in various ways. The following

definition preserves behavior, ie all input/output traces.

Definition 7 Sf3(s1,s2) if BSl = BS2

Lemma 3.1 Given a machine M and the equivalence relation £^($1,52), ^e quotient machine M'
defined on the quotient space Sgp is the minimum state machine that behavior compatible with M

Proof: If not then there would be a compatible machine M" with fewer states than there are

equivalence classes in S^(si,S2). By the pigeon-hole principle, two non equivalent states would fall
into the same state, contradicting the compatibility of M". u

Lemma 3.2 Given a machine M and two states si,$2, it it P-space complete to decide if S^(si,S2)



Proof: Hardness follows from the fact that the Universality problem (that all strings are accepted)

for Buchi automaton is P-space complete. The reduction from an instance of universality is straight

forward: Assume the Buchi automaton B has a single start state so (non-deterministic start states

can be modelled by adding a single start state which non-deterministically goes to any start state).

View the automaton B as a machine M with inputs from the alphabet of the Buchi automaton.

Take the the accepting states of the Buchi automaton to be a fairness condition on the machine, as

described in definition 2. By definition, a string is accepted by the Buchi automaton B iff there is

a run through the automaton which visits accepting states infinitely often. Such a run corresponds

to a fair run in the machine M. Thus a string is accepted by the Buchi automaton iff there is a fair

run of the string in the corresponding machine. Add a state s\ which has a self loop on all inputs,

which is a fair state. Then the starting state sq is equivalent under £& to s\ iff the language of the
automaton is the universe.

Membership in P-space is analagous to that of Buchi Universality: guess an output string a and

an input string i show a is generated by i at $1, show that it cannot correspond to any run of 52 on

1. This procedure requires only polynomial space. •

Given an initial state 5o, one can define two states to be equivalent if they can be merged

without affecting the behavior at so. One can generalize this to multiple initial states by requiring

the behavior to be equivalent at all initial states.

Definition 8 £(3's°(si,s2) if the machine M' - (S',i^O',©',!1') defined below

• State space S' = (S —{51,32}) U {sc}

• Input space I' = I

• Output space 0' —0

• Output relation 0'(s,o) = 0(s,o) V (($ = sc) A(0($i,o) VQ(s2io)))

• Transition relation

T'(x,i,y) = T(x,i,y)V

((x = sc) A (T(sui,y) V T{s2,i,y))) V

((y = sc) A CT(a:,Mi) V T(x,, is2)))

has the same behavior at state so as the machine M has at state $o- The state sc may taken to be

fair to make the behaviors equivalent.
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Lemma 3.3 Given a machine M, a state sq, and the equivalence relation £P>S°, the quotient ma
chine M' defined on the quotient space Sg is a minimal state machine which is behavior compatible
with M, Sq.

Proof: Follows from the construction. •

Since in general it is hard to minimize the component machines using the equivalence relations
defined above, one can use a finer equivalence such as bisimulation to minimize the state space. Care
has to be taken to preserve fairness. If only a certain subset of the outputs are observable, one can
get coarser bisimulation relations. Bisimulation equivalence can be calculated in polynomial time.

Depending on the way the fairness conditions are treated, one gets different bisimulation relations.

In [16] simulation relations are defined in the presence of Buchi fairness conditions. These relations

match fair states in various ways, and can easily be extended to bisimulation equivalence.

In the definitions below, let Oobs refer to the subset of outputs that are observable.

Definition 9 (Bisim-aa, Biichi fairness) Let M be a machine. Define states s\ and s2 to be

bisimulation-aa equivalent (£bts~aa(s\,S2)) if

• Vo € Oobs> (0(«i, o) <-»• 0(«2, o)) and

• Vt,z[T(sui,z) -f 3z'(T(s2,i,z') A£bis(z,z'))] and

• Vi, z'[T(52, i, z') -» 3z (T(«i, t, z) A£bis(z, z'))] and

• For each fairness constraint Fk : S\ € Fk <-»• s2 6 Fk, where Fk are the fair subsets.

Definition 10 (Bisim-lc, Biichi fairness) Let M be a machine. Define states «i and S2 to be
bisimulation-lc equivalent (£bls~lc(si,S2)) if

• Vo € Oobs, (0(si,o) <-*• 0(y,o)) and

• Vi,z[T(sUhz) -»• 3z' (r(s2,«,z') A£bis(z,z'))\ and

• Vi, z'[T(s2, i, z') -> 3z(r(*i, i, z) A£bis(z, z1))] and

• For eachfairness constraint Fk : Every cycle through s\ contains a state from the fair subset
Fk •«-»• Every cycle through S2 contains an fair state from Fk

Both the above bisimulation relations can be calculated in polynomial time. One can extend

the bisimulation relations developed above to machines with fairness constraints expressed as cycle
sets, recur edges, Muller acceptance conditions,etc. In particular, consider an automata with Streett



fairness conditions, ie let M be a machine, and C = {(?7i,Vi),...,(?7n,Vn)} be a class of pairs of

subsets of the state space. An output sequence o € 0W is generated by the input sequence i G Iw if

there is a run s = (50,«i, 52,...) through the state space such that

• so is an initial state of M

• VfcT(sjk,ijfc,Sjfc+i),0(.sjfc,Ofc)

• Vjinf(s) C\Uj^<l>-> inf(s) ClVj^</>

These conditions define a set of fair paths through the machine. We can extend the definition of

bisimulation equivalence to such machines as given above:

Definition 11 (Bisim-aa, Streett fairness) LetM be a machine with fair pathsdefined by Streett
fairness. Define states si and $2 to be bisimulation-aa equivalent (£bts~aa(51,52)) if

• Vo€ 00bs(Q(si,o) <-+ 0(52,o)) and

• Vi, z[T(su i, z) - 3z' (T(52,i, z') A£bis(z, z'))\ and

• Vi, z'[T(s2, i, *') - 3z(T(5i, i, z) A£bis(z, z'))) and

• Vi [5i G tfj <->• 52 6 C/j A 5i € Vj <-*• 52 € v,-]

Definition 12 (Bisim-lc, Streett fairness) Let M be a machine. Define states 5i and 52 to be

bisimulation-lc equivalent (£bt8~lc(s\,S2)) if

• Vo€ Oo&s(0(5i,o) «-+ 0(52,o)) and

• Vi,z[T(5i,i,z)^ 3z,{T{s2,i,z') A£bis(z,z'))\ and

• Vi, 2/[T(52, i,2') -*• 3z(T(5i, i, z) A£6"(z, z'))] «"rf

• For all cycles C\ through s\ there are states 50,5f, € C/, and 5a € #t', s& € Vi, <-• /or a// cycles
C{ through $2 there are states s'a,s'b in C{ such that s'a € U{, and s'b 6 Vi.

These too can be computed in polynomial time, using fixed point operations.

The above equivalences have been defined assuming no knowledge about the environment. In

general, partial knowledge is available, e.g. it may be known that the set of inputs icon* that the

environment can produce is a subset of the full input space Ii x I2 x ... x In. This often arises

in closed systems when the environment itself is a collection of machines. The reached state set

10



in the environment is typically much smaller than the full state space, so large numbers of output

patterns will not be generated. These correspond to inputs that will never be seen. In this case

during reachability and equivalent state calculations, the inputs that are used to find the reached

state set and the equivalent state pair set are taken only from the set Icont- Similarly, if it is

known that certain outputs are equivalent to the environment, then more states can be taken as

equivalent. In general, one can further characterize the environment in terms of output sequences

that it can generate, and input sequences to it that are equivalent. These will result in equivalences

that are coarser, and reached states that are more accurate. Below is the calculation for the bisim-

aa relation, where /Poss is the set of possible inputs, and £equtv is the equivalence relation on the
output space.

Definition 13 (Bisim-aa, Buchi fairness) Let M be a machine. Define states si and 52 to be

bisimulation-aa equivalent (£bts~aa(si,S2)) if

• V01 (0(5j,oi) «-• 3o2 0(52,o2) A£equiv(ouo2)) A
Vo2 (0(52,o2) «-> 3oi 0(5i,oi) A£equiv(ouo2)) and

• Vi € 1°°"*, z[T(su i, z) -• 3z* (T(52, i, z') A£bis(z, z'))] and

• Vi € I^.z'lT^hz') -> 3z{T(sui,z)A£bis(z,z'))] and

• F(si) «-• F(s2)

3.1.2 Equivalence with respect to CTL formula

In this section we develop the heuristic procedure outlined in fig 2 for the specific problem of

CTL model checking a given formula <f> over a specified state 5 in a system of interacting machines

Mi,..., Mn. Extending the syntax and semantics of CTL for interacting machines is straightforward

and described in [13]. Given a machine M, a closing environment is any machine M' such that

the product machine M <g> M' forms a closed system. Given a closed system Mi ® M2 ® ...Mn
the corresponding Kripke structure jfMi8Af28-.Mi1 js simpiy the state transition graph, where
the product states are marked by the union of the outputs of the component states. We define

an equivalence relation £^(51,52) on the state space of the component machines and prove that it
results in a minimum state machine. Calculating the relation is shown of be P-space hard, and we

suggest heuristics for computing a finer relation.

Definition 14 £^(5i,52) = 1 ifforevery closing environment E and state e in E, (51, e),M®E \= <f>
iff(s2je),M®Et=(f>.

11



Notation:£7Q^(5i) is the set of states forming the equivalence class of 5i
This is a natural definition; it says two states in a component machine are equivalent modulo

the formula <f> iff there are no environments which define structures in which the formula comes out

true at one state but not the other. We now show that the quotient machine derived from this

equivalence is minimum.

Definition 15 Let M be a component machine, and <f> a CTL formula. We say a machine M'
defined on the same input-output space as M is <f> compatible with M if for every state s in SM
we can associate a state s' in SM such that for every closing environment E and state e € SE
KM®E, (5, e) \= <J> # KM'®E, (5', e) |= <j>

Lemma 3.4 The quotient machine is the smallest machine that is <f> compatible to M.

Proof:

Analagous to the proof for observability equivalence. •

Theorem 3.1 Given a component machine M, two states s\ and 52, and a formula <f>, it is P-space
hard to determine if £^(51,52)

Proof:[SX*eic/i;]

Consider the case when cf> does not refer to any propositions from the machine M. Then the states

5i and 52 are equivalent modulo <f> if and only if they are behaviorally equivalent, ie if and only if

£^1,52) as defined in section 3.1.1, which by lemma 3.2 is P-space hard to compute. •
As discussed in section 3.1.1, bisimulation equivalence is computable in polynomial time, where

as complete equivalences are P-space hard to compute. This motivates the following definition,

where states are bisimulation equivalent up to the point where the truth of the given formula is
known.

Definition 16 Given a component machine Mi, a formula <j>, and two states 5,t in SMi define
£^s(5,t) as follows:

*K.(M) <=> (PASSES) APASS(t))

V(FAIL(s) A FAIL{t))

V[0(5,o) = 0(i,o)

AVi, z(TM<(s, i,z) -> 3z'TM'(t, i,z') A£*,(*, z'))
AVi, z' (TMi(t, i,z') -> 3zrM'(5, z, z) A£*,(2>, z))}

12



{-*}

True True

Figure 3: 2 state FSM used to derive formula satifiability

where PASS(x) iff x satisfies <f> in all environments, and FAIL(x) iff x fails <j> in all environments.

Lemma 3.5 Given states s,t £&,s(5,2) =>• £*{s,t)

Proof:

States that are bisimilar satisfy exactly the same set of CTL formulae[14]. Observe that s and t are

bisimilar up to the point where the formula fails or passes. Thus they can not be differentiated by

any CTL formula until they reach states at which <f> must pass or must fail, and hence <f> will not

differentiate them.

•

Remark: Given PASS(ar) and FAIL(z) one can devise a fast fixed point calculation for computing

£bia(s,t) using the above theorem.
Calculating £bis{s,t) turns out to be P-space hard. We show this by a reduction from CTL-
satisfiabilty, which is known to be P-space complete.

Theorem 3.2 Given a component machine M, two states si and 52, and a formula <j>, it is P-space

hard to determine if£$4(si,S2)

Proof: Let <f> be a given CTL formula. Let a be an atomic proposition not appearing in <f>. Define <f>*

to be a/\<f>. Let M be a single two-state machine as shown in figure 3. Then for no closing environment

E and state e can (52, e), M <g> E |= aA<f>. We now show that <f> is satisfiable <$• -«£$5(si, 52).
(=>•) Suppose <f> is satisfiable. Let K be the Kripke structure, and 5a' the state in K such that

5at,K |= 4>. Then treating K as a closingenvironment for M, we see (51,sk), M ®E \= af\<j>. Thus

K serves to differentiate 5i and 52, and so -»£^(5i,52).
(<=) Suppose ->£^(5i,52). Since V£,e € 5E,((52,e),M ® E) ^ a A</>, it follows that 3E,e e
•^((^ljC^M <g> E) |= a A<£. But then <£ is satisfiable: the Kripke structure derived from M ®E
and the state (51,e) satisfy <j>.

Thus given a CTL formula, we can reduce the problem of deciding satifiability of the formula to

checking state equivalence. Furthermore this reduction can be performed in polynomial time and

so the equivalence calculation is P-space hard. •

13



Computing £$,(51,32) is P-space hard because formula satisfiability is P-space hard. As most
formulae are short, one may still be able to compute the relation relatively efficiently. In appendix A,

we give a set of fixed point calculations for £bia which would be efficient enough when <f> is simple.

3.2 Partitioning and Sequencing

As pointed out in the introduction, large sequential designs sometimes arise as the product of

interacting FSMs. Identifying these components in large sequential netlists is a significant problem.

A natural way of identifying the components is to find a balanced partition of the latches and gates

so as to minimize the communication across the partition.

The design may be already specified as a collection of communicating processes. In this case a

natural decomposition may be the initial processes. In general, it may be preferable to collapse the

collection, and then partition the flattened machine. For example, if the property were specified as

an automaton, a partition which has smaller clusters "near the task" and coarser ones further away

would yield smaller representations.

Given a decomposition of the design, there are various sequences in which the minimization can

proceed. One possibility is a balanced decomposition, where a tree of processes is formed, and the

minimization proceeds from the leaves to the root. Another approach is to incrementally form the

product by multiplying in one machine at a time and minimizing the incremental product at each

stage. This is essentially the method we followed. We start with the component machine specifying

the property, and multiply in the other machines one at a time in the order of their distance from

the task in the communication graph.

Partitioning and sequencing strategies are described in detail in Appendix B.

3.3 BDD Techniques

Given a machine M, let R and £ be the reached state and equivalent state pair sets. If the

representation for M were explicit, the quotient machine on the reached state set would be the

minimum representation of a machine equivalent to M. However we are interested in BDD based

representations. The BDD for a subset of S C {0, l}n bears no correlation to the cardinality of S.
Therefore, in the spirit of [8] we derive maximal don't care sets which we use to simplify the BDD

representing the STG, using some new BDD minimization techniques[17].

Caveat: Minimizing the BDD for component machines doesn't necessarily mean that the product

of these BDDs will be smaller than the product of the original BDDs. Also, smaller BDDs for the

transition relation do not imply that verification will proceed faster. However experimental evidence

indicates this is true. The equivalent state pairs and reached state set provide all the flexibility in
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choosing representations for the system, so with the development of even better understanding of

BDD minimization for reached state analysis, these calculations will continue to be significant.

3.3.1 Bounds on the STG

Let

• T(x, i, y) be the transition relation of a given FSM

• R(x) be the set of reachable states

• £(#>y) be an equivalence relation on the state space

• C(x) be a set of representative states derived from £

Consider all transitions that may be added to the FSM based on equivalence between two states. If

there exists a transition between two states x and z, then we may add the corresponding transition

(on the same set of inputs) between all other states equivalent to x and equivalent to z. By the

definition of equivalence, adding in these transitions will in no way change the behavior of the

machine. The set of transitions which may be thrown in based on equivalence relations between

states is given by T(x,i,y):

f(x, t, y) = 3w(T(w, t, y)•€(x, to)) + 3z{T{xi t, z) •£(y,z))

Lemma 3.6 The following transition relation is minimum:

Tmin = f(x,i,y).C(x).C{y)
A 3w, z [R(w) AR(z) A£(z, w) A£(y, z)]

The following transition relations are maximal

Tmax-1 = f(x,i,y)AR(x)AR(y) + R(x)
Tmax-2 = f(x,i,y) + R(x)A^{3y£(x,y)AR{y))

In general, Tmax_i and Tmax_2 are only maximal. In some cases it may be possible to add more
transitions if some transitions are deleted.This requires making some unreachable states reachable,
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and the space of compatible representations becomes highly discontinuous. In the absence of un

reachable states, Tmax_i equals Tmax_2, and they are in fact both maximum.
The above expressions give maximal and minimal bounds on the transition structure that pre

serve behavioral equivalence. Given the range of BDDs possible for the transition relation, our

objective at this stage is to compute a small BDD within that range. There is no known efficient

method to solve this problem. Several heuristic methods exist, among the most common are the

constrain and restrict heuristics[18]. We use a version of this heuristic[17]. Given a function and a
care set, it returns a BDD between / •c and / + c, which is chosen to have a small size. Thus given

BDDs of the minimal and maximal set, we use the following expression to compute an intermediate

BDD of minimal size.

/ = fmin

c = /min + "Vmax

It is important to keep in mind that the choice of C, the set of representative elements, is not

unique. We have not analyzed this problem in detail.

An important observation to keep in mind is the fact that adding (and subtracting) in the
transitions can actually change a deterministic finite state machine into a non-deterministic one.

This may pose problems since some problems in sequential synthesis are not yet solvable for non-

deterministic machines. However there are a large class of problems which are solvable for non-

deterministic machines and for those problems, our results are useful.

4 Experiments and Results

The techniques described in this paper help build the product machine for a system of interacting

component machines. We form the product machine iteratively, and minimize the product at each

step of the iterative composition. We start with the component machine specifying the property

(the task automaton), and multiply in the other machines in order of their distances from the

task. Equivalence minimization and don't care information for unreachable states is used for this

minimization as described above.

The objective is to achieve a smaller representation for the composed product system. This

representation is smaller both in the implicit form (size of the BDDs of the final and intermediate

product machines) and in the explicit form (number of representative states in the final and inter

mediate product machines). These smaller representations should allow us to do formal verification
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on larger systems than before.

The experiments described here are based on computing the bisim-aa equivalence described in

Section 3.1.1. We arrange the components of the interacting machine to form an incremental decom

position (as described in Appendix B.) Since our experiments pertain to the language containment

model, we start with the component which represents the property. Then we sequence the other

components in the order in which they are connected to the property as described in the appendix.

We ran our experiments on a series of benchmarks described in Table 1. For each example we

compute statistics for both the explicit and the implicit representations.

For explicit representations, we report the total number of states for the product machine, the

number of reached states in the product machine, and the maximum number of reached states seen

at any stage of forming the incremental product. We also report the number of non-equivalent

states in the final product and the maximum number of distinct states seen at any stage of the

algorithm when the component specifying the property is included in the system. Note that in

several cases (dynachekS, p6.safe, p10.safe), when we are verifying a safety property there is only

one distinct state at the end of the calculation. This is happens because the property holds, and

so the component machine specifying the property always remains in the safe state. We also ran

experiments to compute the number of distinct states when the property is not used, i.e. all outputs

were observable. In most cases, we were unable to compute the equivalence relation due to spaceouts,

and the when we did the number of equivalence classes is much larger than when the property is

used.

Looking at the number of non-equivalent states it is obvious that the true state complexity of

all these examples is much smaller than the apparent state complexity, i.e. the total number of

states. This is dramatically illustrated by 2mdlc.O which has 2.31 x 1019 states, of which only 12 are

distinct. The enormous number of states in this design arises from the fact that it contains a 40 bit

shift register. The property being verified turns out to be independent of the state of the register,

and thus all the states in the register are equivalent when viewed from the task.

For implicit methods we report the size of the BDD for the transition relation of the original

product machine, and the largest BDD seen while forming this product. We then used the reached

state sets that are incrementally generated to minimize the BDDs for the product at each stage; this

yields substantial reductions in many cases. Finally we report the reductions obtained when both

equivalent state pairs and reached states are used minimize the BDD for the transition relation at

each iteration.

To minimize the BDDs using don't care information, weuse techniques in [17] (these are based on
methods described in [18]). These techniques are currently not very robust (for example, sometimes
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using a strictly larger don't care set for the same representation set, the resulting BDD is larger

than the one obtained by using the smaller don't care set). Improved BDD minimization techniques

will enhance our results.

In Table 3 we show the improvement in BDD sizes of the product machines using our equivalence

computations. Some improvements are modest; however, even these modest improvements in BDD

sizes affect the reachability computations greatly. Table 2 shows the number of representative

reachable states for the examples. In some cases we were unable to perform the reached state and

equivalent state calculations for the product machine because of spaceouts, but were able to do so

when the product was formed incrementally (for example, for sched5, 2mdlc.O). This demonstrates
the advantage of forming the product incrementally, and minimizing at each step. We observed

that even small improvements in BDD sizes for the transition relations can cause some reachability

computations to finish that would otherwise require infeasibly large amounts of memory. For safety

properties when the task is specified as a machine that is part of the hierarchy, verification can

be performed by reachability analysis. So for these properties our equivalence and reached state

minimizations help us verify properties which could not verify otherwise. For liveness properties

also, reachability is an important step in the verification algorithm and large improvements in doing

the reachability computations certainly would improve the ability to verify larger systems. Forming

the product incrementally uses less memory but may take more time since in some cases the original

product machine may be tractable, so there is a space-time tradeoff.

Example

p6.safe

p6.1iv

p10.safe

plO.liv

dynachek3

sched5.safe

sched5.1iv

2mdlc.O

2mdlc.l

Description

Dining philosopher protocol, 6 diners, checking mutual exclusion

Dining philosopher protocol, 6 diners, hungry —• always get to eat

Dining philosopher protocol, 10 diners, checking mutual exclusion

Dining philosopher protocol, 10 diners, hungry —• always get to eat

Railway controller, ensure trains never collide

Milner's job shop scheduler, 5 jobbers, jobs always proceed in correct sequence

Milner's job shop scheduler, 5 jobbers, jobber always eventually gets hammer

Part of a data-link controller from an industrial design, safety property

Part of a data-link controller from an industrial design, safety property

Table 1: Verification Examples
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Example \s\ jpprod 'nmax cprod
°prop

cmax

°prop
cprod
^no—prop

cmax

°no—prop

p6.safe 8,192 78 164 1 84 78 164

p6.1iv 8,192 131 268 28 144 131 268

plO.safe 2,097,152 890 9,136 1 1,152 spaceout spaceout

plO.liv 2,097,152 1,691 14,928 37 1,920 spaceout spaceout

dynachek3 65,536 22,488 31,744 1 33 824 1576

sched5.safe 4,194,304 33,408 63,400 1,398 11,004 spaceout spaceout

sched5.1iv 4,194,304 33,720 33,720 1,492 6,084 spaceout spaceout

2mdlc.O 2.31 x 1019 1.12 x 1018 1.12 x 1018 12 24 spaceout spaceout

2mdlc.l 2.31 x 1019 1.12 x 1018 1.12 x 1018 3 6 spaceout spaceout

Table 2: Results on state reduction

| S | : Number of states in product machine
<ftprod . Number of reached states in product machine
1Zmax : Maximum number of reached states seen at any stage of forming incremental product

£pr°p : Number of non-equivalent reached states in the product machine
£p^op : Maximum number of non-equivalent reached states seen at any stage of forming incremental
product
cprod'no-prop • Number of non-equivalent reached states, not using property
rtnaz

'no—prop

of forming incremental product

£no-Prop '• Maximum number of non-equivalent reached states, not using property, seen at any stage

Example J-prod T•'•max
rpprod

reached
rpmax .

reached
rpprod

reached,eauiv
rpmax

reached,equiv

p6.safe 404 1950 116 1240 15 909

p6.1iv 427 1853 247 1240 178 909

plO.safe 836 5659 252 3563 23 1679

plO.liv 887 5562 583 3563 342 1679

dynachek3 204 552 204 552 18 582

sched5.safe 657 2544 499 2508 499 2508

sched5.1iv 496 1752 425 1378 424 1398

2mdlc.O 6,621 17,336 3,951 13,268 462 1,888

2mdlc.l 6,621 17,336 3,951 13,268 44 91

Table 3: Results on BDD reduction
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TpTod '• Size of unreduced transition relation
Tmax '• Maximum size of any BDD in forming the product; no minimization

^reached : Size °* transition relation reduced with respect to the reached state set only
^reached : Maximum size of any BDD in forming the product; minimization using only unreached
states as don't cares

^reached e uiv • ^ze °^ transition relation reduced with respect to the reached and equivalent state
sets

^reached eauiv : Maximum size of any BDD in forming the product; minimization using both reached
state and equivalent state set

5 Conclusion and Future Work

An efficient way of expressing and computing property verification through language containment is

to use Streett automata to express the fairness constraints and the property specifications [19]. We

intend to implement the equivalence relation computations for Streett automata and evaluate their

effectiveness. We also hope to investigate the effectivenessof the more general equivalence definitions

(bisim-lc in Section 3.1). A large body of literature exists on synthesizing interacting finite state
machines [20, 21]; these results should providea mechanism for approximating the environment and
thus allow more minimization.

This paper has also described how state equivalences can be computed if the properties are

expressed as CTL formulas, generalizing the results of [8]. We would like to experiment with such
properties. Note that, for the more difficult problem of Fair-CTL model checking both equivalence
computations (on fair cycles described in Section 3.1.1, and in CTL formulas described in Section
3.1.2) can be used in conjunction with each other. Our experiments in the previous section indicate
the effectiveness of the equivalence computations for fairness.

It is widely believed that verification procedures that require explicit enumeration of the state

space are not feasible because of the state explosion problem; this is the primary reason for the
advent of BDD based techniques. The observation that the true state complexity of most large

systems is much smaller than the size of the state space coupled with the fact that the state graph
can be built incrementally motivates the need for a closer look at this premise. We plan to investigate

this point in detail.

The explosion of states is often due to the presence of a data path and in many cases the
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property being verified has only a partial dependancy on the actual values of the registers. Thus,

state equivalence can be used to automatically simplify the datapath. We are working on techniques

for abstraction that utilize user specified equivalences to minimize the system representation.
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A State Equivalence for CTL Formulae

Definition 17 Equivalence ofstates modulo aformula £*ia(x,y)

1. <f> = a where a is an output ofanother component machine. Then £$3(a:,y) iff 1

2. <f> = a where a is a symbol ofthe output alphabet of M. Then £tiS{x,y) iffO(x,a) <-• 0(y,a)

3. <j> = ^ Then£+is{x,y) iff£fia(x,y)

4. <f> = 3XV Then £fis(x,y) iffVi,z[TM(x,i,z) - 3z'TM(y,i,z') A£tia{z,z') and Vi,z[TM(y,i,z)
3z'TM(x,i,z')A£?u(z,z')

5. <f> = 3XrP Then £tis{x,y) iffVi,z[TM(x,i,z) -• \/z'TM{y,i,z') - £fis{z,z') and Vi,z[TM(y,i,z)
Vz'TM{x,i,z')-+£tis{z,z')

6. <j> = 3aUb Then £tis{x,y) may be computed as follows:
First we compute NR(x) = {x \fia path in M from x to a state with output b}

NR0(x) = -.0(x,fc)

NRi+i(x) = NRi AVi,z[T{x,i,z)^NRi{z)]

NR(x) = NR^x)

Next compute FAIL(x) which is the set of states in M which are guaranteed to fail<f>

FAILq(x) = -i0(x,a)A-i0(x,&)VJV#(:c)

FAILi+1 (x) - -,0(x, b) AVi,z[T(x, i, z] — FAILi(x)] V FAILi(x)

FAIL(x) = FAIL^x)

Then compute PASS(x) which is the set of states in M which are guaranteed to pass <f>

PASS(x) = S{x,b)

The set EQ(x,y) is the relation "Both x and y are guaranteed to fail, or both are guaranteed to pass",
it is formally defined as

EQ(x, y) = FAIL(x) A FAIL{y) V PASS{x) A PASS(y)
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We can now compute the relation NE(x,y) which is the negation of£^is(x,y)

NE0{x,y) = FAIL{x) © FAIL(y) V PASS{x) e PASS(y)

NEi+1{x,y) = NEi(x,y)V[3o[e(x,o)@e(y,0)]A^EQ(x,y)]

V3zVz, z'[T(x,i, z) AT(y, i, z') — NE^x,y)]

7. <f> = VaUb Then £fi9{x,y) may be computed as above.

B Partitioning and Sequencing

B.l Partitioning

As pointed out in the introduction, large sequential designs arise as the product of interacting FSMs. Identi

fying these components in large sequential netlists is a significant problem. A natural way of identifying the
compone nts is by partitioning the latches and gates so as to minimize a cost function. Our premise is the

following:

• Latches corresponding to a single component will have a dense communication structure

• Communication across components is sparse

Based on this, we propose the following cost function as a measure of the partition:

cost(7>) = ]T (in(P0 +out(P,))
Pi€V

where in(P,) is the number of distinct bits of input to Pi and out(P,) is the number of distinct bits of output

from Pi. In order that the partition be non-trivial, we further put the constraint that in a fc-way partition

no component has more than cn/k latches, where n is the number of latches in the network, and c > 1 is an

arbitrarily chosen constant. Typically k will be chosen so that each component is as large as possible, while

still being tractable for manipulation, so as to derive the most don't care information at each component.

One can refine this cost function further. Some possible extensions are:

• Use cost functions that weigh the partition towards keeping the number of latches in a partition balanced

e.g. subtract a term ]£/> 6-p(/(P») —n/ \ V |)2 from the cost function. Here /(P») is the number of
latches in partition P,-.

• Introduce dependencies on k to evaluate partitions of different sizes e.g. weigh the cost toward having

k as small as possible while ensuring component machines are tractable
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However, the partitioning problem is already algorithmically intractable. For this reason we restrict our
attention to cost("P) defined above which is simple to calculate.

However, the partitioning problem is already algorithmically intractable. For this reason we restrict our
attention to cost("P) defined above which is simple to calculate.

The design may be already specified as a collection of communicating processes. In this case a natural
decomposition may be the initial processes. In general, it may be preferable to collapse the collection, and
then partition the flattened machine. For example, if the property were specified as an automaton, a partition
which has smallerclusters "near the task" and coarser ones further away would yield smaller representations.

B.l.l Sequencing

The following theorem relates BDD size for the transition relation of a collection of interacting machines to
the communication structure of the system.

Theorem B.l Let M be a system of n interacting machines Mi,M2,.. -,Mn, and a a permutation on
{1,2,.. .,n}. Then the number of nodes in the BDD for T = J~["=1 T> under the non-interleaved ordering (
i.e. all variables associated with Mi are contiguous ) derived from a is bounded by

U° =£(22<l**<ol) •2t"/(f+1) •22U,?(,+1)) (1)
»=i

where \xa^) \ is the number of bits in the encoding of the state of Mi, wj(i) and w?(i) are the number of bits
communicated forward and backwards through the partition a at level i.

Experimental evidence indicates that this bound correlates well with the size of the BDD.

Let <7* be a permutation on the machines that minimizes the bound. Then based on a* we can perform
traversal and minimization according to the following two schedules:

• Balanced Decomposition

- If the machine has a single component, perform standard optimizationsand return the result; else

- Split M into two machines Pi = {Ma{l) x ... x Ma{[in/2)i} and P2 = {M0^n/2y\ x ... x Mff(n)}
- Recursively traverse and minimize the machines Pi and P2

- Traverse and minimize the product Pi x P2

• Incremental Decomposition

- Form P = MCT(i) x MCT(2); traverse and minimize P to obtain P*

- Recursively complete the traversal/minimization on {P*, Ma(3),..., M<T(n)}
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At first glance, balanced decompositions may appear to be superior. However, in the context of verification

using task automata, incremental decomposition has the advantage that the task can be taken as the initial

machine, and then at each stage the minimization is with respect to the property. Since much of the design

is redundant with respect to the property, the incremental product will be smaller.
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