Copyright © 1993, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



DESIGN-ORIENTED MIXED-LEVEL
CIRCUIT AND DEVICE SIMULATION

by
David Alan Gates

Memorandum No. UCB/ERL M93/51

23 June 1993

<



DESIGN-ORIENTED MIXED-LEVEL
CIRCUIT AND DEVICE SIMULATION

Copyright © 1993

by

David Alan Gates

Memorandum No. UCB/ERL M93/51

23 June 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



Abstract

Design-Oriented Mixed-Level
Circuit and Device Simulation

by
David Alan Gates

Doctor of Philosophy in Electrical Engineering
University of California at Berkeley

Professor Ping K. Ko, Chair

Integrated circuits (ICs) are the building blocks of modern computing and communica-
tion systems. The design of high complexity ICs has been enabled by the development
of a large number of computer-aided design (CAD) tools for IC design (ICCAD). Mixed-
level circuit and device simulation has begun to find its place as a CAD tool for the
development of new IC technologies. In this dissertation, problems associated with
providing support for mixed-level circuit and device simulation in an expanded role as
an ICCAD tool are investigated.

Four issues of concern for a mixed-level simulator have focused this research:
reliability, utility, portability, and performance. A new mixed-level circuit and device
simulator called CIDER has been developed to address these concerns. The first three
concerns are addressed in a serially executing version of CIDER. To obtain reliable
simulation results, new models for physical effects that are important in present-
day IC technologies are included in CIDER. An enhanced user-interface has been
developed to increase the utility of CIDER. Finally, CIDER has been ported to a variety
of engineering workstations.

The final concern, performance, is addressed in a version of CIDER that runs on
distributed-memory multicomputers. The need for parallel computing is established
by measuring the serial performance of CIDER. Single workstations are roughly 10 to
100 times too slow to support design of reasonably sized circuits.

Algorithms for exploiting parallelism in mixed-level simulation are reviewed,
and an architecture is proposed for a parallel circuit and device simulator. A limited
form of the proposed approach has been implemented on two multicomputers: a hyper-
cube supercomputer and a cluster of engineering workstations. On a set of benchmark



circuits, a best speedup of 12 on 16 processors of the hypercube is achieved. Unfortu-
nately, the implemented approach has a number of limitations that are identified here
for the first time.

Several applications of CIDER are presented that demonstrate the new paral-
lel capability. In each application, the circuits contain multiple numerically modeled
devices. The hypercube version of CIDER is used to simulate these circuits in a rea-
sonable amount of time. New insight into these circuits is obtained by examining
simulation results.

Ping K. Ko
Thesis Committee Chairman



Contents

List of Figures
List of Tables

1 Introduction

2 Mixed-Level Circuit and Device Simulation

21 OVerview . . . . . . e e e

2.2 CircuitSimulation . ......... ... ... . ... . .. ... ...
2.2.1 Circuit Description and Equation Formulation . . . ... ... ..
2.2.2 The Circuit Operating Environment . . . .. ............
223 DCAnalysis . ... ... ..ot
224 TransientAnalysis . .. ........ ... ... .. 00 uu.....
2.2.5 Small-Signal ACAnalysis . . .....................
2.2.6 Visualization and Representation of Circuit Behavior . . . . . . .

2.3 DeviceSimulation . . . . ... ... ... ... . ... ... .
2.3.1 DeviceDescription . ........... ... ... .. ... ....
2.3.2 Semiconductor Device Equations . . . ... .............
2.3.3 External Device Boundary Conditions . . . .............
2.3.4 Scaling and Space Discretization . . . ... .............
2.3.5 DCand Transient Analyses . .. ...................
2.3.6 Small-Signal ACAnmalysis . . .....................
2.3.7 Visualization and Representation of Device Behavior . . . .. ..

2.4 Mixed-Level Circuit and Device Simulation . . . . ... ..........
2.4.1 Coupled Circuit and Device Deseription . . . . .. .........
2.4.2 Coupled Operating Conditions . . ..................
243 DCand Transient Analyses . .....................
244 Small-Signal ACAnalysis . ......................
2.4.5 Visualization and Representation of Mixed-Level Behavior . .

25 Summary . . ... e e



CONTENTS

3 Performance Analysis of CIDER 43
31 Overview . . . . . . . e e e 43
3.2 RuntimeBreakdown ................. .. ... . .. ..... 44
3.3 Device-Level ResourceUsage . .. .......... ... .. ....... 45

3.3.1 One-Dimensional Simulations . ................... 45
3.3.2 Two-Dimensional Simulations . ................... 52
3.4 Benchmark Circuit Performance . ...................... 57
3.5 Performance Requirements .. ........................ 66
3.5.1 Estimated Problem Specifications . ................. 67
3.5.2 Estimated ResourceUsage ...................... 68
3.5.3 Assessmentof Limitations . . . . ... ................ 70
3.6 Summary . . . . . ... e e e e e 71

4 Parallel Circuit and Device Simulation 73
41 OVerview . . . . . o vttt e e e e e e 73
4.2 Terminology for Parallel Computer Architectures . ............ 74
4.3 Obtaining High Parallel Efficiency . . . ... ... ... .......... 75
4.4 Available Parallelism ... ... ... ... ... ... . .. .. .. ..... 78
4.5 Design-Level Algorithms . . . . .. ... ... . ... ... ... ..... 80
4.6 Circuit-Level Algorithms . . . . . . ... ... ... ... .......... 81

4.6.1 Parallel Model Evaluation . . . . ................... 83
4.6.2 Parallel Sparse System Solution . .................. 87
4.7 Device-Level Algorithms . . . ... ... ... ... ............. 88
4.7.1 Parallel Element Evaluation ..................... 89
4.7.2 Distributed Multifrontal Factorization .. ............. 91
4.8 Mixed-Level Algorithms . . .. .. ...................... 94
481 PreviousWork . . . . . . . . . ... 95
4.8.2 Proposed Architecture . ........................ 95
4.8.3 Advantages and Disadvantages . . . . ... ............. 98
4.84 SoftwareRequirements .. ...................... 99
4.9 Mixed-Level Partitioner . ... ............... ... ..... 101
4.9.1 Multi-Level Partitioning Problem .. ................ 101
492 SolutionMethods . ... .. ... ... ... ... ... . ...... 102
4.9.3 Trial Implementation . . . . ... ... ... ............. 104
410 SUmMmMArY . . . . .ot e e e e e e e e e e e 106

5 Distributed-Memory Multicomputers 109
5.1 OVerview . . . . . . i i e e e e e e 109
5.2 Description ofthe Hypercube . .. ... ... ... .. ........... 110

5.2.1 Architecture of theiPSC/860 .. ................... 111
5.2.2 iPSC Software Environment . .................... 112
5.3 Description of the Workstation Cluster ... ................ 114
5.3.1 Layered Distributed Computing Systems . . .. .......... 114
5.3.2 Network Hardware Environment . . . . .. ............. 115
5.4 Implementing Parallel Model Evaluation . . ................ 119



CONTENTS

54.1 GlobalCombining . . . . .. ... ... ... ... . ... ...... 122

5.4.2 An Alternative Programming Approach . . ............. 125

5.5 Parallel Performance Assessment . ..................... 127
5.5.1 The Parallel BenchmarkInputs . .................. 127

5.5.2 ResultsfortheIPSC/860 . . ... ................... 128

5.5.3 Resultsforthe DECCluster . . . ... ................ 130

5.5.4 Observed Limitations . ........................ 134

56 Summary . .. .. ... ... 143

6 Applications of CIDER 145
6.1 Overview . . . . ... ... e e 145
6.2 Hypothetical 1.0 pm CBiCMOS Technology . . . . ... .......... 146
6.2.1 BipolarDevices . ... ... .. ... .. ... ... .. . ... .. 147

622 MOSDeVICeS . . . . v v ittt e 151

6.3 Gain of Various AmplifierCells . . .. ... ... .............. 156
6.3.1 Ideallnverter . ... .. .. .. ... .. ... ... vuuuu... 158

6.3.2 Source-Coupled Pair with Activeload . . . ... .......... 161

6.3.3 Two-StageCMOSOpamp . ...................... 165

6.4 Push-Pull Emitter-Follower Output Stage . . . .. ... .......... 168
6.4.1 Factors Affecting PPEF Performance ................ 170

6.4.2 Evaluation of PPEF Designs . . ................... 171

6.4.3 Two-Dimensional Simulations of the PPEF . . . ... .. ... .. 180

65 Summary . ... ... ... .. ... e 183

7 Conclusions 185
A CIDER User’s Manual 189
B CIDER Serial-Version Benchmarks 243
C CIDER Parallel-Version Benchmarks 259
D Model Libraries 271
E CIDER Source Code Listing 297

Bibliography 298

iii



List of Figures

1.1 Standard TCAD SimulationFlow . . . . . .. ... ............. 2
1.2 Alternate TCAD SimulationFlow. . . . .. ... ... ........... 3
2.1 Circuit simulation — activitysummary . . . . ... ... ... ....... 8
2.2 Device simulation —activitysummary . . .. ... ............. 14
2.3 Mesh for finite box discretization . . ... .................. 19
2.4 Diode potential data set - multipleslices. . . . .. ... .......... 25
2.5 Diode potential data set - contourplot . . .. ... ............. 26
2.6 Diode potential data set - birdseyeview . .. ... ............. 27
2.7 Mizxed-level simulation — activitysummary . . .. ............. 28
2.8 Polyemitter bipolar transistor with dual base contacts . ....... .. 29
2.9 Block matrix structure of mixed-level system of equations . .. ... .. 32
2.10 Flowchart for mixed-level transient simulation . . . . ......... .. 40
2.11 MOSFET internalstates . . . . . ... ... ... .. ............ 41
3.1 Test circuits for device-level performance characterization . .. ... .. 46
3.2 Input file — one-dimensional diode DC/AC simulation . ... .. ... .. 47
3.3 Input file — one-dimensional diode transient simulation . . . . . ... .. 48
3.4 Major components of per iteration DC time for 1° device . . .. ... .. 49
3.5 Mgajor components of per iteration AC time for 1P device . ... ... .. 50
3.6 Total memory usage ofthe 1I° DCtest . . .. ................ 51
3.7 Input file — two-dimensional diode DC/AC simulation . ... ... .. .. 53
3.8 Major components of per iteration DC time for 2P device . . ... .. .. 54
3.9 Major components of per iteration AC time for 20 device . ... ... .. 55
3.10 Total memory usage of the 2P DCtest . ... ... ... .......... 56
4.1 Exampletaskgraph .................... ... .... ... 178
4.2 Levelsof available parallelism ........................ 79
4.3 Time per iteration to load and factor circuit matrices . ........ .. 82
4.4 Coloring of a rectangular mesh using fourcolors . . . ........... 90
4.5 Nested, bordered block-diagonal matrix ... ................ 92
46 Taskgraphfor NBBDmatrix . ...............0cou.u.... 92
4.7 Two element partitionsofasmallmesh ... ................ 94
4.8 Components and call structure of proposed algorithm . . . ... ... .. 96

iv



LIST OF FIGURES

4.9 Processor groups for four node hypercube . . . .. ... ... ....... 96
4.10 Description of proposed algorithm . ..................... 107
5.1 Hypercube software developmentsystem . ................. 110
5.2 Four-dimensional hypercube . ........................ 112
5.3 Global reduction execution time on theiPSC/860 . . . . ... ... .. .. 117
5.4 Global reduction execution time on the DECcluster . . . . ... ... .. 118
5.5 Main loop of resistor loadingcode . . . . ... ... ... . ... .. .... 120
5.6 Flow of data during CKTload and CKTsolve . . . . . .. .......... 123
5.7 Total execution time for LATCH on the DECcluster . . . . ... ... .. 134
5.8 Speedup predicted in the presence oflatency . . . ... ... ....... 139
5.9 Total execution time for MECLGATE on the DEC cluster . . . . . .. .. 142
6.1 Crosssectionof NPN transistor . . . .. ... ... ............. 148
6.2 1P NPNDopingProfile . . . . ... ......... ... .. 149
6.3 IPPNPDopingProfile . . ............0ouoiuinenenen.. 150
6.4 NPN Gummelplotfor Vep =20V ... ... ... .. ... ... ...... 152
6.5 Cross section of NMOStransistor . . . . .. ................. 153
6.6 2D NMOSDopingProfile . . . . . . . ..o i v i 154
6.7 MOS saturation region characteristics . . . . ... ............. 156
6.8 NMOS linear region characteristics . . ................... 157
6.9 CMOSringoscillatordelay . ......................... 158
6.10 NMOS inverter withidealload ... ..................... 159
6.11 Load line construction for ideal NMOS inverter . ............. 160
6.12 Gain of 1.0 pm NMOS transistor . . .. ... ... ... ... ... .... 161
6.13 Schematic for source-coupled pair with activeload . . . . ... ... ... 162
6.14 Output voltage of source-coupled pair with activeload .. ........ 163
6.15 Gain of source-coupled pair with activeload ... ............. 164
6.16 Schematic for CMOS two-stage amplifier . ................. 165
6.17 Output voltage of two-stage amplifier . ... ................ 167
6.18 Gain of the two-stage CMOS amplifier . . . . ... ... .......... 168
6.19 Schematic of push-pull complementary emitter follower . ... ... .. 169
6.20 DC Beta of an NPN bipolar transistor . . . . ... ............. 172
6.21 Output voltage of PPEF outputstage . ... ... ............. 174
6.22 Ratio of collector currents from SPICEtoCIDER . . . . .. ......... 175
6.23 Gain of PPEF outputstage . . . . . ... ... ................ 176
6.24 Total harmonic distortion (THD) of PPEF designs . . . ... .. ... .. 178
6.25 Power gain of PPEF designs . . . . ... ... ................ 179
6.26 Comparison of THD predictions from different models ... ... .. .. 181
6.27 Comparison of power gain predictions from different models . . . . . . . 182
A.1 1P doping profiles with location >0. . . ... ................ 200
A.2 1P doping profiles with location < 0. . . ... ................ 201
A3 Typicalmeshfor2Pdevice. . ......................... 218
A4 1P DiodeDoping Profile . ... ......... ..., 227



LIST OF FIGURES

A.5 Diode Capacitance from CIDERand SPICE3 . .. ... .......... 228
A6 IDPNPNDopingProfile . . . . . .. oo i ittt e 231
A7 1IPPNPDopingProfile . . ... ... ... ... .. 232
A.8 Small-Signal Gains of Emitter-Coupled Pair . . . ... .......... 233
A.9 Bootstrap Inverter Schematic . . . ... ... ... .. ... .. ..... 234
A.10 Geometry of NMOS Transistor . . . .. ... ... ... uun.. 234
A.112P0 NMOSFET DopingProfile . . . ... ... ... ... uuu.... 236
A.12 Output Waveforms of Bootstrap Inverter . . ................ 237
A.13 Contours of 2 Doping Profiles . ... .................... 241
B.1 ASTABLE schematic . . . . . .. . . i v i ittt et ettt 244
B.2 CHARGE schematic . .. .. ... ... .. . . .. 245
B.3 COLPOSCschematic . . . ... .. . . i i ittt e e, 247
B.4 DBRIDGEschematic . . . ... .. ... . i i, 248
B.5 INVCHAIN schematic . . ... .. .. . i i it et .. 249
B.6 MECLGATE schematic . . . . . . . . . . o 0ttt et e et e e 250
B.7 NMOSINVschematic. . . ... .. ... it i, 252
B.8 PASSschematic . . . ... ... .. . . 254
B.9 RTLINVschematic . ... ... .. ... ... .. 256
B.10VCOschematic . .. .. ... ... . . it i, 257
C.1 BICMPDschematic . . . . . . v v v v oo et e e e e e e e e e 260
C.2 BICMPUschematic . . . . . . . vt v i i et e e e e e e e e e e e, 261
C.3 CLKFEED schematic . . . . . . . . v v it i e e e i, 262
C.4 CMOSAMPschematic . ... ... ... ... . 264
C.5 ECLINVschematic . . .. ... ... i i ittt et ettt e 265
C.6 ECPALschematic . . . . . .. . .. oo i it st i e e 266
C.7 GMAMPschematic . . . . ... .. ... it i 267
C.8 LATCH schematiC . . . . . . . v vt i e e e e e e e e e e e e e, 270
C.9 PPEF.1D and PPEF.2D schematic ... ... ................ 271
C.10 RINGOSC.1U and RINGOSC.2U schematic. . . . . .. ... ....... 276



List of Tables

3.1 Execution profiles for several benchmarks on a DECstation 5000/125 . .
3.2 Average per iteration time as a function of 12 problem size . . . . . . .
3.3 Average per iteration time as a function of 20 problem size . . . . . . .
3.4 Average memory used as a function problem size . . . . . ... ... ..
3.5 RISC machine configurations usedintest . . . ..............
3.6 Serial benchmark circuit characteristics . . . . .. ............
3.7 Iteration and timepoint counts on the various machines .. ... ...
3.8 Benchmark execution times on various machines in seconds . . . . . .
3.9 Relative time per iteration per device for 1P bipolar circuits . . . . . .
3.10 Benchmark MFLOP/S ratings on various machines . ..........
3.11 Estimated size of mixed-level simulation problem . ...........
3.12 Estimated time for designeridleperiods . . . . .. ............
3.13 Estimated resources needed for mixed-level simulation . . . .. ... .

5.1 Comparison of Parallel Machine Configurations . ... .........
5.2 Extracted global-reduction-time coefficients . . . . .. ..........
5.3 Parallel benchmark-circuit characteristics . ...............
5.4 Execution time and speedup on the iPSC/860 system . . .. ......
5.5 Execution times on the DECcluster-Part1 ... ............
5.6 Execution times on the DEC cluster-Part2 ... ............
5.7 Comparison of iPSC speedup with average number of active devices . .
5.8 Job startup times in seconds on the iPSC/860 and DEC cluster . . . .

6.1 Key process parameters for bipolardevices . . .. ............
6.2 Key electrical parameters for 1.0 um x 10.0 um BJT devices . . . . . .
6.3 Key process parameters for MOSdevices . ................
6.4 Key electrical parameters for 1.0 pm Lg o, MOS devices . . . . . . ..
6.5 Two-stage CMOS amplifier test configurations . . . .. .........
6.6 Performance summary of PPEF designs . . . . ... ...........

vii



Acknowledgments

Four and a half years have passed since I first came to Berkeley in 1988. In
that time, I've crossed paths with a large number of people here in the Bay Area. I owe
a debt of gratitude to each and every one of them for making my time here enjoyable,
interesting, and fruitful. My thanks to you all.

I've had the opportunity to work with not one but two advisors while here at
Berkeley. Prof. D. O. Pederson guided me through my first 4 years, and Prof. Ping
Ko has capably taken over these last 6 months. From DOP I've learned to focus on
the D in C.A.D.: design. I've also learned valuable writing and presentation skills
that will serve me well in the rest of my career. Through numerous (sometimes
lengthy) discussions with Ping, I've come to value his ability to step back from the
small problem at hand and relate it the big picture and to other possibilities. ’ve also
found our discussions about the future of the computing industry very enjoyable. I
would also like to thank Prof. Phil Colella from the ME department, the third member
of my thesis committee, for reading my thesis and approving it at a time I know was
very hectic for him. I appreciate the patience all three have displayed in the face of the
tortuously slow pace I've taken while writing this dissertation and the unreasonable
time schedules that have come about as a result.

In addition to my advisors, I've also had the good fortune to take courses
from some very talented teachers while in graduate school: Professors Brayton, Gray,
Hodges, Meyer, and Sangiovanni-Vincentelli all come immediately to mind. A special
thanks to Prof. Howe for putting up with what must have been one of his more difficult
EE105 teaching assistants.

Many students and others have come and gone from Cory Hall while I’'ve been
here. T'll begin with my cubiclemates in 550A. I thank Beorn Johnson for all of his



ACKNOWLEDGMENTS

help with SPICE3, for listening to my gripes about same, and for generally being an
interesting guy to talk to when I felt like taking a break. I thank Karti Mayaram
and Theo Kellesoglou for helping me get started and keeping in touch after having
gone on to other places!. I enjoyed collaborating with Jean Hsu, Hoa Luong, Emy
Tan, and Morteza Zarrabian during those first two years of classes. Darrin Young
has supplied irrepressible enthusiasm for all things EE, and Mark Vitunic provided
his wry cynicism and wicked little circuit-analysis problems. Sherman Chen, Paolo
Giusto, and our honorary late-night cubiclemate, Harry Hsieh, have provided company
during the long nights I've spent writing my thesis.

Moving out from 550A into 550, I thank all the members of the CADgroup
collectively for putting up with my foray into distributed computing these last few
months. If unknowingly I've greatly inconvenienced any of you, I'm truly sorry. Thanks
to Edoardo Charbon, Eric Felt, Enrico Malavasi, and Ed Liu for helping me through the
process of my first conference presentation. Thanks also to Ed for his help while TAing
EE105 and for our late-night discussions about thesis writing and our futures. I’d like
to thank Ken Nishimura and Cormac Conroy for letting me try to explain why my
simulator really was useful to them, and for letting me know what analog IC design
is all about. To my knowledge, Clement Szeto is the only person around here who
has been brave enough to work with CODECS while I've been here, and for that I am
grateful. Moving out into the rest of Cory, Jian Hui Huang, another of Ping’s students,
is always ready with a friendly smile whenever we pass in the hallways. Thanks to
Brad Krebs and Mike Kiernan for their excellent support of the CADgroup computing
environment, to Flora Oviedo, Irena Stanczyk-Ng, Elise Mills and Gwyn Horn for their
friendly administrative support, and to Genevieve Thiebaut and Heather Brown for
their help dealing with all that departmental paperwork I hate so much.

Moving out of Cory Hall entirely, I go across the bay to Stanford. Prof. Bob
Dutton has generously supported my work through access to Stanford’s hypercube,
and has introduced me to several of his students as well. My interactions with Greg
Anderson, Goodwin Chin, and Bruce Herndon have expanded my view of the world
and stimulated my own research. Thanks to Zhiping Yu for discussing mixed-level
circuit and device simulation with me on several occasions. Going on to Intel, I thank

!Special thanks to Karti for not giving me the hook during my CICC talk.



ACKNOWLEDGMENTS

Don Scharfetter for setting up and mentoring a very interesting summer internship
in 1991, and Tim Thurgate for many challenging discussions while I was there.

In addition to donated hypercube time from Stanford and Intel, this research
has been funded by a grant from the Semiconductor Research Corporation and their
support is greatly appreciated. The material in this dissertation is also based on work
supported under a National Science Foundation Graduate Fellowship. Any opinions,
findings, conclusions or recommendations in this dissertation are those of the author
and do not necessarily reflect the views of the National Science Foundation.

Next, I return to the East Bay and then move on to points far beyond, to my
friends and family, to the people that have made life enjoyable when I can get away
from school. Thanks to Ann Blake and Greg Bobrowicz for fun afternoons and evenings
talking and playing board games. Thanks to Pauline Bennett for discussing EE and
grad school with me by long-distance on occasion. Thanks to Diane Foray, Jeff Vollin
and Steve Bloor for helping me get out and see the wilderness once in awhile2.

To my parents, Jacque and Bob, and my siblings, Ken, Laurie and Sheryl, I
give thanks for the refuge and respite from grad-school pressure whenever I find time
to come home for a visit, even if it’s only by phone. I thank my father-in-law, Norm
Shapiro, for his continued interest in my work and in my well-being.

Finally, I would like to thank my wife and partner, Cathy, for putting up
with all the ups and downs, the late and lonely nights, the anger and frustration.
Without her tremendous support during the last weeks and months, I would probably
be writing this six months from now instead of today. Her ability to help me ‘get it
done’ means a great deal to me. I am lucky to have such a talented woman at my side.

By current definition that’s just about anything outside the front door to Cory Hall.



Chapter 1

Introduction

1.1 Motivation

Integrated circuits (ICs) are the building blocks of modern computing and
communication systems. The design of high complexity ICs has been enabled by the
development of a large number of computer-aided design (CAD) tools for IC design.
Among these tools are programs used for verification of IC designs. The most im-
portant verification tools are simulators that predict an IC’s performance before it is
actually fabricated. Because simulation is much cheaper and faster than fabrication,
IC simulators reduce the costs associated with developing new designs.

For many years, electrical circuit simulators have served as the main tool
for verifying the individual circuits that make up an IC design. However, continuing
advances in IC technology require the models embedded in circuit simulators to be up-
dated on a regular basis. As the component dimensions in ICs continue to shrink with
each new technology generation, it has become increasingly difficult to develop accu-
rate models of the IC components’ behavior. For IC devices that are used infrequently,
the cost of model development may be prohibitive. This discourages innovation in
design by preventing an IC designer from using the full range of devices available in
an IC process.

In parallel with the development of CAD tools for IC design (ICCAD), separate
CAD tools have evolved for creating new IC technologies (TCAD). Figure 1.1 shows the
flow of simulation tools in a typical TCAD environment. ICCAD and TCAD overlap

at the circuit simulation step. Process simulators mimic the behavior of the various



CHAPTER 1. INTRODUCTION

(o] Operating Circuit
Layout Conditions Description
Process Device Parameter Circuit
Simulator Simulator Extractor Simulator
"/ e/
Process Device Electrical Device Model Circuit
Redpe Structures Characteristics Parameters Performance

Figure 1.1: Standard TCAD Simulation Flow

chemical, thermal, and mechanical processes that are used to actually fabricate an
IC. They provide information about the structures of the various devices available.
The most important structures are those corresponding to transistors, such as metal-
oxide-semiconductor field-effect transistors (MOSFETS) or bipolar junction transistors
(BJTs). Device simulators take input in the form of device structures and predict
the electrical behavior of those structures. The electrical characteristics are then
passed to a parameter extractor that yields an appropriate set of parameters for the
device models installed in the circuit simulator. When combined with a description
of a particular circuit, the device models can then be used by the circuit simulator to
predict the target circuit’s performance.

The accuracy of the overall TCAD simulation system is affected by each of
the component steps. As noted already, developing good compact analytical device
models! to install in a circuit simulator can be difficult and expensive. In addition,
the parameter extraction step can introduce artificial effects that obscure the true
physical behavior of a circuit. This makes it difficult to modify the IC process to
optimize circuit performance. As an alternative to the traditional TCAD simulation
system, a mixed-level circuit and device simulator can be used to bypass parameter
extraction and compact-model development, as shown in Figure 1.2. The mixed-
level simulator provides a direct link between the underlying IC technology and the
circuit performance. In addition, mixed-level simulation can provide device models
for unusual devices and for device behaviors that are difficult to include in compact

!Compactness is a reference to the fact that typically a small set of analytical expressions is used to
predict device operation over a wide range of bias conditions.



CHAPTER 1. INTRODUCTION

IC Circuit
Layout Description
Process Mixed-Level
Simulator Circuit & Device Simulator
Process Device Circuit
Recipe Structures Performance

Figure 1.2: Alternate TCAD Simulation Flow

models.
Unfortunately, there is a price to be paid for mixed-level simulation. Typically,

device models based on numerical device simulation (numerical models) are two to four
orders of magnitude more time consuming to evaluate that those using compact sets
of analytical expressions (compact models). Therefore, mixed-level simulations are
restricted to applications where the extra time can be tolerated, or where accuracy
is of paramount concern. Typical applications are the evaluation of key indicator
circuits during technology development, investigation of the effects of difficult-to-model
behaviors on circuit performance, and in the design of small reusable subcircuits that
are used to build up very-large-scale-integrated (VLSI) circuits.

In the last two applications, mixed-level circuit and device simulation passes
out of the realm of TCAD and crosses over into the ICCAD domain. The focus of
this research has been to develop mixed-level simulation to further support its role
as an ICCAD tool. By investigating and solving the problems associated with this
design-oriented approach to mixed-level circuit and device simulation, it is hoped that
IC designers will be able to use such a tool to develop innovative, better performing,
and more cost-effective circuit designs.

1.2 Research Goals

Development of a mixed-level simulator for circuit design is an exercise in

software engineering. A mixed-level circuit and device simulator is a complex piece of



CHAPTER 1. INTRODUCTION

computer software, and like any other piece of software, it must address certain key
issues. In this work, four major issues have influenced the choice of topics and the de-
cisions made when resolving difficulties. Although these issues are rarely brought out
explicitly in the remainder of this dissertation, their influence should be acknowledged
here at the outset. The four major software issues are:

Performance A design-oriented mixed-level simulator must address the computa-
tional burden imposed when compact device models are replaced by numerical
device models.

Reliability The simulator should provide answers to as many circuit/device simula-
tion problems as is practical. In addition, good models for the physical effects
that are important in present-day IC devices should be installed in the device
simulation portion of the program.

Utility The various analyses typically provided by IC circuit simulators should also be
supported by a mixed-level simulator. It should also be easy to describe circuits
and devices to the circuit simulator, and to visualize and interpret the results of
completed simulations.

Portability Today’s computing environments are populated by a wide variety of com-
puters and operating systems. Any program that wishes to be of use to a wide
audience must address the issue of portability between different computing en-
vironments.

One product of this research is a new mixed-level circuit and device simulator,
CIDER that has been developed with these four issues in mind. Two versions of CIDER
exist. The first is a serial, uniprocessor version that addresses the issues of reliability,
utility, and portability. The serial version is an enhanced version of a previous mixed-
level simulator called CODECS [MAYAS88]. The second version focuses on the final
issue, performance. A parallel, multiprocessor version of CIDER has been developed
that has been ported to two different distributed-memory multicomputing systems: a
dedicated high-performance hypercube supercomputer and a network of engineering
workstations operating in concert. Multiprocessor computers exploit the parallelism
available in mixed-level circuit and device simulation to enhance performance beyond
that achievable by conventional uniprocessor computers. Performance is the primary



CHAPTER 1. INTRODUCTION

factor limiting wider application of mixed-level simulation to IC design. The major
portion of this dissertation is therefore devoted to characterizing performance, identi-
fying ways to improve performance, and describing a multicomputer implementation
that improves upon existing performance.

L3 Organization of the Dissertation

The remainder of the dissertation is organized as follows. In Chapter 2, the
simulation algorithms of CIDER inherited from its predecessor CODECS are described.
This provides background for understanding the mixed-level circuit and device sim-
ulation problem as well as an opportunity to point out several enhancements that
have been added into CIDER. In Chapter 3, the performance of CIDER is analyzed
when it is run in several uniprocessor computing environments. Empirical models of
CIDER’s computing-resource consumption are developed and then used to predict the
resource requirements of typical circuit-design applications. Chapter 4 explores the
different opportunities for exploiting parallelism in mixed-level-simulation-based IC
design. An architecture is proposed for a parallel mixed-level simulator that exploits
multiple forms of parallelism. In Chapter 5, a limited implementation of the proposed
architecture is described. This parallel version of CIDER has been ported to an Intel
iPSC/860 hypercube and a network of DEC workstations. The results of a performance
evaluation of these two parallel versions are presented. An analysis of these results
identifies several limitations of the implemented approach and offers methods to work
around these limitations. Several applications of CIDER are presented in Chapter 6.
The new parallel capability allows previously unfeasible problems to be simulated in
a reasonable amount of time. The applications are the characterization of a hypothet-
ical IC process, a study of gain modeling in several analog MOS amplifiers, and an
evaluation of a bipolar IC output stage. Finally, in Chapter 7, the main conclusions of
the dissertation are summarized and directions for future research are suggested.

Several appendices supplement the main body of the dissertation. Appendix A
is a user’s manual for CIDER that describes its features and provides several examples
of its use. Appendices B, C and D contain various CIDER input descriptions for some
of the circuits mentioned in the body of the work. Appendix E supplies information on
how to obtain the source code to CIDER.



CHAPTER 1. INTRODUCTION




Chapter 2

Mixed-Level Circuit and Device

Simulation

2.1 Overview

In this chapter, the algorithms implemented in the mixed-level circuit and
device simulator, CODECS [MAYAS88], are reviewed. Throughout, additions to the
original version which improve on its capabilities are identified. The upgraded version,
which is used as a basis for developing a parallel implementation, is called CIDER.

In Section 2.2, the algorithms that have become standard for circuit simu-
lation are described. Next in Section 2.3, a review of the device simulation problem
is provided, Finally, in Section 2.4, methods are presented for solving the mixed-
simulation problem. Throughout the chapter, differences and similarities between
CoDECS and CIDER are highlighted.

2.2 Circuit Simulation

As shown in Figure 2.1, circuit simulation is a process that transforms a
description of a circuit and its operating environment into a summary of the circuit’s
behavior in that environment.

This process is supported by a general-purpose circuit simulator such as
SPICE2 [NAGE75] or SPICE3 [QUAR89]. The three most common forms of analysis
implemented in circuit simulators are DC analysis, transient analysis, and small-



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

Operating
Environment
Circuit Simulate Circuit
— ————
Description Circuit Performance
Circuit Simulator

Figure 2.1: Circuit simulation — activity summary

signal AC analysis. Of the three, DC analysis is perhaps the most important, since a
DC operating point analysis is a precursor to both transient and AC analyses.

2.2.1 Circuit Description and Equation Formulation

A circuit is most often described in terms of its elements and their inter-
connections. This description can be developed either in textual form using a circuit
specification language or in graphical form using a schematic-capture program. In ei-
ther case, Kirchoff’s current and voltage laws (KCL and KVL) are used to translate the
connectivity information into equations relating the electrical variables of the circuit
[SING86]. In addition, the physical responses of the circuit elements to various forms
of electrical stimuli are embodied in the branch constitutive relations (BCRs). Each
relation is a mathematical model of the actual physical behavior of an element and
is ideally characterized by identifiable physical parameters, such as the emitter area
of a bipolar transistor, the gate-oxide thickness of a MOSFET, or a device’s operating
temperature. However, in many cases an empirical approach must be taken where a
stimulus-response curve is instead described by an abstract mathematical function.
This function may incorporate parameters, but in general they have no physical sig-
nificance. If some of the parameter values of a BCR are uncertain or vary statistically,
it is possible to describe them using distribution functions.



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

Sparse Tableau Analysis (STA) [HACH71] uses KCL, KVL and the BCRs to
formulate the circuit simulation problem as one large system of equations. For a circuit
with n+1nodes and b branches, the resulting system has n+2b equations: n from KVL,
b from KCL, and b from the BCRs. This technique allows an arbitrary composition
of both voltage- and current-controlled circuit elements. A second approach which
still allows arbitrary circuit composition while reducing the overall system size is
Modified Nodal Analysis [HO75]. In this approach, Nodal Analysis (NA), which is
appropriate for circuits containing only voltage-controlled elements, is supplemented
with the equations needed to describe current-controlled elements. The system size of
MNA is somewhat larger than the » equations of NA due to these extra equations.

2.2.2 The Circuit Operating Environment

The operating environment of a circuit has two parts. The first describes
the type of analysis to performed by the simulator and the analysis parameters. The
second part is a binding of any unspecified parameter values to concrete ones. For the
most part, this means that the type of analysis being performed is used to determine
the values of the independent current and voltage sources in the circuit. However,
some circuit simulators [MET90] also allow a device parameter value to be swept in
order to determine the value that optimizes circuit performance. The value of the
swept parameter is therefore part of the operating environment. Unfortunately, this
capability is not available in SPICE3, so it also unavailable in CODECS and CIDER.

2.2.3 DC Analysis

The state of a circuit when none of its electrical variables vary with time is
known as its DC or steady state. DC analysis of a circuit has three primary uses.
First, it can verify that the circuit has been biased properly to establish a stable
operating point. Second, it can be used to generate DC transfer curves by recording
the response of the circuit as one or more input sources are stepped through a series
of values. Finally, it is used to initialize the state of the circuit prior to a transient
or AC analysis. Since the BCRs in steady state contain no time derivatives, the DC
simulation problem can be expressed as a system of nonlinear algebraic equations:

F(r,s)=0 @1)



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

where 7 is the vector of unknown responses (voltages and currents), s is the vector of
stimuli and F is a nonlinear vector-valued function obtained from an MNA formula-
tion of the circuit equations. Since Equation 2.1 is a nonlinear system, an iterative
procedure, such as the Newton-Raphson algorithm, must be used to find the unknown
vector . At each iteration k, a linear system of equations is formed that relates a
solution update, Ar*, to the current solution, »*:

J(r¥)Ark = —FP(+F) (2.2)

J(r*) is the Jacobian matrix (%.],'.;'—(r")) of the circuit equations. The solution at the
next iteration, 7*+1, is then computed by solving Equation 2.2 for Ar*, and adding it
to the current solution: 7*+! = ¥ 4 Ar*, The initial guess »° can be constructed in a
number of ways, most often by using a previous solution of the circuit equations. In
SPICE2 and SPICE3, Equation 2.2 is assembled in a slightly different way so that the
next solution can be computed directly:

J(@*)yr* 1l = J(2¥)rk - F(o¥) (2.3)

In both formulations, a linear system of equations Az = b must be solved.
This system has the following properties:

o Sparseness: The number of non-zero entries in any one row of A is typically small
due to low degrees of connectivity between the circuit elements. The sparsity
pattern often has no discernible or exploitable structure.

¢ Nonsymmetry: In general, the matrix is both structurally and numerically non-
symmetric.

¢ Real-Valuedness: The entries in the matrix A and the right-hand-side (RHS) b
are real numbers.

In this situation, a general-purpose sparse matrix analysis package employing L/U
decomposition [DUFF86] is commonly used to solve the system of equations. For
example, the matrix package SPARSE [KUNDS86] is employed in the current version of
SPICE3.

10



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

2.2.4 Transient Analysis

If the input sources of a circuit have time-varying values, the circuit response
typically consists of both transient components and steady-state components. Which
component is of greatest interest depends on the application being considered. For
example, in digital design, the transient switching behavior of a gate may be desired
in order to determine rise and fall times or propagation delays. In nonlinear analog
design, the sinusoidal steady-state response may be needed to calculate the harmonic
distortion of a gain stage. Direct-method simulators such as SPICE2 generally include
the capability of computing the time-domain response of a circuit starting from an
initial state. While this capability is most useful in transient analysis, it can also be
used to find the steady-state, provided that the user is willing to simulate over a period
long enough to allow any initial transients to die away.

The dynamic behavior of a circuit is described by a system of nonlinear ordi-
nary differential-algebraic equations:

F(q(t),7(t),s(t)) = O (2.4)
q(t) = Q(r(t))

The response and stimulus vectors, » and s, are supplemented by a vector q that
contains the state variables of the energy-storage elements in the circuit. However,
the system of equations does not increase in size because the state variables are related
to the circuit response by the nonlinear vector-valued function, Q.

The initial state of the circuit is obtained by assuming that the circuit is in a
DC steady state (¢(t) = O). Substitution of this constraint into Equation 2.4 yields a
set of DC operating point equations:

F(0,7(0),s(0)) =0 (2.5)

The solution 7o = 7(0) obtained through DC analysis can then be used to obtain the
initial states of the energy-storage elements:

a(0) = Q(ro) (2.6)

Once the initial conditions are determined, the solution over the desired time
interval [0,T] can be computed. Since it is not generally possible to express the

11



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

responses as analytical functions of time, numerical analysis is used to compute the
solution. The time interval [0, T’ is discretized into a set of time points, {t1,13,...,tx},
and the true solution =(t,) is approximated at each point by =,. The time derivatives,
q(tn), are typically replaced by an implicit integration formula [LINI86] that relates
them to the current, unknown values of the state variables g, and previous, known
values, g,—i;. The previous states g,—; can either be saved or recomputed based on
the previous solutions: gn-i = Q(rn;). The system of equations obtained after time

discretization is a nonlinear algebraic system in the unknowns #:

F(4n,rn,8,) =0 2.7
én = Hk(Q('rn), eeey Q("'n—l—k))

where H | represents the algebraic integration formula operating on the current state
variables and k previous sets of state variables. This nonlinear system is solved using
methods similar to those employed in DC analysis.

One complication of transient analysis is that a set of time points adequate to
capture changes in all of the circuit responses is not known a priori. The usual solution
to this problem is to make a reasonable estimate for the value of the next timepoint
based on the previous behavior of the circuit. If the (estimated) error introduced into
the solution by the time point is unacceptable, a new, smaller time step is chosen, and
the solution is recomputed. This procedure is repeated until an acceptable timepoint is
found, or a minimum time step is reached and the simulation is aborted. In addition to
error constraints, other factors such as natural and induced breakpoints in the circuit
waveforms and overall stability of the time discretization formula must be taken into
account. Complete descriptions of the timepoint selection methods used in SPICE can
be found in [NAGE75] and [QUARS89].

2.2.5 Small-Signal AC Analysis

Computation of the response of a circuit to time-periodic sinusoidal inputs is
known as AC analysis. AC analysis is useful in evaluating the frequency response of
analog signal processing circuits. If the signal levels of the inputs and outputs are
sufficiently small, the response can be assumed to be linear about the DC operating

12



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

point. In this case, the general transient behavior, Equation 2.4, can be approximated
by a first-order Taylor series expansion about the operating point:

OF, OF oF
0—(.1q + ﬁ(r - 7o)+ %(s - 8g) (2.8)

Because both the final solution and the DC operating point satisfy Equation 2.4, the
left-hand-side and the first term on the right-hand-side of Equation 2.8 are zero. The
small-signal stimuli s — so and the small-signal responses » — 7o can be represented

F(q,r,8) = F(O,7y,3) +

as phasors [STRU85]: 3¢/“! and 77, where 3 and 7 are complex quantities and w is
the input frequency. After substituting these values, the following linear system of
equations is obtained:

_‘-—r(TO) -jwr + —rr + —ss =0 (29)

Notice that state-variable function Q@ has been used to eliminate the small-signal
response of 4. Equation 2.9 can be rearranged to obtain a matrix equation for #:

OF 8Q . OF]. OF,
% o 7o) - jw + -a—r] F=—ad (2.10)

The matrix in Equation 2.10 has a zero/non-zero structure identical to that obtained
from DC analysis. However, the entries in the matrix and RHS are now complex
quantities, and a sparse matrix package that can perform L/U decomposition using
complex arithmetic is necessary.

2.2.6 Visualization and Representation of Circuit Behavior

The results of a circuit simulation must be presented to the user in an un-
derstandable way. Post-processing programs convert the raw data obtained from a
simulation into a form that allows a designer to evaluate easily the circuit perfor-
mance. The most common form of display used in circuit design is the Cartesian plot,
where one or more dependent variables is graphed against a single independent vari-
able such as time or frequency. The need to plot higher dimensional data is rarely
required.

Early simulators such as SPICE2 often include their own post-processors that
are tailored to the needs of circuit simulation. Raw data is held in main memory until
it is needed by the post-processor. By way of contrast, SPICES is more loosely coupled to
its general-purpose post-processor NUTMEG [JOHN92). Disk files stored in a common

13



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

rawfile format are used for persistent storage of simulation results. This arrangement
effectively decouples the simulator core from the post-processor. As a result, NUTMEG
can serve as a common post-processor for multiple simulation programs.

2.3 Device Simulation

As shown in Figure 2.2, device simulation is a process that transforms a de-
scription of a device’s structure and its external boundary conditions into a summary
of the device’s characteristics under those conditions. This process is supported by

Boundary
Conditions
Device Simulate Device Electrical
——1 e ——
Structure Device Characteristics
Device Simulator

Figure 2.2: Device simulation — activity summary

a general-purpose device simulator such as PISCES [PINT85] or the DSIM program
embedded in CODECS. In the following, a general discussion of device simulation is
provided, with emphasis placed on the algorithms used in DSIM. For a more compre-
hensive treatment of semiconductor device simulation, the reader is referred to either
[SELB84] or [PINT90].

2.3.1 Device Description

A device is a three-dimensional section of an IC substrate that forms an
active component such as a transistor or a passive component such as a resistor. A
number of different materials are used in the construction of a device. The description

14



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

must provide both the geometries and properties of these materials. In addition, the
spatial distributions of dopant atoms, or doping profile, must be described. In order to
simplify the description and subsequent model of a device, symmetries in a device are
exploited whenever possible. In many cases, axial symmetry is used to reduce the full
three-dimensional problem to one or two dimensions. Bilateral symmetry allows the
behavior of a device to be obtained by simulating only half the device and doubling or
halving the results as needed.

While small circuits can be described conveniently in either textual or graph-
ical form, devices represent a more difficult specification problem. Text-only descrip-
tions suffer from the problem that errors are easy to generate and difficult to detect.
While this problem is also present in circuit description, it is more important at the
device level because of the large amount of spatial/geometric information that must be
provided. As a result, graphical device-capture programs such as PICASSO [SIMP91]
have been developed as aids for this problem. However, for devices described in terms
of rectangular geometries, a textual input language can prove to be adequate, if not
necessarily ideal.

Because of the difficulties involved in producing device descriptions manually,
it is desirable to provide a direct interface to a process simulator such as SUPREMIII
[HO83]. Process simulation can then automatically produce geometries and doping
profiles based on a process recipe description and mask layout information. This
interface is complicated by the fact that the process simulator and device simulator
may use different representations of the device structure, and utility routines may
need to be used to conveért between them.

2.3.2 Semiconductor Device Equations

An IC device typically contains three types of materials: semiconductors,
insulators, and metals. Equations governing the electrical behavior of these materials
must be provided for the material interiors and at the boundaries between different
materials. Semiconductor regions are most often modeled using the drift-diffusion
system of equations [ROOS50]:

V-(¢E)=q(p—n+ N - N])+pr (2.11)

15



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

1 on
;V-Jn— a—(G’—R) (2.12)
1 __op
EV Jp= - o + (G - R) (2.13)
where
E=-VV (2.14)
Jn =quenE, +q¢D,Vn (2.15)
Jp = quppE, — ¢D,Vp (2.16)
and

€ = material dielectric constant (F/cm)

q = electron charge (C)

v = electrostatic potential (V)

n (p) = electron (hole) concentration (/cm?3)

E = electric field (V/em)

NE(N7) = ionized donor (acceptor) concentration (/cm3)

PF = fixed charge density (C/cm3)

Jn(Jp) = electron (hole) current density (A/cm?2)

E,(E;) = electron (hole) driving field (V/cm)

G = net volume generation rate (/cm3-s)

R = net volume recombination rate (/cm3-s)

pn(up) = electron (hole) mobility (cm2/V-s)

D, (D,) = electron (hole) diffusivity (cm?/s)

Equation 2.11 is Poisson’s equation, and Equations 2.12 and 2.13 are, respec-
tively, the electron and hole current-continuity equations. In certain cases, one or
both of the continuity equations can be eliminated if it is known that the flow of a
particular carrier type is negligible. For example, at thermal equilibrium, no average
current flows, and only Poisson’s equation needs to be solved. In these equations, 7, »
and p are the basic variables which characterize the state of the semiconductor. The
remaining parameters are functions of these variables and/or physical properties of
the semiconductor material. Models for the physical parameters are needed to com-
plete the basic set of semiconductor equations. Ideally these models would be derived
from fundamental principles of device physics. However, in most cases, empirical or
semi-empirical expressions are used instead. In either situation, it is usually neces-
sary to calibrate the models by comparison to measurements performed under a wide

16



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

range of conditions if quantitative accuracy is desired. However, it is useful for these
parameters to be user-accessible, so that by varying them their influence on device
operation can be determined.

In the insulating regions, it is assumed that there is no flow of charge carriers
such as electrons, holes or impurity atoms. In a well-designed device in its normal
region of operation, this is a very good assumption. As a result, only Poisson’s equa-
tion needs to be solved in insulating regions. Insulator-semiconductor interfaces can
be easily treated, provided that care is taken to account for the different dielectric
constants of the two materials and the possibility of fixed interface charge pr ;s (C/cm?)
and surface generation-recombination (G - R), (cm?-s).

In metallic or highly conductive regions of the device, a constant potential ¥
is assumed and the current distribution within the conductor is ignored. Therefore,
the effect of the metal is only considered along its boundaries, where it makes contact
with the other materials in the device. These contacts are invariably made either to
insulators or semiconductors, since metal-to-metal contacts are short circuits. How-
ever, a single metal region may overlap both insulator and semiconductor regions and

this can present some difficulty in determining appropriate boundary conditions.

2.3.3 External Device Boundary Conditions

The operation of a device is controlled by the application of external voltages
and/or currents to its metallic contacts. Voltage boundary conditions are more common,
where the terminal currents ¢ are defined as functions of the voltages V:

i = I(w(z),V) (2.17)

where w(z) represents the spatially-varying internal device state (¥(z), n(z), p(z)).
These currents are calculated by integrating the total current density, Jr, over the
surface of a contact. The total current density is defined by the relation;

JTan-I-Jp-{-Jd (218)
where J; = e%‘t—g is the displacement current density. It arises from the time derivatives
of the carrier concentrations in the continuity equations [PINT90] and reflects the
buildup or decline of space-charge regions within a device.

17



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

Each applied voltage is used to set up Dirichlet or mixed Dirichlet-Neumann
boundary conditions along the boundaries of one of the device’s contacts. The exact
form these boundary conditions take depends on the nature of the contact and the as-
sumptions made to make the equations tractable. For example, the ohmic source/drain
contacts of a MOSFET need to be treated differently from the rectifying contact of a
Schottky-clamp diode.

In addition to electrical bias conditions, the ambient device operating tem-
perature T, (°K) is a key input to the device simulator, since device behavior is very
temperature-sensitive. The operating temperature enters directly into the equations
used for the physical models. It is usually assumed that the semiconductor lattice is in
thermal equilibrium with its environment at T;. However, the basic device equations
can be augmented by a heat-flow equation if the effects of thermal gradients need to
be investigated.

2.3.4 Scaling and Space Discretization

The semiconductor device equations are a coupled system of nonlinear partial
differential equations (PDEs) in space and time. Because the solution variables ¥,
n, and p have widely varying values it is customary to scale the various physical
quantities in order to equilibrate the equations. Of the various scaling approaches that
have been used successfully in device simulation, DSIM employs the scaling approach
used in SEDAN [YUS85].

As in the case of circuit transient analysis, it is not generally possible to
solve the device equations analytically, and numerical methods must be employed.
The first step in analyzing these equations is space discretization, where the solution
is approximated at a finite set of points in space, known as a mesh. An example
mesh is shown in Figure 2.3. Equations are formulated for each point or node in
the mesh using either a finite-difference or a finite-element method. In DSIM, the
finite-box method, a variant of the finite-difference method, is used to discretize the
device equations on a rectangular tensor-product mesh. In the box method, fields and
currents are approximated along the edges of the mesh, flowing perpendicular to the
sides of the box. Discretization of the device PDEs produces a system of nonlinear

18



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

...................................................................

- —Z Element

Node

Edge

Finite Box

Figure 2.3: Mesh for finite box discretization

ordinary differential-algebraic equations in time, expressed symbolically as:

Gy(¥,n,p)=0 (2.19)
on

Gn(g’n’ p) - E =0 (2.20)
)

G,(¥,n,p) + a—’; =0 (2.21)

or more compactly as:
G(w(t),w(t),V(t)) =0 (2.22)

where w = (¥, n,p) is the vector of unknown nodal approximations to the continuous
solution, and the dependence on V, the vector of applied voltages, has been explicitly
included. This system has three equations for each node lying in a semiconductor
region, one for each node in an insulating region, and none for nodes inside metals. At
material boundaries, the number of equations used depends on the type of boundary
conditions applied. The total number of equations is always less than or equal to 3N,
where N is the number of nodes in the mesh.

19



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

The mesh should have high node density in regions where the solution varies
rapidly, and lower density where the solution is constant. Since the solution changes
with the external boundary conditions, the mesh should ideally adapt itself during an
analysis. However, robust adaptive mesh generation is still an open research problem,
and in DSIM a fixed mesh is employed. This approach is effective because reasonable
meshes for the standard IC devices can be designed a priori from a knowledge of the
basic device physics. One benefit of this approach is the elimination of the computa-
tional burden associated with restructuring the mesh after the solution process has
begun. However, this advantage is offset by the fact that a fixed mesh appropriate
for a wide range of bias conditions is generally computationally less efficient than one
optimized to a particular solution.

Once the solution has been found on the discretized device domain, the ter-
minal currents are calculated based on this solution. An appropriate discretization of
the integral equation for each terminal current is defined which is compatible with the
domain discretization. This converts the integral to a weighted summation of the total
current density around the nodes belonging to the contact. Estimates for the different
components of the total current density are then substituted into this summation to
arrive at the current for one of the contacts. This process is repeated for all the device
contacts.

2.3.5 DC and Transient Analyses

In DC steady state, the time dependence in Equation 2.22 can be eliminated,
leaving a system of nonlinear algebraic equations:

G(w,V)=0 (2.23)

This can be solved using the basic Newton-Raphson algorithm as described in Sec-
tion 2.2.3. However, better convergence is obtained if the solution updates Aw are
damped in such a way that the norm of the right-hand-side is reduced. The basic
Newton-Raphson step is repeated here:

Ju(w*)Aw* = —G(w*) (2.24)

20



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

where J,(w*) is the Jacobian matrix of the device equations with respect to the
unknowns w:

)]

aG G G
W m op
ONE R
G G 3
W m P

The derivatives of Equation 2.23 with respect to the applied voltages (Jv) can be

2

ignored for the moment, since the applied voltages are constant. In the damped
Newton-Raphson method, the update step is modified to include the damping factor,
Pt

whtl = wk 4 A Awk (2.25)
where A* is chosen according to the criterion:
|ewth] < et

Since an acceptable value for A is not known a priori, a search procedure must be used
to find one [BANKS81].

In DsIM, the initial guess w? is constructed in a hierarchical fashion. First, the
charge-neutral solution (the solution of Poisson’s Equation ignoring the left-hand-side)
is used as an initial guess to the equilibrium solution, where the continuity equations
are ignored. The equilibrium solution is then used to solve the full set of equations at
equilibrium. This iteration usually converges in two steps. After this, initial guesses
can be obtained by projecting a previous solution using the Jacobian matrices, J,, and
Jv, and a set of voltage steps, AV.

The linear systems of equations encountered in DC device simulation have
a number of interesting properties, some of which are different from those typical of
circuit matrices. Each node of the mesh contributes a small set of equations to the
overall problem. If the equations for a node are treated as a single block, the Jacobian
matrix can be viewed as a collection of coupling blocks, C. A block C;; is structurally
non-zero if any of the equations at node i depend on the variables at node j. The
occurrence of coupling depends on the exact nature of the discretization scheme, but
in general neighboring nodes are coupled and isolated nodes are not. This leads to
a great deal of sparsity in the matrix, since most node pairs are not neighbors. In
one and two dimensions, L/U decomposition can be used to solve this sparse system

21



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

of equations. In three dimensions, the matrices become too large to solve using direct
methods and iterative methods are used instead [WEBB911].

In addition to sparsity, it is usually true that if a node is coupled to a neigh-
bor, then the neighbor is coupled back to that node, which implies block symmetry of
the Jacobian matrix. This knowledge can be used to develop a special-purpose sparse
matrix package that exploits symmetry in order to reduce the amount of pointer over-
head. However, one important exception to the above occurs in the simulation of
MOSFETS. In order to characterize properly the mobility in the MOSFET inversion
layer, an integral equation must be satisfied along each line of nodes that crosses the
inversion layer. This integral equation introduces non-local coupling into the device
matrix and disrupts the block symmetry. Because DSIM employs this technique, the
general-purpose package SPARSE is used to solve the device equations.

In transient analysis, the time dependence of w can no longer be ignored in
Equation 2.22. The derivatives, 2% and 22, are discretized in time using an implicit
integration formula (cf. Section 2.2.4). The initial solution {wg,Vo} = {w(0), V(0)}
is computed using a DC operating point analysis. After this, the analysis proceeds
exactly as in the circuit case, selecting one time step after another until the analysis
interval is exhausted. In solving the nonlinear systems that arise, it is not usually
necessary to employ damping since continuity in time usually results in a new solution
that is not far from the previous one. Time steps are selected using estimates of the
local truncation error incurred. This estimate is usually found by computing the L2
norm of a vector of error estimates obtained at each node of the simulation mesh. For
more detail on this procedure, consult either [BANKS85] or [MAYAS88].

2.3.6 Small-Signal AC Analysis

The response of the internal device state to small sinusoidal variations in the
voltage and current boundary conditions can be calculated using methods similar to
those employed in circuit analysis. The internal state w is represented as the sum of a
steady-state component w and a small phasor component ibe’“* where @ is a complex
vector. The applied voltages V are treated similarly. After substitution of these values
into Equation 2.22 and retention of the linear terms, the following complex-valued

22



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

linear system of equations results:
[Jg jw+ o) =-TyV (2.26)

where J,, is the DC Jacobian matrix, J is the (diagonal) Jacobian matrix for the time

derivatives:
0 O 0 0 0 O
. - aG —
Jo=|[0 = a‘c)i =0 -I 0
0 0 -31;2 0 0 I

and Jvy is the voltage Jacobian matrix:

e

Jy = %?

SV
Equation 2.26 can be solved using complex L/U decomposition to find the small-signal
quantities @w. The decomposed matrix data structure set up during DC analysis can
be reused during this process, leading to significant savings in computation overhead.
However, faster, iterative methods have been developed that use only real arithmetic
[LAUXS85], [APTE92]. Time is saved primarily because the previously calculated
DC Jacobian L/U factors, in addition to the data structures, are used in these algo-
rithms. Iterative methods are unfortunately limited in their range of applicability,
and a scheme must be established to switch to a more robust method upon failure.
Ultimately, such a scheme returns to direct methods when all iterative methods fail.
This approach is used in CODECS where the successive over-relaxation (SOR) method
of [LAUXS85] is used until it fails, at which point a switch is method to direct-method
solution using the complex arithmetic capabilities of SPARSE.

2.3.7 Visualization and Representation of Device Behavior

Device simulation presents a more difficult visualization problem than circuit
simulation because of the need to manage multidimensional data sets. Typically,
accuracy constraints require two- or three-dimensional simulations to be performed.
Even in cases where one-dimensional simulations are adequate, the addition of time

as an independent variable in transient analyses generates a multidimensional data

23



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

set. Thus, a need exists to go beyond the simple capabilities required during circuit
simulation.

For general mesh structures, the problem of storing internal device variables
such as the potential and the electron and hole concentrations is complicated by the
irregularity of the mesh. A special-purpose file format accompanied by a procedural
interface can be used to handle such problems. An example is the Vset portion of the
HDF file format developed by the National Center for Supercomputing Applications
[GROU90]. Recent versions of PISCES use this format to store results. A separate
log file is used to record the terminal voltages and currents. However, in the special
case of a tensor product mesh, a much simpler approach can be used. The rawfile
format and interface of SPICE3 was extended for version 3F2 [JOHN92] to support
multi-dimensional data sets. The only additional information needed is a list of the
array dimensions. This format allows CIDER to store one- and two-dimensional device
internal states in standard SPICE3 output files. The terminal voltages and currents, as
well as small-signal conductances and capacitances, are stored in a separate data set
at the beginning of the same file. This is possible because the rawfile format supports
multiple data sets per file.

Numerous methods of visualization have been developed to allow exploration
of multidimensional data sets arising from scientific computations. Many of these tech-
niques such as three-dimensional projection, animation and the sophisticated used of
color graphics can be used in interpreting the results of device simulation. Unfortu-
nately, these techniques generally rely on special-purpose workstations for the nec-
essary computational power and color graphics hardware. Three simpler techniques
that can be used on typical general-purpose engineering workstations and black-and-
white laser printers are demonstrated below. In Figure 2.4, multiple slices through a
two-dimensional data set, taken perpendicular to the Y axis, are plotted on the same
set of Cartesian axes. This method is compatible with the existing visualization capa-
bilities of the circuit simulation post-processor NUTMEG. The same data can be viewed
from above using a contour plot (multiple Z axis slices), as shown in Figure 2.5. On a
workstation, it is often possible to enhance contour definition by using different colors
to fill the regions between contours. Finally, variations in the data are probably best
exposed using three-dimensional projection techniques as in Figure 2.6. Again, on a
workstation, color enhancement can be used to supplement the projection. In addition,

24



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

Diode Equilibrium Potential
mV

600.00 — —

500.00 =

400.00 - \ -

300.00 ‘ -

200.00 |- i -

100.00 - ' -

0.00 - -

-100.00 |- \ -

-200.00 —
\

-300.00 -

-400.00 Ll ' L ! L L X (um)
0.00 0.20 0.40 0.60 0.80 1.00

Figure 2.4: Diode potential data set - multiple slices

the data can be viewed from a number of different angles by interactively changing
the viewing location.

2.4 Mixed-Level Circuit and Device Simulation

Figure 2.7 is a representation of the mixed-level circuit and device simulation
process. This process transforms descriptions of a circuit and of the structures of
its critical devices into summaries of both the circuit performance and the internal
device behaviors. The operating environment of the circuit must also be provided.

This process is supported by a general-purpose circuit and device simulator such as
MEDUsSA [ENGL82] or CODECS [MAYASS).

25



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

Psi (V)
0
j/ Minimum
035V
0.25
7~
g
S 05
S’
>
075}
Maximum
059V
15 0.25 0.5 0.75 1

X (um)
Figure 2.5: Diode potential data set - contour plot

2.4.1 Coupled Circuit and Device Description

In mixed-level circuit and device simulation, a unified means to describe the
circuit connectivity, the compact-model parameters, and the numerical-device struc-
tures must be supplied. Perhaps the easiest way to accomplish this is by augmenting
an existing circuit-specification language with special commands for the numerical
devices. In CODECS the existing technique for describing device models to the circuit
simulator SPICES is also used to describe numerical device models. This approach
is simple to implement but lacks flexibility because the model-description features of
the SPICE-input syntax were developed with compact models in mind. A better but
more difficult approach is to combine a language for circuits and a language for de-
vices, so that both levels can be described efficiently. This approach is taken in CIDER,
where the existing parser of SPICE3 has been extended so that device structures can
be described using a PISCEs-like format. Special provision is made for specification of
circuit-level parameters that vary from device to device such as layout areas or widths.

26



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

Diode Equilibrium Potential

v
s

0592~ ~~=~==au___ !

0.119 .~

Psi (V)

T
il

il O
T,

OO
SO RN
S T RN

0.354

Figure 2.6: Diode potential data set - birdseye view

These provisions are typically unnecessary in pure device simulation where a single
unit-size device is analyzed. A detailed description of the CIDER input format is pro-
vided as Appendix A. In the future, the details of this input language could be hidden
behind a unified graphical user interface (GUI) that supports both schematic capture
and device capture. For example, a standard circuit schematic capture program can
be extended using special symbols for the numerical devices [TMA91] where a means
is provided for linking these symbol instances to device structures created by a device
capture program. The unified GUI is then responsible for translating the graphical
description into a binary form such as a CAD database, or into a textual form such as a
file written in a unified input language. The mixed-level simulator reads the database

or the input file to obtain the circuit and device descriptions.

One large system of equations can be formed which describes the complete
behavior of a mixed-level circuit. Kirchoff’s current and voltage laws and the branch-

constitutive relations of the compactly modeled devices are to used to create part of

27



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

Operating
Environment

|

Circuit Circuit
Description Simulate Performance

— Circuit -

T

Currents & Boundary
Conductances Circuit Simulator Conditions

Simulate

Device : Internal
Structures Devices States

I

Device Simulator
Simulate Mixed-Level Circuit

T

Mixed-Level Simulator

Figure 2.7: Mixed-level simulation — activity summary

this system of equations. Discretized semiconductor device equations are used for
the internal states of the numerically modeled devices. Finally, auxiliary branch-
constitutive relations are needed for the numerically modeled devices. In CODECS,
where only voltage boundary conditions are allowed, these auxiliary equations relate
a device’s internal state and its branch voltages to its terminal currents (cf. Equa-
tion 2.17). Coupling between the circuit-level equations and those of a single device
is achieved by establishing a one-to-many correspondence between the circuit nodes
and the device’s terminals. For example, in Figure 2.8, a single circuit node is coupled
to the dual base contacts of a bipolar-transistor device structure. Single contacts are
made to the emitter and collector.

2.4.2 Coupled Operating Conditions

The major difference between the operating environment in mixed-level simu-
lation when compared to either circuit or device simulation alone is that the numerical

28



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

Emitter

Base o—e¢ T

—

Collector

Figure 2.8: Polyemitter bipolar transistor with dual base contacts

devices are no longer operating in isolation. When a numerical device is embedded in
a circuit it is not necessary to specify values for the device terminal voltages ahead of
time. During the natural course of the solution process, the circuit simulator automat-
ically generates bias conditions for the device. Eventually, a consistent set of circuit

node voltages and branch currents and device internal states is obtained.

If the device-structure description is suitably parameterized, preprocessors
that support statistical analyses and optimization can be used to modify the device
structure prior to simulation. This can be useful in the optimization of a device
structure to achieve specified levels of circuit performance. It can also be used to study
the direct influence of device physical parameters on circuit performance. In addition,
these same preprocessors can be used when optimizing parameters that vary from
device to device such as layout widths and areas. Finally, the operating temperature
of each device should be separately specifiable so that the effects of non-uniform heat
generation in an IC can be simulated. For example, CIDER extends the temperature-

dependent sections of CODECS in order to support this ability.

29



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

2.4.3 DC and Transient Analyses

The equations for the DC steady state in a mixed-level analysis are obtained by
suitable coupling of Equation 2.1 for the circuit and multiple instances of Equation 2.23
for the numerically modeled devices. In the following discussion, representation of the
circuit equations in terms of the stimulus and response variables (s,r) is replaced with
an alternative representation in terms of node voltages V and branch currents I. If
the total number of numerical devices is D, then there are D + 1 systems of equations:

D
> Agig+ F(V,I)=0 (2.27)
d=1

Gy(wq,Eq)=0 VYde|[l1,D]

where

14 = I4(wy, Eq)
E,=ATv

Coupling between these systems is completely characterized by the A; matri-
ces, the node-to-branch incidence matrices of the numerical devices. They determine
how to compute the numerical device branch voltages E; and how to feed the device
currents i, into the rest of the circuit. Note especially that this implies there is no
direct coupling between the internal device states, wq, of different devices.

The mixed-level equations for transient simulation are very similar to those
obtained in DC analysis. Once again, time discretization formulae are used to convert
the time derivatives into algebraic expressions involving the present and previous
states. After discretization, the time-dependent problem can then be treated using
methods appropriate for DC analysis. One interesting point is that the discretization
method need not be the same at both the circuit and device levels. For example,
CODECS employs a mixed method where the trapezoidal rule [NAGE75] is used at the
circuit level and Gear’s backward differentiation formulae {BRAY72] are used at the
device level. In addition to discretization, a time step selection algorithm must be used
during transient analysis. The approach taken in CODECS is to calculate maximum
allowable time steps for each of the numerical devices using the techniques mentioned

30



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

in Section 2.3.5. Then, at the circuit level, these estimates are treated identically to
those obtained from compactly modeled devices.

The complete mixed-level simulation problem as described above is a system
of nonlinear algebraic equations. As such, one natural technique for solving these
equations is the Newton-Raphson method. However, the modular structure of the
equations is particularly well suited to the multi-level Newton method [GUY 79], an
extension of the basic technique. In [MAYA92], several strategies for solving the DC
and transient equations are evaluated. Based on this evaluation, different techniques
are recommended for the two types of problems. The standard or full Newton algorithm
is sufficient for transient simulation. However, a modified two-level Newton scheme
is employed during DC analysis since it has been shown to be more robust [MAYA92].
These two methods are now described as implemented in CODECS.

The mixed-level equations after space and time discretization can be repre-
sented more compactly as:

Gi(wy,Z)=0 Vde[1,D]

where Z is the complete vector of circuit variables (V, I) and W is the complete vector
of device internal variables (wy, ..., wp). The linearized equations are first expressed

in terms of the solution updates, Awy and AZ, according to:

D
> J14dwa+ JcAZ = -F% (2.29)
d=1

JwdAwg + JygAZ = -G, Vde[l,D]

with
a2
Jo= aa?
.y
Vd = g(E;z °A5

31



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

Note that J ¢, the circuit-level Jacobian matrix, includes terms due to the direct influ-
ence of the branch voltages E, on the terminal currents ¢, as well as terms stemming
from the compactly modeled devices. In practice, it is more convenient to associate
these extra terms with a device’s other contributions, so that the first part of Equa-
tion 2.29 reads:

D -
(J14Awg + JgaAZ) + JoAZ = —F% (2.30)
d=1
where
Y B
Joa = b
G 0E, d

and J is a modified circuit-level matrix where the numerical device contributions
have been removed.
The structure of the resulting linear system is shown in Figure 2.9, where

the circuit-level equations are solved after all the device-level equations have been

Device Matrices

Circuit Matrix

Figure 2.9: Block matrix structure of mixed-level system of equations

solved. The isolated diagonal blocks are the device-level Jacobian matrices J,, 4 and
the circuit-level matrix J¢ is in the lower-right corner. The off-diagonal blocks on the
right are the matrices Jyv4 that capture the influence of the circuit voltages on the

device internal states. Those on the lower edge are the matrices J; 4 that incorporate

32



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

the influence of the device internal behavior on the terminal currents. In the full-
Newton approach, this system is solved using block L/U decomposition. Each device-
level Jacobian matrix is decomposed into L/U factors, and then a modified circuit-level
system is assembled:

D

Jg=Jc-Y (JraI34Iva-Jaa) (2.31)
d=1

D
Fy=Fy -3 J1a0;4G;
d=1

so that the circuit-level Newton step becomes:
JSAZ = -F% (2.32)

Not that in no case is a true matrix inverse J~! actually calculated. Forward and back
substitution using the L/U factors is used instead.

In CODECS consistency with the circuit equation formulation of SPICE de-
mands that additional terms be added to the RHS so that the new solution Z**! can
be computed directly from the previous one, Z*:

JgZHl = g2k - Fy (2.33)

This is the same modification that is performed in the pure circuit simulation problem
(cf. Equation 2.3). Solution of these equations results in a new set of circuit-level
variables. These must then be back-substituted into each of the device-level systems
in order to obtain solution updates for the device internal states:

Awg = -J LGy - T IvaAZ  Vde[1,D] (2.34)

In order to satisfy the constraint that the device-level evaluation routines are only
accessed once per iteration in SPICE, this final step can be deferred to the beginning
of the next iteration. In order to eliminate redundant computations, the common
subexpressions —J_ 1, G and J31Jv,4 in Equations 2.31 and 2.34 are calculated once
while assembling the circuit-level system and reused during the update step.
Solution of the DC equations differs from the above full-Newton algorithm
in that multiple Newton steps can be taken at the device-level for each step at the
circuit-level. During each circuit-level iteration, all device-level systems are solved to

33



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

convergence. At the first iteration, the initial circuit variables are used to compute
device-level boundary conditions. On subsequent iterations, Equation 2.34 is used to
obtain an update to a device’s internal state:

Awy = -J L IvaAZ (2.35)

where the first term in Equation 2.34 has been eliminated since G; = O at the previous
solution. This update is added to the previous solution to obtain an initial guess for the
new device internal state. Because the circuit state is fixed during these device-level
iterations, various techniques to ensure robust convergence can be employed such as
damping, voltage-step limiting and voltage-step backtracking [MAYASS].

Once the device-level equations have converged, the circuit-level matrix and
RHS are obtained using Equation 2.31:

D

Ju=Jg - z (JI,dJ;’ldJV,d - Jc,d) (2.36)
d=1

F§ =F;

where G = O has been used once again to eliminate unnecessary computation. It is
worthwhile noting at this point that the summation on the right-hand side of Equa-
tion 2.36 is just an accumulation of the conductance matrices of the numerical devices.
That is to say, as shown in [MAYA92], the conductance matrix of a numerical device is
identical to —J;q4J ;,ldJ vd + Jg 4. In addition, equivalent linearized currents for the
numerical devices contribute terms to the value of F';;. As a result, during implemen-
tation, the standard method of adding conductances and currents into the circuit-level
matrix known as stamping can be used. Only the procedures for calculating these
values have changed in the case of numerical devices.

A flowchart of the full-Newton algorithm as used during transient analyses
is shown in Figure 2.10. In the following description, labels for the various steps
are surrounded by parentheses. The analysis begins by establishing a DC operating
point and choosing an initial timestep. The time discretization data structures are
then initialized and the main Newton-Raphson loop begins. On each iteration, the
compactly modeled devices are linearized and their contributions are loaded into the
circuit matrix and RHS (MODcontrib). Then each of the numerical devices is eval-
uated. The device internal solution is updated appropriately depending on whether

34



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

or not this is the first iteration after a timepoint has been accepted (DEVmisc). The
physical models (mobility, recombination) are then evaluated and the device’s matrix
and RHS for the semiconductor PDEs are loaded (DEVload). This system is factored
and solved (DEVfactor and DEVsolve) leading to a new internal solution. Convergence
of the device internal updates is also checked now (DEVmisc), but the result is not used
until later at the circuit-level. Based on this solution, the device’s linearized currents
and conductances are calculated and loaded into the circuit matrix and RHS (DEV-
contrib). Collectively the preceding steps constitute the complete circuit loading phase
(CKTload). After the circuit matrix and RHS have been loaded, they are factored and
solved (CKTfactor and CKTsolve). This results in a new set of voltages and currents
which are checked for convergence using circuit-level tests as well as the results of
the device-level checks. If all the updates are small enough, the Newton-Raphson loop
terminates and the error in the solution for this timestep is estimated. This invokes
calls to the truncation error routines for all time-varying elements including compact
devices (MODtrunc) and numerical devices (DEVtirunc). The size of the error is used
to determine whether the current timepoint is either accepted or rejected, and then a
new timestep is selected. If more time is left in the simulation interval, the algorithm
returns to the top of the time loop, and the process begins again.

2.4.4 Small-Signal AC Analysis

The mixed-level equations for small-signal AC analysis can be derived from
the equations for the general transient behavior of the circuit:

D
> Agia(t) + F(V (1), V(2),I(t),I(t)) = O (2.37)
d=1

Gy(wa(t), wa(t), E4(t)) = O Vd €1, D]
where

24(t) = La(y(t), wa(t), Ea(t))

Eq(t) = ATV (2)

35



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

All quantities are represented as the sum of DC bias components and small-signal

phasor components. Equation 2.37 is linearized about the operating point and the
small-signal terms are retained:

D
- oF . OF] - oF . OF -
;Ad'ld'l'[a—v°]w+a—v]v+[ﬁ']w+w]1—o (2.38)
Gy . 3G¢] . 0G, - _
7y Jw+6wd wd+3EdEd—O Vd € [1, D]
where
- _[0Ia . oI . oIy =
= Owy Jw+3'wd wd+aEdEd
Ed=A3‘7

The contribution of device d to the circuit-level equation can be represented in a more
compact way as:

AdeAff/ (2.39)

where Y = 34/ E, is the matrix of device admittances:

_ 24 _ oIy . 3Id] wy O0ly

This matrix is computed by solving the device-level equation for device d for w4/ Eq4
using the techniques of Section 2.3.6. Note that division by the vector Eq is an ill-
defined operation, and is used only as a notational convenience. In practice, the rows
of the admittance matrix are computed sequentially. At each step, one of the branch
voltages is assumed equal to a unity phasor E = (1,0) and all other voltages are set to
zero. The vector of small-signal currents obtained under these conditions is equal to
the row of the admittance matrix corresponding to the perturbed branch voltage. In
addition, with these voltages as inputs, @, and 74 can be computed directly without
the need for vector division.

Solution of the circuit level equations proceeds by separating the small-signal
voltages and currents, V and I, back into the original two sets: known stimuli s and
unknown responses r. Terms involving the stimuli are moved to the right-hand side of
Equation 2.38, and the resulting linear system of complex equations is solved for the

36



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

responses using L/U decomposition. If desired, the small-signal internal device state
b4 can then be found by using the correct small-signal branch voltages E, that depend
upon the now available small-signal voltages V. However, this step is not performed
in either CODECS or CIDER because it requires additional time and memory to do so.

2.4.5 Visualization and Representation of Mixed-Level Behavior

A flexible output format is needed to store both voltage and current data at
the circuit level and the potential and carrier concentrations at the device-level. In
addition, other types of data such as conductances, capacitances, mobilities and recom-
bination rates may also be desired at times. Fortunately, the rawfile format supports
a generic typing mechanism that can be used to extend the basic set of data types
built into the NUTMEG frontend. Using this mechanism, and the multidimensional
capabilities mentioned in Section 2.3.7, CIDER can save output from both the circuit
and device levels in the same way. Currently, separate files are used for the circuit and
device data due to limitations of the implementation. As a result, there is no strong
link between a state at the device-level and the corresponding state of the circuit. In
the future, a more unified approach relying on a CAD database for output storage could
be used instead of the existing ad hoc methods. For example, the OCT object-oriented
database [HARR86] provides a general mechanism for data storage that leaves de-
cisions about how that data is used up to a particular application. It was extended
to support technology CAD data by the BPIF project [WONG91]. Similar extensions
could be defined to store SPICE3 waveforms and to link those waveforms to snapshots
of the device state at particular instants of time.

The main additional visualization problem posed by mixed-level simulation
is the problem of correlating circuit behavior with the behaviors of multiple numerical
devices. For example, such a capability would be useful in analyzing the transient
behavior of charge transfer in a switched-capacitor circuit. Animation could be used
to step through a standard Cartesian plot of the circuit waveforms, while at the same
time multiple color contour plots for the numerical devices could be used to show the
evolution of the internal device states. Unfortunately, it would probably be necessary to
use a high-performance graphics workstation to adequately perform these operations.
In the absence of such a sophisticated system, CIDER uses static methods to achieve

37



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

a similar function. In a special version of the code, the NUTMEG commands were
extended to support a call to an external contour plot program. Figure 2.11 shows a
screendump when two copies of NUTMEG are started from different terminal windows
and a contour plot is generated by each copy. The plots show the log contours of
the majority carrier concentrations inside the NMOS and PMOS devices of a CMOS
inverter. The PMOS device is on top and the NMOS device is on the bottom. The
snapshot was taken while the input voltage was being ramped from a low to a high
state. The NMOS device turns on during this period, forming a conducting channel
of electrons between the source in the upper left and the drain in the upper right.
Asymmetry of the contours is due to the large potential on the drain terminal which
depletes mobile carriers from the region around the drain. In the upper half of the
figure, the PMOS device is being turned off. The holes that formed the channel are
no longer confined by the electric field at the surface and spread out into the bulk
beneath.

2.5 Summary

Mixed-level simulation combines algorithms from both circuit simulation and
device simulation. Both CODECS and CIDER are mixed-level circuit and device simula-
tors based on direct-method solution algorithms. The mixed-level simulation problem
is a set of nonlinear ODEs and PDEs. Time and space discretization convert these
equations to systems on nonlinear, algebraic equations which are solved using varia-
tions of the Newton-Raphson method. Finally, direct solution of large, sparse systems
of equations is at the core of a mixed-level simulator.

In addition to the numerical methods that form the core of a simulator, the
user interface is also an important part of a simulation program. A simulator should
allow circuits and device structures to be specified in a flexible manner. CIDER combines
the de facto standard circuit-input format of SPICE with a PISCES-like format for device-
structure descriptions. Such an approach helps lower barriers to the adoption of
mixed-level simulation in the IC design community by providing a familiar frontend
interface.

At the backend, a mixed-level simulator should allow both circuit and device
behaviors to be visualized. Here again, existing techniques taken from stand-alone

38



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

simulators can be applied to the mixed-level problem. Cartesion plots, contour plots,
and three-dimensional perspective plots can all be used without the need for special-
purpose graphics hardware.

39



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

Compute Circuit’s DC
Operating Point
Discretize Time
Evaluate Compact Models ] N
Load Circuit MTX & RHS Upd“t‘:’lfgge"f S)‘"“““‘
(MODcontrib) mise
Factor and Solve Evaluate Physical Models
s e . and Load PDEs
Circuit Equations (DEVload)
(CKTfactor & CKTsolve) o8
Factor and Solve
No \/ Circuit Converged? > PDE system
Yes (DEVfactor & DEVsolve)
Compute Truncation Errors
Pick Timestep,Update Time Add Changes to Solution
(MODtrunc & DEVtrunc) Check Device Convergence
(DEVmisc)
Yes .
H More Time Left? >
Calculate and Load
No Currents & Conductances
@ (DEVcontrib)
More Yes
Numerical Devices?
No

Figure 2.10: Flowchart for mixed-level transient simulation

40



CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

Minimum
4.12

Figure 2.11: MOSFET internal states

41



NOLLV'INIS 3DIAHA ANV LINDYI) TIATT-TAXIN ‘3 YALIVHD



Chapter 3

Performance Analysis of CIDER

3.1 Overview

Experience working with a mixed-level circuit and device simulator has demon-
strated that the use of numerical device models in place of analytical device models can
lengthen simulation execution times by two or more orders of magnitude [MAYASS].
This effect dramatically restricts the class of circuits that can be designed in a rea-
sonable period of time using such a tool. However, the performance of engineering
workstations employing Reduced Instruction Set Computer (RISC) architectures has
increased rapidly over the past several years. This raises the possibility that mixed-
level simulation may become viable on such a system.

In this chapter, CIDER is characterized in terms of its CPU usage, main mem-
ory usage, and I/O (long-term storage) requirements. Evidence is presented demon-
strating that most mixed-level simulation time is spent executing device-level code.
As a result, the performance of CIDER acting as a device simulator has been examined
in detail. One- and two-dimensional numerical diodes with parameterized mesh spec-
ifications are used to investigate resource usage as a function of problem size. Simple
models for CPU and memory usage are derived that can be used for usage prediction.

The performance of CIDER on a set of benchmark circuits has been measured
on a number of RISC-architecture UNIX systems. The systems tested are described,
and an examination of the differences among the results is provided. Finally, the
performances obtained are evaluated in view of the requirements of effective IC design.
Predictions are made for the system capabilities needed to design small analog and

43



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

Benchmark Circuit
Task MECLGATE DBRIDGE NMOSINV

Time (S) % | Time (S) % | Time (S) %

CKTload 286.5 | 96.3 1930.2 | 97.8 544.2 | 99.7
DEVload 145.3 48.8 921.7 46.7 67.4 12.3
DEVfactor 49.8 16.7 410.1 20.8 373.4 68.2
DEVsolve 20.5 6.9 283.9 144 32.3 59
DEVmisc 7.5 2.5 35.2 18 4.8 0.9
DEVcontrib 62.0 20.9 277.1 14.0 67.2 12.3
MODcontrib 14 0.5 2.0 0.1 0.1 0.0
CKTf{actor 0.7 0.2 0.8 0.0 0.0 0.0
CKTsolve 0.3 0.1 0.3 0.0 0.0 0.0
CKTtrunc 7.7 2.6 38.3 1.9 0.8 0.1
DEVtrunc 74 2.5 37.3 1.9 0.8 0.1
MODtrunc 0.3 0.1 0.8 0.0 0.0 0.0
Other 2.2 0.7 4.0 0.2 1.0 0.2

| Total |  297.0 [{100.0 | 1973.7 | 100.0 [ 546.1 | 100.0 |

Table 3.1: Execution profiles for several benchmarks on a DECstation 5000/125

digital standard cells.

3.2 Runtime Breakdown

In Table 3.1, execution profiles are shown for three of the benchmark circuits
described in Section 3.4. The system used was a DECstation 5000/125. The first circuit,
MECLGATE, is a bipolar ECL inverter containing 11 small-mesh, one-dimensional nu-
merical bipolar transistors. The second circuit, DBRIDGE, is a diode bridge with 4
medium-sized-mesh, one-dimensional numerical diodes. The third circuit, NMOSINYV,
is a resistively loaded NMOS inverter employing a large-mesh, two-dimensional nu-
merical MOSFET. All three simulations calculate a DC operating point followed by a
transient analysis. As can be seen the percentages of time spent in the various sections
change. However, although the circuit type, size and technology all change from exam-
ple to example, an average of 99% of the total time is spent executing device-level code
no matter which is considered. Device-level code consists of: evaluating physical mod-
els and loading the device-level equations (DEVload); direct solution of the resulting

44



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

system of equations (DEVfactor and DEVsolve); miscellaneous overhead such as solu-
tion updating and convergence checking (DEVmisc), evaluating the equivalent current
and conductance contributions to the circuit-level system of equations (DEVcontrib),
and computing the numerical-device truncation errors (DEVtrunc). The remaining 1%
of the time is divided between loading the compact model contributions (MODcontrib),
factoring and solving the circuit-level matrix (CKTfactor and CKTsolve), computing
compact-device truncation errors and the next timestep (MODtrunc), and other items
such as reading and parsing the input file, setting up the circuit-level data structures,
and writing the results to an output file. Note that only the MECLGATE circuit con-
tains a significant number of compactly modeled and simple circuit elements, and thus
is perhaps the best model for applications where only the critical devices are modeled
numerically.

3.3 Device-Level Resource Usage

In the previous section, the importance of the device-level performance of
CIDER is established. This section takes a closer look at this performance by examining
data gathered from simulations of two very simple diode test circuits. The numerical
diode models are based on a range of different meshes, varying from very coarse meshes
to very fine meshes. The test circuits use numerical diodes because it is possible to
produce qualitatively correct results using extremely coarse meshes. Both one- and
two-dimensional diode models were tested. The schematic for the first circuit is shown
in Figure 3.1(a). This circuit is used to measure the DC and AC small-signal analysis
performance of CIDER. The second circuit, Figure 3.1(b), simulates the response of
the diode to a sinusoidal input, and is used to measure the performance of transient
analysis. In all cases, the simulations were performed on a DECsystem 5000/240 with
128Mb of real memory.

3.3.1 One-Dimensional Simulations

The input file for the one-dimensional diode DC/AC test circuit is shown in
Figure 3.2. The corresponding input file for transient analysis is shown in Figure 3.3.
The parameter ${XMESH_ELEMS} is varied from 4 to 499 in 5 element increments. This

45



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

Dt Rs Dr
mA—Ppl

Vrp e VNN Vrp é\? ? VNN
(a) DC/AC circuit (b) Transient circuit

Figure 3.1: Test circuits for device-level performance characterization

produces meshes with 5 to 500 nodes. The diode doping is uniform on each side of
the PN junction with a concentration of 1.0 x 10!7ecm 3, Several physical models have
also been enabled.

The DC analysis samples the diode current at 21 points between 0.0 V and
1.0 V. The AC analysis computes 51 frequency points logarithmically spaced between
100 KHz and 10 GHz. Although shown together in the input file, the two analyses
were run independently in order to gather separate data sets. The transient analysis
computes the response to a 1 MHz sinusoidal input voltage over one period. The
number of timepoints computed depends very weakly on the mesh density with 194
points being about average.

The time per device-level iteration for DC and transient analysis can be bro-
ken down into a number of components. In both cases, the three most important
components are the load, factor, and solve times. The remaining half dozen or so
components take different amounts of time in the two analyses. Individually these
remaining components do not contribute significantly to the total per-iteration time,
but collectively their contribution is noticeable. In addition, there is one component,
the matrix order time, that contributes only during the first iteration, but in that one
iteration it dominates all others.

In Figure 3.4, the load, factor, and solve times per iteration are graphed
against the total number of device-level equations. The number of equations, E, is
equal to 3(n — 2) where (n — 2) is the number of mesh nodes excluding the two contact

46



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

One-Dimensional Test Diode

VPP 1 0 0.6V AC 1V
VNN 2 0 0.0V
DT 1 2 M PND AREA=1

.MODEL M_PND NUMD LEVEL=1
options defa=1lu
x.mesh w=2.0 n=${XMESH_ELEMS}

domain num=1 mat=1
material num=1 silicon

doping unif n.type conc=lel?
doping unif p.type conc=2el?7 x.h=1.0

models bgn srh auger conctau concmob fieldmob
output statistics

+ 4tk + o+

.OPTION ACCT BYPASS=1 TEMP=27
.DC VPP 0.0v 1.001v 0.05v

.AC DEC 10 100K 10G

.PRINT I (VNN)

.END

Figure 3.2: Input file — one-dimensional diode DC/AC simulation

nodes. Since the maximum number of nodes is 500, it follows that the maximum value
of E is 3(500 — 2) = 1494. Also graphed is the order time taken in the first iteration?.
Note that it is larger than the other three combined. A graph of the time per transient
iteration for the three main components would look similar to Figure 3.4. However,
the load time is slightly higher because the additional time-dependent terms in the
device-level PDEs must be calculated and loaded into the matrix and RHS.

As implemented the load time dominates the factorization and solve times
even for the largest problem sizes. A result from work on circuit simulation predicts
that this should only be true for relatively small sparse systems of equations. The
time to load the system (which dominates initially) grows linearly with problem size,
while the times to factor and solve are expected to grow superlinearly. However, in this

1Because the timer interval is comparable to the individual component times per iteration, they cannot
be measured completely accurately. This problem is most noticeable for the order-time curve because the
timing errors are not averaged out over many iterations.

47



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

One-Dimensional Test Diode

VPP 1 0 0.6V SIN 0.6V 0.1V 1MegHz
VNN 2 0 0.0V

RS 131.0

DT 3 2 M _PND AREA=1

.MODEL M PND NUMD LEVEL=1
options defa=1lu
x.mesh w=2.0 n=${XMESH_ELEMS}

domain num=1 mat=l
material num=l silicon

doping unif n.type conc=lel?
doping unif p.type conc=2el7 x.h=1.0

+
+
+
+
+
+
+
+
+
+ models bgn srh auger conctau concmob fieldmob
+ output statistics

.OPTION ACCT BYPASS=1 TEMP=27 RELTOL=1E-6

.TRAN 0.0lus 1.0us

.PRINT I (VNN)

-.END

Figure 3.3: Input file — one-dimensional diode transient simulation

situation, the one-dimensional simulations give rise to block tridiagonal systems at
the device-level. It can be shown that the work involved in decomposing such systems
grows only linearly with problem size, so the factor and solve times never overtake
the load time. On the other hand, the time to order the system of equations does
grow superlinearly. This is a result of the general-purpose sparse matrix packages’s
inability to exploit the special structure of tridiagonal systems.

The AC analysis breakdown of the time per iteration is very different from
that of DC and transient analyses. This is a result of the iterative method [LAUXS85]
that is used to solve the device-level equations in DSIM. Use of the iterative method
allows the L/U factors calculated at the DC operating point to be reused until at
some high frequency, the iteration fails to converge. A switch to direct methods must
then be made [MAYAS88]. The iterative method is dominated by the time to perform
forward and back solves, whereas the direct method requires reloading and refactoring

48



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

DC CPU Usage

mS

260.00 load

order
/\}/ fastor
solve
200.00

100.00 N

........
......
oo
-
-

-
-
--
-
_____

------

-

kEqns
0.00 0.50 1.00 1.60

Figure 3.4: Major components of per iteration DC time for 1P device

of the matrix at each frequency. Thus, the time per iteration for the iterative method
is dominated by solve time, whereas the time for the direct method consists of the
same components as DC analysis: load, factor and solve times. Because the method
switchover does take place during the AC test, the time per iteration is an average
of the iterative and direct method per-iteration times. Figure 3.5 shows a breakdown
of the simulation time per iteration for the AC test?. Solve time dominates since
most of the frequency points are calculated using the iterative method. The point of
switchover was monitored and roughly 75% of the frequency points used the iterative
method successfully. The remaining 25% of the points used the direct method. Thus,
the times for loading and factoring are about one-fourth as long as used when the entire
run is calculated using only the direct method. This has been verified by rerunning
the AC test with the iterative method disabled, thereby forcing all points to use the

The cause of the periodic increases and decreases in the measured times is unknown. Further
investigation is needed to determine if this behavior is related to some real property of the machine, or
if it is simply an artifact of the measurement process. For the moment, the accuracy of the timing is
adequate for modeling purposes.

49



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

AC CPU Usage

’
250.00 -

200.00

'
160.00 e
1]

o
100.00 (. a
’

."" MM Nl

0.00

kEqns
0.00 0.50 1.00 1.50

Figure 3.5: Major components of per iteration AC time for 1P device

direct method.

For each of the three analyses, the total time per iteration was fit using linear
regression to an equation of the form:

T=qo-EP 3.1)

where o and § are empirically determined constants. Table 3.2 presents the results
of this fitting procedure. The table shows that the growth is slightly superlinear.
With care, these coefficients can be used to predict the amount of CPU time needed in

Analysis a B

DC 47.5 x 1.06*! us | 1.164 + 0.009
AC 22.1 x 1.13*! us | 1.207 + 0.018
TRAN | 46.9 x 1.16*! us | 1.133 + 0.012

Table 3.2: Average per iteration time as a function of 1° problem size

50



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

other simulation circumstances. For a typical mesh of 100 nodes and 294 equations,
the model gives 35.5 ms per DC iteration, 21.1 ms per AC iteration, and 29.4 ms per
transient iteration.

In addition to consuming more CPU time, as problem size grows CIDER also
requires more memory and long-term storage. In Figure 3.6 the total memory allocated
by CIDER during the DC test is graphed. Comparison to the memory usage of the AC
and transient analysis tests shows virtually identical results. The Y intercept is the

DC Memory Usage
MB

total
3.00

s [

=

2.00 —

) /
1.00 -
0.50
0.00
kEqns
0.00 0.50 1.00 1.50

Figure 3.6: Total memory usage of the 1° DC test

amount of memory used by CIDER for static data such as parameter tables. Jumps
in the curve are caused by the memory manager, which requests memory from the
system in large blocks that are multiples of 4KB. On the right side of the graph, the
jumps are larger because larger blocks are being requested. The main components
of the dynamically allocated memory are the memory to store the mesh, which scales
with the number of nodes in the mesh, and the memory for the matrix and various
RHS vectors, which scales more directly with the number of equations. The amount
of disk storage needed scales almost directly with the number of nodes, with only a

51



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

slight overhead needed to initialize the output file. The constant of proportionality
depends on the number of device internal variables being stored. By default, CIDER
stores 9 double precision values for each node in the mesh, so this constant is normally
72 bytes/node. The minimum needed to be able to restore the device to a saved state
is 4 double precision values: the node coordinate, the potential and the electron and
hole concentrations. For the largest mesh considered in the 1P tests (500 nodes), one
internal state therefore requires a minimum of 16,000 bytes.

3.3.2 Two-Dimensional Simulations

The input file for the two-dimensional DC/AC test, shown in Figure 3.7, is
very similar to the file used for the one-dimensional tests. Only the model definition
has changed. For the transient analysis file (not shown) this is also the only required
change. Two parameters, ${XMESH_ELEMS} and ${YMESH_ELEMS}, are now varied to
change the size of the simulation mesh. The parameter $ {XMESH_ELEMS} is varied from
4 t0 49 in 5 element increments and ${YMESH_ELEMS} varies from 4 to 24 in 5 element
increments. This results in a minimum mesh size of 5 x 5 nodes and a maximum of
50 x 25 nodes. The number of equations, E, is equal to 3(nz — 2)(ny), where nz and
ny are the number of mesh lines in the X and Y dimensions, respectively. Two of the X
mesh lines do not contribute equations because they belong to the contacts. Because it
is not obvious where the contacts go in the 2P case, electrode statements are needed
to define their locations. The doping profile in the X dimension is the same in both the
1P and 2P cases. In the Y dimension, the doping is constant for a given value of X. As
a result, the one- and two-dimensional files model the same diode. For nz fixed, the
calculated diode current is essentially identical for all values of ny and for the 1P case
when n = nz. For different values of nz, the current calculated varies somewhat since
the solution accuracy does depend on the mesh density in the X dimension.

The circuit analyses performed were identical to those performed in the 1P
tests. However, because different numerical tolerances are used for 2P simulation, the
transient simulation only calculates an average of 60 timepoints, much fewer than the
194 points for the 1P case. While in a real application this discrepancy would need to

be addressed, for the purpose of measuring the time per iteration 60 points is more
than adequate.

52



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

Two-Dimensional Test Diode

VPP 1 0 0.6V AC 1V
VNN 2 0 0.0V
DT 1 2 M PND AREA=1

.MODEL M PND NUMD LEVEL=2

x.mesh w=2.0 n=${XMESH_ELEMS}

y.mesh w=1.0 n=${YMESH_ELEMS}

domain num=1 mat=1

material num=1 silicon

electrode num=1 x.1=0.0 x.h=0.0 y.1=0.0 y.h=1.0
electrode num=2 x.1=2.0 x.h=2.0 y.1=0.0 y.h=1.0

doping unif n.type conc=lel?
doping unif p.type conc=2el7 x.h=1.0

models bgn srh auger conctau concmob fieldmob
output statistics

+ 4+t o+ +

.OPTION ACCT BYPASS=1 TEMP=27
.DC VPP 0.0v 1.001lv 0.05v

.AC DEC 10 100K 10G

-.PRINT I (VNN)

.END

Figure 3.7: Input file — two-dimensional diode DC/AC simulation

Figure 3.8 shows a breakdown of the DC simulation time into the same com-
ponents used in the one-dimensional case: load, order, factor, and solve times. It is
necessary to present the data using log-log scales because the order, factor and solve
times are all growing superlinearly. Because of this the factor time quickly dominates
the per-iteration times in the 2P case. For large problems, the factor time takes be-
tween 10 and 100 seconds per iteration. (The ordering time is still only incurred once
per simulation. However, for the largest mesh, the order time is significant in absolute
terms: over seven and a half minutes.) Note that the load time remains larger than
solve time even for the largest problem. It should also be noted that the time per
iteration does not grow uniformly with problem size. Nonuniform growth is caused by
variation in the percentage of fillin created by the L/U decomposition process. This

53



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

DC CPU Usage

1e+02 - e
1}
Aot
-l ""

le+01 NA ‘A/ X ‘..‘;‘u_‘,:' +

1le+00 i s

4 APRuY N

S AR -

Rt i
1e-01 £

/ -'.;;_/\/ :\l‘\“"'
—"// N : v iaY N
‘ o

P ee®
1e-02 /' ¥ 57
T ‘

1¢-03 -

Eqns

Figure 3.8: Major components of per iteration DC time for 2P device

affects even the load phase, because part of the load time is used clearing all the ma-
trix entries at the beginning of the load process. Some of the variation is essentially
random, but the rest is correlated with the shape of the simulation mesh. The test
set contains meshes that are relatively square as well as others that are long and
narrow. The long, narrow meshes are essentially one-dimensional in nature. Thus,
for nz > ny, the time grows almost linearly as nz is increased. For nz ~ ny, the time
grows superlinearly as both are increased. So even if two meshes give rise to almost
equal numbers of equations, they may not take equal time to factor if one is longer
and more narrow than the other. For example, the 50 x 5 mesh problem takes less
than half the time to factor as does the 25 x 10 mesh, even though there is only a 4%
difference in the number of equations in the two cases. Additional experiments factor-
ing test matrices that were derived from a similar mesh-based problem confirmed the
above interpretation of the data.

The results for AC analysis are also affected by the increased importance
of the factorization process. Figure 3.9 shows the load, factor and solve times per

54



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

Analysis a B

DC 1.09 x 2.30*1 us [ 2.181 + 0.124
AC 1.50 x 1.92%! yg | 2.007 + 0.097
TRAN 0.87 x 2.34%1 ug | 2.201 + 0.126

Table 3.3: Average per iteration time as a function of 2 problem size

iteration for the 2P0 AC test. Even though iterative methods are still used 75% of the

AC CPU Usage

1e+02 £ factor

4‘ N
HEH g I‘-‘I"
le+01 i SR T
i:".:"‘
:" O
[

1e4+00

[~
Sy
_—
“"g_
ooy bt 4 1
R \

— ::
<
D>
<

101 ! /

AN
{

le-02 “

Eqns
5 1e+02 2 5 le+03 2

Figure 3.9: Major components of per iteration AC time for 2P device

time, the factor time becomes the dominant component for large F because it grows so
rapidly.

In Table 3.3 the time per iteration for the three types of analyses is fit to
Equation 3.1. Superlinear growth is reflected by the fact that the 8 values are all
much greater than one. In fact, these values are all significantly worse than the
results presented in [PINT90], suggesting that development of a better sparse matrix
package might be in order. In addition, the parameter spreads are larger than in

55



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

the 1P case because of the irregularity in the underlying data. Thus, these formulas
are only good for order-of-magnitude calculations of the CPU time. If more accuracy
is required, a formula that accounts for the shape of the simulation mesh could be
developed. For a typical 20 x 20 mesh with 400 nodes and 1080 equations, this model
gives 4.5 s per DC iteration, 1.8 s per AC iteration, and 4.1 s per transient iteration.
The memory usage in the 2P case is dominated by the memory used for the
sparse matrix L/U factors. Figure 3.10 shows the total memory allocated by CIDER
along with just the memory used to store the non-zero entries in the factored sparse
matrix. Total memory usage is clearly being driven by the L/U factor storage. A fit

DC Memory Usage
MB
total
20.00 // atTix
15.00 / f’
/
10.00 / /\/v
r//\/'
500 /.//JJ/ A /v
000 | e
kEqns
0.00 1.00 2,00 3.00

Figure 3.10: Total memory usage of the 2P DC test

of the dynamic memory used? by both the 1° and 2P DC tests to Equation 3.1 gives
the results in Table 3.4. In the 1P case, the model predicts sublinear memory growth
which is caused by the large jumps in the data. Hand calculations easily show that the
memory growth is at least linear for this problem. Thus, extrapolation of this model

SThe static memory usage was determined by running CIDER with no circuit loaded, and then it was
subtracted from the total memory in Figures 3.6 and 3.10 to obtain the dynamic memory usage.

56



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

a B
OneD | 3.76 x 1.16*T KB | 0.830 + 0.024
TwoD | 0.54 x 1.30%! KB | 1.265 + 0.040

Table 3.4: Average memory used as a function problem size

beyond the range measured is dangerous.

Disk storage per mesh node is larger in the two-dimensional case. First, a
pair of double-precision values is now required to save the the coordinates of each
mesh node. Second, four of the remaining variables (the electric field and the three
current densities) are vector quantities that also use two double-precision values. So
the default disk usage is 112 bytes/node. Disk usage can be minimized by excluding
nonessential quantities but 40 bytes/node are still required. This is larger than the
minimum in the 1P case because the Y coordinates must be saved.

3.4 Benchmark Circuit Performance

As noted in Chapter 2, CIDER evolved from CODECS. CODECS performance
results are given in [MAYAS88] for two DEC VAX architecture machines: the VAX 8650
and VAX 8800. In this section, new performance results for a number of RISC-based
UNIX systems are provided. These performance results are for CIDER, not the original
CODECS code. Due to various incompatibilities between CIDER and CODECS, direct
comparison of these new measurements to those reported in [MAYAS88] is discouraged.
The goal here is not so much to help decide which of the particular machines considered
is best for this problem, but rather to help in understanding how much performance
is available now and how much is likely to be needed in the future.

Table 3.5 summarizes the system configurations used in this performance
test. Each system uses floating-point arithmetic hardware based on the IEEE floating-
point standard. All except for the iPSC/860 are available locally at UC Berkeley. The
iPSC/860 system tested is installed in the Applied Electronics Laboratory at Stanford.
Only 1 of its 32 compute nodes was used for this test. The DECstation 5000/125 is
similar in design to the DECsystem 5000/240 used to run the device-level benchmarks
except that the clock rate is 60% higher. This has been verified by running the one-

57



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

Maker DEC HP Intel IBM SUN

Model 5000/125 9000/720 iPSC/860 | RS6000/530 | 4/370

CPU MIPS R3000 | PA/RISC1.1 | i860 XR RS/6000 SPARC
Clock Rate | 25 MHz 50 MHz 40 Mhz 25MHz 25MHz
Memory 32MB 16MB 16MB 32MB 56MB

0S Ultrix 4.2a | HPUX 8.07 | NX/2 3.3.2 | AIX 3.2 Sun0S4.1.1
C Compiler | MIPS 2.1 HPC8.71 |PGC2.0a | XLC1.02 SUN 4.1.1
Identifier | DEC HPUX IPSC RS6K SUN4

Table 3.5: RISC machine configurations used in test

dimensional DC benchmark test on both and comparing execution times.

It has been noted in [PATT90] that RISC architectures tend to be remarkably
similar. In that book, a comparative study including three of the five architectures used
here (the R3000, i860 and SPARC) is presented. The primary difference to note here is
the clock speed variations of the CPUs, which have a direct impact on the performance.
The minimum memory size of 16MB is sufficient to hold the benchmark data sets in real
memory, eliminating the performance of virtual memory management as a concern.
However, the size of data caches is important in determining overall performance, since
data not held in fast cache memory must be accessed from the slower main memory.
In each case, the standard C compiler shipped with the operating system is used to
compile the source code using an optimization level of -O2. In the following tables, the
Identifier field of Table 3.5 is used to differentiate between the various systems.

A set of 12 benchmark circuits has been used to exercise CIDER on the systems
tested. Input listings written in the CIDER circuit description format are provided in
Appendix B. The benchmark circuits include the 9 circuits used to test CODECS in
[MAYAS88] as well as 3 new circuits that round out the benchmark set. All five of
the numerical model types supported by CIDER are represented. Table 3.6 briefly
summarizes the circuits used. Of the circuits that employ one-dimensional numerical
models, several have multiple numerical devices, whereas a single two-dimensional
numerical device is used in the remaining circuits. This limits the execution time of the
benchmark set to a reasonable level on all the machines. Larger, more time-consuming
circuits are considered in Chapter 5. Even for these relatively small circuits, the
number of circuit-level equations is always negligible compared to the number of

58



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

Circuit # Ckt Elts | # Num Devs (Type) | # Ckt Eqns | # Dev Eqns | MFLOP
ASTABLE 8 2 (1D BJT) 9 354 379.5
CHARGE 7 1 (2D MOS) 13 724 1650.0
COLPOSC 8 1 (1D BJT) 9 177 462.7
DBRIDGE 3 4 (1D DIO) 7 2388 1714.8
INVCHAIN 10 4 (1D BJT) 13 708 127.2
MECLGATE 24 11 (1D BJT) 29 1947 371.5
NMOSINV 6 1 (2D MOS) 10 921 380.5
PASS 7 1 (2D MOS) 11 921 198.5
PULLUP 7 1(2D BJT) 13 1081 3405.4
RECOVERY 4 1 (2D DIO) 8 1269 3946.9
RTLINV 4 1(1D BJT) 7 177 22.7
VCO 10 6 (1D BJT) 9 1062 731.3

Table 3.6: Serial benchmark circuit characteristics

device-level equations. The floating-point operation counts? , measured in millions
(MFLOP), were obtained using PIXIE on the DEC-MIPS machine [PIX89]. Although
actual operation counts may be different on the other machines, the DEC-MIPS results
are used as the standard for comparison purposes.

Despite efforts to ensure that the same computation is performed on each
machine, differences still arise in the results. These may be due to variations in the
instruction sequences generated by the compiler and the floating-point hardware im-
plementations. In addition, for a large code such as CIDER, it is difficult to rule out
undiscovered bugs as a potential cause of these variations. In any event, the bench-
mark outputs are not identical on each machine. In Table 3.7, several measures of
the amount of computation performed are given. In order, the numbers presented are:
the number of transient iterations, the total number of timepoints, and the number of
timepoints accepted/rejected. An entry of — indicates that the number is identical to
the results for the DEC-MIPS architecture. This allows differing results to stand out
more clearly. It should be pointed out that the timepoint numbers for the PULLUP
and RECOVERY circuit are identical, simply the result of a remarkable coincidence.
Overall, nearly identical results are obtained on all the benchmarks except for the
VCO circuit. This circuit, a voltage-controlled relaxation oscillator, is apparently very

“Since double-precision arithmetic is used throughout CIDER these are double-precision floating-point
operation counts.

59



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

Circuit

System

DEC

IPSC

ASTABLE

7157
1766
1457/309

CHARGE

1857
456
382/74

COLPOSC

13775
3617
3044/573

DBRIDGE

5144
1714
1627/87

| INVCHAIN

1378
354
313/41

MECLGATE

1587
400
350/50

1641
411
353/58

NMOSINV

289
86
81/5

265
81
78/3

PASS

136
34
31/3

135

PULLUP

560
151
128/23

RECOVERY

489
151
128/23

RTLINV

711
199
175/24

VCO

5408
1239
1036/203

5346
1224
1027/197

5427
1242
1040/202

5311
1222
1025/197

5361
1232
1032/200

Table 3.7: Iteration and timepoint counts on the various machines. Entries are:
total transient iterations, total timepoints computed, and number of timepoints ac-

cepted/rejected. An entry of — means that the number is equal to that found in the
DEC column.

60



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

sensitive to variations in the machine architecture. This may be due to the particular
behavior of this circuit, which is characterized by fast switching transients followed
by long periods of slow decay. Positive feedback during the switching would be partic-
ularly capable of amplifying small differences in the machine precision, resulting in
differences in the timepoint counts. However, to the naked eye, the circuit waveforms
are indistinguishable. For the other circuits, only the HPUX machine gives results
that are different from the others. The reason for this is unknown.

Timing the execution of a program is not a simple task. For this test, execution
times are measured in terms of the amount of time spent executing user-level code.
The time spent executing system calls is not included, but typically represents a small
fraction of the total CPU time. Wall clock time is generally an ineffective measure of
performance since UNIX is a time-shared operating system. This means that multiple
programs may be competing for the CPU at the same time, thereby lengthening wall
clock times. However, on the IPSC system, the only time measurement available
is the wall clock time. Fortunately, the NX/2 node operating system does not allow
time-sharing of compute nodes so that using wall clock time is reasonable. Even after
taking these steps to obtain reproducible timing results, the execution times still vary
from one run to another for a given benchmark. This is caused by other programs
interfering with the execution of CIDER. For example, on the time-shared machines,
all running programs must share the instruction and data caches. If other programs
use the caches heavily, CIDER takes extra time refilling the cache with its own data.
In order to reduce the importance of such problems, each benchmark was timed over
5 runs and the results were averaged. The spread in the total execution times is
typically 1-2% of the mean execution time. However, it is larger for the short running
benchmarks such as the RTLINV circuit. In the worst case, on the HP 9000/720 the
spread is 11% of the mean.

Table 3.8 gives timing results for each benchmark, as well as for the suite
taken as a whole. The numbers are: the total analysis time, the time for just the
transient analysis, and the time per transient iteration. Total execution time depends
strongly on the number and size of numerical devices in the circuit as well as the total
number of iterations performed. A simple model for this is given by:

I'=N-D- Titer (3.2)

61



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

System

Circuit DEC | HPUX | IPSC [ RS6K | SUN4
ASTABLE 312 77 255 | 128 | 480
310 76 253 | 127 | 477
043 | .011 | .085 | .018 | .067
CHARGE 2295 | 490 | 1026 | 561 | 2358
2257 | 481 | 1001 | 550 | 2316
1215 | 263 | .539 | .296 | 1.247
COLPOSC 366 95 313 | 160 562
365 95 311 | 160 | 561
026 | .007 | .023 | .012 | .041
DBRIDGE 1991 | 474 | 1149 | 612 | 2313
1976 | 471 | 1135 | 606 | 2296
384 | .092 | .221 | .118 | .446
INVCHAIN | 102 30 85 42 157
95 28 77 39 147
069 | .020 | .056 | .028 | .107
MECLGATE | 297 91 248 | 122 | 461
280 85 227 | 114 | 434
176 | 052 | .143 | .072 | .273
NMOSINV 549 112 | 233 | 136 559
an 95 189 | 115 | 475
1.630 | .358 | .654 | .398 | 1.644
PASS 288 63 128 73 294
228 49 92 56 232
1.676 | .363 | .676 | .412 | 1.706
PULLUP 5945 | 1412 | 1857 | 1273 | 5743
5479 | 1296 | 1688 | 1165 | 5292
9.784 | 2.314 | 3.014 | 2.080 | 9.450
RECOVERY | 7015 | 1375 | 2150 | 1455 | 6767
6467 | 1260 | 1952 | 1327 | 6241
13.225 | 2.577 | 8.992 | 2.714 | 12.763

RTLINV 18 5 16 8 27
16 4 14 7 25

.023 006 | .020 | .010 .035

VvCO 593 176 484 | 241 908

588 175 477 | 238 900
.109 033 | .088 | .045 | .168
TOTAL 19771 | 4400 | 7944 | 4811 | 20629
18532 | 4115 | 7416 | 4504 | 19396
481 107 | 193 | .117 .505

Table 3.8: Benchmark execution times on various machines in seconds. Entries are:
total analysis time, transient analysis time and time per transient iteration.

62



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

System
Circuit # Dev. | Active | DEC [ HPUX | IPSC [ RS6K | SUN4
ASTABLE 2 1.5 1.7 1.6 1.5 1.5 1.6
COLPOSC 1 1.0 1.0 1.0 1.0 1.0 1.0
INVCHAIN 4 24 2.7 2.9 24 2.3 2.6
MECLGATE 11 6.2 6.8 74 6.2 6.0 6.7
RTLINV 1 0.9 0.9 0.9 0.9 0.8 0.9
VCO 6 3.9 4.2 4.7 3.8 3.8 4.1

Table 3.9: Relative time per iteration per device for 1P bipolar circuits

where T is the total analysis time, N is the number of iterations performed, D is the
number of numerical devices, and T}., is the time per iteration per device. The dif-
ference between the total analysis time and the transient analysis time is primarily
contributed by the DC operating point analysis. For some of the circuits this operat-
ing point time is negligible, but for others, especially the ones using 2P models, the
operating point time is a significant portion of the overall execution time.

For a given type of numerical model, one might expect the time per iteration
per device to be independent of the number of devices as suggested by Equation 3.2. In
Table 3.9 the relative time per iteration per device is shown for the 6 one-dimensional
bipolar circuits. The time per iteration for the COLPOSC circuit is used as the ref-
erence. Also included are the number of numerical devices and the average number
of active numerical devices as described below. The time per iteration does not scale
linearly with the number of devices. The primary cause of this behavior is the bypass
algorithm of CODECS [MAYAS8S8]. Bypassing reuses old values of the currents and con-
ductances for latent devices, devices whose terminal voltages have not changed much
from the previous iteration. This allows the expensive operations on latent numerical
devices to be skipped, thereby producing significant computational savings. As can
be seen the time per iteration more closely follows the average number of active (non-
latent) devices rather than the total number. Equation 3.2 can be modified to account
for this effect as follows:

T=N-D.Tte (3.3)

where D is the average number of active devices. In this model, the time per iteration
per device is constant; the number of active devices is what changes from circuit to

63



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

circuit. Another simple extension of Equation 3.2 can be defined for the case when
different types of numerical devices are mixed in a circuit (e.g. in a BiCMOS circuit)

where the time per iteration per numerical device is not constant:

T= i: Ny - Dy - T (3.4)
k=1
where K is the number of different models used for numerical devices.

Considering that the benchmarks were chosen to complete in a reasonable
amount of time it is not surprising that the longest run is 7015 seconds, a little under
two hours, for the RECOVERY circuit running on the DEC-MIPS machine. However,
this leads to an important observation: given realistic time constraints, the amount of
progress made at the circuit level (as measured by the number of timepoints computed)
is limited by the size of the mesh used for the numerical devices. This limits the
complexity of the circuits that can be simulated effectively using CIDER.

Example: Suppose the 1P bipolar transistor in the COLPOSC circuit were replaced
by the 2P bipolar used in the PULLUP circuit. Assume also that using a 20 model
does not change the circuit behavior significantly, so that the iteration count remains
approximately the same. In the same amount of time (365 seconds on the DEC-MIPS
machine), the 2P simulation would complete only about 37 iterations, 0.27% of the
total of 13775 needed. The entire run would take over a day and a half to complete.
While a 1° model might be suitable to use when designing this circuit, the 20 model
is limited to use during final verification of the design. [ ]

Another way to measure performance is by the amount of computation done
per unit time. Table 3.10 gives MFLOP/S ratings of the computational speed of each
machine. The MFLOP/S rating is computed by taking the total analysis time and
dividing into the FLOP counts given in Table 3.6. At the bottom of the table the
minimum, mean and maximum MFLOP/S ratings are shown. These are compared to
the LINPACK benchmark and peak MFLOP/S ratings reported in [DONG93). Because
the DS 5000/125 does not appear in that report, the LINPACK rating for the DS
5000/200, which has an identical clock speed and CPU, was substituted. Of the 5
machines tested, the RS/6000 shows the most consistent performance across all the
benchmarks. On average, none of the machines achieves the performance reported
for the LINPACK benchmark. The ratings are 4 to 6 times lower for CIDER. This

64



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

System
Circuit DEC | HPUX | IPSC [ RS6K | SUN4
ASTABLE 1.22 | 4.93 149 | 2.96 .79
CHARGE 72 3.37 1.61 | 2.94 .70

COLPOSC 126 | 487 | 148 | 2.89 .82
DBRIDGE .86 | 3.62 | 1.49 | 2.80 74
INVCHAIN | 125 | 424 | 1.50 | 3.03 .81
MECLGATE | 1.25 | 4.08 | 1.50 | 3.05 .81
NMOSINV .69 [ 340 | 1.63 | 2.80 .68

PASS .69 | 315 | 155 | 2.72 .68
PULLUP 57 | 241 | 1.83 | 2.68 .59
RECOVERY | .56 | 2.87 | 1.84 | 2.71 .68
RTLINV 126 | 454 | 142 | 2.84 .84
VCO 124 | 416 | 1.51 | 3.03 .81
Minimum 56 | 241 | 1.48 | 2.68 .58
Mean .68 304 | 1.69 | 2.78 .65

Maximum 1.26 | 4.93 1.84 { 3.05 .84
LINPACK 3.7 18 9.7 15 2.7
Peak —_ 50 40 50 —_

Table 3.10: Benchmark MFLOP/S ratings on various machines

65



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

is not surprising since the LINPACK program has more regular data access patterns
that are typical of dense matrix calculations. This results in a high ratio of floating-
point operations to total instructions executed. In contrast, CIDER is dominated by
the loading and solving of sparse matrices, which involves irregular data access and
pointer manipulation. PIXIE traces of CIDER on the benchmark set show that only 10
to 12% of the instructions executed by CIDER are floating-point operations.

The DEC-MIPS machine results show most clearly that the performance is
most correlated with the size of the numerical model used, and not the number of
devices or number of iterations. All the 1P bipolar circuits achieve virtually identical
performance on the DS 5000/125. As the numerical model increases in size, the
performance usually degrades, especially on those machines that rely most heavily on
fast caches to achieve high performance (DEC-MIPS and HPUX). However, this trend
is reversed on the IPSC where the MFLOP/S rating actually improves as model size
increases. This can be partially explained by noting that the IPSC timings include
I/O overhead that is excluded on the other systems. I/O on the IPSC is particularly
slow because it involves communication between the compute node and the IPSC host
computer over a slow Ethernet link. As the model size increases, I/O becomes less
important compared to the model evaluation time, so performance improves.

3.5 Performance Requirements

Every computing environment places limits on the kinds of problems that can
be solved in it. Some of these restrictions are due to the computing hardware; CPU
speed, available memory, and disk space are a few. Other restrictions are imposed by
the people using the system. In the case of mixed-level simulation, the most important
of these is the amount of time an IC designer is willing or able to wait for an answer
from the simulator. However, equitable sharing of computing resources amongst all
users may also be important. In particular, one user is not generally allowed to use
more than her fair share of CPU time if it disrupts the work of others. The central
question then for any design tool is whether or not it can provide a useful service to
the designer while adhering to the restrictions of his computing environment.

In this section, an attempt is made to answer this question by employing the
resource usage and performance data gathered in the previous two sections. Estimates

66



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

Item Estimate | Example
Timepoints (T P) 100 - 5000 1000
Iter/Point (N /T P) 3-6 5
Total Iterations (N) | 800 - 30000 | 5000
Devices (D) 1-50 10
Device Size (E) 150 - 5000 2000
Total Equations (DE) | 150 - 250K 20K
Total FLOPs 17M - 196T 87G

Table 3.11: Estimated size of mixed-level simulation problem

are made of the computation performed when simulating larger circuits than the ones
in the serial benchmark set. Both the consequences of using bigger meshes and more
numerical devices are considered. Several estimates are made so that reasonable
upper and lower bounds on the amount of computation can be determined.

These estimates are used in two ways. First, to determine what kind of envi-
ronment is needed for mixed-level simulation given unlimited computing resources but
limited time for completion of a design. For the largest simulations, it is projected that
mixed-level simulation falls into the same class of problems as the grand challenges
of science and technology [LEWI92], which require supercomputer-or-better levels of
performance to solve. The second use of the resource estimates is to assess which re-

quirements are likely to be the most limiting in a variety of computing environments.

3.5.1 Estimated Problem Specifications

In Table 3.11, the key parameters needed to estimate the total number of
floating-point operations performed are given. The number of timepoints and iter-
ations per timepoint needed are estimated using the data in Table 3.7. The upper
bounds have been deliberately increased to account for the possibility of relatively
long simulation intervals. The example case is intended to result in a reasonable
estimate for a medium to large size problem capable of being run on present-day su-
percomputers. The number of devices was estimated by examining circuit schematics
from a variety of published sources and counting the devices by hand. The maxi-
mum of 50 devices is sufficient to design a wide range of circuits that typically appear
as standard cells in IC designs: digital logic gates, flip-flops, latches, comparators,

67



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

opamps, mixers, multipliers, and input and output buffers. In addition, multistage
ring oscillators from several technologies can be also simulated. This assumes that all
devices need to be modeled with the accuracy afforded by numerical simulation. If the
devices critical to the overall performance are few in number and only these devices are
numerically modeled, much larger circuits can be simulated. The number of equations
is related to the density of the simulation mesh, and is intended to allow reasonable
quantitative accuracy to be achieved. However, it is recognized that the meshes used
are typically less accurate than those used for pure device simulation where larger
mesh sizes can be tolerated. The total number of flops performed is estimated using a
multistep procedure. The time to solve a problem with E equations is estimated using
the transient analysis iteration-time parameters in Table 3.3. This is then multiplied
by the MFLOP/S rating for a DECsystem 5000/240, which is estimated as the aver-
age MFLOP/S rating of the DS5000/125 times the ratio of the respective clock speeds
(40MHz/25MHz). The result is a rough guess for the number of floating point opera-
tions per device per iteration that is multiplied by the number of devices and iterations
to obtain the flops estimate. From this calculation, the number of flops ranges over
7 orders of magnitude from the smallest to the largest problem. Using the just the
FLOP counts in the table, it seems clear that design using small circuit problems is
certainly feasible on present-day workstations. For example, the RTLINV benchmark
fits the low-end circuit profile fairly well, and takes only 18 seconds to simulate on an
approximately 1 MFLOP/S machine (the DS5000/125). However, the largest problem
is well beyond the capabilities of even the fastest computers built today, and is likely

to remain so for some time to come. How far beyond is explored in the next section.

3.5.2 Estimated Resource Usage

Table 3.11 estimates the size of the mixed-level simulation problems likely to
be encountered during IC design. These numbers can be converted into predictions for
the computational resources needed to solve such problems. The performance needed
depends on two factors: the amount of computation performed and the amount of
time allocated for the task. The time available is subject to the expectations of the IC
designer. Generally, small problems are expected to run quickly, whereas some waiting
will be anticipated for larger problems. In other words, the time allocated should be

68



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

Interval Length | Seconds
Small Task 5 Mins. 300
Coffee Break | 15 Mins. 900
Lunch Break 1 Hr. 3,600
Overnight 12 Hrs. 43,200
Weekend 2 Days 172,800
Vacation 1 Week | 1,209,600

Table 3.12: Estimated time for designer idle periods

Estimate
Item Small | Large | Example
Time Limit (S) 500 | 10000 2500
Performance (FLOP/S) 34K | 20G 35M
Dynamic Memory (Bytes) | 250K | 1.3G 81M
Disk Space (Bytes) 18K | 38G 7.T™
I/0 Bandwidth (Bytes/S) | 3.6K | 380M 310K

Table 3.13: Estimated resources needed for mixed-level simulation

scaled with the problem size. However, a designer’s work schedule is punctuated
with various idle periods that are ideal for performing simulations. The lengths of
these intervals are better estimates of the amount of time that can be set aside for
simulation. Table 3.12 lists some of these intervals along with their durations in
seconds. While at first it may seem optimistic to believe anyone would plan to run
simulations while away on vacation, this interval can be used effectively by other users
who take over the vacationer’s workstation in his absence. However, more realistically,
several idle periods of approximately 500 to 1000 seconds are likely to occur during
the working day, and the 40,000 to 50,000 second idle overnight period can be very
useful in practice. However, the designer is likely to expect multiple simulations to be
performed overnight or over a weekend. In Table 3.13, the various estimates made so
far are combined to form machine requirements. Based on the above arguments, time
limits for the smallest, largest and example simulations are estimated as shown. Note
that the performance required must be sustained for the duration of the simulation,
s0, based on the figures in Table 3.10, the peak machine performance needs to be 10
to 20 times larger than this. The memory needed is estimated using the memory

69



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

models in Table 3.4. (The static memory usage of approximately 1MB must be added
to these figures.) The lowest disk storage estimate is calculated assuming that 200
bytes per device per timepoint are needed to store the circuit waveforms and no device
internal states are saved. The number of timepoints accepted is assumed to be 90%
of the total number calculated. The upper limit is established using an estimate of
100 bytes per mesh node (or 33 bytes per equation) to store the device internal state,
assuming every device state is saved at each timepoint. The same assumptions are
used for the example simulation, except that the additional assumption is imposed
that device solutions are saved for only 10% of the timepoints. The I/O bandwidth is
computed assuming a 1% time overhead is allowed to store the required data. At its
upper bounds, CIDER is estimated to require 20 GFLOP/S processing speed and 1.3GB
of main memory from the computing system used. This is comparable to the resources
needed by many of the grand challenge problems of science and technology.

3.5.3 Assessment of Limitations

A look at the characteristics of any of the RISC-based computers described
in Table 3.5 shows that they all have adequate performance and memory to solve the
small simulation problem in the allowed time. In fact, each has excess capacity as far
as this problem is concerned. The required disk space and I/0 bandwidth are also well
within the capabilities of these computers. This suggests that less powerful computers
such as older RISC machines or personal computers could be used for such problems.

In contrast, the example problem requires more resources in some areas than
is currently possible with these machines. Disk space and I/O bandwidth are both large
but still manageable. The memory needed is noticeably greater than that installed in
these systems. However, it is possible today to obtain compute servers, such as the
DECsystem 500/240, that have more than 81MB of real memory installed. Thus, the
critical limit here is the floating-point CPU performance which is 10 to 50 times too
low on these machines to provide a sustained performance of 35 MFLOP/S. Even using
the fastest RISC-based system available today (a DEC 10000-610 Alpha AXP system
running at 200 MHz or 43 MFLOP/S LINPACK [DONG93]), one can optimistically ex-
pect only about 10 MFLOP/S sustained performance for CIDER. The extra performance
gains must be supplied by either moving to a traditional vector supercomputer such

70



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

as a uniprocessor CRAY [DONGS86] or a parallel supercomputer such as an Intel iPSC
[IPS92b]. In either case, CIDER would need to be partially rewritten to take advantage
of the special features of these systems.

For the largest problem, even today’s fastest established supercomputers, all
of which employ multiple processors, are only rated with peak performances in the
neighborhood of 20 GFLOP/S [BELL92a). Achieving sustained performance at this
level requires an additional order of magnitude or more of peak performance. Next-
generation parallel supercomputers such as the Intel Paragon and Thinking Machines
CMS5 achieve this performance using massive parallelism (> 1000 processors), but have
only been available for a short period of time at a small number of installations. By
way of contrast, large, fast memories with multi-gigabyte capacities are available in
present high-end supercomputing systems. In addition, I/O bandwidths greater than
a GB/S are available. The larger problem is likely to arise when trying to post-process
and visualize close to 40GB of output data.

3.6 Summary

A detailed performance analysis of CIDER has been undertaken. Execution-
time profiles show that 99executing device-level code. Tests of the device-simulator
performance of CIDER show that the time per iteration is on the order of 10’s of mil-
liseconds for 1° numerical models and on the order of seconds for 2P numerical models.
One to twenty MB of memory are used per simulation.

A set of 12 benchmark circuits have been run on 5 different RISC-based
computers. Total run time for the benchmark set is between 4000 and 20000 seconds.
Converting to execution speeds, the 5 machines have sustained performance of between
0.7 and 3.0 MFLOP/S.

Using the preceding performance and memory usage measurements, esti-
mates of the resource requirements needed to enable mixed-level-simulation-based IC
design have been made. Existing RISC-based machines are adequate for small design
problems. However, the largest problems, estimated to need sustained performance in
the 10’s of GFLOP/S range, are beyond the capabilities of even the fastest computers
built today. Such very fast computers all use parallel computing to achieve high levels
of performance.

71



CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

Given this assessment of the needs of CIDER and the importance of parallel
computing in meeting those needs now and in the future, one obvious research direction
is to explore the potential for exploiting parallelism in CIDER. This is the subject of
the next chapter.

72



Chapter 4

Parallel Aigorithms for
Mixed-Level Circuit and Device

Simulation

4.1 Overview

In the previous chapter, it is demonstrated that the performance and memory
capacity of present-day engineering workstations strongly limit the size and number
of mixed-level simulations that can be used to design a particular circuit. In addition,
projections indicate that this will remain true even as individual workstations become
more powerful. In the absence of more efficient simulation algorithms, it becomes
necessary to employ larger, more powerful computing systems to reduce simulation
time or increase problem size. In particular, scalable, high-performance computing
(SHPC) systems such as the Intel iPSC/860 are a promising alternative for expanding
the domain of applicability of mixed-level simulation. These systems employ parallel
processing technology to increase performance beyond that achievable by a uniproces-
sor system. The number of processing elements can number into the 1000’s; however,
a system with 10 to 100 elements would be more typical.

In this chapter, parallel algorithms for mixed-level circuit and device simula-
tion are presented. Such algorithms are needed to exploit the multiple processing ele-
ments in an SHPC system. First, the parallelism available when using direct-method

73



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

circuit and device simulation is exposed. Algorithms are drawn from previous research
which exploit parallelism at either the circuit or device level. Each algorithm is as-
sessed in terms of its appropriateness for mixed-level simulation. Emphasis is placed
on determining each algorithm’s strengths and weaknesses in a distributed-memory
computing environment. Based on this analysis, an architecture and algorithms for a
parallel mixed-level circuit and device simulator are proposed.

4.2 Terminology for Parallel Computer Architectures

Over the years, a wide variety of computers have been developed that are
based on parallel architectures. In this work, attention is restricted to those computers
that are capable of executing separate instruction streams with separate data sets on
each processor. Such multiple-instruction multiple-data (MIMD) machines [FLYN66]
are readily available commercially, largely because they are sufficiently general in
capability to be applied to a number of interesting problems. Within this class of
machines, there is still considerable variation in the architectural details. The machine
taxonomy used in [BELL92a] is used in this work to broadly classify these machines.

Two attributes related to memory organization distinguish between the differ-
ent types of MIMD computers. First, the physical memory can be either centralized or
distributed throughout the machine. In either case, delays are incurred if two or more
processors need access to the same piece of data. Central memories are difficult to scale
to large numbers of processors since a connection must be provided for each one and
sufficient memory bandwidth must be available to avoid having memory access time
become a bottleneck in the computation. On the other hand, distributed memories can
be scaled to large sizes since only a few (often just one) processor-memory connections
are needed for each portion of the memory. SHPCs are therefore distributed-memory
machines. Because there are no direct connections between distributed memories, a
separate communication network must be provided to allow processors to exchange
information.

The second distinguishing attribute is the program’s view of the memory. A
multiprocessor employs a single address space that can be supported in hardware using
either central or distributed memory. A multicomputer has multiple address spaces
and either the programmer or the compiler must generate explicit message-passing

74



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

commands to communicate data between computers. While there are many examples
of distributed-memory multicomputers, no examples of central-memory multicomput-
ers are identified in [BELL92a].

The distinctions between central or shared memory and distributed mem-
ory at the hardware and software levels have not been well resolved in the parallel-
processing community. Part of the reason for this is that one class of hardware can
often be emulated using a different type of hardware. As a result, it is easy to become
confused when discussing differences between the various architectures. In the fol-
lowing, the convention has been adopted that when used alone the terms shared and
distributed memory always refer to the programmer’s view of the memory. This is
appropriate since most of what follows is concerned with how to program parallel ma-
chines. When necessary, implementations on specific types of hardware are identified
using the full name of the hardware type (e.g. X was implemented on Y, a distributed-
memory multicomputer). The term processor by itself refers to a single processing
element of either a multiprocessor or a multicomputer.

4.3 Obtaining High Parallel Efficiency

In a parallel algorithm, the problem to be solved is subdivided into smaller
tasks in the hope that overall execution time can be reduced by executing multiple
tasks at the same time. The degree to which an algorithm is successful in achieving
this goal is determined by several factors:

¢ Problem Parallelism : the number of tasks that can be executed independently
at any given time.

o Problem Granularity : the ratio between the number of computations in a task
and the average amount of data transferred between tasks.

¢ Machine Parallelism : the number of processing elements used to solve the
problem.

e Machine Granularity : the ratio between the computation rate and the commu-
nication/synchronization rate of the machine.

75



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

o Load Balance : the degree to which the tasks are evenly distributed amongst the

processors.

The best measure of the effectiveness of a parallel algorithm is its speedup S:

T,
T,(P)

where T, is the execution time of the best serial algorithm and T,(P) is the execution

S(P) =

(4.1)

time of the parallel algorithm on P processors. This measure reflects the actual
improvement that the end user will see. However, it is often more convenient to talk
in terms of the algorithmic speedup 5°, the ratio of the execution time of the parallel
algorithm on one processor to the time on P processors:

arpy _ Ip(1)
5%(P) = 7‘;1’_(753 (4.2)

The ratio between these two, 5%/, is a constant that reflects the performance lost
when moving from a serial algorithm to a parallel one. This efficiency ratio, 7%, is
always less than or equal to one for three main reasons. First, the parallel algorithm
may be inherently less efficient on a uniprocessor, but still be chosen because it exhibits
better speedup than the best serial algorithm. Second, even if the two algorithms are
essentially the same, there is generally some overhead in the parallel algorithm in
order to manipulate the task structure. Finally, by definition, the serial algorithm
used has to be the best known. If the parallel algorithm is faster on a single processor
than the previous best serial algorithm, then it becomes the best serial algorithm.
The following equation is very useful in understanding the performance gains
offered by parallel processing [PATT90]:
_ 1
S ((A-F)+5)
where F is the fraction of the execution time of the original problem that can be run in
parallel on P processors. This formula, known as Amdahl’s Law, implies that there is
a limit to achievable speedup determined by the sections of code that are essentially
serial in nature. However, in practical cases, the serial portion can be made small
enough that large speedups can still be attained. One situation where this happens is
when the parallel fraction grows with problem size faster than the serial fraction. For
example, in mixed-level simulation, the device-level execution time can be scaled up
by using larger meshes, while the circuit-level time remains constant.

a

(4.3)

76



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

Amdahl’s Law as shown assumes that perfect speedup is obtained on the
parallelized section of code. An alternative version of Amdahl’s Law that takes into
account nonideal speedup of the parallel fraction is:

. 1

R E=
where S;,, is the speedup of the algorithm used for the parallel section of code.

Machine parallelism and granularity are determined by the architecture of
the target system and are relatively independent of the problem solved. (The total
number of processors available is fixed, but less may be used if it is known they will be
ineffective.) The problem parallelism is determined both by the total number of tasks
and the dependencies between the tasks. Since the total execution time is fixed, as
the number of tasks increases, the computation size per task decreases. In addition,
the amount of communication and synchronization needed generally increases as the

(4.4)

size of the tasks decrease. Thus, problem parallelism and problem granularity are
intricately related, and attempts to improve one at the expense of the other may not
lead to reduced run times. Finally, load balance is affected by how well the problem
“fits” the machine. A multiplicity of factors affecting load balance complicates the
problem of scheduling, the mapping of tasks onto specific processors. In general, any
nonhomogeneity in the problem, the machine, or the mapping of the problem onto
the machine leads to load imbalance. Problem nonhomogeneities include differing
task sizes, differing amounts of communication, and different numbers of tasks at
different stages of the algorithm. Machine irregularities include heterogeneous ma-
chine architectures, different clock speeds for processors with the same architecture,
and different amounts of memory on different processors. Mapping imbalances occur
when the problem parallelism is not evenly divisible by the machine parallelism.

One way to visualize the dependencies between tasks is a task graph, as
shown in Figure 4.1. Each node in the graph corresponds to one task in the overall
computation. Each arc corresponds to a dependency between the node at the beginning
of the arc and at the end of the arc. The beginning node must execute to completion
before the end node can begin execution. Nodes are labeled with a task identifier and
the estimated number of operations needed to perform the task. Arcs are labeled with
the amount of communication between the two tasks. A lower bound on the execution
time can be obtained by assuming that an unlimited number of processing elements

77



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

Figure 4.1: Example task graph

are available and that communication is instantaneous. In this case, total execution
time is equal to the maximum sum of the task times on any path that traverses the
graph from beginning to end [LEWI92].

Inevitably, some of the tasks must be executed serially on a single processor.
How the results of such serial tasks are accessed depends on the memory model of the
machine. In a shared-memory model, serial tasks can be performed by a single pro-
cessor and the results left in the shared-memory where all processors can gain access
to them. On a distributed-memory machine, the task is still executed on one processor
with the results being passed to the other processors via explicit message-passing. In
some cases, it may be advantageous to avoid message-passing by distributing the task
input data instead and letting each processor compute the results on its own. This can
conceivably save time if the volume of input is less than the volume of output. This
optimization is known as task duplication.

4.4 Available Parallelism

In the previous section factors affecting parallel efficiency are identified. One
of these is the amount of parallelism inherent in the problem. Maximum parallelism
is achieved when the computational tasks can no longer be subdivided. However,
since parallelism and granularity are interdependent, it is typical to approach the
problem by discussing different levels of parallelism. Figure 4.2 shows the three

78



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

Device Level

r Ty
o
< Job Level 8
g N J E
= 3 =]
=} =]
Q . s =
= Circuit Level =
d | J -2
=]
= =
(=} s ~ =
5 :
)
&} =)
Q

Figure 4.2: Levels of available parallelism

main levels of parallelism that are observed in circuit design based on mixed-level
simulations. At the design level, the overall design flow is divided into a number
of phases (for example, worst-case analysis or optimization), where each phase may
require a number of simulations. Each task at this level then corresponds to a complete
analysis of the circuit. At the circuit-level, an analysis is decomposed into the steps in
the direct-method circuit-simulation algorithm: CKTload, CKTfactor, CKTsolve, and
CKTtrunc. Each task operates on some part of one of the main circuit data structures:
the per-device, per-model and per-instance lists or the circuit’s sparse matrix and
RHS. At the device level, tasks are created by subdividing the work associated with
each numerical device: DEVload, DEVfactor, DEVsolve, DEVmisc, DEVcontrib, and
DEVtrunc. Parallelism is achieved by partitioning either the mesh or the device’s
matrix and RHS.

In theory it is possible to exploit parallelism at more than one level at the
same time. For example, design-level parallelism and circuit-level parallelism can
be exploited simultaneously by running multiple simulations and distributing each
simulation across a subset of the total pool of available processors. By using such tech-
niques, problem parallelism can be increased in situations where there are insufficient
tasks to keep all the processors busy. However, more sophisticated data structures and

scheduling algorithms will be needed to manage this multi-level parallelism.

Example: Suppose a worst-case analysis of a circuit requires simulations at low,
nominal, and high temperatures, a total of three simulations. In addition, suppose
that the circuit contains two identically modeled numerical devices. Assume that each

analysis takes two units of computation time, one for each numerical device. The

79



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

parallelism available is six, the product of the design- and circuit-level parallelisms. m

4.5 Design-Level Algorithms

Depending on the specific phase of the design process, tens to hundreds of
tasks may be produced. Since tasks at the design level consist of individual circuit
simulations, little specialized software needs to be developed to manage these jobs.
Instead, the existing batch processing facilities of the operating system can be used for
job control. In a UNIX environment, Bourne and C Shell scripts can be used to man-
age the necessary files and start the jobs. On a multiprocessor, job control software is
generally built into or layered on top of the operating system. For example, the DYNIX
operating system used by Sequent central-memory multiprocessors automatically dis-
tributes jobs from a shared run-queue. In a networked IC design environment, the
RsSH command can be used to start jobs asynchronously on remote machines in the
network. Alternatively, a simulation server process can be used on each workstation
that accepts and executes jobs that are submitted in the form of text input files. Load
balancing can be achieved by having the user choose where to submit jobs. However,
this can become a bottleneck if many jobs are needed, since each one requires time-
consuming and tedious direct user intervention. A network queuing system such as
D@s [GREE93] that runs on top of the existing workstation operating system may be
preferred. Such a system generally handles jobs from multiple sources and is prefer-
able in a multiuser environment. In the longer term, a true, distributed operating
system such as SPRITE [OUST88] may become standard for managing processes in a
networked environment.

Ideally, whatever technique is used to distribute the jobs, the details of the
implementation should be hidden from the user. One way to accomplish this is by
integrating file and job management facilities into an IC design framework such as
is done in NECTAR [KELL90]. If the user-interface is well-planned, it will not need
to change when the underlying job distribution mechanism does. The design of such
a framework, specifically one that supports traditional IC design tasks as well as
technology CAD activities is beyond the scope of this thesis. For more information,
the reader is referred to [CHIN92].

The primary advantage of design-level parallelism is that an optimized se-

80



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

rial mixed-level simulator can be used to run the jobs. Programmer productivity is
enhanced because software development tools for serial machines are currently better
than those for parallel machines. Updates and enhancements to the serial code are
immediately available in the parallel environment. The performance of this approach
is limited by a number of factors. First among these is the overhead associated with
starting a job on a machine other than the user’s personal workstation. Time is re-
quired to send both the executable and input files to the destination processor, and to
return the output files to the user. Typically, this will take on the order of seconds to
accomplish. A design phase consisting of many very short jobs will not achieve appre-
ciable speedup using this form of parallelism. Fortunately (or unfortunately depending
on one’s perspective), as shown in Chapter 3, mixed-level simulations typically require
minutes to hours of CPU time, so startup overhead is not a major problem. However
the original motivation for employing parallel processing is that the performance and
capacity of existing workstations is inadequate. Design-level parallel processing im-
plicitly assumes the opposite of this belief: that mixed-level simulations can be run
on a single processor effectively. Thus, design-level parallelism is likely to be limited
to circuits containing very few numerical devices. This limitation can be overcome by
mixing design-level parallelism with circuit-level parallelism as suggested earlier.

Example: Suppose that it is desired to obtain parameters for a compact MOSFET
model so that it closely approximates the behavior of a numerical model. Two-
dimensional MOSFET simulations are required at a number of channel lengths and
bias conditions in order to obtain the geometry and voltage dependences of the model
parameters. A mixed-level simulator used as a device simulator can obtain the nec-
essary data. Since only one numerical device is simulated in each job, the job-per-
processor approach will work well. Overhead is not a concern since 2P simulations are

being used. [ ]

4.6 Circuit-Level Algorithms

If the abnormally large computational needs of numerically modeled devices
are ignored for the present, then parallel mixed-level simulation is essentially identical
to parallel circuit simulation. Parallel algorithms for direct-method circuit simulation

81



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

have been the subject of intensive research in the past decade, and the available
literature has become extensive. Techniques have emerged for each of the major steps
in the circuit simulation algorithm. Of these, CKTload and CKTfactor/CKTsolve are
the most important. The time for sparse-matrix loading grows linearly with circuit
size, while sparse-matrix solution time grows as O(N!1) to O(N¥®), where N is the
number of equations in the system [NEWT83]. The time for timestep calculation
and convergence checking also grow linearly with problem size but the constants of
proportionality are much lower.

Example: Figure 4.3 shows the time per iteration taken for both circuit loading and

Circuit Matrix CPU Usage
S
load

1401 / /| | Tactor
soo0 ////
1e-01 / / //
1e-02 // V4
10-03 //
1e-04 /
1e-05

Eqns

1e+00 1e+01 le+02 le+03 le+04

Figure 4.3: Time per iteration to load and factor circuit matrices

solving under the following assumptions:
¢ The time to evaluate a compact device model is 1.0 ms/iteration.
¢ The time to factor the matrix goes as 10.0us - N14.

o There is one equation for every two devices in the circuit.

82



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

These assumptions are consistent with the results presented in [QUARS9]. In this
situation, the problem size must be at least 565,000 equations before CKTfactor begins
to dominate the overall runtime. Since the data in [QUARS9] only cover the range up
to about 2,000 equations, in realistic situations the load time will always dominate. m

The parallel techniques for matrix loading and solution are described next.
In 1989, the problem had been sufficiently well studied for a review paper to appear
in the Proceedings of the IEEE [SALE89]. To a large degree, what follows summa-
rizes the information found therein. Algorithms have been developed for a variety of
high-performance computer architectures. Early research focused on the use of vec-
tor processors |VLADS2], [YAMAS85] and special-purpose hardware [KO86). Shared-
memory multiprocessors have been used in a large number of studies: [JACOS87],
[BISC86], [COX91], [SADA87], [CHENS8], [CHANSS], [YANG90]. In addition, algo-
rithms and implementations for distributed-memory multicomputers have been re-
ported [YUANSS8], [TROT90], [PACH91]. To date, algorithms for scalable, distributed-
memory multiprocessors like the Kendall Square Research KSR 1 have not appeared.

4.6.1 Parallel Model Evaluation

It is well known that the task of linearizing and evaluating device models is
highly parallel [JACO87]. Difficulties arise when the individual device contributions
must be loaded into the circuit matrix and RHS. Some kind of synchronization or
communication is needed to ensure that the final system accurately reflects the state
of the Newton-Raphson iteration. Two basic approaches are available for controlling
access to the matrix and RHS: lock-based methods and barrier-based methods. Barrier-
based methods are applicable to both multiprocessors and multicomputers; locks can
only be employed on multiprocessors.

Lock-Based Methods

In a lock-based algorithm, access to certain critical sections of code is restricted
to the one process which that has acquired rights to the lock. If another process
attempts to acquire the lock, it blocks until the current owner releases the lock. In this
way, it is guaranteed that no two processes are executing the critical section at the same
time. If the portion of each model-evaluation routine that accesses the circuit matrix

83



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

and RHS is protected by a lock, the final system will be correct [JACO87]. However, this
approach suffers from the drawback that the time to acquire and release the lock is not
always negligible compared to the time spent executing in the critical section. This is
especially true of distributed-memory multiprocessors, where the memory for the lock
will not necessarily reside locally on the processor, necessitating a non-local memory
access to acquire the lock. One way to circumvent this problem is to group several
model evaluations together into a single task and to load all the contributions for the
task after acquiring the lock. This decreases the importance of locking and unlocking,
but increases the length of the critical section. The inherent problem granularity has
not changed; only the overhead in the algorithm has been reduced. A better approach
is to exploit the observation that most of the time processors will not be trying to access
the same locations in the shared memory. By providing multiple locks, one for each
row of the matrix, the likelihood of simultaneous locking is diminished. However, the
number of locking operations is increased because each device must access multiple
rows in order to load all its contributions. It will also be necessary to find groups of
devices that access the same rows in the matrix in order to form larger tasks.

Barrier-Based Methods

A barrier is used to prevent any one process from continuing onto the next
phase of a computation until all processes have finished the current phase, thereby
synchronizing the processes. In the context of circuit matrix loading, a barrier is used
to prevent any process from computing the final entries of the circuit matrix until all
contributions have been calculated. This approach thus requires considerable extra
memory while temporarily storing these contributions. (A factor of 30% is reported in
[YANG90].) The ultimate matrix entries are computed by summing the contributions
to each entry in parallel. On a multiprocessor, the entries are collected into a groups of
equal size, and each group is assigned to a different processor. Theoretically, the time
for this step goes as O(NC/P), where N is the number of matrix entries, C is an upper
bound on the number of contributions per entry, and P is the number of processors.
However, this result ignores the effects of contention in a bus-based multiprocessor
and non-uniform memory-access time in a distributed-memory multiprocessor. As a
result, actual performance is likely to be worse than this result suggests.

84



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

On a multicomputer, the individual contributions will reside in the separate,
local memories of the processors. Message-passing is then needed to transmit the
partial entries between processors. In order to simplify the coding of this step, it is
desirable to provide a copy of the entire sparse matrix on each processor on the system.
All processors then have a uniform view of the problem. In the first half of the matrix
load operation, each processor loads the contributions for the devices assigned to it into
its local copy of the matrix as they are computed. If necessary, the elements are copied
from the linked-list sparse-matrix data structure to a buffer array prior to message
passing. Efficient global reduction operations can be used to sum the arrays in O(log P)
time per entry, or O(N log P) in total. This assumes that the time to perform each step
of the global reduction is constant. On mesh-based multicomputers such as the Intel
Paragon, the necessary data will not immediately be available in adjacent processors,
and extra time will be needed for data transfer.

Special Considerations

The special characteristics of the matrix load problem arising from mixed-
level simulation have been ignored. In particular, it has been assumed that the time
per model evaluation is relatively constant for all devices, and that the time to update
the sparse matrix is comparable to the model-evaluation time. However, numerical
devices require the expensive solution of partial differential equations in order to
compute their contributions to the circuit matrix. In Chapter 3, it is shown that this
step dominates the overall computation time and that the time per device is dependent
on the size of the mesh used to discretize the device, or the related measure of the size
of the device-level sparse system. In light of this, the time to evaluate the compactly
modeled elements of the circuit is likely to be negligible. Only when the number of
numerical devices is a very small fraction of the total will this cease to be true.

Example: Assume that the CPU time to evaluate a compactly modeled semiconductor
device is 300.0us per transient iteration. Then, when using the execution time models
of Chapter 3, a typical 1° numerical diode with a 100 node mesh that takes about 30
ms per transient iteration is equivalent to 100 compact devices. A typical 2P numerical
diode with a 20 x 20 mesh that takes roughly 4s per transient iteration is equivalent
to about 4s/300us =~ 13,000 devices. =

85



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

If the compact devices and matrix access are ignored and the numerical de-
vices are each assumed to take the same time to evaluate, an upper bound on the
speedup can be obtained using the following equation:

D
H
where D is the number of numerical devices. Two limiting cases are easily identified:

S ~ P when D> P, and S = D when D < P. For small circuits, the latter limit is the
more important one. (In the extreme case of a circuit with only one numerical device,

S(D,P) = 4.5)

apparently no parallelism is available using this technique. However, tiny speedups
may be observed due distribution of the compact devices.) The various assumptions
leading to this result need to be examined. The assumption that the compact-model
evaluations are negligible is generally true, but special cases exist where the time per
iteration can be considerable (for example, lossy transmission-line models [ROYC91]).
In addition, the assumption of uniform evaluation time for numerical models is violated
when different mesh sizes are used for the various devices. This can occur in real
circuits, as shown later in Chapter 5. In such cases, the speedup is given by:

2pT?

SP) = pax, 7

(4.6)

where 77 is the time to evaluate the devices assigned to processor p:

P=) Ty

donp

and Ty is the non-unit time needed for device d. In this equation, no distinction is made
between numerical and compact devices; this provides a way to incorporate the effects
of computationally expensive compact devices. The numerator is simply the total time
to evaluate all the devices. The denominator is the maximum time spent by any one
processor evaluating the devices assigned to it. Speedup is best when the maximum
time for a processor is minimized. This is a minmax optimization problem [LEWI92]
and is developed further in Section 4.9.

The assumption that the matrix access time is negligible is now examined. For
a multiprocessor architecture with uniform-memory access time, the time to load ten to
twenty entries in the matrix and RHS is far outweighed by the time to calculate those
entries. Even the most inefficient locking methods are likely to achieve reasonable

86



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

performance. However, on systems where memory is distributed, the time to access
the data is critically dependent on the speed of the underlying interconnect layer. The
sparse-matrix access time will be relatively low only if the volume of communication
is low and the bandwidth is high. For mixed-level simulations, the circuits simulated
are relatively small. Specifically, if a small circuit is defined as one where the matrix
loading time is less than the matrix solution time, then even if ordinary compact models
were used, the circuits would be considered small. Adding the orders of magnitude
increase in load time due to numerical devices solidifies this observation, and also
increases the range of circuits that are considered small. Another definition of a
small mixed-level circuit is one where the average size of the device-level matrices is
greater than the size of the circuit matrix. By this definition, the circuits also would be
considered small. Thus, the amount of data accessed remotely is likely to be fairly low.
However, in certain distributed-memory multicomputers, the speed of the interconnect
has not been scaled with the speed of the processors, and special care must be taken to
ensure that an absolute minimum of message traffic is generated. Practical examples
of this problem are demonstrated in the next chapter.

4.6.2 Parallel Sparse System Solution

Compared to parallelizing matrix loading, solving sparse systems of equa-
tions is much more difficult. The algorithms required are more complex, and the
speedup is not as good. This is due in part to the complexity of optimized serial al-
gorithms for L/U decomposition, and forward and back substitution. In the class of
all sparse-matrix problems, circuit-matrix problems are particularly difficult because
they typically involve nonsymmetric, unstructured, indefinite sparse matrices with
potentially complex-valued entries. For a survey of the available parallel algorithms
for symmetric, positive-definite systems, the reader is referred to [HEAT91]. Some
of the methods described there can be adapted to nonsymmetric systems, although
specialized algorithms for circuit simulation have also been developed [JACO87]. Re-
spectable speedup and efficiency have been achieved on small numbers of processors.
For example, efficiency between 70% and 80% is about average for up to 8 processors.
No good speedups on large numbers of processors have been reported, primarily at-
tributable to the fact that the researchers seem not to have had access to large parallel

87



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

machines. Nonetheless, as the following example demonstrates, it is clear that the
existing methods will not perform well on larger machines.

Example: A parallel efficiency of 75% is achieved on 8 processors. When Amdahl’s
Law (Equation 4.3) is used in reverse, the fraction of the solution parallelized is
approximately 95%. The maximum speedup is about 20, and the efficiency drops to
50% at 20 processors. ) [ ]

Fortunately, as described in the Section 4.6.1, the matrices encountered at the
circuit-level in mixed-level simulations are typically small. Recall from Chapter 3 that
less than 0.5% of the total time is spent in the CKTfactor and CKTsolve phases for the
three example execution profiles. Thus, although sparse-matrix solution is of great
concern in stand-alone circuit simulation, it is much less important in mixed-level
simulations. As a result, respectable overall speedup can be achieved even when the
sparse-matrix solution is performed serially. Only for atypically large circuits that are
run on scalable parallel machines will the circuit-level matrix solution time become a
problem. Then it is unclear whether the existing methods will be able to provide even
small speedups on such a large number of processors due to communication overheads.

4.7 Device-Level Algorithms

At the circuit-level, mixed-level simulation creates an abnormal balance be-
tween load and solve times. At the device-level this is not the case. In almost all ways,
the device-level problem is identical to the problem of parallelizing direct-method de-
vice simulation. However, comparatively speaking parallel device simulation is much
less well studied than parallel circuit simulation. The most notable example of a
parallel device simulator is PARALLEL PISCES [LUCA87a). Other applications of par-
allel machines to device simulation have focused on the iterative methods used in
three-dimensional device simulation [WU91], (WEBB91].

For the most part the operations needed for device simulation have direct
analogs at the circuit-level. The device-level matrix is loaded, factored and solved,
convergence is checked, and a new timestep is chosen. The two major additional
steps are norm-reduction during DC analyses, and numerical calculation of currents
and conductances. However, for direct-method device simulation, these extra steps

88



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

can be formulated as additional load and solve steps, reusing the already computed
L/U factors of the device matrix. Thus, the loading and solving algorithms for circuit
simulation are reconsidered in light of the different tradeoffs involved in device sim-
ulation. In particular, parallel sparse-matrix factorization becomes a necessity at the

device-level. Consequently, a summary of the matrix factorization technique used in
PARALLEL PISCES is provided.

4.7.1 Parallel Element Evaluation

In the context of mixed-level simulation, there are two major differences be-
tween loading at the circuit-level and loading at the device-level. First, whereas the
number of devices, especially numerical devices, is small at the circuit-level, this is
not necessarily true of the number of elements in a device’s mesh. As noted in Chap-
ter 3, typical device meshes contain hundreds to thousands of elements. At the same
time, the workload per element is more uniform than at the circuit-level. In general,
the same physical models are evaluated across the entire mesh, and each element is
the same shape as all the others. For example, the diode simulations in Chapter 3
result in nearly uniform element loads. A major exception to this occurs when dif-
ferent material domains are contained in one device, as in a MOSFET. In this case,
the carrier-continuity equations do not need to be solved in the insulating regions,
and the physical models for current terms need not be evaluated. Another exception,
also important in MOSFETS, is the physical model for the inversion-layer mobility.
This model is only applied in parts of the device and takes longer to evaluate than
the standard field-dependent mobility model used in the rest of device. As a result
of these factors, inversion-layer elements are more expensive to compute than other
semiconductor elements, which are more expensive than insulator elements. Dif-
ferences in execution time for different element types should be taken into account
when assigning the element evaluations to the processors. However, other concerns
may limit the ability to distribute expensive regions of a device across the system.
Foremost among these is the problem that the time to access the sparse matrix can no
longer be neglected. In addition, the larger size of the device-level matrix demands an
approach which is more memory efficient than the néive replication approach used for
the smaller circuit matrix. A loading technique that is memory efficient and does not

89



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

require the use of locks is now presented. A second method closely tied to the factor-
ization method used in PARALLEL PISCES is presented later. Both rely on the fact that
the device-level matrix is derived from a spatial discretization with only local coupling.
As such, they both would need to be modified in order to accommodate the non-local
coupling introduced by the inversion-layer mobility model. It is not immediately ap-
parent how this might be accomplished. This local coupling requirement explains why
this technique is not used more in circuit simulation, since feedback loops, clocks and

supply lines all introduce non-local coupling.

Element Coloring Method

Coloring is a technique used to divide up the device’s elements by assigning
them to groups such that no two groups have elements which share nodes or edges
in common. It was originally developed for use on vector machines like the CRAY

computers [PINT90]. In Figure 4.4 a rectangular mesh has been divided using four

Figure 4.4: Coloring of a rectangular mesh using four colors

colors, the minimum necessary. Because there is no coupling between elements in the
different groups, there is no need to worry about two processors accessing the same
location in the matrix as long as the processors are synchronized between each group.
If the number of elements in each group is large enough, the barrier overhead will be

negligible. (On a vector processor, this technique reduces the cost of vector startup
operations.)

90



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

Unless special efforts are made, the need for two processors to access the
same memory location restricts this method to use on multiprocessor architectures.
Presumably if elements are known to have different computation times, the groups
can be created with this in mind. However, on a distributed-memory multiprocessor
if elements of different colors that are spatially adjacent are not assigned to the same
processor, many non-local memory accesses will be generated, degrading the perfor-
mance of the algorithm. This suggests a different method for creating groups based
on a spatial decomposition of the mesh. This method is described next.

4.7.2 Distributed Multifrontal Factorization

PARALLEL PISCES uses methods for matrix loading and factorization that are
based on the spatial coherence of the underlying problem. Because the same under-
lying conceptual framework is used for both tasks, the algorithms end up being fairly
well-matched. However, the load balancing problem is not identical for both parts,
and conflicts may arise when partitioning the device.

The basic idea behind the technique is nested dissection of the problem mesh
[GEORT73], a divide-and-conquer method of computing. Nested dissection is a well-
known technique for ordering the equations in a sparse matrix in order to minimize
matrix fill-in. It proceeds by finding a set of nodes in the mesh which divide the mesh
into two halves. The equations are ordered by first considering all the nodes in one
half, then the nodes in the other half, and finally the nodes in the separator. Ordering
of the nodes in the two halves is performed by recursively applying the dissection
procedure to each half. The result is a nested, bordered block-diagonal (BBD) matrix
structure as shown in Figure 4.5. The generation and solution of such matrices on
a distributed-memory multicomputer is described in [LUCA87b]. This same matrix
structure has been used at the circuit level on both a central-memory multiprocessor
[CHENSS] and a distributed-memory multicomputer [YUANS8S8]. A related circuit-
level implementation is described in [COX91].

The advantage of the nested BBD structure is that it can be decomposed
using a task graph similar to the one shown in Figure 4.6, where each task represents
a portion of the overall device matrix. At each step of the algorithm, one level of tasks
is factorized using L/U decomposition. Partially decomposed factors are then passed

91



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

Figure 4.5: Nested, bordered block-diagonal matrix
LRN- 0N AR SEEN, TR AR
@ G T N e W @ N A

(107 (10 (127
e R/ S 57

(13 (143
XE 7 o

N
Figure 4.6: Task graph for NBBD matrix

to the next lower level, where they are combined and the process is repeated until at
the lowest level the entire matrix has been factored. Forward substituition follows
a similar procedure, while back substitution follows a reversed procedure where the
processors start out working together and end up working alone. The task graph
starts out with fairly high parallelism, but it is reduced by a factor of two at each
level. If the task sizes are assumed uniform, then the speedup goes as O(%\,—) on N
processors, where N is the number of tasks at the highest level. Typically, however,
task sizes will be larger at the lower levels. In this case, all the processors assigned
to ancestors of a task can be grouped together to work in parallel. The tree-structure
of the task graph guarantees that no processor will be assigned to more than one task

using this criterion. Ifless than N processors are used, tasks in the highest levels can

92



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

be grouped together into larger tasks before being assigned to the processors. This
fact is typically used to generate just enough levels so that each processor has one task
at the highest level. If the problem is sufficiently large, the initial tasks will be much
larger than the lower level tasks, and speedup closer to the number of initial tasks will
be achieved. This can be useful when only small amounts of parallelism are needed at
the device-level.

Because of the way the algorithm isolates various sets of nodes using sepa-
rators, only part of the sparse matrix is held on each processor. This local matrix is
similar to an ordinary sparse matrix except that equations exist only for the local set of
mesh nodes and all the sets used to separate them. Thus, equations for the local nodes
reside on one processor; for the last separator, each set resides on two processors, and
so on, until the equations for the first separator are represented on all the processors.
It is therefore desirable to keep the separator sizes small. Unfortunately, it is also a
good idea to keep the number of nodes on each side of the separator balanced, which
conflicts with the previous goal. Several automated methods which trade-off between
the two objectives have been developed. These include traditional heuristic techniques
such as the Kernighan-Lin algorithm [KERN70] as well as the more recently applied
spectral bisection approach [POTH90]. Nonetheless, in real situations it is often diffi-
cult at each step to find small separators that bisect the nodes. This is especially true
when the number of bisections is high compared to the total number of nodes so that
very small sets of nodes need to be divided. As a result, task sizes are not uniform,
load balance is degraded, and speedup falls off.

Once the nodes of the graph have been distributed across the processors, an
implicit partitioning of the mesh elements has been defined as well. Since loading of
the device matrix is based on a loop over the device elements and would be complicated
if nodes belonging to different processors were part of the same element, the parti-
tioning step must take this into account. Figure 4.7(a) shows a small mesh where this
constraint is violated and it is unclear which processor should be assigned the element
marked with ‘?. In Figure 4.7(b) the problem has been corrected by repartitioning
the nodes. Thus it can be seen that the partitioning problem is one of dividing the
elements into two sets where the nodes on edges common to the two sets become the
separator. The loading of the device matrix then takes place by having each processor
evaluate all elements that have been assigned to it. For all nodes in the separators,

93



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

@ Processor #1 Nodes @ Processor #1 Nodes
O Processor #2 Nodes O Processor #2 Nodes
@® Separator Nodes ® Separator Nodes
o —@ @ L 4 . 4 L

1 1 1 1 1
! -

\ 4
1 1 1 1 1
© ? © % —&
2 2

2 2

N, Y ﬂ:
2 2 2 2
&

(a) Bad Partition (b) Good Partition

ﬂ)
2

)

Figure 4.7: Two element partitions of a small mesh

partial contributions are calculated by two or more processors. These partial contri-
butions are summed together during the course of the matrix factorization process. At
times, equipartitions of the element blocks may not equally divide the remaining non-
separator nodes because the nodes on the block boundaries have already been assigned
to separators. Since the device-level load phase is balanced when equal numbers of
elements are assigned to each processor while the device-level solve phase requires
balanced partitions of the nodes at each step, a trade-off must be made. The parti-
tioner should be able to optimize one or the other type of load balance depending on
which phase is likely to dominate the overall computation time. For small problems,
element balance will be better, but for larger problems, node balance will give better
results.

4.8 Mixed-Level Algorithms

In the preceding sections the various alternatives for exploiting parallelism in
mixed-level simulation have been reviewed. An architecture for a parallel mixed-level
circuit and device simulator is now proposed. Knowledge of the special characteris-

94



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

tics of mixed-level simulation is used to guide the choice of algorithms and levels of
parallelism exploited. Although algorithms are available for several architectures,
the architecture proposed here has been specifically designed for distributed-memory
multicomputers. It is also believed to be applicable to distributed-memory multipro-
cessors, although this has not been fully investigated.

4.8.1 Previous Work

The idea of using parallel computing to speed up mixed-level simulations
is not new. In [MAYAS88], the use of parallel model-evaluation is proposed where
an assignment of one numerical device to each processor is made. The same basic
idea is presented in [SCHR91] where a master-slave process arrangement is proposed
for a network of workstations. The master job manages the circuit simulation and
distributes the devices to the workstations which act as slaves. Messages containing
the matrix updates are sent from the slaves back to the master, where the entries
are loaded into the master’s circuit matrix. This computational model is equivalent
to the client-server model that is used in an actual implementation on a network of
UNIX workstations [MEIN90). Small device-level servers permanently reside on each
workstation in the network. The circuit simulation half of a mixed-level simulator acts
as a client to these servers sending requests for numerical device simulations to be
initiated on particular processors as needed. All communication between the circuit
simulator and the device simulators is passed through the device-level servers.

4.8.2 Proposed Architecture

Of the three levels of parallelism available, only circuit- and device-level par-
allelism must be exploited by the simulator itself. As a result, design-level parallelism
has been excluded from consideration in the proposed architecture. Management of
this form of parallelism is better left to a general-purpose CAD framework that can
provide such facilities for other related tasks such as layout synthesis, design-rule
checking, circuit extraction or design optimization.

Figure 4.8 shows the main software components of the algorithm architecture
and the calling relationships between them. Each processor receives the same code for
all components. However, the contents of the data structures vary from one processor

95



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

P copies: 1 per processor

Parallel
Circuit Simulator

Parallel
Device Simulator

Load
Balancer

Parallel
Sparse Matrix
Package

Figure 4.8: Components and call structure of proposed algorithm

to another. This programming approach is called the single program - multiple data
(SPMD) model.

The parallel circuit simulator core is capable of performing parallel model-
evaluation based on the assignment of devices to processor groups. The processor
groups are divided into different levels where each processor belongs to exactly one
group at each level. This is the only constraint on the group definitions. However,
typically groups will be arranged so that one level contains many, small groups and the
other levels contain fewer and fewer groups which combine groups at the previous level.
In Figure 4.9 a four-processor hypercube is divided into three levels of groups using

== Level 2: {0,1,2,3)

— Level 1: {0,2}, {1,3}
— Level 0: {0}, {1}, {2), {3}
@ Processor/ Node

--- Connection Network

Figure 4.9: Processor groups for four node hypercube

96



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

this technique. At the highest level all the processors are in one group and at the lowest
level each processor is in a group by itself. Compactly modeled devices are assigned
to one-processor groups; numerical devices are assigned to either single or multiple
processor groups. Every processor has a local copy of the circuit sparse-matrix data
structure, so that each may perform loading without contention. The overall circuit
matrix eventually resides in this local copy as well, after a barrier-based method is
used to compute it. The parallel device simulator is used to compute the contributions
of the numerical devices. For best performance this simulator should exploit both load
and solve phase parallelism at the device-level. The device simulators on the different
processors coordinate work on the numerical devices that are assigned to multiple
processor groups. The different groups at a given level work on separate devices,
thus exploiting parallelism at both the circuit- and device-levels simultaneously. Both
the circuit and device simulator call on the parallel sparse-matrix package for direct-
method matrix solution. A serial mode must included in the sparse-matrix package,
since parallel matrix solution may not be effective for the small circuit matrices. The
load balancer supports all three of the other components by statically dividing tasks
among the processors.

A high-level description of the multi-level model-evaluation algorithm for tran-
sient analysis executed by every processor in the system is shown in Figure 4.10. It
is an extended version of the algorithm in [PACH91] for parallel circuit simulation.
The main difference is an additional level of looping needed to access the processor
groups. Each processor has access to the complete circuit as described by the input
file. Either independently or in concert, a partitioning step is performed that assigns
devices to processor groups in a way that attempts to minimize load imbalances. Once
computed, the partition is held fixed, since the cost of redistributing numerical devices
dynamically is prohibitive on distributed-memory machines. A loop over the group
levels is used to setup the necessary preliminary data structures (such as the mesh)
for the numerical devices. In addition, all remaining initialization prior to entering
the main loop is performed. On the first pass through the main loop the device-level
sparse-matrix structures are allocated.

The main loop consists of a Newton-Raphson iteration followed by the compu-
tation of the next time step. The Newton-Raphson iteration consists of loading, solving
and testing for convergence. The load phase consists of a nested loop over the proces-

97



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

sor groups and the devices in each group. For compact devices and numerical devices
assigned to single processors, the contributions are directly loaded into the local copy
of the circuit matrix structure. For distributed numerical devices, one processor in
each group is designated to receive the matrix contributions and load them into its
copy of the circuit matrix. Then a reduction operation is performed to accumulate
the information in the local matrix copies into a global circuit matrix residing on a
single processor. If necessary, this global version is then broadcast to all processors.
If the global circuit matrix is only available on one processor, then it must factor and
solve the system and distribute the solution to the other processors. Otherwise, each
processor solves its local copy of the global system to obtain the solution. Convergence
is tested using another loop through the groups and devices, followed by a test to make
sure all processors have converged solutions. Once the Newton-Raphson iteration has
converged, the solution is saved by a designated processor, and then the next time
step is calculated. Timesteps based on local truncation errors are computed in each
processor group, breakpoint limiting is applied and then the global minimum timestep
is used as the next timestep.

4.8.3 Advantages and Disadvantages

The proposed architecture has two primary advantages over a simpler archi-
tecture that only exploits circuit-level parallelism. (This corresponds to a one-level
grouping in the proposed architecture where each group contains a single processor.
For future purposes this is referred to as the one-level model-evaluation algorithm.)
First, better speedup can be achieved in situations where there is a mismatch between
the number of numerical devices and the number of processors. For example, if D/P
is not an integer, the leftover devices can be solved in parallel at a higher grouping
level. This technique of dividing up only some of the iterations of a loop is known as
loop spreading [LEWI92]. Although normally applied to much finer grained loops, the
technique is just as applicable to very large grains as done here. The second advantage
is the ability to solve larger device-level problems when necessary. Parallel processing
at the device level distributes the memory usage of a numerical device across all the
processors in its group. On many parallel machines the amount of memory available
to a processor is restricted to the amount of real memory and cannot be extended by

98



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

using virtual memory techniques. In other words, a device that will not fit on a single
processor can be solved using the additional memory of multiple processors. By the
same argument, the capability of assigning numerical devices to different processors is
also an advantage of the use of circuit-level parallelism. Thus, the additional memory
that comes with parallel machines is very important.

The primary disadvantage of this approach is the extra complexity involved
in its implementation. The algorithm requires not only a parallel circuit simulator
but also a parallel device simulator. Modifying a modular circuit simulator such as
SPICE3 to exploit parallel model-evaluation is relatively easy; redesigning a device
simulator to exploit parallelism at each stage of the computation as in PARALLEL
PISCES is a much greater undertaking. In addition, unless the device simulator is
designed with mixed-level simulation in mind, it may be difficult to integrate into the
above scheme. The proposed algorithm demands considerable flexibility on the part
of the device simulator to support simulations in multiple processing groups. Such
flexibility would not generally be required of a stand-alone device simulator where a
single group containing all the processors would be normal.

One advantage of both approaches is the modularity of the basic mixed-level
algorithm itself, as noted in [MAYA88]. The device simulator can be easily replaced
with another one as long as the basic operations required by the circuit-device interface
are still supported.

4.8.4 Software Requirements

The proposed architecture requires four major software modules: a paral-
lel circuit simulator, parallel device simulator, parallel sparse-matrix package, and
a flexible partitioner / load balancer. If parallelism at the device-level is ignored
(as in the one-level model-evaluation algorithm), then a serial device simulator and
sparse-matrix package can be substituted, and the load balancer can be simplified
substantially. Certain capabilities must be incorporated in each of the components
before they can be merged into a mixed-level simulator. It is assumed that the sim-
ulator will support the three basic types of circuit analyses: DC, transient, and AC
small-signal analyses. Substantial savings in development time can be realized if a
serial mixed-level simulator is available as a starting point.

99



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

For this application, developing a parallel circuit simulator from a serial one
is a relatively easy job because the algorithm has been designed to have minimal
impact at the circuit level. This topic is covered in detail in Chapter 5.

The parallel device simulator has several requirements that are inherited
from the serial environment, as well as new ones due to the parallel algorithms. The
device simulator DSIM used in CIDER was custom developed for CODECS because a
sufficiently general simulator was not already available [MAYA88]. Much of DsIM
was written from scratch; however, it was not necessary to write a sparse-matrix
package because SPARSE was available. The parallel situation is worse than that
originally observed in the serial case. General-purpose dense matrix software for
central-memory multiprocessors has recently become available [DONG91], but similar
software for distributed-memory machines and sparse matrices has not been publically
distributed. Development of an appropriate parallel sparse-matrix package is thus the
major obstacle in the implementation of a parallel device simulator. As demonstrated
in [LUCAS87a], parallelizing the remainder of the device simulator is fairly straightfor-
ward once a parallel sparse-matrix package has been defined. The main complication
arises in the dividing the mesh and equations among the processors in order to achieve
load balance.

The various requirements for the sparse-matrix package are summarized as
follows:

¢ It must be able to handle both the real and complex matrices that arise during
DC and AC analyses.

¢ Asymmetric matrices need to be supported.
¢ Multiple matrices arising from the different numerical devices need to be stored.

e Parallel solution of multiple matrices in separate processor groups is necessary
to allow mixed-level parallelism to be exploited.

e Since memory-storage requirements are unlikely to be known accurately until
runtime, dynamic-memory management should be incorporated.

Given that no up-to-date package for a single, real-valued, asymmetric sparse matrix
is currently available for distributed-memory machines, the above requirements seem

100



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

impossibly overambitious for a single sparse-matrix package. However, once such
a package does become available, the remaining features should be relatively easy,
although perhaps tedious, to implement. The trickiest problem will be support for
group-based processing, something that is presently an active area of research in
the parallel-processing community. However, by the time the basic matrix package
becomes available, group-based processing will be presumably better understood.

4.9 Mixed-Level Partitioner

The need to partition the workload to achieve load balance is a central part
of any parallel algorithm. This problem has already been encountered a number of
times in this chapter. The focus here is on a problem that arises in the multi-level
model-evaluation algorithm. This is the problem of assigning the devices in a circuit
to the multiple levels of processing groups. The goal is to find an assignment that
minimizes the maximum completion time of all the device evaluations. In the absence
of an exact solution to this problem, a heuristic approach based on simulated annealing
[KIRK83], has been prototyped and several conclusions are drawn from observing its
performance.

4.9.1 Multi-Level Partitioning Problem

The multi-level partitioning problem is expressed as follows:
Problem 4.1 Given:

o D tasks {dy,ds,...,dp}, where each task represents the evaluation of a device
model.

e P processors labeled from 1 to P.

o Ng processor-groups where the gth group, G, is a set of P, processors. For
example, group {0,1,2,3} has P, = 4 processors.

o Ny levels of processor-groups where the Ith level, L, is a set of Ng, groups and
where each processor p € [1, P] appears in no more than one group at each level.

101



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

o A function T(d,,g) that models the amount of time to execute task d,. on the pro-
cessors in group g. Models for non-uniform device evaluation time and imperfect
speedup on multiprocessor groups are incorporated in this function.

Find: a mapping function M that assigns each device d, to group number M(d,) such
that the estimated time to execute all the tasks on the P processors is minimized. The
total time taken is calculated using:

Np
T=> maxTg,:Gy € L
=1 Gg

where the time for group G, is computed as:

TG'g = E T(dna g)
dn:M(dn)':g

The total time taken is simply the sum over all levels of the maximum time taken by
any group in that level.

Two special cases of this problem have already been encountered in Sec-
tion 4.6.1. Both cases assume that the number of levels Ny, is equal to 1 and each
group contains 1 processor. That is to say, they both deal with a one-level partitioning
problem. In the first case, the time per task is assumed uniform or T(d,,¢g) = K. In
the second case, the time per task varies from device to device, which results in the
most general one-level partitioning problem.

4.9.2 Solution Methods

Finding an exact solution to Problem 4.1 in the general case is an essen-
tially impossible proposition. There are (Ng)P possible permutations to consider so
an exhaustive search would take exponential time in the number of devices to per-
form. In fact this problem is NP-complete [GARE79], which means no polynomial
time algorithm to find an exact solution is ever likely to be found. NP-completeness
is demonstrated by noting that the general one-level partitioning problem, which is
known to be NP-complete from [GARE79], is a special case of the multi-level partition-
ing problem. Given this, alternative heuristic methods must be used to obtain near
optimum solutions.

102



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

Even though the general problem is very hard to solve, at least one special
case has a trivial solution. For example, the unit time per task, one-level problem
can be solved exactly by assigning devices to the processors in round-robin fashion so
that each processor receives at most [%] devices. This leads to the speedup result in
Equation 4.5. The round-robin algorithm has practical significance since real circuits
often fit this model reasonably well.

The best known heuristic for partitioning problems is the Kernighan-Lin al-
gorithm [KERN70] which is used to bisect the nodes of a graph such that the number
of edges connecting the two halves is minimized. Extensions that involve multi-way
partitions and non-uniform node sizes are also discussed in [KERN70). However, this
algorithm is difficult to extend to the current situation because the node/task sizes can
vary over a wide range of values and because the cost of a task depends on which group
it is assigned to. An alternative approach to partitioning based on stochastic methods
is known as simulated annealing [KIRK83]. In this approach a partition is randomly
changed and the impact of the change on the partition’s cost is assessed. If the cost is
decreased, the change is always accepted. If the cost increases, the change is accepted
with a probability that depends on how far the algorithm has progressed. Initially the
probability is relatively high, so most changes are accepted; later, the probability is
decreased. The acceptance probability, Py, is determined using the following equation:

“ @)

Py = exp(

where AC is the cost increase and T is a temperature parameter that is slowly de-
creased over time. Simulated annealing thus has four main components: a concise
description of a problem configuration, a set of moves to apply randomly to change the
configuration, a cost function that assesses the quality of the configuration, and an
annealing schedule that determines how the temperature should be varied and how
many random moves should be made at each temperature. For the current problem,
the main advantages of simulated annealing are the flexibility that it allows in defin-
ing the cost function, and the ease with which it can be adapted to new problems. For
example, realistic estimates of the time per iteration for each device in the circuit can
be used when constructing the cost function. However, the main drawback is that it is
difficult to determine a good set of moves to make and a good annealing schedule. As a
result, implementations of simulated annealing generally require considerable tuning

103



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

before good results can be obtained consistently.

4.9.3 Trial Implementation

For this work, an experimental implementation of simulated annealing for
the multi-level partitioning problem has been implemented based on the generic ap-
proach described in [JOHN89]. For information on obtaining the source code to this
implementation refer to Appendix E. Since the results from this implementation are
inconsistent, the details are only sketched out here. The implementation needs to be
tuned and improved before it can be incorporated in a working mixed-level simulator.
The configuration manipulated by the simulated annealer is the mapping function
M. A move consists of changing the mapping by reassigning a device to a new group.
Several strategies for selecting the device to be moved and its new group have been
tried. In addition, the annealing schedule has been varied to improve the performance.
The cost function attempts to model the execution time of the device evaluation re-
alistically. For simple circuit elements and compactly modeled devices, a constant,
independent of the group size, is used which depends on the model complexity. For
numerical devices, the execution-time models developed in Chapter 3 are used. To
estimate the potential of parallel device simulation, a speedup model is incorporated
based on the results in [LUCA87b]. The time to execute a task on a multiprocessor
group is then given by:

T(dn,g) = T**(En,|Gyl) = T™**(Ey)/ $**(En, |Gyl) (4.8)

where T°* is the estimation function, E, is the number of equations for device d,, |G,
is the number of processors in gth group, 7™¢** is an execution-time model calibrated
with uniprocessor measurements, and 5¢ is the estimated speedup which depends on
both the number of device equations and the number of processors. In a true imple-
mentation of the multi-level model-evaluation algorithm, the speedup model should
be calibrated using measurements of the parallel device simulator’s performance. The
final cost function is computed by taking the estimated total execution time and nor-
malizing with the cost of running the tasks on a uniprocessor machine.

The main problem with the current implementation is that it fails to find ob-
vious optimum solutions when confronted with simple problems. For example, when
equal time tasks are used and the number of tasks is evenly divisible by the number of

104



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

processors, the annealer finds solutions that assign some of the devices to multiproces-
sor groups even though the obvious solution is to evenly divide the devices among the
one-processor groups. In addition, because the algorithm is probabilistic it does not
reach the same solution when started from different points. As a consequence, better
results can often be obtained by running the annealer multiple times and selecting the
best result encountered. This process would need to be automated before the annealer
could be incorporated as part of a parallel mixed-level simulator.

Despite the problems of the simulated annealer, some insight into the un-
derlying problem can be gained by examining the solutions obtained. First, in cases
where different types of devices (numerical and compact) are mixed in the same cir-
cuit, the annealer places the numerical devices as best as it can and then places all of
the compact devices on the least loaded processor. Thus, one optimization might be to
ignore the compact devices during annealing and fix them in place on one processor
beforehand. Second, for small circuits and when the number of devices is not evenly di-
visible by the number of processors, the best performance is achieved by first assigning
devices evenly to the one-processor groups. Then the remaining devices are assigned
evenly to the next level of groups, and so on until no devices remain. For example,
with 9 devices and 8 processors, 8 devices will be assigned to the one-processor groups
and 1 device will be assigned to the 8-processor group. The higher parallel efficiency
of smaller groups of processors accounts for this behavior. Third, another effect of
having non-ideal speedup of device evaluation on multiprocessor groups is that the
annealer will avoid using extra processors if the extra cost of communication overhead
increases the execution time for the task. In the above example, if the leftover device
obtains no speedup on the 8-processor group, the annealer will place it in a 4, 2 or even
1 processor group instead.

The conclusion to be drawn in this section is that there is no simple solution
to the multi-level partitioning problem. However, in light of the fact that a multi-level
partitioner is not needed until a parallel device simulator is also available, this is not
currently a major concern. In the next chapter, a mixed-level simulator implementing
the one-level model-evaluation algorithm is introduced that successfully employs a
simple round-robin scheduler to achieve reasonable speedups.

105



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

4.10 Summary

The computational bottleneck of mixed-level simulation has been addressed
by investigating the possibilities for the use of scalable, high-performance distributed-
memory multicomputers. Three levels of parallelism are identified that can be ex-
ploited by the multiple processors in such a system. At the design-level, tasks consist
of individual simulation jobs. At the circuit-level, the major tasks are the evaluations
of the numerically modeled elements of a circuit. At the device-level, each processor is
assigned a task that roughly corresponds to a portion of the semiconductor device being
simulated. Existing techniques for exploiting each of these levels of parallelism have
been reviewed, and extensions that combine parallelism from more than one level have
been introduced. In particular, an algorithm is proposed for combining parallelism at
the circuit and device levels in a single program. This algorithm employs the concept
of dividing a multiprocessor machine into multiple levels of processor groups. Tasks
are then assigned to these groups rather than to individual processors. This approach
adds a dimension of flexibility that can be used to achieve greater speedup than a task-
per-processor approach. Experiments with a simulated-annealing-based partitioning
program indicate that in some cases additional speedups may indeed be achievable
compared to a simpler implementation based solely on exploiting parallelism at the
circuit level. However, the proposed algorithm requires several software components
that are not readily available on present parallel computing systems.

106



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

Read and parse the input file.
Generate the circuit data structure, the lists of devices
and the task/job structure.
Assign device instances to the processor groups.
Foreach (processor group level) {
Foreach (device in my group at this level) ({
Setup data structures.
}
}
Establish a DC operating point.
Foreach (timepoint) {
Foreach (iteration) {
Foreach (processor group level) {
If (I am group leader) f{
Calculate and stamp currents and conductances onto
my local Matrix and RHS for each normal element.
)

Foreach (numerical device) {
Coordinate with other group members to solve device equations
and calculate currents and conductances.
If (I am group leader) Stamp contributions onto Matrix and RHS.
}
}
Combine local Matrix and RHS to get global Matrix and RHS.
Factor and solve circuit-level equations.
Check locally for convergence.
Exchange convergence information with other processors.
If (Convergence reached) {
If (I am machine leader) ({
Save the current circuit solution.
}

Foreach (processor group level) {
If (I am group leader) Save numerical device internal states.

}

Go to Next timepoint.
}
Next timepoint:
Foreach (processor group level) {
If (I am group leader) ({
Calculate compact device instance truncation errors.
}
Foreach (numerical device) {
Coordinate with group members to compute truncation error
and maximum timestep for this device.
If (I am group leader) Update local maximum allowed timestep.

}
} |

Find minimum allowed timestep across all processors.

}

}

Figure 4.10: Description of proposed algorithm

107



CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

108



Chapter 5

Implementation on
Distributed-Memory

Multicomputers

5.1 Overview

In Section 4.8, two algorithms for mixed-level simulation on a distributed
memory multicomputer are outlined. In this chapter, two implementations of one of
those algorithms, the one-level model-evaluation algorithm, on different distributed
memory multicomputers are described. The first system considered is an Intel iPSC/860
hypercube, a scalable high-performance computer with a specially designed node ar-
chitecture and communication system. The second system is a cluster of standard en-
gineering workstations communicating via Ethernet connections. Both of these types
of systems are candidates for meeting the processing needs of mixed-level simulation
in an IC design environment.

Each system is described from both hardware and software points of view,
and basic performance measures are provided. The iPSC/860 is described first, and
the necessary modifications to the mixed-level simulator CIDER to support parallel
processing are presented. Global reduction of the circuit matrix is identified as a
potential performance bottleneck, and three different alternatives for implementing
this step are considered.

109



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

The performance of both implementations is investigated in Section 5.5. A
set of 17 benchmark circuits is used to test the performance. These circuits all contain
more than one numerical device, so that one-level model-evaluation offers at least
some hope of performance improvement. Using these benchmarks as examples, the
problems associated with one-level numerical-model evaluation are described. Several
limitations are identified, and solutions that work around the problems are given where
possible.

5.2 Description of the Hypercube

The one-level model-evaluation algorithm for multicomputers described in
Section 4.8 has been implemented on an Intel iPSC/860 hypercube. The iPSC is a
distributed-memory multicomputer: each compute node has its own address space and
data is shared via an explicit message-passing mechanism [BELL92a]. Figure 5.1 is
a diagram of the system used for parallel-code development on the hypercube. Serial-

iPSC/860 Hypercube

Local RISC

Workstation @ @

Node-to-Host
Internet Link

Ethernet

Cross

Development
System Manager

System Resource

Figure 5.1: Hypercube software development system

code enhancement is performed on the local RISC workstation. The code is then

110



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

modified for parallel execution and compiled for the hypercube on the remote cross-
development system (XDS). After an initial investment in parallelizing the circuit
simulator (SPICE3), updates to the numerical device models can be performed rapidly
due to the simplicity and modularity of the algorithm. Simulation jobs are loaded
onto the cube by a host computer called the System Resource Manager (SRM), or
alternatively by the XDS acting as a remote host. From the SRM or XDS, users can
space-share the iPSC by allocating sets of nodes called cubes for individual problems.
Cubes are actually full smaller-dimensional hypercubes, so that code developed using
small cubes can easily be scaled up to larger systems.

5.2.1 Architecture of the iPSC/860

The iPSC/860 hypercube is the third generation of multicomputing systems
manufactured by Intel. At the time of its introduction in 1990, the iPSC/860 was the
fastest scalable high-performance computer in the world. While previous generations
were based on Intel's x86 architecture CPUs, the iPSC/860 uses processing nodes
based on the i860XR CPU. The i860XR is a 40 MHz RISC microprocessor fabricated
using a 1.0 um CMOS technology, specially developed for high-performance computing
applications. Each compute node can support up to 16MB of physical memory. Both
program and data must fit into this space. Since virtual memory is not supported, this
represents a hard limit on the size of applications.

The processing nodes use a hypercube-connected communication network to
pass messages among themselves. A hypercube of dimension d contains P = 2¢
processors and each processor connects to each of its d nearest neighbors. Two nodes
are neighbors if their node addresses differ by a single bit when expressed as binary
numbers. A message can be passed from any node to any other node in at most d hops,
the number of hops needed being equal to the number of differing address bits. As a
result, many standard operations that access all of the nodes run in O(log P) time.

Example: Figure 5.2 shows a 4-d hypercube network. Nodes 3 (0011) and 11 (1011)
are connected since their addresses differ in the fourth bit. Nodes 0 (0000) and 15
(1111) are 4 hops apart, since all 4 address bits differ. [ |

The network hardware used is the same as that used in the previous genera-
tion iPSC/2 system. As is shown later, this results in a large imbalance between the

111



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

Figure 5.2: Four-dimensional hypercube

compute and communicate speeds of the system. Seven of the eight 2.75 MB/s asyn-
chronous, bidirectional channels in a node’s Direct-Connect Module (DCM) are used to
connect up to 128 nodes in a 7-d hypercube. However, smaller systems are available
that use only some of these links. Unless a node is actually sending or receiving a
message, it is free to continuing computing while the DCM performs all the necessary
message routing functions. The eighth connection is used to attach compute nodes to
optional i386-based I/O nodes. These provide access to a large-capacity Concurrent
File System (CFS) and an Ethernet network. The CFS can provide fast I/O for storage
of output results and the Ethernet connection can be used for interactive graphics.
However, neither of these features is particularly useful in the current situation, since
data analysis and visualization take place on the local workstation which is isolated
from the iPSC/860 by the Internet. Also, since files stored in the CFS are not directly
accessible from the SRM, a special shell (nsk), which runs only on the nodes, must be
started to gather the results and return them to the SRM. As a result, the actual time
needed to access the results may not be improved greatly by using the CFS.

5.2.2 iPSC Software Environment

There are two main categories of software supplied for the iPSC/860: devel-
opment software and cube-management software. These are in addition to the UNIX
operating system that runs on the SRM or the XDS.

Development software consists of compilers, system libraries, debuggers and
performance analysis tools. Since CIDER is written completely in the C programming

112



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

language, only the icc C compiler was needed for this work. The system libraries
contain the standard C libraries with extensions for message-passing, parallel file
access and graphics, and for controlling and finding out about the user’s cube. The
NX/2 operating system is a small-kernel OS that runs on each compute node. It
provides the services contained in the system libraries. The NX/2 kernel is deliberately
kept small since it must share the node physical memory with the application. As
a result, some of the features available in a standard UNIX environment are not
available on the nodes. The message-passing library contains routines for both point-
to-point communication as well as global operations that all processors participate
in. The global reduction routines are the primary communication mechanism used in
CIDER. Efficient routines are available for both integer and floating-point vectors to
find the global minimum and maximum, and for adding and multiplying the vector
elements. In each case, the results are automatically distributed to all processors
via a broadcast at the end of the routine. Because the one-level model-evaluation
algorithm is so simple, debugging of the parallel version is possible without the need
for a parallel debugger. Instead, standard debugging techniques such as insertion of
diagnostic output calls and comparing the output from a test run to a reference copy
are employed. Application tuning has also been performed simply by making program
modifications and observing the effect on the overall run time and the time taken by
certain critical sections.

Cube-management software consists of extensions to the SRM or XDS oper-
ating system. Since NX/2 only supports a single process running on each node, the
cube-management software provides the commands needed to space-share the iPSC.
Because these commands are layered on top of the host OS, running jobs on the iPSC
is more complicated than users are typically accustomed to. Generally, the user must
intervene to allocate a cube, run the job and then release the cube. If the job hangs,
the user must issue a kill command to the processes on his cube, which automatically
releases the cube as well. Since this can quickly become tedious, a C-shell script was
originally written to perform these actions automatically for CIDER. Use of a script
simplifies the task of running jobs for users who are unfamiliar with the details of
the space-sharing mechanism. For example, additional resource management facili-
ties are provided by the NQS network queuing system that is supplied with the iPSC
[IPS92a]. A more sophisticated version of the script that submits jobs to the NQs

113



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

system has recently been written. However, from the user’s point of view the job
submission process remains substantially unchanged.

5.3 Description of the Workstation Cluster

A typical IC design environment is likely to contain a number of engineering
workstations which are used primarily during normal working hours for computer-
aided design. These workstations represent a computational resource that is under-
utilized on nights and over weekends. By harnessing the power of otherwise idle
workstations, speedups can be achieved at essentially no additional cost to the orga-
nization.

The potential of this approach for the current problem has been investigated
by implementing one-level model evaluation on a cluster of DEC workstations con-
nected together via an Ethernet communications network. A portable message-passing
package implemented on top of the basic operating system is used to provide high-level
operations equivalent to those available on the iPSC. However, the resulting paral-
lel system, which conforms to the distributed-memory multicomputer model, is not
scalable. The network has a fixed bandwidth that is approximately three times lower
than the node-to-node bandwidth of the iPSC. In addition, the network is shared by all
computers on the network, even those not actively participating in the parallel com-
putation. As a result, to avoid disturbing normal network operation and to prevent
communication from becoming the performance bottleneck, every effort must be made
to minimize communication in this environment.

5.3.1 Layered Distributed Computing Systems

Many systems have been developed for distributing computation across a
network. In this work, attention was restricted to systems that satisfied the following
criteria:

Publically Available The source code is readily available for free via the Internet.

Portable The package has been ported to a wide variety of serial as well as parallel
platforms.

114



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

Numerically Oriented The system was designed for use in large, numerically in-
tensive computations.

The above requirements are motivated by the desires that the resulting implementa-
tion be available to as wide an audience as possible and that it be relatively easy to
support both a cluster and a hypercube implementation. Three different systems sat-
isfying these criteria were obtained: P4 [BUTL92] and TCGMSG [HARR91] developed
by researchers at Argonne National Laboratory and PVM [SUND90] originating from
Oak Ridge National Laboratory. Both P4 and TCGMSG are successors to the earlier
PARMACS [BOYLS87] portable parallel-programming macros. Each system provides
a low-level message-passing application-programmer interface to allow the individual
computers to communicate. However, only the first two have built-in operations for
global reduction, so PVM is at a disadvantage in this respect. Since the primary goal
is to develop a working prototype quickly, no attempt has been made to obtain com-
parative performance results for each system to determine which system is best. In
an Ethernet environment, more fundamental limits are imposed by the network, so
an efficient implementation of the message-passing software is not of major concern.
As a result no claim is made that the system chosen is in general the best system to
use for distributed computing, but only that it is best for this application.

After installing and working with each system on test programs it has been
decided that the TCGMSG package is the simplest to use, to modify if needed, and to
support on both the iPSC and the workstation cluster. In part this is because TCGMSG
is basically an abstraction of the message passing interface of the iPSC. A thin layer of
software allows the native iPSC message-passing routines to be used in the iPSC port
of TCGMSG. The extra layer of software adds a small amount of time to the overhead
when starting a new message. No noticeable deterioration in performance has been
detected when using the TCGMSG interface instead of the native routines in the iPSC
implementation of the one-level model-evaluation algorithm.

5.3.2 Network Hardware Environment

The iPSC/860 hardware is composed of a few well-defined components; vari-
ation is restricted primarily to the number of nodes in the system and the amount of
memory installed per node. In contrast, there are limitless variations possible in a

115



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

Machine iPSC/860 DEC cluster
Number of Nodes 32 60

Node CPU 1860 XR MIPS R3000/3010
Clock Rate 40 MHz 25 MHz
Memory/Node 16MB 32MB

Nominal Data Rate | 2.8 MB/s 1.25 MB/s
Connectivity Hypercube Bus

Node OS NX/23.3.2 Ultrix 4.2a

C Compiler PGC Sun4/4.0 2.0a | MIPS 2.1
Optimization Level | -O2 -02

Table 5.1: Comparison of Parallel Machine Configurations

distributed computing environment. Node instruction-set architectures, clock speeds
and operating systems can all vary from one machine to another. In addition, the
network bandwidth, which is very important in distributed computing, can vary by
an order of magnitude or more from one installation to another. This sort of hetero-
geneous computing environment makes distributed computing challenging since care
must be taken when using different types of machines that the information passed
does not become corrupted. Taking this into consideration, it is important whenever
discussing performance to identify as well as possible the system being tested.

In this work, the cluster consists entirely of DECstation 5000/125 worksta-
tions connected by a 10Mb/s Ethernet. Although other computers are available on
this net and TCGMSG does support heterogeneous computing, it has been decided
that debugging, performance evaluation and load balancing are greatly simplified if
the cluster is restricted to a homogeneous configuration. Distributed computation is
enabled by layering the TCGMSG message passing system on top of the native Ultrix
4.2a operating system of the DECstation. Table 5.3.2 shows a comparison between the
iPSC/860 and the DEC cluster configurations.

The nodes of these two configurations have been included in the CIDER serial
benchmark tests of Chapter 3. Those tests establish the computational performance
of the nodes. The general communication performance of the iPSC has been reported
in [DUNI91]. However, the specific performance for global reduction is not included
there. A test program has been used to specifically exercise double-precision global
reduction when adding together vectors of various lengths. This program has been run
on both the iPSC and the DEC cluster in order to allow comparison between the two.

116



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

In both cases, measurements are made using wall clock time. On the DEC cluster,
this causes the times to vary significantly from one run to another due to interference
from the other machines on the network. However, this seems to be the fairest way
to measure time in such an environment, since idle time can account for a significant
portion of the runtime in mixed-level simulations for machines that are assigned fewer
or less computationally demanding numerical devices. If CPU time were to be used
instead, the idle time would not be reported on the lightly loaded machines.

Figure 5.3 shows the time taken for global reduction on the iPSC for cube
sizes of 2, 4, 8, 16 and 32 processors and vectors up to 2000 entries in length. The

iPSC/860 Global Reduction Time
mSeconds

14.00

ooooooo

,d‘."' opn .= o? .
ra Pod
12,00 ..i:"'. e o I

-~
10.00 o~ ‘“’f r” rl

o
8.00 — —
g .4:’,/‘
r o o)
J. ..0 " “l‘
6.00 o
o " ase®’
g U4
3 K ¢ -
4.00 s et
.o'. "f‘/ M‘“’
o o
o

-...O‘ lﬂ'f
2.00 (e -
o .o"' ...“
beod Nl
o o"‘“
e
0.00 kEntries
0.00 0.50 1.00 1.50 2.00

Figure 5.3: Global reduction execution time on the iPSC/860 for different numbers of
processors and vector lengths

maximum time is just under 15 milliseconds. In Figure 5.4 the time taken on the
DEC cluster under the same conditions is given. Five runs have been performed to
accumulate enough data that statistical variation is observed. Here the maximum
time is measured in seconds. As the number of processors is increased, the likelihood
of interference also increases, so the data are more scattered for P = 16 and P = 32.

117



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

DEC Cluster Global Reduction Time
Seconds

* e P18°

AAAAAAA

kEntries

Figure 5.4: Global reduction execution time on the DEC cluster for different numbers
of processors and vector lengths

Except for the 32 processor DEC cluster and for the larger iPSC cubes operating on
short vectors, the execution time is reasonably modeled with an equation of the form:

T=a+pL (5.1)

where a, § are parameters that depend on the number of processors and L is the length
of the vectors. It is expected that both « and 3 should grow as O(log P) since that is
how many message-passing steps are needed for global reduction. Table 5.2 shows the
parameters obtained by fitting the previous expression to the data in the two figures.
For the DEC cluster, the minimum time taken at each vector length was used in order
to obtain a lower-bound estimate for the time. Theoretically, there is no upper bound
since any machine in the cluster may be arbitrarily loaded down during the course of
the reduction operation. These extracted coefficients quantify what is already apparent
from the figures: that the iPSC time grows slowly as additional processors are added,
whereas the cluster time grows almost linearly with the number of processors. This is

118



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

Number of Processors
# of Processors iPSC/860 [ DEC Cluster

o B a B
2 06ms (30us| S5ms| 36pus
4 12ms |45pus || 11ms | 83 us
8 1.7ms | 54 pus || 16 ms | 158 us
16 22ms | 5.8 us || 26 ms | 352 us
32 2.6ms | 6.1 us || 46 ms | 940 us

Table 5.2: Extracted global-reduction-time coefficients for different numbers of proces-
sors and machine architectures

due to competition among the cluster nodes for access to the Ethernet. Both machines
have high message startup times in the millisecond range. For a typical vector length of
500, the models predict that a 16-node iPSC subcube would take about 5 milliseconds
while the DEC cluster would take around 0.2 seconds, a factor of 40 higher. This
indicates that communication performance is a more important factor in determining
overall performance on the DEC cluster.

54 Implementing Parallel Model Evaluation

The implementation of one-level model evaluation is based on the SPMD pro-
gramming modell. Each compute node runs the CIDER executable, but is responsible
for a different set of circuit elements. The implementation is hostless; there is no need
to run a control process on the SRM of the iPSC to execute the non-parallel sections
of the code. Nodes exchange information when necessary and duplicate tasks so that
certain key data structures such as the circuit sparse matrix remain consistent across
all processors.

The modifications to the source code needed to parallelize CIDER are very
minor. One additional member is added to the circuit-element data structure that
stores the address of the node that owns that element. The owner node is responsible
for all updates to the circuit matrix for the element. The owner field is used to bypass

IThe description that follows is oriented towards the iPSC implementation. On the workstation
cluster, compute node refers to one of the computers being used and the host and host process should be
interpreted as references to the user’s own workstation and a separate process running there.

119



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

elements that are not owned by a node. Figure 5.5 shows the main loop of the resistor

register RESmodel *model = (RESmodel *)inModel;
register RESinstance *here;

/* loop through all the resistor models */
for( ; model != NULL; model = model->RESnextModel ) {

/* loop through all the instances of the model */
for (here = model->RESinstances; here != NULL ;
here=here->RESnextInstance) {

if (here->RESowner != ARCHme) continue;

* (here->RESposPosptr) += here->RESconduct;
* (here->RESnegNegptr) += here->RESconduct;
* (here->RESposNegptr) —-= here->RESconduct;
* (here->RESnegPosptr) == here->RESconduct;
}
}

return (CK) ;

Figure 5.5: Main loop of resistor loading code

loading code demonstrating this bypass step. The line indicated is the only line needed
to parallelize this particular loop. Similar small changes are needed in the other files
associated with a particular type of device, amounting to a total of less than 20 lines
of code for each type of device. Since certain information about the state of a device is
needed only by that device, memory for this information is only allocated by the owner
node. This can provide a significant savings in memory usage when numerical devices
are used, since the device-dependent information for a numerical device is significant.
For example, the L/U factors of a device-level matrix are include in this category. The
disadvantage of this approach is that dynamic load balancing is essentially useless in
this system, because the cost of transmitting all this information to another processor
is prohibitive.

Although the changes to the model libraries of CIDER are minimal, this is
less true for the main simulation driving routines. Trivial changes are needed to the
frontend to initialize the architecture variables (node id and size), open various output
files (one diagnostic output for each node, one rawfile for the simulation output) and

120



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

ensure that the simulator output file is only written by one node.

The more interesting changes are in the simulator core. The first core routine
encountered in an analysis is the circuit setup routine. All processors receive a copy
of the input file which they use to setup a circuit’s data structures. Once this is
done, the devices are divided among the processors by the partitioner. It is impossible
to automatically parallelize this step at compile time because the number of circuit
elements depends on the circuit being simulated. The iPSC implementation uses a
much simpler approach to partitioning than the one described in Section 4.9. Using
a loop, circuit elements are assigned to the processing nodes in round-robin fashion.
This has the effect of evenly distributing the numerical devices among the nodes as
best as is possible since they are all grouped together at the end of the loop. Although
simple, this approach seems to work fairly well in practice. However, it has obvious
limitations that are exposed in Section 5.5.4.

Because there is no process running on the host computer available to execute
the serial sections of code, one or more compute nodes must be used to do this while the
remaining nodes sit idle. Two options for this problem have been considered: run the
serial code on one processor and broadcast the results as needed, or alternatively, run
the serial code on all processors and make sure that all data structures accessed by a
serial section of code are identical at the beginning of the section. The second approach
is the more attractive of the two. Its disadvantage is that it takes roughly twice as long
to gather data together since extra communication is needed to broadcast the necessary
data. However, since this functionality is built in to the iPSC global reduction routines,
separate less efficient routines would have to be written to avoid this step. One
advantage is that less communication may be needed later in the algorithm. For
example, if solution of the circuit sparse matrix is done on one processor, a broadcast is
needed to send that solution to the rest of the processors which need it so that devices
can properly load the circuit matrix on the next iteration. Another advantage is that
it is easier to program because each node is free to execute any section of code without
risk that the necessary data is not present. This allows the elimination of tests that
would be need to be scattered through the code to prevent the use of uninitialized or
incorrect variable values.

121



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

5.4.1 Global Combining

The decision to use duplication of serial tasks on all processors is based
strongly on the availability of efficient global reduction operations on the iPSC. These
operations are needed at three points during the circuit Newton-Raphson loop: after
each processor computes its entries in the circuit (during CKTload), after each pro-
cessor checks convergence of the circuit variables (during CKTconvTest), and while
computing the next time step in a transient analysis (during CKTtrunc and DCtran?).
Summing the local circuit matrices is the most difficult of the three; the other two
are very simple. Convergence testing requires an integer global sum to find the num-
ber of nonconverged devices. Timestep control uses floating-point global-minimum
operations to find the minimum allowed timestep.

Figure 5.6 shows the flow of data during this step of the one-level model-
evaluation algorithm. After the individual processors load their local matrix copies
they are combined via message-passing floating-point global-sum operations into a
global matrix that is then broadcast so that each processor has a copy. Each processor
then proceeds by computing its own local circuit L/U factors and continuing until it is
necessary to test for convergence. In addition to combining the circuit matrix, extra
combines are needed to check for errors during the load step (an integer operation)
and to combine the RHS vector (a floating-point sum operation). Error checking occurs
prior to combining the circuit matrix, while the RHS vector is passed along with the
circuit matrix and combined at the same time.

Three different strategies for combining the local circuit matrices have been
considered. These strategies differ in the number of communications needed and the
amount of memory needed. The amount of memory varies because an extra commu-
nication buffer is needed to hold incoming messages prior to actually performing the
requested operation. The amount of memory needed is thus proportional to the length
of the messages sent. Combining the local matrices is complicated by the fact that
the sparse matrix package uses a linked-list data structure for storing and accessing
the matrix elements. Since global reduction operates on an array of values, the ma-
trix elements must be copied out of the matrix data structure into a buffer. Only the
original non-zero elements need to be copied, since the fillin values are all zero prior

2DCtran is the SPICE3 subroutine that contains the transient analysis driving loop.

122



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

Parallel
Processing

[ e e e i ——

Parallel
Processing

Figure 5.6: Flow of data during CKTload and CKTsolve

to factoring the matrix. However, the existing data structures in the serial version of
SPARSE do not allow easy identification of the original sparse-matrix elements. By ex-
tending the data structures with a list that keeps track of these elements, the parallel
version allows the original non-zeroes to be marked during a preprocessing step by
scanning the list. Only the marked entries are copied into the buffer. The row index of
an element is used as a marker flag, thereby eliminating the need for extra memory to
hold it. The row index is restored in a subsequent post-processing step when the data
is copied back into the matrix from the buffer. To avoid the gathering step entirely,
one might consider initially allocating the matrix elements from a common pool that
is already stored as an array. However, this is not feasible in the current implemen-
tation because the matrix element data structure contains other members besides the

123



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

actual data. Although it would be possible to change the data structure, the necessary
modifications would permeate the sparse matrix package and would likely degrade
the serial performance. Alternatively, more sophisticated global-combine operations
that use a non-unit stride as they scan the array would make it possible to skip the
intervening data.

The three approaches considered differ in the amount of the sparse matrix
buffered before the matrix is combined. Each procedure makes three passes through
the entire matrix: one to mark the original non-zeroes, one to buffer the elements
before combining and one to unbuffer afterwards3. The methods are:

Row-by-Row One row (or column) of the sparse matrix is buffered for each combine

operation.
All-Rows The entire matrix is buffered in one step before it is combined.

Fixed-Length A buffer that can store a fixed number of elements is set aside initially.
Elements are added to the buffer until it becomes full or there are no elements
left. The buffer is then combined.

The row-by-row method is the simplest to implement and requires no extra memory
since the circuit solution vector and an intermediate vector can be used for the ele-
ment and communication buffers. The all-rows approach is also straightforward to
implement, but requires twice the memory needed to store the matrix data since no
suitable element and communication buffers are available. This could be a problem if
a large circuit matrix is encountered. The fixed-length approach is the most difficult
to implement because it is necessary to periodically interrupt the buffering process,
possibly in the middle of a row, to combine and unbuffer. The amount of memory used
can be varied over a wide range. Two possibilities that limit this quantity are to use
the same buffers as used in the row-by-row approach or to allocate fixed length buffers
at compile time. Both approaches handle the occurrence of a large matrix gracefully.
The volume of communication is equal in all three cases to the number of
original non-zero elements in the matrix. If the overhead to send a message were

SAn attempt to save time by combining the first two passes by buffering the non-zeroes in an order
unrelated to their location in the matrix produced incorrect results. Further investigation is needed to
clarify the source of this problem, but for the present, no real harm is done because the time for the
additional pass is not significant compared to the communication time.

124



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

negligible, they would all take time proportional to the number of elements. However,
message startup time on the iPSC is significant, and the approach that sends the
fewest messages runs fastest. Since the all-rows approach uses the minimum of one
combine operation, it is guaranteed to send the fewest messages as well. The row-by-
row approach uses one combine for each row in the matrix, and each operation is very
short (< 10 elements per row is typical of sparse matrices), the message overhead is
very high and this approach has the poorest performance. The fixed-length approach
uses a number of combine operations equal to [%] , where N is the number of matrix
elements and L is the length of the buffer. If L is greater than N, only one combine is
needed in the fixed-length approach and its performance is equivalent to the all-rows
approach. If L does not scale with problem size, as the matrix size grows, more and
more combine operations will be needed. However, the performance will not degrade
significantly if L is chosen so that the message startup time is a small fraction of
the total message time. If L is scaled with problem size by using spare RHS vectors,
the number of combine operations will be equal to the average number of elements
per row, which should be relatively constant as problem size grows. (This assumes
that fillin elements are skipped. If fillin elements are also combined, the average
number of elements per row will grow with problem size.) The obvious disadvantage
of this approach is that the common case of a small mixed-level circuit matrix will
need multiple messages rather than a single one if a longer buffer were used.

Based on the above considerations and the results of tests of implementations
of all three methods, the fixed buffer approach is used in CIDER. Its main advantage is
that it minimizes the number of messages sent compared to the row-by-row approach.
This is important on both the iPSC and the DEC cluster since message startup time
is not negligible, as shown in Section 5.3.2.

5.4.2 An Alternative Programming Approach

The one-level model-evaluation algorithm lends itself naturally to a client-
server (or host-node) view of the computation [MEIN90]. The circuit simulator is the
client and the device evaluator (which includes or communicates with the device sim-
ulator) is the server. On the iPSC, the host program typically would run on the SRM
while the node program runs on the compute nodes. The host-node model is not used

125



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

on the iPSC for two reasons. First, two separate programs need to be maintained in
the host-node approach. This increases both initial development costs and later main-
tenance costs. Special interfaces must be written to pass information such as model
parameters between the host and node programs. These interfaces are complicated by
the fact that SPICE3 relies heavily on pointer-based data structures which are difficult
to pass in messages?. Also, communication must take place across the host-to-node
link which has limited bandwidth [DUNI91]. This could become a performance bot-
tleneck if many nodes are trying to communicate with the host simultaneously. This
would also be true in a workstation cluster.

The second reason that the host-node model is not used is peculiar to the
design of SPICE3. It has been mentioned earlier that state information is saved for
many devices in the circuit. The primary examples of this are the previous solutions at
the circuit and device levels that are needed during a transient analysis. For SPICE3
which was designed to simulate large circuits, it would be inefficient to let each device
exchange its few state variables each time a new timestep was accepted. Thus, this
variable state information is collected into one long array and each device stores the
indices of its entries. The simulator core is then able to allocate, deallocate and swap
state information for the entire circuit simply by dealing with the state array as a
whole. In effect, information that could be hidden in each device is exposed to the
circuit in order to improve efficiency. However, this whole approach is a problem
when the circuit and the devices reside on different processors because they must
now communicate the state information back and forth, or the simulator core must be
modified to allow devices to manage their own states. The second method would need
to be restricted to the numerical devices in the circuit where the overhead would be
small. In that case, the compactly modeled devices would be assigned directly to the
host. Unfortunately, either method would require more extensive modification of the
program to implement.

The above two concerns are not as important when linking separate stand-
alone circuit and device simulators together. In such a situation, the programs are
already being maintained and the extra development cost of linking them using the

“The main difficulty in passing pointersin messages is that the address spaces of the individual nodes
are not shared. Thus, the pointer on one machine is not likely to point to the same item on another
node, but is in fact very likely to point to something random. Special care must then be taken when
pointer-based structures need to be communicated.

126



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

Circuit # Ckt Elts | # Num Devs (Type) | # Ckt Eqns | # Dev Eqns | Analysis
ASTABLE 8 2 (1D NPN) 9 354 | TRAN
BICMPD 9 2 (2D NMOS+NPN) 19 3745 | TRAN
BICMPU 6 2 (2D PMOS+NPN) 13 3745 | TRAN
CLKFEED 16 3 (2D NMOS) 22 8889 | TRAN
CMOSAMP 5 8 (2D CMOS) 14 21312 | DC
DBRIDGE 3 4 (1D DIO) 7 2388 | TRAN
ECLINV 9 4 (2D NPN) 14 4324 | DC
ECPAL 9 4 (2D NPN+PNP) 12 4948 | AC
GMAMP 13 5 (2D NMOS+NPN) 11 8571 | AC
INVCHAIN 10 4 (1D NPN) 13 708 | TRAN
MECLGATE 24 11 (1D NPN) 29 1947 | TRAN
LATCH 14 14 (1D NPN) 24 17010 | TRAN
PPEF.1D 5 4 (1D NPN+PNP) 16 4854 | TRAN
PPEF.2D 5 4 (2D NPN+PNP) 16 4948 | TRAN
RINGOSC.1U 58 14 (2D CMOS) 124 37296 | TRAN
RINGOSC.2U 58 14 (2D CMOS) 124 12894 | TRAN
VvCO 10 6 (1D NPN) 9 1062 | TRAN

Table 5.3: Parallel benchmark-circuit characteristics

host-node approach is less significant. However, the performance would still be de-
graded by the node-to-host link.

5.5 Parallel Performance Assessment

In this section the performances of both the iPSC and the DEC cluster im-
plementations are presented. Several limitations of the one-level model-evaluation
algorithm are also identified and examined.

5.5.1 The Parallel Benchmark Inputs

A set of 17 circuits is used to test the parallel performance of CIDER. All
circuits contain multiple numerical devices so that one-level model evaluation is at
least potentially effective in producing performance improvement. In Table 5.3, the
characteristics of the circuits and the analyses performed are summarized. A wide
range of circuits are represented in the benchmark set. This demonstrates the general

127



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

applicability of CIDER to circuit design and is also useful in testing the program5.
The circuits are drawn from several sources and include digital, analog and nonlinear
analog designs. Five circuits are taken from the serial benchmark set, and the input
listings are identical to those found in Appendix B. Listings for the remainder are
found in Appendix C. In two cases (PPEF,RINGOSC) the same circuit has been run
more than once using different models for the numerical devices. The circuits range in
size from the smallest, 2 numerical device, 354 device-level equation ASTABLE circuit
to the largest, 14 numerical device, 37296 device-level equation RINGOSC.1U circuit.

5.5.2 Results for the IPSC/860

On the iPSC, each circuit has been run on every subcube of the system where
adding processors reduces the number of numerical devices per processor. Since the
maximum number of numerical devices is 14, the full 32-node hypercube is never
needed in these tests. In many cases, the limited memory of a single hypercube node
prevents large circuits from being run on small subcubes and this is indicated in the
tables of results. In each case, the subcube must be allocated before the run, loaded
with the executable, and then deallocated after the run. This time typically takes
about 30 seconds, and has been excluded from the measurements. Execution time is
measured using wall clock time because it is not possible to obtain the actual CPU
time. However, as mentioned in Chapter 3, the CPU time is close to wall clock time
because the iPSC nodes only contain one process at a time. Because the individual
processors take slightly different amounts of time to complete, the largest processor
time is taken as the runtime.

In Table 5.4, several measures of the time taken on the iPSC/860 by the
parallel version of CIDER are presented. Each entry contains 4 numbers: the total
analysis time followed by the overall speedup, the time for the main analysis only (DC,
AC, etc.), and its speedup. For AC and transient analysis, this means the total time
includes the time to calculate the initial operating point. For DC analysis, the main
analysis is not separable so the entry is omitted. When necessary, the execution time
for a single hypercube node is estimated by summing the times spent evaluating the

5Several bugs in the serial code were discovered only after running the parallel version on different
numbers of processors and obtaining substantially different results.

128



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

Number of Processors
Circuit 1 2 4 8 16
ASTABLE 275 | 168 (1.64) | — — —
272 | 166 (1.64)| — — —
BICMPD 67637 | 4950 (1.37) | — - —
6162 | 4490 (137 | — — —
BICMPU 46007 | 3132 (147)| — — -
4038t | 2739 4| — — -
CLKFEED 147817 | — 5423 (2.73)| — —_
125541 | — 4585 (2.74) | — —
CMOSAMP 228921 | — — 4497 (5.09) —
DBRIDGE 1170 | 606 (1.93) | 369 (3.17)| — —
1156 | 599 (1.93)| 366 (3.16) | — -
ECLINV 29037 | 1652 (1.76) | 975 (2.98)| — —_
ECPAL 2125' | 1072 (1.98) | 568 (3.74) | — —
1446 | 723 (2000 | 390 @71 — —
GMAMP 35651 | — _ 1201 (2.97) —
1853t |  — —_ 497 (3.73) _
INVCHAIN 93| 57 @@e63)| 41 @2n| — —
84| 51 (165 | 33 (254)| — —
MECLGATE 261 | 151 (1.73)| 95 (2.75)| 172 (3.63) 59 (4.42)
_ 239 | 138 (1.73)| 85 (2.82)| 62 (3.85) 48 (4.98)
LATCH 54691 | 2952 (1.85) | 1798 (3.04) [ 1065 (5.14) | 641 (8.53)
53121 | 2871 (1.85) | 1753 (3.03) | 1041 (5.10) | 624 (8.51)
PPEF.1D 205 | 105 (1.95)| 57 (3.60)| — -
164 | 8 (193)| 46 (357 — —
PPEF.2D 3896t | 2019 (1.93) | 1191 @©B2n| — -
3173t | 1650 (1.92) [ 1001 3.17)| — —
RINGOSC.1U | 1320487 | — — — 11067 (11.93)
1266250 |  — — — 10471 (12.09)
RINGOSC.2U | 208707 | — 6270 (3.25) | 3397 (6.00) | 1869 (10.90)
196751 | — 6033 (3.26) | 3275 (6.00) | 1800 (10.93)
VCO 502 | 282 (1.78) | 212 (2.37) | 129 (3.89) -
495 | 279 (.17 | 208 (2.38)| 126 (3.93) —

Table 5.4: Execution time and speedup on the iPSC/860 system. The entries are: total
execution time in seconds (overall speedup) and time for the main analysis in seconds
(its speedup). Entries marked — could not be run on that cube. Entries marked { are
estimated times. See text for details.

129



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

numerical models on a larger cube®. Since this excludes a small amount of computation
these estimates are slightly optimistic for the serial run time, so the actual speedup is
slightly higher than reported here.

In all cases, use of one-level model evaluation decreases the overall run time.
However, the efficiency and speedup vary from circuit to circuit. In some cases, the
speedup is very good (over 1.9 on 2 processors for the PPEF benchmarks, around 12
for the 14 device RINGOSC.1U circuit). In other cases, the speedup is much less
substantial (a best improvement of only 37% for the BICMPD example, a speedup of
4.4 on 16 processors for MECLGATE).

5.5.3 Results for the DEC Cluster

On the DEC cluster, different size processor groups are also used to run the
benchmarks. However, since the number of processors is not restricted to be a power
of two, the minimum number of processors needed is used when scaling the group size.
For example, the MECLGATE circuit is run on clusters of 2, 3, 4, 6 and 11 processors.
This results, respectively, in at most 6, 4, 3, 2 and 1 devices per processor. The memory
per computer in the cluster is higher, so theoretically it should be able to run large
circuits on smaller groups than in the hypercube case. However, because the DEC
machines are roughly 3 times slower than the iPSC nodes (c.f. Section 3.4) the time
taken on a small machine may be infeasibly large. For example, the RINGOSC.1U
example takes over 12 hours to complete when running in a 14-DECstation group.
Although, it would also fit in main memory on a 7-processor group, it would take over
a day to complete one run. For similar reasons it is infeasible to compare run times
to those obtained on a single-processor CPU server such as the DECsystem 5000/240.
However, execution times for a single workstation have been estimated in the same
way as on the iPSC, by summing individual processor model-evaluation times. For
simplicity this has been done for all the benchmarks including the ones that fit easily

on one workstation.

Another difficulty in benchmarking network applications has already been

The size of the larger cube does not matter since no parallelism is exploited during the individual model
evaluations. Thus, comparable results are obtained if any larger cube is used. However, for consistency,

the smallest cube that successfully completes the simulation is used to provide the model-evaluation
times.

130



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

encountered in the context of measuring the communication performance of the cluster.
This is the problem of randomly varying run times caused by differing amounts of
load on the individual workstations and of network traffic. These variations can
significantly increase the run time above that achievable in a quiet environment.
To combat this problem, the network tests have been run on nights and weekends.
Workstations are selected by a program that chooses the most lightly loaded machines
from the available pool of processors. This time can be significant’; in some cases it
is longer than the time required to perform the actual simulation. In addition, when
practical, multiple runs are performed and the lowest time encountered for a single
run is reported. Unfortunately, the outcome of this is that the most reliable timings are
obtained for the circuits with the poorest parallel performance. However, the timings
of the long running examples are sufficiently accurate to give a general idea of the
performance being achieved. In Figure 5.7, the results on the DEC cluster for the
LATCH example are plotted. The times usually cluster about a minimum value for a
given cluster size, but in several cases one or two of the runs take much longer.

In Tables 5.5 and 5.6, the minimum observed times for the parallel version of
CIDER running on the DEC cluster are given. The speedup quoted is the best observed
for any run, where the speedup is calculated by dividing the measured run time by the
estimated serial run time.

Based on these results, the benchmarks can be divided into three groups:
those whose best speedup is roughly equal to that obtained on the iPSC (BICMPD,
BICMPU, CLKFEED, CMOSAMP, ECLINV, ECPAL, GMAMP, PPEF.2D) , those that
speedup, but not as well as on the iPSC (DBRIDGE, LATCH, PPEF.1D, RINGOSC.1U,
RINGOSC.2U), and those that start to slow down when more processors are used
(ASTABLE, INVCHAIN, MECLGATE, VCO). A look at the characteristics of the cir-
cuits in each class confirms the supposition that the performance difference between
the iPSC and DEC cluster generally decreases as the per-iteration model-evaluation
time increases8. This is not surprising since the major difference between the two

71t takes about 3 minutes to obtain the CPU load for each of the 40 machines used in these tests. Of the
60 machines available, the other 20 were left out for several reasons, the most common being a request
from the machine’s primary user.

8The one obvious exception is the RINGOSC.1U example, which uses the same models as the other 2P
benchmarks. This may be simply be an artifact of the limited number of runs (2) made for this benchmark.
It could also be due to the large number of processors and the long run time which make it more likely
that other jobs will interfere with a parallel job, thereby disrupting load balance.

131



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

Circuit
#Proc. | ASTABLE BICMPD BICMPU
1 3251 204171 143597
323t 189561 129911
2 409 (0.81) | 14590 (1.42)| 9711 (1.51)
405 (0.81)| 13483 (1.42)| 8784 (1.51)
DBRIDGE ECLINV ECPAL
1 19721 87471 56071
19561 —_ 40001
2 1140 (1.73)| 5145 (1.75)| 2834 (1.98)
1130 (1.73) — 2003 (2.00)
2 867 (2.28) | 3002 (2.91)| 1542 (3.69)
861 (2.27) — 1096 (3.70)
CLKFEED CMOSAMP GMAMP
1 464501 683731 95441
40598t — 5092f
3 17384 (2.67) — —
15140 (2.68) — —
5 — — 3207 (3.01)
— — 1359 (3.75)
8 — 13819 (4.95) —

Table 5.5: Execution times on the DEC cluster in seconds. The entries are; minimum
observed total execution time (best overall speedup) and minimum observed time for

the main analysis (best analysis speedup). Entries marked t are estimated times.

132



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

Circuit
#Proc. | PPEFID PPEF.2D
1 3671 120517
318t 103221
2 199 (1.85) 6300 (1.91)
174 (1.84) 5781 (1.92)
4 122 (3.09) 3753 (3.21)
107 (2.99) 3279 (3.15)
INVCHAIN MECLGATE VCO
1 103! 3051 6031
94f 28st 5991
2 101 (1.02) 234 (1.32) 482 (1.25)
96 (0.98) 221 (1.32) 478 (1.25)
3 — 201 (1.56) 435 (1.41)
— 190 (1.55) 432 (1.41)
4 111 (0.93) 209 (1.49) —
106 (0.89) 197 (1.48) —
6 — 210 (1.49) 485 (1.25)
— 199 (1.47) 482 (1.24)
11 — 257 (1.29) —
— 243  (1.22) —
LATCH RINGOSC.1U | RINGOSC.2U
1 105621 4257691 493287
103821 4134061 483851
2 5850 (1.81) = =
5757 (1.80) — —
3 4414 (2.41) — —
4344 (2.40) — _
4 3825 (2.80) — —
3770 (2.79) — —
5 3179 (3.35) — —
3134 (3.34) — —
7 2571 (4.19) — 8977 (5.55)
2532 (4.12) — 8809 (5.55)
14 1994 (5.45) | 42522 (10.22) | 5688 (8.67)
1971 (5.41) | 41030 (10.27) | 5584 (8.67)

Table 5.6: Execution times on the DEC cluster in seconds. The entries are: minimum
observed total execution time (best overall speedup) and minimum observed time for
the main analysis (best analysis speedup). Entries marked } are estimated times.

133



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

DEC Cluster Times for LATCH
kSeconds

Minimum Trial
° qxﬁu’ﬂ’q';f:nn

14.00

-]
o
12.00 2
10.00 i\
8.00 \
6.00 \u
4.00 8

2.00

/f

0.00

0.00 5.00 10.00 15.00

Figure 5.7: Total execution time for LATCH on the DEC cluster. Single processor
times are the sums of the device-level times from each multiprocessor run.

parallel machines is the performance of the communication network which is less im-

portant when relatively more time is spent at the device-level than at the circuit-level.

5.5.4 Observed Limitations

The one-level model-evaluation algorithm has several limitations that become
apparent in these two implementations. As a result, in many cases the ideal speedup
of P on P processors has not been achieved. However, in some cases nearly ideal
speedup is obtained. In this section, the limitations are identified and examples
from the benchmark set are used to illustrate how the limitations can be of practical
importance. In addition, strategies for overcoming these limitations by exploiting
special cases are introduced.

134



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

Limited Number of Devices

The first and most important source of difficulty often is the limited paral-
lelism available to exploit in one-level model evaluation. The maximum number of
devices in the benchmark circuits is 14, so even though more processors are available
on both the hypercube and the cluster, they can not be used. This limitation comes
into play on every circuit, although it is more obvious when the number of numerical
devices is very small as in the ASTABLE, BICMPD and BICMPU circuits. The main
way to overcome this problem is by running multiple simulations at once; i.e. use
design-level parallelism. By using the extra processors as a way to increase system
throughput, the time to finish a design task is greatly reduced. This approach has
been used often when running the simulations described in Chapter 6.

Example: On one weekend, while performing a device characterization application,
2 MOSFET device designs were simulated at 7 channel lengths with 3 sets of bias
conditions applied to the devices. In total 42 simulations were run. By using the large
number of DS5000/125 workstations and one DS5000/240 compute server in the DEC
cluster, the simulations were all completed in less than a day. The shortest simulation
took 8 hours 20 minutes to finish, the longest took 18 hours 53 minutes and the average
job took 12 hours 49 minutes. The faster compute server was able to finish 2 of the
jobs during this period. Overall, the 42 jobs would have taken roughly 538 hours or
22 days to complete on a single workstation. The speedup was therefore about 28 and
the efficiency was about 70%. [

Processor - Device Count Mismatch

The next limitation is the mismatch between the number of processors avail-
able and the number of numerical devices in the circuit. The speedup in this case is

limited by Equation 4.5 as repeated here:

S(D,P) = -2~ (5.2)

2]
where D is the number of numerical devices. This limit is a bigger problem on the
hypercube, where the number of processors must be a power of two. Only some of the
circuits have a device count That is also a power of two (e.g. DBRIDGE, CMOSAMP).
Even when the number of processors can be tailored to the problem, few good choices

135



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

may be available that exactly divide the number of processors. (Consider the case
where D is prime. Only when P = D will no performance loss be caused by this
problem.) In actual practice, this limitation has thus far been overcome by taking
P > D whenever possible and living with the resultant waste of some of the processors
when P > D.

Task Size Imbalance

Many of the circuits use a different numerical model for each kind of device
in the circuit. For example, BICMPD, BICMPU, and GMAMP are BiCMOS circuits
that contain both bipolar and MOS devices. Since different meshes are needed to
accurately simulate each kind of device, the time per iteration per device varies from
one to the next. This effect is accounted for in the speedup model of Equation 4.6
and in the annealing load balancer of Section 4.9. Another example of this problem is
when one-carrier simulation is used for the MOS devices as in all of the benchmarks.
Then the time per iteration is different for bipolar and MOS devices even if the mesh
sizes are similar because only 2 of the 3 semiconductor device equations are solved
for the MOS devices. A third example of this problem accounts for the some of the
differences in job execution time in the MOS device characterization example because
devices with different channel lengths need different mesh sizes. A final case that is
not represented in the benchmark set is when one- and two-dimensional numerical
device models are mixed in the same circuit.

Many of the benchmark circuits suffer from this problem, however the two
PPEF examples are the most interesting. These two circuits use numerical bipolar
models and have 2 NPN devices and 2 PNP devices. (PPEF.1D uses 1P models and
PPEF.2D uses 2P models.) On two processors, the round-robin partitioner puts 1 NPN
and 1 PNP on each processor leading to almost perfect load balance; the efficiency on
the iPSC/860 is greater than 95%. However, on 4 processors the difference between
the NPN and PNP device meshes is exposed and the efficiency drops to 90% and 80%,
respectively for the 1P and 2P cases. The drop is less pronounced in the 1P case because
the mesh sizes are closer to one another.

The simplest way to overcome this problem is by trying to match the mesh
sizes for the numerical devices as much as possible. However, this will in general

136



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

result in either compromised accuracy for devices whose mesh size are reduced or

extra unneeded accuracy for devices whose mesh sizes are increased.

Latent Devices

Even for circuits with identically modeled devices (e.g. DBRIDGE, ECLINV,
MECLGATE), the speedup predicted by Equation 4.5 may not be achieved. This is
caused by a fourth nonideality: differences in the activity of the numerical devices in
the circuit. During DC and transient analysis, some of the devices become latent and
are bypassed during the model-evaluation phase. Also during DC analysis, different
iterations counts may be needed to obtain convergence of the device-level Newton-
Raphson iteration. For AC analysis, latency is not as big a problem because at least
one device-level solution is needed for every device in the circuit at each frequency
point. Some imbalance may result because an iterative AC solver is used in DSIM.
However, the iterative solver usually converges in 2 iterations, and if it fails a single
direct-method solution is performed instead. As a result, if the numerical device models
are identical, most of the time the same amount of work is done for each numerical
device.

The effects of latency are accounted for in the serial execution time models
of Equations 3.3 and 3.4. An equation for the parallel execution time in the presence
of latency is now derived. For simplicity, the numerical models are assumed to be
identical. In the serial case, one time unit is taken for each active device so the
time taken is proportional to the number of active devices. In the parallel case, the
same holds true for each processor, so the time taken is proportional to the maximum
number of active devices on any one processor. Assume at this point that each processor
is assigned the same number of devices (i.e. P divides D evenly). Assume also that
each device has a probability f of being active on any given iteration, and that the
devices become inactive independently of one another®. The probability that any one
processor has less than or equal to A active devices is given by:

A
P(A,d,f)=)_ ( t,l ) (@a- (5.3)
=1

1

9This last assumption may not be true of actual circuits, especially digital ones.

137



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

1
to choose i active devices from the d total, and (f)'(1 — f)*~' is the probability that

exactly ¢ devices are active. Therefore, the expected value of the maximum number of

d
where d = D/P is the number of devices on a processor, ( _ ) is the number of ways

active devices, (Dgctive), is given by:

) _
(Dactive) = 3 a- [(P(a, D/P, )P = (P(a - 1,D/P, f))F] (5.4)

e=1
where ¢ is a number of active devices, and the expression in brackets is the probability
that the maximum number of active devices on the P processors is exactly equal to a.
As shown, Equation 5.4 is valid for any values of D, P and f where D/P is
an integer. However, it can be simplified considerably in special cases. In particular,
if the number of devices per processor is equal to 1, as suggested in Section 5.5.4, then
the expected number of active devices is 1 minus the probability that all the devices
are inactive:

(Dactiue) =1- (1 - f)P (5~5)

If instead these same P devices are placed on a single processor, the expected value is
simply:

(Dactiuc) =D. f (5.6)

So the speedup in this special case is given by:
__ P

S 1-Q-f)F

Figure 5.8 is a plot of speedup using Equation 5.7 for several different values of P. As
can be seen, for most values of P and f, the probability that all devices become latent
at the same time is very low, so the efficiency = S/P is limited by the fraction of

M (5.7

active devices f. Essentially what this means is that there is less overall latency when
executing the model evaluations in parallel.

Example: An examination of event traces taken from a run of the RINGOSC.2U
benchmark verified that only a very small percentage of iterations had all 14 devices
inactive at the same time. []

In Table 5.7 the measured speedups (Sycqs) obtained on the iPSC for cases

138



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

16.00 ae

14.00 013-02...

12.00

10.00

8.00

8.00

4.00

2.00 2

-s
-0
@ o .
v
0

1]

.

0.00

0.00 0.20 0.40 0.60 0.80 1.00
Figure 5.8: Speedup predicted in the presence of latency

where each processor has at most one device are compared to the speedup modeled
using Equation 5.7 (Sprcq) and to the average number of active devices D = D - f. The
value of P used is set equal to /), the number of numerical devices. The equation
remains valid in this case because it is known ahead of time that the extra processors
will not limit the execution time in the parallel case. The fraction of time a device
is active is computed by taking the total number of transient device-level iterations
and dividing by the number of circuit iterations and the number of devices. For the
most part, the average number of active devices provides a reasonable estimate of the
speedup that can be obtained. The difference between D and S04 is also generally
negligible.

There appears to be little that can be done to prevent latency effects from de-
grading the speedup of the one-level model-evaluation algorithm. Since it is difficult
if not impossible to predict the activity of the devices before running the simulation, a
static load balancer cannot compensate for this effect in the device assignment step.
Dynamic load balancing during the simulation is also likely to be ineffective because

139



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

Circuit D f S meas | Smodel D

ASTABLE 2 1077|164 | 1.63 | 1.54
CLKFEED 31091 274 | 273 [ 2.73
DBRIDGE 4 1085| 3.16 | 3.40 | 3.40
INVCHAIN | 4 (061 | 254 | 250 |2.44
MECLGATE |11 | 0.56 | 4.98 | 6.16 | 6.16
LATCH 14 1 0.54 | 851 | 7.56 | 7.56
VCO 6 [0.66| 3.93 | 3.96 | 3.96

Table 5.7: Comparison of iPSC speedup with average number of active devices

latent devices can reactivate at any time thereby disrupting attempts to rebalance only
the currently active devices. As noted in [GATE93], turning off the bypass capability
altogether does no good because it increases the percentage of active devices at the ex-
pense of computing more model evaluations so that the overall execution time actually
increases. One possible solution is to move to the multi-level model-evaluation algo-
rithm where the number of groups in the upper levels is small so that the probability
that all groups become inactive at the same time is increased. For example, at the
highest level where there is only one group, all the latency of the serial algorithm can
be exploited. However, the gain from increased latency exploitation is likely to be offset
by the decreased efficiency of parallel device simulation, so the overall performance
improvement would be less substantial.

Communication and I/O Overheads

The fifth limitation of the one-level model-evaluation algorithm is heavily in-
fluenced by the specific performance characteristics of the machine being used. Unless
communication and I/O overheads are decreased in the same proportion as the main
computation, they can become factors that limit overall speedup. Communication time
increases when processors are added to the one-level model-evaluation algorithm be-
cause the global circuit matrix and RHS must be distributed to more processors. This
is more of a problem on the DEC cluster, as demonstrated in Section 5.3.2, where the
time for global reduction scales greater than logarithmically with the number of pro-
cessors. In addition, the relative speed of communication to computation, or machine
granularity, is worse on the cluster than on the iPSC.

140



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

Because the iPSC was specifically designed for high-performance message-
passing applications, its communication performance usually does not severely de-
grade the speedup below what is predicted by the latency-dependent model of the
previous section. Only in cases where the task size is low and the number of proces-
sors is high (e.g. the MECLGATE benchmark) does it begin to disrupt performance.
Of more concern is the I/O performance of the node-to-host link which is used to return
circuit- and device-level output to the System Resource Manager. The limited band-
width of this link and the fact that all results go through it can turn it into a serial
bottleneck. While CPU time for the main computation decreases, the I/O time remains
constant and significant. As shown in [GATE93], for the MECLGATE example, the
time to save one numerical device’s internal state accounts for about 40% of the total
time on 1 processor and about 70% of the total on 16 processors because it does not
scale down. The degradation would increase if more than one device state were saved,
and the overall computation rate would be I/O bound. One alternative that avoids the
node-to-host link is to use the concurrent file system. This would free up the compute
nodes more quickly for other jobs at the expense of having to retrieve the results using
the slow node shell.

On the DEC cluster, which was not originally designed to support message-
passing parallel processing, the network performance has a dramatic impact on the
overall performance. The worst case behavior is shown in Figure 5.9 for the MECL-
GATE benchmark, where the total analysis time is actually increasing as more proces-
sors are added to the problem. The reason for this behavior is the relatively short time
per iteration spent evaluating the numerical models in this circuit. Similar behavior
is exhibited by the 3 other circuits (ASTABLE, INVCHAIN, and VCO) that employ the
same one-dimensional numerical bipolar model.

Startup Overhead

The final limitation of the current implementations is the time to start a par-
allel job. On a single workstation, a simulation can be started without any noticeable
delay. However, in a parallel environment, the time to set up the parallel machine
can be significant. On the iPSC, the cube used must be allocated initially, loaded with
the executable at the start of the run, and deallocated at the run’s conclusion. On the

141



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

DEC Cluster Time for MECLGATE

Seconds

850.00 cogcocsponaoeo

200.00

160.00

0.00

0.00 2.00 4.00 6.00 8.00 10.00 12,00

Figure 5.9: Total execution time in seconds for MECLGATE on the DEC cluster. Single
processor times are the sums of the device-level times from each multiprocessor run.

DEC cluster, a script is run to determine which machines on the network will perform
the job. If two or more jobs need to be run, they must be started serially to prevent
them from selecting the same unloaded machines to use. A serial loop then spawns
the simulation processes on the various machines. Each spawning requires the CIDER
executable residing on a centralized host machine to be transferred across the network
to the chosen remote machine. This step is sometimes so time-consuming that built-in
alarm routines occasionally time out waiting for large clusters to initialize, and the
startup process is terminated.

Table 5.8 shows the times needed to run a null job on an 8-processor machine
in four different cases. The first two cases are the preferred methods for starting jobs
on the iPSC and the DEC cluster, respectively. On the iPSC, the job is submitted to
NQS which takes care of allocating a cube for the job. On the DEC cluster, the network
is first scanned for unloaded machines and then the TCGMSG parallel command
is used to bring up the machine. For this test, the pool of workstations scanned

142



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

Startup Method | Time
iPSC - Queue 41
DEC - Scan 175
iPSC - Direct 40
DEC - Reuse 28

Table 5.8: Job startup times in seconds on the iPSC/860 and DEC cluster

contained 40 processors. The second two methods save time by bypassing steps in
the preferred methods. On the iPSC, a cube can be allocated directly, bypassing the
queueing system. However, such jobs are subject to preemption by jobs submitted to
NQS. The one second improvement does not seem to justify the risk. On the cluster,
a previous cluster configuration file can be reused, bypassing the network scan. This
saves almost two and a half minutes in startup time. Unfortunately, this approach is
dangerous because the machines listed in an old file may not be unloaded at a later
timel0,

Since the startup time increases the fraction of time executing serially, Am-
dahl’s Law dictates that the job itself must be many times the startup time before
noticeable speedup is achieved. The system may be executing efficiently because the
parallel resources are not tied up during most of the setup time. However, from the
user’s point of view, the high startup cost decreases productivity and reduces the ability
to use mixed-level simulation for short 5 to 10 minute jobs.

5.6 Summary

The one-level model-evaluation algorithm has been implemented on two dif-
ferent distributed-memory multicomputers. The first system is an Intel iPSC/860
hypercube, a scalable, high-performance computer. The second system is a cluster
of DEC engineering workstations. The TCGMSG portable message-passing package
provides communication services for both implementations. Fast message-passing is
available on the iPSC; the DEC cluster is slower due to the limited bandwidth of its
Ethernet connectivity. The programming effort involved in parallelizing CIDER is min-

10Tf the primary user of a workstation has returned in the meantime, he might be somewhat upset to
find a large mixed-level simulation running on his machine.

143



CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

imized by the simplicity of the one-level model-evaluation algorithm. Parallelism is
exploited primarily through the use of efficient global-reduction routines.

The performances of the implementations have been measured by running a
set of 17 benchmark circuits. The iPSC version shows good speedup and efficiency on
several of the benchmarks, but poor efficiency on some of the others. A best speedup
of 12 on 16 processors has been observed. In certain cases, the DEC cluster version
can match the speedup of the iPSC version. However, the slower performance of the
DEC cluster nodes makes the iPSC version the faster of the two. In other cases, the
poor communication performance of the DEC cluster causes runtime to increase when
large numbers of processors are used.

The reasons for the varied performances of the two implementations have
been traced to several limitations of the one-level model-evaluation algorithm. The
speedup available is limited by the number of devices modeled numerically and the
number of processors. In the extreme case of a circuit with only one numerical device,
no parallelism is available using this technique. In practice, several other factors make
it difficult to achieve the best speedup predicted by Equation 4.5. First, in situations
where different meshes are used for the numerical devices in a circuit, the workload
per numerical device can become unbalanced. An example of this is a BiCMOS circuit,
where the bipolar and MOS devices require different mesh specifications to achieve
accurate solutions. Second, in DC and transient analyses, devices can become latent,
reducing their workloads to nearly nothing. If numerical devices go latent, it is pos-
sible for a processor to sit idle for lengthy periods while the other processors work on
the nonlatent devices. This is another source of load imbalance that limits speedup.
Third, even though the amount of information passed between compute nodes is min-
imal, the time taken by this step can become significant if there is a large imbalance
between the computation and communication speeds of the multicomputer. Since all
communication is overhead, it reduces the overall speedup. This effect is minimized
when the numerical device models are made larger (more mesh points are used). Fi-
nally, the time to start a parallel job reduces the effectiveness of parallel computing
for short-running simulations.

144



Chapter 6

Applications of CIDER

6.1 Overview

Mixed-level circuit and device simulation has been used previously in a num-
ber of situations where compact device models fail to provide accurate results. The list
of such applications has grown steadily since the introduction of the earliest mixed-
level simulator MEDUSA [ENGLS82]. However, in the past, applications have been
limited to circuits containing only a few numerical devices, because of the enormous
computational burden imposed by mixed-level simulation. In this chapter, several ap-
plications of CIDER are presented that demonstrate how high-performance engineering
workstations and parallel computing can be used together to expand the range of prob-
lems that can be approached using mixed-level simulation. In addition, the extended
capabilities of CIDER compared to its predecessor CODECS are used to provide more
realistic numerical modeling of physical effects that are important in present-day IC
devices.

The chapter begins by introducing a hypothetical 1.0 um complementary bipo-
lar - complementary MOS (CBiCMOS) process. CIDER is used as a device simulator to
characterize the electrical performance of the various devices available in the process.
The results of device simulations are used in the remaining sections of the chapter to
obtain SPICE model parameters.

The first circuit application is a study of output resistance and gain modeling
in a variety of analog IC amplifier stages. Existing SPICE models provide only a
crude first-order modeling of the output resistance of transistors. As a result, large

145



CHAPTER 6. APPLICATIONS OF CIDER

qualitative and quantitative differences are observed when SPICE simulations are
compared to the results obtained from CIDER.

In a second application, the performance of a compound-device push-pull
emitter-follower (PPEF) output stage is examined. Results of simulations from both
SPICE and CIDER are compared and substantial differences are observed in the large-
signal performance of the output stage.

6.2 Hypothetical 1.0 ym CBiCMOS Technology

Before studying the performance of complete circuits, models must be devel-
oped for each type of device available to the circuit designer. In a traditional approach
based solely on circuit simulation, parameters for the devices’ compact models must be
determined either by measuring actual devices or from hand calculations guided by a
knowledge of the device structure. For advanced technologies, where two-dimensional
effects are important, usable hand calculations are generally difficult if not impossible
to perform. As a result, a parameter extractor has become an essential adjunct to
any new compact model developed [JENG90]. However, parameter extraction cannot
always be relied on to produce physically correct values for the parameters [LIN93]. A
review of some of the deficiencies of existing compact models, and the difficulties that
arise in developing parameters for these models is presented in [MAYASS].

In mixed-level simulation, numerically modeled devices are described directly
using parameters of the underlying technology: critical dimensions, doping profiles
and material parameters. Detailed descriptions of production technologies are rarely,
if ever, published, since the information provided would give critical insight into the
process optimizations introduced by the manufacturer. Consequently, in this work,
a set of hypothetical device designs has been developed based on information drawn
from a number of sources: published descriptions of actual technologies [IRAN91],
[KAPO89], other simulation studies [BELL92b],[NAKA91] and informal discussions
with a device physicist [KO93]. Four different device types are available: vertical
NPN and PNP polysilicon emitter bipolar transistors [KAPO89] and NMOS and PMOS
surface-channel lightly-doped drain (LDD) field-effect transistors [OGURSO0]. Using
these devices 4 different technologies can be created: a high-speed complementary
bipolar process, a CMOS process, a BiCMOS process with fast, vertical NPN devices,

146



CHAPTER 6. APPLICATIONS OF CIDER

Device Type
Process Parameter NPN | PNP
Minimum Emitter Width (zm) 1.0 1.0
Emitter-External Base Separation (um) | 1.5 15
Poly Emitter Thickness (um) 0.2 0.2
B-E Junction Depth (ym) 0.11 0.12
Peak Emitter Doping (cm~3) 3.0e20 | 3.0e20
B-C Junction Depth (um) 0.25 0.40
Base Peak Doping (cm~3) 7.8e17 | 2.6e17
C-Buried Layer Depth (um) 10 | 10
Epi Layer Doping (cm™~3) 1.0e16 | 1.0e16
Buried Layer Peak Doping (cm~3) 5.0e19 | 5.0e19

Table 6.1: Key process parameters for bipolar devices

and a full CBiCMOS process. Issues of manufacturability of the various process options
have not been addressed. As a result, it may not be technically or economically feasible
to use these device designs in an actual production process.

Because the devices are not based on a specific technology and the simulated
performance has not been compared to measurements on actual devices, conclusions
based on strictly quantitative analysis cannot be made. However, the underlying
physical basis of the numerical modeling approach results in qualitatively correct
behavior of the simulated devices, as demonstrated next. In addition, the observed
behavior is also quahtitatively reasonable, if not necessarily strictly accurate.

6.2.1 Bipolar Devices

Typical low-voltage high-speed bipolar technologies employ a number of ad-
vanced processing techniques to meet the necessary performance specifications. A thin
heavily doped epitaxial layer and oxide isolation are used to reduce parasitic capaci-
tances. A buried layer is used to minimize collector series-resistance, and polysilicon
emitters are used to increase the forward current gain by a factor of 3-10 over that
achieved using an aluminum emitter contact. A description of the process flow for a
modern low-voltage process can be found in [GRAY93).

One- and two-dimensional numerical models have been developed for both
NPN and PNP transistors. A summary of the key dimensions and doping concentra-
tions is provided in Table 6.1. A two-dimensional cross-section of the NPN device is

147



CHAPTER 6. APPLICATIONS OF CIDER

shown in Figure 6.1. The device structure is assumed bilaterally symmetric about the

Emitter

Region Simulated @ = }---- - A’

Q
Collector

Figure 6.1: Cross section of NPN transistor

line A-A’, so only half of the device is simulated. This corresponds to the assumption
that dual base contacts are provided for the device. Under the emitter, the doping is
uniform in the X direction, so the one-dimensional doping profile is taken along the
line A-A’. In Figures 6.2 and 6.3 the 1P profiles for the NPN and PNP devices are
shown. Lower peak doping and a deeper base-collector junction are used in the PNP
to increase the base Gummel number [SZE81] and current gain while still preventing
base punchthrough under normal operating conditions.

Accuracy in bipolar simulation requires good physical models for the intrin-
sic carrier concentration n;, the minority-carrier mobility in the base region and the
transport properties of the polysilicon emitter. CIDER extends the abilities of CODECS
to support bipolar simulation by incorporating many of the models and model parame-
ters described in [SOLL90]. However, the polysilicon portion of the emitter is modeled
differently from how it is done in [SOLL90] by using a separate semiconductor region
that extends the underlying silicon emitter. In this region, all the material param-
eters are the same as for similarly doped monosilicon except for the mobility, which
is reduced by a factor of 0.07 in accordance with the results presented in [ASHBS87].

This capability is not available in CODECS because only one type of semiconductor

148



CHAPTER 6. APPLICATIONS OF CIDER

em”-3
5 Net Doping.
2 1\
le+20 \\
: | /[
le+19 //
5

le+18 4
6
2 f—
le+15
5
um
0.00 0.60 1.00

Figure 6.2: 1° NPN Doping Profile

material is supported. Simulations using normal silicon underestimate the current
gain, because the higher mobility allows more current to flow in the emitter, thereby
increasing the base current.

CIDER model descriptions for the devices are listed in Appendix D. Two dif-
ferent two-dimensional models are available for each device. One uses relatively
fine mesh in the X direction while the other is coarser and therefore closer to a
one-dimensional model with only approximate modeling of two-dimensional effects.
However, the per-iteration time and memory use for the coarse-mesh model are signif-
icantly smaller than that of the fine-mesh model. These characteristics make it better
for use in mixed-level simulations.

One-dimensional simulations have been performed to characterize the DC
and AC electrical performance of these devices. The main device parameters are
summarized in Table 6.2. Briefly, the NPN (PNP) device has a maximum current
gain 3 = 7"; of 205 (82), a knee current density Jx of 0.2 (0.09) mA/um?, and a peak
transition frequency f: of 17.5 (5.5) GHz. These parameters are all measured at

149



CHAPTER 6. APPLICATIONS OF CIDER

cm”-3
Net Doping
3
le+20
. \ ~
le+19 \
,, \ /
le+18 ‘ /
. /
le+l7 \ //
3
/
le+16 ) ok
. 4
le+16
8
le+14
um
0.00 0.60 1.00

Figure 6.3: 1° PNP Doping Profile

at a collector-base voltage |Vcp| of 2.0V. The knee current density is defined as the
point where 3 drops to 1/2 its peak value. The Early voltage [EARL52] is calculated
from the change in the collector current for two different values of Vop [GETR76].
Collector resistance is computed from the slope of the I¢c — Vo curves in the saturation
region, and base resistance is computed using a variation on the input-impedance
circle method [NAKA91]. For the base resistance, the device was biased at a moderate
collector current density 1/10th the knee current density. The emitter resistance
is found by simulating the device with a high emitter current and measuring the
voltage drop across the polysilicon layer using a plot of the internal potential of the
device. The collector and emitter zero-bias capacitances are obtained directly from
the small-signal admittances of the device when driven by a low-frequency input.
Since one-dimensional simulations are used, the collector-base capacitance excludes
the parasitic capacitance between the remote base contact and the buried layer. In
addition, the parasitic collector-substrate capacitance is not modeled by either the 1P
or 20 structures. If necessary, both parasitic elements could be reasonably modeled

150



CHAPTER 6. APPLICATIONS OF CIDER

Device Type
Electrical Parameter NPN | PNP
Maximum Current Gain, 3 205 82
Knee Current Density, Jx (mA/pm?2) 0.2 | 0.09
Forward Early Voltage, V4; (V) 24 23
Collector Resistance, 7., (2) 330 | 750
Base Resistance, 7} (2) 180 | 310
Emitter Resistance, r. (12) 0.67 | 0.46
E-B capacitance, C;eo (fF/um?2) 23 | 14
C-B capacitance, C;q (fF/um?2) 03 | 0.3
Maximum Transition Frequency, f; (GHz) | 17.5 | 5.5

Table 6.2: Key electrical parameters for 1.0 um x 10.0 um BJT devices

using standard compact diode models with appropriately determined parameters.

Figure 6.4 shows a plot of the NPN collector and base currents, Ic and Iz,
versus the base-emitter voltage Vgg for Vo = 2.0V. For large Vgz, both collector and
base current roll off due to a variety of high current effects. Among these are high-
level injection at the emitter-base junction, base pushout, and voltage drops across the
various parasitic resistances of the device. In addition, two-dimensional effects such
as current crowding and lateral base pushout can also be important. This multiplicity
of factors makes it difficult to model the behavior analytically in the high-current
regime. In Section 6.4, a circuit application is presented where the devices operate at
such high current levels.

6.2.2 MOS Devices

Ina 1.0 pm channel-length MOSFET design, carefully engineered doping pro-
files must be used to maintain reasonable current drive and threshold voltage while
still minimizing parasitic series resistance, and punchthrough and hot-electron effects
[JENGS90]. A thin gate oxide gives rise to high transconductance and it combines with
shallow source and drain junctions to suppress drain-induced barrier lowering (DIBL).
Unfortunately, the power supply voltage for 1.0 um technologies has remained at 5V,
which leads to increased electric fields within the device compared to previous MOS-
FET generations. In order to avoid avalanche generation at the drain junction during
saturated MOSFET operation, lightly doped pockets are added at each end of the
channel in order to smooth out the peak in the electric field that occurs near the drain

151



CHAPTER 6. APPLICATIONS OF CIDER

NPN BIPOLAR GUMMEL PLOT
A
ic
®
1e-02 ;
004 .// / yd
Vi
1e-08 / /
le-10 / //
le-12 /
/ / v
0.20 0.40 0.80 0.80 1.00 1.20

Figure 6.4: NPN Gummel plot for V¢ = 2.0V. Emitter area = 1 pumx10 pym

side of the channel. LDD designs therefore reduce hot-electron device degradation but
also degrade current drivability and gain due to increased source-drain resistance.

Because a MOSFET’s operation is inherently two-dimensional, only 2P nu-
merical MOSFET models are available in CIDER. Figure 6.5 shows a device cross-
section for a 1.0 um NMOS device. The 1.0 um PMOS device has an identical cross-
section except for a change in polarity of all the doping impurities. This includes the
polysilicon gate layer, so the PMOS device has a P* poly gate which leads to surface-
channel operation of the PMOS device. The key process parameters and dimensions
of the MOS devices are provided in Table 6.3. A three-dimensional view of the final
doping profile is shown in Figure 6.6. The substrate doping tapers off from a peak
doping of 1.0 x 10cm 3 at the surface to a uniform concentration of 5.0 x 105¢m—3
at a depth of about 0.7 um. The LDD implant is visible as a slight bump on the side of
the drain junction.

The primary physical parameter that should be modeled accurately for short-
channel MOSFETS is the mobility in the surface inversion layer. CIDER uses the

152



CHAPTER 6. APPLICATIONS OF CIDER

1.0 um

N+ Poly Gate

: Region Simulated Bulk

Figure 6.5: Cross section of NMOS transistor

model described in [GATE90] to account for normal-field and lateral-field mobility
degradation®. This model was originally implemented in an updated version of CODECS
that eventually evolved into CIDER. However, until the release of CIDER it has not been
publically distributed to the world at large. Direct solution of Poisson’s equation by
the numerical model accounts for other short-channel effects such as channel-length

modulation and DIBL. Hot electron effects (avalanche generation) are not accounted for

This effect is also known as velocity saturation.

Device Type
Process Parameter NMOS | PMOS
Supply Voltage (V) 5.0 5.0
Minimum Gate Length (um) 1.0 1.0
Type of Gate N poly | P* poly
Oxide Thickness (A) 200 200
Junction Depth (um) 0.2 0.2
Substrate Doping (cm~3) 5.0e15 | 5.0el5
Implant Dose (cm™2) 1.6e13 | 1.6el3
LDD Length (xm) 0.1 0.1
LDD Doping (cm~3) 4.0e17 | 4.0el7

Table 6.3: Key process parameters for MOS devices

153




CHAPTER 6. APPLICATIONS OF CIDER

NMOSFET Doping Profile

N

1.0e20

3.2e17

1.3el15

1.5

2.1 % (um)

Figure 6.6: 20 NMOS Doping Profile

in the model for two reasons. First, the two-dimensional avalanche generation model
has never been implemented with the complete set of derivatives added to the device-
level Jacobian matrix. This has resulted in noticeable convergence difficulties when
using the model. Second, impact ionization current is carried by both electrons and
holes and therefore requires full two-carrier device simulations. When it is omitted,
current flow consists almost exclusively of majority carrier current (by electrons in
NMOS, by holes in PMOS). Thus, one-carrier simulation can be used which results in

considerable savings in CPU time.

CIDER model descriptions for the MOS devices are listed in Appendix D along
with the bipolar descriptions. Because the distances in a two-dimensional MOSFET
cross section depend on the gate length of the device, a different model is needed for
each device length used in a circuit. Models are provided for gate lengths of 1, 2, 3,
4, 5,10 and 50 pm. Models for other lengths can be obtained by adjusting the model
distances that depend on the channel length.

Each of the devices was simulated for three sets of conditions: in the linear
region with low Vps of 50 mV and Vs and Vs swept, in the “square-law” region with

Vps = Vpp and Vgs and Vps swept, and in the saturation region with Vis stepped

154



CHAPTER 6. APPLICATIONS OF CIDER

Device Type
Electrical Parameter NMOS | PMOS
Effective Channel Length, L. (zm) 0.8 0.8
Threshold Voltage, V; (V) 0.8 -0.7
Saturation Drain Current, I4s.: (mA/pm) | 0.42 0.13
Subthreshold Swing, S (mV/decade) 100 100
Early Voltage, 1/ (V) 38 30

Table 6.4: Key electrical parameters for 1.0 pm Ly auwn MOS devices

in 1 V increments and Vps swept from 0 V to Vpp. In total 42 simulations were
distributed across the workstations of the DEC cluster described in Chapter 5. The DC
characteristics of the 1.0 um devices are summarized in Table 6.4. In short, the NMOS
(PMAQS) device has a threshold voltage of 0.8 (-0.7) volts and maximum current drive
of 0.42 (0.13) mA/um of width. The effective channel length listed is only approximate
since it varies significantly with both applied gate bias and drain bias in LDD devices
[HU87]. The Early voltage is also an approximation since a constant value is not
accurate for characterizing the output resistance of short-channel MOSFETs. This
topic is covered more thoroughly in Section 6.3

In Figure 6.7, the saturation curves for NMOS and PMOS devices with W/L
= 10.0um/1.0um are shown. In the flat region of the curves, the increase in Ips with
increasing Vs is limited by velocity saturation. For a fixed value of Vs the current
increases slightly wth increasing Vps due to channel-length modulation [FROH69] and
drain-induced barrier lowering [JENG90]. In the linear region, shown for the NMOS
device in IMigure 6.8, the current actually increases sublinearly with increasing Vgs
due to normal-field mobility degradation, a voltage drop across the parasitic source
resistance, and a gate-voltage-dependent increase in the channel length that is typical
of LDD devices.

A key circuit used to measure the speed performance of CMOS circuits is the
ring oscillator. The parallel version of CIDER for the iPSC/860 is capable of simulating
this circuit in a reasonable amount of time. This capability allows the technology
performance to be directly characterized without the need to extract compact model
parameters in an intervening step. In Figure 6.9, the per-stage delay of a 7-stage
unloaded CMOS ring oscillator is shown as a function of the supply voltage. The
predicted performance is somewhat high because several capacitive parasitics have

155



CHAPTER 6. APPLICATIONS OF CIDER

MOSFET CHARACTERISTICS - SATURATION REGION

Ids (mA)
PMOS 1as
Vgs 2Bt | Nio8Tds
4.00 //
0 //
3.00 ;
vga = fosaensossess
| /1
2.50 T — / /[ -
2,00 / /
Vs = 3Y. L
1.60 -
Loo Vs =4V \ /
Vge =2V
0.50 Vgs = -3V \ P
Ve av /4
0.00 Ves =1V Vgs =1V
Vds (V)
-4.00 -2.00 0.00 200 4.00

Figure 6.7: MOS saturation region characteristics for 10.0um/1.0um devices. Linear
increase of maximum current with Vgs is caused by velocity saturation.

been ignored. As the supply voltage decreases, the gate delay increases because less
current is available to charge and discharge the fixed capacitances of the circuit. The
simulations were performed on a 16 node subcube of the iPSC/860 and took between 2
and 4 hours of CPU time each to execute2.

6.3 Gain of Various Amplifier Cells

It would be nearly impossible to find an analog circuit that does not contain
some kind of amplification stage. As a result, the small- and large-signal gains of
amplifiers are key parameters in an analog IC design. Good device models are needed
to establish the value of gain for a given circuit. Especially for very aggressive high-
speed analog circuits where low-gain, wide-bandwidth amplifiers are used, designers

?Due to a bug in CIDER these simulations computed unnecessary circuit iterations and thus took
longer to perform. For a better measure of the CPU time with the bug fixed, consult the results for the
RINGOSC.1U benchmark in Chapter 5.

156



CHAPTER 6. APPLICATIONS OF CIDER

NMOSFET CHARACTERISTICS - LINEAR REGION
Ids (uA)

1000 yd
%
v
N7
i7/4
/A

747
i //Ammi]

0.00 1.00 2.00 3.00 4.00 5.00

Tds

Figure 6.8: NMOS linear region characteristics for a 10.0um/1.0um device. Reduction
in the transconductance g,, = g—{,g@ is caused by transverse-field mobility degradation,
series resistance, and channel-length variation.

are aided by precise modeling of the devices in the circuit.

Given the importance of gain calculations, it is surprising to note that most of
the existing compact transistor models in SPICE have difficulty accurately predicting
the gain for modern IC circuits. To some degree this is due to analog design techniques
that minimize the importance of knowing the exact value of the gain. However, this
difficulty is also caused by advances in IC processing that introduce important new
physical effects and that invalidate some of the assumptions made for older technolo-
gies.

In this section, mixed-level circuit and device simulation is used to study the
gain of several IC amplifier circuits. The deficiencies of output resistance modeling
in the existing MOSFET models of SPICE are well known [JENG90]; for the sake of
the current argument, the BSIM model is used to demonstrate limitations of these
models. The BSIM model is chosen because it models the important short-channel

157



CHAPTER 6. APPLICATIONS OF CIDER

CMOS Ring Oscillator Delay Per Stage
Td (pS)

260.00

150.00 \

100.00 ~

0.00

vdd (V)
2.00 2.60 3.00 8.60 4.00 4.60 6.00 5.60

Figure 6.9: CMOS ring oscillator delay per stage. Ring has 7 stages of inverters with
NMOS (PMOS) W/L = 3/1 (6/1) and no load capacitance.

effects reasonably well with a limited number of parameters. The BSIM2 model
can produce better fits, but requires a much larger number of parameters, many of
which are nonphysical. Only recently have compact models begun to appear that
address these limitations in a physical way [HUAN93]. In contrast, the physically
based numerical models of CIDER produce results that are consistent and physically
reasonable. Thus, mixed-level simulation holds the promise that improved amplifier
designs might result if CIDER were tuned to an IC process and used to design real
amplifier circuits.

6.3.1 Ideal Inverter

In Figure 6.10, a simple circuit is shown that is used to determine the in-
trinsic gain available from a single MOS transistor. The same circuit can be used for
bipolar transistors as well. However, the gain of bipolar circuits has previously been

158



CHAPTER 6. APPLICATIONS OF CIDER

VoD

Figure 6.10: NMOS inverter with ideal load

investigated using CODECS, the predecessor to CIDER, in [ZARR89]. The transistor is
biased with a constant current source that provides an ideal load for the active device.
Figure 6.11 shows an exaggerated load line construction for this circuit. For each
value of the input voltage Vin, the output voltage Vouyr stabilizes at a point where
the current drawn by the transistor is exactly equal to that supplied by the current
source3. As the input voltage increases, the intersection point moves to the left and
the output voltage falls. The rate at which it falls is the gain of the circuit, a,, which

is given by:
dl

dVour e dIpsdVps
Ay = |———— = — = =gm T (6.1)
dVin ad_df{f? dVgs dlIps ™ "°

where gy, is the transconductance of the transistor, and r, is its output resistance. All
three of these quantities (a,, gm, 7,) are bias dependent. The transconductance can be
obtained with reasonable accuracy using compact models as long as the drain current
is modeled within a few percent of its actual value [GRAA90]. However, modeling of
the output resistance requires that the slope of the Ips — Vps curves be well matched
in the saturation region.

3In practice, the current source tapers off for output voltage values higher than the maximum voltage
of interest Vpp in order to prevent the output voltage from rising indefinitely when the transistor is off.
In simulations, such a current source can be modeled by an ideal current mirror employing very wide
transistors to create a very sharp corner in the load line as shown in the figure.

159



CHAPTER 6. APPLICATIONS OF CIDER

Ips

=
Vour Vobp

Figure 6.11: Load line construction for ideal NMOS inverter

In Figure 6.12, the gain of the ideal inverter is graphed against the output
voltage for a 1 pm NMOS test device. The load current is set to 50 pA, so the device
is operating at a current density of 5 uA/um of width. Two different MOSFET models
available in CIDER are used: the BSIM model and the CIDER numerical MOS model.
The numerical MOS model is the same as used in Section 6.2.2. The BSIM model
parameters have been chosen by trial and error to best match the results from the
numerical model. The curve produced by the numerical model is smooth over the entire
range of output voltage. Initially the gain is very low because the device is operating
in the triode region. As Vpoyr increases, the device makes a gradual transistion from
triode to saturated operation. The output begins to increase roughly proportional to
vVouT due to channel-length modulation. For high values of Voyr, the curve deviates
from this dependence and begins to flatten out due to DIBL. In a real device, hot-
carrier output-resistance degradation would cause the gain to fall in this same region.
However, the numerical model does not include this effect and the effect of DIBL
can be isolated. In contrast to the numerical-model results, the BSIM results are
clearly non-physical. The gain curve demonstrates a sharp corner where the model
equations shift from the triode to the saturation region. In the saturation region, the
gain curve is concave up instead of concave down. In analog design, MOSFETSs are

160



CHAPTER 6. APPLICATIONS OF CIDER

Gain of lum NMOS Device
Gain (VIV)
Compact BSIM
200.00 //_/ Numerical MOS
160.00 / |~ -
//
100.00 V
50.00
000 |
Vout (V)
0.00 1.00 2.00 3.00 4.00 5.00

Figure 6.12: Gain of 1.0 um NMOS transistor at Iroap of 50 uA. BSIM curve has a

sharp corner whereas the numerical-model produces a smooth curve.

sometimes biased with an output voltage just above the triode-saturation transition
point. The BSIM model severely overestimates the gain in this region as compared to
the numerical-model results?.

6.3.2 Source-Coupled Pair with Active Load

While a stand-alone device simulator possibly could be used to study the
preceding ideal inverter, a full mixed-level simulator is needed for the following circuit.
Moving a step up in complexity, Figure 6.13 shows an NMOS source-coupled pair
(SCP) with a PMOS current mirror acting as an active load. While a stand-alone
device simulator could be used to study the preceding ideal inverter, a full mixed-level
simulator is needed for this circuit. This type of circuit is commonly used as the input

“The MOS level 3 model also has a sharp transition from triode to saturation and overestimates the
gain in this region. However, the transition is so sharp that SPICE is unable to obtain convergence as the
output voltage crosses the transition point. As a result, comparative results are not available.

161



CHAPTER 6. APPLICATIONS OF CIDER

VbbD

't

VINPO—I_’ { o VINm

M1 M2

Iss

Figure 6.13: Schematic for source-coupled pair with active load

stage for CMOS operational amplifiers. The small-signal gain of this circuit can be
shown to be [GRAY93]:

ay = gm1,2(7'02 " To4) (6-2)

This assumes the circuit is operating with equal DC bias currents flowing through
transistors M, and My, so that the transconductance g.,) 2 is the same for both tran-
sistors. When determining the large-signal behavior of this circuit, unequal currents
flow in each transistor and this formula is no longer applicable. Although closed-form
expressions for the large-signal behavior of the SCP exist in simplified cases (such as
with resistive loads [GRAY93)), no general expression is available. Therefore, it is nec-
essary to resort to simulation, or direct measurement, to determine the performance
of this circuit.

Figure 6.14 shows a typical plot of the output voltage Voyr as the positive
input Vinp is swept from 50 mV below to 50 mV above the negative input voltage
Vinm. The bias current is twice that used in the ideal inverter so the NMOS devices

162



CHAPTER 6. APPLICATIONS OF CIDER

Source-Coupled Pair with Active Load
VOUT (V)

5.00

4.50 et
L

4.00

3.60

3.00

2,00 [—eas=cs

----------------------

1.50

1.00

0.50

0.00

VIN (mV)
-40.00 -20.00 0.00 20.00 40.00

Figure 6.14: Output voltage of source-coupled pair with active load

are operating at a current density of 5.0 mA/ym when both inputs are at the same
potential. The low output voltage is limited by the source voltage of transistor A, as
M; goes into the triode region of operation. On the high side, the output is limited by
the supply voltage of 5.0 V, and transistor M, goes into the triode region. Between
these extremes, there is a high gain region where both M; and M, are operating in
the saturation region. However, from the plot it is clear that there are no distinct
boundaries to this region. In Figure 6.15, the slope of the output voltage (the gain)
is graphed against the value of the output voltage. Results are presented for cases
where all the devices are modeled numerically and where all are modeled using BSIM
models. The inverted bell shape of the numerical-model results is distinctly different
from the mesa shape of the BSIM results. The BSIM curve is shifted downward in
voltage because the devices are operating at higher Vps . In addition, the BSIM
curve displays two corners: one as My switches from triode to saturation on the left
side of the figure and the other when M, switches from saturation to triode on the right
side. No such corners are visible in the numerical-model results; there is a smooth

163



CHAPTER 6. APPLICATIONS OF CIDER

Source-Coupled Pair with Active Load
Gain (VIV)

Numerical MOS

» y /“ \\ Compact BSIM
RERV/AERY

il nl
/i \

0.00

Vout (V)
2.00 2.50 8.00 3.60 4.00 4.560

Figure 6.15: Gain of source-coupled pair with active load

transition between regions. The shape of the numerical-model curve is explained by
the following argument. The total drain-source voltage for both output transistors is
approximately constant. As the output voltage swings from low to high, the drain-
source voltage of M, increases while that of M, decreases. As already mentioned,
the gain of the ideal inverter increases as Vps increases due to increased incremental
output resistance. The same effect occurs here. However, as the output resistance
of My increases, that of M, decreases. Near the center of the output range, the two
effects balance each other and a peak occurs in the gain.

The qualitative differences in the shapes of the two gain curves have impor-
tant consequences for other types of simulations. For example, a small-signal analysis
of the BSIM-model circuit simulation would show nearly identical results independent
of the DC bias value of the output voltage. In contrast, the numerical-model results
would vary considerably. In addition, a large-signal sinusoidal analysis would show
little distortion when using BSIM models until the output voltage reached the upper
and lower transition corners. With numerical models, significant distortion would be

164



CHAPTER 6. APPLICATIONS OF CIDER

produced independent of the output swing magnitude.

6.3.3 Two-Stage CMOS Opamp

A two-stage CMOS operational amplifier can be created by combining the
actively loaded source-coupled pair with an additional inverting stage based on the
ideal inverter. A schematic for this two-stage amplifier is shown in Figure 6.16. The
input stage is modified by inverting the polarities of the NMOS and PMOS devices.

Vbb

— 10
T

;a@;&m
-

Vss

Figure 6.16: Schematic for CMOS two-stage amplifier

The ideal current source load is replaced by a PMOS current mirror as would be done
in a real implementation.

To first order, the small-signal differential-mode gain of this amplifier is given
by:

ay = (gm1,2(7o2 || 704)) (Gm5(7o5 | 708)) (6.3)

where once again it is assumed that the input transistors are operating with equal
DC bias currents. The gain depends directly on small-signal parameters for 5 of
the 8 transistors, so these are the critical elements of the circuit. Due to matching
considerations, transistors M3 and Mg must use the same models as M, and M;

165



CHAPTER 6. APPLICATIONS OF CIDER

Transistor CPUs
Configuration | My | My | Mg | My | Mg | Mg | My | Mg
A None B|B|B|[B|[B|[B|[B|B]| 1
B Stagel N(N|N(N|(B|B|B|B 4
C Stage2 B|B|(B|B|N|N|N|N 4
D Nolnput B|B|N|N|N|N|N|N 8
E All N|IN|N(N|IN|N|N|N 8

Table 6.5: Two-stage CMOS amplifier test configurations. Entry of B denotes transistor
modeled with BSIM; entry of N denotes numerical model. CPUs is the number of
hypercube nodes used to solve the problem.

respectively. For the simulations that follow, the bias transistor M7 could be replaced
by an additional current source; however, it would need to be a transistor in any case
if the value of the common-mode gain were needed. For this reason, it is modeled as a
transistor here as well.

One way to reduce the time taken by mixed-level simulation is to model only
some of the transistors numerically. However, it may be difficult to determine a priori
which transistors operate in regions where the existing compact models are inaccurate.
To investigate this approach, the two-stage amplifier has been simulated several times
with some of the transistors modeled numerically and some modeled using BSIM.
Table 6.5 lists the different configurations used to identify which transistors need
to be modeled numerically. In configuration A, none of the transistors are modeled
numerically, whereas in configuration E, they all are. In configuration B, only the
transistors of the first stage are modeled numerically while the others use BSIM
models. In configuration C, only the second stage transistors and their matching bias
transistors are modeled numerically. In D, only the two input transistors, M; and Ma,
use BSIM models. This may produce fairly accurate results since BSIM can model
the input transconductance g,,12 reasonably well, and an error in 7,3 is not critical
because it is combined in parallel with r,4. In Figure 6.17, the output voltage at node
8 is graphed versus the input voltage difference Vin = V(4,7) for all 5 configurations.
The results were obtained on the Intel iPSC/860 using subcube sizes appropriate for
the number of numerical devices in the configuration. Four of the five cases are
clearly discernible in the figure; however, cases D and E are almost indistinguishable.
Ideally, the output voltage should pass through 0.0 V when Vi = 0.0 V. Unfortunately,

166



CHAPTER 6. APPLICATIONS OF CIDER

CMOS 2-Stage Operational Amplifier

Vout (V)
I A None
2.50 e B Stagel
.......... =3 :\ ccccccccna
200 . Y h C Stage2

1.60 %‘ \ g-_fl?i;‘_ﬁ
I
A

[\
: AN

-4.00 -2.00 0.00 2.00 4.00

.«-"“”’

-2.50

Vin (mV)

Figure 6.17: Output voltage of two-stage amplifier

cases B and C have approximately 1.5 mV offsets because a matching relationship
has been broken. In a real design, if transistors M3, M, and Mj are not matched, a
systematic offset voltage is known to arise [GRAY93]. In this case, mismatched device
models produce the same effect. From the figure it is also apparent that certain cases
produce smoother output curves than others. A clear view of this phenomenon can
be obtained by plotting the gain, as shown in Figure 6.18. The degree of smoothness
is primarily dependent on whether or not the two output transistors Mz and Mg are
modeled numerically. For cases A and B there are visible transitions at the edges of the
high gain region due to triode-saturation region border-crossings in the BSIM model.
This effect is not apparent for case C where the two output transistors of the first
stage are modeled with BSIM because the devices always operate in saturation. In
terms of overall accuracy, only case D matches the behavior of the all-numerical-model
configuration with an acceptable level of accuracy.

From the above arguments, it should be clear that all but three of the tran-
sistors (M;, My, and My) are critical in determining the differential-mode gain. Since

167



CHAPTER 6. APPLICATIONS OF CIDER

CMOS 2-Stage Operational Amplifier

Gain (kV/V)
A None
’ \ B Stagel
3.00 g ,r"‘:, C Stagez
iy !‘ DNetnput
2.50 "', l; 4 EAL "
BHY
2.00 : ; ;. // 4
.

5\

Vin (mV)

Figure 6.18: Gain of the two-stage CMOS amplifier

a hypercube of at least 8 processors is needed to achieve maximum speedup for the
5 critical devices, it is unfortunately not possible to take advantage of this in this

example.

6.4 Push-Pull Emitter-Follower Output Stage

The primary goal of an IC output stage is to supply power to a load device while
maintaining an acceptable level of signal distortion [GRAY93]. One commonly used
circuit for this purpose is the push-pull complementary emitter-follower (PPEF) circuit
shown in Figure 6.19 [PEDE91]. If identical NPN and PNP devices are available,
excellent distortion behavior is observed. However, several nonidealities cause higher
distortion levels to appear under more realistic circumstances. Power gain is achieved
in the form of the combined current gains of the compound NPN-PNP devices. Due
to high-level injection effects which reduce the high-current gain, the power gain falls
off as large amplitude voltages are applied to the input. Given a set of NPN and PNP

168



CHAPTER 6. APPLICATIONS OF CIDER

Figure 6.19: Schematic of push-pull complementary emitter follower

device structures, the design of a PPEF proceeds by determining appropriate emitter
areas for the 4 devices and DC input bias voltages to meet the requirements of low
distortion and high power gain.

PPEF designs based on idealized devices modeled with the Ebers-Moll equa-
tions and on nonideal devices modeled using the modified Gummel-Poon equations in
SPICE have been investigated previously in [YOUN90]. The main conclusions of that
work are summarized here. With identical idealized devices, low distortion is produced
due to cancellation of even-order harmonics. However, with nonidentical devices, the
even harmonics do not cancel. Low total harmonic distortion (THD) is thus achieved by
paralleling many output devices to achieve low effective base resistance and high knee
current, Ix. Compound devices reduce the loading of the PPEF stage on the previous
voltage-driving stage by supplying large overall DC current gain approximately equal
to the product of the #’s of the individual transistors. The use of small input devices is
suggested as a means to reduce the silicon die area consumed by the stage.

It is known that high-current effects are not well modeled by the modified
Gummel-Poon model of SPICE [MAYAS88], [ZARRS89]. As an alternative, detailed phys-

169



CHAPTER 6. APPLICATIONS OF CIDER

ical simulations based on CIDER numerical models can be used to provide better mod-
eling in this region of operation. Different conclusions as to the sizing of the various
devices and setting of bias voltages and currents may be reached when using such
models. In order to determine whether further investigation into the performance
of the compound-device PPEF is warranted, CIDER simulations have been performed
and the results compared to those obtained using SPICE compact models. Significant
qualitative and quantitative differences in the results indicate that design criteria
established using SPICE simulations need to be reevaluated using numerical device
modeling.

6.4.1 Factors Affecting PPEF Performance

There are three main factors affecting the total harmonic distortion (THD) of
the PPET":

1. Crossover distortion as the upper and lower half circuits turn on and off.
2. Mismatches between the NPN and PNP devices.
3. Clipping.

Crossover distortion [PEDE91] dominates for low values of V;%, and can be minimized
by using large idling currents in Q2 and Q4. For moderate values of V;, THD is limited
by nonlinearity in the output curve caused by unequal gain on the positive and negative
output swings and bias-dependent resistances. The source of this nonlinearity is the
differences in the compound devices in the upper and lower half-circuits. At very
high values of V;, distortion is generated due to clipping of the output waveform. For
example, the upper half circuit will not allow the output voltage to rise any higher
than:

Vo,maz = Voo — VBE2 — VoEsan1 (6.4)

before clipping begins. Vcc is the upper supply voltage, Vggs is the DC base-emitter
voltage of the PNP output transistor, and Vogs.e1 is the collector-emitter saturation
voltage of the NPN input transistor. This upper limit is determined by the requirement
that @; remain turned sufficiently on to supply base current to transistor Q2. Because

5V; is the amplitude of the sinusoidal input voltage.

170



CHAPTER 6. APPLICATIONS OF CIDER

clipping distortion is so severe, it places an upper bound on the magnitude of V; that
can be used to drive the PPEF. It also limits the maximum achievable power conversion
efficiency.

The power gain of the circuit is the product of the voltage gain and the current
gain. The voltage gain and current gains used must be the large-signal gains, which
vary as a function of the input voltage amplitude. The voltage gain Ay is approximately
constant at a value near 1. A rough formula for Ay is given by:

Ay = -I—Rc (6.5)
1+ ﬁ_CRLL

where Rj§ is an effective input resistance of the compound device, §° is its effective
current gain, and Ry is the load resistance. For low load resistance, e.g. Ry = 50 £,
large currents flow, and the gain may drop somewhat due to finite input resistance
and beta of the compound device. Large output devices should be used to minimize the
parasitic base resistance and prevent premature falloff of beta. The current gain A; of
the PPEF is determined by the effective §’s of the compound-device pairs, which are
approximately equal to the product of the f’s of the individual transistors. Typically,
the output devices are sized such that they operate in a region where the transistor
B drops rapidly with increasing Ic, as shown in Figure 6.20. As a result, total power
gain drops as the input voltage amplitude V; increases. This effect can be reduced by
using larger output transistors that can supply more current before 3 begins to roll off.
However, larger transistors consume more die area, so a design tradeoff is involved in
determining the exact size needed for the output transistors. The input devices should
be sized to supply this level of current without degrading current gain themselves.
Finally, the input bias voltages should be set to provide sufficient idle current in the
output transistors to reduce crossover distortion without unnecessarily increasing the
standby power dissipation of the circuit.

6.4.2 Evaluation of PPEF Designs

The PPEF circuit in Figure 6.19 has been simulated using the CIDER 1P bipolar
models characterized in Section 6.2.1 and also using the SPICE modified Gummel-
Poon bipolar model. The Gummel-Poon model parameters have been determined
from a hand fit to the CIDER device characteristics. Reasonable fit is obtained in

171



CHAPTER 6. APPLICATIONS OF CIDER

DC BETA OF NPN TRANSISTOR

Beta (A/A)

BetaDC

2 —a ]

e N

le+01 \

IC (A)
le-11 1e-09 le-07 le-056 le-03 le-01

Figure 6.20: DC Beta of an NPN bipolar transistor. Beta rolls off at high I¢ due to
several high-level injection effects such as base pushout.

172



CHAPTER 6. APPLICATIONS OF CIDER

the moderate-current region, but large errors appear in the high-current region. The
model input descriptions for CIDER and SPICE are listed in Appendix D® Note that the
SPICE model parameters (especially the parasitic resistances) do not agree with the
device parameters listed in Table 6.2, because they have been adjusted to provide a
good match of the high-current behavior in the models.

Two PPEF designs have been simulated: one with equal size devices for all
4 transistors and one with adjusted device sizes to remove some of the limitations of
the initial design. A unit-size device is set to have an emitter area of 1 um x 40 um
which corresponds to the same area used in [YOUN90]. The load resistance is set to
50 £, which is a typical off-chip load value. Bias voltages of 0.7 V are applied to the
two input transistors to set up standby current in the output transistors. The input
voltage is driven with large-signal low-frequency sinusoidal inputs of magnitude up
to 4.0 V to determine the THD and power gain of the stage. The peak load-current
magnitude is therefore roughly 4.0V/50(2 = 80 mA, assuming an ideal voltage gain of
1. The input voltage has also been swept from Vgg to Ve to investigate the linearity
of the output characteristic.

For the initial design with equal-sized transistors, the quiescent bias current
in Q2 and Q4 is determined from an operating point simulation of the circuit to be
about 3.5 mA for SPICE and 2.9 mA for CIDER. These values are approximately 4%
of the estimated peak load current. Using the values from Table 6.2, the knee current
densities of the NPN and PNP devices are 8.0 mA and 3.6 mA, respectively. These
values are roughly one-tenth to one-twentieth of the estimated peak load current. As
a result, it can be anticipated that nonlinear § effects will result in low power gain at
high input amplitude, and that the upper half-circuit containing the PNP device will
be the limiting factor for clipping.

Figure 6.21 shows the output voltage of the PPEF as V; is swept from Vgg =
-5 V to Voo = 5 V. For the CIDER results, the curve is almost a straight line unless V; <
-3.8 Vor Vi > 3.5 V. The output voltage changes slope outside of these bounds due to
clipping. The clipping points are determined by the Vzg’s of the output transistors

5The CIDER 1P models characterized in Section 6.2.1 and those used here differ in one respect. The
effective base length of the PPEF models is 1.0 um, rather than the 0.5 zm listed in the appendix. This
increases the base resistance of the devices, and diminishes the base current in the high-current region.
The SPICE models used here have been fit to the 1.0 sm CIDER models, and therefore do not agree as well
as they could with the 0.5 um models.

173



CHAPTER 6. APPLICATIONS OF CIDER

Vo (V)

5.00

4.00

3.00

2.00

1.00

0.00

-1.00

-2.00

-3.00

-4.00

-5.00

Initial / CIDER

PPEF Output Voltage
Pz
/
/
V
/

-4.00

-2.00

0.00

2.00

4.00

| TInitial / SPICE

vI(V)

Figure 6.21: Output voltage of PPEF output stage. Clipping occurs for large positive

and negative input voltages

174



CHAPTER 6. APPLICATIONS OF CIDER

COLLECTOR CURRENT RATIO
ICratio (A7A)

SPICE /CIDER

2.00 /\

150

\

1.00 —

050

0.00

VBE (V)
0.00 0.50 1.00 1.50

Figure 6.22: Ratio of collector currents from SPICE to CIDER

and the VpoEgsqs’s of the input transistors. Note that the SPICE and CIDER simulations
clip at different points. This is because the collector currents of the two models do not
agree at the same value of Vg in the high-current region. The graph in Figure 6.22
demonstrates this by showing the ratio of the SPICE NPN collector current to that
of CIDER as a function of Vgg. At the same level of collector current I¢ (determined
primarily by V; and Ry), different Vgg’s are obtained from the two models.

In Figure 6.23, the slope (gain) of the output characteristic is plotted versus
the input voltage. The average gain from SPICE is about 0.94, while that from the
numerical-model simulation is about 0.92. Qualitatively, both curves show clipping at
the edges of the central region, and a dip in the gain near the center due to crossover
distortion. Note that as expected, clipping occurs sooner for positive input voltage due
to the lower knee current of the PNP device. The CIDER results have multiple dips
and peaks and an asymmetry about V; = 0 V that should give rise to increased second
harmonic distortion for small input amplitudes. In contrast, the SPICE curve has only
the one dip due to crossover. The reasons for these differences are not known.

An improved design results if the output devices are made twice as large as

175



CHAPTER 6. APPLICATIONS OF CIDER

PPEF DC Gain

AV (VNV)
1.00 =1 Initial /CIDER

§ e PR Initial / SPICE
ARV S =

o a

080 —

0.70

]
|
|

—
—

0.60

—]

0.40

W
0.30 4

0.20

vVI(V)

-4.00 -2.00 0.00 2.00 4.00

Figure 6.23: Gain of PPEF output stage. Ideal stage would have flat gain. Variations
in gain result in harmonic distortion in output waveforms.

176



CHAPTER 6. APPLICATIONS OF CIDER

the input devices, and the PNP devices are made 2.5 times larger than NPN devices.
This improves the current-carrying capacity of the output devices by delaying the
onset of high-level injection, and better balances the knee currents of the NPN and
PNP devices. As a result, power gain is improved and clipping occurs at a higher
positive input voltage. Also, crossover distortion is reduced somewhat, since for fixed
bias voltages of 0.7 V, there is more standby current in the larger output devices.
Improved linearity and output voltage range have been verified by comparing the new
gain curves to the results shown in Figure 6.23.

The total harmonic distortion and power gain of the original and improved
designs have been measured from transient simulations of the PPEF. A low-frequency
sinusoidal input voltage is applied and the output voltage and input current are stored.
The low input frequency eliminates concerns about capacitive transients, so only a sin-
gle cycle of the input needs to be simulated. The THD and power gain are determined
from Fourier analyses of the resulting waveforms. The power gain is defined as:

2
where V; and Vp are the fundamental magnitudes of the input and output voltages
and f7 and fo are the fundamental magnitudes of the input and output currents. V,

A

and f; must be measured, whereas V; is known a priori.

The THD is shown in Figure 6.24 for the four different cases: SPICE - initial
design, CIDER - initial design, SPICE - improved design, and CIDER - improved design.
In the original design, both CIDER and SPICE show increased distortion at large V;
due to clipping. This effect is less apparent in the improved-design simulations. For
the remaining values of V;, the improved design reduces the THD by about a factor
of two. Qualitatively, the differences in the large-signal output voltage characteristics
between SPICE and CIDER show up as differences in the THD. The CIDER simulations
reach a peak THD between 0.8 V and 1.4 V V; and then start to diminish. The
SPICE simulations show increasing THD until just before the onset of clipping. SPICE
therefore appears to overestimate the THD in this region. Comparison to experimental
data would be needed to determine which set of simulations (CIDER or SPICE) gives
more accurate results.

In Figure 6.25, the power gain of the PPEF is plotted for V; up to 4.0 V. All
four simulations give substantially different results. The lower 2 curves are from the

177



CHAPTER 6. APPLICATIONS OF CIDER

PPEF Total Harmonic Distortion

THD (%)
SPICE/Initial
L | 1| CibERwea
0.90 SPICE/mproved
CIDER/Improved
0.80 f,"\\
| |
0.70 YA
j \ I
i
H
o S
0.50 l 7 \
f /
" ;/ k‘\ ji
0.30 ;; / ~
'o' ‘s:”: ..........
0.20 ,‘/ i B BV >
/ ) P e i
0.10 ”I il
’ I /7.
,
’,°
P
0.00 £
vI(V)
2.00 3.00

1.00

Figure 6.24: Total harmonic distortion (THD) of PPEF designs. Rapid increase in THD

for large V; is due to clipping.

178



CHAPTER 6. APPLICATIONS OF CIDER

PPEF Power Gain
AP (dB)
—_
SPICE/Initial
40.00 -
et e, CIDER/Initial
M‘Q:r‘f‘.,“ ..----...n.! ......
oo el SPICE/Improved
LY vy \.\. = —————-
\ o e CIDER/Improved
35.00 S T
\ o S,
'\ o a o e -
* e
\\ vy
30.00 2, v
X e <
.\‘\ \ v
.
qQ
\ \ ’
25.00 ~
5
20.00 \
\ !
16.00 — -
10.00
vI(V)
0.00 1.00 2.00 3.00 4.00

Figure 6.25: Power gain of PPEF designs. Gain falls off due to high-current beta
rolloff.

179



CHAPTER 6. APPLICATIONS OF CIDER

Ay Ar | Ap |[THD | Ip I
Design/Model (VIV) | (AJA) | (dB) | (%) | (mA) | (mA)
Initial/SPICE 0915 112 [10.1]| 36 | 732 | 6.5
Initial/CIDER 0923 | 449 [ 162 050 | 739 | 1.6
Improved/SPICE | 0.967 | 1920 | 32.7 | 0.26 | 77.4 | 0.040
Improved/CIDER | 0.957 | 486 |26.7 | 0.23 | 76.5 | 0.16

Table 6.6: Performance summary of PPEF designs. Initial design has area ratios for
Q1 to Q4 of 1:1:1:1. Improved design has area ratios 1:5:2.5:2. Unit device has emitter

area of 1um X 40 pm.

original design which has less power gain. The CIDER results are consistently lower
than those from the SPICE Gummel-Poon model up until about 3.2 V. At that point,
clipping in the SPICE simulation rapidly reduces the power gain. For the improved
design, a similar relationship between the numerical and compact model results is
also seen. However, in both cases the power gain has increased significantly with
respect to the initial design. The falloff of power gain with increasing V; has also
been reduced. Another observation is that with numerical modeling the falloff is more
rapid than with compact device modeling”. This is most likely due to the differences
in high-current modeling between the CIDER and SPICE models.

Several measures of the performance of the PPEF designs are assembled in
Table 6.6. For V; = 4.0 V and + 5.0 V supplies, the CIDER simulations of the improved
design predict an output amplitude of 3.83 V, power gain of 26.7 dB, total harmonic
distortion of 0.23 %, peak load current of 76.5 mA, and input demand of 160 uA.

6.4.3 Two-Dimensional Simulations of the PPEF

So far only one-dimensional numerical device models have been used in CIDER
to evaluate the PPEF designs. However, the high-current behavior of bipolar transis-
tors is affected by inherently two-dimensional phenomena such as emitter current
crowding and lateral base pushout. In order to determine whether the simulation
results change significantly in the presence of these 2P effects, simulations employing
the coarse-mesh 2P bipolar transistor models mentioned in Section 6.2.1 have been
performed. Because 2P simulations are computationally intensive, only the improved

"The rate of falloff is roughly measured by finding the input voltage where the power gain has dropped
to 1/2 its maximum value.

180



CHAPTER 6. APPLICATIONS OF CIDER

PPEF Total Harmonic Distortion

THD (%)
050 SPICE
’ CIDER 1D
‘CIDER 2D
025 ’ f\\ 5 /‘- Pt ingq,
j %\, i
0.20 / / ‘\\ /
. g s /
0.15 ‘l { - R4 ‘-o.ho-m :)‘f~
/
0.10 §
0.05 /J/
0.00
VI(V)

0.00 1.00 2.00 3.00 4.00

Figure 6.26: Comparison of THD predictions from different models. The 2P simula-
tions show less distortion.

PPEF design has been simulated, and fewer input voltage amplitudes V; have been
sampled. In addition, the simulations have been performed on 4-node subcubes of the
iPSC/860 described in Chapter 5 in order to reduce the simulation run times by exploit-
ing parallelism. Simulations of the 2P model using CIDER in a device-simulation mode
indicate differences between the 1P and 2P behavior, especially at high-current levels.
Differences in the simulated performance of the PPEF circuit can also be expected.

In Figure 6.26, the THD obtained from the 2P simulations is compared to
that obtained for the improved design when using 1P bipolar models or SPICE compact
models. In Figure 6.27, the power gain for these 3 cases is plotted. In both figures,
major discrepancies are observed. The 2P simulations predict lower average THD and
higher power gain. Further investigation is needed to identify the source of these

181



CHAPTER 6. APPLICATIONS OF CIDER

AP(dB)

40.00

38.00

36.00

34.00

32.00

30.00

26.00

Figure 6.27: Comparison of power gain predictions from different models.

PPEF Power Gain
N\“*E\\ ~~~~ Tl .
\\-\\\ .
\\\ \\
™\
N
Y
}
0.00 1.00 2.00 3.00 4.00

simulations show greater power gain.

182

'SPICE
‘CIDER 1D

VI(V)

The 2P



CHAPTER 6. APPLICATIONS OF CIDER

discrepancies. One contributing factor may be the level of standby current in the
output transistors. All three models predict different levels of standby current for the
given 0.7 V bias voltages, and therefore can be expected to show different THD from
crossover distortion. A possible direction for future research would be to adjust the
input bias voltages to achieve identical standby current in all 8 simulations. However,
since all 3 models are supposedly simulating the same device in the real world, they
should produce the same results without the need for such adjustment. At least 2 and
perhaps all 3 models are improperly simulating the behavior of real PPEF circuits.

Given that the SPICE Gummel-Poon and CIDER one- and two-dimensional nu-
merical models all predict different levels of THD and power gain, it is difficult to
conclude that any of the models provides more accurate simulation results. Although
physically motivated reasoning would suggest that the 20 numerical models are most
accurate, this assertion needs to be tested by carefully comparing simulation results
to measurements of actual PPEF implementations. In the mean time, PPEF designs
based solely on SPICE simulations may fail to meet their specifications due to poten-
tially erroneous simulation results. As a precaution, double-checking of designs using
one- or two-dimensional CIDER simulations is warranted.

6.5 Summary

The serial and parallel versions of CIDER have been demonstrated using three
examples. In the first application, the expanded capabilities of CIDER compared to
its predecessor CODECS are shown. A hypothetical 1.0 um CBiCMOS process has
been characterized. Advanced technology devices such as polysilicon-emitter bipolar
transistors and LDD MOSFETS are incorporated into the process. The new physical
models of CIDER allow these devices to be accurately modeled. Evaluation of a 7-stage
CMOS ring oscillator is possible if the Intel iPSC/860 version of CIDER is used.

The second application studies the gain of three different MOS amplifiers.
The simplest circuit is a MOS inverter with an ideal load, the next is an NMOS source-
coupled pair with an active PMOS current-mirror load, and the most complex circuit is
an 8-transistor two-stage CMOS opamp. The parallel version of CIDER makes analysis
of the 8-transistor circuit tractable. Simulation results obtained using the SPICE BSIM
model have been compared to results obtained using CIDER numerical models. The

183



CHAPTER 6. APPLICATIONS OF CIDER

poor modeling of output resistance in the BSIM model gives rise to nonphysical gain
predictions, as demonstrated by comparison to the CIDER results.

In the third and final example, the large-signal performance of the push-pull
complementary emitter-follower output stage is investigated. In this circuit, compound
bipolar devices are used to provide high load-current drivability while maintaining low
input demand. For large-amplitude inputs, the output transistors operate in high-level
injection. It is well known that the SPICE modified Gummel-Poon bipolar transistor
model does not model high-current effects very well. CIDER simulations employing
one- and two-dimensional numerical models have been used to study the accuracy of
SPICE-model-based simulations. Simulation results show that large qualitative and
quantitative differences exist between compact-model results and numerical-model
results. These differences call into question design criteria for PPEFs developed using
SPICE simulations.

184



Chapter 7

Conclusions

Used properly, a mixed-level circuit and device simulator can be a valuable
addition to the set of tools available to the designer of integrated circuits and devices.
However, the degree to which this is true depends on the capabilities and limitations
of a particular implementation of mixed-level simulation. This dissertation addresses
several topics which all relate to the same central question: how should existing mixed-
level circuit and device simulators evolve in the future to become more effective tools
for IC design?

Issues of concern for a mixed-level simulator are the same as for any other
large, complex piece of software:

Performance An adequate level of performance must be sustained to support the
routine tasks of IC design.

Reliability The program should reliably produce accurate results for any well-posed
simulation problem. In addition, an electrical IC simulator must contain appro-
priate models for the physical effects that influence device and circuit behavior.

Utility It should be easy to both generate input for the program and evaluate the
simulation results. In addition, a general-purpose simulator should support a
wide range of analysis capabilities.

Portability The program must be capable of running on a wide variety of comput-
ing systems. In mixed-level simulation, where performance requirements are
stringent, multiple parallel computing systems should also be supported.

185



CHAPTER 7. CONCLUSIONS

The recently developed circuit and device simulator CODECS [MAYAS88] has
been used as the basis for a new, parallel mixed-level simulator CIDER. CIDER extends
the capabilities of CODECS in order to address each of the four major issues of concern
identified above. In order to improve reliability, the basic proven algorithms of CODECS
have been left untouched as much as possible when moving to a parallel computing
environment. These algorithms have been reviewed, and several extensions to improve
the modeling of important physical effects and the ease-of-use of the user interface have
been introduced. A complete manual for CIDER with several examples is provided as
Appendix A.

A detailed performance analysis of CIDER has been performed to identify the
major computational bottlenecks of mixed-level simulation. In all cases considered,
evaluation of the numerically modeled elements accounts for over 99% of the total time
used. Experiments have been performed to measure the resources used by a set of
simple test problems. These measurements are used to create models for CPU and
memory usage that can predict the resource requirements in other situations. A set of
benchmark circuits has been run on 5 different RISC architecture computing systems
to establish the serial performance of CIDER on actual circuit examples. For these
systems with clock rates ranging between 25 and 50 MHz, sustained performance for
the benchmark circuits averages from between 0.7 and 3.0 MFLOP/S. Estimates of the
resources needed in several simulation scenarios show that this level of performance
is well above that needed for small problems, an order of magnitude too slow for a
large but still manageable problem, and 4 orders of magnitude too slow for a problem
at the upper limits of what might be encountered in IC cell design.

The computational bottleneck of mixed-level simulation has been addressed
by investigating the possibilities for the use of scalable, high-performance distributed-
memory multicomputers. Three levels of parallelism are identified that can be ex-
ploited by the multiple processors in such a system. At the design-level, tasks consist
of individual simulation jobs. At the circuit-level, the major tasks are the evaluations
of the numerically modeled elements of a circuit. At the device-level, each processor
is assigned a task that roughly corresponds to a portion of the semiconductor device
being simulated. Existing techniques for exploiting each of these levels of parallelism
have been reviewed, and extensions that combine parallelism from more than one
level have been introduced. In particular, an algorithm is proposed for combining

186



CHAPTER 7. CONCLUSIONS

parallelism at the circuit and device levels in a single program. Experiments with
a simulated-annealing-based partitioning program indicate that in some cases ad-
ditional speedups may be achievable compared to a simpler implementation based
solely on exploiting parallelism at the circuit level. However, the proposed algorithm
requires several software components that are not readily available on present parallel
computing systems.

In order to meet current needs for performance enhancement, an imple-
mentation of a one-level parallel model evaluation algorithm has been developed
for distributed-memory multicomputers. This implementation has been successfully
tested on two different computing systems: a scalable, hypercube supercomputer and
a nonscalable cluster of engineering workstations. The primary advantage of this ap-
proach is the relative simplicity with which it can be implemented and maintained. By
leaving the cores of the component circuit and device simulators virtually untouched,
the parallel mixed-level simulator can be quickly and easily upgraded as modifications
are made to the component simulators. Benchmark testing of the simulator on the two
systems reveals that it is possible to achieve good speedup and efficiency using this
approach. In general, the hypercube implementation outperforms the cluster imple-
mentation, even after taking into account the faster compute nodes of the hypercube.
However, in certain special cases, the speedups obtained are very similar. Unfortu-
nately, the one-level approach has a number of limitations that prevent the full power
of the multicomputer from being used effectively. Chief among these is a ceiling on
the available parallelism equal to the number of numerically modeled devices in the
circuit. The other limitations all reduce the speedup achieved below this upper bound.
While options exist for minimizing the impact of most of these limitations, the unpre-
dictable nature of imbalances caused by latent devices appears at this point to be an
insurmountable difficulty.

Despite the limited success of the parallel implementation, it is still an im-
provement over the best serial algorithm. Examples have been provided that use this
improved performance to study circuits containing multiple, two-dimensional numer-
ically modeled devices. A hypothetical 1.0 um CBiCMOS process has been character-
ized using CIDER. Parallel simulation allows the stage delay of a 7-stage CMOS ring
oscillator to be determined. The gain of several MOS amplifiers has been simulated
using both SPICE compact models and CIDER numerical MOS models. Analysis of the

187



CHAPTER 7. CONCLUSIONS

results shows that the SPICE models predict incorrect behavior, whereas the CIDER
numerical models result in qualitatively correct behavior. Parallel CIDER simulations
allow an 8-transistor two-stage CMOS operational amplifier to be simulated. Finally, a
compound-device push-pull complementary emitter-follower IC output stage has been
studied. Results from simulations using CIDER one- and two-dimensional numerical
bipolar models and from using the SPICE modified Gummel-Poon model do not agree.
Design criteria developed based on SPICE simulations need to be reevaluated based on
this new information. The expensive 2P transient simulations have been performed
on the hypercube supercomputer.

Future work should continue to address the four major issues of concern. The
existing implementation is believed to have sufficient accuracy, utility and performance
to enable the design of small cells such as opamps, comparators, and logic gates. This
belief should be checked by tuning the physical models in CIDER to an actual IC process
and then designing, manufacturing and testing several such small circuits.

If problems arise during this process, several options exist for improving the
current implementation. Performance may be enhanced by implementing the multi-
level model-evaluation algorithm described in Chapter 4. Alternatively, or in concert,
the rectangular-mesh-based device simulator could be replaced by one employing a
more general and efficient meshing scheme such as used in PISCES [PINTS85].

Although mixed-level circuit and device simulation has been available for
some time [ENGL82], only recently has it begun to attract significant attention in the
TCAD community. TCAD vendors have integrated this capability into their lines of
product offerings [TMA91]. However, someday in the future it may also have a place
alongside circuit simulators in the ICCAD toolbox. If so, parallel computers will surely
have a role in making this happen.

188



Appendix A

CIDER User’s Manual

The CIDER User’s Manual that follows is organized as a series of individual UNIX-
style manual pages. At the end of the manual, several examples illustrating the use

of CIDER are given.

189



INTRODUCTION Cider User’s Manual INTRODUCTION

NAME
INTRODUCTION - Overview of CIDER'’s features / capabilities

DESCRIPTION

CIDER is a mixed-level circuit and device simulator that provides a direct link between
technology parameters and circuit performance. A mixed-level circuit and device simulator
can provide greater simulation accuracy than a stand-alone circuit or device simulator by
numerically modeling the critical devices in a circuit. Compact models can be used for
noncritical devices.

CIDER couples the latest version of SPICE3 (version 3F.2) [JOHN92] to an internal
C-based device simulator, DSIM. SPICE3 provides circuit analyses, compact models for
semiconductor devices, and an interactive user interface. DSIM provides accurate, one-
and two-dimensional numerical device models based on the solution of Poisson’s equation,
and the electron and hole current-continuity equations. DSIM incorporates many of the
same basic physical models found in the the Stanford two-dimensional device simulator
PISCES [PINTS5]. Input to CIDER consists of a SPICE-like description of the circuit and
its compact models, and PISCES-like descriptions of the structures of numerically modeled
devices. As a result, CIDER should seem familiar to designers already accustomed to these
two tools. For example, SPICE3F.2 input files should run without modification, producing
identical results.

CIDER is based on the mixed-level circuit and device simulator CODECS [MAYAS88],
and is a replacement for this program. The basic algorithms of the two programs are the
same. Some of the differences between CIDER and CODECS are described below. The
CIDER input format has greater flexibility and allows increased access to physical model
parameters. New physical models have been added to allow simulation of state-of-the-art
devices. These include transverse field mobility degradation [GATE90] that is important
in scaled-down MOSFETs and a polysilicon model for poly-emitter bipolar transistors.
Temperature dependence has been included for most physical models over the range from
-50°C to 150°C. The numerical models can be used to simulate all the basic types of
semiconductor devices: resistors, MOS capacitors, diodes, BJTs, JFETs and MOSFETs.
BJTs and JFETSs can be modeled with or without a substrate contact. Support has been
added for the management of device internal states. Post-processing of device states can
be performed using the NUTMEG user interface of SPICE3. Previously computed states
can be loaded into the program to provide accurate initial guesses for subsequent analyses.
Finally, numerous small bugs have been discovered and fixed, and the program has been
ported to a wider variety of computing platforms.

Berkeley tradition calls for the naming of new versions of programs by affixing a
(number, letter, number) triplet to the end of the program name. Under this scheme,
CIDER should instead be named CODECS2A.1. However, tradition has been broken in
this case because major incompatibilities exist between the two programs and because it
was observed that the acronym CODECS is already used in the analog design community
to refer to coder-decoder circuits.

Details of the basic semiconductor equations and the physical models used by CIDER
are not provided in this manual. Unfortunately, no other single source exists which de-
scribes all of the relevant background material. Comprehensive reviews of device simula-
tion can be found in [PINT90] and the book [SELB84]. CODECS and its inversion-layer
mobility model are described in [MAYA88] and [GATE90], respectively. PISCES and its
models are described in [PINT85). Temperature dependences for the PISCES models used
by CIDER are available in [SOLL90].

190



INTRODUCTION Cider User’s Manual INTRODUCTION

SYSTEM REQUIREMENTS

The program has been run successfully on the following operating system / hardware
combinations: (Ultrix 4, RISC), (SunOS 4, Sun4), (AIX 3, RS/6000), (UNIX SVR3, iPSC/860
node), (HPUX 8, 9000/700). Compatibility with other computer systems has not been tested.

191



SPECIFICATION Cider User’s Manual SPECIFICATION

NAME
SPECIFICATION - Overview of numerical-device specification

DESCRIPTION

The input to CIDER consists of a SPICE-like description of a circuit, its analyses and
its compact device models, and PISCES-like descriptions of numerically analyzed device
models. For a description of the SPICE input format, consult the SPICE3 User’s Manual
[JOHN92].

To simulate devices numerically, two types of input must be added to the input file.
The first is a model description in which the common characteristics of a device class are
collected. In the case of numerical models, this provides all the information needed to
construct a device cross-section, such as, for example, the doping profile. The second type
of input consists of one or more element lines that specify instances of a numerical model,
describe their connections to the rest of the circuit, and provide additional element-specific
information such as device layout dimensions and initial bias information.

The format of a numerical device model description differs from the standard approach
used for SPICE3 compact models. It begins the same way with one line containing the
.MODEL keyword followed by the name of the model, device type and modeling level.
However, instead of providing a single long list of parameters and their values, numerical
model parameters are grouped onto cards. Each type of card has its own set of valid
parameters. In all cases, the relative ordering of different types of cards is unimportant.
However, for cards of the same type (such as mesh-specification cards), their order in the
input file can be important in determining the device structure.

Each card begins on a separate line of the input file. In order to let CIDER know that
card lines are continuations of a numerical model description, each must begin with the
continuation character, ‘+’. If there are too many parameters on a given card to allow it fit
on a single line, the card can be continued by adding a second ‘+’ to the beginning of the
next line. However, the name and value of a parameter should always appear on the same
line.

Several features are provided to make the numerical model format more convenient.
Blank space can follow the initial ‘+’ to separate it from the name of a card or the card
continuation ‘+’. Blank lines are also permitted, as long as they also begin with an initial ‘+’.
Parentheses and commas can be used to visually group or separate parameter definitions.
In addition, while it is common to add an equal sign between a parameter and its value,
this is not strictly necessary.

The name of any card can be abbreviated, provided that the abbreviation is unique.
Parameter name abbreviations can also be used if they are unique in the list of a card’s
parameters. Numeric parameter values are treated identically as in SPICES, so expo-
nential notation, engineering scale factors and units can be attached to parameter values:
tau=10ns, nc=3.0el%cm"~-3. In SPICE3, the value of a FLAG model parameter is
changed to TRUE simply by listing its name on the model line. In CIDER, the value of a
numerical model FLAG parameter can be turned back to FALSE by preceding it by a caret
‘*’. This minimizes the amount of input change needed when features such as debugging
are turned on and off. In certain cases it is necessary to include filenames in the input
description and these names may contain capital letters. If the filename is part of an
element line, the input parser will convert these capitals to lowercase letters. To protect
capitalization at any time, simply enclose the string in double quotes .

The remainder of this manual describes how numerically analyzed elements and models
can be used in CIDER simulations. The manual consists of three parts. First, all of the

192



SPECIFICATION Cider User’s Manual SPECIFICATION

model cards and their parameters are described. This is followed by a section describing
the three basic types of numerical models and theier corresponding element lines. In the
final section, several complete examples of CIDER simulations are presented.

Several conventions are used in the card descriptions. In the card synopses, the name of
a card is followed by a list of parameter classes. Each class is represented by a section in the
card parameter table, in the same order as it appears in the synopsis line. Classes which
contain optional parameters are surrounded by brackets: [...]. Sometimes it only makes
sense for a single parameter to take effect. (For example, a material can not simultaneously
be both Si and SiO,.) In such cases, the various choices are listed sequentially, separated
by colons. The same parameter often has a number of different acceptable names, some of
which are the listed in the parameter tables.! These aliases are separated by vertical bars:
‘. Finally, in the card examples, the model continuation pluses have been removed from
the card lines for clarity’s sake.

EXAMPLES

The model description for a two-dimensional numerical diode might look something like
what follows. This example demonstrates many of the features of the input fromat described
above. Notice how the .MODEL line and the leading pluses form a border around the model
description:

.MODEL M.NUMERICAL NUMD LEVEL=2
cardnamel numberl=vall (number2 val2), (number3 = val3)
cardname2 numberl=vall stringl = namel

+
+
+
+ cardname3 numberl=vall, flagl, ~flag2
+ + number2=val2, flag3
The element line for an instance of this model might look something like the following.
Double quotes are used to protect the filename from decapitalization:

dl 1 2 MNUMERICAL area=100pm~2 ic.file = "diode.IC"

1Some of the possibilities are not listed in order to shorten the lengths of the parameter tables.
This makes the use of parameter abbreviations somewhat troublesome since an unlisted parameter may
abbreviate to the same name as one thatislisted. CIDER will produce a warning when this occurs. Many
of the undocumented parameter names are the PISCES names for the same parameters. The a}iver}turous
soul can discover these names by delving through the ‘cards’ directory of the source code distribution and
looking for the C parameter tables.

193



BOUNDARY, INTERFACE Cider User’s Manual BOUNDARY, INTERFACE

NAME

BOUNDARY, INTERFACE - Specify properties of a domain boundary or the interface
between two boundaries

SYNOPSIS

boundary domain [bounding-box] [properties]
interface domain neighbor [bounding-box] [properties]

DESCRIPTION

The boundary and interface cards are used to set surface physics parameters along the
boundary of a specified domain. Normally, the parameters apply to the entire boundary, but
there are two ways to restrict the area of interest. If a neighboring domain is also specified,
the parameters are only set on the interface between the two domains. In addition, if a
bounding box is given, only that portion of the boundary or interface inside the bounding
box will be set.

If a semiconductor-insulator interface is specified, then an estimate of the width of
any inversion or accumulation layer that may form at the interface can be provided. If
the surface mobility model (cf. models card) is enabled, then the model will apply to all
semiconductor portions of the device within this estimated distance of the interface. If a
point lies within the estimated layer width of more than one interface, it is assumed to
belong to the interface specified first in the input file. If the layer width given is less than
or equal to zero, it is automatically replaced by an estimate calculated from the doping near
the interface. As a consequence, if the doping varies so will the layer width estimate.

Each edge of the bounding box can be specified in terms of its location or its mesh-index
in the relevant dimension, or defaulted to the respective boundary of the simulation mesh.

PARAMETERS
| Name Type Description
Domain Integer ID number of primary domain
Neighbor Integer ID number of neighboring domain
X.Low Real Lowest X location of bounding box, ( 1zm )
: X.Low Integer Lowest X mesh-index of bounding box
X.High Real Highest X location of bounding box, ( #m )
: IX.High Integer Highest X mesh-index of bounding box
Y.Low Real Lowest Y location of bounding box, ( pm )
: IY.Low Integer Lowest Y mesh-index of bounding box
Y.High Real Highest Y location of bounding box, ( sm )
: IY.High Integer Highest Y mesh-index of bounding box
Qf Real Fixed interface charge, ( C/fem?)
SN Real Surface recombination velocity - electrons, ( em/s )
SP Real Surface recombination velocity - holes, ( cm/s )
Layer.Width Real Width of surface layer, ( yum )

194



BOUNDARY, INTERFACE Cider User’s Manual BOUNDARY, INTERFACE

EXAMPLES

The following shows how the surface recombination velocities at an Si-SiO, interface might
be set:

interface dom=1 neigh=2 sn=1.0e4 sp=1.0e4

In a MOSFET with a 2.0 ym gate width and 0.1 ym source and drain overlap, the surface

channel can be restricted to the region between the metallurgical junctions and within 100
A (0.01 pm ) of the interface:

interface dom=1 neigh=2 x.1=1.1 x.h=2.9 layer.w=0.01

The inversion layer width in the previous example can be automatically determined by
setting the estimate to 0.0:

interface dom=1 neigh=2 x.1=1.1 x.h=2.9 layer.w=0.0

SEE ALSO

domain, contact, mobility, models

195



COMMENT Cider User’s Manual COMMENT

NAME
COMMENT - Add explanatory comments to a device definition

SYNOPSIS

comment [text]
* [text]
$ [text]
# [text]

DESCRIPTION

Annotations can be added to a device definition using the comment card. All text on
a comment card is ignored. Several popular commenting characters are also supported as
aliases: ** from SPICE, ‘¢’ from PISCES, and ‘# from UNIX shell scripts.

EXAMPLES

A SPICE-like comment is followed by a PISCES-like comment and shell script comment:
* CIDER and SPICE would ignore this input line
$ CIDER and PISCES would ignore this, but SPICE wouldn’t
# CIDER and UNIX Shell scripts would ignore this input line

196



CONTACT Cider User’s Manual CONTACT

NAME
CONTACT - Specify properties of an electrode

SYNOPSIS

contact number [workfunction)

DESCRIPTION

The properties of an electrode can be set using the contact card. The only changeable
property is the workfunction of the electrode material and this only affects contacts made
to an insulating material. All contacts to semiconductor material are assumed to be ohmic

in nature.
PARAMETERS
| Name Type Description |
Number Integer ID number of the electrode
Workfunction Real Workfunction of electrode material, (eV )
EXAMPLES

The following shows how the workfunction of the gate contact of a MOSFET might be
changed to a value appropriate for a P+ polysilicon gate:
contact num=2 workf=5.29

SEE ALSO
electrode, material

197



DOMAIN, REGION Cider User’s Manual DOMAIN, REGION

NAME
DOMAIN, REGION - Identify material-type for section of a device

SYNOPSIS

domain number material [position]
region number material [position]

DESCRIPTION

A device is divided into one or more rectilinear domains, each of which has a unique
identification number and is composed of a particular material.

Domain (aka region) cards are used to build up domains by associating a material type
with a box-shaped section of the device. A single domain may be the union of multiple
boxes. When multiple domain cards overlap in space, the one occurring last in the input
file will determine the ID number and material type of the overlapped region.

Each edge of a domain box can be specified in terms of its location or mesh-index in the
relevant dimension, or defaulted to the respective boundary of the simulation mesh.

PARAMETERS
| Name Type Description |
Number Integer ID number of this domain
Material Integer ID number of material used by this domain
X.Low Real Lowest X location of domain box, ( pm )
: IX.Low Integer Lowest X mesh-index of domain box
X High Real Highest X location of domain box, ( gm )
: IX.High Integer Highest X mesh-index of domain box
Y.Low Real Lowest Y location of domain box, ( um )
: IY.Low Integer Lowest Y mesh-index of domain box
Y.High Real Highest Y location of domain box, ( pm )
: IYHigh Integer Highest Y mesh-index of domain box
EXAMPLES

Create a 4.0 um wide by 2.0 um high domain out of material #1:
domain num=1 material=1 x.1=0.0 x.h=4.0 y.1=0.0 y.h=2.0

The next example defines the two domains that would be typical of a planar MOSFET
simulation. One occupies all of the mesh below y = 0 and the other occupies the mesh above
y = 0. Because the x values are left unspecified, the low and high x boundaries default to
the edges of the mesh:

domain n=1 m=1 y.l=
domain n=2 m=2 y.h=0.

SEE ALSO

x.mesh, material

198



DOPING Cider User’s Manual DOPING

NAME
DOPING - Add dopant to regions of a device

SYNOPSIS

doping [domains] profile-type [lateral-profile-type] [axis) (impurity-type) [constant-box]
[profile-specifications]

DESCRIPTION

Doping cards are used to add impurities to the various domains of a device. Initially
each domain is dopant-free. Each new doping card creates a new doping profile that defines
the dopant concentration as a function of position. The doping at a particular location is
then the sum over all profiles of the concentration values at that position. Each profile can
be restricted to a subset of a device’s domains by supplying a list of the desired domains.
Otherwise, all domains are doped by each profile.

A profile has uniform concentration inside the constant box. Outside this region, it
varies according to the primary and lateral profile shapes. In 1P devices the lateral shape
is unused and in 2P devices the y-axis is the default axis for the primary profile. Several
analytic functions can be used to define the primary profile shape. Alternatively, empirical
or simulated profile data can be extracted from a file. For the analytic profiles, the doping
is the product of a profile function (e.g. Gaussian) and a reference concentration, which
is either the constant concentration of a uniform profile, or the peak concentration for
any of the other functions. If concentration data is instead taken from an ASCII file
containing a list of location-concentration pairs or a SUPREMS3 exported file, the name of
the file must be provided. If necessary, the final concentration at a point is then found by
multiplying the primary profile concentration by the value of the lateral profile function
at that point. Empirical profiles must first be normalized by the value at 0.0 to provide a
usable profile function. Alternatively, the second dimension can be included by assigning
the same concentration to all points equidistant from the edges of the constant box. The
contours of the profile are then circular.

Unless otherwise specified, the added impurities are assumed to be N type. However,
the name of a specific dopant species is needed when extracting concentration information
for that impurity from a SUPREMS3 exported data file.

Several parameters are used to adjust the basic shape of a profile function so that the
final, constructed profile matches the doping profile in the real device. The constant box
region should coincide with a region of constant concentration in the device. For uniform
profiles its boundaries default to the mesh boundaries. For the other profiles the constant
box starts as a point and only acquires width or height if both the appropriate edges are
specified. The location of the peak of the primary profile can be moved away from the
edge of the constant box. A positive location places the peak outside the constant box
(cf. Fig. A.1), and a negative value puts it inside the constant box (cf. Fig. A.2). The
concentration in the constant box is then equal to the value of the profile when it intersects
the edge of the constant box. The argument of the profile function is a distance expressed
in terms of the characteristic length (by default equal to 1um). The longer this length, the
more gradually the profile will change. For example, in Fig. A.1 and Fig. A.2, the profiles
marked (a) have characteristic lengths twice those of the profiles marked (b). The location
and characteristic length for the lateral profile are multiplied by the lateral ratio. This
allows the use of different length scales for the primary and lateral profiles. For rotated

199



DOPING Cider User’s Manual DOPING

NEX)

s CCRRREEREEE Peak.Conc

X.Low XHigh : X (um)

Iocz;.tion

Figure A.1: 10 doping profiles with location > 0.

profiles, this scaling is taken into account, and the profile contours are elliptical rather
than circular.

200



DOPING Cider User’s Manual DOPING

L Peak.Conc

S
X.High X (um)

Locz;.tion

Figure A.2: 1P doping profiles with location < 0.

201



DOPING Cider User’s Manual DOPING

PARAMETERS
| Name Type Description
Domains Int List List of domains to dope
Uniform : Linear Flag Primary profile type
: Gaussian : Erfc
: Exponential
: Suprem3 : Ascii
: Ascii Suprem3
InFile String Name of Suprem3, Ascii or Ascii Suprem3 input file
Lat.Rotate : Lat.Unif Flag Lateral profile type

: Lat.Lin : Lat.Gauss
: Lat.Erfc : Lat.Exp
| X Axis : Y.Axis Flag Primary profile direction
N.Type : PType : Donor Flag Impurity type
: Acceptor : Phosphorus
: Arsenic : Antimony

: Boron
X.Low Real Lowest X location of constant box, ( #zm )
X.High Real Highest X location of constant box, { #um )
Y.Low Real Lowest Y location of constant box, ( #m )
Y.High Real Highest Y location of constant box, ( gm )
Conc | Peak.Conc Real Dopant concentration,(cm™ )
Location | Range Real Location of profile edge/peak, ( um )
Char.Length Real Characteristic length of profile, ( pm )
Ratio.Lat Real Ratio of lateral to primary distances
EXAMPLES
This first example adds a uniform background P-type doping of 1.0 x 106cm~2 to an entire
device:

doping uniform p.type conc=1l.0el6

A gaussian implantation with rotated lateral falloff, such as might be used for a MOSFET
source, is then added:

doping gauss lat.rotate n.type conc=1.0el9
+ %x.1=0.0 x.h=0.5 y.1=0.0 y.h=0.2 ratio=0.7

Alternatively, an error-function falloff could be used:
doping gauss lat.erfc conc=1l.0el9
+ x.1=0.0 x.h=0.5 y.1=0.0 y.h=0.2 ratio=0.7

Finally, the MOSFET channel implant is extracted from an ASCII-format SUPREMS3 file.
The lateral profile is uniform, so that the implant is confined between X = 1xm and

X = 3pm. The profile begins at Y = Oum (the high Y value defaults equal to the low Y
value):

doping ascii suprem3 infile=implant.s3 lat.unif boron
+ x.1=1.0 x.h=3.0 y.1=0.0

SEE ALSO
domain, mobility, contact, boundary

202



ELECTRODE Cider User’s Manual ELECTRODE

NAME
ELECTRODE - Set location of a contact to the device

SYNOPSIS
electrode [number] [position]

DESCRIPTION

Each device has several electrodes which are used to connect the device to the rest
of the circuit. The number of electrodes depends on the type of device. For example, a
MOSFET needs 4 electrodes. A particular electrode can be identified by its position in the
list of circuit nodes on the device element line. For example, the drain node of a MOSFET
is electrode number 1, while the bulk node is electrode number 4. Electrodes for which an
ID number has not been specified are assigned values sequentially in the order they appear
in the input file.

For 1P devices, the positions of two of the electrodes are predefined to be at the ends
of the simulation mesh. The first electrode is at the low end of the mesh, and the last
electrode is at the high end. The position of the special 1P BJT base contact is set on the
options card. Thus, electrode cards are used exclusively for 2P devices.

Each card associates a portion of the simulation mesh with a particular electrode. In
contrast to domains, which are specified only in terms of boxes, electrodes can also be
specified in terms of line segments. Boxes and segments for the same electrode do not have
to overlap. If they don't, it is assumed that the electrode is wired together outside the area
covered by the simulation mesh. However, pieces of different electrodes must not overlap,
since this would represent a short circuit.

Each electrode box or segment can be specified in terms of the locations or mesh-indices
of its boundaries. A missing value defaults to the corresponding mesh boundary.

PARAMETERS
[ Name Type Description ]
Number Integer ID number of this domain
X.Low Real Lowest X location of electrode, ( 1m )
: X.Low Integer Lowest X mesh-index of electrode
X.High Real Highest X location of electrode, ( um )
: IX.High Integer Highest X mesh-index of electrode
Y.Low Real Lowest Y location of electrode, ( #m )
: I¥.Low Integer Lowest Y mesh-index of electrode
Y.High Real Highest Y location of electrode, ( um )
: IY.High Integer Highest Y mesh-index of electrode
EXAMPLES
The following shows how the four contacts of a MOSFET might be specified:
* DRAIN
electrode x.1=0.0 x.h=0.5 y.1=0.0 y.h=0.0
* GATE
electrode x.1=1.0 x.h=3.0 iy.1=0 iy.h=0
* SOURCE

203



ELECTRODE Cider User’s Manual ELECTRODE

electrode x.1=3.0 x.h=4.0 y.1=0.0 y.h=0.0
* BULK
electrode x.1=0.0 x.h=4.0 y.1=2.0 y.h=2.0

The numbering option can be used when specifying bipolar transistors with dual base
contacts:

* EMITTER

electrode num=3 x.1=1.0 x.h=2,0 y.1=0.0 y.h=0.0
*+ BASE

electrode num=2 x.1=0.0 x.h=0.5 y.1=0. h=0.0
electrode num=2 x.1=2.5 x.h=3.0 y.1=0. h=0.0

* COLLECTOR
electrode num=1 x.1=0.0 x.h=3.0 y.1=1.0 y.h=1.0

SEE ALSO

domain, contact

204



END Cider User’s Manual END

NAME

END - Terminate processing of a device definition

SYNOPSIS

end

DESCRIPTION

The end card stops processing of a device definition. It may appear anywhere within a
definition. Subsequent continuation lines of the definition will be ignored. If no end card
is supplied, all the cards will be processed.

205



MATERIAL Cider User’s Manual MATERIAL

NAME
MATERIAL - Specify physical properties of a material

SYNOPSIS
material number type [physical-constants]

DESCRIPTION

The material card is used to create an entry in the list of materials used in a device. Each
entry needs a unique identification number and the type of the material. Default values are
assigned to the physical properties of the material. Most material parameters are accessible
either here or on the mobility or contact cards. However, some parameters remain
inaccessible (e.g. the ionization coefficient parameters). Parameters for most physical effect
models are collected here. Mobility parameters are handled separately by the mobility
card. Properties of electrode materials are set using the contact card.

PARAMETERS
| Name Type Description
Number Integer 1D number of this material 1
Semiconductor : Silicon Flag Type of this material
: Polysilicon : GaAs
: Insulator : Oxide
: Nitride
|~ Affinity Real Electron affinity, (eV)
Permittivity Real Dielectric permittivity, ( F/em )
Ne Real Conduction band density, (¢cm=3)
Nv Real Valence band density, (cm™3 )
Eg Real Energy band gap, (eV)
dEg.dT Real Bandgap narrowing with temperature, ( eV/°K )
Eg.Tref Real Bandgap reference temperature, ( °K )
dEg.dN Real Bandgap narrowing with N doping, (eV/em™* )
Eg.Nref Real Bandgap reference concentration - N type, (cm™2 )
dEg.dP Real Bandgap narrowing with P doping, ( eV/em=3)
Eg.Pref Real Bandgap reference concentration - P type, (cm™3)
TN Real SRH lifetime - electrons, (s )
SRH.Nref Real SRH reference concentration - electrons, (cm™2)
TP Real SRH lifetime - holes, (s)
SRH.Pref Real SRH reference concentration - holes, (cm =2 )
CN Real Auger coefficient - electrons, ( cm®/s )
CP Real Auger coefficient - holes, ( cm®/s )
ARichN Real Richardson constant - electrons, ( A/em?/°K?2 )
ARichP Real Richardson constant - holes, ( A/em?/°K? )
EXAMPLES

Set the type of material #1 to silicon, then adjust the values of the temperature-dependent
bandgap model parameters:

206



MATERIAL Cider User’s Manual MATERIAL

material num=1 silicon eg=1.12 deg.dt=4.7e-4 eg.tref=640.0

The recombination lifetimes can be set to extremely short values to simulate imperfect
semiconductor material:
material num=2 silicon tn=1lps tp=lps

SEE ALSO
domain, mobility, contact, boundary

207



METHOD Cider User’s Manual METHOD

NAME
METHOD - Choose types and parameters of numerical methods

SYNOPSIS
method [types] [parameters]

DESCRIPTION

The method card controls which numerical methods are used during a simulation and
the parameters of these methods. Most of these methods are optimizations that reduce run
time, but may sacrifice accuracy or reliable convergence.

For majority-carrier devices such as MOSFETSs, one carrier simulations can be used
to save simulation time. The systems of equations in AC analysis may be solved using
either direct or successive-over-relaxation techniques. Successive-over-relaxation is faster,
but at high frequencies, it may fail to converge or may converge to the wrong answer. In
some cases, it is desirable to obtain AC parameters as functions of DC bias conditions.
If necessary, a one-point AC analysis is performed at a predefined frequency in order to
obtain these small-signal parameters. The default for this frequency is 1 Hz. The Jacobian
matrix for DC and transient analyses can be simplified by ignoring the derivatives of the
mobility with respect to the solution variables. However, the resulting analysis may have
convergence problems. Additionally, if they are ignored during AC analyses, incorrect
results may be obtained.

A damped Newton method is used as the primary solution technique for the device-level
partial differential equations. This algorithm is based on an iterative loop that terminates
when the error in the solution is small enough or the iteration limit is reached. Error
tolerances are used when determining if the error is “small enough”. The tolerances are
expressed in terms of an absolute, solution-independent error and a relative, solution-
dependent error. The absolute-error limit can be set on this card. The relative error is
computed by multiplying the size of the solution by the circuit-level SPICE paramcter
RELTOL.

PARAMETERS
[ Name Type Description |

OneCarrier Flag Solve for majority carriers only

AC.Analysis String AC analysis method, ( either DIRECT or SOR )

NoMobDeriv Flag Ignore mobility derivatives

Frequency Real AC analysis frequency, (Hz )

ItLim Integer Newton iteration limit

DevTol Real Maximum residual error in device equations
EXAMPLES

Use one carrier simulation for a MOSFET, and choose direct method AC analysis to ensure
accurate, high frequency results:
method onec ac.an=direct

Tolerate no more than 101 absolute error in device-level equations, and perform no more
than 15 Newton iteration in any one loop:

208



FrEnr

METHOD Cider User’s Manual METHOD

method devtol=le-10 itlim=15

209



MOBILITY Cider User’s Manual MOBILITY

NAME
MOBILITY - Specify types and parameters of mobility models

SYNOPSIS

mobility material [carrier] [parameters] [models] [initialize]

DESCRIPTION

The mobility model is one of the most complicated models of a material’s physical
properties. As a result, separate cards are needed to set up this model for a given material.

Mobile carriers in a device are divided into a number of different classes, each of which
has different mobility modelling. There are three levels of division. First, electrons and
holes are obviously handled separately. Second, carriers in surface inversion/accumulation
layers are treated differently than carriers in the bulk. Finally, bulk carriers can be either
majority or minority carriers.

For surface carriers, the normal-field mobility degradation model has three user-
modifiable parameters. For bulk carriers, the ionized impurity scattering model has four
controllable parameters. Different sets of parameters are maintained for each of the four
bulk carrier types: majority-electron, minority-electron, majority-hole and minority-hole.
Velocity saturation modelling can be applied to both surface and bulk carriers. However,
only two sets of parameters are maintained: one for electrons and one for holes. These
must be changed on a majority carrier card (i.e. when the majority flag is set).

Several models for the physical effects are available, along with appropriate default
values. Initially, a universal set of default parameters usable with all models is provided.
These can be overridden by defaults specific to a particular model by setting the initializa-
tion flag. These can then be changed directly on the card itself. The bulk ionized impurity
models are the Caughey-Thomas (CT) model and the Scharfetter-Gummel (SG) model
[CAUGE7], [SCHA69). Three alternative sets of defaults are available for the Caughey-
Thomas expression. They are the Arora (AR) parameters for Si [ARORS82], the University
of Florida (UF) parameters for minority carriers in Si [SOLL90], and a set of parameters
appropriate for GaAs (GA). The velocity-saturation models are the Caughey-Thomas (CT)
and Scharfetter-Gummel (SG) models for Si, and the PISCES model for GaAs (GA). There
is also a set of Arora (AR) parameters for the Caughey-Thomas model.

210



MOBILITY Cider User’s Manual MOBILITY

PARAMETERS
| Name Type Description

Material Integer ID number of material
Electron : Hole Flag Mobile carrier
Majority : Minority Flag Mobile carrier type
MuS Real Maximum surface mobility, ( cm*/V-s )
ECA Real Surface mobility 1st-order critical field, ( V/em)
EC.B Real Surface mobility 2nd-order critical field, ( VZ/cm? )
MuMax Real Maximum bulk mobility, ( cm%V-s )
MuMin Real Minimum bulk mobility, ( cm?/V-s )
NtRef Real Ionized impurity reference concentration, (cm=3 )
NtExp Real Ionized impurity exponent
Vsat Real Saturation velocity, ( cm/s )
Vwarm Real Warm carrier reference velocity, ( cm/s )
ConcModel String Ionized impurity model, ( CT, AR, UF, SG, or GA)
FieldModel String Velocity saturation model, ( CT, AR, SG, or GA)
Init Flag Copy model-specific defaults

EXAMPLES

The following set of cards completely updates the bulk mobility parameters for material
#1:
mobility mat=1 concmod=sg fieldmod=sg
mobility mat=1 elec major mumax=1000.0 mumin=100.0
+ ntref=1.0el6 ntexp=0.8 vsat=1.0e7 vwarm=3.0e6
mobility mat=1l elec minor mumax=1000.0 mumin=200.0
+ ntref=1.0el7 ntexp=0.9
mobility mat=1 hole major mumax=500.0 mumin=50.0
+ ntref=1.0el6 ntexp=0.7 vsat=8.0e6 vwarm=1l.0eb
mobility mat=1 hole minor mumax=500.0 mumin=150.0
+ ntref=1.0el7 ntexp=0.8

The electron surface mobility is changed by the following:
mobility mat=1 elec mus=800.0 ec.a=3.0e5 ec.b=9.0e5

Finally, the default Scharfetter-Gummel parameters can be used in Si with the GaAs
velocity-saturation model (even though it doesn’t make physical sense!):

mobility mat=1 init elec major fieldmodel=sg

mobility mat=1 init hole major fieldmodel=sg

mobility mat=1 fieldmodel=ga

SEE ALSO
material

BUGS

The surface mobility model does not include temperature-dependence for the transverse-
field parameters. Those parameters will need to be adjusted by hand.

211



MODELS Cider User’s Manual MODELS

NAME
MODELS - Specify which physical models should be simulated

SYNOPSIS
models [model flags]

DESCRIPTION

The models card indicates which physical effects should be modeled during a simulation.
Initially, none of the effects are included. A flag can be set false by preceding it by a caret.

PARAMETERS
| Name Type Description ]
BGN Flag Bandgap narrowing
SRH Flag Shockley-Reed-Hall recombination
ConcTau Flag Concentration-dependent SRH lifetimes
Auger Flag Auger recombination
Avalanche Flag Local avalanche generation
TempMob Flag Temperature-dependent mobility
ConcMob Flag Concentration-dependent mobility
FieldMob Flag Lateral-field-dependent mobility
TransMob Flag Transverse-field-dependent surface mobility
SurfMob Flag Activate surface mobility model
EXAMPLES

Turn on bandgap narrowing, and all of the generation-recombination effects:
models bgn srh conctau auger aval

Amend the first card by turning on lateral- and transverse-field-dependent mobility in
surface charge layers, and lateral-field-dependent mobility in the bulk. Also, this line
turns avalanche generation modeling off.

models surfmob transmob fieldmob ~aval

SEE ALSO

material, mobility

BUGS

The local avalanche generation model for 2P devices does not compute the necessary contri-
butions to the device-level Jacobian matrix. If this model is used, it may cause convergence
difficulties and it will cause AC analyses to produce incorrect results.

212



OPTIONS Cider User’s Manual OPTIONS

NAME
OPTIONS - Provide optional device-specific information

SYNOPSIS

options [device-type] [initial-state] [dimensions] [measurement-temperature]

DESCRIPTION

The options card functions as a catch-all for various information related to the circuit-
device interface. The type of a device can be specified here, but will be defaulted if none
is given. Device type is used primarily to determine how to limit the changes in voltage
between the terminals of a device. It also helps determine what kind of boundary conditions
are used as defaults for the device electrodes.

A previously calculated state, stored in the named initial-conditions file, can be loaded
at the beginning of an analysis. If it is necessary for each instance of a numerical model
to start in a different state, then the unique flag can be used to generate unique filenames
for each instance by appending the instance name to the given filename. This is the same
method used by CIDER to generate unique filenames when the states are originally saved.
If a particular state file does not fit this pattern, the filename can be entered directly on
the instance line.

Mask dimension defaults can be set so that device sizes can be specified in terms of
area or width. Dimensions for the special 1° BJT base contact can also be controlled.

The measurement temperature of material parameters, normally taken to be the circuit
default, can be overridden.

PARAMETERS
| Name Type Description |
Resistor Flag Resistor
: Capacitor Flag Capacitor
: Diode Flag Diode
: Bipolar | BJT Flag Bipolar transistor
: MOSFET Flag MOS field-effect transistor
:JFET Flag Junction field-effect transistor
: MESFET Flag MES field-effect transistor
IC.File String Initial-conditions filename
Unique Flag Append instance name to filename
DefA Real Default Mask Area, ( m?)
DefW Real Default Mask Width, (m)
Defl Real Default Mask Length, (m)
Base.Area Real 1P BJT base area relative to emitter area
Base.Length Real 1P BJT base contact length, ( pm )
Base.Depth Real 1P BJT base contact depth, ( gm )
| TNom Real Nominal measurement temperature, ( °C)
EXAMPLES

Normally, a ‘numos’ device model is used for MOSFET devices. However, it can be changed
into a bipolar-with-substrate-contact model, by specifying a bipolar structure using the
other cards, and indicating the device-structure type as shown here. The default length is

213



OPTIONS Cider User’s Manual OPTIONS

set to 1.0 um so that when mask area is specified on the element line it can be divided by
this default to obtain the device width.
options bipolar defl=1.0

Specify that a 1° BJT has base area 1/10th that of the emitter, has an effective base contact
depth of 0.2 um and a length between the internal and external base contacts of 1.5 pym:
options base.area=0.1 base.depth=0.2 base.len=1.5

If a circuit contains two instances of a bipolar transistor model named ‘q1’ and ‘q2’, then

the following line tells the simulator to look for initial conditions in the files ‘OP1.q1’ and

‘OP1.q2, respectively. The period in the middle of the names is added automatically:
options unique ic.file="OP1"

SEE ALSO

numd, nbjt, numos

214



OUTPUT Cider User’s Manual OUTPUT

NAME
OUTPUT - Identify information to be printed or saved

SYNOPSIS
output [debugging-flags] [general-info] [saved-solutions]

DESCRIPTION

The output card is used to control the amount of information that is either presented to
or saved for the user. Three types of information are available. Debugging information is
available as a means to monitor program execution. This is useful during long simulations
when one is unsure about whether the program has become trapped at some stage of the
simulation. General information about a device such as material parameters and resource
usage can be obtained. Finally, information about the internal and external states of a
device is available. Since this data is best interpreted using a post-processor, a facility
is avaliable for saving device solutions in auxiliary output files. Solution filenames are
automatically generated by the simulator. If the named file already exists, the file will be
overwritten. A filename unique to a particular circuit or run can be generated by providing
a root filename. This root name will be added onto the beginning of the automatically
generated name. This feature can be used to store solutions in a directory other than the
current one by specifying the root filename as the path of the desired directory. Solutions
are only saved for those devices that specify the ‘save’ parameter on their instance lines.

The various physical values that can be saved are named below. By default, the
following values are saved: the doping, the electron and hole concentrations, the potential,
the electric field, the electron and hole current densities, and the displacement current
density. Values can be added to or deleted from this list by turning the appropriate flag on
or off. For vector-valued quantities in two dimensions, both the X and Y components are
saved. The vector magnitude can be obtained during post-processing.

Saved solutions can be used in conjunction with the options card and instance lines to
reuse previously calculated solutions as initial guesses for new solutions. For example, it
is typical to initialize the device to a known state prior to beginning any DC transfer curve
or operating point analysis. This state is an ideal candidate to be saved for later use when
it is known that many analyses will be performed on a particular device structure.

215



OUTPUT Cider User’s Manual OouTPUT
PARAMETERS
| Name Type Description

All.Debug Flag Debug all analyses

OP.Debug Flag Debug .OP analyses

DC.Debug Flag Debug .DC analyses

TRAN.Debug Flag Debug .TRAN analyses

AC.Debug Flag Debug .AC analyses

PZ.Debug Flag Debug .PZ analyses

Material Flag Physical material information

Statistics | Resources Flag Resource usage information

RootFile String Root of output file names

Psi Flag Potential (V)

Equ.Psi Flag Equilibrium potential ( V)

Vac.Psi Flag Vacuum potential (V)

Doping Flag Net doping (em™3)

N.Conc Flag Electron concentration ( cm™3)

P.Conc Flag Hole concentration ( cm ™)

PhiN Flag Electron quasi-fermi potential (V)

PhiP Flag Hole quasi-fermi potential (V)

PhiC Flag Conduction band potential (V)

PhiV Flag Valence band potential ( V)

E.Field Flag Electric field { V/iem)

Jc Flag Conduction current density ( A/cm?)

JD Flag Displacement current density ( A/em?)

JN Flag Electron current density ( A/cm?)

JP Flag Hole current density ( A/cm?)

JT Flag Total current density ( A/em?)

Unet Flag Net recombination ( cm™3/s )

MuN Flag Electron mobility (low-field) ( em?/V-s)

MuP Flag Hole mobility (low-field) ( cm?/V-s)
EXAMPLES

The following example activates all potentially valuable diagnostic output:
output all.debug mater stat

Energy band diagrams generally contain the potential, the quasi-fermi levels, the band edge
energies and the vacuum energy. The following example enables saving of the non-default
values needed to make energy band diagrams:

output phin phip phic phiv vac.psi

Sometimes it is desirable to save certain key solutions, and then reload them for use in
subsequent simulations. In such cases only the essential values ( ¥, n, and p ) need to be

saved. This example turns off the nonessential default values (and indicates the essential
ones explicitly):

output psi n.conc p.conc “e.f “jn “jp “jd

SEE ALSO

options, numd, nbjt, numos

216



TITLE Cider User’s Manual TITLE

NAME
TITLE — Provide a label for this device’s output

SYNOPSIS
title [text]

DESCRIPTION

The title card provides a label for use as a heading in various output files. The text can
be any length, but titles that fit on a single line will produce more aesthetically pleasing
output.

EXAMPLES

Set the title for a minimum gate length NMOSFET in a 1.0 um BiCMOS process:
title L=1.0um NMOS Device, 1.0um BiCMOS Process

BUGS
The title is currently treated like a comment.

217



X.MESH, YMESH Cider User’s Manual X.MESH, YMESH

NAME
X.MESH, YMESH - Define locations of lines/nodes in a mesh

SYNOPSIS

x.mesh position numbering-method [spacing-parameters]
y.mesh position numbering-method [spacing-parameters]

DESCRIPTION

The domains of a device are discretized onto a rectangular finite-difference mesh using
x.mesh cards for 1° devices, or x.mesh and y.mesh cards for 2P devices. Both uniform and

non-uniform meshes can be specified. o
A typical mesh for a 2" device is shown in Figure A.3. The mesh is divided into intervals

Reference Lines

Location 0.0
Automatic
Lines
Location 0.5 p——— m— =l=
Width 1.0 Interval
Location 1.5 e ——

Uniform Spacing Nonuniform Spacing
Figure A.3: Typical mesh for 2P device.

by the reference lines. The other lines in each interval are automatically generated by
CIDER using the mesh spacing parameters. In general, each new mesh card adds one
reference line and multiple automatic lines to the mesh. Conceptually, a 1° mesh is similar
to a 20 mesh except that there are no reference or automatic lines needed in the second
dimension.

The location of a reference line in the mesh must either be given explicitly (using
Location) or defined implicitly relative to the location of the previous reference line (by
using Width). (If the first card in either direction is specified using Width, an initial
reference line is automatically generated at location 0.0.) The line number of the reference
line can be given explicitly, in which case the automatic lines are evenly spaced within the
interval, and the number of lines is determined from the difference between the current
line number and that of the previous reference line. However, if the interval width is given,
then the line number is interpreted directly as the number of additional lines to add to the
mesh.

For a nonuniformly spaced interval, the number of automatic lines has to be determined
using the mesh spacing parameters. Nonuniform spacing is triggered by providing a desired

218



X.MESH, Y.MESH Cider User’s Manual X.MESH, Y.MESH

ratio for the lengths of the spaces between adjacent pairs of lines. This ratio should always
be greater than one, indicating the ratio of larger spaces to smaller spaces. In addition to
the ratio, one or both of the space widths at the ends of the interval must be provided. If
only one is given, it will be the smallest space and the largest space will be at the opposite
end of the interval. Ifboth are given, the largest space will be in the middle of the interval.
In certain cases it is desirable to limit the growth of space widths in order to control the
solution accuracy. This can be accomplished by specifying a maximum space size, but this
option is only available when one of the two end lengths is given. Note that once the
number of new lines is determined using the desired ratio, the actual spacing ratio may be
adjusted so that the spaces exactly fill the interval.

PARAMETERS
| Name Type Description |

Location Real Location of this mesh line, ( um )

: Width Real Width between this and previous mesh lines, ( um )

Number | Node Integer Number of this mesh line

: Ratio Real Ratio of sizes of adjacent spaces

H.Start | H1 Real Space size at start of interval, ( zm )

H.End | H2 Real Space size at end of interval, ( sm )

H.Max | H3 Real Maximum space size inside interval, ( m )
EXAMPLES

A 50 node, uniform mesh for a 5 um long semiconductor resistor can be specified as:
x.mesh loc=0.0 n=1
x.mesh loc=5.0 n=50

An accurate mesh for a 1P diode needs fine spacing near the junction. In this example, the
Junction is assumed to be 0.75 um deep. The spacing near the diode ends is limited to a
maximum of 0.1 ym:

x.mesh w=0.75 h.e=0.001 h.m=0.1 ratio=1.5

x.mesh w=2.25 h.s=0.001 h.m=0.1 ratio=1.5

The vertical mesh spacing of a MOSFET can generally be specified as uniform through
the gate oxide, very fine for the surface inversion layer, moderate down to the source/drain
junction depth, and then increasing all the way to the bulk contact:

y.mesh loc=-.04 node=1

y.mesh loc=0.0 node=6

y.mesh width=0.5 h.start=0.001 h.max=.05 ratio=2.0

y.mesh width=2.5 h.start=0.05 ratio=2.0

SEE ALSO

domain

219



NUMD Cider User’s Manual NUMD

NAME

NUMD - Diode / two-terminal numerical models and elements

SYNOPSIS

Model:
.MODEL model-name NUMD [level]
+...

Element:
DXXXXXXX nl1 n2 model-name [geometry] [temperature] [initial-conditions]

Output:
.SAVE [small-signal values]

DESCRIPTION

NUMD is the name for a diode numerical model. In addition, this same model can be
used to simulate other two-terminal structures such as semiconductor resistors and MOS
capacitors. See the options card for more information on how to customize the device type.

Both 1P and 2P devices are supported. These correspond to the LEVEL=1and LEVEL=2
models, respectively. If left unspecified, it is assumed that the device is one-dimensional.

All numerical two-terminal element names begin with the letter ‘D’. The element name
is then followed by the names of the positive (n1) and negative (n2) nodes. After this must
come the name of the model used for the element. The remaining information can come in
any order. The layout dimensions of an element are specified relative to the geometry of a
default device. For 1P devices, the default device has an area of 1m?, and for 2P devices, the
default device has a width of 1m. However, these defaults can be overridden on an options
card. The operating temperature of a device can be set independently from that of the rest
of the circuit in order to simulate non-isothermal circuit operation. Finally, the name of a
file containing an initial state for the device can be specified. Remember that if the filename
contains capital letters, they must be protected by surrounding the filename with double
quotes. Alternatively, the device can be placed in an OFF state (thermal equilibrium) at
the beginning of the analysis. For more information on the use of initial conditions, see the
SPICE User’s Manual.

In addition to the element input parameters, there are output-only parameters that can
be shown using the SPICE show command or captured using the save/.SAVE command.
These parameters are the elements of the indefinite conductance (G), capacitance (C), and
admittance (Y) matrices where Y = G + jwC. By default, the parameters are computed at 1
Hz. Each element is accessed using the name of the matrix (g, ¢ or y) followed by the node
indices of the output terminal and the input terminal (e.g. gl1). Beware that parameter
names are case-sensitive for save/show, so lower-case letters must be used.

220



NUMD Cider User’s Manual NUMD

PARAMETERS
| Name Type Description J
Level Integer Dimensionality of numerical model
Area Real Multiplicative area factor
w Real Multiplicative width factor
Temp Real Element operating temperature
IC.File String Initial-conditions filename
Off Flag Device initially in OFF state
gl Flag Conductance element Gy, ( 2)
clJ Flag Capacitance element Cj;, (F')
ylJ Flag Admittance element Yj;, ( 2)
EXAMPLES

A one-dimensional numerical switching-diode element/model pair with an area twice that
of the default device (which has a size of 1ym x1 gm) can be specified using:

DSWITCH 1 2 M_SWITCH.DIODE AREA=2

.MODEL M.SWITCHDIODE NUMD

+ options defa=lp ...

+ ...

A two-dimensional two-terminal MOS capacitor with a width of 20u4m and an initial condi-
tion of 3V is created by:

DMOSCAP 11 12 M MOSCAP W=20um IC=3v

.MODEL M.MOSCAP NUMD LEVEL=2

+ options moscap defw=1lm

+ ...

The next example shows how both the width and area factors can be used to create a power
diode with area twice that of a 6um-wide device (i.e. a 12um-wide device). The device is
assumed to be operating at a temperature of 100°C:

D1 POSN NEGN POWERMOD AREA=2 W=6um TEMP=100.0

.MODEL POWERMOD NUMD LEVEL=2

+ .

This example saves all the small-signal parameters of the previous diode:
.SAVE @dl([gll] @dl([gl2] @dl[g2l] @dl[g22]
.SAVE @dl[cll] @dl(cl2]) @dil[c2l1l] @dl[c22]
.SAVE @dl[yll] @dl[yl2] @dl[y21] @dl([y22]

SEE ALSO

options, output

BUGS

Convergence problems may be experienced when simulating MOS capacitors due to singu-
larities in the current-continuity equations.

221



NBJT Cider User’s Manual NBJT

NAME

NBJT - Bipolar / three-terminal numerical models and elements

SYNOPSIS

Model:
.MODEL model-name NBJT [level]
+...

Element:
QXXXXXXX n1 n2 n3 model-name [geometry] [temperature] [initial-conditions]

Output:
.SAVE [small-signal valucs]

DESCRIPTION

NBJT is the name for a bipolar transistor numerical model. In addition, the 2P model
can be used to simulate other three-terminal structures such as a JFET or MESFET.
However, the 10 model is customized with a special base contact, and cannot be used for
other purposes. See the options card for more information on how to customize the device
type and setup the 1P base contact.

Both 1P and 2P devices are supported. These correspond to the LEVEL=1 and LEVEL=2
models, respectively. If left unspecified, it is assumed that the device is one-dimensional.

All numerical three-terminal element names begin with the letter ‘Q’. If the device is a
bipolar transistor, then the nodes are specified in the order: collector (n1), base (n2), emitter
(n3). For a JFET or MESFET, the node order is: drain (nl), gate (n2), source (n3). After
this must come the name of the model used for the element. The remaining information
can come in any order. The layout dimensions of an element are specified relative to the
geometry of a default device. For the 1° BJT, the default device has an area of 1m2, and for
2D devices, the default device has a width of 1m. In addition, it is assumed that the default
1PBJT has a base contact with area equal to the emitter area, length of 1 ym and a depth
automatically determined from the device doping profile. However, all these defaults can
be overridden on an options card.

The operating temperature of a device can be set independently from that of the rest of
the circuit in order to simulate non-isothermal circuit operation. Finally, the name of a file
containing an initial state for the device can be specified. Remember that if the filename
contains capital letters, they must be protected by surrounding the filename with double
quotes. Alternatively, the device can be placed in an OFF state (thermal equilibrium) at
the beginning of the analysis. For more information on the use of initial conditions, see the
SPICE User’s Manual.

In addition to the element input parameters, there are output-only parameters that can
be shown using the SPICE show command or captured using the save/.SAVE command.
These parameters are the elements of the indefinite conductance (G), capacitance (C), and
admittance (Y) matrices where Y = G + jwC. By default, the parameters are computed at 1
Hz. Each element is accessed using the name of the matrix (g, ¢ or y) followed by the node
indices of the output terminal and the input terminal (e.g. g11). Beware that parameter
names are case-sensitive for save/show, so lower-case letters must be used.



NBJT Cider User’s Manual NBJT

PARAMETERS
| Name Type Description B
Level Integer Dimensionality of numerical model
Area Real Multiplicative area factor
w Real Multiplicative width factor
Temp Real Element operating temperature
IC.File String Initial-conditions filename
Off Flag Device initially in OFF state
glJ Flag Conductance element Gy, ( 2)
clJ Flag Capacitance element Cjj, (F')
ylJ Flag Admittance element Yj;, ( 22)
EXAMPLES

A one-dimensional numerical bipolar transistor with an emitter stripe 4 times as wide as
the default device is created using:
02 1 2 3 M.BJT AREA=4

This example saves the output conductance (go), transconductance (gm) and input conduc-
tance (gpi) of the previous transistor in that order:
.SAVE @q2[gll] @g2[gl2] @qg2[g22]

The second example is for a two-dimensional JFET with a width of 5um and initial condi-
tions obtained from file "IC.jfet":

QJ1 11 12 13 MJFET W=5um IC.FILE="IC.jfet"

.MODEL M_JFET NBJT LEVEL=2

+ options jfet

+ ...

A final example shows how to use symmetry to simulate half of a 2P BJT, avoiding having
the user double the area of each instance:

Q2 NC2 NB2 NE2 BJTMOD AREA=1

Q3 NC3 NB3 NE3 BJTMOD AREA=1

.MODEL BJTMOD NBJT LEVEL=2

+ options defw=2um

+ * Define half of the device now

+ ...

SEE ALSO
options, output

BUGS

MESFETS cannot be simulated properly yet because Schottky contacts have not been im-
plemented.

223



NUMOS Cider User’s Manual NUMOS

NAME
NUMOS — MOSFET / four-terminal numerical models and elements

SYNOPSIS

Model:
.MODEL model-name NUMOS [level}
+...

Element:
MXXXXXXX nl n2 n3 n4 model-name [geometry] [temperature] [initial-conditions]

Output:
.SAVE (small-signal values]

DESCRIPTION

NUMOS is the name for a MOSFET numerical model. In addition, the 20 model can
be used to simulate other four-terminal structures such as integrated bipolar and JFET
devices with substrate contacts. However, silicon controlled rectifiers (SCRs) cannot be
simulated because of the snapback in the transfer characteristic. See the options card for
more information on how to customize the device type. The LEVEL parameter of two- and
three- terminal devices is not needed, because only 2P devices are supported. However, it
will accepted and ignored if provided.

All numerical four-terminal element names begin with the letter ‘M’. If the device is
a MOSFET, or JFET with a bulk contact, then the nodes are specified in the order: drain
(n1), gate (n2), source (n3), bulk (n4). If the device is a BJT, the node order is: collector (n1),
base (n2), emitter (n3), substrate (n4). After this must come the name of the model used for
the element. The remaining information can come in any order. The layout dimensions of
an element are specified relative to the geometry of a default device. The default device has
a width of 1m. However, this default can be overridden on an options card. In addition,
the element line will accept a length parameter, L, but does not use it in any calculations.
This is provided to enable somewhat greater compatibility between numerical MOSFET
models and the standard SPICE3 compact MOSFET models.

The operating temperature of a device can be set independently from that of the rest of
the circuit in order to simulate non-isothermal circuit operation. Finally, the name of a file
containing an initial state for the device can be specified. Remember that if the filename
contains capital letters, they must be protected by surrounding the filename with double
quotes. Alternatively, the device can be placed in an OFF state (thermal equilibrium) at
léhe Iéeginning of the analysis. For more information on the use of initial conditions, see the

PICE

In addition to the element input parameters, there are output-only parameters that can
be shown using the SPICE show command or captured using the save/.SAVE command.
These parameters are the elements of the indefinite conductance (G), capacitance (C), and
admittance (Y) matrices where Y = G + jwC. By default, the parameters are computed at 1
Hz. Each element is accessed using the name of the matrix (g, ¢ or y) followed by the node
indices of the output terminal and the input terminal (e.g. g11). Beware that parameter
names are case-sensitive for save/show, so lower-case letters must be used.

224



NUMOS Cider User’s Manual NUMOS

PARAMETERS
| Name Type Description
Level Integer Dimensionality of numerical model
Area Real Multiplicative area factor
A Real Multiplicative width factor
L Real Unused length factor
Temp Real Element operating temperature
IC.File String Initial-conditions filename
Off Flag Device initially in OFF state
gld Flag Conductance element Gy, ( 2)
clJ Flag Capacitance element Cyj, (F)
ylJ Flag Admittance element Y}, ( 22)
EXAMPLES

A numerical MOSFET with a gate width of 5um and length of 1um is described below.
However, the model can only be used for 1xm length devices, so the length parameter is
redundant. The device is initially biased near its threshhold by taking an initial state from
the file "NM1.vth".

Ml 1 2 3 4 MNMOS_-1UM W=5Sum L=lum IC.FILE="NM1l.vth"

.MODEL M_NMOS.1UM NUMOS

+ * Description of a lum device

+ ...

This example saves the definite admittance matrix of the previous MOSFET where the
source terminal (3) is used as the reference. (The definite admittance matrix is formed by
deleting the third row and column from the indefinite admittance matrix.)

.SAVE @ml[yll] @ml[yl2] @ml([yl4]

.SAVE @ml{y21] @mil[y22] @ml([y24]

.SAVE @ml[y41] @ml([y42]) @ml[y44]

Bipolar transistors are usually specified in terms of their area relative to a unit device. The
following example creates a unit-sized device:

MQ1 NC NB NE NS MBJT

.MODEL M BJT NUMOS LEVEL=2

+ options bipolar defw=5um

+ ...

SEE ALSO

options, output

225



EXAMPLES Cider User’s Manual EXAMPLES

NAME
EXAMPLE 1 - One-Dimensional Diode Capacitance

DES

CRIPTION
This example demonstrates the use of CIDER as a means to obtain compact model

parameters. The junction capacitance of a diode is obtained by recording AC small-signal
parameters during a DC transfer curve analysis. The diode voltage is swept from a reverse
bias of 3.0V to a forward bias of 0.3V in 50mV steps. The diode capacitance @d1 [c11]
is saved at each bias point. The results are then compared to a fit to the standard diode
junction capacitance model:

_cdo0
T -w”
INPUT FILE

(@)
A

V.
D

+ 4+ + A+ +

ne-Dimensional Diode Capacitance

pp 1 0 0.7v (PWL Ons 3.0v 0.0lns -6.0v) (AC 1v)
nn 2 0 Ov
1 1 2 MPN AREA=100

model M PN numd level=l

options defa=1lp

x.mesh loc=0.0 n=1

x.mesh loc=1.3 n=201

domain num=1 material=1l

material num=1 silicon

doping gauss p.type conc=1e20 x.1=0.0 x.h=0.0 char.1=0.100
doping unif n.type conc=lel6 x.1=0.0 x.h=1.3

doping gauss n.type conc=5el9 x.1=1.3 x.h=1.3 char.1=0.100
models bgn aval srh auger conctau concmob fieldmob

method ac=direct

.OPTION ACCT

.DC Vpp -3.0v 0.3001v 50mv
.PRINT DC I (Vpp)

.SAVE ALL @dl([cll]

.END

RESULTS

The doping profile for the simulated diode is shown in Figure A.4. The diode capacitance

is shown in Figure A.5 as obtained from CIDER and from the standard SPICE model where
CJ0=32.4£fF, VJ=0.68, MJ=0.47. As can be seen the fit is excellent.

226



EXAMPLES Cider User’s Manual EXAMPLES

"] Net Doping

[y
(-]
+
[y
(¥ B |
.—‘—‘—-d
\

/
le+16

; “f

2
le+15 ‘

um
0.00 0.20 0.40 0.60 0.80 1.00 1.20

Figure A.4: 1° Diode Doping Profile

227



EXAMPLES

Cider User’s Manual

EXAMPLES

45.00

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

'CD (CIDER)

B,

T
',
..

-3.00

-2.00

-1.00

0.00

CD (SPICE3)

Figure A.5: Diode Capacitance from CIDER and SPICE3

228



EXAMPLES Cider User’s Manual EXAMPLES

NAME
EXAMPLE 2 ~ One-Dimensional Bipolar Frequency Response

DESCRIPTION

This example demonstrates the use of AC small-signal analysis in CIDER. The circuit
is an NPN emitter-coupled pair with a PNP active load. The gain of this circuit is primarily
determined by the transconductance of the Q1-Q2 pair and the output resistances of Q2
and Q4, which are difficult to model accurately using the existing SPICE compact bipolar
model. Matching considerations dictate the need for numerical models for all four devices.
The doping profiles are representative of a 1.0um complementary poly-emitter bipolar

process. A DC offset voltage of -0.5mv is needed to center the operating point at the point
of maximum gain.

INPUT FILE

Emitter Coupled Pair with Active Load

vcC 1 0 5v

VEE 2 0 Ov

VINP 4 0 2.9995v AC 0.5v
VINM 7 0 3v AC 0.5v 180
IEE 5 2 0.1mA

Q1 3 4 5 M.NPN AREA=8

Q2 6 7 5 MNPN AREA=8

Q3 3 3 1 M.PNP AREA=8

Q4 6 3 1 M.PNP AREA=8

.AC DEC 10 10kHz 100gHz
.PLOT AC VDB (6)

.model MNPN nbjt level=l

options base.depth=0.15 base.area=0.1 base.length=1.0 defa=1lp
x.mesh loc=-0.2 n=1

x.mesh loc=0.0 n=51

x.mesh wid=0.15 h.e=0.0001 h.m=.004 r=1.2

x.mesh wid=1.15 h.s=0.0001 h.m=.004 r=1.2

domain num=1 material=1l x.1=0.0

domain num=2 material=2 x.h=0.0

material num=1 silicon

material num=2 polysilicon

doping gauss n.type conc=3e20 x.1=-0.2 x
doping gauss p.type conc=5el8 x.1=-0.2 x
doping unif n.type conc=lel6 x.1=0.0 x.h
doping gauss n.type conc=5el9 x.1=1.3 x.h=1.3 char.len=0.100
models bgn srh auger conctau concmob fieldmob

method devtol=le-12 ac=direct itlim=15

-

h=0.0 char.len=0.047
h=0.0 char.len=0.100
1.3

+ 4+ o+

.model M PNP nbjt level=1l
+ options base.depth=0.2 base.area=0.1l base.length=1.0 defa=lp

229



EXAMPLES Cider User’s Manual EXAMPLES

x.mesh loc=-0.2 n=1
x.mesh loc=0.0 n=51

x.mesh wid=0.20 h.e=0.0001 h.m=.004 r=1.2
x.mesh wid=1.10 h.s=0.0001 h.m=.004 r=1.2
domain num=1 material=1l x.1=0.0

domain num=2 material=2 x.h=0.0

material num=1 silicon

material num=2 polysilicon

doping gauss p.type conc=3e20 x.1=-0.2 x.h
doping gauss n.type conc=5el7 x.1=-0.2 x.h
doping unif p.type conc=lel6 x.1=0.0 x.h=1
doping gauss p.type conc=5el9 x.1=1.3 x.h=1.3 char.len=0.100
models bgn srh auger conctau concmob fieldmob

method devtol=le-12 ac=direct itlim=15

char.len=0.047
char.len=0.200

=0.0
=0.0
3

++ ++ A+ FF A+

.OPTIONS ACCT RELTOL=1E-6
.END

RESULTS

The doping profiles for the NPN and PNP devices are shown in Figure A.6 and Fig-
ure A.7, respectively. In order to center the operating point at the point of maximum gain,
a DC offset voltage of -0.5mv is needed on the positive input when the operating tempera-
ture is 27°C(the default). In Figure A.8, the small-signal gains of the emitter coupled-pair
is plotted as a function of frequency. Both the differential-mode gain (calculated by this
input file) and the common-mode gain (calculated separately) are presented. In addition,
the differential-mode gain has been calculated at -50°C, 27°Cand 150°C. At 27°C, the low-
frequency differential-mode gain is 51.7 dB, the unity gain bandwidth is 15.2 GHz but the
phase-margin is only 13°. The low-frequency common-mode gain (calculated separately) is
-23.0 dB, so the common-mode rejection ratio (CMRR) is 74.7 dB. Notice that differential-
mode gain decreases as the temperature increases. This is caused by an increase in the
thermal voltage that degrades the transconductance of the input transistors. The output
resistances of Q2 and Q4 remain relatively constant with temperature.

230



EXAMPLES Cider User’s Manual EXAMPLES

5 Net Doping

[
2
DN
o
__—.———-—"/
|

2
le+16 /
5 [
2
le+15 —
5
um
0.00 0.50 1.00

Figure A.6: 1° NPN Doping Profile

231



EXAMPLES Cider User’s Manual EXAMPLES

cm”-3

Net Doping

le+20 \

3 \ /
le+19
le+18 /

le+17 /
: A\ |

le+16 \ / /

le+15

le+14

0.00 0.50 1.00

Figure A.7: 1° PNP Doping Profile

232



EXAMPLES

Cider User’s Manual

EXAMPLES

Gain (dB)

55.00

50.00

45.00 |

40.00

35.00

30.00

25.00
20.00

15.00

10.00

5.00

0.00

-5.00

-10.00

-15.00

-20.00

00000000a0000000000000000000000000y,

-25.00

-30.00

o) 0

le+05

1le+07

le+09

le+1l

Figure A.8: Small-Signal Gains of Emitter-Coupled Pair

233



EXAMPLES Cider User’s Manual EXAMPLES

NAME
EXAMPLE 3 — Two-Dimensional MOSFET Transient Response %

DESCRIPTION L g

The third example is an NMOS bootstrapped enhancement-load inverter. The transient ,;
response of the circuit is calculated as the input voltage is pulsed from high to low and back
again. A schematic of the circuit is shown in Figure A.9. Two-dimensional numerical

Voo

M1

{
L

i
=]

—o Vour

— CL

L

Figure A.9: Bootstrap Inverter Schematic

Vin

e

models are used for the three MOS transistors. The only physical models enabled are the
concentration- and field-dependent mobility models. In addition, one-carrier simulation is
used in order to save CPU time. The cross-sectional geometry for each of the MOSFETS is
shown in Figure A.10.

3.0p
<2 500 A 0.4p
b

2.0p p substrate : 2.5¢16

Figure A.10: Geometry of NMOS Transistor

234



EXAMPLES Cider User’s Manual EXAMPLES

INPUT FILE

NMOS Enhancement-Load Bootstrap Inverter
W
vdd 1 0 5.0v
vss2 0 0.0v
Vin 5 0 0.0v PWL (0.0ns 5.0v) (ins 0.0v) (10ns 0.0v) (1llns 5.0v)
+ (20ns 5.0v) (21ns 0.0v) (30ns 0.0v) (31lns 5.0v)
M1 113 2 MNMOS w=5u
M2 1 3 4 4 MNMOS w=5u
M3 4 5 2 2 MNMOS w=5u
CL 4 0 0.1pf
CB 3 4 0.1pf

.model M_NMOS numos

x.mesh 1=0.0 n=1
x.mesh 1=0.6 n=4
x.mesh 1=0.7 n=5
x.mesh 1=1.0 n=7
x.mesh 1=1.2 n=11
x.mesh 1=3.2 n=21
x.mesh 1=3.4 n=25
x.mesh 1=3.7 n=27
x.mesh 1=3.8 n=28
x.mesh 1=4.4 n=31
y.mesh 1=-.05 n=1
y.mesh 1=0.0 n=5
y.mesh 1=.05 n=9
y.mesh 1=0.3 n=14
y.mesh 1=2.0 n=19

region num=1 material=1 y.1=0.0

material num=1 silicon

mobility material=1 concmod=s8g fieldmod=sg
mobility material=1 init elec major

mobility material=1l init elec minor

mobility material=1 init hole major

mobility material=1l init hole minor

region num=2 material=2 y.h=0.0 x.1=0.7 x.h=3.7
material num=2 oxide

elec num=1 x.1=3.8 x.h=4.4 y.1=0.0 y.h=0.0

elec num=2 x.1=0.7 x.h=3.7 iy.l=1 iy.h=1

elec num=3 x.1=0.0 x.h=0.6 y.1=0.0 y.h=0.0

elec num=4 x.1=0.0 x.h=4.4 y.1=2.0 y.h=2.0

doping unif p.type conc=2.5el6 x.1=0.0 x.h=4.4 y.1=0.0 y.h=2.0
doping unif p.type conc=lel6 x.1=0.0 x.h=4.4 y.1=0.0 y.h=0.05
doping unif n.type conc=1le20 x.1=0.0 x.h=1.1 y.1=0.0 y.h=0.2
doping unif n.type conc=1e20 x.1=3.3 x.h=4.4 y.1=0.0 y.h=0.2

models concmob fieldmob
method ac=direct onec

I T o T T ST e e e e S e S S N RO I A

.TRAN 0.2ns 40ns

235



EXAMPLES Cider User’s Manual EXAMPLES

.PRINT TRAN V (4)

.OPTIONS ACCT BYPASS=1 METHOD=GEAR
.END

RESULTS

The doping profile of the NMOS transistor is shown in Figure A.11. Figure A.12 shows
the important waveforms in the bootstrap inverter. When the input is high, the output is
low, the bootstrap capacitor CB is charged to.(Vpp — Vipp — o) by transistor M1. When the
input voltage drops to 0.0 V, transistor M2 charges the load capacitor CL. Normally, the
output voltage would stop rising when it reached (Vop — Vi, ). However, the stored charge
on CB maintains the gate-source voltage of M2 above Vp, and M2 remains on, allowing V,
to reach the full supply voltage Vpp. When the input goes high again, the output is quickly
discharged by M3, and the voltage across CB is reset to its initial value. Notice that the
gate voltage of M2 rises well above the upper supply voltage Vpp = 5.0v.

1.0e20

1.6e18

Net Doping (cm”-3)

Figure A.11: 2 NMOSFET Doping Profile

236



EXAMPLES

Cider User’s Manual

EXAMPLES

7.50

7.00

6.50
6.00
5.60
5.00
4.50
4.00
3.50
3.00
2.50
2.00
1.50
1.00
0.50
0.00

..—
_L L Vin
= == — - Decocseca -
I ' / ' Vout
S ' 1‘ 'I o=
N } N H Vboot
H H ] ] P,
,' L : $ Vgs2
! : ! '
! : ¢ '
[] H ,' ]
H ; ! ;
' : ! 3
] L ! E
[J o ¢ 14 " H
[ : P 1
.‘ ." ' 4 s '
! H H H { :
i | $ g f |
' $ ] [ H
] H ' N i ]
. '-. P =.
4 i v H '
9.. “~- ------- oy " .'l “
Dooof’._.’--__ p“""""""‘m:f;_~-°._q ,or o= == = - L
: ]
: ?
d
. i. ; z
L] k] 3
y \n..g. ............ ..hi |- SO Qoeccacece]
nS

0.00 10.00

20.00

30.00

40.00

Figure A.12;: Output Waveforms of Bootstrap Inverter

237



EXAMPLES Cider User’s Manual EXAMPLES

NAME
EXAMPLE 4 — Two-Dimensional Doping Profiles

DESCRIPTION

There are several options for specifying two-dimensional doping profiles and it can
be confusing to understand how they operate. This example exercises these options by
simulating a typical source or drain junction of a MOSFET with a variety of profiles. A
contour plot for each of the doping profiles is provided. Since CIDER does not have a
self-contained contour-plot capability, these results will be difficult to reproduce unless a
separate contouring program is available.

In each case, the bulk is uniformly doped with a P-type concentration of 1.0 x 10'%cm™3.
The N+ region is varied from case to case. However, the concentration along the upper left
surface is always 1.0 x 102cm ™3 from x = 0 to x = 0.5 except for the final two cases. Also,
the profile characteristic length has been chosen so that the junction depth is always 0.2pum.

INPUT FILE
TWO-DIMENSIONAL SOURCE DOPING PROFILES

vsS 1 0 0.0v
VBB 2 0 0.6v
D1 1 2 M-SRCJUNC W=10u SAVE

.MODEL M.SRCJUNC NUMD LEVEL=2

x.mesh w=1.0 n=50

y.mesh w=0.4 n=20

domain num=1 material=l

material num=1 silicon

electrode num=1 x.1=0.0 x.h=0.5 y.h=0.0

electrode num=2 y.1=0.4

doping unif p.type conc=1.0el6

*%*% (a) Box Uniform **x

doping unif n.type conc=1.0e20 x.1=0.0 x.h=0.7 y.h=0.2
*%* (b) Rounded Uniform

* doping unif n.type conc=1l.0e20 x.1=0.0 x.h=0.5 y.h=0.0
* + location=0.2 lat.rotate ratio=1.0

**x% (c) Linear ***

* doping lin n.type conc=1.0e20 x.1=0.0 x.h=0.5 y.h=0.0
* + char.len=0.2 lat.rotate ratio=1.0

**x* (d) Exponential #***

* doping exp n.type conc=1l.0e20 x.1=0.0 x.h=0.5 y.h=0.0
* + char.len=0.0217 lat.rotate ratio=1.0

*** (@) Gaussian ***

* doping gauss n.type conc=1.0e20 x.1=0.0 x.h=0.5 y.h=0.0
* + char.len=0.0656 lat.rotate ratio=1.0

*** (f) Complementary Error-Function ***

* doping erfc n.type conc=1.0e20 x.1=0.0 x.h=0.5 y.h=0.0
* + char.len=0.0727 lat.rotate ratio=1.0

*** (g) Gaussian - Lateral Ratio 0.5 **x

+++++++FFFFF A+

238



EXAMPLES Cider User’s Manual EXAMPLES

+ * doping gauss n.type conc=1.0e20 x.1=0.0 x.h=0.5 y.h=0.0
+ * + char.len=0.0656 lat.rotate ratio=0.5
+ *** (h) Gaussian - Lateral Erfc **#*
+ * doping gauss n.type conc=1.0e20 x.1=0.0 x.h=0.5 y.h=0.0
+ * + char.len=0.0656 lat.erfc ratio=1.0
+ *** (j) Gaussian - Deep Constant Box ***
+ * doping gauss n.type conc=1.0e20 x.1=0.0 x.h=0.5 y.1=0.1 y.h=0.1
+ * + char.len=0.0328 lat.rotate ratio=1.0
+ *** (j) Gaussian - Deep Peak Location **x*
+ * doping gauss n.type conc=1.0e20 x.1=0.0 x.h=0.5 y.h=0.0
+ * + char.len=0.0328 location=0.1 lat.rotate ratio=1.0
+ method onec
.OP
.END
RESULTS

As shown, the input file generates doping profile data for the case when the N+ doping
is 1.0 x 102¥%m=3 down to 0.2 ym and out to 0.7 um. However, Figure A.13 contains
contour plots for each of the ten different profiles defined in the input file. These plots
were generated by taking the log of the absolute value of the net doping before generating
contours at half decade intervals. This is necessary since the doping varies by orders of
magnitude, especially near the N+ - P junction. In some cases a minimum concentration
of 1.0 x 10"*cm =2 was added to prevent the contour program from generating too many
contours at the lightly doped junction boundary. Also, in some of the subfigures a single
deep contour is generated beneath and to the right of the junction as the doping returns to
the substrate concentration. This is due to a slight reduction in the net doping caused by
finite N-type impurity concentration coupled with the program generating a contour very
near 1.0 x 10'6em—3.

Figure A.13(a) shows the profile for the input file as shown. The constant box has been
extended by 0.2 um in each dimension to create the rectangular junction. Since the doping
drops abruptly from 1.0 x 102°cm™3 to 1.0 x 10'®cm™2 at the junction, all the contours are
right at the junction. Figure A.13(b) shows a similar abrupt junction where the boundary
is rounded for x > 0.5. This is accomplished by rotating the primary profile about the x
= 0.5, y = 0.0 corner of the constant box. The location is set to 0.2 ym so that uniformly
doped primary profile is non-zero down to 0.2 ym. In Figure A.13(c), the N+ doping varies
linear from 1.0 x 102°¢cm~2 at the surface to 0.0 x 10?°cm~2 at 0.2 ym. Since the slope of
the profile is so large, the junction is almost exactly at that depth as well. Although one
might expect the contours to be evenly spaced for a linear profile, they are actually almost
all near the junction because the contours are generated at half decade intervals. For the
exponential profile (Figure A.13(d)), the contours are evenly spaced. The gaussian and
complementary error-function profiles in Figures A.13(e) and A.13(f) both fall off rapidly
near the surface like the exponential profile but generate unevenly spaced contours. From
the figures it is difficult to differentiate between the two except that fall-off of the gaussian
profile is slightly more gradual.

In the remaining portions of the figure, the primary profile is fixed as a gaussian
and other parameters are varied. In Figure A.13(g), the lateral ratio is cut in half, so
that the contours are no longer circular but are instead elliptical. This can be used to

239



EXAMPLES Cider User’s Manual EXAMPLES

model the reduced lateral diffusion of dopants relative to vertical diffusion. A similar
effect can be created by using a different profile type to control the lateral diffusion as
in Figure A.13(h). The contours for x > 0.5 are neither circular or elliptical, since the
concentration of the N+ profile is now determined by multiplying the falloff factors of the
primary and lateral profiles. The junction intersects the surface nearer the left side of the
figure because the complementary error-function falls off more rapidly than the gaussian
when the characteristic lengths are equal.

The final two subfigures demonstrate the difference between the constant box and the
location parameter more clearly than the first two subfigures do. In Figure A.13(i), the
constant box (in this case, constant line segment) goes from x = 0 to x = 0.5 at a depth of 0.1
pm. The concentration there is still 1 x 102°cm~3. Since the profile is symmetric about the
constant box, the doping drops off both above and below this line; there is now a junction
at the surface as well. The two junctions are connected as the profile is rotated about x =
0.5, y = 0.1. In Figure A.13(j) the constant box is left at the surface and only the peak of
the primary profile is moved to a depth of 0.1 um. Rotation now takes place about x = 0.5,
y = 0.0. Along the left sides of the subfigures, the two profiles are the same. However, the
two junctions no longer merge for x > 0.5 #m as they do in Figure A.13().

240



EXAMPLES

Cider User’s Manual

EXAMPLES

Y (um)

Y (um)

Y (um)

Y (um)

Y (um)

0
0.1
02
0.3
o 025 0.5 0.76 1
X (um)
(a) Box Uniform
1]
02
03
04y 025 05 075 1
X (um)
(¢) Linear
GI‘LI 025 0.5 0.76
X (um)
(e) Gaussian
Odg 0.25 0.5 0.75

0.25 0.5

. 0.75
X (um)

(i) Gaussian - Deep Constant Box

Minimum
1.002+16
—~
8
-
Muaximom
1.00s+20
Minimum
1.00e+16
-~
s
S
Maximum
1.00w+20
Minimum
B13e+14
—~
§
£
Mazimum
1.000+20
Minimum
D12a+14
—
£
=
=
o
Maximum
1.00a+20
Minimum
813414
—_
5
el
Maximum
1.000430

0
0.1 J
02
0.3
OAO 0256 0.5 0.756
X (um)
(b) Rounded Uniform
‘T
0.1 Jj
02 =
03
04 025 0.5 0.75 1
X (um)
(d) Exponential
; 7
02 -
0.3
04 045 05 .75 1
X (um)
(f) Comp. Error-Function
03
o4 025 0.5 075 1

0.25 0.5

X (;.xm)

0.76 1

Minimum
1.000+16

Maxirmum
1.002+20

Minimum
1.6as14

Maximum
1.000420

Minimum
1.02e.14

Maximum
1.000+20

Minimum
285414

Muximum
1.000420

Minimum
R1Zasld

Maximum
1.000430

(j) Gaussian - Deep Peak Location

Figure A.13: Contours of 2° Doping Profiles

241



EXAMPLES - Cider User’s Manual EXAMPLES

242



Appendix B

CIDER Serial-Version

Benchmarks

243



APPENDIX B. CIDER SERIAL-VERSION BENCHMARKS

ASTABLE Benchmark

VCC/ VN

@
Rc1 Ci Ra1 R132§
1K 150pF 30K 30K 150pF
@ ||
| ] >< | |
L 4 L 4

Ty

Figure B.1: ASTABLE schematic

ASTABLE MULTIVIBRATOR

VIN 5 0 DC 0 PULSE(0 5 0 1US 1US 100US 100US)
VCC 6 0 5.0
RC1 6 1 1K
RC2 6 2 1K
RB1 6 3 30K
RBZ 5 4 30K

Cl 1 4 150PF
C2 2 3 150PF
Q01 1 3 0 OMOD AREA i00p
Q2 2 4 0 QMOD AREA = 100P

.OPTION ACCT BYPASS=1
.TRAN 0.05US 8US 0US 0.05US
.PRINT TRAN V(1) V(2) V(3) V(4)

.MODEL QOMOD NBJT LEVEL=1

X.MESH NODE=1 LOC=0.0

X.MESH NODE=61 LOC=3.0

REGION NUM=1 MATERIAL=1

MATERIAL NUM=1 SILICON NBGNN=1El17 NBGNP=1El7
MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG
DOPING UNIF N.TYPE CONC=1El17 X.L=0.0 X.H=1.0
DOPING UNIF P.TYPE CONC=1El6 X.L=0.0 X.H=1.5

+ 4+ 4+ 4+ + + +

244



APPENDIX B. CIDER SERIAL-VERSION BENCHMARKS

+ DOPING UNIF N.TYPE CONC=1El5 X.L=0.0 X.H=3.0
+ MODELS BGNW SRH CONCTAU AUGER CONCMOB FIELDMOB
+ OPTIONS BASE.LENGTH=1.0 BASE.DEPTH=1.25

CHARGE Benchmark

Figure B.2: CHARGE schematic

MOS CHARGE PUMP

VIN 4 0 DC OV PULSE 0 5 15NS 5NS 5NS 50NS 100NS
VDD 5 6 DC OV PULSE 0 5 25NS S5NS 5NS 50NS 100NS
VBB 0 7 DC OV PULSE 0 5 ONS S5NS 5NS 50NS 100NS

RD 6 2 10K

4 3 7 MMOD W=100UM

R§5E

OPF

245



APPENDIX B. CIDER SERIAL-VERSION BENCHMARKS

.IC V(3)=1.0

.TRAN 2NS 200NS
.OPTIONS ACCT BYPASS=l
.PRINT TRAN V(1) V(2)

.MODEL MMOD NUMOS
X.MESH N=1 L=0
X.MESH N=3 L=0.4
X.MESH N=7 L=0.6
X.MESH N=15 L=1.4
X.MESH N=19 L=1.6
X.MESH N=21 L=2.0

Y.MESH N=1 L=0
Y.MESH N=4 L=0.015
Y.MESH N=8 L=0.05
Y.MESH N=12 L=0.25
Y.MESH N=14 L=0.35
Y.MESH N=17 L=0.5
Y.MESH N=21 L=1.0

REGION NUM=1 MATERIAL=1 Y.L=0.015
MATERIAL NUM=1 SILICON
MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG

REGION NUM=2 MATERIAL=2 Y.H=0.015 X.L=0.5 X.H=1.5
MATERIAL NUM=2 OXIDE

ELEC NUM=1 IX.L
ELEC NUM=2 IX.L
ELEC NUM=3 IX.L
ELEC NUM=4 IX.L

18 IX.H=21 IY.L=4 TIY.H=4
5 IX.H=17 IY.L=1 IY.H=1
1 IX.H=4 IY.L=4 1IY.H=4
1 1IX.H=21 IY.L=21 IY.H=21

l

|

DOPING UNIF N.TYPE CONC=1E18 X.1=0.0 X.H=0.5 Y¥.1=0.015 Y.H=0.25
DOPING UNIF N.TYPE CONC=1E18 X.L=1.5 X.H=2.0 Y.L=0.015 Y.H=0.25
DOPING UNIF P.TYPE CONC=1E1l5 X.1=0.0 X.H=2.0 Y.L=0.015 Y.H=1.0

DOPING UNIF P.TYPE CONC=1.3E17 X.L=0.5 X.H=1.5 Y.L=0.015 Y.H=0.05

MODELS CONCMOB FIELDMOB
METHOD ONEC

B T I T T I S S e e e kT T T N S S S S

.END

COLPOSC Benchmark

COLPITT'S OSCILLATOR CIRCUIT

246



APPENDIX B. CIDER SERIAL-VERSION BENCHMARKS

Vcc/

1@

L1 RL
5uH 750

Qi ——C —C
T 05nF " | 4.5nF
I{]-EE \\11 ®
4 ®
RE
—— 4.65K
N @
NS
VEE
Figure B.3: COLPOSC schematic
R11G61
Q1 2 1 3 QMOD AREA = 100P
VCC 4 0 5
RL 4 2 750
Cl 2 3 500P
C2 4 3 4500P
L1 4 2 SUH
RE 3 6 4.65K

VEE 6 0 DC -15 PWL 0 -15 1E-9 -10

.TRAN 30N 12U
.PRINT TRAN V(2)

.MODEL QMOD NBJT LEVEL~=1l

X.MESH NODE=1 LOC=0.0

X.MESH NODE=61 LOC=3.0

REGION NUM=1 MATERIAL=1

MATERIAL NUM=1 SILICON NBGNN=1E17 NBGNP=1E1l7
MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG
DOPING UNIF N.TYPE CONC=1El17 X.L=0.0 X.H=1.0
DOPING UNIF P.TYPE CONC=1El6 X.L=0.0 X.H=1.5

+ + + + + 4+ +

247



APPENDIX B. CIDER SERIAL-VERSION BENCHMARKS

+ DOPING UNIF N.TYPE CONC=1E1l5 X.L=0.0 X.H=3.0
+ MODELS BGNW SRH CONCTAU AUGER CONCMOB FIELDMOB
+ OPTIONS BASE.LENGTH=1.0 BASE.DEPTH=1.25

.OPTIONS ACCT BYPASS=1
.END

DBRIDGE Benchmark

\®

VGRND

Figure B.4: DBRIDGE schematic
DIODE BRIDGE RECTIFIER

VLINE 3 4 0.0V SIN OV 10V 60HZ
VGRND 2 0 0.0V

D1 3 1 M _PN AREA=100
D2 4 1 M_PN AREA=100
D3 2 3 M_PN AREA=100
D4 2 4 M_PN AREA=100
RL 1 2 1.0K

.MODEL M_PN NUMD LEVEL=1
I R T ey

+ *** ONE-DIMENSIONAL NUMERICAL DIODE ***
4 Khkkkkkkhkkkkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhhhkhhhhhkhkkk
+ OPTIONS DEFA=1P

+ X.MESH LOC=0.0 N=1

+ X.MESH LOC=30.0 N=201

+ DOMAIN  NUM=1 MATERIAL=1

+ MATERIAL NUM=1 SILICON

+ MOBILITY MAT=1 CONCMOD=CT FIELDMOD=CT

248



APPENDIX B. CIDER SERIAL-VERSION BENCHMARKS

+ 4+ + + +

DOPING GAUSS P.TYPE CONC=1E20 X.L=0.
DOPING UNIF N.TYPE CONC=1El4 X.L=0.
DOPING GAUSS N.TYPE CONC=5E19 X.L=30.0 X.H=30.0 CHAR.L=2.0
MODELS BGN AVAL SRH AUGER CONCTAU CONCMOB FIELDMOB

METHOD AC=DIRECT

.OPTION ACCT BYPASS=1 METHOD=GEAR
.TRAN 0.5MS 50MS
.PRINT I (VLINE)

.END

INVCHAIN Benchmark

VN o

H=0.0 CHAR.L=1.0

0 X.
0 X.H=30.0

Figure B.5: INVCHAIN schematic

4 STAGE RTL INVERTER CHAIN

VIN 1 0 DC 0V
VCC 12 0 DC 5
RC1 12 3 2.5K
RB1 1 2 8K

Q1 3 2 0 QMOD
RB2 3 4 8K

RC2 12 5 2.5K
Q2 5 4 0 OMOD
RB3 5 6 8K

RC3 12 7 2.5K
Q3 7 6 0 QMOD
RB4 7 8 8K

RC4 12 9 2.5K
Q4 9 8 0 QMOD

PWL ONS OV 1NS 5V

.oV

AREA

AREA

AREA

AREA

1l

il

]

100P

100p

100P

100P

.PRINT TRAN V(3) V(5) V(9)

249



APPENDIX B. CIDER SERIAL-VERSION BENCHMARKS

.TRAN 1E-9 10E-9

.MODEL QMOD NBJT LEVEL=1l

X.MESH NODE=1 LOC=0.0

X.MESH NODE=61 LOC=3.0

REGION NUM=1 MATERIAL=1l

MATERIAL NUM=1 SILICON NBGNN=1El17 NBGNP=1El7
MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG
DOPING UNIF N.TYPE CONC=1El7 X.L=0.0 X.H=1.0
DOPING UNIF P.TYPE CONC=1El6 X.L=0.0 X.H=1.5
DOPING UNIF N.TYPE CONC=1E1l5 X.L=0.0 X.H=3.0
MODELS BGNW SRH CONCTAU AUGER CONCMOB FIELDMOB
OPTIONS BASE.LENGTH=1.0 BASE.DEPTH=1.25

+ 4+ + + + A+ +

.OPTION ACCT BYPASS=1
.END

MECLGATE Benchmark

p
4

%E 1958

Rs
350
FQuo
e
Fau
ol
10 Ds —CZ?
[ ]
D4
Re | Res| Res

Bl

Figure B.6: MECLGATE schematic

MOTOROLA MECL III ECL GATE
*.DC VIN -2.0 0 0.02
.TRAN 0.2NS 20NS

250



APPENDIX B. CIDER SERIAL-VERSION BENCHMARKS

VEE 22 0 -6.0

VIN 1 0 PULSE -0.8 -1.8 0.2NS 0.2NS 0.2NS 10NS 20NS
RS 50

Q1 6 QMOD AREA = 100P

Q2 6 QMOD AREA 100p

Q3 6 QMOD AREA 100pP

Q4 7 OMOD AREA 100pP

nn

]

O UL b b
@ JWNN

D1 8 9 DMOD
D2 9 10 DMOD

RP1 3 22 50K
RC1 0 4 100
RC2 0 5 112
RE 6 22 380
Rl 7 22 2K
R2 0 8 350

R3 10 22 1958

Q5 0 5 11 QMOD AREA
Q6 0 4 12 QMOD AREA

100p
100p

]

i

RP2 11 22 560
RP3 12 22 560

fl

Q7 13 12 15 QMOD AREA 100P
Q8 14 16 15 QMOD AREA = 100P

RE2 15 22 380
RC3 0 13 100
RC4 0 14 112

Q9 0 17 16 OMOD AREA = 100P
R4 16 22 2K

RS 0 17 350

D3 17 18 DMOD

D4 18 19 DMOD

R6 19 22 1958

Q10 0 14 20 QMOD AREA = 100P
Q11 0 13 21 QMOD AREA = 100P

RP4 20 22 560
RP5 21 22 560

.MODEL DMOD D RS=40 TT=0.1NS CJO=0.9PF N=1 IS=1E-14 EG=1.11 vJ=0.8 M=0.5

.MODEL QMOD NBJT LEVEL=1l
+ X.MESH NODE=1 LOC=0.0

251



APPENDIX B. CIDER SERIAL-VERSION BENCHMARKS

X.MESH NODE=10 LOC=0.9

X.MESH NODE=20 LOC=1l.1

X.MESH NODE=30 LOC=1l.4

X.MESH NODE=40 LOC=1.6

X.MESH NODE=61 LOC=3.0

REGION NUM=1 MATERIAL=1

MATERIAL NUM=1 SILICON NBGNN=1E1l7 NBGNP=1E1l7
MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG
DOPING UNIF N.TYPE CONC=1E17 X.1L=0.0 X.H=1.0
DOPING UNIF P.TYPE CONC=1El6 X.L=0.0 X.H=1.5
DOPING UNIF N.TYPE CONC=1E1l5 X.L=0.0 X.H=3.0
MODELS BGNW SRH CONCTAU AUGER CONCMOB FIELDMOB
OPTIONS BASE.LENGTH=1.0 BASE.DEPTH=1.25

+ 4+ A+ F A+

.OPTIONS ACCT BYPASS=1
.PRINT TRAN V(12) V(21)
.END

NMOSINV Benchmark

\
®

Rp

25K
| ©

M
® 10/21

Vv e T 2.0pF
® |® 'p
Vs VB

Figure B.7: NMOSINV schematic

252



APPENDIX B. CIDER SERIAL-VERSION BENCHMARKS

RESISTIVE LOAD NMOS INVERTER

VIN 1 0 PWL 0 0.0 2NS 5
VDD 3 0 DC 5.0

.MODEL MMOD NUMOS

X.MESH 1L=0.0 N=1
X.MESH L=0.6 N=4
X.MESH L=0.7 N=5
X.MESH L=1.0 N=7
X.MESH L=1.2 N=11
X.MESH L=3.2 N=21
X.MESH L=3.4 N=25
X.MESH L=3.7 N=27
X.MESH 1L=3.8 N=28
X.MESH L=4.4 N=31
Y.MESH L=-.05 N=1
Y.MESH L=0.0 N=5
Y.MESH L=.05 N=9
Y.MESH L=0.3 N=14
Y.MESH L=2.0 N=19
REGION =1

MATERIAL NUM=1 SILICON

MATERIAL NUM=2 OXIDE

[

ELEC NUM=1
ELEC NUM:
ELEC NUM
ELEC NUM

X.L
X.L=
X.
X.

(I

L
L

OO J®

3.
2 .
3 0.
4 0.

DOPING UNIF P.TYPE
DOPING UNIF P.TYPE
DOPING UNIF N.TYPE
DOPING UNIF N.TYPE

MODELS CONCMOB FIELDMOB
METHOD AC=DIRECT ONEC

++ +++F+ A+ A+

.TRAN 0.2NS 30NS
.OPTIONS ACCT BYPASS=1
.PRINT TRAN V(1) V(2)

MATERIAL=1 Y.L=0.0

CONC=2.5E16
CONC=1E16
CONC=1E20
CONC=1E20

MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG

REGION NUM=2 MATERIAL=2 Y.H=0.0 X.L=0.7 X.H=3.7

253



APPENDIX B. CIDER SERIAL-VERSION BENCHMARKS

.END

PASS Benchmark

. Ve

| 1 Mli@ DRN
Ve 2 ?\I‘Ei’fi © me] @@. (V ) ®

6.0pF ~ | ~ [ 6.0pF

Figure B.8: PASS schematic

TURNOFF TRANSIENT OF PASS TRANSISTOR

M1 11 2 3 4 MMOD W=20UM

CS 1 0 6.0PF

CL 3 0 6.0PF

Rl 3 6 200K

VIN 6 0 DC 0

VDRN 1 11 DC 0O

VG 2 0DC 5PWL 05 0.INO1O
VB 4 0 DC 0.0

.TRAN 0.05NS 0.2NS 0.0NS 0.05NS
.PRINT TRAN V(1) I (VDRN)

.IC V(1)=0 Vv (3)=0

.OPTION ACCT BYPASS=1

.MODEL MMOD NUMOS
+ X.MESH L=0.0 N=1
+ X.MESH L=0.6 N=4
+ X.MESH L=0.7 N=5
+ X.MESH L=1.0 N=7

254



APPENDIX B. CIDER SERIAL-VERSION BENCHMARKS

X.MESH 1L=1.2 N=11
X.MESH L=3.2 N=21
X.MESH L=3.4 N=25
X.MESH L=3.7 N=27
X.MESH L=3.8 N=28
X.MESH 1L=4.4 N=31

Y.MESH L=-.05 N=1
Y.MESH L=0.0 N=5
Y.MESH L=.05 N=9
Y.MESH L=0.3 N=14
Y.MESH L=2,0 N=19

REGION NUM=1 MATERIAL=1 Y.L=0.0
MATERIAL NUM=1 SILICON
MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG

REGION NUM=2 MATERIAL=2 Y.H=0.0 X.L=0.7 X.H=3.7
MATERIAL NUM=2 OXIDE

ELEC NUM=1 X.1L=3.8 X.H=4.4 Y.1L=0.0 Y.H=0.0

ELEC NUM=2 X.L=0.7 X.H=3.7 IY.L=1 IY.H=l

ELEC NUM=3 X.L=0.0 X.H=0.6 Y.1L=0.0 Y.H=0.0

ELEC NUM=4 X.L=0.0 X.H=4.4 Y.1L=2.0 Y.H=2.0

DOPING UNIF P.TYPE CONC=2.5E16 X.L=0.0 X.H=4.4 Y.L=0.0 Y.H
DOPING UNIF P.TYPE CONC=1El6 X.L=0.0 X.H=4.4 Y.L=0.0 Y.H
DOPING UNIF N.TYPE CONC=1E20 X.1=0.0 X.H=1.1 Y.L=0.0 Y.H
DOPING UNIF N.TYPE CONC=1E20 X.L=3.3 X.H=4.4 Y.1=0.0 Y.H

MODELS CONCMOB FIELDMOB
METHOD AC=DIRECT ONEC

+++++F+F A+ A F A A A+

.END

RTLINV Benchmark

RTL INVERTER

VIN 1 0 DC 1 PWL 0 4 1INS O
VCC 12 0 DC 5.0

RC1 12 3 2.5K

RB1 1 2 8K

Q1 3 2 0 QMOD AREA = 100P

.OPTION ACCT BYPASS=l

.TRAN 0.5N 5N
.PRINT TRAN V(2) V(3)

255

I
N
NN OO

o OO

il



APPENDIX B. CIDER SERIAL-VERSION BENCHMARKS

Vcc/

1@

Rc
2.5K

@ R=1 @

8K
VIN o—— WA Q1
Chl

Figure B.9: RTLINV schematic

.MODEL QMOD NBJT LEVEL=1

X.MESH NODE=1 LOC=0.0

X.MESH NODE=61 LOC=3.0

REGION NUM=1 MATERIAL=1

MATERIAL NUM=1 SILICON NBGNN=1E17 NBGNP=1E1l7
MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG
DOPING UNIF N.TYPE CONC=1El17 X.L=0.0 X.H=1.0
DOPING UNIF P.TYPE CONC=1El6 X.L=0.0 X.H=1.5
DOPING UNIF N.TYPE CONC=1El5 X.L=0.0 X.H=3.0
MODELS BGNW SRH CONCTAU AUGER CONCMOB FIELDMOB
OPTIONS BASE.LENGTH=1.0 BASE.DEPTH=1.25

+ 4+ o+ + o+

.END

VCO Benchmark

VOLTAGE CONTROLLED OSCILLATOR

RC1 7 5 1K
RC2 7 6 1K

Q5 7 7 5 QMOD AREA
Q6 7 7 6 QMOD AREA

100p
100p

il

]

Q3 7 5 2 QMOD AREA

100P

256



APPENDIX B. CIDER SERIAL-VERSION BENCHMARKS

Vce

s(C

ST S
®1 Qs Q4 — ®

©
Q 13 ® ® EQz
_1Cm CB2
1pF 1wF|
| Ie1 IB2 N
e pp—— | | e— r—

Is1 C1 Is2
0.1uF

Figure B.10: VCO schematic

Q4 7 6 1 QMOD AREA

100P

IB1 2 0 .5MA
IB2 1 0 .5MA
CBl1 2 0 1PF
CB2 1 0 1PF

100P
100P

Q01 5 1 3 QMOD AREA
Q2 6 2 4 QMOD AREA

Cl 3 4 .1UF

ISl 3 0 DC 2.5MA PULSE 2.5MA 0.5MA 0 1US 1US 50MS

257



APPENDIX B. CIDER SERIAL-VERSION BENCHMARKS

IS2 4 0 1MA
vcec 7 0 10

.MODEL QMOD NBJT LEVEL=1

X.MESH NODE=1 LOC=0.0

X.MESH NODE=61 LOC=3.0

REGION NUM=1 MATERIAL=1

MATERIAL NUM=1 SILICON NBGNN=1El17 NBGNP=1E1l7
MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG
DOPING UNIF N.TYPE CONC=1El17 X.L=0.0 X.H=1.0
DOPING UNIF P.TYPE CONC=1E16 X.L=0.0 X.H=1.5
DOPING UNIF N.TYPE CONC=1E1l5 X.L=0.0 X.H=3.0
MODELS BGNW SRH CONCTAU AUGER CONCMOB FIELDMOB
OPTIONS BASE.LENGTH=1.0 BASE.DEPTH=1.25

+ 4+ + + 4+ + 4+ +++

.OPTION ACCT BYPASS=1
.TRAN 3US 600US 0 3US
.PRINT TRAN V(4)

.END

258



Appendix C

CIDER Parallel-Version

Benchmarks

259



APPENDIX C. CIDER PARALLEL-VERSION BENCHMARKS

BICMPD Benchmark
®
? O
Vo
M) ST e
VIN o ‘ v @

BICMOS INVERTER PULLDOWN CIRCUIT

VE

©

Vss

Figure C.1: BICMPD schematic

VSsS 2 0 OV

VIN 3 2 OV (PULSE 0.0V 4.2V ONS 1NS 1NS 9NS 20NS)

M1
vD
VBK

Q1
vC
VB
VE

CL
VL

8 3511 M _NMOS_1 W=4U L=1U
4.8 0OV
11 2 oV

10 7 9 M _NPNS AREA=8
4 10 OV
57 0V
9 2 0V

4 6 1PF
6 2 0V

.IC V(10)=5.0V V(7)=0.0V
.TRAN 0.1NS 5NS ONS 0.1NS

260



APPENDIX C. CIDER PARALLEL-VERSION BENCHMARKS

.PLOT TRAN I (VIN)
-.INCLUDE BICMOS.LIB

.OPTIONS ACCT BYPASS=1
.END

BICMPU Benchmark

Vour

— CL

[ 5.0pF

Figure C.2: BICMPU schematic

BICMOS INVERTER PULLUP CIRCUIT

vDD 1 0 5.0V
vss 2 0 0.0V

VIN 3 0 0.75V

veC 1 11 0.0V
VB 5 15 0.0V

261



APPENDIX C. CIDER PARALLEL-VERSION BENCHMARKS

Q1 11 15 4 M _NPNS  AREA=8
ML 531 1M PMOS_1 W=10U L=1U

CL 4 0 5.0PF
.IC V(4)=0.75V Vv (5)=0.0V
.INCLUDE BICMOS.LIB

.TRAN 0.5NS 4.0NS
.PRINT TRAN V(3) V(4)

.OPTION ACCT BYPASS=1
.END

CLKFEED Benchmark

M I____I M |

1w§? dlooil v Itllz\goil
CK

®

IBiAs @
50uA @ VG @
:Vm - Vs Vb Vip
+
@!’ -_—
In

Figure C.3: CLKFEED schematic

SWITCHED CURRENT CELL - CLOCK FEEDTHROUGH

VDD 1 0 5.0V

262



APPENDIX C. CIDER PARALLEL-VERSION BENCHMARKS

vVsSs 2 0 0.0V

IIN 13 0
VIN 13 3
VL 4 0 2.5v

VCK 6 0 5.0V PULSE 5.0V 0.0V 5.0NS 5NS 5NS 20NS 50NS

0.0
0.0

MI 3 3 2 2 MNMOS_ 5 W=5U L=5U
M2 4 5 2 2 MNMOS 5 W=10U L=5U
M3 23 26 25 22 M_NMOS_5 W=5U L=5U

RLK1 3 0 100G
RLK2 5 0 100G

VD 3 23 0.0V

VG 6 26 0.0V

VS 525 0.0V

VB 2 22 0.0V

M4 7 71 1 M _PMOS_IDEAL W=100U L=1U
M5 3 7 1 1 M PMOS_IDEAL W=100U L=1U
M6 4 7 1 1 M PMOS_IDEAL W=200U L=1U
IREF 7 0 50UA

*kkkk* MODELS ***xk%x
.MODEL M_PMOS_IDEAL PMOS VTO=-1.0V KP=100U

.INCLUDE BICMOS.LIB
.TRAN 0.1NS S50NS

.OPTIONS ACCT BYPASS=1 METHOD=GEAR
.END

CMOSAMP Benchmark

CMOS 2-STAGE OPERATIONAL AMPLIFIER

VDD 1 0 2.5v
VSss 2 0 -2.5v

IBIAS 9 0 100UA

VPL 3 0 0.0V AC 0.5V

VMI 4 0 0.0V AC 0.5V 180

ML 6 3 55MPMOS_1 W=15U L=1U
M2 7 45 5MPMOS_1 W=15U L=1U
M3 6 6 2 2 M_NMOS_1 W=7.5U L=1U
M4 7 6 2 2 M_NMOS_1 W=7.5U L=1U

263



APPENDIX C. CIDER PARALLEL-VERSION BENCHMARKS

VoD

7o

ny iy
M v e
® VeL 1\{Is/ll - 1\{{3/21
IBas & ! |® |_
100uA |
. [
Vi Ms )_l.‘ M4 __I EM 5
7.5/1 ® 7.5/ 15/1

1o

Vss

Figure C.4: CMOSAMP schematic

M5 8 7 2 2 M NMOS_1 W=15U L=1U
M6 9 9 1 1MPMOS 1 W=15U L=1U
M7 59 11 M PMOS_1 W=15U L=1U
M8 8 9 1 1 M PMOS_1 W=15U L=1U

*CC 7 8 0.1PF
.INCLUDE BICMOS.LIB
*.0P

* ,AC DEC 10 1K 100G
.DC VPL -5MV 5MV 0.1MV

.OPTIONS ACCT BYPASS=1 METHOD=GEAR
.END

ECLINV Benchmark

ECL INVERTER

264



APPENDIX C. CIDER PARALLEL-VERSION BENCHMARKS

Vcc
R1 Re
662 662
Q 3 4
I\.Q
O) Q2
o9 (:) o0
R4 Rs Rs g
4.06K 2.65K 4.06K
\\\‘\\ \\\‘S;) \\\‘\\
VEE

Figure C.5: ECLINV schematic

*** (FROM MEINERZHAGEN ET AL.)

vCC 1 0 0.0V
VEE 2 0 -5.2V

VIN 3 0 -1.25V
VRF 4 0 -1.25V

*** INPUT STAGE

Q1 5 3 9 M _NPNS AREA=8
Q2 6 4 9 M_NPNS AREA=8
Rl 1 5 662

R2 1 6 662

R3 9 2 2.65K

*** QUTPUT BUFFERS

03 1 5 7 M_NPNS AREA=8
Q4 1 6 8 M_NPNS AREA=8
R4 7 2 4.06K

R5 8 2 4.06K

**%* MODEL LIBRARY

265



APPENDIX C. CIDER PARALLEL-VERSION BENCHMARKS

.INCLUDE BICMOS.LIB

.DC VIN -2.00 0.001 0.05
.PLOT DC V(7) V(8)

.OPTIONS ACCT BYPASS=1
.END

ECPAL Benchmark

Figure C.6: ECPAL schematic

EMITTER COUPLED PAIR WITH ACTIVE LOAD

VCC 1 0 5V

VEE 2 0 OV

VINP 4 0 2.99925V AC 0.5V
VINM 7 0 3V AC 0.5v 180

IEE 5 2 0.1MA
Q1 3 4 5 M NPNS AREA=8
Q2 6 7 5 M _NPNS AREA=8

266



APPENDIX C. CIDER PARALLEL-VERSION BENCHMARKS

3 3 1 M_PNPS AREA=8
6 3 1 M_PNPS AREA=8

Q3
Q4
.AC DEC 10 10K 100G
.PLOT AC VDB (6)

.INCLUDE BICMOS.LIB

.OPTIONS ACCT RELTOL=1E-6
.END

GMAMP Benchmark

IN

RF
30K

Figure C.7: GMAMP schematic

BICMOS 3-STAGE AMPLIFIER
**%* IN GRAY & MEYER, 3RD ED. P.266, PROB. 3.12, 8.19

vDD 1 0 5.0V
vss 2 0 0.0V

267



APPENDIX C. CIDER PARALLEL-VERSION BENCHMARKS

*** VOLTAGE INPUT
*VIN 13 0 0.0V AC 1V
*CIN 13 3 1UF

**% CURRENT INPUT
IIN 3 0 0.0 AC 1.0

o

Ml 4 3 2 2 M_NMOS_1 W=300U L=1U
M2 7 7 2 2 M NMOS_1 W=20U L=1U

Q1 654 M NPNS AREA=40
Q2 55 7 M NPNS AREA=40
03 16 8 M NPNS AREA=40
RL1 1 4 1K

RL2 1 6 10K

RB1 1 5 10K

RL3 8 2 1K

RF1 3 8 30K

*%* NUMERICAL MODEL LIBRARY **¥*
.INCLUDE BICMOS.LIB

.AC DEC 10 100KHZ 100GHZ
.PLOT AC VDB (8)

.OPTIONS ACCT BYPASS=1 KEEPOPINFO
.END

LATCH Benchmark

STATIC LATCH
* %% IC=1MA, RE6=3K
* % % SPICE ORIGINAL 1-7-80, CIDER REVISED 4-16-93

***  BIAS CIRCUIT

***  RESISTORS

RCC2 6 8 3.33K

REE2 9 0 200

***  TRANSISTORS

Ql 6 8 4 M_NPN1D AREA=8
02 8 4 9 M _NPN1D AREA=8

Fkk MODELS
.INCLUDE BICMOS.LIB

* k% SOURCES
VCC 6 0 5V

268



APPENDIX C. CIDER PARALLEL-VERSION BENCHMARKS

VREF 3 0 2.5V
VRSET 1 0 PULSE(2V 3V 0.1NS 0.1NS 0.1NS 0.9NS 4NS)
VSET 7 0 PULSE(2V 3V 2.1NS 0.1NS 0.1NS 0.9NS 4NS)

falladd LATCH
X1 12345 6 ECLNOR2
X2 57 3 4 2 6 ECLNOR2

***  SUBCIRCUITS

.SUBCKT ECLNOR2 1 2 3 4 5 6
** RESISTORS

RS 6 11 520

RC2 11 10 900

RE4 12 0 200

RE6 5 0 6K

** TRANSISTORS

Ql 9 1 8 M_NPN1D AREA=8
Q2 9 2 8 M_NPN1D AREA=8
Q3 11 3 8 M_NPN1D AREA=8
Q4 8 4 12 M_NPN1D AREA=8
Q5 10 10 9 M _NPN1D AREA=8
Q6 6 9 5 M_NPN1D AREA=8
.ENDS ECLNOR2

*x% CONTROL CARDS

.TRAN 0.01NS 8NS

.PRINT TRAN V(1) V(7) V(5) V(2)
.OPTIONS ACCT BYPASS=1

.END

269



APPENDIX C. CIDER PARALLEL-VERSION BENCHMARKS

Q
VNoOR : ®
®
Vini ViNe
Res @ Ql@j[ Q: @

Figure C.8: LATCH schematic

270



APPENDIX C. CIDER PARALLEL-VERSION BENCHMARKS

PPEF Benchmarks

Vcc/

10

Figure C.9: PPEF.1D and PPEF.2D schematic

PUSH-PULL EMITTER FOLLOWER - ONE-DIMENSIONAL MODELS

vCC

1 ov
VEE 2

0 5.

0 -5.0v
VIN 3 0 0.0V (SIN 0.0V 0.1V 1KHZ) AC 1
VBU 13 3 0.7V

VBL 3 23 0.7V

RL 4 44 50
VLD 44 0 0V
3 4 M_NPN1D AREA=40
1 M _PNP1D AREA=200

QL 5 1
02 4 5

Q3 6 23 4 M_PNPLD AREA=100
04 4 6 2 M NPNID AREA=80

.INCLUDE BICMOS.LIB

271



APPENDIX C. CIDER PARALLEL-VERSION BENCHMARKS

.TRAN 0.01MS 1.00001MS 0US 0.01MS
.PLOT TRAN V(4)

.OPTIONS ACCT BYPASS=1 TEMP=26.850C RELTOL=1E-5
.END
PUSH-PULL EMITTER FOLLOWER - TWO-DIMENSIONAL MODELS

vcC 1 0 5.0V
VEE 2 0 -5.0V

VIN 30 0.0V (SIN 0.0V 0.1V 1KHZ) AC 1
VBU 13 3 0.7V
VBL 3 23 0.7V

RL 4 44 50

VLD 44 0 OV

Q1 5 13 4 M_NPNS AREA=40
Q2 4 5 1 M_PNPS AREA=200
Q3 6 23 4 M_PNPS AREA=100
Q4 4 6 2 M_NPNS AREA=80

.INCLUDE BICMOS.LIB

.TRAN 0.01MS 1.00001MS 0US 0.01MS
.PLOT TRAN V(4)

.OPTIONS ACCT BYPASS=1 TEMP=26.850C RELTOL=1E-5
.END

RINGOSC Benchmarks

CMOS RING OSCILLATOR -~ 1UM DEVICES

VDD 1 0 5.0V
VSsS 2 0 0.0V

X112 3 4 INV
X212 45 INV
X3 125 6 INV
X4 126 7 INV
X512 7 8 INV
X6 128 9 INV
X712 9 3 INV

272



APPENDIX C. CIDER PARALLEL-VERSION BENCHMARKS

.IC V(3)=0.0V V(4)=2.5V V(5)=5.0V
V(6)=0.0V V(7)=5.0V V(8)=0.0V V(9)=5.0V

<+

.SUBCKT INV 1 2 3 4

*

M1
M2

VGP
vDP
VSP
VBP

VGN
VDN
VSN
VBN

VDD VSS VIN VOUT

14 13 15 16 M_PMOS_1 W=6.0U
24 23 25 26 M_NMOS_1 W=3.0U

3
4
1
1

NN W

.ENDS

13
14
15
16

23
24
25
26
INV

0.0v
0.0v
0.0v
0.0v

0.0v
0.0v
0.0v
0.0v

.INCLUDE BICMOS.LIB

.TRAN 0.1NS 1NS
.PRINT TRAN V(3) V(4) V(5)

.OPTIONS ACCT BYPASS=1 METHOD=GEAR

.END

CMOS RING OSCILLATOR - 2UM DEVICES

VDD 1 0 5.0V
VSss 2 0 0.0V

X1l
X2
X3
X4
X5
X6
X7

I I T Sy =

NDNDMNNMNNDNNDNDND
WooJoaumbdWw
WwwowJoyun b

"INV
INV
INV
INV
INV
INV
INV

.IC Vv(3)=0.0V V(4)=2.5V V(5)=5.0V Vv (6)=0.0V
+ V(7)=5.0V V(8)=0.0V V(9)=5.0V

.SUBCKT INV 1 2 3 4

*

M1

VDD VSS VIN VOUT

14 13 15 16 M_PMOS W=6.0U
M2 24 23 25 26 M_NMOS W=3.0U

VGP 3 13 0.0V
VDP 4 14 0.0V

273



APPENDIX C. CIDER PARALLEL-VERSION BENCHMARKS

VSP

VGN

VSN
VBN

NN W

.ENDS

15
16

23
24
25
26

0.0v
0.0v
0.0v
0.0v

INV

.MODEL M _NMOS NUMOS

X.MESH L=0.0 N=1
X.MESH L=0.6 N=4
X.MESH L=0.7 N=5
X.MESH L=1.0 N=7
X.MESH L=1.2 N=11
X.MESH L=3.2 N=21
X.MESH L=3.4 N=25
X.MESH L=3.7 N=27
X.MESH L=3.8 N=28
X.MESH L=4.4 N=31
Y.MESH L=-.05 N=1
Y.MESH L=0.0 N=5
Y.MESH L=.05 N=9
Y.MESH L=0.3 N=14
Y.MESH L=2.0 N=19
REGION NUM=1 MATERIAL=1 Y.L=0.0

MATERIAL NUM=1 SILICON
MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG

MATERIAL NUM=2 OXIDE

MODELS CONCMOB FIELDMOB BGN SRH CONCTAU
METHOD AC=DIRECT ONEC
OUTPUT ALL.DEBUG

R A I T T T T T T T I S S S S e S S S A S S S T S e

.MODEL M_PMOS NUMOS
+ X.MESH 1=0.0 N=1

274

REGION NUM=2 MATERIAL=2 Y.H=0.0 X.L=0.7 X.H=3.7

ELEC NUM=1 X.L=3.8 X.H=4.4 Y.L=0.0 Y.H=0.0
ELEC NUM=2 X.L=0.7 X.H=3.7 IY.L=1 1IY.H=1
ELEC NUM=3 X.L=0.0 X.H=0.6 Y.L=0.0 Y.H=0.0
ELEC NUM=4 X.L=0.0 X.H=4.4 Y.L=2.0 Y.H=2.0
DOPING UNIF P.TYPE CONC=2.5E16 X.L=0.0 X.H=4
DOPING UNIF P.TYPE CONC=1E1l6 X.L=0.0 X.H=4
DOPING UNIF N.TYPE CONC=1E20 X.1L=0.0 X.H=1.
DOPING UNIF N.TYPE CONC=1E20 X.L=3.3 X.H=4

Y.L=0.0 Y.H=2.0
Y.L=0.0 Y.H=0.05
Y.1=0.0 Y.H=0.2
Y.L=0.0 Y.H=0.2



APPENDIX C. CIDER PARALLEL-VERSION BENCHMARKS

X.MESH L=0.6 N=4
X.MESH L=0.7 N=5
X.MESH L=1.0 N=7
X.MESH L=1.2 N=11
X.MESH L=3.2 N=21
X.MESH L=3.4 N=25
X.MESH L=3.7 N=27
X.MESH L=3.8 N=28
X.MESH L=4.4 N=31

Y.MESH L=-.05 N=1
Y.MESH L=0.0 =5
Y.MESH L=.05 =9
Y.MESH L=0.3 N=14
Y.MESH L=2.0 N=19

REGION NUM=1 MATERIAL=1 Y.L=0.0
MATERIAL NUM=1 SILICON
MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG

REGION NUM=2 MATERIAL=2 Y.H=0.0 X.L=0.7 X.H=3.7
MATERIAL NUM=2 OXIDE

ELEC NUM=] X.L=3.8 X.H=4.4 Y.L=0.0 Y.H=0.0

ELEC NUM=2 X.L=0.7 X.H=3.7 IY.L=1 IY.H=1

ELEC NUM=3 X.1=0.0 X.H=0.6 Y.L=0.0 Y.H=0.0

ELEC NUM=4 X.L=0.0 X.H=4.4 Y.L=2.0 Y.H=2.0

DOPING UNIF N.TYPE CONC=1El6 X.L=0.0 X.H=4.4 Y.L=0.0 Y,H=2,
DOPING UNIF P.TYPE CONC=3El6 X.L=0.0 X.H=4.4 Y.L=0.0 Y.H=0.
DOPING UNIF P.TYPE CONC=1E20 X.L=0.0 X.H=1.1 Y.L=0.0 Y.H=0
DOPING UNIF P.TYPE CONC=1E20 X.1=3.3 X.H=4.4 Y.L=0.0 Y.H=0

MODELS CONCMOB FIELDMOB BGN SRH CONCTAU
METHOD AC=DIRECT ONEC
OUTPUT ALL.DEBUG

+++ b F A F A+

.TRAN 0.1NS 5.0NS

.PRINT V(4)

.OPTIONS ACCT BYPASS=1 METHOD=GEAR
.END

275

NN O O



APPENDIX C. CIDER PARALLEL-VERSION BENCHMARKS

Figure C.10: RINGOSC.1U and RINGOSC.2U schematic

276



Appendix D

Model Libraries

This appendix contains the model descriptions used in the parallel benchmarks
of Chapter 5, and in the examples of Chapter 6. The input listings of Appendix C

assume that the remaining contents of this appendix have been placed in a file called
‘BICMOS.LIB'.

* %

* BICMOS.LIB: Library of models used in the 1.0 um CBiCMOS process
* Contains CIDER input descriptions as well as matching

* SPICE models for some of the CIDER models.
**

k%

* One-dimensional models for a
* polysilicon emitter complementary bipolar process.

* The default device size is lum by lum (LxW)
* %

.model M NPN1D nbjt level=1

title One-Dimensional Numerical Bipolar

options base.depth=0.15 base.area=0.1 base.length=0.5 defa=1lp

x.mesh loc=-0.2 n=1

x.mesh loc=0.0 n=51

x.mesh wid=0.15 h.e=0.0001 h.m=,004 r=1.2

x.mesh wid=1.15 h.s=0.0001 h.m=.004 r=1.2

domain num=1 material=1l x.1=0.0

domain num=2 material=2 x.h=0.0

material num=1 silicon

mobility mat=1 concmod=ct fieldmod=ct

material num=2 polysilicon

mobility mat=2 concmod=ct fieldmod=ct

doping gauss n.type conc=3e20 x.1=-0.2 x.h=0.
0

x char.len=0.047
doping gauss p.type conc=5el8 x.1=-0.2 x.h=

char.len=0.100

++++++H+++ A+

277



APPENDIX D. MODEL LIBRARIES

+ doping unif n.type conc=lel6 x.1=0.0 x.h=1.3

+ doping gauss n.type conc=5el9 x.1=1.3 x.h=1.3 char.len=0.100
+ models bgn srh auger conctau concmob fieldmob

+ method devtol=le-12 ac=direct itlim=15

.model M PNP1D nbjt level=l

* %

+ title One-Dimensional Numerical Bipolar

+ options base.depth=0.2 base.area=0.1 base.length=0.5 defa=lp

+ x.mesh loc=-0.2 n=1

+ x.mesh loc=0.0 n=51

+ x.mesh wid=0.20 h.e=0.0001 h.m=.004 r=1.2

+ x.mesh wid=1.10 h.s=0.0001 h.m=.004 r=1.2

+ domain num=1 material=1l x.1=0.0

+ domain num=2 material=2 x.h=0.0

+ material num=1 silicon

+ mobility mat=1 concmod=ct fieldmod=ct

+ material num=2 polysilicon

+ mobility mat=2 concmod=ct fieldmod=ct

+ doping gauss p.type conc=3e20 x.1=-0.2 x.h=0.0 char.len=0.047
+ doping gauss n.type conc=5el7 x.1=-0.2 x.h=0.0 char.len=0,200
t doping unif p.type conc=lel6 x.1=0.0 x.h=1.3

+ doping gauss p.type conc=5el19 x.1=1.3 x.h=1.3 char.len=0.100
+ models bgn srh auger conctau concmob fieldmob

+ method devtol=le-12 ac=direct itlim=15

* Two-dimensional models for a
* polysilicon emitter complementary bipolar process.
* The default device size is lum by lum (LxW)

* %

.MODEL M_NPNS nbjt level=2

+ title TWO-DIMENSIONAL NUMERICAL POLYSILICON EMITTER BIPOLAR TRANSISTOR
+ * Since half the device is simulated, double the unit width to get
+ * 1,0 um emitter. Use a small mesh for this model.

+ options defw=2.0u

+ output stat

+

+ x.mesh w=2.0 h.e=0.02 h.m=0.5 r=2.0

+ x.mesh w=0.5 h.s=0.02 h.m=0.2 r=2.0

+

+ y.mesh 1=-0.2 n=1

+ y.mesh 1= 0.0 n=5

+ y.mesh w=0.10 h.e=0.004 h.m=0.05 r=2.5

+ y.mesh w=0.15 h.s=0.004 h.m=0.02 r=2.5

+ y.mesh w=1.05 h.s=0.02 h.m=0.1 r=2.5

+

+ domain num=1 material=l x.1=2.0 y.h=0.0

+ domain num=2 material=2 x.h=2.0 y.h=0.0

+ domain num=3 material=3 y.1=0.0

278



APPENDIX D. MODEL LIBRARIES

+ char.1=0.100 lat.rotate

method ac=direct itlim=10
models bgn srh auger conctau concmob fieldmob

+ material num=1 polysilicon

+ material num=2 oxide

+ material num=3 silicon

+

+ elec num=1 x.1=0.0 x.h=0.0 y.1l=1.1 y.h=1.3

+ elec num=2 x.1=0.0 =x.h=0.5 y.1=0.0 y.h=0.0

+ elec num=3 x.1=2.0 x.h=3.0 y.1=-0.2 y.h=-0.2

+

+ doping gauss n.type conc=3e20 x.1=2.0 x.h=3.0 y.1=-0.2 y.h=0.0
+ + char.1=0.047 lat.rotate

+ doping gauss p.type conc=5el8 x.1=0.0 x.h=5.0 y.1=-0.2 v.h=0.0
+ + char.1=0.100 lat.rotate

+ doping gauss p.type conc=1e20 x.1=0.0 x.h=0.5 y.1=~0.2 y.h=0.0
+ + char.1=0.100 lat.rotate ratio=0.7

+ doping unif n.type conc=lel6 x.1=0.0 x.h=5.0 y.1=0.0 y.h=1.3

+ doping gauss n.type conc=5el9 x.1=0.0 x.h=5.0 y.1=1.3 y.h=1.3

+

+

+

+

.MODEL M_NPN nbjt level=2

title TWO-DIMENSIONAL NUMERICAL POLYSILICON EMITTER BIPOLAR TRANSISTOR
* Since half the device is simulated, double the unit width to get

* 1.0 um emitter length. Uses a finer mesh in the X direction.

options defw=2.0u

output stat

+

+

+

+

+

+

+ x.mesh w=0.5 h.e=0.075 h.m=0.2 r=2.0

+ x.mesh w=0.75 h.s=0.075 h.m=0.2 r=2.0

+ x.mesh w=0.75 h.e=0.05 h.m=0.2 r=1.5

+ x.mesh w=0.5 h.s=0.05 h.m=0.1 r=1.5

+

+ y.mesh 1=-0.2 n=1

+ y.mesh 1= 0.0 n=5

+ y.mesh w=0.10 h.e=0.003 h.m=0.01 r=1.5
+ y.mesh w=0.15 h.s=0.003 h.m=0.02 r=1.5
+ y.mesh w=0.35 h.s=0.02 h.m=0.2 r=1.5
+ y.mesh w=0.40 h.e=0.05 h.m=0.2 r=1.5
+ y.mesh w=0.30 h.s=0.05 h.m=0.1 r=1.5
+

+ domain num=1 material=1l x.1=2.0 y.h=0.0
+ domain num=2 material=2 x.h=2.0 y.h=0.0
+ domain num=3 material=3 y.1=0.0

+ material num=1 polysilicon

+ material num=2 oxide

+ material num=3 silicon

+

+ elec num=1 x.1=0.0 0.0 y.1=1.1 y.h=1.3
+ elec num=2 x.1=0.0 0.5 y.1=0.0 y.h=0.0

279



APPENDIX D. MODEL LIBRARIES

+ ++++F A+

elec num=3 x.1=2.0 x.h=3.0 y.1=-0.2 y.h=-0.2

doping gauss n.type conc=3e20 x.1=2.0 x.h=3.0 y.1=-0.2 y.h=0.0
+ char.1=0.047 lat.rotate

doping gauss p.type conc=5el8 x.1=0.0 x.h=5.0 y.1=-0.2 y.h=0.0
+ char.1=0.100 lat.rotate

doping gauss p.type conc=1le20 x.1=0.0 x.h=0.5 y.1=-0.2 y.h=0.0
+ char.1=0.100 lat.rotate ratio=0.7

doping unif n.type conc=lel6 x.1=0.0 x.h=5.0 y.1=0.0 y
doping gauss n.type conc=5el9 x.1=0.0 x.h=5. 0 =1 3y
+ char.1=0.100 lat.rotate

1.3
=1.3

method ac=direct itlim=10
models bgn srh auger conctau concmob fieldmob

MODEL M_PNPS nbjt level=2
title TWO-DIMENSIONAIL NUMERICAL POLYSILICON EMITTER BIPOLAR TRANSISTOR
* Since half the device is simulated, double the unit width to get
* 1.0 um emitter length. Use a small mesh for this model.
options defw=2.0u
output stat

x.mesh w=2.0 h 0
x.mesh w=0.5 h.s=0.

y.mesh 1=-0.2 n=1
y.mesh 1= 0.0 n=5
y.mesh w=0.12 h.e=0.004 h.m=0.05 r=2.5
y.mesh w=0.28 h.s=0.004 h.m=0.02 r=2.5
y.mesh w=1,05 h.s=0.02 h.m=0.1 r=2.5

domain num=1 material=l x.1=2.0 y.
domain num=2 material=2 x.h=2.0 y.h=0.
domain num=3 material=3 y.1=0.0
material num=1 polysilicon

material num=2 oxide

material num=3 silicon

Il
I
]

elec num=1l x.1l=
elec num=2 x.l=
elec num=3 x.l=

.h=1.3
.h=0.0
.h=-0.2

1.1
0.0
-0.2

N o o
coo
b

I

]

ll

0.
0.
3.

[
owo
tl
ll

y.1l
y.1l
y.1l

‘<"<"<

doping gauss p.type conc=3e20 x.1=2.0 x.h=3.0 y.1=-0.2 y.h=0.0
+ char.1=0.047 lat.rotate

doping gauss n.type conc=5el7 x.1=0.0 x.h=5.0 y.1=-0.2 y.h=0.0
+ char.1=0.200 lat.rotate

doping gauss n.type conc=1e20 x.1=0.0 x.h=0.5 y.1=-0.2 y.h=0.0
+ char.1=0.100 lat.rotate ratio=0.7
doping unif p.type conc=lelé x.1=0.0 x.
doping gauss p.type conc=5el9 x.1=0.0 x

S S S S T TR k. T Tk T i S o S S S S S S S T T T

280



APPENDIX D. MODEL LIBRARIES

+ + char.1=0.100 lat.rotate

+

+ method ac=direct itlim=10

+ models bgn srh auger conctau concmob fieldmob

.MODEL M _PNP nbjt level=2

title TWO-DIMENSIONAL NUMERICAL POLYSILICON EMITTER BIPOLAR TRANSISTOR
* Since half the device is simulated, double the unit width to get

* 1.0 um emitter length. Uses a finer mesh in the X direction.

options defw=2.0u

output stat

x.mesh w=0.5 h.e=0.075 h.m=0.2 r=2.0

x.mesh w=0.75 h.s=0.075 h.m=0.2 r=2.0

x.mesh w=0.75 h.e=0.05 h.m=0.2 r=1.5

x.mesh w=0.5 h.s=0.05 h.m=0.1 r=1.5

y.mesh 1=-0.2 n=1

y.mesh 1= 0.0 n=5

y.mesh w=0.12 h.e=0.003 h.m=0.01 r=1.5
y.mesh w=0.28 h.s=0.003 h.m=0.02 r=1.5
y.mesh w=0.20 h.s=0.02 h.m=0.2 r=1.5
y.mesh w=0.40 h.e=0.05 h.m=0.2 r=1.5
y.mesh w=0.30 h.s=0.05 h.m=0.1 r=1.5
domain num=1 material=1l x.1=2.0 y.h=0.0
domain num=2 material=2 x.h=2.0 y.h=0.0
domain num=3 material=3 y.1=0.0

material num=1 polysilicon

material num=2 oxide

material num=3 silicon

elec num=1 x.1=0.0 x.h=0.0 y.1=1.1 vy.h=1.3
elec num=2 x.1=0.0 x.h=0.5 y.1=0.0 y.h=0.0
elec num=3 x.1=2.0 x.h=3.0 y.1=-0.2 y.h=-0.2

doping gauss p.type conc=3e20 x.1=2.0 x.h=3.0 y.1=-0.2 y.h=0.0
+ char.1=0.047 lat.rotate
doping gauss n.type conc=5el7 x.1=0.0 x.h=5.0 y.1=-0.2 y.h=0.0
+ char.1=0.200 lat.rotate

doping gauss n.type conc=1e20 x.1=0.0 x.h=0.5 y.1=-0.2 y.h=0.0
+ char.1=0.100 lat.rotate ratio=0.7

doping unif p.type conc=lel6 x.1=0.0 x.h=5.0 y.1=0.0 y.h=1.3
doping gauss p.type conc=5el9 x.1=0.0 x 5 0 y.1=1.3 y.h=1.3

+ char.1=0.100 lat.rotate

method ac=direct itlim=10
models bgn srh auger conctau concmob fieldmob

+++F+++ A FFF A F A A A F A F A F o FF A F A+

*
*

281



APPENDIX D. MODEL LIBRARIES

* Two-dimensional models for a
* complementary MOS process.

* Device models for lum, 2um, 3um, 4um, 5um, 10um and 50um are provided.
* %
.MODEL M_NMOS_1 numos

output stat

x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0

x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

x.mesh w=0.4 h.s=0.005 h.m=0.1 r=2.0

x.mesh w=0.4 h.e=0.005 h.m=0.1 r=2.0

x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0

y.mesh 1=-,0200 n=1

y.mesh 1=0.0 n=6

y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0

y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0

y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0

region num=1 material=1l y.h=0.0

region num=2 material=2 y.1=0.0

interface dom=2 nei=1 x.1=1 x.h=2 layer.width=0.0

L i i S I S e T T T it S SR S S S N B

material num=1 oxide
material num=2 silicon

elec num=1 x.1=2.5 x.h=3.1 y¥.1=0.0 y.h=0.0
elec num=2 x.l1=1 x.h=2 iy.l=1 iy.h=1

elec num=3 x.1=-0.1 x.h=0.5 y.1=0.0 y.h=0.0
elec num=4 x.1=-0.1 x.h=3.1 y.1=2.0 y.h=2.0

doping gauss p.type conc=1.0el7 x.1=-0.1 x.h=3.1 y.1=0.0
+ char.1=0.30

doping unif p.type conc=5.0el5 x.1=-0.1 x.h=3.1 y.1=0.0 y.h=2.1
doping gauss n.type conc=4el7 x.1=-0.1 x.h=1 y.1=0.0 y.h=0.0
+ char.1=0.16 lat.rotate ratio=0.65

doping
+ char.
doping

gauss n.type conc=le20 x.1=-0.1 x.h=0.95 y.1=0.0 y.h=0.08
1=0.03 lat.rotate ratio=0.65

gauss n.type conc=4el7 x.1=2 x.h=3.1 y.1=0.0 y.h=0.0

+ char.1=0.16 lat.rotate ratio=0.65

doping gauss n.type conc=1le20 x.1=2.05 x.h=3.1 y.1=0.0 y.h=0.08
+ char.1=0.03 lat.rotate ratio=0.65

contact num=2 workf=4.10

models concmob surfmob transmob fieldmob srh auger conctau bgn
method ac=direct itlim=10 onec

.MODEL M NMOS_ 2 numos

+

output stat

282



APPENDIX D. MODEL LIBRARIES

x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0
x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
x.mesh w=0.9 h.s=0.005 h.m=0.2 r=2.0
x.mesh w=0.9 h.e=0.005 h.m=0.2 r=2.0
x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0

y.mesh 1=-,0200 n=1

y.mesh 1=0.0 n=6

y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0

region num=1 material=1l y.h=0.0
region num=2 material=2 y.1=0.0
interface dom=2 nei=1 x.l1=1 x.h=3 layer.width=0.0

material num=1 oxide
material num=2 silicon

elec num=1 x.1=3.5 x.h=4.1 y.1=0.0 y.h=0.0
elec num=2 x.1=1 x.h=3 iy.l=1 iy.h=1

elec num=3 x.1=-0.1 x.h=0.5 y.1=0.0 y.h=0.0
elec num=4 x.1=-0.1 x.h=4.1 y.1=2.0 y.h=2.0

doping gauss p.type conc=1.0el7 x.1=-0.1 x.h=4.1 y.1=0.0
+ char.1=0.30

doping unif p.type conc=5.0el5 x.1=-0.1 x.
doping gauss n.type conc=4el7 x.1=-0.1 x
+ char.1=0.16 lat.rotate ratio=0.65
doping gauss n.type conc=1e20 x.1=-0.1 x.h=0.95 y.1=0.0 y.h=0.08
+ char.1=0.03 lat.rotate ratio=0.65

doping gauss n.type conc=4el7 x.1=3 x.h=4.1 y.1=0.0 y.h=0.0

+ char.1=0.16 lat.rotate ratio=0.65

doping gauss n.type conc=1le20 x.1=3.05 x.h=4.1 y.1=0.0 y.h=0.08
+ char.1=0.03 lat.rotate ratio=0.65

h=4.
h=1

.

contact num=2 workf=4.10
models concmob surfmob transmob fieldmob srh auger conctau bgn
method ac=direct itlim=10 onec

i i e s s i i S e e S S S e S E T

.MODEL M_NMOS_3 numos

+ output stat

+

+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=1.4 h.s=0.005 h.m=0.3 r=2.0

+ x.mesh w=1.4 h.e=0.005 h.m=0.3 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2,0

283



APPENDIX D. MODEL LIBRARIES

y.mesh 1=-.0200 n=1

y.mesh 1=0.0 n=6

y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0

region num=1 material=
region num=2 material=
interface dom=2 nei=1
material num=1 oxide
material num=2 silicon

1 yv.h=0.0
2 y.1=0.0
x.1=1 x.h=4 layer.width=0.0

elec num=1l x.1=4.5 x.h=5.1 y.1=0.0 y.h=0.0

elec num=2 x.l=1 x.h=4 iy.l=1 diy.h=1

elec num=3 x.1=-0.1 x.h=0.5 y.1=0.0 y.h=0.0
elec num=4 x.1=-0.1 x.h=5.1 y.1=2.0 y.h=2.0

doping gauss p.type conc=1.0el7 x.1=-0.1 x.h=5.1 y.1=0.0
+ char.1=0.30

doping unif p.type conc=5.0el5 x.1=-0.1 x.
doping gauss n.type conc=4el7 x.1=-0.1 x
+ char.1=0.16 lat.rotate ratio=0.65
doping gauss n.type conc=1e20 x.1=-0.1 x.h=0.95 y.1=0.0 y.h=0.08
+ char.1=0.03 lat.rotate ratio=0.65

doping gauss n.type conc=4el7 x.1=4 x.h=5.1 y.1=0.0 y.h=0.0

+ char.1=0.16 lat.rotate ratio=0.65

doping gauss n.type conc=le20 x.1=4.05 x.h=5.1 y.1=0.0 y.h=0.08

h=5.1
h=1 y.

B T T T ik i U B S S S S e

+ char.1=0.03 lat.rotate ratio=0.65

contact num=2 workf=4.,10

models concmob surfmob transmob fieldmob srh auger conctau bgn

method ac=direct itlim=10 onec

.MODEL M NMOS_4 numos

+ output stat

+

+ x.mesh w=0.9 h.e=0.020 h.n=0.2 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=1.9 h.s=0.005 h.m=0.4 r=2.0

+ x.mesh w=1.9 h.e=0.005 h.m=0.4 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0

+

+ y.mesh 1=-.0200 n=1

+ y.mesh 1=0.0 n=6

+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+

284



APPENDIX D. MODEL LIBRARIES

region num=1 material=1 y.h=0.0
region num=2 material=2 y.1=0.0
interface dom=2 nei=1 x.1l=1 h
material num=1 oxide

material num=2 silicon

elec num=1 x.1=5.5 x.h=6.1 y.1=0.0 y.h=0.0

elec num=2 x.1=1 x.h=5 iy.l=1 iy.h=1

elec num=3 x.1=-0.1 x.h=0.5 y.1=0.0 y.h=0.0
elec num=4 x.1=-0.1 x.h=6.1 y.1=2.0 y.h=2.0

doping gauss p.type conc=1.0el7 x.1=-0.1 x.h=6.1 y.1=0.0
+ char.1=0.30

doping unif p.type conc=5.0el5 x.1=-0.1 x.h=6.1 y.l=
doping gauss n.type conc=4el7 x.1=-0.1 x.h=1 y.1=0.
+ char.1=0.16 lat.rotate ratio=0.65

doping gauss n.type conc=1e20 x.1=-0.1 x.h=0.95 y.1=0.0 y.h=0.08
+ char.1=0.03 lat.rotate ratio=0.65

doping gauss n.type conc=4el7 x.1=5 x.h=6.1 y.1=0.0 y.h=0.0

+ char.1=0.16 lat.rotate ratio=0.65

doping gauss n.type conc=1e20 x.1=5.05 x.h=6.1 y.1=0.0 y.h=0.08

+ char.1=0.03 lat.rotate ratio=0.65

0.0 y.h=2.1
0 yv.h=0.0

contact num=2 workf=4.10

models concmob surfmob transmob fieldmob srh auger conctau bgn
method ac=direct itlim=10 onec

++++ A A F A+

.MODEL M_NMOS_5 numos
output stat

x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0
x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
x.mesh w=2.4 h.s=0.005 h.m=0.5 r=2.0
x.mesh w=2.4 h.e=0.005 h.m=0.5 r=2.0
x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0

y.mesh 1=-,0200 n=1

y.mesh 1=0.0 n=6

y.mesh w=0.15 h.s=0.0001 h.max=,02 r=2.0
y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0

region num=1 material=l y.h=
region num=2 material=2 y.l=
interface dom=2 nei=1 x.1l=1 x
material num=1 oxide
material num=2 silicon

0.0
=0.0
.h=6 layer.width=0.0

B . T G T S S S S S

elec num=1 x.1=6.5 x.h=7.1 y.1=0.0 y.h=0.0

285



APPENDIX D. MODEL LIBRARIES

elec num=2 x.1l=1 x.h=6 iy.l=1 iy.h=1

elec num=3 x.1=-0.1 x.h=0.5 y.1=0.0 y.h=0.0

elec num=4 x.1=-0.1 x.h=7.1 y.1=2.0 y.h=2.0

doping gauss p.type conc=1.0el7 x.1=-0.1 x.h=7.1 y.1=0.0

+ char.1=0.30

doping unif p.type conc=5.0el5 x.1=-0.1 x.h=7.1 y.1=0.0 y.h=2.1
doping gauss n.type conc=4el7 x.1=-0.1 x.h=1 y.1=0.0 y.h=0.0

+ char.1=0.16 lat.rotate ratio=0.65

doping gauss n.type conc=1e20 x.1=-0.1 x.h=0.95 y.1=0.0 y.h=0.08
+ char.1=0.03 lat.rotate ratio=0.65

doping gauss n.type conc=4el7 x.1=6 x.h=7.1 y.1=0.0 y.h=0.0

+ char.1=0.16 lat.rotate ratio=0.65

doping gauss n.type conc=le20 x.1=6.05 x.h=7.1 y.1=0.0 y.h=0.08
+ char.1=0.03 lat.rotate ratio=0.65

contact num=2 workf=4.10
models concmob surfmob transmob fieldmob srh auger conctau bgn
method ac=direct itlim=10 onec

++++ A+ FF A+

.MODEL M _NMOS_10 numos
output stat

x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.,0
x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
x.mesh w=4.9 h.s=0.005 h.m=1 r=2.0
x.mesh w=4.9 h.e=0.005 h.m=1 r=2.0
x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0

y.mesh 1=-,0200 n=1

y.mesh 1=0.0 n=6

y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0

region num=1 material=1l y.h=0.0
region num=2 material=2 y.1=0.0
interface dom=2 nei=1 x.1l=1 x.h=
material num=1 oxide

material num=2 silicon

11 layer.width=0.0

elec num=1 x.1=11.5 x.h=12.1 y.l=0.0 y.-h=0.0

elec num=2 x.1=1 x.h=11 iy.1l=1 iy.h=1
elec num=3 x.1=-0.1 x.h=0.5 y.1=0.0 y.h=0.0
elec num=4 x.1=-0.1 x.h=12.1 y.1=2.0 y.h=2.0

doping gauss p.type conc=1l.0el7 x.1=-0.1 x.h=12.1 y.1=0.0
+ char.1=0.30

doping unif p.type conc=5.0el5 x.1=-0.1 x.h=12.1 y.1=0.0 y.h=2.1

++++++++FF+ A+t FF A+

286



APPENDIX D. MODEL LIBRARIES

+ 4+ + +F+ A+ A+

doping gauss n.type conc=4el7 x.1=-0.1 x.h=1 y.1=0.0 y.h=0.0

+ char.1=0.16 lat.rotate ratio=0.65

doping gauss n.type conc=1e20 x.1=-0,1 x.h=0.95 y.1=0.0 y.h=0.08
+ char.1=0.03 lat.rotate ratio=0.65

doping gauss n.type conc=4el7 x.1=11 x.h=12.1 y.1=0.0 y.h=0.0

+ char.1=0.16 lat.rotate ratio=0.65

doping gauss n.type conc=le20 x.1=11.05 x.h=12.1 y.1=0.0 y.h=0.08
+ char.1=0.03 lat.rotate ratio=0.65

contact num=2 workf=4.10
models concmob surfmob transmob fieldmob srh auger conctau bgn
method ac=direct itlim=10 onec

.MODEL M NMOS_50 numos

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

output stat

x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0
x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
x.mesh w=24.9 h.s=0.005 h.m=5 r=2.0
x.mesh w=24.9 h.e=0.005 h.m=5 r=2.0
x.mesh w=0.2 h. =0 005 h.m=0.02 r=2.0
x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0
y.mesh 1=-.0200 n=1

yv.mesh 1=0.0 n=6

y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
y.mesh w=0.45 h. =0 02 h.max=0.2 r=2.0
y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0

region num=1 material=
region num=2 material=
interface dom=2 nei=1
material num=1l oxide
material num=2 silicon

1 y.h=0.0
2 y.1=0.0
x.1=1 x,h=51 layer.width=0.0

elec num=1 x.1=51.5 x.h=52.1 y.1=0.0 y.h=0.0
elec num=2 x.1=1 x.h=51 iy.1l=1 iy.h=1l

elec num=3 x.1=-0.1 x.h=0.5 y.1=0.0 y.h=0.0

elec num=4 x.1=-0.1 x.h=52.1 y.1=2.0 y.h=2.0

doping gauss p.type conc=1.0el7 x.1=-0.1 x.h=52.1 y.1=0.0
+ char.1=0.30

doping unif p.type conc=5.0el5 x.1=-0.1
doping gauss n.type conc=4el7 x.1=-0.1
+ char.1=0.16 lat.rotate ratio=0.65
doping gauss n.type conc=le20 x.1=-0.1
+ char.1=0.03 lat.rotate ratio=0.65

doping gauss n.type conc=4el7 x.1=51 x.

+ char.1=0.16 lat.rotate ratio=0.65

x.h=52.1 y.1=0.0 y.h=2.1
x.h=1 y.1=0.0 y.h=0.0

%x.h=0.95 y.1=0.0 y.h=0.08

h=52.1 y.1=0.0 y.h=0.0

doping gauss n.type conc=le20 x.1=51.05 x.h=52.1 y.1=0.0 y.h=0.08

287



APPENDIX D. MODEL LIBRARIES

+ char.1=0.03 lat.rotate ratio=0.65

+

+

+ contact num=2 workf=4.10

+ models concmob surfmob transmob fieldmob srh auger conctau bgn
+ method ac=direct itlim=10 onec

.MODEL M PMOS_1 numos

output stat

x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0
x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
x.mesh w=0.4 h.s=0.005 h.m=0.1 r=2.0
x.mesh w=0.4 h.e=0.005 h.m=0.1 r=2.0
x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0

y.mesh 1=-.0200 n=1

y.mesh 1=0.0 n=6

y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0

region num=1 material=1 y.h=0.0
region num=2 material=2 y.1=0.0
interface dom=2 nei=l x.l1l=1 x.h=2 layer.width=0.0

material num=1 oxide
material num=2 silicon

elec num=1 x.1=2.5 x.h=3.1 y.1=0.0 y.h=0.0
elec num=2 x.1=1 x.h=2 iy.1=1 iy.h=1

elec num=3 x.1=-0.1 x.h=0.5 y.1=0.0 y.h=0.0
elec num=4 x.1=-0.1 x.h=3.1 y.1=2.0 y.h=2.0

doping gauss n.type conc=1.0el7 x.1=-0.1 x.h=3.1 y.1=0.0
+ char.1=0.30

doping unif n.type conc=5.0el5 x.1=-0.1 x.h=

doping gauss p.type conc=4el7 x.1=-0.1 x.h=
+ char.1=0.16 lat.rotate ratio=0.65

doping gauss p.type conc=1e20 x.1=-0.1 x.h=0.95 y.1=0.0 y.h=0.08
+ char.1=0.03 lat.rotate ratio=0.65

doping gauss p.type conc=4el7 x.1=2 x.h=3.1 y.1=0.0 y.h=0.0

+ char.1=0.16 lat.rotate ratio=0.65

doping gauss p.type conc=1le20 x.1=2.05 x.h=3.1 y.1=0.0 y.h=0.08

+ char.1=0.03 lat.rotate ratio=0.65

3.1
1ly.

contact num=2 workf=5.29
models concmob surfmob transmob fieldmob srh auger conctau bgn
method ac=direct itlim=10 onec

EAE S T S R SRR Tk TE i T S i i S S S e et k. . I R B

.MODEL M PMOS_2 numos

288



APPENDIX D. MODEL LIBRARIES

.

output stat

x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0
x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
x.mesh w=0.9 h.s=0.005 h.m=0.2 r=2.0
x.mesh w=0.9 h.e=0.005 h.m=0.2 r=2.0
x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0

y.mesh 1=-.0200 n=1

y.mesh 1=0.0 n=6

y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
region num=1 material=l y.h=
region num=2 material=2 y.l=
interface dom=2 nei=1 x.1=1 x
material num=1 oxide
material num=2 silicon

.0
.0
.h=3 layer.width=0.0

elec num=1 x.1=3.5 x.h=4.1
elec num=2 x.1l=1 x.h=3

elec num=3 x.1=-0.1 x.h
elec num=4 x.1=-0.1 x.h=

y.h=0.0
1

=0.0
iy h=

.1=0.0 yv.h=0.0

.1=2.0 y.h=2.0

doping gauss n.type conc=1.0el7 x.1=-0.1 x.h=4.1 y.1=0.0
+ char.1=0.30

doping unif n.type conc=5.0el5 x.1=-0.1 x.h=4.1 y.1=0.
doping gauss p.type conc=4el?7 x.1=-0.1 x.h=1 y.1=0.0
+ char.1=0.16 lat.rotate ratio=0.65

doping gauss p.type conc=1e20 x.1=-0.1 x.h=0.95 y.1=0.0 y.h=0.08
+ char.1=0.03 lat.rotate ratio=0.65

doping gauss p.type conc=4el7 x.1=3 x.h=4.1 y.1=0.0 y.h=0.0

+ char.1=0.16 lat.rotate ratio=0.65

doping gauss p.type conc=1e20 x.1=3.05 x.h=4.1 y.1=0.0 y.h=0.08
+ char.1=0.03 lat.rotate ratio=0.65

0 v.h=2,1
v.h=0.0

contact num=2 workf=5.29
models concmob surfmob transmob fieldmob srh auger conctau bgn
method ac=direct itlim=10 onec

+ 4+ + +F F A+ F A A+

MODEL M PMOS_3 numos

+ 4+ 4+ + + + +

output stat

x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0
x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
x.mesh w=1.4 h.s=0.005 h.m=0.3 r=2.0
x.mesh w=1.4 h.e=0.005 h.m=0.3 r=2.0
x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

289



APPENDIX D. MODEL LIBRARIES

x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0

y.mesh 1=-.0200 n=1

y.mesh 1=0.0 n=6

y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0

region num=1 material=1l y.h=0.0
region num=2 material=2 y.1=0.0
interface dom=2 nei=1 x.1=1 x.h=
material num=1 oxide

material num=2 silicon

4 layer.width=0.0

elec num=1 x.1=4.5 x.h=5.1 y.1=0.0 y.h=0.0
elec num=2 x.1l=1 x.h=4 iy.l=1] iy.h=1

elec num=3 x.1=-0.1 x.h=0.5 v.1=0.0 y.h=0.0
elec num=4 x.1=-0.1 x.h=5.1 y.1=2.0 y.h=2.0

doping gauss n.type conc=1.0el7 x.1=-0.1 x.h=5.1 y.1=0.0
+ char.1=0.30

doping unif n.type conc=5.0el5 x.1=-0.1 x.h=
doping gauss p.type conc=4el7 x.1=-0.1 x.h=
+ char.1=0.16 lat.rotate ratio=0.65

doping gauss p.type conc=1e20 x.1=-0.1 x.h=0.95 y.1=0.0 y.h=0.08
+ char.1=0.03 lat.rotate ratio=0.65

doping gauss p.type conc=4el7 x.1=4 x.h=5.1 y.1=0.0 y.h=0.0

+ char.1=0.16 lat.rotate ratio=0.65

doping gauss p.type conc=le20 x.1=4.05 x.h=5.1 y.1=0.0 y.h=0.08
+ char.1=0.03 lat.rotate ratio=0.65

.1
y.

contact num=2 workf=5.29
models concmob surfmob transmob fieldmob srh auger conctau bgn
method ac=direct itlim=10 onec

R Tk T T T T S S e I T T 0 i I S S S

.MODEL M_PMOS_4 numos

output stat

x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0
x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
x.mesh w=1.9 h.s=0.005 h.m=0.4 r=2.0
x.mesh w=1.9 h.e=0.005 h.m=0.4 r=2.0
x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0

y.mesh 1=-.0200 n=1

y.mesh 1=0.0 n=6

y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0

R R E

290



APPENDIX D. MODEL LIBRARIES

region num=1 material=1l y.h=0.0
region num=2 material=2 y.1=0.0
interface dom=2 nei=1 x.1l=1 x.h=5 layer.width=0.0

material num=1 oxide
material num=2 silicon

elec num=1 x.1=5.5 x.h=6.1 y.1=0.0 y.h=0.0
elec num=2 x.1=1 x.h=5 1iy.l=1 iy.h=1

elec num=3 x.1=-0.1 x.h=0.5 y.1=0.0 y.h=0.0
elec num=4 x.1=-0.1 x.h=6.1 y.1=2.0 y.h=2.0

doping gauss n.type conc=1.0el7 x.1=-0.1 x.h=6.1 y.1=0.0
+ char.1=0.30

doping unif n.type conc=5.0el5 x.1=-0.1 x.h=6.
doping gauss p.type conc=4el7 x.1=-0.1 x.h=1
+ char.1=0.16 lat.rotate ratio=0.65

doping gauss p.type conc=1le20 x.1=-0.1 x.h=0.95 y.1=0.0 y.h=0.08
+ char.1=0.03 lat.rotate ratio=0.65

doping gauss p.type conc=4el7 x.1=5 x.h=6.1 y.1=0.0 y.h=0.0

+ char.1=0.16 lat.rotate ratio=0.65

doping gauss p.type conc=1le20 x.1=5.05 x.h=6.1 y.1=0.0 y.h=0.08
+ char.1=0.03 lat.rotate ratio=0.65

contact num=2 workf=5.29
models concmob surfmob transmob fieldmob srh auger conctau bgn
method ac=direct itlim=10 onec

T T T Tk T T S ot S S S S S S S S H IR

.MODEL M_PMOS_5 numos

+ output stat

+

+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=2.4 h.s=0.005 h.m=0.5 r=2.0

+ x.mesh w=2.4 h.e=0.005 h.m=0.5 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0

+

+ y.mesh 1=-.0200 n=

+ y.mesh 1=0.0 n=6

+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
+ y.mesh w=0.45 h s=0.02 h.max=0.2 r=2.0
+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+

+ region num=1 material=1l y.h=0.0

+ region num=2 material=2 y.1=0.0

+ interface dom=2 nei=1 x.l=1 x.h=6 layer.width=0.0
+ material num=l oxide

+ material num=2 silicon

+

201



APPENDIX D. MODEL LIBRARIES

elec num=1 x.1=6.5 x.h=7.1 y.1=0.0 y.h=0.0

elec num=2 x.1l=1 x.h=6 iy.l=1 iy.h=1

elec num=3 x.1=-0.1 x.h=0.5 y.1=0.0 y.h=0.0

elec num=4 x.1=-0.1 x.h=7.1 y.1=2.0 y.h=2.0

doping gauss n.type conc=1.0el7 x.1=-0.1 x.h=7.1 y.1=0.0

+ char.1=0.30

doping unif n.type conc=5.0el5 x.1=-0.1 x.h=7.1 y.1=0.0 y.h=2.1
doping gauss p.type conc=4el7 x.1=-0.1 x.h=1 y.1=0.0 y.h=0.0

+ char.1=0.16 lat.rotate ratio=0.65

doping gauss p.type conc=1e20 x.1=-0.1 x.h=0.95 y.1=0.0 y.h=0.08
+ char.1=0.03 lat.rotate ratio=0.65

doping gauss p.type conc=4el7 x.1=6 x.h=7.1 y.1=0.0 y.h=0.0

+ char.1=0.16 lat.rotate ratio=0.65

doping gauss p.type conc=1le20 x.1=6.05 x.h=7.1 y.1=0.0 y.h=0.08
+ char.1=0.03 lat.rotate ratio=0.65

contact num=2 workf=5.29
models concmob surfmob transmob fieldmob srh auger conctau bgn
method ac=direct itlim=10 onec

+H++F A A+ o+

.MODEL M_PMOS_10 numos
output stat

x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0
x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
x.mesh w=4.9 h.s=0.005 h.m=1 r=2.0
x.mesh w=4.9 h.e=0.005 h.m=1 r=2.0
x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0
x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0
y.mesh 1=-.0200 n=1

y.mesh 1=0.0 n=6

y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0

region num=1 material=1 y.h=0.0
region num=2 material=2 y.1=0.0
interface dom=2 nei=l1 x.1l=1 x.h
material num=1 oxide

material num=2 silicon

=11 layer.width=0.0

elec num=1 x.1=11.5 =x.h=12.1 y.1=0.0 y.h=0.0
elec num=2 x.l1=1 x.h=11 iy.1l=1 iy.h=1
elec num=3 x.1=-0.1 x.h=0.5 y.1=0.0 y.

=2.0vy.

h=
elec num=4 x.1=-0.1 =x.h=12.1 y.1 h=

doping gauss n.type conc=1.0el7 x.1=-0.1 x.h=12.1 y.1=0.0
+ char.1=0.30

B T i i S S S Ik T T Sk i S e e

292



APPENDIX D. MODEL LIBRARIES

doping unif n.type conc=5.0el5 x.1=-0.1 x.h=12.1 y.1=0.0 y.h=2.1
doping gauss p.type conc=4el7 x.1=-0.1 x.h=1 y.1=0.0 y.h=0.0

+ char.1=0.16 lat.rotate ratio=0.65

doping gauss p.type conc=1e20 x.1=-0.1 x.h=0.95 y.1=0.0 y.h=0.08
+ char.1=0.03 lat.rotate ratio=0.65

doping gauss p.type conc=4el7 x.1=11 x.h=12.1 y.1=0.0 y.h=0.0

+ char.1=0.16 lat.rotate ratio=0.65

doping gauss p.type conc=1e20 x.1=11.05 x.h=12.1 y.1=0.0 y.h=0.08
+ char.1=0.03 lat.rotate ratio=0.65

contact num=2 workf=5.29
models concmob surfmob transmob fieldmob srh auger conctau bgn
method ac=direct itlim=10 onec

Nk Tk i I T T SN SR A

.MODEL M _PMOS_50 numos
output stat

=0.020 h.m=0.2 r=2.0
=0.005 h.m=0.02 r=2.0
s=0.005 h.m=5 r=2.0
e=0.005 h.m=5 r=2.0

x.mesh w=
x.mesh w=

0 .e=

0. e=
x.mesh w=24.9

24.9

0

0

'J'b"

x.mesh w=
x.mesh w=
X

.2 h. =0.005 h.m=0.02 r=2.0
.mesh w=0.9 h.

8=0.020 h.m=0.2 r=2.0

y.mesh 1=-.0200 n=1

y.mesh 1=0.0 n=6

y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ region num=1 material=1l y.h
+ region num=2 material=2 y.l=
+ interface dom=2 nei=1 x.1l=1
+ material num=1 oxide

+ material num=2 silicon
+

+

+

+

+

+

+

+

+

+

+

+

+

+

elec num=1 x.1=51.5 x.h=52.1 y.1=0.0 y.h=0.0

elec num=2 x.1=1 x.h=51 iy.l=1] iy.h=1
elec num=3 x.1=-0.1 x.h=0.5 y.1=0.0 y.h=0.0
elec num=4 x.1=-0.1 x.h=52.1 y.1=2.0 y.h=2.0

doping gauss n.type conc=1.0el7 x.1=-0.1 x.h=52.1 y.1=0.0
+ char.1=0.30
doping unif n.type conc=5.0el5 x.1=-0.1 x.h=52.1 y.1=0.0 y.h=2.1
doping gauss p.type conc=4el7 x.1=-0.1 x.h=1 y.1=0.0 y.h=0.0
+ char.1=0.16 lat.rotate ratio=0.65
doping gauss p.type conc=le20 x.1=-0.1 x.h=0.95 y.1=0.0 y.h=0.08
+ char.1=0.03 lat.rotate ratio=0.65
doping gauss p.type conc=4el7 x.1=51 x.h=52.1 y.1=0.0 y.h=0.0
+ + char.1=0.16 lat.rotate ratio=0.65

293



APPENDIX D. MODEL LIBRARIES

doping gauss p.type conc=le20 x.1=51.05 x.h=52.1 y.1=0.0 y.h=0.08
+ char.1=0.03 lat.rotate ratio=0.65

+
+
+
+ contact num=2 workf=5.29

+ models concmob surfmob transmob fieldmob srh auger conctau bgn
+ method ac=direct itlim=10 onec

**

* BSIM1 NMOS and PMOS 1.0 um models.
* Gummel-Poon bipolar models.
* %

.model M NSIM 1 nmos level=4
+vfb= -1.1908
+phi= .8399

+kl= 1.5329

+k2= 193.7322m
+eta= 2m

+muz= 746.0

+ul= 90.0m
+x2mz= 10.1429
+x2e= -2.5m
+x3e= 0.2m
+x2ul= -10.0m
+mus= 975.0

+ul= .20

+x2ms= 0.0
+x2ul= 0.0
+x3ms= 10

+x3ul= 5.0m
+tox=2.00000e-02
+cgdo=2.0e-10
+cgso=2.0e-10
+cgbo=0.0

+temp= 27

+vdd= 7.0

+xpart

+n0= 1.5686

+nb= 94.6392m
+nd=0.00000e+00

+rsh=30.0 ¢j=7.000e-004 cjsw=4.20e-010
+js=1.00e-008 pb=0.700e000

+pbsw=0.8000e000 mj=0.5 mjsw=0.33
+wdf=0 dell=0.20u

.model M PSIM 1 pmos level=4
+vfb= -1.3674

+phi= .8414

+kl= 1.5686

+k2= 203m

+eta= 2m

294



APPENDIX D. MODEL LIBRARIES

+muz= 340.0
+ul0= 35.0m
+x2mz= 6.0
+x2e= 0.0
+x3e= -0.2m
+x2u0= -15.0m
+mus= 440.0
+ul= .38
+x2ms= 0.0
+x2ul= 0.0
+x3ms= -20
+x3ul= -10.0m
+tox=2,00000e~-02
+cgdo=2.0e-10
+cgso=2.0e-10
+cgbo=0.0
+temp= 27
+vdd= 5.0
+xpart

+n0= 1.5686
+nb= 94.6392m
+nd=0.00000e+00

+rsh=80.0 cj=7.000e-004 cjsw=4.20e-010
+35=1.00e-008 pb=0.700e000

+pbsw=0.8000000 m3j=0.5 mjsw=0.33
+wdf=0 dell=0.17u

.model M _GNPN npn

+ is=1.3e-16

+ nf=1.00 bf=262.5 ikf=25mA vaf=20v
+ nr=1.00 br=97.5 ikr=0.5mA var=1l.8v
+ rc=20.0

+ re=0.09

+ rb=15.0

+ ise=4.0e-16 ne=2.1

+ isec=7.2e-17 nc=2.0

+ t£f=9.4ps itf=26uA xtf=0.5

+ tr=10ns

+ cje=89.44fF vije=0.95 mje=0.5

+ ¢cjc=12.82fF vjc=0.73 mjc=0.49

model M GPNP pnp

+ is=5.8e-17

+ nf=1.001 bf=96.4 ikf=12mA vaf=29v
+ nr=1.0 br=17.3 ikr=0.2mA var=2.0v
+ re=50.0

+ re=0.17

+ rb=20.0

+ ise=6.8e-17 ne=2.0

+ isc=9.0e-17 nc=2.1

295



APPENDIX D. MODEL LIBRARIES

+ tf=27.4ps itf=26uA xt£=0.5

+ tr=10ns

+ cje=55.36£fF vje=0.95 mje=0.58
+ ¢jc=11.80fF vic=0.72 mjc=0.46

296



Appendix E

CIDER Source Code Listing

The source-code listings for the programs used in this dissertation can be ob-
tained from the following address:

Software Distribution Office

Industrial Liaison Program

Department of Electrical Engineering and Computer Science
University of California at Berkeley

Berkeley, CA 94720

All programs (the serial and parallel versions of CIDER and the experimental simulated
annealer) are contained in the one CIDER source distribution.

297



Bibliography

[APTE92]

[ARORS2]

[ASHBS87]

[BANKS1]

[BANKS5]

[BELL92a]

[BELL92b]

D.R. Apte and M. E. Law. Comparison of iterative methods for AC analysis
in PISCES-IIB. IEEE Transactions on Computer-Aided Design, 11(5):671—
673, May 1992.

N. D. Arora, J. R. Hauser, and D. J. Roulston. Electron and hole mo-
bilities in silicon as a function of concentration and temperature. IEEE
Transactions on Electron Devices, ED-29:292-295, February 1982.

P. Ashburn, D. J. Roulston, and C. R. Selvakumar. Comparison of exper-
imental and computed results on arsenic- and phosphorus-doped polysil-
icon emitter bipolar transistors. IEEE Transactions on Electron Devices,
ED-34:1346-1353, June 1987.

R. E. Bank and D. J. Rose. Global approximate Newton methods. Nu-
merische Mathematik, 37:279-295, 1981.

R. E. Bank, W. M. Coughran, Jr., W. Fichtner, E. H. Grosse, D. J. Rose,
and R. K. Smith. Transient simulation of silicon devices and circuits.
IEEE Transactions on Computer-Aided Design, CAD-4(4):436-451, Octo-
ber 1985.

G. Bell. Ultracomputers: a teraflop before its time. Communications of
the ACM, 35(8):27—47, August 1992.

A. Bellaouar, S. H. K. Embabi, and M. 1. Elmasry. Low-voltage scaled
CMOS and BiCMOS digital circuits. IEEE Transactions on Electron De-
vices, 39:1005-1009, April 1992,

298



BIBLIOGRAPHY

[(BISCS86]

[(BOYL87]

[BRAY72]

[BUTL92]

[CAUG67]

[CHANSS]

[CHENSS]

[CHIN92]

[COX91]

G. Bischoff and S. Greenberg. CAYENNE: a parallel implementation of
the circuit simulator SPICE. In Digest of Technical Papers, IEEE Interna-
tional Conference on Computer-Aided Design, pages 182-185, November
1986.

d. Boyle, R. Butler, T. Disz, Glickfeld B., R. Lusk, R. Overbeek, J. Pat-
terson, and R. Stevens. Portable Programs for Parallel Processors. Holt,
Rinehart, and Winston, New York, 1987.

R. K. Brayton, F. G. Gustavson, and G. D. Hachtel. A new efficient algo-
rithm for solving differential-algebraic systems using implicit backward
differentiation formulae. Proceedings of the IEEE, 60(1):98-108, January
1972.

R. Butler and E. Lusk. User’s guide to the p4 programming system.
Technical Report ANL-92/17, Argonne National Laboratory, October 1992.

D. M. Caughey and R. E. Thomas. Carrier mobilities in silicon empirically
related to doping and field. Proceedings of the IEEE, 55(12):1292-1293,
December 1967.

M.-C. Changand I. N. Hgjj. iPRIDI:: a parallel integrated circuit simulator
using direct method. In Digest of Technical Papers, IEEE International
Conference on Computer-Aided Design, pages 304—-307, November 1988.

C.-C. Chen and Y.-H. Hu. Parallel LU factorization for circuit simulation
on a MIMD computer. In Proceedings, 1988 IEEE International Confer-
ence on Computer Design, pages 129-132, October 1988.

G. Chin and R. W. Dutton. A tool towards integration of IC process, device,
and circuit simulation. IEEE Journal of Solid-State Circuits, 27(3):265—
273, March 1992.

P. F. Cox, R. G. Burch, D. E. Hocevar, P. Yang, and B. D. Epler. Direct
circuit simulation algorithms for parallel processing. IEEE Transactions
on Computer-Aided Design, 10(6):714-725, June 1991.

299



BIBLIOGRAPHY

[DONGS6]

[DONG91]

[DONG93]

[DUFF86]

[DUNI91]

[EARL52]

[(ENGLS82]

[FLYNG66]

[FROH69]

[GARE79]

[GATE90]

J. J. Dongarra. A survey of high performance computers. In IEEE COM-
PCON, pages 8-11, March 1986.

J. Dongarra and J. Demmel. LAPACK - a portable high-performance nu-
merical library for linear algebra. Supercomputer, 8(6):33-38, November
1991.

Jack J. Dongarra. Performance of various computers using standard lin-
ear equation software. Technical Report CS-89-85, Oak Ridge National
Laboratory, March 11 1993. Available from net1ib@ornl.gov.

I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse
Matrices. Clarendon Press, Oxford, 1986.

T. H. Dunigan. Performance of the Intel iPSC/860 and Ncube 6400 hyper-
cubes. Parallel Computing, 17(10-11):1285-1302, December 1991.

J. M. Early. Effects of space-charge layer widening in junction transistors.
Proceedings, IRE, 40:1401-1406, November 1952.

W. L. Engl, R. Laur, and H. K. Dirks. MEDUSA - a simulator for modular
circuits. IEEE Transactions on Computer-Aided Design, CAD-1(2):85-93,
April 1982.

M. J. Flynn. Very high-speed computing systems. Proceedings of the IEEE,
54(12):1901-1909, December 1966.

D. Frohman-Bentchkowsky and A. S. Grove. Conductance of MOS transis-
tors in saturation. IEEE Transactions on Electron Devices, ED-16(1):108-
113, January 1969.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-completeness. W. H. Freeman and Company, San
Francisco, 1979.

D. A. Gates. An inversion-layer mobility model for CODECS. Memoran-

dum No. UCB/ERL M90/96, Electronics Research Laboratory, University
of California, Berkeley, October 1990.

300



BIBLIOGRAPHY

[GATE93]

[GEOR73]

[GETR76]

[GRAA90]

[GRAY93]

[GREE93]

[GROU90]

[GUY 79]

[HACHT71)

[HARRS86]

[HARR91]

D. A. Gates, P. K. Ko, and D. O. Pederson. Mixed-level circuit and device
simulation on a distributed-memory multicomputer. In Proceedings of the
IEEE 1993 Custom Integrated Circuits Conference, May 1993.

A. George. Nested dissection of a regular finite element mesh. SIAM
Journal of Numerical Analysis, 10:345-363, 1973.

I. Getreu. Modeling the bipolar transistor. Tektronix, Beaverton, OR,
1976.

H. C. de Graaff and F. M. Klaasen. Compact Transistor Modelling for
Circuit Design. Springer-Verlag, Wien, 1990.

P. R. Gray and R. G. Meyer. Analysis and Design of Analog Integrated
Circuits, Third Edition. John Wiley & Sons, New York, 1993.

T. Green, R. Pennington, and D. Reynolds. Distributed queuing system ver-
sion 2.1 release notes, March 22 1993. Available from ftp.scri. fsu.edu.

NCSA Software Tools Group. NCSA HDF Vset version 2.0. Univer-
sity of Illinois at Urbana-Champaign, November 1990. Available from

ftp.ncsa.uiuc.edu.

N. B. Guy Rabbat, A. L. Sangiovanni-Vincentelli, and H. Y. Hsieh. A mul-
tilevel Newton algorithm with macromodeling and latency for the analysis
of large-scale nonlinear circuits in the time domain. JEEE Transactions
on Circuits and Systems, CAS-26(9):733-740, September 1979.

G. D. Hachtel, R. K. Brayton, and F. G. Gustavson. The sparse tableau
approach to network analysis and design. IEEE Transactions on Circuit
Theory, CT-18(1):101-113, January 1971.

D. S. Harrison, P. Moore, R. L. Spickelmier, and A. R. Newton. Data
management and graphics editing in the Berkeley design environment. In
Digest of Technical Papers, IEEE International Conference on Computer-
Aided Design, pages 20-24, November 1986.

R. J. Harrison. Portable tools and applications for parallel computers. In-
ternational Journal of Quantum Chemistry, 40:847-863, December 1991.

301



BIBLIOGRAPHY

[HEAT91]

(HO75]

(HO83]

[HU87]

[(HUAN93]

[IPS92a]

[TPS92b]

[IRAN91]

[JACO8T7]

[JENG90]

M. T Heath, E. Ng, and B. W. Peyton. Parallel algorithms for sparse linear
systems. SIAM Review, 33(3):420—460, September 1991.

C. W. Ho, A. E. Ruehli, and P. A. Brennan. The modified nodal approach
to network analysis. IEEE Transactions on Circuits and Systems, CAS-
22(6):504-509, June 1975.

C. Ho, J. D. Plummer, S. Hansen, and R. W. Dutton. VLSI process
modeling — Suprem III. IEEE Transactions on Electron Devices, ED-
30(11):1438-1453, November 1983.

G.d. Hu, C. Chang, and Y.-T. Chia. Gate-voltage-dependent effective chan-
nel length and series resistance of LDD MOSFET’s. IEEE Transactions
on Electron Devices, ED-34(12):2469-2475, December 1987.

J.H. Huang, Z. H. Liu, P. K. Ko, C. Hu, and M. C. Jeng. A robust physical
and predictive model for deep-submicrometer MOS circuit simulation. In
Proceedings of the IEEE 1993 Custom Integrated Circuits Conference, May
1993.

Intel Corporation, Beaverton, OR. iPSC/860 Network Queueing System
Manual, March 1992.

Intel Corporation, Beaverton, OR. iPSC/860 System User’s Guide, March
1992.

A. A. Iranmanesh, V. Ilderem, M. Biswal, and B. Bastani. A 0.8
pm advanced sing-poly BiCMOS technology for high-density and high-
performance applications. IEEE Journal of Solid-State Circuits, 26:422—
426, March 1991.

G. K. Jacob. Direct methods in circuit simulation using multiprocessors.
Memorandum No. UCB/ERL M87/67, Electronics Research Laboratory,
University of California, Berkeley, October 1987.

M.-C. Jeng. Design and modeling of deep-submicrometer MOSFETS.
Memorandum No. UCB/ERL M90/90, Electronics Research Laboratory,
University of California, Berkeley, October 1990.

302



BIBLIOGRAPHY

[JOHNS89]

[JOHN92]

[KAPOS89]

[KELL90]

[KERN70]

[KIRK83]

[KO86]

[KO93]
[KUNDS86]

[LAUXS5]

[LEWI92]

D.S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization
by simulated annealing; part I, graph partitioning. Operations Research,
37(6):865-892, November-December 1989.

B. Johnson, T. Quarles, A. R. Newton, D. O. Pederson, and A. Sangiovanni-
Vincentelli. SPICE3 version 3f user’s manual. Technical report, Depart-
ment of Electrical Engineering and computer Science, University of Cali-
fornia, Berkeley, October 1992.

A. K. Kapoor and D. J. Roulston, editors. Polysilicon Emitter Bipolar
Transistors. IEEE Press, 1989.

T. M. Kellesoglou. NECTAR: A knowledge-based framework for analog
circuit verification. Memorandum No. UCB/ERL M90/112, Electronics
Research Laboratory, University of California, Berkeley, December 1990.

B. W. Kernighan and S. Lin. An efficient heuristic procedure for partition-
ing graphs. Bell System Technical Journal, 49:291-307, 1970.

S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimization by simu-
lated annealing. Science, 220(4598):671-680, May 1983.

H. F'-H. Ko. A special-purpose architecture and parallel algorithms on a
multiprocessor system for the solution of large scale linear systems of equa-
tions. PhD thesis, Department of Electrical Engineering and Computer
Science, University of California, Berkeley, 1986.

P. K. Ko. Private communication, 1993.

K. S. Kundert. Sparse matrix techniques and their application to circuit
simulation. In A. E. Ruehli, editor, Circuit Analysis, Simulation and
Design, pages 281-324. North-Holland, New York, 1986.

S. E. Laux. Techniques for small-signal analysis of semiconductor de-
vices. IEEE Transactions on Computer-Aided Design, CAD-4(4):472-481,
October 1985.

T. G. Lewis and H. El-Rewini. Introduction to Parallel Computing.
Prentice-Hall, Englewood Cliffs, NJ, 1992.

303



BIBLIOGRAPHY

[LIN93]

[LINI86]

W. W. Lin and P. C. Chan. Fix to negative output conductance problem in
BSIM2 model. IEEE Transactions on Electron Devices, 40(5):1024—-1028,
May 1993.

W. Liniger, F. Odeh, and A. Ruehli. Integration methods for the solution
of circuit equations. In A. E. Ruehli, editor, Circuit Analysis, Simulation
and Design, pages 235-279. North-Holland, New York, 1986.

[LUCAS87a) R.Lucas and T. Blank. Parallel PISCES. In Proceedings of the IEEE 1987

Custom Integrated Circuits Conference, pages 119-123, May 1987.

[LUCAS87b] R. F. Lucas, T. Blank, and J. J. Tiemann. A parallel solution method for

[MAYAS88]

[MAYA92]

[MEIN90]

[MET90]

[NAGET75]

[NAKA91]

large sparse systems of equations. IEEE Transactions on Computer-Aided
Design, CAD-6(6):981-991, November 1987.

K. Mayaram. CODECS: a mixed-level circuit and device simulator. Mem-
orandum No. UCB/ERL M88/71, Electronics Research Laboratory, Uni-
versity of California, Berkeley, December 1988.

K. Mayaram. Coupling algorithms for mixed-level circuit and device sim-
ulation. IEEE Transactions on Computer-Aided Design, 11(8):1003-1012,
August 1992,

B. Meinerzhagen, J. M. J. Kriicken, K. H. Bach, F. M. Stecher, and W. L.
Engl. A modular approach to parallel mixed level device/circuit simu-
lation. In Proceedings, 1990 VLSI Process/Device Modeling Workshop
(VPAD), pages 170-172, 1990.

Meta-Software, Inc., Campbell, CA. HSPICE User’s Manual, h9001 edi-
tion, 1990.

L. W. Nagel. SPICE2: A computer program to simulate semiconductor
circuits. Memorandum No. ERL-M520, Electronics Research Laboratory,
University of California, Berkeley, May 1975.

T. Nakadai and K. Hashimoto. Measuring the base resistance of bipolar
transistors. In Proceedings, 1991 IEEE Bipolar Circuits and Technology
Meeting, pages 200-203, September 1991.

304



BIBLIOGRAPHY

[NEWT83] A.R. Newton and A. L. Sangiovanni-Vincentelli. Relaxation-based elec-

[OGURS0]

[OUSTS88]

[PACH91]

[PATT90]

[PEDE91]

[PINT85]

[PINT90]

[PIX89]

[POTH90]

trical simulation. IEEE Transactions on Electron Devices, ED-30(9):1184—
1206, September 1983.

S. Ogura, P. J. Tsang, W. W. Walker, D. L. Critchlow, and J. F. Shepard.
Design and characteristics of the lightly-doped drain-source (LDD) insu-
lated gate field-effect transistor. IEEE Transactions on Electron Devices,
ED-27:1359-1367, August 1980.

d. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson, and B. B.
Welch. The Sprite operating system. IEEE Computer, 21:23-36, February
1988.

P. S. Pacheco, J. M. del Rosario, and T. Rashid. Parallel SPICE on dis-
tributed memory multiprocessors. Supercomputer, 8(6):119-126, Novem-
ber 1991.

D. A. Patterson and J. L. Hennessy. Computer Architecture: A Quantita-
tive Approach. Morgan Kaufmann Publishers, San Mateo, CA, 1990.

D. O. Pederson and K. Mayaram. Analog integrated circuits for communi-
cation: principles, simulation, and design. Kluwer Academic Publishers,
Boston, 1991.

M. R. Pinto, C. S. Rafferty, H. R. Yeager, and R. W. Dutton. PISCES-
IT user’s guide and supplementary report. Technical report, Stanford
Electronics Lab., Stanford University, 1985.

M. R. Pinto. Comprehensive semiconductor device simulation for silicon
ULSI. PhD thesis, Stanford University, 1990.

Digital Equipment Corporation, Maynard, MA. Pixie - Ultrix 4.2a Manual
Page, 1989.

A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning sparse matrices with
eigenvectors of graphs. SIAM Journal of Matrix Analysis and Applica-
tions, 11(3):430—452, 1990.

305



BIBLIOGRAPHY

[QUARS9]

[ROOS50]

[ROYC91]

[SADAS87]

[SALES89]

[SCHAG69]

[SCHR91]

[SELB84]

[SIMP91]

T. L. Quarles. Analysis of performance and convergence issues for circuit
simulation. Memorandum No. UCB/ERL M89/42, Electronics Research
Laboratory, University of California, Berkeley, April 1989.

W. van Roosbroeck. Theory of flow of electrons and holes in germanium
and other semiconductors. Bell System Technical Journal, 29:560-607,
1950.

J. S. Roychowdhury, A. R. Newton, and D. O. Pederson. An impulse-
response based linear time-complexity algorithm for lossy interconnect
simulation. In Digest of Technical Papers, IEEE International Conference
on Computer-Aided Design, pages 62—-65, November 1991.

P. Sadayappan and V. Visvanathan. Circuit simulation on a multiproces-
sor. In Proceedings of the IEEE 1987 Custom Integrated Circuits Confer-
ence, pages 124-128, May 1987.

R. A. Saleh, K. A. Gallivan, M.-C. Chang, I. N. Hajj, D. Smart, and T. N.
Trick. Parallel circuit simulation on supercomputers. Proceedings of the
IEEE, 77(12):1915-1931, December 1989.

D. L. Scharfetter and H. K. Gummel. Large-signal analysis of a silicon
Read diode oscillator. IEEE Transactions on Electron Devices, ED-16:64,
January 1969.

M. Schréter. Transient and small-signal high-frequency simulation of
numerical device models embedded in an external circuit. COMPEL,
10(4):377-387, December 1991. NASECODE VII Transactions.

S. Selberherr. Analysis and Simulation of Semiconductor Devices.
Springer-Verlag, Wien, 1984.

M. R. Simpson. PRIDE: An integrated design environment for semicon-
ductor device simulation. IEEE Transactions on Computer-Aided Design,
10(9):1163-1174, September 1991.

306



BIBLIOGRAPHY

[SINGS86]

[SOLL90]

[STRUS85]

[SUND90]

[SZES1]

[TMA91]

[TROT90]

[VLADS2]

[WEBB91]

[WONGOI1]

K. Singhal and J. Vlach. Formulation of circuit equations. In A. E.
Ruehli, editor, Circuit Analysis, Simulation and Design, pages 45-70.
North-Holland, New York, 1986.

E. G. Solley, Jr. Temperature dependence of physical parameters for im-
proved bipolar device simulation. Master’s thesis, University of Florida,
1990. '

R. D. Strum and J. R. Ward. Electric Circuits and Networks, Second
Edition. Prentice-Hall, Englewood Cliffs, NJ, 1985.

V. S. Sunderam. PVM: A framework for parallel distributed computing.
Concurrency: Practice & Experience, 2(4):315-339, December 1990.

S. M. Sze. Physics of Semiconductor Devices, Second Edition. John Wiley
& Sons, New York, 1981.

TMA PISCES-2B circuit analysis advanced application module. Technol-
ogy Modeling Associates, Inc. product announcement, 1991.

d. A. Trotter and P. Agrawal. Circuit simulation algorithms on a dis-
tributed memory multiprocessor system. In Digest of Technical Papers,
IEEE International Conference on Computer-Aided Design, pages 438—
441, November 1990.

A. Vladimirescu. LSI circuit simulation on vector computers. PhD thesis,
Department of Electrical Engineering and Computer Science, University
of California, Berkeley, 1982.

D. M. Webber, E. Tomacruz, R. Guerrieri, T. Toyabe, and A. Sangiovanni-
Vincentelli. A massively parallel algorithm for three-dimensional device
simulation. JEEE Transactions on Computer-Aided Design, 10(9):1201—
1209, September 1991.

A. S. Wong and A. R. Neureuther. The intertool profile interchange for-
mat: a technology CAD environment approach. IEEE Transactions on
Computer-Aided Design, 10(9):1157-1162, September 1991.

307



BIBLIOGRAPHY

[WU91]

[YAMAS5]

[YANGO0]

[YOUN90]

(YUS85]

[YUANSS]

[ZARRS89]

K.-C. Wu, G. R. Chin, and R. W. Dutton. A STRIDE towards practi-
cal 3-D device simulation — numerical and visualization considerations.
IEEE Transactions on Computer-Aided Design, 10(9):1132-1140, Septem-
ber 1991.

F. Yamamoto and S. Takahashi. Vectorized LU decomposition algorithms
for large-scale circuit simulation. IEEE Transactions on Computer-Aided
Design, CAD-4(3):232-239, July 1985.

G.-C. Yang. PARASPICE: a parallel circuit simulator for shared-memory
multiprocessors. In Proceedings, 27th ACM/IEEE Design Automation
Conference, pages 400-405, June 1990.

D. Young. Department of Electrical Engineering and Computer Science,
University of California, Berkeley, 1990. EE199 Report.

Z.Yu and R. W. Dutton. SEDAN III — a general purpose, one-dimensional
semiconductor analysis program. Technical report, Integrated Circuits
Lab., Stanford University, Stanford, CA, July 1985.

C.-P. Yuan, R. Lucas, P. Chan, and R. Dutton. Parallel electronic circuit
simulation on the iPSC system. In Proceedings of the IEEE 1988 Custom
Integrated Circuits Conference, May 1988.

M. Zarrabian. Evaluation of SPICE modeling of bipolar transistors with
CODECS. Master’s thesis, Department of Electrical Engineering and
Computer Science, University of California, Berkeley, 1989.

308



	Copyright notice 1993
	ERL-93-51

