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Implicit Generation of Compatibles for Exact State Minimization

Timothy Kam Tiziano Villa Robert Brayton Alberto Sangiovanni-Vincentelli

Abstract

Implicit computations of the solution set of optimization problems arising in logic synthesis hold the
promise of enlarging thesizeof input instances that can be solved exactly. The state minimization problem
for incompletely specified machines is an important step for sequential circuit optimization. The problem is
NP-hard and hence most techniques are heuristic. An exact algorithm consists of two steps: generation of
sets of compatibles, and solving a binate covering problem. This paper presents implicit computations to
obtain thesets of compatibles required for an exact state minimization of incompletely specified finite state
machines (ISFSM's). Sets of maximal compatibles, compatibles, prime compatibles and implied class sets are
allrepresented andmanipulatedimplicitly by meansofBDD's thatrealizethecharacteristic functionsofthe sets.
Wehave demonstrated withexperiments from avariety ofbenchmarks that implicit techniques allow to handle
examples exhibiting anumber of compatibles up to21200, an achievement outside the scope ofprograms based
onexplicit enumeration [9]. We have shown in practice that ISFMS's with avery large number of compatibles
maybe produced as intermediate steps of logic synthesis algorithms, for instance in thecase of asynchronous
synthesis [13]. This shows that the proposed approach has notonlya theoretical interest, butalso practical
relevance for current logic synthesis applications. A recasting of the final binate covering step as an implicit
computation is under progress.

1 Introduction

Seminal workby researchers atBull [5] and improvements atUCBerkeley [23] produced powerful techniques for
implicitenumerationofsubsetsofstates ofaFinite State Machine (FSM). Thesetechniques are based on the ideato
operate on large setsof statesby theircharacteristic functions represented by BinaryDecision Diagrams (BDD's).
In many cases ofpractical interest these sets have a regularstructurethat translatesinto small-sized BDD's. Once
the related BDD's can be constructed, the most common Boolean operations on them (including satisfiability)
have low complexity, and this makes feasible to carryon computations unaffordable in the traditional case where
all states mustbe explicitly represented. Ofcourse it may be the case that the BDD cannot be constructed, because
of the intrinsic structure ofthe function to represent or because a good orderingofthe variables is not found.

More recent work at Bull [6, IS] has shown how implicants, primes and essential primes of a two-valued or
multi-valued functioncan also be computed implicitly. Reported experiments show a suiteof examples whereall
primes could be computed, whereas explicit techniques implemented in espresso [2] failed to do so.

Therefore it is important to investigate how farthese techniques based on implicit computations can be pushed
to solve the core problems oflogic synthesis andverification. When exact solutions aresought, explicit techniques
run easily out of steam because too many elements of the solution space must be enumerated. It appears that
implicit techniques offer the most realistic hope to increase the size of problems that can be solved exactly.
This paper on exact state minimization of FSM's is a first step on the application of implicit techniques to solve
optimization problems in the areaof sequential synthesis.

State minimizationofFSM's is a well-known problem [11]. State minimizationofcompletely specified FSM's
(CSFSM's) has a complexity subquadratic in the number of states [10]. This makes it an easy problem when
the starting point is a two-level description of an FSM, because the number of states is usually less than a few
hundred. The problem becomes difficult to managewhen the starting point is an encoded sequential circuit with a



large number of latches (in the hundreds). In that case the traditional method would be required to extract a state
transition graph from the encoded network and then apply state minimization to it. But when latches are more
than a dozen, the number of reachable states may be so huge to make state extraction and/or state minimization
unfeasible. Recently it has been shown [16, 14] how to bypass the extraction step and compute equivalence
classes ofstates implicitly. Equivalence classes are basically all that is needed to minimize a completely specified
state machine. A compatible projection operator uniquely encodes each equivalence class by selecting a unique
representative of the class to which a given state belongs. This implicit technique allows state minimization of
sequential networks outside the domain of traditional techniques.

State minimization of incompletely specified FSM's (ISFSM's) instead has been shown to be an NP-hard
problem [18]. Therefore even for problems represented with two-level descriptions involving a hundred states,
an exact algorithm may consume too much memory and time. Moreover, it has been recently reported ([12]) that
even examples with very few states generated during the synthesis of asynchronous circuits may fail to complete
(or require days ofCPU time) when run with a state-of-art exact state minimizer as stamina [9]. Therefore it is of
practicalimportanceto revisit exact state minimizationofISFSM's and address the issue ofrepresentingimplicitly
the solution space.

We underline that besides the intrinsic interest of state minimization and its variants for sequential synthesis,
the implicit techniques reported in this paper can be applied to other problems oflogic synthesis and combinatorial
optimization. For instance the implicit computation of maximal compatibles given here can be easily converted
into an implicit computation of prime encoding-dichotomies (see [22]). Therefore the computational methods
described here contribute to build a body of implicit techniques whose scope goes much beyond a specific
application.

In this paper we address the problem of computing sets of compatibles for the exact state minimization of
ISFSM's. Weshow how to compute sets ofmaximal compatibles, compatibles and prime compatibles with implicit
techniques and demonstrate that in this way it is possible to handle examples exhibiting a number of compatibles
up to 21200, an achievement outside the scope of programs based on explicit enumeration [9]. We indicate also
where such examples arise in practice. The finalstep ofan implicit exact state minimizationprocedure, i.e. solving
a binate table covering problem [21], will be presented in a separate paper.

The remainderofthe paper isorganizedas follows. In Section2 an introductionto classicalexact algorithmsfor
state minimization of ISFSM's is given. Section 3 introduces representations ofFSM's based on Binary Decision
Diagrams (BDD's) [4,1], that are the starting point of the implicit algorithms presented in Section 5. Section 4
presents a theory of representation and manipulationof sets and sets of sets. Alternative implicit algorithms are
explored in Section 7. A discussionof more subtle aspectsof the implementationof the presented algorithms is
given in Section 8. Results on a variety ofbenchmarks are reported and discussed in Section 9. Conclusions and
future work are summarized in Section 10.

2 Classical Algorithm

Mostof the terminology usedin this reportis common parlance of the logic synthesis community [11,2,3].

2.1 Finite State Machines

AFinite-StateMachine isrepresented byitsStateTransition Graph (STG) orequivalently,byitsState Transition
Table (STT). ASTG isdenoted byasextuple {/, 0,5, IS, 6, A}, where J and 0 are the sets ofinputs and outputs,
S is thesetof states and IS is thesetof initial states. 6 (next state function) is a mapping from I x Sto S that
given aninput and apresent state defines anext state. A(output function) isamapping from I xStoO that given
aninput and apresent state defines anoutput. An STG where the next-state and output forevery possible transition
from every state are defined corresponds toacompletely specified machine. Anincompletely specified machine



is one whereat least oneof the functions 6 and Aarepartially defined, i.e. thereis at leastonepair (t, 5)on which
either the next state function or the output function (or both) are not defined.

AnSTTis a tabularrepresentation of theFSM. Eachrowof the tablecorresponds to a singleedgein the STG.
Conventionally, the leftmostcolumns in the table correspond to the primary inputs and the rightmost columns
to the primary outputs. The column following the primary inputs is the present-state column and the column
following that is the next-state column.

2.2 Compatibles, Prime Compatibles and Minimum Closed Covers

In this subsection we will revise briefly the basic definitions and procedures for exact state minimization of
ISFSM's, as presented in the original papers and standard textbooks [17,8,11].

Definition 2.1 An input sequence is admissiblefor a starting state of a machine if no unspecified next state is
encountered, exceptpossibly at thefinal step.

Definition 22 States s, and Sj are compatible iffthey nevergeneratedifferentspecifiedoutputsforanyadmissible
input sequence.

Definition 23 States s, and Sj are output incompatible iff3ik such that A(i]t, Si) ^ A(i*, sj)

Definition 2.4 States a,- and Sj are incompatible iffthey are not compatible. States Si and Sj are incompatible iff
si and sj areoutput incompatible, or 3ik such that states £(i*,st) and 6(ik, sj) are incompatible.

The set of all pairs of incompatible states can be computed as follows:

1. Compute output incompatible pairs.

2. Add anypairof states (a,-, sj) if 3i* suchthat (6(ik, s»), #(u, Sj)) is a previously determined incompatible
pair of states.

3. Repeat 2. until no new pairs can be added to the incompatiblestate pairs set.

Definition 2.5 A set ofstates is compatible (i.e. theset is a compatible) iff every pair in it is compatible.

Definition 2.6 If Ci is a setof compatible states and Cij = {sk\sk = 6(1j, s,) Vst- € Ci), Le. Cij is the setof
next states of the states in Cifor input Ij, then Cij is saidtobe implied by the setCifor input Ij.

Definition 2.7 LetCibea compatible setofstates and Cijbethe setofnext states impliedbyCifor input Ij. The
sets Cij implied byCifor all inputs Ij are the implied classesofCi.

Definition 2.8 Asetofcompatible setsC = {C\, C2,...}isclosed iffor every Ci € C all the impliedsetsCij are
contained in someelement ofCfor all inputs Ij.

Definition 2.9 Theproblem ofminimizing the number ofstates reduces tofindinga closed set C ofcompatible
states,ofminimum cardinality, which covers every stateoftheoriginalmachine, i.e. a minimum closed cover.

Definition 2.10 Sets of compatible states which are not subsets ofany other compatible set ofstates are called
maximal compatibles.



Similarly one defines maximal incompatibles.
The set of all maximal compatibles of a completely specified FSM is the unique minimum closed cover. For

an incompletely specified FSM a closed cover consisting of maximal compatibles only may contain more sets than
a closed cover in which some or all of the compatible sets are proper subsets of maximal compatibles.

Definition 2.11 Let Ci be a compatible setofstates and Cij be the setof next states implied by Ciforinput Ij.
The class set P, implied by Ci is the setsof all sets Cij implied by Cifor all inputs Ij such that

1. Cij has morethanone element

2. dj £ d

3. CijZdkifdkePi

Definition 2.12 A compatible Ci dominates a compatible Cj if

1. d D Cj

2. Pi C Pj

i.e. Ci dominates Cj ifCi covers all statescovered by Cj andthe conditions on the closure ofCi area subset of
the conditions on the closure ofCj.

Definition 2.13 A compatible set of states that is not dominated by any other compatible set is called a prime
compatible set.

The following procedure (used in section 7.3.2) computes all prime compatibles [8]. At the beginning the set
of prime compatibles is empty.

1. Order the maximal compatibles by decreasing size, say n is the size of the largest.

2. Add to the set of prime compatibles the maximal compatibles of size n.

3. For i = 1 to n — 1:

(a) Generate all compatiblesof size n - i and compute their implied classes. The compatibles of size
n - i are generated starting from the maximal compatibles of size n to n - i + 1 (only thosethat do
not have a void class set).

(b) Add to the set of primes the compatibles of size n - i not dominatedby any prime already in the set.

(c) Add to the set of primes all maximal compatibles of size n —i.

The following facts are true:

• Acompatible already added to the setof primes cannot beexcluded bya newly generated compatible.

• In the previous algorithm, the same compatible can be generated more than once by different maximal
compatibles. The question arises of finding the most efficient algorithm to generate the compatibles.

• Only the compatibles generated from maximal compatibles with non-empty class set need be considered,
because a maximal compatible with an empty class setdominates any compatible that itgenerates.

• Asingle state 5: can be aprime compatible ifevery compatible set C,with more than one state and containing
Si implies a set with more than one state.



Definition 2.14 Anessential prime compatible is a prime compatible which contains a state not contained in
anyotherprime compatibles.

The following theorem is proved in [8].

Theorem 2.1 For any FSM M there isa minimum equivalent FSM Mred whose states allcorrespond to prime
compatible sets ofM.

A minimum closed cover can bethen found by setting up atable covering problem [8].
The following facts areuseful in the minimization ofFSM's:

• The cardinality ofamaximalincompatible is alowerboundonthe numberof states oftheminimized FSM.

• If there isamaximal compatible that contains all states ofagiven FSM, the FSM reduces toasingle state.

• Thecardinality ofthesetofmaximalcompatibles isan upperbound onthenumberofstates of theminimized
FSM.

• If amaximal compatible has avoid class set, it must be a prime compatible. As aresult, no compatible
contained in it can be a prime compatible (result used in section 7.3.1).

• The minimumnumber ofmaximal compatibles covering allstates is alowerbound onthenumber of states
of the minimized FSM.

• Theminimum number of maximal compatibles covering all states and satisfying the closure conditions is
an upper bound on the number of states of the minimized FSM.

3 FSM Representation using BDD's

A good representation for a problem is key to the development of efficient algorithms, and this is true also for
problems insequential synthesis and verification. A state transition graph (STG) iscommonly used as theinternal
representation of FSM's in sequential synthesis systems, such as sis. Many algorithms for sequential synthesis
have been developed toapply toSTG's. However, large FSM's cannot bestored and manipulated withoutmemory
usage and CPU timebecoming prohibitively large. A limitation of STG's is the fact that theyare atwo-level form
of representation where state transitions are stored explicitly, one by one. This may degrade theperformance of
conventional graph algorithms.

A binary decision diagram (BDD) [4, 1] provides an alternative way of representing FSM's. A BDD is a
rooted, directed acyclic graph (DAG) where each node isassociated withaBoolean variable. There are 2 outgoing
arcs from each node. The left outgoing arc corresponds to the case when the variable takes the value 0 and the
rightarc corresponds to the casewhen the variable takes 1. The leavesofthe graph are the terminal nodes0 and1.
A path from the root to a terminal 1 represents a satisfyingassignmentofvariableson which the BDD evaluatesto
1. Thus a BDD canrepresent any Boolean function on anyn Boolean variables f : Bn -> B where B = {0,1}.
A ROBDD is a BDD that is both orderedandreduced. Ordered meansthaton each pathfromthe rootto aterminal
the variables are encountered in the same order. Reduced means that in the DAG there areno two isomorphic
subgraphs.

The literal zt- denotes that variable Xi has the value 1 and the literal xj denotes that variable Xi has the value 0.
Any subset 5 in a Boolean space Bn can be represented by a unique Boolean function xs : Bn -• 5, which

is called its characteristic function, such that:

Xs{x) = 1 iff a; in 5 (1)



In the sequel, we'll not distinguish the subsetS from its characteristic function xs* and willuse S to denoteboth.
Any relation 1Z between a pair of Boolean variables can also be represented by a characteristic function

U: B2 -• B as:
H(x, y) = 1 iff a: is in relation %to y (2)

U canbe a one-to-many relation overthe twosetsin B. The imageof x is the set {y GB\(x, y) € ft}, while the
inverseimageof y is the set {x € B\(x, y) e 11}. Theimage andinverse image of a set of states S(x) canbe
implicitly computed as:

imageof S under%= 3x S(x) •ft(s, y) (3)

inverse imageof S underft = 3y S(y) •ft(x, y) (4)

These definitions can be extended to any relation ft between n Boolean variables, and can be represented by
a characteristic function ft: Bn -*• 5 as:

ft(a?i, a?2> •••>£n) = 1 iff the n-tuple (x\, £2,•••>s„) is in relation ft (5)

3.1 Positional-set Representation

Assume that the given FSM has n states. To perform state minimization,one needs to represent and manipulate
efficientlysets ofstates (such as compatibles)and sets of setsofstates (such as sets ofcompatibles). Our goal is to
representany set of sets of states (i.e. set of state sets) implicitlyas a single BDD, and manipulatesuch state sets
symbolically all at once. Different sets of sets of statescan be storedas multiplerootswith a singlesharedBDD.

Given that there are 2n possible distinct sets of states, in order to represent collections ofthem it is not possible
to encode the states using login Boolean variables. Instead,each subset of states is represented in positional-set
or positional-cubenotation form, using a set of n Boolean variables, x = x\X2.. •xn. The presence of a state Sk
in the set is denoted by the fact that variable x* takes the value 1 in the positional-set, whereas Xk takes the value
0 if state Sk is not a member of the set. One Boolean variable is needed for each state because the state can either
bepresent orabsent inthe set1.

In the above example, n = 6, and the set with a single state S4 is represented by 000100 while the set of states
S2S3S5 is represented by 011010. The states s\, s4, s& which are not present correspond to 0's in the positional-set

A set ofsets ofstates is represented as a set S ofpositional-setsby a characteristic function xs : Bn -*• B as:

Xs(x) = 1 iff the set ofstates represented by the positional-setx is in the set S. (6)

A BDD representing xs(x) will contain minterms, each corresponding to a state set in S. The operators for
manipulating positional-sets and characteristic functions will be described in section 4.

Ifinputs (outputs respectively)ofthe FSM are specifiedsymbolically,they can be represented as a multi-valued
symbolicvariable, i (o respectively) whereeachvalueof %(o resp.) represents an input(outputresp.) combination.
Howeverif inputs(outputsresp.) of the FSM are given in encodedform,each encodedbit ofinputs (outputsresp.)
is represented as a singlebinaryvariable. For the latter case,BDD's will be sufficient for our purposeof implicit
state minimization.

In the case of an ISFSM, some next states as well as the outputs may not be specified. So relations instead of
functions mustbe usedto represent the transition and output information. The transition relation T(i, p, n) and
the output relation 0(i, p, o) capture all the informationcontainedin an STT.

Definition 3.1 Thetransition relation is represented as:

7"(t, p,n) = 1 iffn is the specified next state ofstate pon input i (i.e. n = 6(p, i)) (7)

^e representation ofprimes proposed byCouderte/ al. [6] needs 3values per variable to distinguish ifthe present literal isin positive
or negative phase or in both phases.



An unspecified next state from a state punder input i can be represented either by an entry (i,p, n)where the
positional-set n is a vector of allO's, or bynotrepresenting any entry with i and p in therelation at all. Thelatter
is chosen for our implicit algorithm.

Definition 3.2 The output relation is represented as:

0(i,p,o)=l iffo is a(possibly unspecified) outputofstate pon input i (i.e. o= A(p, i)) (8)

We represent all unspecified outputs inthe relation O, to ensure correctness ofthe output compatibles com
putation described inSection 5. An unspecified output in the STT corresponds to a set ofminterms carrying all
possible output combinations.

When states and transitions are represented implicitly, the BDD representation is often much smaller than
STG. There isno direct correlation between the complexity ofthe STG and the size ofthe corresponding BDD.
Using these BDD relations and the positional-set notation, we propose anew implicit algorithms for generating
various sets of compatibles forsolving thestate minimization problem.

4 Implicit Manipulation of Sets and Sets of Sets

In this section we describe how to represent and manipulate implicitly sets ofobjects. This theory isespecially
useful for applications where sets ofsets ofobjects need tobe constructed and manipulated, as it isoften the case
in logic synthesisand combinatorial optimization.

4.1 BDD Operators

Arich setofBDD operators has been developed and published inthe literature [4,1]. The following isthe subset
of operators useful in the present work.

Definition 4.1 The substitution in thefunction F ofvariable x, with variable 3/, isdenoted by:

[xi -> yi\T = T(xx,...yXi-.uyi,xi+u...,xn) (9)

and the substitution in the function T of a set of variables x - x\xi...xn qith another set of variables
V—yiyi-'Vnis obtained simply by:

[x -• y]F = [x\ -> yi][x2 -*«2] ...[*„ -• yn)T (10)

In the description of subsequent computations, someobvious substitutions willbe omitted for clarity in formulae.

Definition 4.2 The cofactor of T with respect to the literal xt- (xl resp.) is denoted byTXi (J^ resp.) andis the
function resultingwhen Xi is replacedby 1 (0 resp.):

FXi(x\,>-,Xn) = ^(ari,...,a:t-_i,l,Xi+i,...,a:n) (11)
F5z(xi,...,xn) = T(xu...,Xi-U0,Xi+u...,xn) (12)

The cofactor of J7is a simpler function than T itself because the cofactor no longer depends on the variable xt.

Definition 43 The existential quantification (also called smoothing) of a function T over a variable Xi is
denoted by 3xi(F) andis defined as:

Bxi(F) = fw + FXi (13)

and the existential quantification over a set ofvariables x = x\, x2,..., xn is definedas:

3ar(/") = 3a;i(3x2(...(3*n(^)))) (14)



Definition 4.4 Theuniversal quantification (also calledconsensus,)ofafunction T over a variable xt is denoted
byVxt-(?) andis defined as:

V*i(.F) = •%••?*, (15)

and the universal quantificationover a set ofvariables x = xi, X2,..., xn is definedas:

Vx(T) = ^xl0/x2(.. .(Vxn(JF)))) (16)

42 Operations on a Pair of Positional-sets

Withour previous definitions of relations and positional-set notation for representing set ofstates, useful relational
operators on sets can be derived. We propose a unified notational framework for set manipulation which extends
the notation used in [151. hi this section, operators act on two sets of states represented as positional-sets
x = x\X2... xn and y = yiyi ...yn* and return 1 iff (x, y) are in the particular relation. Alternatively, they can
also be viewed as constraints imposed on the possible pairs out of two sets of states, x and y. For example, given
two sets of state sets X and Y, the state set pairs (x, y) where x contains y are given by the productof X and Y
andthe containmentconstraint,X(x) •Y(y) •Contain(X)y).

Theorem 4.1 The equality relation tests if the two sets of states represented by positional-sets x and y are
identical, and can be computedas:

n

Equal(x, y) = JJ xk & yk (17)
Jb=l

where xk <$ yk = Xk-yk + ""Sfc • ->yk designates the Boolean xnor operation and -»designates theBoolean NOT
operation.

Proof: n?=i xk & yk requires that for every state k, eitherboth positional-sets x and y containit, or it is absent
from both. Therefore, x and y contains exactly the same set of states and thus are equal. a

Theorem 4.2 The containment relation tests if the set of states represented by x contains the set of states
represented by y, and can be computedas:

n

Contain(x, y) = JJ yk =* Xk (18)

where X* =$• yk = ->Xk + yk designatestheBoolean implication operation.

Proof: n?=i Vk => Xk requires that for all states, ifa state kispresent in y (i.e. yk = 1), itmust also bepresent in
x (xk = 1). Therefore set x contains all the states in y. D

Theorem 43 The strictcontainment relation tests ifthe setofstates represented by x strictly contains the setof
states representedby y, and can be computedas:

Strict.Contain(x, y) = Contain(x, y) •->Equal(x, y) (19)

Alternatively, StrictjContain(x, y) can becomputed by:

n n

Strict.Contain(x, y) = JJ [yk =* xk] •J^x* •iyk] (20)
*=1 Jb=i



Proof: Equation 19 follows directly from the two previous theorems. For equation 20, the first term is simply the
containment constraint, while the second term £JL,[xk •->yk] requires that for at least one state Kitis present in
x(xk - 1) but is absent from y(yk = 0), i.e. xand yare not the same. So it is an alternative way of computing
Strict-Contain(x, y). n

Theorem 4.4 The union relation tests ifthe set ofstates represented by x is the union ofthe two sets ofstates
represented by y and z, and can be computed as:

n

Union(y,z,x) = JJ xk O (yk + zk) (21)
*=1

Proof: For each position h, xk is set to the value ofthe OR between xk and y*. Effectively, fI2=i xk <=> (yk + zk)
performs abitwise OR on yand z to form asingle positional-set z, which represents the union ofthe two individual
sets. n

Theorem 4.5 The intersection relation tests ifthe setofstates represented by xis the intersection ofthe two sets
ofstates represented by y and z, and can becomputed as:

n

Intersect(y, z, x) = JJ xk &(yk •zk) (22)
*=i

Proof: For position k% xk is set to the value of the AND between xk and yk. Effectively, nZ=i xk <* (yk •zk)
performs a bitwise AND on y and z toform a single positional-set x,which represents the intersection ofthe two
individualsets. O

43 Operations on Sets of Positional-sets

Theorem 4.6 Given the characteristicfunctions xa and xb representing the sets A and B, set operations on
them such as the union, intersection, sharp, and complementation can be performed as logical operations on
theircharacteristicfunctions, asfollows:

XAuB = Xa + Xb (23)

XAnB = Xa • XB (24)

Xa-b = XA'->XB (25)

Xa = -'Xa (26)

Theorem 4.7 Given the characteristicfunctions xa(x) and xb(x) representing two sets Aand B (ofpositional-
sets), the set equality test is true iffsets A andB are identical, andcan becomputed by:

Set-Equalx(XA,XB) = Vx xa(x) & Xb(x) (27)

Alternatively, SetJEqualcanbefound by checking iftheir correspondingROBDD's are thesameby bddjsqual(xA, Xb).

Proof: xa(x) and xb(x) represents thesame setiffforevery x, either x € A and x € B, or x £ A and x £ B.
As the characteristic function representing a set in positional-set notation is unique, two characteristic functions
will represent the same set iff their ROBDD's are the same. •

Theorem 4.8 Given the characteristicfunctions xa(x) and xb(x) representing two sets A andB (ofpositional-
sets), the set containment test is true iffset A contains set B, and can be computed by:

Set.Containx(xA,XB) = Vx xb(x) => Xa(x) (28)



Theorem 4.9 Given thecharacteristicfunctions xa and xb representing two sets A and B (ofpositional-sets),
theset strict containment test is true iffset A strictly contains set B, and canbe computed by:

SetJStrict-Containx(xA, Xb) = Set-Containx(xAiXB) •-iSet.Equalx(xA, Xb) (29)

Proof: The proof follows direcdy from previoustwo theorems. E

Theorem 4.10 The maximal of a set F ofsets is theset containing sets in F notstrictly contained byanyother
set in F, and can be computedas:

Maximalx(F) = F(x) •-.3y [Strict.Contain(y, x) ♦ F(y)] (30)

Proof: The term 3y [Strict-Contain(y,x) ♦ F(y)] is true iff there is a positional-set y in F such that x C y. In
such a case, x cannotbe in the maximal set by definition, andcanbe subtracted out. What remainsis exactly the
maximalset of statesset in F(x). n

Theorem 4.11 The minimal ofa set F ofsets is theset containing sets in F notstrictly containing anyother set
in F, and can be computed as:

Minimalx(F) = F(x) •^3y [Strict.Contain(x, y) •F(y)] (31)

Proof: The term By [Strict.Contain(x, y) •F(y)] is true iff there is a positional-set y in F such that x D y. In
such a case, x cannot be in the minimal set by definition, and can be subtractedout. What remains is exactiy the
minimal set of statesset in F(x). n

Theorem 4.12 Given a characteristic function xa(x) representing a set A ofpositional-sets, the set union
relation tests ifpositional-set y represents theunion ofall statesets in A, andcan be computed by:

n

Set.Unionx(xA, y) = Yi yk ** ^x XA^ '**] (32)
k-i

Proof: Foreach position fc, the righthandexpressionsets yk to 1 iff thereexists a x in xa such that its fanbit is a
1. This impliesthatthe positional-set y will contain the k\helementiff thereexists apositional-set x in A suchthat
A: is a member of x. Effectively, the right hand expression performs a multiple bitwise ORon all positional-sets of
Xa to form a single positional-set y which represents the union of all such positional-sets. •

Alternatively,we implementedthe SetJJnion operation asarecursive BDDoperator. Bitwise OR is performed
at the BDD DAG level, by traversing the BDD and performing ORon BDD vertices with the variables of interest

Theorem 4.13 Given a setofpositional-sets F(x) andanarrayoftheBoolean variables x, the unionofpositional-
setsinF with respect tox canbecomputedbytheBDDoperator Bitwise.Or(F, 0, x), assuming that thevariables
in x are ordered last:

function Bitwise.Or(F,k,x) {
\f(k> |x|) return F
t = top.var(F)
v = x[k]
\S(t<v){

T = BitwiseJOr(Ft,k,x)
E = Bitwise.Or(Ft, k,x)
return ITE(ttT,E)

} else {
if (Fv = 0) return v •Bitwise.Or(Fv,k+ 1,x)
else returnv• Bitwise.Or(Fv + F?,k+l,x)

}
}
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Proof: vdenotes the Ar-th variable inthe array x. Assuming that the variables in x are ordered last, the above
recursion terminates after all ofthem have been processed (A; > |x|, and a 0 or a 1 is returned as F). At a
BDD vertex where t < v, the recursion has not reached avariable of interest yet, and we simply recurse down
its right and left children and merge the Bitwise.Or results by creating anew vertex ITE(t, T, E).]ft> v,
we have to perform the bitwise OR operation on variable v. If Fv = 0, variable v never takes a value 1 in
any satisfying assignments of F, so it is set to 0by v. The bitwise OR of the remaining variables is given by
Bitwise£>r(Fv, k+ 1, x). Otherwise ifFv ^ 0, there exists asatisfying assignment ofF in which v= 1. So v
is set to 1, while abitwise OR is performed over all remaining satisfying assignments ofF, i.e. Fv + F7. D

This recursive BDD operator is very fast, but unfortunately, its operation is valid only ifthe variables to be
bitwise OR are at the bottom of the BDD DAG. So to execute this BDD operator, we need to perform variable
substitutions before and after the operation. Experimentally, these substitution steps are too slow to be practical
and sometimes cause exponential blowup in theBDD size.

Theorem 4.14 Given acharacteristicfunction xa(x) representing aset Aofpositional-sets, the set intersection
relation tests ifpositional-set yrepresents the intersection ofall state sets in A, and can be computed by:

n

SetJntersectx(xA, y) =Y[yk& [Vx Xa(x) •xk] (33)
Jfc=i

Proof: For each position k, the right hand expression sets yk to 1 iff the A^h bit ofall x in xa is a 1. This
implies that the positional-set ywill contain the A*h element iff all positional-sets x inxa have A; has amember.
Effectively, the right hand expression performs amultiple bitwise AND on all positional-sets ofxa to form asingle
positional-set y which represents the intersection ofall such positional-sets. •

4.4 A>out-of-n Positional-sets

Let the number ofstates be n. Insubsequent computations, we will use extensively a suite ofsets of state sets,
Tuplen>k(x)t which contains all positional-sets xwith exacdy A; states in them (i.e. |x| = A:). In particular, the set
ofsingleton states Tup/enti(x), the set ofstate pairs Tuplen^(x)t the set ofall states TupleniTi(x)t and the set of
emptystate set Tuplento(x) are common ones.

An efficient way of constructing and storing such sets of A?-tuple state sets using BDD will begiven next
Figure 1represents a reduced ordered BDD of Tuple5^(x):

The root of the BDD represents the set Tuple5^(x), while the internal nodes represent the sets Tuple^x)
(i < 5,j < 2). For ease of illustration, the variable ordering ischosen such that the top variable corresponding to
Tupleij(x) is x^ Atthatnode, if we choose state i to bein thepositional-set, xt- takes thevalue 1 and wefollow
the right outgoing arc. Indoing so,we still have i - 1states/variables lefttobeprocessed. As we have putstate i
in thepositional-set, westillhave to add exacdy j - 1states into thepositional-set Thatis why theright child of
Tupleij(x) should beTuple^u^i(x). Similarly, the left child isTupla-x^x)because state t has not been put
inthepositional-set and wehave j -1 states/variables left. Thus, theBDD forTuples canbeconstructed bythe
following algorithm:
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Figure 1: BDDrepresenting Tuples^(x).

functionTuple(iJ) {
if (j < 0) or (i < j) return0
if (i = j) and (i = 0) return1
if Tuple(i, j) in computed-table return result
T = Tuple(i-lJ-l)
E = Tuple(i- IJ)
F = ITE(xi,TJE)
insert jFin computed-table for Tuple(i, j)
return F

}

The total numberofnonterminal vertices inthe BDD ofTuplentk is(n-A; + l)-(A; + l)-l = nk-& + n =
0(nk). With theuseof thecomputed table ([1]), thetime complexity of theabove algorithm isalso 0(nk) asthe
BDD is builtfrom bottom up andeachvertex is builtonceandthen re-used. Givenany n, the BDDfor Tuplen^
is largest when A; = n/2.

5 Implicit Computations for State Minimization

In this section, we will give a series of theorems stating how the sets defined in section 2.2 can be computed
implicitly. Anappendix isalso provided where the main steps oftheprocedure are demonstrated onanexample.

5.1 Output Incompatible Pairs

Theorem 5.1 The setofoutput incompatiblepairs,OXCV(y, z), canbe computed as:

OXCV(y, z) = TuplenA(y) •TuplenA (z)•-,Vt 3o 0(i, y,o) •0(i, z,o) (34)

Proof: By definition 2.2, states y and z are output compatible ifftheir specified outputs match onall inputs, i.e.
Vi So 0(i, y, o) •0(i, z,o). OICV(y1 z)simply contains all state pairs (y, z)which are not output compatible. •
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5.2 Incompatible Pairs

Theorem 5.2 The setofincompatiblepairs, ICV(y, z), can be computedwith thefollowingfixed-point computa
tion:

lCV0(y,z) = OTCV(y,z) (35)
lCVk+i(y,z) = ICVk(yiz) + 3i1u{T(i1y,u)-[3vT(i,ziv).lCVk(u1v)]} (36)

Proof: The fixed point computation starts with the set of output incompatible pairs. After the Arth iteration,
TCVk+i (y> z)contains all the incompatible state pairs (y, z)that lead to an output incompatible pair in A; orless
transitions. This set is obtained by adding state pairs (y,z) to the set lCT>k(y, z\ if an input takes them into an
already knownincompatiblepair (u, v). a

T(i.y.u)

Figure 2: Finding incompatible pairs.

53 Compatibles

Theorem 53 Given an incompatible pair ofstates (y,z),aposition-set c satisfies Contain.Union(y, z, c) iffc
contains bothstate y andstate z. This constraint canbe obtained by:

n

ContainJJnion(y, z,c)= JJ y* + <** => c* (37)
Jb=i

Proof: Note the similarity in the computations of Contain.Union(y,z,c) and Union(y,z,c).
Contain.Union(y, z,c) performs bitwise OR on singletons y and z. If either of their A;-bit is 1, the corre
sponding Ck bit is constrained to 1. Otherwise, c* can take any values (i.e. don't care). The outer product
n?=i requires thattheabove is true foreach k. One sees, from Figures 12and 13, thatContainJJnion(y, z, c)
effectivelyperforms bitwise OR and then changesthe zero positions(0) to a don't-care (-). Thus, it generatesall
the positional-sets c which contain at least one incompatible state pair. •

Theorem 5.4 The set ofincompatibles, XC(c), canbe computed as:

lC(c) = 3y, z lCV(y, z) •Contain.1)rnion(y, z, c) (38)

Proof: The term lCV(yi z) •ContainJJnion(y, z, c) generates all incompatible constraints. The right hand
expression says that a positional-set c is an incompatible iff there exists an incompatible state pair {y, z) €
lCV(y, z) such that c contains both states y and z, because (y, z, c) satisfies the ContainJ]nion. •

Theorem 5.5 The set ofcompatibles, C(c), canbe computed as:

C(c) = -tfC(c) •->Tuplent0(c) (39)

Proof: The set of compatibles is simply the set of all subsets excluding the incompatible set of states, and is
obtained by 1 • -«XC(c) = -iJC(c). The emptypositional-set is excluded from C(c). •
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5.4 Implied Classes of a Compatible

Lemma 5.1 The set ofsingleton next statesimplied bya compatible c under input i, T(c, i, n), canbe computed
by:

,F(c, i, n) = 3p [T(i,p, n)-C(c)- Contain(c, p)] (40)

Proof: Givena compatible c € C(c)andan input t, a next staten is in relation T(c, i, n) with c and i (i.e. state
n is implied by compatible c under input i) iff the right hand expression is true. i.e. if there exists a present state
p€ cand n is the next state of p on input i. •

Note that the implied next states are representedas singletonstates in T(c, i, n). For each compatible c and
input i, subsequentcomputationsrequirethat thecorresponding singletonsarecombinedinto asinglepositional-set
Alternate computations that use T(c, t, n) directlywillbe givenin section7.2.

Theorem 5.6 The implied classesof a compatible c, CX(c, d),canbe computed by:

Cl(c, d) = 3i [3n T(c, i, n)]•Set.Unionn(T(c, i, n), d) (41)

Proof: By definition, the impliedclass of c and i is just the set of next states impliedby c and i. F(c,i,n) contains
suchnext statesin singletonpositional-set form and SetJJnion^Ffa i, n), d)will performthe bitwiseOR on all
of them to produce a positional-set d which represents theunionof the singleton sets. As F alsodepends on c and
i, the SetJJnion operation mayproduce triples (c, i, d)where c and i maynot be a validcompatible andinput
respectively. Sotheterm [Bn T(c, i, n)] is needed to prune away invalid triples from therelation. Finally theclass
set of c defined as the set over different inputs of all impliednext states of c is obtained simply by an existential
quantification of the inputs i. •

5J Class Sets of Compatibles

Theorem 5.7 The class set ofthecompatible c, CCS(c, d), canbe computed as:

CCS(c, d) - Maximald(Cl(c, d)) •-*Contain(c, d)•-^TuplenA (d) (42)

Proof: Given a compatible c,Maximald(Cl(c, d))gives allitsimplied classes dwhich are notstrictiy contained
by any other implied classes. This corresponds to condition 3 in definition 2.11 although a weaker condition,
Cij (f. Qk, is used here because ourimplicit computation operates on all implied classes at once. By condition
2 indefinition 2.11, we prune away implied classes d which are contained in theircorresponding compatibles c.
Then the singleton implied classes are thrown away accordingto condition 1. •

5.6 Prime Compatibles

Theorem 5.8 Acompatible c'dominates a compatible c iffthefollowing Dominate^,c)relation is true:

Dominate(c\ c) = Strict.Contain(c', c) • Set-Containd(CCS(c, d), CCS(c\ d)) (43)

Proof: The two terms on the right hand expression correspond to the two conditions for c' to dominate c
according to definition 2.12. Since compatibles c and c; are represented as positional-sets, c D d is computed
by Strict.Contain(c\ c), as defined by theorem 4.3. Ontheotherhand, class setsare setsof setsof states and
are represented by their characteristic functions. Containment between such sets ofsets ofstates iscomputed by
Vd CCS(cfy d) =j> CCS(c, d\ as described bytheorem 4.8. •
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Theorem 5.9 The setofprime compatibles, VC(c), can be computed as:

VC(c) = C(c) •-.3c' Dominate^', c)•C(c') (44)

Proof: Bydefinition 2.13, acompatible c£C(c) isnot aprimecompatible if itisdominated byanothercompatible
c' € C(c). This conditioniscapturedbythe expression 1c' {Dominate(c' ,cyc(c')}. The setofprimecompatibles
is simply given by thesetof compatibles excluding those that are dominated by other compatibles. •

Theorem 5.10 The setofprime compatibles with class sets, VCCS(c, d), can be computed as:

VCCS(c, d) = VC(c) •CCS(c, d) (45)

Proof: Obvious. •

Theorem 5.11 The setofessentialprime compatibles, SVC(c), can becomputed as:

SVC(c) =VC(c) 'JT{ck> -[3c' c'k •VC(c') •-^Equal(c, c')]} (46)
Jfc=i

The set ofnon-essentialprime compatibles, MSVC, which constitutes the columns ofthe covering table, can be
computed as:

ATSVC(c) = VC(c) •-,£VC(c) (47)

6 Construction of the implicit covering table

A relation T(c, z, c,e) representing the entries of the covering matrix can be defined as the disjunction of the
relations UT(c, z, c, e) and BT(c,z, c,e) defined below. UT(c, zy c, e) is the unate part and BT(c,z, 2, e) isthe
binate part Both UT and BT aredefined on the variablesc, z, 2,e, where c, 2 areindexes ofrows, £ areindexes of
columns and e is a Boolean variablethat indicates the presence of anentry of value0 or 1 at row c, z andcolumn
£. A unate partcontains only entries assumingvalue 1, while a binate partcontainssome entries with value 0 and
some entries with value 1. Notice that given a row and a column there is at most one entry in the matrix, either
withvalue0 orwithvalue 1; it cannot happen that forthe samerowand columnthere are two entries, onecarrying
value 0 and one carrying value 1.

If the originalFSM has n states, the relationrepresenting the covering table has 3n + 1 variables. This is the
crucial point of being the representation implicit. In the explicit case, we would have as many columns as there
areprimes and as many rows as there areclauses. Both rows and columns could be exponential in the number of
states of the FSM. In the case ofour implicit representationinstead the number ofvariables is linear in the number
of states.

Theorem 6.1 Theunatepart ofthe relationT is given by:

UT(c,z,Z,e) = Tuplen,i(z)-VC(Z)-Contain(Z,z)-(e = 1) (48)

Notice that c can be any vector of n variables, because rows in UT areuniquely distinguished by the fact that z's
are singletons. UT represents the covering clauses of the exact formulation of state minimization ([8]).

Theorem 6.2 Thebinatepart ofthe relationT is given by:

BT(c, zy2,e) = VCCS(c,z) •VC(c) •{Contain^z) •(e = 1) + Equal(c.c) • (e = 0)} (49)
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BT represents theclosure clauses of theexact formulation of state minimization ([8]).2

Theorem 63 The covering matrix is given by:

T(c,z^e) = UT(c,z,Hie) + BT(c,z,Z,e) (51)

Notice that

• {c,s.t PC(c)} are columnindexes, i.e. primecompatibles.

• {(c, z\ s.t PCCS(c, z)} are row indexes, i.e. clauses.

• Elementsof T can be0 or lornoentryandtheyareindicatedrespectively bye = 0,e = 1,no representation.

One subtracts from PCCS the cubes z of all zeroesor singletons, becausethey denoteno closurecondition.

7 Improvements on Implicit Algorithm

The experiments reported in section 9 identified two bottlenecks in the computations described in section 5:

1. the fixed-point computation of incompatible pairs;

2. the handling of closure information, i.e. implied classes and class sets.

Sections 7.1 and 7.2 describes alternative methods to perform those computations. Section 7.3 shows how maximal
compatibles can be used with advantage in the computation of prime compatibles.

7.1 Computation of Incompatible Pairs using Generalized Cofactor

This subsection describes some variations of the fixed-point computation of incompatible pairs ICV(y, z), de
scribed in section 5.2. Each iteration of the computation of equation 36 can be viewed as an inverse image
projection from a setof state pairs in ICPk(u, v) toa setofstates pairs inICPk+i(y>*)viatheproduct transition
relation T(z, y,u) •T(i, z,v). In the original method, all state pairs in ICPk+\(u, v) are projected during the
k + 2nd iteration. This is notnecessary because if theprojected pair (y\ z!) of ICPk+\ is actually in ICPk as
shown in figure 33, we can be sure that its projection (y", z") has already been calculated in aprevious iteration.
Thus at thek + 2nditeration, weneed only to project thenew incompatible state pairs discovered at the k + 1st
iteration, as it is donein the following modification of the fixed-point computation of section 5.2.

lCV0(y,z) = OXCV(y,z)(=NEW(y,z)) (52)
TMP(y,z) = ^u{T(iiyiu)'[3vT(iiz,v)-NEW(u,v)]} (53)
NEW(yiZ) = TMP(y,z).->lCVk(y,z) (54)

ICVk+i(y,z) = ICVk(y,z) + NEW(y,z) (55)

2Notice that the following would bewrong

BT(c, z,2, e)= VCCS(c, z)•VC(Z) •{(Contain^ z) =* (c = 1)) + {Equal(c, c) => (e =0))} (50)

3Figure 3represents the inverse image projections with direct arrows.
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T(l,y,u)xT(l,z.v) J|^

ICPk \J k+ith Iteration \ / lCPk+1

Figure 3: Finding incompatible pairs.

Instead of finding a minimum cardinality setofstate pairs for projection, aminimal setofstate pairs with a small
BDD representation is more desirable for our implicit BDD formulation. A small BDD for NEW(y, z) can be
obtained usingthe generalized cofactor ([23]) usingICVk(y,z) as thedon't care set:

NEW(y, z) = NEW(y, z)UICVkM (56)

Asa result, thegeometric mean oftheratio of CPU time forcomputing TCP with thisgeneralized cofactor method
vs. the original method is 0.678.

7.2 Handling of Closure Information

ForFSM's with many compatibles, themost time-consuming part of our implicit algorithm is the computation
of implied classes and class sets corresponding to the compatibles. The complexity arises because these implicit
computations deal with two sets of variables in each relation, c representing a compatible and d representing its
implied class or class set. Since each compatible may have a different class set, the size of the corresponding
BDD's may blowup during the computation.

A way to cope with thisproblem is to represent theclass sets bymeans of singletons, asdone in thefollowing
series ofcomputations.

Theorem 7.1 One canprune therelation F(c, i, n) of compatibles with implied next states toobtain theclassset
by:

F(c,i,n) = 3p[T(i,p,ft)-C(c)-Cofttaift(c,p)] (57)

I(c, i) = 3n n' F(c, i, n) •F(c, i, n') •->Equal(n, n') (58)
F(c,iyn) = F(c,i,n)-I(c,i) (59)

J(c, i) = 3n F(c, i, ft) • ->Contain(c, n) (60)

F(c,i,ft) = F(c,i,n)-J(c,i) (61)

K(c, i) = 3 i' [Vft F(cy f, ft) => F(c, t, n) + -.J(c, i')] •-<[VftF(c, i, ft) =» F(c, i\ n) + -iJ(c, i')]
= 3 %' [-.3ft F(c, i\ ft) •-.F(c, i, ft) •7(c, i')] •[3ft F(c, i, ft) •-.F(c, i', ft) •J(c, i')] (62)

F(cyi,n) = F(c,i,n)-K(c,i) (63)

Proof: By definition 2.11, an implied class Ct ofcompatiblec can be in a class set only if

1. Ci has more than one element,

2. d % c,

3. Ci g d> if Ci> 6 class set
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I(cy i) computes all implied classes Ct- which contains at least two distinct implied states n and ft', i.e. all
implied classes with more than one element. Equation 59 prunes the set F accordingly. J(c, i) contains all
remaining implied classes not contained in c.

We need to modify slightly the 3rd condition to be able to compute it implicitly using BDD's. From the set
of implied classes, we want to take away an implied class Ci iff d C Cf-». It is d C Cy iff Ci C d> and
Ci> g Ci. The Set.Containn(F(c, t, ft), F(c, i',n)) operation can beusedto test if Ci C C,', but sinceits result
may include invalid (c, i') pairs (i.e. implied classes) the terms J(c, i') are needed in the equation. In the last
equation K(c, i) is subtracted away, instead thanAND-ed as7(c, i) and J(c, i), because it is thecomplement of the
3rd condition. E

Theorem 7.2 The condition thatcompatible c'dominates compatible c is captured by:

Dominate(c'y c) = Strict-Contain(c'\ c) •V«' 3i SetjContainn(F(c, i, n), F(c\ i', ft)) (64)

Proof: C dominates C if C covers allstates covered byC and theconditions ontheclosure of C area subset of
the conditions on the closure of C. •

After computing the dominance relation Dominate(c', c), the prime compatibles can be found using theo
rem 5.9.

13 Methods using Maximal Compatibles

Theorem 13 The setofall maximal compatibles MC(c) canbe computed as:

MC(c) = Maximalc(C(c)) (65)

Proof: Bydefinition 2.10,the setof maximal compatibles is simply themaximal setof positional-sets in C(c) with
respect toe. •

Note that the algorithm given in section 5 does not rely on the computation ofthe set of maximal compatibles,
whereas the classical method in [8] does. We are going now to present alternative implicit algorithms that require
their computation.

7.3.1 Compatible Pruning by Maximal Compatibles with Void Class Set

Theorem 7.4 The set ofsingleton next statesimplied bya maximal compatible c under input i, T(c, i, y), canbe
computedby:

^"(c, i, ft) = 3p [T(z,p, ft) •MC(c) •Contain(c, p)] (66)

The classset informationforthemaximalcompatibles canthen beobtainedusingtheclass setgenerationprocedure
described in theorem 7.1.

The maximal compatibles with voidclassset, MCV(c), canbeobtained by:

MCV(c) = MC(c) •-.3t K(c, i) (67)

where K(c, i) is givenbyequation 63.
The set ofcompatibles canthen bepruned byMCV(c):

C(c) = C(c) •-.3c' MCV(c) •Contain^', c) (68)
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73.2 Slicing Procedure for Prime Compatible Generation

Thefollowing slicing procedureis an implicitversionof the procedure outlinedat the end of section2.2.

VC(c) = 0
for k —ft to 1 {

MCk(c) = MC(c) •Tuplen,k(c)
Ck(c) = C(c) •Tuplentk(c) • -iMCk(c)
FCk(c, i, ft) = Prune(Ck(c), T(i,p, n))
FVc(c,i,n) = Prune(VC(c)yT(i,p,n))
Dominate(c', c) = Strict.Contain(d, c) •W 3i Set-Containn(Fj>c(c,»\»), Fck(c\ i\ ft))
VCk(c) = C(c) •-.3c' Dominate^', c) •C(c')
VC(c) = VC(c)+ VCk(c) + MCk(c)

}

VC(c) is a set of prime compatibles accumulated during each iteration, and is originally empty. MCk(c)
contains maximal compatibles with cardinality k. Ck(c) contains compatibles with cardinality kexcluding those
inMCk(c). Prune(Ck(c), T(i,p,ft)) isthe class set pruning procedure described intheorem 7.1 by substituting
Ck(c) for C(c), and Fc(c, i, ft) for F(c, i, n) inthe equations. Prune(VC(c), T(i,p,n))is similarly defined. So
Fck(c, i, ft) and FpC(c, t, ft) contains the class sets ofCk(c) and VC(c) respectively. To test for Dominance^, c),
we only need to know if a compatible c € Ck is dominated byan already discovered prime compatible in VC(c),
because (1) forany other c' eCk,c<£ c', and (2) ccan bedominated only byprime compatibles with cardinality
greater than k. VCk(c) contains thenewly discovered prime compatibles with cardinality k, and this setis added
to MCk and VC to update the set of primecompatibles found so far.

Experimentally, this slicing method, during BDD construction, uses on average halfmemory as compared to
the method in section 7.2.

8 Implementation Details

8.1 BDD Variable Assignment

When dealing with BDD's, common wisdom is to keep the number of BDD variables used to a minimum. The
rationale is that the smaller the number ofBDD variables involved, the less probable is that a BDD operation will
cause exponential blowup in the BDD size. In our case

1. 10state variablevectors (p, ft, y, z, u, v,c, c',d,d) areusedin all previous equations,

2. in positional-set notation, each state variable vector corresponds to n Boolean variables where n is the
number of states.

Looking into each equation carefully reveals the fact that we never operate on more than four sets ofvariables
simultaneously in a single BDD operation. For example, 4 sets of variables y, z, u and v are used in equation 36,
and 3 sets p, ft and c in equation40. The idea ofBDD variableassignmentis to use a set ofBDD variables for more
than one purpose, by binding at different times more than one set ofvariables from the equations onto a single set
of BDD variables. The assignments should be made in such a way that no two sets of variables appearing in an
equation will be assigned to the same set of BDD variables. Such an assignment is shown in figure4.

There is a conflict with the above BDD variable assignment in equation 38. Variable c is assigned the same
BDD variables as variable y in these equations. To get around it, an extra variable e is used instead:
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Figure 4: Assignments of equation variables to BDD variables

XC(c) = [e -> c]3y,z XCV(y, z) •ContainMnion(y, z, e) (69)

. Notethat two functionscontainingdifferentvariablesbeingassignedto the sameBDDvariable,e.g. T(i, p, n)
and CCS(c', d'), can co-exist within a multi-rooted BDD at the same time, without any interference. Conflict
will occur only when they become operands to a BDD operation. Actually, such overlapping functions can be
constructed and manipulated more efficiently because ofpossible bits in the unique and computed hash tables in a
BDD package [1].

8.2 BDD Variable Ordering

The equality, containment, stria containment, maximal and minimal relations described in section 4 have expo
nential BDD's size if the different sets of BDD variables are not interleaved with each other. Both for space and
time efficiency, the four sets ofBDD variables have to be interleaved.

It is found that the ordering between individual state variables within a set ofBDD variables is also important,
especially when handling the closure information. The heuristics we use is to put the states that occur most
frequently in the compatibles at the top of the BDD. This should leave the BDD sparse in the lower part of the
BDD wheremost state variables take a value of0. As the set ofcompatibles is usually very large, we approximate
the count by counting the occurrences of states in maximal compatibles instead.

8.3 Using Don't Cares in the Positional-set Space

The main advantage ofour positional-set representation ofFSM's is that, with a single multi-rooted BDD, sets of
sets of states can be represented. As a result, we can compactlyrepresentand manipulatesets of compatibles(C),
prime compatibles (VC), etc. However during the computation of OCV, OXCV and XCV, we are manipulating
onlysetsofsingletonstates and so we only careabout a smallportionofthe encodingspace. Sinceno positional-set
of cardinality > 1 will appearthere, we can makeuse of thesedon't carecode points in the positional-set space.

For example, the computations involved in equations 34 to 36 manipulate a productof two sets of singleton
states (y,z). The don'tcare condition with respect to this pairof singletons iscaptured by:

DC(y,z) = -iTuplenfi(y) •-iTuplenil(y) + -nTuplenfi(z) •->Tuplen>l(z)

and can be used to simplify the BDD computation of these sets.

9 Experimental Results

Wereport results on different suites ofFSM's. They are:

1. The MCNC benchmark and other examples.
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2. FSM's generated by a synthesis procedure forasynchronous logic[13].

3. Aconstructed family of FSM's thatexhibit a large number ofprime compatibles.

4. Random FSM's.

We discuss features oftheexperiments and results indifferent subsections. Comparisons aremade withSTAMINA, a
program thatrepresents thestate-of-art forstate minimizationbased onexplicit techniques. The program STAMINA
was runwiththeoption-P tocompute allprimes. Allruntimes arereported inCPU seconds onaDEC DS5900/260
with 440 Mb of memory.

9.1 Examples from MCNC Benchmark and Others

Table 1 reports theresults of the most interesting examples (as far as state minimization is concerned) from the
MCNC benchmark and from other academic and industrial benchmarks available to us. Most examples have a
small number of prime compatibles, with theexception of ex2 and green. The running times of ISM are worse
than those of STAMINA, especially in those cases where there are very few compatibles in the number of states
(squares is the most striking example). But when the number ofprimes isnot negligeable as in ex2 and green,
ISM ran as fast or faster than STAMINA. This isconsistent with our expectations, since ISM manipulates relations
having a number of variables linearly proportional tothe number ofstates. When very few compatibles need to
berepresented, the purpose of ISM is defeated and its representation becomes very inefficient.

#max # prime CPU time (sec)
machine # states compat. # compat. compat. #MSVC ISM STAMINA

arbseq 94 2 96 9 3 12 0
bbsse 16 11 97 13 0 0 0

beecount 7 4 11 7 5 0 0

exl 20 2 22 19 1 1 0

ex2 19 36 2925 1366 1366 11 13

ex3 10 10 195 91 91 1 0

ex5 9 6 81 38 38 0 0

ex7 10 6 135 57 57 0 0

fsml 256 47 302 208 0 83 0.6

green 54 524 1234 524 524 125 125

lion9 9 5 20 5 2 0 0

markl 15 12 41 18 11 0 0

scf 121 12 1201 175 87 26 0

squares 371 45 473 307 0 761 1

tbk 32 16 48 48 48 8 1

tma 20 15 35 20 4 1 0

trainll 11 5 85 17 15 0 0

viterbi 68 5 329 57 3 8 0

Table 1: Examples from the MCNC Benchmark and others.
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9.2 Examples of FSM's from Asynchronous Synthesis

Table 2 reports theresults of a benchmark of FSM's generated as intermediate steps of an asynchronous synthesis
procedure [13]. We notice that stamina ran outofmemory onthe examples vmebusmasterm, isend,pe-rcv-ifcfc,
pe-send-ifcfc, while ISM was able tocomplete them. These examples (with theexception ofvbe4a) have anumber
of primes below 1000. To explain thedata reported in Table 2, we notice that in order to compute the prime
compatibles, thesetof compatibles needs to be generated too. Thecompatibles of theFSM's of thisbenchmark
are usually oflarge cardinality and therefore their enumeration causes acombinatorial explosion. Sothehuge size
of thesetof compatibles accounts forthelarge running times and/or out-of-memory failures. About thebehavior
of ism,weunderline that the runningtimes trackwellwiththe sizeof the setof compatibles and that in significant
cases theyarewellbelow thoseof STAMINA (pe-rcv-ifcfcm, pe-send-ifcfcm, vbe4a).

#max # prime CPU time (sec)

machine # states compat. # compat. compat. %MEVC ISM STAMINA

alexl 42 787 55928 787 787 40 16

future 36 49 7.92986e8 49 49 8 0

future.m 28 16 2.62144e7 16 16 2 0

intelxdge.dummy 28 120 9432 396 396 40 3

isend 40 128 22207 480 480 19 spaceout

isend.m 20 15 22207 19 19 1 0

mp-forward-pkt 20 1 1.04858e6 1 0 0 0

nak-pa 56 8 4.74109el5 8 8 17 0

nak-pa.m 18 8 44799 8 8 1 0

pe-rcv-ifcfc 46 28 1.52816ell 148 148 22 spaceout

pe-rcv-ifcfcm 27 18 1.79379e6 38 38 3 147

pe-send-ifcfc 70 39 5.07174el7 506 506 701 spaceout

pe-send-ifcfcm 26 6 8.97843e6 23 22 3 312

ram-read-sbuf 36 2 3.00648el0 2 0 2 0

sbuf-ram-write 58 24 1.4336e6 24 24 15 0

sbuf-ram-write.m 24 12 1.4336e6 12 12 2 0

sbuf-send-cti 20 10 81407 10 10 0 0

sbuf-send-pkt2 21 2 622591 2 0 0 0

vbe4a 58 2072 1.7562el2 2072 2072 141 167

vbe4a.m 22 13 73471 13 13 2 0

vbe6a.m 16 8 527 8 4 1 0

vmebusjnasterjn 32 10 5.04955e7 28 28 16 spaceout

Table 2: Asynchronous FSM benchmark.

9.3 Examples of FSM's from Learning I/O Sequences

Table 3 shows the results of running a parametrized set of FSM's constructed to be compatible with a given
collection of examples of input/output behavior [7]. Thesemachines exhibitverylargenumberof compatibles.

HereISM showsall its powercompared to STAMINA, bothin termsof numberof computed primesandrunning
time. STAMINA runsoutof memory on theexamples from threer.35 onwards and,whenit completes, it takesclose
to two order of magnitude more time than ISM.
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9.4 A Family of FSM's with Exponentially Many Primes

In the previous examples, the number of prime compatibles is not large compared to the number of states. A
naturalquestionto ask is whether there are FSM's that generatea large number of prime compatibleswith respect
to the number of states. We were able to construct a suite of FSM's where the number of prime compatibles is
exponential in the number of states.

Rubin gave in [20] a sharp upper bound for the number of maximal compatibles of an ISFSM. He showed
that M(n\ the maximum number of maximal compatibles over all ISFSM's with n > 1 states, is given by
M(n) = t.3m, if n = 3.m + i. The proof of this counting statement is based on the constructionof a family
of incompatibility graphs I(n) parametrized in the number of states4. Each I(n) is composed canonically of a
number of connected components. Each maximal compatible contains exacdy one state from each connected
component of thegraph. Thenumber of such choices is shown to be M(n).

The proof of the theorem does not exhibit an FSM that has a canonical incompatibility graph. Based on
the construction of the incompatibility graphs given in the paper, we have built a family F(n)5 of ISFSM's
(parametrized inthe number ofstates n) that have anumber ofmaximal compatibles inthe order of3("/3) and a
numberofprime compatibles inthe orderof2^2n^3\ F(n) has 1input and n/3outputs. Each machine F isderived
froma non-connected state transition graph whose components Fi are defined on the same input and outputs. Each
FSM Fi has 3 states {sto>5»*i>5«2} and 3 specified transitions {el0 = (st0>5ti),e,i = ($ii>Si2)>et-2 = (*a,*«>)}.
Each transitionunder the input set to 1 asserts all outputs to -, with the exception that e,0 and e,i assert the i-th
outputto 0 and e,2asserts the i-th output to 1. Underthe input set to 0 the transitionsare left unspecified.

Table 3 shows the results of running increasingly larger FSM's of the family. While ISM is able to generate
sets ofprime compatibles ofcardinality upto21200 with reasonable running times, STAMINA, based onanexplicit
enumeration runs out of memory soon (and where it completes, it takes much longer).

#max # prime CPU time (sec)
machine # states compat. # compat. compat. #NSVC ISM STAMINA

rubinl2 12 34 2*-l 28-l 2«-i 0 4

rubinl8 18 36 212-1 212-1 212-1 1 751

rubin24 24 38 216-1 216 - 1 216-1 1 spaceout

rubinlSO 150 350 2100-1 2100-1 2100-1 88 spaceout

rubin300 300 3100 2200- 1 2200-l 2200- 1 452 spaceout

rubin450 450 3150 2300-l 2300-l 2300-l 1458 spaceout

rubin600 600 3200 2400-l 2400-l 2400-l 3106 spaceout

rubin750 750 3250 2500-l 2500-l 2500-l 7106 spaceout

nibin900 900 3300 2600- 1 2600-l 2600- 1 11588 spaceout

rubinl050 1050 3350 2700-l 2700-1 2700-l 21048 spaceout
rubinl200 1200 3400 2&oo_ 1 2800 -1 2800.! 32202 spaceout

rubinl500 1500 3500 2iooo_ j 2iooo_1 2iooo_ j 77590 spaceout
rubinl800 1800 3600 21200.! 21200-1 21200.! 142824 spaceout

Table 4: Constructed FSM's.

4The incompatibility graph ofan ISFSM F isagraph whose nodes are the states of F, with an undirected arc between two nodes s and
i iff s and t are incompatible.

sCaIled rutin followed byn inthe table ofresults.
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CPU Time Vs. # Prime Compatibles

le+54 le+121 le+188 le+255

Figure 6: Comparison between ISM and STAMINA on constructed FSM's.
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9.5 FSM's with Many Maximals

Table 4 shows the results of running some examples from a set of FSM's constructed to have a large number of
maximal compatibles. The examples Jac4,jc43,jc44,jc45,jc46,jc47 are due to R. Jacoby and have been kindly
provided by J.-K. Rho of UC Boulder. The example lavagno is from asynchronous synthesis as those reported in
Section 9.2. Forthese examples the program STAMINA was run with the option -M to compute all maximals. While
ISM could complete on them in reasonable running times, STAMINA could not complete onjac4 and completed the
other ones with running times exceeding those of ISM by one or two order of magnitudes. Notice that ISM could
also compute the set of all compatibles even though the computation of prime compatibles cannot be carried to
the end while stamina failed on both.

#max # prime CPU time (sec)

machine # states compat. # compat. compat. ISM STAMINA

jac4 65 3859641 41593120 ? 34 spaceout

jc43 45 82431 1.55634e6 ? 13 7739

jc44 55 4785 7.58463e9 ? 20 662

jc45 40 17323 480028 ? 10 1211

jc46 42 26086 1.1536e6 ? 11 2076

jc47 51 397514 1.12096e7 ? 19 41297

lavagno 65 47971 9.1631e6 ? 163 40472

Table 5: FSM's with many maximals.

9.6 Randomly Generated FSM's

We investigated also whether randomly generated FSM's have a large number of prime compatibles. A program
was written to generate random FSM's6. A small percentage of the randomly generated FSM's were found to
exhibit this behavior. Table4 shows the results of running ISM and STAMINA on some interestingexamples with a
large numberof primes. Again only ISM could completethe examplesexhibitinga large number of primes.

9.7 Summary of the Results

The results of Tables 2, 3, 4 and 5 show that when the sets of compatibles needed for exact state minimization
are huge, an algorithm based on an explicit enumeration of those sets will be unable to complete due to an
out-of-memory condition.

The questionnow arisesof how it is realistic to expectsuchexamples in logic designapplications. One could
object that the examples of Table 1 show that hand-designed FSM's can be handled very well by an existing
state-of-art program like stamina. If this can be true for usual hand-designed FSM's, we argue that there are
FSM's produced intheprocess oflogic synthesisofreal design applications thatgenerate large sets ofcompatibles
exceeding thecapabilities of programs basedonanexplicit enumeration. Theexamples of Table 2 aresucha case.
They areFSM's produced as intermediate stages ofanasynchronous logicdesign procedure andtheirminimization
requires computing very large sets of compatibles. Another case is the one reported in Table 3, referring to the
synthesis of finite statemachines consistent with a collection of I/Olearning examples.

We expect that similar cases are going to arise, for instance, in the minimization of interacting FSM's. It
has been reported by Rho and Somenzi [19] that the exact state minimization of the driven machine of a pair

Parameters: number ofstates, number ofinputs, number ofoutputs, don't care output percentage, don't care target state percentage.
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#max # prime CPU time (sec)
machine # states compat. # compat compat. #MEVC ISM STAMINA

fsml5.232 14 4 7679 360 360 2 23

fsml5.304 14 2 12287 954 954 1 85

fsml5.468 13 2 4607 772 772 1 16

fsml5.897 15 2 20479 617 616 0 50

ex2.271 19 2 393215 96383 96382 26 spaceout
ex2.285 19 2 393215 121501 121500 17 spaceout
ex2.304 19 2 393215 264079 264079 94 spaceout
ex2.423 19 4 204799 160494 160494 112 spaceout
ex2.680 19 2 327679 192803 192803 156 spaceout

Table 6: Random FSM's.

of cascaded FSM's is equivalent to the state minimization of an ISFSM that requires the computation of prime
compatibles.

10 Conclusions

This paper has presented an algorithm that implicitly generates the various sets of compatibles needed to solve
exacdy state minimization. Compatibles, maximal compatibles, prime compatibles and implied classes are all
represented implicitlyby thecharacteristic functions of relations implemented withBDD's. If it is possible tobuild
theseBDD's,computations on thesesetsof compatibles are easy. The only explicitdependence is on the number
of states oftheinitial problem. Wehave demonstrated withexperiments from avariety of benchmarks that implicit
techniques allow to handle examples exhibiting a number of compatibles up to 21200, an achievement outside
the scope of programs based on explicit enumeration [9]. We have shown, when discussing the experiments,
that ISFMS's with a very large numberof compatibles may be produced as intermediate stepsof logic synthesis
algorithms, for instance in the casesof asynchronous synthesis [13], andof learning I/O sequences [7]. A similar
situation is expected to occur also in the synthesis of interacting FSM's [19]. This shows that the proposed
approach has not only a theoretical interest,but also practical relevance for current logic synthesis applications.

The final step of an implicit exact state minimization procedure, i.e. solving implicitly a binate covering
problem [21], is partof an ongoing research that will be presented in a separate paper. A complete formulation of
an implicit binatecovering algorithm has been already worked out andan implementationis in progress.

We underline that besides the intrinsic interestof stateminimization and its variants for sequentialsynthesis,
the implicit techniques reported in this papercan be applied to other problems oflogic synthesis and combinatorial
optimization. For instance the implicit computation of maximal compatibles given here can be easily converted
into an implicit computation of prime encoding-dichotomies (see [22]). Therefore the computational methods
described here contribute to build a body of implicit techniques whose scope goes much beyond a specific
application.
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A Appendix

The following example is used to illustrate the BDD's constructed in the implicit algorithm. FSM's are usually
specified in STT form; a convenient way of writing STT's is given by a flow table. Each row in the flow table
corresponds to a state and each column corresponds to an input combination (or vector). Each table entry gives
the next state and output for the corresponding input and present state.

states

encoded inputs
01 10 11

si 33/0 -/- s2/-

s2 -/- s4/0 s6/-

s3 s5/l -/- -/o

s4 -/- sl/1 sl/-

s5 sl/- -/- s6/-

Figure 7: An FSM example.

10 11 pi p2 p3 p4 p5 p6 nl n2 n3 n4 n5 n6 10 11 pi p2 p3 p4 p5 p6 nl n2 n3 n4 n5 n6

01 000001 000100 10 010000 000100

01 000010 100000 11 000001 000001

01 001000 000010 11 000010 000001

01 100000 001000 11 000100 100000

10 000001 000010 11 010000 000001

10 000100 100000 11 100000 010000

Figure 8: Transition relation T(i, p, n) forthe example.

10 11 pi p2 p3 p4 p5 p6 10 11 pi p2 p3 p4 p5 p6

00 000001 - 10 000001

00 000010 - 10 000010

00 000100 - 10 000100 1

00 001000 - 10 001000

00 010000 - 10 010000 0

00 100000 - 10 100000

01 000001 - 11 000001

01 000010 - 11 000010

01 000100 - 11 000100

01 001000 1 11 001000 0

01 010000 - 11 010000

01 100000 0 11 100000

Figure 9: Outputrelation 0(i,p, o) forthe example.



yl y2 y3 y4 y5 y6 zl z2 z3 z4 z5 z6 yl y2 y3 y4 y5 y6 zl z2 z3 z4 z5 z6

000001 000001 000100 100000
000001 000010 001000 000001
000001 000100 001000 000010
000001 001000 001000 000100
000001 010000 001000 001000
000001 100000 001000 010000
000010 000001 010000 000001
000010 000010 010000 000010
000010 000100 010000 001000
000010 001000 010000 010000
000010 010000 010000 100000
000010 100000 100000 000001
000100 000001 100000 000010
000100 000010 100000 000100
000100 000100 100000 010000
000100 001000 100000 100000

Figure 10: Output compatible pairs OCV(y, z) for theexample.

yl y2 y3 y4 y5 y6 zl z2 z3 z4 z5 z6

000100 010000
001000 100000

010000 000100

100000 001000

Figure 11: Output compatible Pairs OCV(y, z) for theexample.

yl y2 y3 y4 y5 y6 zl z2 z3 z4 z5 z6 yl y2 y3 y4 y5 y6 zl z2 z3 z4 z5 z6

000001 000100 001000 000010
000010 001000 001000 100000
000010 100000 010000 000100
000100 000001 100000 000010
000100 010000 100000 001000

Figure 12: Incompatible pairs XCV(y, z) for theexample.

cl c2 c3 c4 c5 c6

- - - 1 - 1

- - 1 - 1 -

1 - - - 1 -

- 1 - 1 - -

1 - 1 - - -

Figure 13: Incompatibles XC(c) forthe example.

cl c2 c3 c4 c5 c6 cl c2 c3 c4 c5 c6

000001 0 1 0 0 - -

00001- 0 110 0-

0001-0 10000-

00100- 100100

001100 11000-

Figure 14: Compatibles C(c) forthe example.

cl c2 c3 c4 c5 c6 cl c2 c3 c4 c5 c6

000110 011001

001100 100100

010011 110001

Figure 15: Maximalcompatibles MC(c) forthe example.
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