

Copyright © 1993, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

VERIFYING INTERACTING FINITE STATE

MACHINES: COMPLEXITY ISSUES

by

Adnan Aziz, Vigyan Singhal, and Robert K. Brayton

Memorandum No. UCB/ERL M93/52

1 July 1993

(Revised 24 October 1994)

VERIFYING INTERACTING FINITE STATE

MACHINES: COMPLEXITY ISSUES

by

Adnan Aziz, Vigyan Singhal, and Robert K. Brayton

Memorandum No. UCB/ERL M93/52

1 July 1993

(Revised 24 October 1994)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Verifying Interacting Finite State Machines :

Complexity Issues

Adnan Aziz Vigyan Singhal

Robert K. Brayton *

Email: {adnan,vigyan, brayton}Ocs.berkeley. edu
Fax: 1 (510) 643-5052

Department of Electrical Engineering and Computer Sciences

University of California, Berkeley, CA 94720, USA

Abstract. In this report we carry out a computational complexity anal
ysis of a simple model of concurrency consisting of interacting finite state
machines with fairness constraints (IFSMs). This model is based on spec
ification languages used for system specification by actual formal verifi

cation tools, and it allows compact representation of complex systems.

We categorize the complexity of two problems arising in this model that
are of fundamental importance:

Formal verification Given a property (expressed as a formula in the
logic CTL), deciding if it holds of a system of IFSMs is PSPACE-
complete.

Trace universality Given a system of IFSMs, deciding if the set of
output traces generated by the system is universal is EXPSPACE-

complete.

For a single machines the verification and trace universality are decidable

in polytime, and complete for PSPACE respectively. Thus our results

demonstrate a tradeoff between the ability to compactly describe sys

tems using concurrency, and the increased complexity of analyzing such
systems.

* Supported by SRC Grant 93-DC-008 and NSF/DARPA Grant MIP-8719546

1 Introduction

The verification of sequential systems is an area of active research in VLSI.

Verification of a designis typicallydone by modelling the design as a finite state
machine. Properties to be verified can be specified by formulae in a linear time
or branching time temporal logic[15, 4], or by the set of output traces accepted
by a task automaton[12].

Verification algorithms proceed by performing some form of traversal of the
state transition graph[5,3].Thus, given a system explicitly described by its state
transition graph (STG), verification can proceed efficiently i.e., in time that is
polynomial in the number of states. In particular, properties expressed in the
logic CTL [4] can be checked in time proportional to the size of the STG times
the length of the formula. Similarly, when the task automaton can be efficiently
complemented, verification proceeds in time proportional to the product of the
number of states in the system and the number of states in the task.

In practice, large systems are designed in a hierarchical fashion. Thus they
are made up of small interconnected components. Composition of the system
leads to the state explosion problem[3]. Informally, this refers to the fact that
given n Finite State Machines (FSMs) the number of states in the product
machine is the product of the number of states in each individual machine.

As a result algorithms that explicitly operate on the state space of the prod
uct machine have exponential time and/or space complexity.Various techniques
have been proposed for dealingwith the complexityintroduced by concurrency.
For example, McMillan [16] uses the binary decision diagram data structure to
compactly represent product machines. Other approaches proceed incrementally
forming the product and minimizing the intermediate products with respect to
some equivalenceon the states [8, 20]. Abstraction techniques are used to scale
datapath [14].

In this paper we define a formal model of concurrency, consisting of inter
acting finite state machines with fairness constraints (IFSMs). We argue that it
is well suited to hardware verification; indeed it is based on specification lan
guages used for system specification by the formal verification tools SMV [16]
and HSIS [1]. We categorize the complexity of the two following problems on
this model that are of fundamental interest :

- Formal verification - Given a property (expressed as a formula in the logic
CTL), deciding if it holds of a system of IFSMs is PSPACE-complete.

- Trace universality - Given a system of IFSMs, deciding if the set of output
traces generated by the system is universal is EXPSPACE-complete.

Our proofs have several interesting corollaries. For example, the high complexity

of verification can occur in very simple cases where all machines are identical.

Furthermore, the fact that model checking the logic CTL on interacting finite
state machines is in PSPACE is actually a positive result - given the branching

nature of CTL one have expected the problem to be EXPTIME-complete.
We have come across various remarks in the literature alluding to the PSPACE

hardness of the reachability problem (defined in section 3) for various models
which allow compact notation, e.g. [13, 10]. However we have not come across
any published proofs of this fact for models similar to the ones we deal with.

Furthermore we have not found any proofs of the PSPACE completeness of

the verification problem. Similarly, lower bounds on universality exist for other

models of concurrency, e.g. the LTS model [17]. However these models are not
immediately seen to be interpretable in IFSMs, and so our result on universality
is also novel.

In section 2 we define the notions of a finite state machine and weak fairness.

The semantics of interaction are made precise, and we motivate the definition of

IFSMs and show how they can be used to model hardware. We also define the

syntax and semantics of CTL on a models defined by IFSMs. In section 3 we

prove complexity theoretic lower bounds for verification and trace universality.

We conclude by going over the consequences of our results to issues in practical
verification and discuss future work.

2 Definitions

Definition 1 Finite State Machine. A finite state machine M is a 5-tuple
(5, r, I, O, T) where

— S is a finite set of states

— r is the initial state

— I is a finite set of inputs

—O is a finite set of outputs
— TcSxIxOxS is the transition relation

An FSM can be represented in terms of a state transition graph (STG) or a
register with a table, as depicted in figure 1. Informally, (s,»,o,<) € T means
that from state s on input *, there is a transition to state t> while the output is
o. Given state s and input sequence or = (cto, ai,...), a path is a finite or infinite
sequence of states starting at s consistent with the transition relation. For the

...JT(*i!i?jJLL

Fig. 1. Visual representations of FSMs

Vo/p

machine in figure 1, (fii,S2>S2>«3) is a path starting at state 8\, corresponding
to input (e, d,e).

Fairness constraints [6] are restrictions on infinitary behavior of FSM used to
model system, environment, and properties. An infinite path is fair iff it satisfies
the constraint - behavior is restricted to sequences of fair paths As an example
consider the system described in 2. The fairness constraint is "visit state START

infinitely often". Thus the only output sequences corresponding to fair paths are
those in which every count is eventually followed by a start.

disable/itart enable/count

(J enable/start (\

{enable, ditable}/count

Fig. 2. Fairness condition - state "START" visited infinitely often

Definition2. A Buchi (weak) fairness condition ona machine M = (5, r,I,0, T)
is characterized by a subset of the state space, i.e. by some B C S. The path a
is fair if and only if some state from B occurs infinitely often on a.

Various other formalisms exist for expressing fairness constraints. In partic
ular, Streett [18] (strong) conditions have the property of being succinct while
still being efficient to compute with. All our results continue to hold for systems
with Streett fairness conditions.

Complex designs typically arise as the composition of smaller interacting
machines, where the input to a machine can be the output of another machine.

The entire system defines a finite state machine, referred to as the product
machine, defined below.

Definition3 Product Machine. Given a collection of interconnected FSMs

{Afi,M2,..., Mn}, the product machine M = M\ x ... x Mn is an FSM on the
product state space S\ x S2 x ...x Sn-

- The initial state is the Cartesian product of the initial state in each compo
nent.

- The inputs to the product machine are those inputs to {Afi,M2,.. .,M„}
which are not outputs of other machines.

- The output corresponds to some some subset of all outputs of the compo

nents; it is a subset rather than the entire set since not all the intermediate

outputs may correspond to observable outputs.

- The transition relation of the product is defined by the requirement that the

transition in each component M,- satisfies T}, and that the input and output

assignments be consistent; it is the conjunction of the component transition

relations in an appropriate boolean algebra [12].

Given fairness conditions Bi,B2,-..,Bn on the component machines, the fair

ness condition on the product is the set of states B\ x Bi x • • • x Bn. Thus a

path through the product machine is fair if the path followed in each component
is fair.

Intuitively, we are dealing with interacting Mealy machines. The definition

of the product machine is motivated by the physical basis for hardware: (1) wire
values must be consistent, (2) registers are triggered by common clock, and so all
machines change state synchronously. An example of composition of machines

Mi and M2 is shown in figure 3. A closed systemof interacting FSMs is one to
which there are no external inputs. Any open system can be closed by adding
machines that simulate external inputs.

A 2-input NAND gate can be emulated by an FSM as shown in figure 4. Thus
Boolean logic gates can be embedded in IFSMs. This feature allows compact
representation of dynamics on the product space that can be very complex. Any
function computed in polytime can be computed by a polysize circuit. Hence

any formalism for representing a transition structure on a product space that
is efficiently computable can be translated to a compact representation in the
interacting FSM model.

SMV [16] and HSIS [1] are two tools used for formal verification of hardware
designs. The formal models derived from the specification languages for both

a.b/1

a/° >^b/°

0/b, 1/aQfj)

i,o/bw

l,0/a,b Q3

M2 Oa,Ob lb la,Oa

Fig. 3. Product of Mi and M2 yields M

(I 5°) H(P'0),i),((i,o),i),((o,i),iu(i,i), 0)}

Fig. 4. A onestate FSM that emulates a NAND gate - State space = {so},Input
space = {(0,0), (1,0), (0,1), (1,1)}, Output space = {0,1}

systems are efficiently interpretable as a product machine with fairness condi

tions; furthermore a system of IFSMs with fairness conditions can efficiently be
specified in SMV and HSIS. This provided the basis for our desire to analyze
complexity issues related to IFSMs with fairness conditions.

2.1 Formal verification

Consider a closed system of interacting mahines M = M\ x M2x... x Mn. Let the

state spaces of each machine be S\ —{s\,s\,..., sh,}, & = {*}, sjt•••>*fs i}>
..., Sn = {*i 1*31 •••15|s„|)- ^ne syntax and semantics ofCTL are defined as
follows:

Definition4 CTL Syntax. The set of atomic propositions of the system is the

set ofsymbols {s^ \s\ 6 5/}, i.e. there is a symbol foreach state of a component
machine. The syntax of CTL is defined inductively below:

- p is a CTL formula, where p is an atomic proposition

- if ^1 and fa are CTL formulae, then so are -«Vi> ^1 VV»2i BX^i, 3<2V>i, and

3tyi^2]

The expression 3F<f> abbreviates the CTL formula 3(TRUE U <f>). CTL formulae
express properties of the system that are true or false at a state. Intuitively, the

formula BA'V'i asserts the property that there is a next state in which rp\ holds.

Similarly BGtyi asserts there exists a path along which every state satisfies V*i;

3[ipiUtf>2] asserts that there is a path to a state where V*2 holds, and at each
prior state \l>\ holds.

The formal semantics of CTL on a closed product machine M = M\ x ... Mn
with fairness conditions are given below. Given an infinite path ir, [ir]t- refers to
the t'-th state on the path.

Definition5 CTL Semantics. Given a state s € Si x 52 x ... x Sn and a for

mula 4> from the logic CTL, we define the satisfaction predicate s \= <f> inductively
as follows

1. <f> = p where p = sj- is an atomic proposition: s {= <f> if andonly if thereexists
a fair path starting at state s, and [s]t- = sj-

2. <f> = ->ipi: s |= <f> if and only if s ^ V'l
3. <f> = V>i V ij>2'- s \= <f> if and only if s ^= V"i or s [= V>2
4. <£ = BX^i: s f= <£ if and only if there exists a fair path tt starting at s such

that [ir]i f= ^>i

5. ^ = 3Gip\: s |= ^ if and only if there exists a fair path it starting at s such

that Vi[ir],- [= V'l
6. ^ = BtyiC/V^]: ^ and only if there exists a fair path tt starting at s such that

3*[[4-h V>2 AVj <«[*]; Mi]

3 Complexity Issues

3.1 Formal verification

In this section we shall prove that it is PSPACE-complete to model check CTL

formula on a system of interacting machines with fairness conditions.

To do so we first demonstrate that simply determining if there is a path from
one state to another state in a product machine is PSPACE-complete.

Definition6. Given a product machine M and two states s = [s\...sn]yt =
\t\.. .tn] in M, t is said to be reachable from s if there exists a of states in the
product machines < «o, «i,..., ti* > such that «o = s, tifc = t, and V/ < k there

is an input i\ under which there is a transition from state u; to w/+i.

Lemma 7. It is PSPACE-complete to decide reachability.

First we categorize the complexity of determining if there exists a transition
from one state to another in the product machine.

Definition8. Given a product machine M and two states s = [s\. ..sn],t =
[h ••-tn] in M, t is said to be one step reachable from s if there is a transition
from s to t under some input.

Lemma 9. It is NP-complete to decide one step reachability.

Proof. Assignments to the inputs and outputs can be generated nondetermin-
istically; it can be checked in linear time that the assignments are consistent
(i.e. inputs of machines that areoutputs of other machines are assigned mutual
values). It can also be checked in linear time that the assignment leads to transi
tions from [s]i to [t]i in eachcomponent machine M,-. Hence onestep reachability
is in NP.

Since FSMs can be used to model Booleanlogicgates, a Boolean logicnetwork
can be efficiently simulated as a network of interacting FSMs. The output of
this network can be used to enable a transition between states s and t; hence t
will be one step reachable from s if and only if the logic network is satisfiable.
Satisfiability of logic networks is NP-complete [7]; ergo one step reachability is
NP-hard. •

We are now ready to prove lemma 7

Proof. Membership in PSPACE is direct: a path (si...sn) —• (ai...an) ~»
•••~» (ti.. .<„) can be non-deterministically generated and checked at each step
(by lemma 9 this check can be carried out in NP). Observe that only successive
transitions need to be stored. Hence the procedure runs in non-deterministic

PSPACE. By Savitch's theorem [9], NPSPACE = PSPACE, and so reachability
is in PSPACE.

PSPACE-hardness follows from a generic Turing machine reduction. Let V
be an arbitrary problem in PSPACE. There is a Turing Machine and polynomial
p(n) such that machine decides all instances of V of size n using less than p(n)
tape. We will show how to simulate runs of the Turing machine on problem of
size n can be simulated by p(n) FSMs

We recall the definition of a Turing machine as given in [7]. A Turing machine
is characterized by

- Finite set T of tape symbols, including a subset U C r of input symbols and
a distinguished blank symbol b e T —E

- Finite set Q of states, including start state go, final states qy and gjv

- Transition function 6 :(Q- {qy, gjv}) x T —> Q x T x {!,+!}

The machine can be schematically represented as in figure 5.

Tape

Finite State

Control

Read-write head

-3-2-10 12 3 4 5

Fig. 5. Turing machine schematic

The input to the Turing machine is a string x € U* placed in tape squares
1 to | x |; the remaining squares are marked with blanks. The machine starts
at state go with the read-write head scanning square 1, and goes through a
sequence of computations defined by 6: the read-write head moves back and

forth and contentsof tape head are updated based on the value computedby 6;
the computation ends on entering states qy,qt>j.

A Turing machine on input of size n can be simulated by p(n) interact
ing FSMs arranged in a linear array with bidirectional communication between

neighbors, as depicted in figure 6. Each machine's state identifies the the con
tents of the corresponding tape square; the machine has a copy of the state
transition graph for the controller. Only one machine is active at any time; con
trol is passed across neighboring machines depending on head movement. The
input-output arrangement, as well a portion of the state transition diagram is
described in figure 7. From the construction it follows that the Turing machine

S^EG w4**w)J
Fig. 6. Array of p(n) FSMs simulatingthe TM on input of size n

will accept the input iff the FSM array can reach an accepting final state. Fur
thermore the array can be constructed in time p(n) and so the reduction is
polytime. Thus reachability is PSPACE-complete. •

Note that the construction aboveyields a verysimplesystems of FSMs- all
the machines are identical, the transition structure of each machine is determin-

Or[I (OttLelt.q,)

(911 7l)

(fla.Ta)

(o3,P*HRight)

' (IDLE, y7)

PawLeft^ Single PSM ^ PauRight
q-out ^ •imnUting TM t»pe ^ q-out

q-in ^ ^ q-in
GetLeft > ^ GetRight

State Space : [G U {idle}] x T

Input*: GetLeft,GetRight.q-in

Outputs: PassLeft,Pa**Right,q-out

Fig. 7. FSM used to simulate Turing Machine tape square; each FSM state is
the product of the set of tape symbols with the controller state. On the left
is a fragment of the STG, on the right are the input/output signals. Only one
machine is active at anytime. Control is passed across the machines based on
the computedmovement of the read-write head. The inputs PassLeft, GetRight
and outputs GetLeft, PassRight are for handshaking the transfer of control. The
next state is passed through q-in, q-out.

istic, and communication is only with adjacent machines. It is a surprising and
important fact that even such simplesystems can have high complexity.

Theorem 10. CTL modelchecking a system of interacting finite state machines
is PSPACE complete.

Proof. Observe that state s can reachstate t in the product machine if and only
ifs models the CTL formula 3F[{t\i AM2 A... A£]„]; thus reachability reduces
CTL model checking a system of interacting machines. From lemma 7 it follows
that model checking is PSPACE-hard.

We now demonstrate membership in PSPACE. First consider model checking
atomic propositions, s \= *} if and only if [s],- = sj and there exists a fair
path starting at state s. Checking [s]* = sj is trivial. For the second part, i.e.
checking that there exists a fair path starting at s, note that there such a path
exists if and only if there is a path (si..,sn) ^ ••• -v-* (ti...tn) to a cycle
(U •• tn) -* (ai.. .On) "^* •• ~* (ti.. .tn) which is fair. The path and cycle
can be non-deterministically generated. At each stage it can be checked that
the transition is legitimate. Furthermore, the set of infinitary states in each
component occurring in the cycle can be stored and used to check that the cycle
is fair. This procedure is in NPSPACE; invoking Savitch's theorem it follows
that model checking atomic propositions is in PSPACE.

Checking formulae of the form -«Vi> or V"i VV>2 requires only constant space
over the formulas used to check Vi>^2- For existential path formulae i.e. those
of the form BA^i, 3GV»i, and BtyiC^], a path to a fair cycle can be non-

deterministically generated as above; each state can be recursively checked for
ipi and V*2- The additional space used to generate the path is no more than the

sum of the number of states in each component. Thus composite formula can

be model checked recursively to yield a procedure that runs in NPSPACE. A

detailed analysis invoking Savitch's theorem yields a deterministic space bound

ofO(|VlM|Mi|+.--+|Mn|)2). -
In some ways the result of theorem 10 is actually a positive one - given

the branching nature of CTL one might have expected this problem to be

EXPTIME-complete. However, the algorithm for model checking in the proof

uses nondeterministic PSPACE; there does not appear to be a direct determin
istic algorithm which runs in PSPACE for this problem.

3.2 Language universality

Terminology: Given an alphabet 17, the class of ^-languages over 27 is the set
of all sets of finite strings over 27; the class of w-languages over 27 is the set of
all sets of infinite strings over 27.

Definition11. Given a product machine M with no external inputs and Biichi
fairness conditions on the components, the language Cm of the system is de
fined to be the set of infinite sequences of symbols from the output space that
correspond to fair runs starting at the initial state. The language Cm will be
referred to as universal if it consists of al] infinite sequences of outputs.

Universality is of fundamental significance - it lower bounds the complexity
of equivalence (do two product machines generate exactly the same set of output
sequences) since universality is a special case of equivalence to a trivial universal
machine. It also lower bounds the complexity of containment (is the set of output
sequences of one machine contained in the set of output sequences of another

machine)since universality can be reduced to checking containment of a universal
machine.

We will show that deciding universality of language Cm is EXPSPACE-
complete. Membership in EXPSPACE is direct - the product machine contains
an exponential number of states; it follows from the work of Sistla, Vardi, and
Wolper [19] that the checking a Biichi automaton for universality can be per
formed in space polynomial in the number of states. EXPSPACE-hardness fol

lows by a reduction from a word problem which is known to be EXPSPACE-

complete. First we define regular expressions with exponentiation.

Definition 12. Given a finite alphabet 27 = {ai, 02,...,an} not containing the
symbols 0,1, |, a regular expression with exponentiation is a formula derived from
the following syntax: <f>; €; aj ; (r + s); (r •s); (r*); (r]k) where k is a positive
integer expressed in binary. Given a regular expression r, the set of finite strings
C(r) defined by r is derived in the usual way; the expression (r|Jb) defines the
set of all strings that are the concatenation of k elements from the set defined
by r.

Stockmeyer [9] proved the following theorem.

Theorem 13. The problem whether a regular expression with exponentiation
denotes all strings over its alphabet is complete for exponential space with respect
to polynomial time reduction

Given a regular expression with exponentiation, one can construct a system
of interacting FSMs with fairness conditions, such that the set of output traces
of the system is universal if and only if the regular expression is universal. Fur
thermore the reduction takes time polynomial in the length of the expression.
The interesting step in the construction is simulating the exponentiation opera
tor efficiently. This is achieved by using a counter to keep track of the number of
concatenations; the key observation is that an n-state counter can be built with

0(log(n)) constant sized FSMs.

Theorem 14. Given a closed system of interactingfinite state machines with
Buchifairness conditions, deciding if if the set of output strings generated by the
system is universal is complete for EXPSPACE.

Proof.(Sketch) Membership in EXPSPACEis direct: the transition graph of the
product machine is exponential in the number of components, and can be con

structed in EXPSPACE. The product is a Biichi automaton over the output
alphabet; It follows by the results of Sistla, Vardi, and Wolper [19] that univer
sality for Biichi automaton can be decided in space that is polynomial in the

number of states of the automaton (since they demonstrate that complementa
tion of Biichi automata can be performed in PSPACE). Thus universality for
interacting finite state machines can be decided in EXPSPACE.

Let r be a regular expression with exponentiation over the alphabet E =

{ai,.. .,an}. To demonstrate EXPSPACE-hardness, we will outline an polyno
mial time construction for a product machine M? with Biichi fairness conditions

on the components such that Cm? is universal if an only if C(r) is universal.
Rather than define M" immediately, we will first show an efficient construc

tion for a product machine M* on inputs drawn from 27 which defines the set

£(r) in the following way: the product machine will have a single state desig
nated the start state qt, and a single state designated the final state qj\ the
start state will have no states making transitions to it, and the final state will
have no transitions to other states. A finite string has an accepting run in such
a system if it causes a valid sequence of transitions starting at the start state
and ending at the final state. The set of accepting strings will be denoted by
Cm;', we will show this set is precisely C(r). The systems generated by such a
construction are essentially compact representations of non-deterministic finite
state automaton [9].

The following is an outline of the construction:

- r = aj : A machine on two states qs and qj with a transition from q, to q/
on input a,- suffices.

- r = (ri •r2) : Let M*x and M*3 be machines defining C(ri) and £(r2); let
their start/final states be q\,q) and q,,qj respectively. A machine M* for
C(r) can be derived from Mi and M2 by running them concurrently and
having Mi idle (i.e. always remain in the same state) after reaching its final
state, and M2 idle at its start state until M\ reaches its final state. The

start/final states of M* are (q]),q%) and (q\,q\).
- r = (r\) : Similar to the previous case.

- r = (rx + r2) : Let M^ and M*a be machines defining C(ri); let their
start/final states be q],qj and q%,qj respectively. A machine M* for C(r)
can be derived from M\ and M2 in the following way: Add newstates pi and
P2 to M*j and M*7 respectively; at pi and p2 on any input the next states
allowed are p\ orqj, and p2 or qj respectively; outputs are arbitrary. At the
initial state, nondeterministically make exactly one ofM*t or M*2 transition
to the the corresponding idle state; the rest of the transition structure is

unchanged. The start/final states of M* are (gj,gj) and (q],q*) and (q),qj).
- r = (rijn) : Let Mr*x be a machine defining £(ri). Run an n state counter in

parallel with M*x; transitions to the final state of M\ are allowed only when
the counter has counted down n steps. Each time a transition can be made

to the final state of M*t, add a transition returning to the start state of M\
and decrement the counter. This construction is outlined in figure 8. Observe
that an n-state counter can be built using 0(log(n)) constant sized FSMs.
Thus the composition of the counter with M*t yields a compact product
machine which defines the set C(r).

It is clear that the set of strings having runs starting at the start state
and ending at the final state will be precisely strings in C(r). Furthermore the

Mr M2
».connt/dccr

b.finUh/hold

b,coont/dccr •.-/hold

hold/count hold/count
bold/count _ bold/coont •/finUb

^0eT/e0n-ta.«,/connr"eOBBt-.«r/eo»B,

Fig. 8. Use of counter to simulate exponentiation: £(Af2) = (£(Mi)) | 5

reduction is in polynomial time.

The above argument indicates that deciding universality for interacting ma
chines on finite strings is EXPSPACE-hard. To push this result over to interact

ing machines on w-strings, we use the following observation of Sistla, Vardi, and
Wolper [19].

Let £ be a *-language on the alphabet A = {ai,...,a„}. Define the new
alphabets A\ = {a\,..., a\) and A2 = {a\,..., a£}. Let language C\ be the set
ofstrings of£ witha* substituted byaJ; similarly define £2.Then the *-Ianguage
£ is universal if and only if the w-language Cu defined below is universal.

Cw = £i •££ U £2 •£? U (£i •£2)* •£? U

(£i£2r-£^ U (£2'£i)*-£? U (£2£ir-£^ (1)

We can define w-regular expressions with exponentiation over infinite strings
in a manner analogous to the regular expressions with exponentiation in defi

nition 12. By the observation of equation 1, deciding the universality of regular
expression with exponentiation can be reduced to deciding the universality of
w-regular expressions with exponentiation. A polynomial time construction anal

ogous similar to the one given for regular expressions with exponentiation yields a
system of interacting finite state machines, with Biichi fairness conditions on the

components, which defines the language Cw(r).Thus the universality problem for

regular expressions with exponentiation can be polytime reduced to universality
for interacting FSMs with fairness, demonstrating the EXPSPACE-hardness of
universality for interacting FSMs with fairness. •

Part of the motivation for formal verification is that it allows designer to
check their designs for bugs at an early stage. As an example, consider the top

down design methodology proposed by Kurshan [11] as illustrated in figure 9.
The design process is a series of refinements, with a set of properties verified at

each stage. Properties are specified by task automaton; the language accepted

by task automaton defines the set of correct output behaviors.

The refinement step must preserve the properties originally proved; in Kur-

shan's paradigm, this means that the language of the implementation is con

tained in the language of the specification. Only a subclass of implementations

are allowed, namely those for which a short proof of containment exists. This

proof takes the form of structural containment between specification and im

plementation in the form of language homomorphisms and simulation relations.

Since the containment check is EXPSPACE-complete, this methodology is in

complete - there are interesting implementations that cannot be derived via the

allowed refinement mechanism. Therefor it will not be possible to find the best

implementation for a given specification via this mechanism.

Set of properties to verify

{Pl,P2l...P„}

High level specification

Implementation

Fig. 9. Top down design methodology - at each stage the designer checks a set
of properties; the refinement process preserves all properties previously checked.

4 Conclusion and Future Work

We have defined a simple model of concurrency that is suited to describing
synchronous hardware. The complexity of verifying such systems in the CTL

paradigm was shown to be PSPACE-complete; for single machines represented
in terms of a transition graph verification can be performed in polynomial time.
The complexity of deciding trace universality was shown to be EXPSPACE-

complete; for single machines universality is PSPACE-complete. Thus our results
demonstrate a tradeoffbetween the ability to compactly describe systems using
concurrency, and the increased complexity of analyzing such systems. In the
future we plan to study other other models of computation, and compare them
in terms of succinctness, expressiveness, and complexity to the interacting FSM
model.

References

1. A. Aziz, F. Balarin, R. K. Brayton, S.-T. Cheng, R. Hojati, T. Kam, S. C. Kr-
ishnan, R. K. Ranjan, A. L. Sangiovanni-Vincentelli, T. R. Shiple, V. Singhal,
S. Tasiran, and H.-Y. Wang. HSIS: A BDD-Based Environment for Formal Veri
fication. In Proc. of the Design Automation Conf.t June 1994.

2. A. Aziz and R. K. Brayton. Verifying Interacting Finite State Machines. Tech

nical Report UCB/ERL M93/52, Electronics Research Lab, Univ. of California,
Berkeley, CA 94720, July 1993.

3. J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Symbolic Model Check

ing: 102° States and Beyond. Information and Computation, 98(2):142-170, 1992.
4. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite-

State Concurrent Systems UsingTemporal Logic Specifications. ACM Trans. Prog.
Lang. Syst., 8(2):244-263, 1986.

5. D. L. Dill, A. J. Hu, and H. Wong-Toi. Checking for Language Inclusion Using
Simulation Preorder. In Proc. of the Third Workshop on Computer-Aided Verifi
cation, 1991.

6. E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor, Formal
Models and Semantics, volume B of Handbook of Theoretical Computer Science,
pages 996-1072. Elsevier Science, 1990.

7. M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman
and Co., 1979.

8. O. Grumberg and D. E. Long. Model Checking and Modular Verification. In

J. C. M. Baeten and J. F. Groote, editors, Proc. of CONCUR '91: 2nd Inter.
Conf. on Concurrency Theory, volume 527 of Lecture Notes in Computer Science.
Springer-Verlag, Aug. 1991.

9. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979.

10. N. D. Jones, L. H. Landweber, and Y. E. Lien. Complexity of some problems in
Petri nets. Theoretical Computer Science, 4:277-299, 1977.

11. R. P. Kurshan. Reducibility in Analysis of Coordination. In Discrete Event Sys
tems: Models and Applications, volume 103 of LNCIS, pages 19-39. Springer-
Verlag, 1987.

12. R. P. Kurshan. Automata-Theoretic Verification of Coordinating Processes.
Princeton University Press, 1993. To appear.

13. D. Lee and M. Yannakakis. Online Minimization of Transition Systems. In ACM
Symposium on the Theory of Computation, pages 264-274, May 1992.

14. D. E. Long. Model Checking, Abstraction and Compositional Verification . PhD
thesis, Carnegie Mellon University, Pittsburgh, PA, July 1993.

15. Z. Manna and A. Pneuli. Verification of Concurrent Programs: The Temporal
Framework. In R. S. Boyer and J. S. Moore, editors, The Correctness Problem
in Computer Science, Int. Lecture Series in Computer Science, pages 215-273.
Academic Press, London, 1981.

16. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
17. A. Rabinovich. Checking Equivalences Between Concurrent Systems of Finite

Agents. In W. Kuich, editor, Proc. Intl. Colloquium on Automata, Languages and
Programming (ICALP), volume 623 of Lecture Notes in Computer Science, pages
696-707. Springer Verlag, July 1992.

18. S. Safra. Complexity of Automata on Infinite Objects. PhD thesis, The Weizmann
Institute of Science, Rehovot, Israel, Mar. 1989.

19. A. P. Sistla, M. Y. Vardi, and P. L. Wolper. The Complementation Problem for
Buchi Automata, with Applications to Temporal Logic. Theoretical Computer
Science, 49:217-237, 1987.

20. R. J. van Glabbeek. Comparative Concurrency Sematics and Refinement of Ac
tions. PhD thesis, Centrum voor Wiskunde en Informatica, Vrije Universiteit te
Amsterdam, Amsterdam, May 1990.

This article was processed using the I^TgX macro package with LLNCS style

	Copyright notice 1993
	ERL-93-52

