

Copyright © 1993, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

DESIGN-ORIENTED MIXED-LEVEL

CIRCUIT AND DEVICE SIMULATION

by

David Alan Gates

Memorandum No. UCB/ERL M93/51

23 June 1993

DESIGN-ORIENTED MIXED-LEVEL

CIRCUIT AND DEVICE SIMULATION

Copyright © 1993

by

David Alan Gates

Memorandum No. UCB/ERL M93/51

23 June 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

\

\

Abstract

Design-Oriented Mixed-Level
Circuit and Device Simulation

by

David Alan Gates

Doctor of Philosophy in Electrical Engineering

University of California at Berkeley

Professor Ping K. Ko, Chair

Integrated circuits (ICs) are the building blocks ofmodern computing and communica

tion systems. The design ofhigh complexity ICs has been enabled by the development

ofa large number ofcomputer-aided design (CAD) tools for IC design (ICCAD). Mixed-

level circuit and device simulation has begun to find its place as a CAD tool for the

development of new IC technologies. In this dissertation, problems associated with

providing support for mixed-level circuit and device simulation in an expanded role as

an ICCAD tool are investigated.

Four issues ofconcern for a mixed-level simulator have focused this research:

reliability, utility, portability, and performance. A new mixed-level circuit and device

simulator called CIDER has been developed to address these concerns. The first three

concerns are addressed in a serially executing version of CIDER. lb obtain reliable

simulation results, new models for physical effects that are important in present-

day IC technologies are included in CIDER. An enhanced user-interface has been

developed to increase the utility of CIDER. Finally, CIDER has been ported to a variety

of engineering workstations.

The final concern, performance, is addressed in a version ofCIDER that runs on

distributed-memory multicomputers. The need for parallel computing is established

by measuring the serial performance of CIDER. Single workstations are roughly 10 to

100 times too slow to support design of reasonably sized circuits.

Algorithms for exploitingparallelism in mixed-levelsimulation arereviewed,

and an architecture is proposed for a parallel circuit and device simulator. A limited

form ofthe proposed approach hasbeen implemented ontwo multicomputers: ahyper-
cube supercomputer and a cluster of engineering workstations. On a set ofbenchmark

circuits, a best speedup of 12 on 16 processors of the hypercube is achieved. Unfortu

nately, the implemented approach has a number of limitations that are identified here

for the first time.

Several applications of CIDER are presented that demonstrate the new paral
lel capability. In each appUcation, the circuits contain multiple numerically modeled

devices. The hypercube version of CIDER is used to simulate these circuits in a rea

sonable amount of time. New insight into these circuits is obtained by examining

simulation results.

Ping K. Ko
Thesis Committee Chairman

Contents

List of Figures iv

List ofTables vii

1 Introduction 1

1.1 Motivation 1

1.2 Research Goals 3
1.3 Organization of the Dissertation 5

2 Mixed-Level Circuit and Device Simulation 7
2.1 Overview 7
2.2 Circuit Simulation 7

2.2.1 Circuit Description and Equation Formulation 8
2.2.2 The Circuit Operating Environment 9
2.2.3 DC Analysis 9
2.2.4 Transient Analysis 11
2.2.5 Small-Signal AC Analysis 12
2.2.6 VisuaUzation and Representation of Circuit Behavior 13

2.3 Device Simulation 14
2.3.1 Device Description 14
2.3.2 Semiconductor Device Equations 15
2.3.3 External Device Boundary Conditions 17
2.3.4 Scaling and Space Discretization 18
2.3.5 DC and Transient Analyses 20
2.3.6 Small-Signal AC Analysis 22
2.3.7 Visualization and Representation of Device Behavior 23

2.4 Mixed-Level Circuit and Device Simulation 25
2.4.1 Coupled Circuit and Device Description 26
2.4.2 Coupled Operating Conditions 28
2.4.3 DC and Transient Analyses 30
2.4.4 Small-Signal AC Analysis 35
2.4.5 Visualization and Representation of Mixed-Level Behavior 37

2.5 Summary 38

CONTENTS

Performance Analysis of CIDER 43
3.1 Overview 43
3.2 Runtime Breakdown 44
3.3 Device-Level Resource Usage 45

3.3.1 One-Dimensional Simulations 45
3.3.2 Two-Dimensional Simulations 52

3.4 Benchmark Circuit Performance 57
3.5 Performance Requirements 66

3.5.1 Estimated Problem Specifications 67
3.5.2 Estimated Resource Usage 68
3.5.3 Assessment of Limitations 70

3.6 Summary 71

Parallel Circuit and Device Simulation 73
4.1 Overview 73
4.2 Terminology for Parallel Computer Architectures 74
4.3 Obtaining High Parallel Efficiency 75
4.4 Available Parallelism 78
4.5 Design-Level Algorithms 80
4.6 Circuit-Level Algorithms 81

4.6.1 Parallel Model Evaluation 83
4.6.2 Parallel Sparse System Solution 87

4.7 Device-Level Algorithms 88
4.7.1 Parallel Element Evaluation 89
4.7.2 Distributed Multifrontal Factorization 91

4.8 Mixed-Level Algorithms 94
4.8.1 Previous Work 95
4.8.2 Proposed Architecture 95
4.8.3 Advantages and Disadvantages 98
4.8.4 Software Requirements 99

4.9 Mixed-Level Partitioner 101
4.9.1 Multi-Level Partitioning Problem 101
4.9.2 Solution Methods 102
4.9.3 Trial Implementation 104

4.10 Summary 106

Distributed-Memory Multicomputers 109
5.1 Overview 109
5.2 Description of the Hypercube 110

5.2.1 Architecture of the iPSC/860 Ill
5.2.2 iPSC Software Environment 112

5.3 Description of the Workstation Cluster 114
5.3.1 Layered Distributed Computing Systems 114
5.3.2 Network Hardware Environment 115

5.4 Implementing Parallel Model Evaluation 119

u

CONTENTS

5.4.1 Global Combining 122
5.4.2 An Alternative Programming Approach 125

5.5 Parallel Performance Assessment 127
5.5.1 The Parallel Benchmark Inputs 127
5.5.2 Results for the IPSC/860 128
5.5.3 Results for the DEC Cluster 130
5.5.4 Observed Limitations 134

5.6 Summary 143

6 Applications of CIDER 145
6.1 Overview 145
6.2 Hypothetical 1.0 /im CBiCMOS Tbchnology 146

6.2.1 Bipolar Devices 147
6.2.2 MOS Devices 151

6.3 Gain ofVarious Amplifier Cells 156
6.3.1 Ideal Inverter 158
6.3.2 Source-Coupled Pair with Active Load 161
6.3.3 Two-Stage CMOS Opamp 165

6.4 Push-Pull Emitter-Follower Output Stage 168
6.4.1 Factors Affecting PPEF Performance 170
6.4.2 Evaluation ofPPEF Designs 171
6.4.3 Two-Dimensional Simulations of the PPEF 180

6.5 Summary 183

7 Conclusions 185

A CIDER User's Manual 189

B CIDER Serial-Version Benchmarks 243

C CIDER Parallel-Version Benchmarks 259

D Model Libraries 277

E CIDER Source Code Listing 297

Bibliography 298

in

List of Figures

1.1 Standard TCAD Simulation Flow 2

1.2 Alternate TCAD Simulation Flow 3

2.1 Circuit simulation - activity summary 8
2.2 Device simulation - activity summary 14
2.3 Mesh for finite box discretization 19
2.4 Diode potential data set - multiple slices 25
2.5 Diode potential data set - contour plot 26
2.6 Diode potential data set - birdseye view 27
2.7 Mixed-level simulation - activity summary 28
2.8 Polyemitter bipolar transistor with dual base contacts 29
2.9 Block matrix structure ofmixed-level system ofequations 32
2.10 Flowchart for mixed-level transient simulation 40
2.11 MOSFET internal states 41

3.1 lest circuits for device-level performance characterization 46
3.2 Input file - one-dimensional diode DC/AC simulation 47
3.3 Input file - one-dimensional diode transient simulation 48
3.4 Major components of per iteration DC time for 1D device 49
3.5 Major components of per iteration AC time for 1D device 50
3.6 Total memory usage ofthe 1D DC test 51
3.7 Input file - two-dimensional diode DC/AC simulation 53
3.8 Major components ofper iteration DC time for 2D device 54
3.9 Major components ofper iteration AC time for 2D device 55
3.10 Total memory usage ofthe 2D DC test 56

4.1 Example task graph 78
4.2 Levels of available parallelism 79
4.3 Time per iteration to load and factor circuit matrices 82
4.4 Coloring of a rectangular mesh using four colors 90
4.5 Nested, bordered block-diagonal matrix 92
4.6 Task graph for NBBD matrix 92
4.7 Two element partitions of a small mesh 94
4.8 Components and call structure of proposed algorithm 96

IV

LIST OF FIGURES

4.9 Processor groups for four node hypercube 96
4.10 Description of proposed algorithm 107

5.1 Hypercube software development system 110
5.2 Four-dimensional hypercube 112
5.3 Global reduction execution time on the iPSC/860 117
5.4 Global reduction execution time on the DEC cluster 118
5.5 Main loop ofresistor loading code 120
5.6 Flow of data during CKTload and CKTbolve 123
5.7 Tbtal execution time for LATCH on the DEC cluster 134
5.8 Speedup predicted in the presence of latency 139
5.9 Tbtal execution time for MECLGATE on the DEC cluster 142

6.1 Cross section ofNPN transistor 148
6.2 1D NPN DopingProfile 149
6.3 1D PNP DopingProfile 150
6.4 NPN Gummel plot for VCb = 2.0F 152
6.5 Cross section ofNMOS transistor 153
6.6 2D NMOS DopingProfile 154
6.7 MOS saturation region characteristics 156
6.8 NMOS linear region characteristics 157
6.9 CMOS ring oscillator delay 158
6.10 NMOS inverter with ideal load 159
6.11 Load line construction for ideal NMOS inverter 160
6.12 Gain of 1.0 ^m NMOS transistor 161
6.13 Schematic for source-coupled pair with active load 162
6.14 Output voltage of source-coupled pair with active load 163
6.15 Gain of source-coupled pair with active load 164
6.16 Schematic for CMOS two-stage amplifier 165
6.17 Output voltage of two-stage amplifier 167
6.18 Gain of the two-stage CMOS amplifier 168
6.19 Schematic of push-pull complementary emitter follower 169
6.20 DC Beta of an NPN bipolar transistor 172
6.21 Output voltage ofPPEF output stage 174
6.22 Ratio ofcollector currents from SPICE to CIDER 175
6.23 Gain ofPPEF output stage 176
6.24 Tbtal harmonic distortion (THD) ofPPEF designs 178
6.25 Power gain ofPPEF designs 179
6.26 Comparison ofTHD predictions from different models 181
6.27 Comparison of power gain predictions from different models 182

A.1 1D doping profiles with location > 0 200
A.2 1D doping profiles with location < 0 201
A.3 Typical mesh for 2D device 218
A.4 1D Diode DopingProfile 227

LIST OF FIGURES

A.5 Diode Capacitance from CIDER and SPICE3 228
A.6 1D NPN Doping Profile 231
A.7 1D PNP DopingProfile 232
A.8 Small-Signal Gains ofEmitter-Coupled Pair 233
A.9 Bootstrap Inverter Schematic 234
A.10 Geometry ofNMOS Transistor 234
A.112D NMOSFET Doping Profile 236
A.12 Output Waveforms ofBootstrap Inverter 237
A.13Contoursof2D Doping Profiles 241

B.l ASTABLE schematic 244

B.2 CHARGE schematic 245
B.3 COLPOSC schematic 247

B.4 DBRIDGE schematic 248
B.5 INVCHAIN schematic 249
B.6 MECLGATE schematic 250
B.7 NMOSINV schematic 252
B.8 PASS schematic 254
B.9 RTLINV schematic 256
B.10VCO schematic 257

C.l BICMPD schematic 260
C.2 BICMPU schematic 261
C.3 CLKFEED schematic 262
C.4 CMOSAMP schematic 264
C.5 ECLINV schematic 265
C.6 ECPAL schematic 266
C.7 GMAMP schematic 267
C.8 LATCH schematic 270
C.9 PPEF.1D andPPEF.2D schematic 271
CIO RINGOSC.IU and RINGOSC.2U schematic 276

VI

List of Tables

3.1 Execution profiles for several benchmarks on a DECstation 5000/125 . . 44
3.2 Average per iteration time as a function of 1D problem size 50
3.3 Average per iteration time as a function of 2D problem size 55
3.4 Average memory used as a function problem size 57
3.5 RISC machine configurations used in test 58
3.6 Serial benchmark circuit characteristics 59
3.7 Iteration and timepoint counts on the various machines 60
3.8 Benchmark execution times on various machines in seconds 62
3.9 Relative time per iteration per device for 1D bipolar circuits 63
3.10 Benchmark MFLOP/S ratings on various machines 65
3.11 Estimated size ofmixed-level simulation problem 67
3.12 Estimated time for designer idle periods 69
3.13 Estimated resources needed for mixed-level simulation 69

5.1 Comparison ofParallel Machine Configurations 116
5.2 Extracted global-reduction-time coefficients 119
5.3 Parallel benchmark-circuit characteristics 127
5.4 Execution time and speedup on the iPSC/860 system 129
5.5 Execution times on the DEC cluster - Part 1 132
5.6 Execution times on the DEC cluster - Part 2 133
5.7 Comparison ofiPSC speedup with average number ofactive devices . . 140
5.8 Job startup times in seconds on the iPSC/860 and DEC cluster 143

6.1 Key process parameters for bipolar devices 147
6.2 Key electrical parameters for 1.0 pm. x 10.0 //m BJT devices 151
6.3 Key process parameters for MOS devices 153
6.4 Key electrical parameters for 1.0 /zm L^a^ MOS devices 155
6.5 Two-stage CMOS amplifier test configurations 166
6.6 Performance summary ofPPEF designs 180

vu

Acknowledgments

Four and a half years have passed since I first came to Berkeley in 1988. In

that time, I've crossed paths with a large number ofpeople here in the Bay Area. I owe

a debt ofgratitude to each and every one of them for making my time here enjoyable,

interesting, and fruitful. My thanks to you all.

Fve had the opportunity to work with not one but two advisors while here at

Berkeley. Prof. D. O. Pederson guided me through my first 4 years, and Prof. Ping

Ko has capably taken over these last 6 months. From DOP I've learned to focus on

the D in C.A.D.: design. IVe also learned valuable writing and presentation skills

that will serve me well in the rest of my career. Through numerous (sometimes

lengthy) discussions with Ping, Fve come to value his ability to step back from the

small problem at hand and relate it the big picture and to other possibilities. Fve also

found our discussions about the future of the computing industry very enjoyable. I

would also like to thank Prof. Phil Colella from the ME department, the third member

of my thesis committee, for reading my thesis and approving it at a time I know was

very hectic for him. I appreciate the patience all three have displayed in the face of the

tortuously slow pace Fve taken while writing this dissertation and the unreasonable

time schedules that have come about as a result.

In addition to my advisors, Fve also had the good fortune to take courses

from some very talented teachers while in graduate school: Professors Brayton, Gray,

Hodges, Meyer, and Sangiovaiiiii-Vincentelli all come immediately to mind. A special

thanks to Prof. Howe for putting up with what must have been one ofhis more difficult

EE105 teaching assistants.

Many students and others have come and gone from Cory Hall while Fve been

here. ITl begin with my cubiclemates in 550A. I thank Beorn Johnson for all of his

vui

ACKNOWLEDGMENTS

help with SPICE3, for listening to my gripes about same, and for generally being an

interesting guy to talk to when I felt like taking a break. I thank Karti Mayaram

and Theo Kellesoglou for helping me get started and keeping in touch after having

gone on to other places1. I enjoyed collaborating with Jean Hsu, Hoa Luong, Emy

Tan, and Morteza Zarrabian during those first two years of classes. Darrin Young

has supplied irrepressible enthusiasm for all things EE, and Mark Vitunic provided

his wry cynicism and wicked little circuit-analysis problems. Sherman Chen, Paolo

Giusto, and our honorary late-night cubiclemate, Harry Hsieh, have provided company

during the long nights Fve spent writing my thesis.

Moving out from 550A into 550, I thank all the members of the CADgroup

collectively for putting up with my foray into distributed computing these last few

months. Ifunknowingly Fve greatly inconvenienced any ofyou, Fm truly sorry. Thanks

to Edoardo Charbon, Eric Felt, Enrico Malavasi, and Ed Liu for helping me through the

process ofmy first conference presentation. Thanks also to Ed for his help while TAing

EE105 and for our late-night discussions about thesis writing and our futures. Fd like

to thank Ken Nishimura and Cormac Conroy for letting me try to explain why my

simulator really was useful to them, and for letting me know what analog IC design

is all about. Tb my knowledge, Clement Szeto is the only person around here who

has been brave enough to work with CODECS while Fve been here, and for that I am

grateful. Moving out into the rest ofCory, Jian Hui Huang, another ofPing's students,

is always ready with a friendly smile whenever we pass in the hallways. Thanks to

Brad Krebs and Mike Kiernan for their excellent support ofthe CADgroup computing

environment, to Flora Oviedo, Irena Stanczyk-Ng, Elise Mills and Gwyn Horn for their

friendly administrative support, and to Genevieve Thiebaut and Heather Brown for

their help dealing with all that departmental paperwork I hate so much.

Moving out of Cory Hall entirely, I go across the bay to Stanford. Prof. Bob

Dutton has generously supported my work through access to Stanford's hypercube,

and has introduced me to several of his students as well. My interactions with Greg

Anderson, Goodwin Chin, and Bruce Herndon have expanded my view of the world

and stimulated my own research. Thanks to Zhiping Yu for discussing mixed-level

circuit and device simulation with me on several occasions. Going on to Intel, I thank

Special thanks to Kartifornotgiving methehook during myCICC talk.

IX

ACKNOWLEDGMENTS

Don Scharfetter for setting up and mentoring a very interesting summer internship

in 1991, and Tim Thurgate for many challenging discussions while I was there.

In addition to donated hypercube time from Stanford and Intel, this research

has been funded by a grant from the Semiconductor Research Corporation and their

support is greatly appreciated. The material in this dissertation is also based on work

supported under a National Science Foundation Graduate Fellowship. Any opinions,

findings, conclusions or recommendations in this dissertation are those of the author

and do not necessarily reflect the views of the National Science Foundation.

Next, I return to the East Bay and then move on to points far beyond, to my

friends and family, to the people that have made life enjoyable when I can get away

from school. Thanks to Ann BlakeandGreg Bobrowicz for funafternoons andevenings
talking and playing board games. Thanks to Pauline Bennett for discussing EE and

grad school with me by long-distance on occasion. Thanks to Diane Foray, Jeff Vollin

and Steve Bloor for helping me get out and see the wilderness once in awhile2.

Tb my parents, Jacque and Bob, and my siblings, Ken, Laurie and Sheryl, I

give thanks for the refuge and respite from grad-school pressure whenever I find time

to come home for a visit, even if it's only by phone. I thank my father-in-law, Norm

Shapiro, for his continued interest in my work and in my well-being.

Finally, I would like to thank my wife and partner, Cathy, for putting up

with all the ups and downs, the late and lonely nights, the anger and frustration.

Without her tremendous support during the last weeks and months, I would probably

be writing this six months from now instead of today. Her ability to help me 'get it

done' means a great deal to me. I am lucky to have such a talented woman at my side.

2By current definition that's just aboutanythingoutside the front door to Cory Hall.

Chapter 1

Introduction

1.1 Motivation

Integrated circuits (ICs) are the building blocks of modern computing and

communication systems. The design of high complexity ICs has been enabled by the

development of a large number of computer-aided design (CAD) tools for IC design.

Among these tools are programs used for verification of IC designs. The most im

portant verification tools are simulators that predict an ICs performance before it is

actually fabricated. Because simulation is much cheaper and faster than fabrication,

IC simulators reduce the costs associated with developing new designs.

For many years, electrical circuit simulators have served as the main tool

for verifying the individual circuits that make up an IC design. However, continuing

advances in IC technology require the models embedded in circuit simulators to be up

dated on a regular basis. As the component dimensions in ICs continue to shrink with

each new technology generation, it has become increasingly difficult to develop accu

rate models ofthe IC components' behavior. For IC devices that are used infrequently,

the cost of model development may be prohibitive. This discourages innovation in

design by preventing an IC designer from using the full range of devices available in

an IC process.

In parallelwith the development of CADtools for IC design (ICCAD), separate

CAD tools have evolved for creating new IC technologies (TCAD). Figure 1.1 shows the

flow of simulation tools in a typical TCAD environment. ICCAD and TCAD overlap

at the circuit simulation step. Process simulators mimic the behavior of the various

ic

Layout

CHAPTER 1. INTRODUCTION

Operating

Conditions

Circuit

Description

L
Process

Simulator

Device

Simulator

Parameter

Extractor

Circuit

Simulator

2I •

Process

Recipe

Device

Structures

Electrical

Characteristics

Device Model

Parameters

Figure 1.1: Standard TCAD Simulation Flow

Circuit

Performance

chemical, thermal, and mechanical processes that are used to actually fabricate an

IC. They provide information about the structures of the various devices available.

The most important structures are those corresponding to transistors, such as metal-

oxide-semiconductor field-effect transistors (MOSFETfc) or bipolar junction transistors

(BJTs). Device simulators take input in the form of device structures and predict

the electrical behavior of those structures. The electrical characteristics are then

passed to a parameter extractor that yields an appropriate set of parameters for the

device models installed in the circuit simulator. When combined with a description

of a particular circuit, the device models can then be used by the circuit simulator to

predict the target circuit's performance.

The accuracy of the overall TCAD simulation system is affected by each of

the component steps. As noted already, developing good compact analytical device

models1 to install in a circuit simulator can be difficult and expensive. In addition,

the parameter extraction step can introduce artificial effects that obscure the true

physical behavior of a circuit. This makes it difficult to modify the IC process to

optimize circuit performance. As an alternative to the traditional TCAD simulation

system, a mixed-level circuit and device simulator can be used to bypass parameter

extraction and compact-model development, as shown in Figure 1.2. The mixed-

level simulator provides a direct link between the underlying IC technology and the

circuit performance. In addition, mixed-level simulation can provide device models

for unusual devices and for device behaviors that are difficult to include in compact

Compactness is a reference to the fact that typically a small set ofanalytical expressions is used to
predict device operation over a wide range ofbias conditions.

ic

Layout

0
Process

Recipe

CHAPTER 1. INTRODUCTION

Process

Simulator

Circuit

Description

Device

Structures

Mixed-Level

Circuit & Device Simulator

Circuit

Performance

Figure 1.2: Alternate TCAD Simulation Flow

models.

Unfortunately, there is a price tobe paid for mixed-level simulation. Typically,
device models based on numerical device simulation (numerical models) are two to four

orders of magnitude more time consuming to evaluate that those usingcompact sets
of analytical expressions (compact models). Therefore, mixed-level simulations are

restricted to applications where the extra time can be tolerated, or where accuracy

is of paramount concern. Typical applications are the evaluation of key indicator

circuits during technology development, investigation ofthe effects ofdifficult-to-model

behaviors on circuit performance, and in the design of small reusable subcircuits that

are used to build up very-large-scale-integrated (VLSI) circuits.

In the last two applications, mixed-level circuit and device simulation passes

out of the realm of TCAD and crosses over into the ICCAD domain. The focus of

this research has been to develop mixed-level simulation to further support its role

as an ICCAD tool. By investigating and solving the problems associated with this

design-oriented approach to mixed-level circuit and device simulation, it is hopedthat

IC designers will be able to use such a tool to develop innovative, better performing,

and more cost-effective circuit designs.

1.2 Research Goals

Development of a mixed-level simulator for circuit design is an exercise in

software engineering. A mixed-level circuit and device simulator is a complex piece of

CHAPTER 1. INTRODUCTION

computer software, and like any other piece of software, it must address certain key

issues. In this work, four major issues have influenced the choice of topics and the de

cisions made when resolving difficulties. Although these issues are rarely brought out

explicitly in the remainder ofthis dissertation, their influence should be acknowledged

here at the outset. The four major software issues are:

Performance A design-oriented mixed-level simulator must address the computa

tional burden imposed when compact device models are replaced by numerical

device models.

Reliability The simulator should provide answers to as many circuit/device simula

tion problems as is practical. In addition, good models for the physical effects

that are important in present-day IC devices should be installed in the device

simulation portion of the program.

Utility The various analyses typically provided by IC circuit simulators should also be

supported by a mixed-level simulator. It should also be easy to describe circuits

and devices to the circuit simulator, and to visualize and interpret the results of

completed simulations.

Portability Tbday's computing environments are populated by a wide variety ofcom

puters and operating systems. Any program that wishes to be of use to a wide

audience must address the issue of portability between different computing en

vironments.

One product ofthis research is a new mixed-level circuit and device simulator,

CIDER that has been developed with these four issues in mind. Two versions of CIDER

exist. The first is a serial, uniprocessor version that addresses the issues ofreliability,

utility, and portability. The serial version is an enhanced version of a previous mixed-

level simulator called CODECS [MAYA881. The second version focuses on the final

issue, performance. A parallel, multiprocessor version of CIDER has been developed

that has been ported to two different distributed-memory multicomputing systems: a

dedicated high-performance hypercube supercomputer and a network of engineering

workstations operating in concert. Multiprocessor computers exploit the parallelism

available in mixed-level circuit and device simulation to enhance performance beyond

that achievable by conventional uniprocessor computers. Performance is the primary

CHAPTER 1. INTRODUCTION

factor limiting wider appUcation of mixed-level simulation to IC design. The major

portion of this dissertation is therefore devoted to characterizing performance, identi

fying ways to improve performance, and describing a multicomputer implementation

that improves upon existing performance.

1.3 Organization of the Dissertation

The remainder of the dissertation is organized as follows. In Chapter 2, the

simulation algorithms of CIDER inherited from its predecessor CODECS are described.

This provides background for understanding the mixed-level circuit and device sim

ulation problem as well as an opportunity to point out several enhancements that

have been added into CIDER. In Chapter 3, the performance of CIDER is analyzed

when it is run in several uniprocessor computing environments. Empirical models of

Cider's computing-resource consumption are developed and then used to predict the

resource requirements of typical circuit-design applications. Chapter 4 explores the

different opportunities for exploiting parallelism in mixed-level-simulation-based IC

design. An architecture is proposed for a parallel mixed-level simulator that exploits

multiple forms of parallelism. In Chapter5, a limited implementation of the proposed

architecture is described. This parallel version of CIDER has been ported to an Intel

iPSC/860 hypercubeand a network ofDEC workstations. The results of a performance

evaluation of these two parallel versions are presented. An analysis of these results

identifies several limitations of the implemented approach and offers methods to work

around these limitations. Several applications of CIDER are presented in Chapter 6.
The new parallel capability allows previously unfeasible problems to be simulated in

a reasonable amountof time. The applications are the characterization ofa hypothet
ical IC process, a study of gain modeling in several analog MOS amplifiers, and an
evaluationof a bipolar IC output stage. Finally, in Chapter7, the main conclusions of

the dissertation are summarized and directions for future research are suggested.
Several appendices supplement themainbody ofthe dissertation. Appendix A

is auser's manual for CIDER that describes its features and provides several examples
of its use. Appendices B, C andD contain various CIDER input descriptions for some
of the circuits mentionedin the body of the work. Appendix E supplies information on
how to obtain the source code to CIDER.

CHAPTER 1. INTRODUCTION

6

Chapter 2

Mixed-Level Circuit and Device

Simulation

2.1 Overview

In this chapter, the algorithms implemented in the mixed-level circuit and

device simulator, CODECS [MAYA88], are reviewed. Throughout, additions to the

original version which improve on its capabilities are identified. The upgraded version,

which is used as a basis for developing a parallel implementation, is called CIDER.

In Section 2.2, the algorithms that have become standard for circuit simu

lation are described. Next in Section 2.3, a review of the device simulation problem

is provided, Finally, in Section 2.4, methods are presented for solving the mixed-

simulation problem. Throughout the chapter, differences and similarities between

Codecs and Cider are highlighted.

2.2 Circuit Simulation

As shown in Figure 2.1, circuit simulation is a process that transforms a

description of a circuit and its operating environment into a summary of the circuit's

behavior in that environment.

This process is supported by a general-purpose circuit simulator such as

SPICE2 [NAGE75] or SPICE3 [QUAR891. The three most common forms of analysis

implemented in circuit simulators are DC analysis, transient analysis, and small-

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

Circuit

Description

Operating

Environment

Simulate

Circuit

J

Circuit

Performance

Circuit Simulator

Figure 2.1: Circuit simulation - activity summary

signal AC analysis. Of the three, DC analysis is perhaps the most important, since a

DC operating point analysis is a precursor to both transient and AC analyses.

2.2.1 Circuit Description and Equation Formulation

A circuit is most often described in terms of its elements and their inter

connections. This description can be developed either in textual form using a circuit

specification language or in graphical form using a schematic-capture program. In ei

ther case, KirchofTs current and voltage laws (KCL and KVL) are used to translate the

connectivity information into equations relating the electrical variables of the circuit

[SING861. In addition, the physical responses of the circuit elements to various forms

of electrical stimuli are embodied in the branch constitutive relations (BCRs). Each

relation is a mathematical model of the actual physical behavior of an element and

is ideally characterized by identifiable physical parameters, such as the emitter area

of a bipolar transistor, the gate-oxide thickness of a MOSFET, or a device's operating

temperature. However, in many cases an empirical approach must be taken where a

stimulus-response curve is instead described by an abstract mathematical function.

This function may incorporate parameters, but in general they have no physical sig

nificance. Ifsome of the parameter values of a BCR are uncertain or vary statistically,

it is possible to describe them using distribution functions.

8

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

Sparse Tableau Analysis (STA) [HACH71] uses KCL, KVL and the BCRs to

formulate the circuit simulation problem as one large system ofequations. For a circuit

with n+1 nodes and 6branches, the resulting system has n+26equations: nfromKVL,

6 from KCL, and bfrom the BCRs. This technique allows an arbitrary composition

of both voltage- and current-controlled circuit elements. A second approach which

still allows arbitrary circuit composition while reducing the overall system size is

Modified Nodal Analysis [H075]. In this approach, Nodal Analysis (NA), which is

appropriate for circuits containing only voltage-controlled elements, is supplemented

with the equations needed to describe current-controlled elements. The system size of

MNA is somewhat larger than the n equations ofNA due to these extra equations.

2.2.2 The Circuit Operating Environment

The operating environment of a circuit has two parts. The first describes

the type of analysis to performed by the simulator and the analysis parameters. The

second part is a binding of any unspecified parameter values to concrete ones. For the

most part, this means that the type of analysis being performed is used to determine

the values of the independent current and voltage sources in the circuit. However,

some circuit simulators [MET90] also allow a device parameter value to be swept in

order to determine the value that optimizes circuit performance. The value of the

swept parameter is therefore part of the operating environment. Unfortunately, this

capability is not available in SPICE3, so it also unavailable in CODECS and CIDER.

2.2.3 DC Analysis

The state of a circuit when none of its electrical variables vary with time is

known as its DC or steady state. DC analysis of a circuit has three primary uses.

First, it can verify that the circuit has been biased properly to establish a stable

operating point. Second, it can be used to generate DC transfer curves by recording

the response of the circuit as one or more input sources are stepped through a series

of values. Finally, it is used to initialize the state of the circuit prior to a transient

or AC analysis. Since the BCRs in steady state contain no time derivatives, the DC

simulation problem can be expressed as a systemofnonlinear algebraic equations:

F{r,a) = 0 (2.1)

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

where r is the vector ofunknown responses (voltages and currents), 5 is the vector of

stimuli and F is a nonlinear vector-valued function obtained from an MNA formula

tion of the circuit equations. Since Equation 2.1 is a nonlinear system, an iterative

procedure, such as the Newton-Raphson algorithm, must be used to find the unknown

vector r. At each iteration k, a linear system of equations is formed that relates a

solution update, Ark, to the current solution, rk:

J{rk)Ark = -F(rk) (2.2)

J(rk) is the Jacobian matrix (^r(rk)) ofthe circuit equations. The solution at the
next iteration, rfc+1, is then computed by solving Equation 2.2 for Ark, and adding it

to the current solution: rk+l = rk + Ark. The initial guess r° can be constructed in a

number of ways, most often by using a previous solution of the circuit equations. In

SPICE2 and SPICE3, Equation 2.2 is assembled in a slightly different way so that the

next solution can be computed directly:

J(rk)rk+1 = J(rk)rk - F(rk) (2.3)

In both formulations, a linear system of equations Ax = 6 must be solved.

This system has the following properties:

• Sparseness: The numberof non-zero entries in any onerowof A is typically small

due to low degrees of connectivity between the circuit elements. The sparsity

pattern often has no discernible or exploitable structure.

• Nonsymmetry: In general, the matrix is both structurally and numerically non-

symmetric.

• Real-Valuedness: The entries in the matrix A and the right-hand-side (RHS) 6

are real numbers.

In this situation, a general-purpose sparse matrix analysis package employing L/U

decomposition [DUFF86] is commonly used to solve the system of equations. For

example, the matrix package SPARSE [KUND86] is employed in the current version of

SPICE3.

10

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

2.2.4 Transient Analysis

Ifthe input sources of a circuit have time-varying values, the circuit response

typically consists of both transient components and steady-state components. Which

component is of greatest interest depends on the application being considered. For

example, in digital design, the transient switching behavior of a gate may be desired

in order to determine rise and fall times or propagation delays. In nonlinear analog

design, the sinusoidal steady-state response may be needed to calculate the harmonic

distortion of a gain stage. Direct-method simulators such as SPICE2 generally include

the capability of computing the time-domain response of a circuit starting from an

initial state. While this capability is most useful in transient analysis, it can also be

used to find the steady-state, provided that the user is willing to simulate over a period

long enough to allow any initial transients to die away.

The dynamic behavior of a circuit is described by a system of nonlinear ordi

nary differential-algebraic equations:

F(q(t),r(t),s(t)) = 0 (2.4)

q(t) = Q(r(i))

The response and stimulus vectors, r and s, are supplemented by a vector q that

contains the state variables of the energy-storage elements in the circuit. However,

the system ofequations does not increase in size because the state variables are related

to the circuit response by the nonlinear vector-valued function, Q.

The initial state of the circuit is obtained by assuming that the circuit is in a

DC steady state (q(t) = O). Substitution of this constraint into Equation 2.4 yields a

set of DC operating point equations:

F(O,r(0),a(0)) = O (2.5)

The solution r0 = r(0) obtained through DC analysis can then be used to obtain the

initial states of the energy-storage elements:

9(0) = Q(r0) (2.6)

Once the initial conditions are determined, the solution over the desired time

interval [0,T] can be computed. Since it is not generally possible to express the

11

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

responses as analytical functions of time, numerical analysis is used to compute the

solution. The time interval [0, T] is discretized into a set oftime points, {*i, *2, •••>*n}>

and the true solution r(tn) is approximated at each point by rn. The time derivatives,

q(tn), are typically replaced by an implicit integration formula [LJNI86] that relates

them to the current, unknown values of the state variables qn and previous, known

values, qn-i. The previous states qn-i can either be saved or recomputed based on

the previous solutions: qn-i = Q(rn-i). The system of equations obtained after time

discretization is a nonlinear algebraic system in the unknowns r:

F{qn,rnt8n) = 0 (2.7)

gn = Hfc(Q(rn),...,Q(rn_1_Jb))

where Hk represents the algebraic integration formula operating on the current state

variables and k previous sets of state variables. This nonlinear system is solved using

methods similar to those employed in DC analysis.

One complication of transient analysis is that a set of time points adequate to

capture changes in all ofthe circuit responses is not known a priori. The usual solution

to this problem is to make a reasonable estimate for the value of the next timepoint

based on the previous behavior of the circuit. If the (estimated) error introduced into

the solution by the time point is unacceptable, a new, smaller time step is chosen, and

the solution is recomputed. This procedure is repeated until an acceptable timepoint is

found, or a minimum time step is reached and the simulation is aborted. In addition to

error constraints, other factors such as natural and induced breakpoints in the circuit

waveforms and overall stability of the time discretization formula must be taken into

account. Complete descriptions of the timepoint selection methods used in SPICE can

be found in [NAGE75] and [QUAR891.

2.2.5 Small-Signal AC Analysis

Computation of the response of a circuit to time-periodic sinusoidal inputs is

known as AC analysis. AC analysis is useful in evaluating the frequency response of

analog signal processing circuits. If the signal levels of the inputs and outputs are

sufficiently small, the response can be assumed to be linear about the DC operating

12

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

point. In this case, the general transient behavior, Equation 2.4, can be approximated

by a first-order Taylor series expansion about the operating point:

BF BF B FF(q,r,s) =F(O,r0,s0) +-^q +—(r - r0) +-gj(a - s0) (2.8)

Because both the final solution and the DC operating point satisfy Equation 2.4, the

left-hand-side and the first term on the right-hand-side of Equation 2.8 are zero. The

small-signal stimuli s - s0 and the small-signal responses r - r0 can be represented
as phasors [STRU85]: seju,t and re***, where 5 and r are complex quantities and wis
the input frequency. After substituting these values, the following linear system of
equations is obtained:

OFdQ, x . _ BF„ dF„ „Si^0) •jur +—r+—s =O (2.9)

Notice that state-variable function Q has been used to eliminate the small-signal
response of q. Equation 2.9 can be rearranged to obtain a matrix equation for f:

\BFdQ, . . 0JH dF„——(rQ).3u +—\r =-—s (2.10)

The matrix in Equation 2.10 has a zero/non-zero structure identical to that obtained

from DC analysis. However, the entries in the matrix and RHS are now complex
quantities, and a sparse matrix package that can perform L/U decomposition using
complex arithmetic is necessary.

2.2.6 Visualization and Representation of Circuit Behavior

The results of a circuit simulation must be presented to the user in an un

derstandable way. Post-processing programs convert the raw data obtained from a

simulation into a form that allows a designer to evaluate easily the circuit perfor
mance. Themost common form ofdisplay used in circuit design is the Cartesian plot,
where oneor more dependent variables is graphed against a single independent vari
able such as time or frequency. The need to plot higher dimensional data is rarely
required.

Early simulators such as SPICE2 ofteninclude their ownpost-processors that
are tailoredto the needsofcircuit simulation. Raw data is held in main memory until
it is needed bythe post-processor. Byway ofcontrast, SPICE3 is more loosely coupled to
its general-purpose post-processor NUTMEG [JOHN92]. Disk files stored in a common

13

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

rawfile format are used for persistent storage of simulation results. This arrangement

effectively decouples the simulator core from the post-processor. As a result, NUTMEG

can serve as a common post-processor for multiple simulation programs.

2.3 Device Simulation

As shown in Figure 2.2, device simulation is a process that transforms a de

scription of a device's structure and its external boundary conditions into a summary

of the device's characteristics under those conditions. This process is supported by

Boundary

Conditions

Device

Structure

Simulate

Device

Device Electrical

Characteristics

Device Simulator

Figure 2.2: Device simulation - activity summary

a general-purpose device simulator such as Pisces [PINT85] or the DsiM program

embedded in CODECS. In the following, a general discussion of device simulation is

provided, with emphasis placed on the algorithms used in DSIM. For a more compre

hensive treatment ofsemiconductor device simulation, the reader is referred to either

[SELB84] or [PINT90].

2.3.1 Device Description

A device is a three-dimensional section of an IC substrate that forms an

active component such as a transistor or a passive component such as a resistor. A

number ofdifferent materials are used in the construction of a device. The description

14

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

must provide both the geometries and properties of these materials. In addition, the

spatial distributions ofdopant atoms, or dopingprofile, must be described. In order to

simplify the description and subsequent model ofa device, symmetries in a device are

exploited whenever possible. In many cases, axial symmetry is used to reduce the full

three-dimensional problem to one or two dimensions. Bilateral symmetry allows the

behavior of a device to be obtained by simulating only half the device and doubling or

halving the results as needed.

While small circuits can be described conveniently in either textual or graph

ical form, devices represent a more difficult specification problem. Text-only descrip

tions suffer from the problem that errors are easy to generate and difficult to detect.

While this problem is also present in circuit description, it is more important at the

device level because ofthe large amount of spatial/geometric information that must be

provided. As a result, graphical device-capture programs such as PICASSO [SIMP91]

have been developed as aids for this problem. However, for devices described in terms

of rectangular geometries, a textual input language can prove to be adequate, if not

necessarily ideal.

Because of the difficulties involved in producing device descriptions manually,

it is desirable to provide a direct interface to a process simulator such as SUPREMIII

[H083]. Process simulation can then automatically produce geometries and doping

profiles based on a process recipe description and mask layout information. This

interface is complicated by the fact that the process simulator and device simulator

may use different representations of the device structure, and utility routines may

need to be used to convert between them.

2.3.2 Semiconductor Device Equations

An IC device typically contains three types of materials: semiconductors,

insulators, and metals. Equations governing the electrical behavior of these materials

must be provided for the material interiors and at the boundaries between different

materials. Semiconductor regions are most often modeled using the drift-diffusion
system ofequations [ROOS50]:

V •(eE) = q(p-n + N£- JVJ) + pF (2.11)

15

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

1_ , dn ._ _,.

g n=W"(^ (2*12)

^V.Jp =-^+(G-R) (2.13)
where

E = -W (2.14)

Jn = qvnnEn + qDnVn (2.15)

Jp = q^ppEp - qDpVp (2.16)

and
e = material dielectric constant (F/cm)
9 = electron charge (C)
& = electrostatic potential (V)
n (p) = electron (hole) concentration (/cm3)
£? = electric field (V/cm)

^d (^1) = ionized donor (acceptor) concentration (/cm3)
Pf - fixed charge density (C/cm3)
•Jn («JP) = electron (hole) current density (A/cm2)
En (Ep) = electron (hole) driving field (V/cm)
G = net volume generation rate (/cm3-s)
R = net volume recombination rate (/cm3-s)
Vn (^p) = electron (hole) mobility (cm2/V-s)
Dn (Dp) = electron (hole) diffusivity (cm2/s)

Equation 2.11 is Poisson's equation, and Equations 2.12 and 2.13 are, respec

tively, the electron and hole current-continuity equations. In certain cases, one or

both of the continuity equations can be eliminated if it is known that the flow of a

particular carrier type is negligible. For example, at thermal equilibrium, no average

current flows, and only Poisson's equation needs to be solved. In these equations, W> n

and p are the basic variables which characterize the state of the semiconductor. The

remaining parameters are functions of these variables and/or physical properties of

the semiconductor material. Models for the physical parameters are needed to com

plete the basic set of semiconductor equations. Ideally these models would be derived

from fundamental principles of device physics. However, in most cases, empirical or

semi-empirical expressions are used instead. In either situation, it is usually neces

sary to calibrate the models by comparison to measurements performed under a wide

16

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

range ofconditions if quantitative accuracy is desired. However, it is useful for these

parameters to be user-accessible, so that by varying them their influence on device

operation can be determined.

In the insulating regions, it is assumed that there is no flowof charge carriers

such as electrons, holes or impurity atoms. In a well-designed device in its normal

region of operation, this is a very good assumption. As a result, only Poisson's equa

tion needs to be solved in insulating regions. Insulator-semiconductor interfaces can

be easily treated, provided that care is taken to account for the different dielectric

constants of the two materials and the possibilityoffixed interface charge pf,s(C/cm2)

and surface generation-recombination (G- R)s (cm2-s).

In metallic or highly conductive regions of the device, a constant potential W

is assumed and the current distribution within the conductor is ignored. Therefore,

the effect of the metal is only considered along its boundaries, where it makes contact

with the other materials in the device. These contacts are invariably made either to

insulators or semiconductors, since metal-to-metal contacts are short circuits. How

ever, a single metal region may overlap both insulator and semiconductor regions and

this can present some difficulty in determining appropriate boundary conditions.

2.3.3 External Device Boundary Conditions

The operation of a device is controlled by the application of external voltages

and/or currents to its metallic contacts. Voltageboundary conditions are more common,

where the terminal currents i are defined as functions of the voltages V:

i = I(w(x),V) (2.17)

where w(x) represents the spatially-varying internal device state (#(«), n(x), p(x)).
These currents are calculated by integrating the total current density, Jt, over the

surface ofa contact. The total current density is defined by the relation:

Jt = Jn + JP + Jd (2.18)

where Jd = e^r isthe displacement current density. Itarises from the time derivatives
of the carrier concentrations in the continuity equations [PINT90] and reflects the

buildup or decline of space-charge regions within a device.

17

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

Each applied voltage is used to set up Dirichlet or mixed Dirichlet-Neumann

boundary conditions along the boundaries of one of the device's contacts. The exact

form these boundary conditions take depends on the nature of the contact and the as

sumptions made to make the equations tractable. For example, the ohmic source/drain

contacts of a MOSFET need to be treated differently from the rectifying contact of a

Schottky-clamp diode.

In addition to electrical bias conditions, the ambient device operating tem

perature To (°K) is a key input to the device simulator, since device behavior is very

temperature-sensitive. The operating temperature enters directly into the equations

used for the physical models. It is usually assumed that the semiconductor lattice is in

thermal equilibrium with its environment at T0. However, the basic device equations

can be augmented by a heat-flow equation if the effects of thermal gradients need to

be investigated.

2.3.4 Scaling and Space Discretization

The semiconductor device equations are a coupled system ofnonlinear partial

differential equations (PDEs) in space and time. Because the solution variables #,

7i, and p have widely varying values it is customary to scale the various physical

quantities in order to equilibrate the equations. Ofthe various scaling approaches that

have been used successfully in device simulation, DsiM employs the scaling approach

used in SEDAN [YU85].

As in the case of circuit transient analysis, it is not generally possible to

solve the device equations analytically, and numerical methods must be employed.

The first step in analyzing these equations is space discretization, where the solution

is approximated at a finite set of points in space, known as a mesh. An example

mesh is shown in Figure 2.3. Equations are formulated for each point or node in

the mesh using either a finite-difference or a finite-element method. In DSIM, the

finite-box method, a variant of the finite-difference method, is used to discretize the

device equations on a rectangular tensor-product mesh. In the box method, fields and

currents are approximated along the edges of the mesh, flowing perpendicular to the

sides of the box. Discretization of the device PDEs produces a system of nonlinear

18

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

Element

^ — Node

Edge

M

Finite Box

Figure 2.3: Mesh for finite box discretization

ordinary differential-algebraic equations in time, expressed symbolically as:

Gv(&,n,p) = 0

Gn(&,n,p)--^ =0

Gp(V,n,p) +̂ =0
or more compactly as:

G(w(t)Mt),V(t)) = Q

(2.19)

(2.20)

(2.21)

(2.22)

where w = (&, n, p) is the vector of unknown nodal approximations to the continuous

solution, and the dependence on V, the vector ofapplied voltages, has been explicitly

included. This system has three equations for each node lying in a semiconductor

region, one for each node in an insulating region, and none for nodes inside metals. At

material boundaries, the number ofequations used depends on the type ofboundary

conditions applied. The total number ofequations is always less than or equal to 3JV,
where N is the number of nodes in the mesh.

19

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

The mesh should have high node density in regions where the solution varies

rapidly, and lower density where the solution is constant. Since the solution changes

with the external boundary conditions, the mesh should ideally adapt itself during an

analysis. However, robust adaptive mesh generation is still an open research problem,

and in DSIM a fixed mesh is employed. This approach is effective because reasonable

meshes for the standard IC devices can be designed a priori from a knowledge of the

basic device physics. One benefit of this approach is the elimination of the computa

tional burden associated with restructuring the mesh after the solution process has

begun. However, this advantage is offset by the fact that a fixed mesh appropriate

for a wide range ofbias conditions is generally computationally less efficient than one

optimized to a particular solution.

Once the solution has been found on the discretized device domain, the ter

minal currents are calculated based on this solution. An appropriate discretization of

the integral equation for each terminal current is defined which is compatible with the

domain discretization. This converts the integral to a weighted summation ofthe total

current density around the nodes belonging to the contact. Estimates for the different

components of the total current density are then substituted into this summation to

arrive at the current for one of the contacts. This process is repeated for all the device

contacts.

2.3.5 DC and Transient Analyses

In DC steady state, the time dependence in Equation 2.22 can be eliminated,

leaving a system ofnonlinear algebraic equations:

G(w,V) = 0 (2.23)

This can be solved using the basic Newton-Raphson algorithm as described in Sec

tion 2.2.3. However, better convergence is obtained if the solution updates Aw are

damped in such a way that the norm of the right-hand-side is reduced. The basic

Newton-Raphson step is repeated here:

Jw(wk)Awk = -G(wk) (2.24)

20

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

where Jw(wk) is the Jacobian matrix of the device equations with respect to the
unknowns w:

k\-J«,(n>*) =

dGy>

dGr,

dGp

dGv
dn

dG^
dn

dGv
~dn

dGy
dp

dG*

dp

The derivatives of Equation 2.23 with respect to the applied voltages (Jy) can be

ignored for the moment, since the applied voltages are constant. In the damped

Newton-Raphson method, the update step is modified to include the damping factor,

Xk:

wk+1 = wk+ XkAwk (2.25)

where A* is chosen according to the criterion:

|G(w*+1)| <\\G(wk)\
Since an acceptable value for Ais not known a priori, a search proceduremust be used

to find one [BANK81].

In DSIM, the initial guessw° is constructed in ahierarchical fashion. First, the

charge-neutral solution (the solution ofPoisson's Equation ignoring the left-hand-side)

is used as an initial guess to the equilibrium solution,where the continuity equations

are ignored. The equilibrium solution is then used to solve the full set of equations at

equilibrium. This iteration usually converges in two steps. After this, initial guesses

can be obtained by projecting a previous solution using the Jacobian matrices, Jw and

Jv, and a set ofvoltage steps, AV.

The linear systems of equations encountered in DC device simulation have

a number of interesting properties, some of which are different from those typical of

circuit matrices. Each node of the mesh contributes a small set of equations to the

overall problem. If the equations for a node are treated as a single block, the Jacobian

matrix can be viewed as a collection of coupling blocks, C. A block C,j is structurally

non-zero if any of the equations at node i depend on the variables at node j. The

occurrence of coupling depends on the exact nature of the discretization scheme, but

in general neighboring nodes are coupled and isolated nodes are not. This leads to

a great deal of sparsity in the matrix, since most node pairs are not neighbors. In

one and two dimensions, IVU decomposition can be used to solve this sparse system

21

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

ofequations. In three dimensions, the matrices become too large to solve using direct

methods and iterative methods are used instead [WEBB91].

In addition to sparsity, it is usually true that if a node is coupled to a neigh

bor, then the neighbor is coupled back to that node, which implies block symmetry of

the Jacobian matrix. This knowledge can be used to develop a special-purpose sparse

matrix package that exploits symmetry in order to reduce the amount ofpointer over

head. However, one important exception to the above occurs in the simulation of

MOSFETs. In order to characterize properly the mobility in the MOSFET inversion

layer, an integral equation must be satisfied along each line of nodes that crosses the

inversion layer. This integral equation introduces non-local coupling into the device

matrix and disrupts the block symmetry. Because DSIM employs this technique, the

general-purpose package SPARSE is used to solve the device equations.

In transient analysis, the time dependence of w can no longer be ignored in

Equation 2.22. The derivatives, ^ and -^, are discretized in time using an implicit
integration formula (cf. Section 2.2.4). The initial solution {w0,V0} = {w(Q), V(0)}

is computed using a DC operating point analysis. After this, the analysis proceeds

exactly as in the circuit case, selecting one time step after another until the analysis

interval is exhausted. In solving the nonlinear systems that arise, it is not usually

necessary to employ damping since continuity in time usually results in a new solution

that is not far from the previous one. Time steps are selected using estimates of the

local truncation error incurred. This estimate is usually found by computing the L2

norm of a vector of error estimates obtained at each node of the simulation mesh. For

more detail on this procedure, consult either [BANK85] or [MAYA88].

2.3.6 Small-Signal AC Analysis

The response of the internal device state to small sinusoidal variations in the

voltage and current boundary conditions can be calculated using methods similar to

those employed in circuit analysis. The internal state w is represented as the sum ofa

steady-state component w and a small phasor component weJUJt where w is a complex

vector. The applied voltages V are treated similarly. After substitution ofthese values

into Equation 2.22 and retention of the linear terms, the following complex-valued

22

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

linear system ofequations results:

[Jvj ' jw + Jw]w = -JyV (2.26)

where Jw is the DC Jacobian matrix, J^ is the (diagonal) Jacobian matrix for the time

derivatives:

J* =

0

dGn
dn

0

0 0 0 0 '
0 = 0 -J 0

dGp
dp . 0 0 I

and Jy is the voltage Jacobian matrix:

Jv =

dGq,

dGp

dGp
~dV J

Equation 2.26 can be solved using complex L/U decomposition to find the small-signal

quantities w. The decomposed matrix data structure set up during DC analysis can

be reused during this process, leading to significant savings in computation overhead.

However, faster, iterative methods have been developed that use only real arithmetic

[LAUX85], [APTE92]. Time is saved primarily because the previously calculated

DC Jacobian L/U factors, in addition to the data structures, are used in these algo

rithms. Iterative methods are unfortunately limited in their range of applicability,

and a scheme must be established to switch to a more robust method upon failure.

Ultimately, such a scheme returns to direct methods when all iterative methods fail.

This approach is used in CODECS where the successive over-relaxation (SOR) method

of [LAUX85] is used until it fails, at which point a switch is method to direct-method

solution using the complex arithmetic capabilities ofSparse.

2.3.7 Visualization and Representation of Device Behavior

Device simulation presents a more difficult visualization problem than circuit

simulation because of the need to manage multidimensional data sets. Typically,

accuracy constraints require two- or three-dimensional simulations to be performed.

Even in cases where one-dimensional simulations are adequate, the addition of time

as an independent variable in transient analyses generates a multidimensional data

23

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

set. Thus, a need exists to go beyond the simple capabilities required during circuit

simulation.

For general mesh structures, the problem of storing internal device variables

such as the potential and the electron and hole concentrations is complicated by the

irregularity of the mesh. A special-purpose file format accompanied by a procedural

interface can be used to handle such problems. An example is the Vset portion of the

HDF file format developed by the National Center for Supercomputing Applications

[GROU90]. Recent versions of PISCES use this format to store results. A separate

log file is used to record the terminal voltages and currents. However, in the special

case of a tensor product mesh, a much simpler approach can be used. The rawfile

format and interface of SPICE3 was extended for version 3F2 [JOHN92] to support

multi-dimensional data sets. The only additional information needed is a list of the

array dimensions. This format allows CIDER to store one- and two-dimensional device

internal states in standard SPICE3 output files. The terminal voltages and currents, as

well as small-signal conductances and capacitances, are stored in a separate data set

at the beginning of the same file. This is possible because the rawfile format supports

multiple data sets per file.

Numerous methods ofvisualization have been developed to allow exploration

ofmultidimensional data sets arising from scientific computations. Many ofthese tech

niques such as three-dimensional projection, animation and the sophisticated used of

color graphics can be used in interpreting the results of device simulation. Unfortu

nately, these techniques generally rely on special-purpose workstations for the nec

essary computational power and color graphics hardware. Three simpler techniques

that can be used on typical general-purpose engineering workstations and black-and-

white laser printers are demonstrated below. In Figure 2.4, multiple slices through a

two-dimensional data set, taken perpendicular to the Y axis, are plotted on the same

set of Cartesian axes. This method is compatible with the existing visualization capa

bilities ofthe circuit simulation post-processor NUTMEG. The same data can be viewed

from above using a contour plot (multiple Z axis slices), as shown in Figure 2.5. On a

workstation, it is often possible to enhance contour definition by using different colors

to fill the regions between contours. Finally, variations in the data are probably best

exposed using three-dimensional projection techniques as in Figure 2.6. Again, on a

workstation, colorenhancement canbe used to supplement the projection. In addition,

24

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

Diode Equilibrium Potential

mV

600.00 -
Psi

500.00

400.00

300.00

200.00

100.00

0.00 -

X(um)

0.00 0.20 0.40 0.60 0.80 1.00

Figure 2.4: Diode potential data set - multiple slices

the data can be viewed from a number of different angles by interactively changing
the viewing location.

2.4 Mixed-Level Circuit and Device Simulation

Figure 2.7 is a representation ofthe mixed-level circuit and device simulation

process. This process transforms descriptions of a circuit and of the structures of

its critical devices into summaries of both the circuit performance and the internal

device behaviors. The operating environment of the circuit must also be provided.
This process is supported by a general-purpose circuit and device simulator such as

Medusa [ENGL82] or Codecs [MAYA88].

25

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

a
3

0.25

0.75

Psi(V)

0.5 0.75

X(um)

Minimum

-0.35 V

Maximum

0.59 V

Figure 2.5: Diode potential data set - contour plot

2.4.1 Coupled Circuit and Device Description

In mixed-level circuit and device simulation, a unified means to describe the

circuit connectivity, the compact-model parameters, and the numerical-device struc

tures must be supplied. Perhaps the easiest way to accomplish this is by augmenting

an existing circuit-specification language with special commands for the numerical

devices. In CODECS the existing technique for describing device models to the circuit

simulator SPICE3 is also used to describe numerical device models. This approach

is simple to implement but lacks flexibility because the model-description features of

the SPlCE-input syntax were developed with compact models in mind. A better but

more difficult approach is to combine a language for circuits and a language for de

vices, so that both levels can be described efficiently. This approach is taken in CIDER,

where the existing parser of SPICE3 has been extended so that device structures can

be described using a PiSCES-like format. Special provision is made for specification of

circuit-level parameters that vary from device to device such as layout areas or widths.

26

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

Diode Equilibrium Potential

0.592

>
0.119

0.5^

Figure 2.6: Diode potential data set - birdseye view

These provisions are typically unnecessary in pure device simulation where a single

unit-size device is analyzed. A detailed description of the CIDER input format is pro

vided as Appendix A. In the future, the details of this input language could be hidden

behind a unified graphical user interface (GUI) that supports both schematic capture

and device capture. For example, a standard circuit schematic capture program can

be extended using special symbols for the numerical devices [TMA911 where a means

is provided for linking these symbol instances to device structures created by a device

capture program. The unified GUI is then responsible for translating the graphical

description into a binary form such as a CAD database, or into a textual form such as a

file written in a unified input language. The mixed-level simulator reads the database

or the input file to obtain the circuit and device descriptions.

One large system of equations can be formed which describes the complete

behavior of a mixed-level circuit. KirchofFs current and voltage laws and the branch-

constitutive relations of the compactly modeled devices are to used to create part of

27

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

Circuit
Description

Device
Structures

Currents &
Conductances

Operating
Environment

Simulate

Circuit

Circuit Simulator

Simulate

Devices

T
Device Simulator

Boundary
Conditions

Simulate Mixed-Level Circuit

1
Mixed-Level Simulator

Circuit
Performance

Internal
"•"States

Figure 2.7: Mixed-level simulation - activity summary

this system of equations. Discretized semiconductor device equations are used for

the internal states of the numerically modeled devices. Finally, auxiliary branch-

constitutive relations are needed for the numerically modeled devices. In CODECS,

where only voltage boundary conditions are allowed, these auxiliary equations relate

a device's internal state and its branch voltages to its terminal currents (cf. Equa

tion 2.17). Coupling between the circuit-level equations and those of a single device

is achieved by establishing a one-to-many correspondence between the circuit nodes

and the device's terminals. For example, in Figure 2.8, a single circuit node is coupled

to the dual base contacts of a bipolar-transistor device structure. Single contacts are

made to the emitter and collector.

2.4.2 Coupled Operating Conditions

The major difference between the operating environment in mixed-level simu

lation when compared to either circuit or device simulation alone is that the numerical

28

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

Base o—•

Emitter
o

Collector

Figure 2.8: Polyemitter bipolar transistor with dual base contacts

devices are no longer operating in isolation. When a numerical device is embedded in

a circuit it is not necessary to specifyvalues for the device terminal voltages ahead of

time. During the natural course of the solution process, the circuit simulator automat

ically generates bias conditions for the device. Eventually, a consistent set of circuit

node voltages and branch currents and device internal states is obtained.

If the device-structure description is suitably parameterized, preprocessors

that support statistical analyses and optimization can be used to modify the device

structure prior to simulation. This can be useful in the optimization of a device

structure to achievespecified levelsofcircuit performance. It can alsobe used to study

the direct influenceof device physical parameters on circuit performance. In addition,

these same preprocessors can be used when optimizing parameters that vary from

device to device such as layoutwidths and areas. Finally, the operating temperature
of each device should be separately specifiable so that the effects of non-uniform heat

generation in an IC can be simulated. For example, CIDER extends the temperature-
dependent sections of CODECS in order to support this ability.

29

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

2.4.3 DC and Transient Analyses

The equations for the DC steady state in a mixed-level analysis are obtained by

suitable coupling ofEquation 2.1 for the circuit and multiple instances ofEquation 2.23

for the numerically modeled devices. In the following discussion, representation ofthe

circuit equations in terms ofthe stimulus and response variables (s,r) is replaced with

an alternative representation in terms of node voltages V and branch currents I. If

the total number ofnumerical devices is D, then there are D +1 systems ofequations:

D

Y,Adid + F(VJ) = 0 (2.27)
d=l

Gd(wd,Ed) = 0 Vd€[l,£>]

where

id = Id(i»d, Ed)

Ed = ATdV

Coupling between these systems is completely characterized by the Ad matri

ces, the node-to-branch incidence matrices of the numerical devices. They determine

how to compute the numerical device branch voltages Ed and how to feed the device

currents id into the rest of the circuit. Note especially that this implies there is no

direct coupling between the internal device states, wd, of different devices.

The mixed-level equations for transient simulation are very similar to those

obtained in DC analysis. Once again, time discretization formulae are used to convert

the time derivatives into algebraic expressions involving the present and previous

states. After discretization, the time-dependent problem can then be treated using

methods appropriate for DC analysis. One interesting point is that the discretization

method need not be the same at both the circuit and device levels. For example,

Codecs employs a mixed method where the trapezoidal rule [NAGE75] is used at the

circuit level and Gear's backward differentiation formulae [BRAY72] are used at the

device level. In addition to discretization, a time step selection algorithm must be used

during transient analysis. The approach taken in CODECS is to calculate maximum

allowable time steps for each ofthe numerical devices using the techniques mentioned

30

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

in Section 2.3.5. Then, at the circuit level, these estimates are treated identically to

those obtained from compactly modeled devices.

The complete mixed-level simulation problem as described above is a system

of nonlinear algebraic equations. As such, one natural technique for solving these

equations is the Newton-Raphson method. However, the modular structure of the

equations is particularly well suited to the multi-level Newton method [GUY 79], an

extension of the basic technique. In [MAYA92], several strategies for solving the DC

and transient equations are evaluated. Based on this evaluation, different techniques

are recommended for the two types ofproblems. The standard or full Newton algorithm

is sufficient for transient simulation. However, a modified two-level Newton scheme

is employed during DC analysis since it has been shown to be more robust [MAYA92].

These two methods are now described as implemented in CODECS.

The mixed-level equations after space and time discretization can be repre

sented more compactly as:

Fmc(W,Z) = 0 (2.28)

G*d(wd,Z) = 0 Vd€[l,D]

where Z is the complete vector ofcircuit variables (V, J) and W is the complete vector

of device internal variables (101,..., wd). The linearized equations are first expressed

in terms of the solution updates, Awd and AZ, according to:

D

^2 Ji,dAv>d + JcAZ = -F*c (2.29)
d=i

Jw,dAwd + Jy,dAZ = -G*d Vd € [1, D]

with

, -dF*c
J I,d = •»

dwd

Jc--dz~

r -dG*d
Jw4 ~ dw~d

dG*d
BEdJv,d = 7nr-Ad

31

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

Note that Jc, the circuit-level Jacobian matrix, includes terms due to the direct influ

ence of the branch voltages Ed on the terminal currents id as well as terms stemming

from the compactly modeled devices. In practice, it is more convenient to associate

these extra terms with a device's other contributions, so that the first part of Equa

tion 2.29 reads:

D

Y, (Ji,dAv>d + JQ,dAZ) + J'cAZ = -Fc
d=l

where

(2.30)

and J'c is a modified circuit-level matrix where the numerical device contributions

have been removed.

The structure of the resulting linear system is shown in Figure 2.9, where

the circuit-level equations are solved after all the device-level equations have been

Device Matrices

Circuit Matrix

Figure 2.9: Block matrix structure of mixed-level system of equations

solved. The isolated diagonal blocks are the device-level Jacobian matrices Jw,d and

the circuit-level matrix Jc is in the lower-right corner. The off-diagonal blocks on the

right are the matrices Jv,d that capture the influence of the circuit voltages on the

device internal states. Those on the lower edge are the matrices J14 that incorporate

32

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

the influence of the device internal behavior on the terminal currents. In the full-

Newton approach, this system is solved using block IVU decomposition. Each device-

level Jacobian matrix is decomposed into L/U factors, and then a modified circuit-level

system is assembled:

D

Jc =J'c~J2 {J14JZ4JV4 - Jga) (2.31)
d=i

Fc =F*C-T, Ji4JZ]dGd
d-i

so that the circuit-level Newton step becomes:

J*C*AZ = -F*c* (2.32)

Not that in no case is a true matrix inverse J-1 actually calculated. Forward and back

substitution using the IAJ factors is used instead.

In CODECS consistency with the circuit equation formulation of SPICE de

mands that additional terms be added to the RHS so that the new solution Zk+1 can

be computed directly from the previous one, Zk:

Jc*Zk+1 = Jc*Zk - F*c* (2.33)

This is the same modification that is performed in the pure circuit simulation problem
(cf. Equation 2.3). Solution of these equations results in a new set of circuit-level

variables. These must then beback-substituted into each of the device-level systems
in order to obtain solution updates for the device internal states:

Awd = -JZ4Gd ~ JZ4JV4AZ V<Z <E [1, D] (2.34)

In order to satisfy the constraint that the device-level evaluation routines are only
accessed once per iteration in SPICE, this final step can be deferred to the beginning
of the next iteration. In order to eliminate redundant computations, the common
subexpressions - J~]dG*d and J~]dJy4 inEquations 2.31 and 2.34 are calculated once
while assembling the circuit-level system and reused during the update step.

Solution of the DC equations differs from the above full-Newton algorithm
in that multiple Newton steps can be taken at the device-level for each step at the
circuit-level. During each circuit-level iteration, all device-level systems are solved to

33

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

convergence. At the first iteration, the initial circuit variables are used to compute

device-level boundary conditions. On subsequent iterations, Equation 2.34 is used to

obtain an update to a device's internal state:

Awd = -J~]dJy4AZ (2.35)

where the first term in Equation 2.34has been eliminated since Gd = O at the previous

solution. This update is added to the previous solution to obtain an initial guess for the

new device internal state. Because the circuit state is fixed during these device-level

iterations, various techniques to ensure robust convergence can be employed such as

damping, voltage-step limiting and voltage-step backtracking [MAYA881.

Once the device-level equations have converged, the circuit-level matrix and

RHS are obtained using Equation 2.31:

D

Jc =J'c-T, (JI4JZ4JV4 ~Jc4) (2.36)
d=i

F*c = Fc

where Gd = 0 has been used once again to eliminate unnecessary computation. It is

worthwhile noting at this point that the summation on the right-hand side of Equa

tion 2.36 is just an accumulation ofthe conductance matrices ofthe numerical devices.

That is to say, as shown in [MAYA921, the conductance matrix ofa numerical device is

identical to -Ji4J^dJv4 + Jg4> In addition, equivalent linearized currents for the
numerical devices contribute terms to the value of Fc. As a result, during implemen

tation, the standard method ofadding conductances and currents into the circuit-level

matrix known as stamping can be used. Only the procedures for calculating these

values have changed in the case ofnumerical devices.

A flowchart of the full-Newton algorithm as used during transient analyses

is shown in Figure 2.10. In the following description, labels for the various steps

are surrounded by parentheses. The analysis begins by establishing a DC operating

point and choosing an initial timestep. The time discretization data structures are

then initiahzed and the main Newton-Raphson loop begins. On each iteration, the

compactly modeled devices are linearized and their contributions are loaded into the

circuit matrix and RHS (MODcontrib). Then each of the numerical devices is eval

uated. The device internal solution is updated appropriately depending on whether

34

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

or not this is the first iteration after a timepoint has been accepted (DEVmisc). The

physical models (mobility, recombination) are then evaluated and the device's matrix

and RHS for the semiconductor PDEs are loaded (DEVload). This system is factored

and solved (DEVfactor and DEVsolve) leading to a new internal solution. Convergence

ofthe device internal updates is also checked now (DEVmisc), but the result is not used

until later at the circuit-level. Based on this solution, the device's linearized currents

and conductances are calculated and loaded into the circuit matrix and RHS (DEV-

contrib). Collectively the preceding steps constitute the complete circuit loading phase

(CKTload). After the circuit matrix and RHS have been loaded, they are factored and

solved (CKTfactor and CKTfcolve). This results in a new set of voltages and currents

which are checked for convergence using circuit-level tests as well as the results of

the device-level checks. Ifall the updates are small enough, the Newton-Raphson loop

terminates and the error in the solution for this timestep is estimated. This invokes

calls to the truncation error routines for all time-varying elements including compact

devices (MODtrunc) and numerical devices (DEVtrunc). The size of the error is used

to determine whether the current timepoint is either accepted or rejected, and then a

new timestep is selected. Ifmore time is left in the simulation interval, the algorithm

returns to the top of the time loop, and the process begins again.

2.4.4 Small-Signal AC Analysis

The mixed-level equations for small-signal AC analysis can be derived from

the equations for the general transient behavior of the circuit:

D

£ *did(t) + F{V(t), V(*), /(<), Ht)) = O (2.37)

Gd(wd(t), wd(t),Ed(t)) = 0 Vde [1,D]

where

id(t) = Id(Mt),M*)>Ed(t))

Ed(t) = ATdV{t)

35

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

All quantities are represented as the sum of DC bias components and small-signal

phasor components. Equation 2.37 is linearized about the operating point and the

small-signal terms are retained:

D

Y A<&d +
d=l

BF . BF
V +

dGd*

BF . BF

IBI'J"+M 1 = 0

BGd . , BGd
JOJ +

.dwd

where

%d-

dwd
Wd + -*=rEd = 0 Vde[l,D]

BEd

Bwd
did . , did

Bwd. «>+m*<
Ed = ATdV

(2.38)

The contribution of device d to the circuit-level equation can be represented in a more

compact way as:

AdYdATdV

where Yd = id/Ed is the matrix of device admittances:

Ed

Bid . , Bid
Bwd Bwd

i»d did

Ed 9Ed

(2.39)

(2.40)

This matrix is computed by solving the device-level equation for device d for ibd/Ed

using the techniques of Section 2.3.6. Note that division by the vector Ed is an ill-

defined operation, and is used only as a notational convenience. In practice, the rows

of the admittance matrix are computed sequentially. At each step, one of the branch

voltages is assumed equal to a unity phasor E = (1,0) and all other voltages are set to

zero. The vector of small-signal currents obtained under these conditions is equal to

the row of the admittance matrix corresponding to the perturbed branch voltage. In

addition, with these voltages as inputs, Wd and %d can be computed directly without

the need for vector division.

Solution ofthe circuit level equations proceeds by separating the small-signal

voltages and currents, V and J, back into the original two sets: known stimuli s and

unknown responses r. Terms involving the stimuli are moved to the right-hand side of

Equation 2.38, and the resulting linear system of complex equations is solved for the

36

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

responses using L/U decomposition. If desired, the small-signal internal device state

ibd can then be found by using the correct small-signal branch voltages Edthat depend

upon the now available small-signal voltages V. However, this step is not performed

in either CODECS or CIDER because it requires additional time and memory to do so.

2.4.5 Visualization and Representation of Mixed-Level Behavior

A flexible output format is needed to store both voltage and current data at

the circuit level and the potential and carrier concentrations at the device-level. In

addition, other types ofdata such as conductances, capacitances, mobilities and recom

bination rates may also be desired at times. Fortunately, the rawfile format supports

a generic typing mechanism that can be used to extend the basic set of data types

built into the NUTMEG frontend. Using this mechanism, and the multidimensional

capabilities mentioned in Section 2.3.7, CIDER can save output from both the circuit

and device levels in the same way. Currently, separate files are used for the circuit and

device data due to limitations of the implementation. As a result, there is no strong

link between a state at the device-level and the corresponding state of the circuit. In

the future, a more unified approach relyingon a CAD database foroutput storage could

be used instead of the existing ad hoc methods. For example, the OCTobject-oriented

database [HARR86] provides a general mechanism for data storage that leaves de

cisions about how that data is used up to a particular appUcation. It was extended

to support technology CAD data by the BPIF project [WONG91]. Similar extensions

could be defined to store SPICE3 waveforms and to link those waveforms to snapshots
of the device state at particular instants of time.

The main additional visualization problem posed by mixed-level simulation

is the problem ofcorrelatingcircuitbehavior with the behaviorsofmultiple numerical

devices. For example, such a capability would be useful in analyzing the transient

behavior of charge transfer in a switched-capacitor circuit. Animation could be used

to step through a standard Cartesian plot of the circuit waveforms, while at the same

time multiple color contour plots for the numerical devices could be used to show the

evolutionofthe internaldevice states. Unfortunately, it would probably benecessary to
use a high-performance graphics workstation to adequately perform theseoperations.
In the absence of such a sophisticated system, CIDER uses static methods to achieve

37

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

a similar function. In a special version of the code, the NUTMEG commands were

extended to support a call to an external contour plot program. Figure 2.11 shows a

screendump when two copies ofNUTMEG are started from different terminal windows

and a contour plot is generated by each copy. The plots show the log contours of

the majority carrier concentrations inside the NMOS and PMOS devices of a CMOS

inverter. The PMOS device is on top and the NMOS device is on the bottom. The

snapshot was taken while the input voltage was being ramped from a low to a high

state. The NMOS device turns on during this period, forming a conducting channel

of electrons between the source in the upper left and the drain in the upper right.

Asymmetry of the contours is due to the large potential on the drain terminal which

depletes mobile carriers from the region around the drain. In the upper half of the

figure, the PMOS device is being turned off. The holes that formed the channel are

no longer confined by the electric field at the surface and spread out into the bulk

beneath.

2.5 Summary

Mixed-level simulation combines algorithms from both circuit simulation and

device simulation. Both Codecs and Cider are mixed-level circuit and device simula

tors based on direct-method solution algorithms. The mixed-level simulation problem

is a set of nonlinear ODEs and PDEs. Time and space discretization convert these

equations to systems on nonlinear, algebraic equations which are solved using varia

tions of the Newton-Raphson method. Finally, direct solution oflarge, sparse systems

of equations is at the core of a mixed-level simulator.

In addition to the numerical methods that form the core of a simulator, the

user interface is also an important part of a simulation program. A simulator should

allow circuits and device structures to be specified in a flexible manner. CIDERcombines

the de facto standard circuit-input format ofSPICE with a PiSCES-like format for device-

structure descriptions. Such an approach helps lower barriers to the adoption of

mixed-level simulation in the IC design community by providing a familiar frontend

interface.

At the backend, a mixed-level simulator should allow both circuit and device

behaviors to be visualized. Here again, existing techniques taken from stand-alone

38

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

simulators can be applied to the mixed-level problem. Cartesion plots, contour plots,

and three-dimensional perspective plots can all be used without the need for special-

purpose graphics hardware.

39

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

No

Yes

Compute Circuit's DC
Operating Point

Discretize Time

Evaluate Compact Models
Load Circuit MTX & RHS

(MODcontrib)

Factor and Solve

Circuit Equations

(CKTfactor& CKTsolve)

-\^ Circuit Converged? y

Yes

Compute Truncation Errors

Pick Tiinestep,Update Time
(MODtrunc & DEVtrunc)

< More Time Left?D

Update/Project Solution
(DEVmisc)

Evaluate Physical Models

and Load PDEs

(DEVload)

Factor and Solve

PDE system

(DEVfactor & DEVsolve)

Add Changes to Solution
Check Device Convergence

(DEVmisc)

Calculate and Load

Currents & Conductances

(DEVcontrib)

<
More

Numerical Devices?

No

r>
Yes

Figure 2.10: Flowchart for mixed-level transient simulation

40

CHAPTER 2. MIXED-LEVEL CIRCUIT AND DEVICE SIMULATION

(
u

xn

>

Minimum

12

ww?"Wi»!y'V",'."">. "\. ~~v m^*^ / '"••••>""ny.vtntmt

-0.46 " \̂\\Y,V\ ~~ S ///// <~
-0.97 " \:\\V .. .-'///I S~

-///

-1.5 fc"

-2

.,__ '... v .. n....„^-%...s , **••••'y j s-~"
Maximum

20.00

wa ^^v^!<tf•^tt^^^^x^^^'^^w<•w'^^^

Figure 2.11: MOSFET internal states

41

CHAPTER2.MIXED-LEVELCIRCUITANDDEVICESIMULATION

42

Chapter 3

Performance Analysis of CIDER

3.1 Overview

Experience workingwith a mixed-level circuit and device simulator has demon

strated that the use ofnumerical device modelsin place ofanalytical devicemodelscan

lengthen simulation execution times by two or more orders of magnitude [MAYA881.

This effect dramatically restricts the class of circuits that can be designed in a rea

sonable period of time using such a tool. However, the performance of engineering
workstations employing Reduced Instruction Set Computer (RISC) architectures has

increased rapidly over the past several years. This raises the possibility that mixed-

level simulation may become viable on such a system.

In this chapter, CIDER is characterizedin terms of its CPU usage, main mem

ory usage, and I/O (long-term storage) requirements. Evidence is presented demon

strating that most mixed-level simulation time is spent executing device-level code.

As a result, the performance ofCIDER acting as a device simulator has been examined

in detail. One- and two-dimensional numerical diodeswith parameterized mesh spec

ifications are used to investigate resource usage as a function of problem size. Simple

models for CPU and memory usage are derived that can be used for usage prediction.

The performance of CIDER on a set ofbenchmark circuits has been measured

on a number of RISC-architecture UNIX systems. The systems tested are described,

and an examination of the differences among the results is provided. Finally, the

performances obtained are evaluated in view ofthe requirements ofeffective IC design.

Predictions are made for the system capabiHties needed to design small analog and

43

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

Task

Benchmark Circuit

MECLGATE DBRIDGE NMOSINV

Time(S) % Time(S) % Time(S) %

CKTload 286.5 96.3 1930.2 97.8 544.2 99.7

DEVload 145.3 48.8 921.7 46.7 67.4 12.3

DEVfactor 49.8 16.7 410.1 20.8 373.4 68.2

DEVsolve 20.5 6.9 283.9 14.4 32.3 5.9

DEVmisc 7.5 2.5 35.2 1.8 4.8 0.9

DEVcontrib 62.0 20.9 277.1 14.0 67.2 12.3

MODcontrib 1.4 0.5 2.0 0.1 0.1 0.0

CKTfactor 0.7 0.2 0.8 0.0 0.0 0.0

CKTfcolve 0.3 0.1 0.3 0.0 0.0 0.0

CKTtrunc 7.7 2.6 38.3 1.9 0.8 0.1

DEVtrunc 7.4 2.5 37.3 1.9 0.8 0.1

MODtrunc 0.3 0.1 0.8 0.0 0.0 0.0

Other 2.2 0.7 4.0 0.2 1.0 0.2

Tbtal 297.0 100.0 1973.7 100.0 546.1 100.0

Table 3.1: Execution profiles for several benchmarks on a DECstation 5000/125

digital standard cells.

3.2 Runtime Breakdown

In Table 3.1, execution profiles are shown for three of the benchmark circuits

described in Section 3.4. The system used was a DECstation 5000/125. The first circuit,

MECLGATE, is a bipolar ECL inverter containing 11 small-mesh, one-dimensional nu

merical bipolar transistors. The second circuit, DBRIDGE, is a diode bridge with 4

medium-sized-mesh, one-dimensional numerical diodes. The third circuit, NMOSINV,

is a resistively loaded NMOS inverter employing a large-mesh, two-dimensional nu

merical MOSFET. All three simulations calculate a DC operating point followed by a

transient analysis. As canbe seen the percentagesof time spent in the various sections

change. However, although the circuit type, sizeandtechnology allchange from exam

pleto example, an average of 99% of the total time is spent executingdevice-level code

nomatter which is considered. Device-level code consists of: evaluating physical mod
els and loading the device-level equations (DEVload); direct solution of the resulting

44

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

system ofequations (DEVfactorand DEVsolve); miscellaneous overhead such as solu

tion updating andconvergence checking (DEVmisc), evaluating theequivalent current
and conductance contributions to the circuit-level system ofequations (DEVcontrib),
and computing thenumerical-device truncation errors (DEVtrunc). The remaining 1%
ofthe time isdivided between loading thecompact model contributions (MODcontrib),
factoring and solving the circuit-level matrix (CKTfactor and CKTsolve), computing
compact-device truncation errors and the next timestep(MODtrunc), and other items

such as reading and parsing theinput file, setting upthecircuit-level data structures,
and writing the results to an output file. Note that only the MECLGATE circuit con

tains a significant numberofcompactly modeled andsimple circuit elements, andthus
is perhaps the best modelfor applications where only the critical devices are modeled
numerically.

3.3 Device-Level Resource Usage

In the previous section, the importance of the device-level performance of
CIDER isestablished. This section takesa closer look at thisperformance by examining
data gathered from simulations of two very simple diode test circuits. The numerical

diode models are basedona rangeofdifferent meshes, varyingfrom verycoarse meshes
to very fine meshes. The test circuits use numerical diodes because it is possible to
produce qualitatively correct results using extremely coarse meshes. Both one- and

two-dimensional diode models were tested. The schematic for the first circuit is shown

in Figure 3.1(a). This circuit is used to measure the DC and AC small-signal analysis

performance of CIDER. The second circuit, Figure 3.1(b), simulates the response of

the diode to a sinusoidal input, and is used to measure the performance of transient

analysis. In all cases, the simulations were performed on a DECsystem 5000/240 with

128Mb of real memory.

3.3.1 One-Dimensional Simulations

The input file for the one-dimensional diode DC/AC test circuit is shown in

Figure 3.2. The corresponding input file for transient analysis is shown in Figure 3.3.

The parameter ${XMESH.ELEMS} is varied from 4 to 499 in 5 element increments. This

45

VPP

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

Vpp

(a) DC/AC circuit

Rs Dt

I—WV

e (^MVnn

(b) Transient circuit

Figure 3.1: Test circuits for device-level performance characterization

produces meshes with 5 to 500 nodes. The diode doping is uniform on each side of

the PN junction with a concentrationof 1.0 x 1017cm~3. Several physical models have

also been enabled.

The DC analysis samples the diode current at 21 points between 0.0 V and

1.0 V. The AC analysis computes 51 frequency points logarithmically spaced between

100 KHz and 10 GHz. Although shown together in the input file, the two analyses

were run independently in order to gather separate data sets. The transient analysis

computes the response to a 1 MHz sinusoidal input voltage over one period. The

number of timepoints computed depends very weakly on the mesh density with 194

points being about average.

The time per device-level iteration for DC and transient analysis can be bro

ken down into a number of components. In both cases, the three most important

components are the load, factor, and solve times. The remaining half dozen or so

components take different amounts of time in the two analyses. Individually these

remaining components do not contribute significantly to the total per-iteration time,

but collectively their contribution is noticeable. In addition, there is one component,

the matrix order time, that contributes only during the first iteration, but in that one

iteration it dominates all others.

In Figure 3.4, the load, factor, and solve times per iteration are graphed

against the total number of device-level equations. The number of equations, E, is

equal to 3(n - 2) where {n - 2) is the number of mesh nodes excluding the two contact

46

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

One-Dimensional Test Diode

VPP 1 0 0.6V AC IV

VNN 2 0 0.0V

DT 1 2 M_PND AREA=1

.MODEL M_PND NUMD LEVEL=1
+ options defa=lu

+ x.mesh w=2.0 n=${XMESH_ELEMS}
+

+ domain num=l mat=l

+ material num=^l silicon

+

+ doping unif n.type conc=lel7
+ doping unif p.type conc=2el7 x.h=1.0
+

+ models bgn srh auger conctau concmob fieldmob
+ output statistics

.OPTION ACCT BYPASS=1 TEMP=27

.DC VPP O.Ov l.OOlv 0.05v

.AC DEC 10 100K 10G

.PRINT I(VNN)

.END

Figure 3.2: Input file - one-dimensional diode DC/AC simulation

nodes. Since the maximum number ofnodes is 500, it follows that the maximum value

of E is 3(500 - 2) = 1494. Also graphed is the order time taken in the first iteration1.

Note that it is largerthan the other three combined. A graphof the time per transient

iteration for the three main components would look similar to Figure 3.4. However,

the load time is slightly higher because the additional time-dependent terms in the

device-level PDEs must be calculated and loaded into the matrix and RHS.

As implemented the load time dominates the factorization and solve times

even for the largest problem sizes. A result from work on circuit simulation predicts

that this should only be true for relatively small sparse systems of equations. The

time to load the system (which dominates initially) grows linearly with problem size,

while the times to factor and solve are expected to grow superlinearly. However, in this

1Because the timer interval is comparable to the individualcomponenttimes per iteration, they cannot
be measured completely accurately. This problem is most noticeable for the order-time curve because the
timing errors are not averaged out over many iterations.

47

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

One-Dimensional Test Diode

VPP 1 0 0.6V SIN 0.6V 0.1V lMegHz

VNN 2 0 0.0V

RS 1 3 1.0

DT 3 2 M_PND AREA=1

.MODEL M_PND NUMD LEVEL=1
+ options defa=lu

+ x.mesh w=2.0 n=${XMESH_ELEMS)
+

+ domain num=l mat=l

+ material num«*l silicon

+

+ doping unif^n.type conc=lel7
+ doping unif p.type conc=2el7 x.h=1.0

+

+ models bgn srh auger conctau concmob fieldmob

+ output statistics

.OPTION ACCT BYPASS=1 TEMP=27 RELTOL=lE-6

.TRAN O.Olus l.Ous

.PRINT I(VNN)

•END

Figure 3.3: Input file - one-dimensional diode transient simulation

situation, the one-dimensional simulations give rise to block tridiagonal systems at

the device-level. It can be shown that the work involved in decomposing such systems

grows only linearly with problem size, so the factor and solve times never overtake

the load time. On the other hand, the time to order the system of equations does

grow superlinearly. This is a result of the general-purpose sparse matrix packages's

inability to exploit the special structure of tridiagonal systems.

The AC analysis breakdown of the time per iteration is very different from

that of DC and transient analyses. This is a result of the iterative method [LAUX85]

that is used to solve the device-level equations in DSIM. Use of the iterative method

allows the L/U factors calculated at the DC operating point to be reused until at

some high frequency, the iteration fails to converge. A switch to direct methods must

then be made [MAYA88]. The iterative methodis dominated by the time to perform

forward andbacksolves, whereas thedirect method requires reloading andrefactoring

48

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

mS

260.00

200.00

150.00

100.00

60.00

0.00

DC CPU Usage

j
k'

w

r ^jt! ^^s~

\'J_

0.00 0.60 1.00 1.60

load

order

factor

solve

kEqns

Figure 3.4: Major components ofper iteration DC time for 1D device

of the matrix at each frequency. Thus, the time per iteration for the iterative method

is dominated by solve time, whereas the time for the direct method consists of the

same components as DC analysis: load, factor and solve times. Because the method

switchover does take place during the AC test, the time per iteration is an average

of the iterative and direct method per-iteration times. Figure 3.5 shows a breakdown

of the simulation time per iteration for the AC test2. Solve time dominates since

most of the frequency points are calculated using the iterative method. The point of

switchover was monitored and roughly 75% ofthe frequency points used the iterative

method successfully. The remaining 25% of the points used the direct method. Thus,

the times for loading and factoring are about one-fourth as long as used when the entire

run is calculated using only the direct method. This has been verified by rerunning

the AC test with the iterative method disabled, thereby forcing all points to use the

2The cause of the periodic increases and decreases in the measured times is unknown. Further
investigation is needed to determine if this behavior is related to some real property of the machine, or
if it is simply an artifact of the measurement process. For the moment, the accuracy of the timing is
adequate for modeling purposes.

49

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

mS

500.00

450.00

400.00

350.00

300.00

250.00

200.00

150.00

100.00

50.00

0.00

0.00

AC CPU Usage

0.50 1.00

•rHf-

1.50

load

factor

solve

kEqns

Figure 3.5: Major components ofper iteration AC time for 1D device

direct method.

For each ofthe three analyses, the total time per iteration was fit using linear

regression to an equation of the form:

T = a-E(S (3.1)

where a and /? are empirically determined constants. Table 3.2 presents the results

of this fitting procedure. The table shows that the growth is slightly superlinear.

With care, these coefficients can be used to predict the amount ofCPU time needed in

Analysis Q P
DC

AC

TRAN

47.5 x l.Oe*1 fxs
22.1 x 1.13*1 us
46.9 x LIB*1 »s

1.164 ± 0.009

1.207 ± 0.018

1.133 ± 0.012

Table 3.2: Average per iteration time as a function of 1D problem size

50

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

other simulation circumstances. For a typical meshof 100 nodes and 294 equations,
the model gives 35.5 ms per DC iteration, 21.1 ms per AC iteration, and 29.4 ms per
transient iteration.

In addition to consuming more CPU time, as problem size grows CIDER also

requires more memoryandlong-term storage. InFigure 3.6the totalmemory allocated
by CIDER during the DC test is graphed. Comparison to the memory usage of the AC
and transient analysis tests shows virtually identical results. TheY intercept is the

DC Memory Usage
MB

3.00

2.50

2.00

1.50

1.00

0.50

0.00

—

0.00 0.50 1.00 1.50

total

kEqns

Figure 3.6: Tbtal memory usage of the 1D DC test

amount of memory used by CIDER for static data such as parameter tables. Jumps

in the curve are caused by the memory manager, which requests memory from the

system in large blocks that are multiples of 4KB. On the right side of the graph, the

jumps are larger because larger blocks are being requested. The main components

of the dynamically allocated memory are the memory to store the mesh, which scales

with the number of nodes in the mesh, and the memory for the matrix and various

RHS vectors, which scales more directly with the number of equations. The amount

of disk storage needed scales almost directly with the number of nodes, with only a

51

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

slight overhead needed to initialize the output file. The constant of proportionality

depends on the number of device internal variables being stored. By default, CIDER

stores 9 double precision values for each node in the mesh, so this constant is normally

72 bytes/node. The minimum needed to be able to restore the device to a saved state

is 4 double precision values: the node coordinate, the potential and the electron and

hole concentrations. For the largest mesh considered in the 1D tests (500 nodes), one

internal state therefore requires a minimum of 16,000 bytes.

3.3.2 Two-Dimensional Simulations

The input file for the two-dimensional DC/AC test, shown in Figure 3.7, is

very similar to the file used for the one-dimensional tests. Only the model definition

has changed. For the transient analysis file (not shown) this is also the only required

change. Two parameters, ${XMESH_ELEMS} and ${YMESH_ELEMS}, are now varied to

change the size ofthe simulation mesh. The parameter ${XMESH-ELEMS} is varied from

4 to 49 in 5 element increments and ${YMESH_ELEMS} varies from 4 to 24 in 5 element

increments. This results in a minimum mesh size of 5 x 5 nodes and a maximum of

50 x 25 nodes. The number of equations, E, is equal to 3(nx - 2)(ny), where nx and

ny are the number ofmesh lines in the X and Y dimensions, respectively. Two ofthe X

mesh lines do not contribute equations because they belong to the contacts. Because it

is not obvious where the contacts go in the 2D case, electrode statements are needed

to define their locations. The doping profile in the X dimension is the same in both the

1D and 2D cases. In the Y dimension, the doping is constant for a givenvalue ofX. As

a result, the one- and two-dimensional files model the same diode. For nx fixed, the

calculated diode current is essentially identical for all values of ny and for the 1D case

when n = nx. For different values of nx, the current calculated varies somewhat since

the solution accuracy does depend on the mesh density in the X dimension.

The circuit analyses performed were identical to those performed in the 1D

tests. However, because different numerical tolerances are used for 2D simulation, the

transient simulation only calculates an average of 60 timepoints, much fewer than the

194 points for the 1D case. While in a real application this discrepancy would need to
be addressed, for the purpose ofmeasuring the time per iteration 60 points is more
than adequate.

52

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

Two-Dimensional Test Diode

VPP 1 0 0.6V AC IV

VNN 2 0 0.0V

DT 1 2 M_PND AREA=1

.MODEL M_PND NOMD LEVEL=2
+ x.mesh w=2.0 n=${XMESH_ELEMS}
+ y.mesh w=1.0 n=${YMESH_ELEMS}
+

+ domain num=l mat=l

+ material num=l silicon

+

+ electrode num=l x.1=0.0 x.h=0.0 y.1=0.0 y.h=1.0
+ electrode num=2 x.1=2.0 x.h=2.0 y.1=0.0 y.h=1.0
+

+ doping unif n.type conc=lel7

+ doping unif p.type conc=2el7 x.h=1.0
+

+ models bgn srh auger conctau concmob fieldmob
+ output statistics

.OPTION ACCT BYPASS=1 TEMP=27

.DC VPP O.Ov l.OOlv 0.05v

•AC DEC 10 100K 10G

.PRINT I(VNN)

.END

Figure 3.7: Input file - two-dimensional diode DC/AC simulation

Figure 3.8 shows a breakdown of the DC simulation time into the same com

ponents used in the one-dimensional case: load, order, factor, and solve times. It is

necessary to present the data using log-log scales because the order, factor and solve

times are all growing superlinearly. Becauseof this the factor time quickly dominates

the per-iteration times in the 2D case. For large problems, the factor time takes be

tween 10 and 100 seconds per iteration. (The ordering time is still only incurred once

per simulation. However, for the largest mesh, the order time is significant in absolute

terms: over seven and a half minutes.) Note that the load time remains larger than

solve time even for the largest problem. It should also be noted that the time per

iteration does not grow uniformly with problem size. Nonuniform growth is caused by

variation in the percentage of fillin created by the L/U decomposition process. This

53

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

DC CPU Usage

16402

le+01

le+00

le-01

le-02

le-03

Eqns

le+02 le+03

Figure 3.8: Major components ofper iteration DC time for 2D device

affects even the load phase, because part of the load time is used clearing all the ma

trix entries at the beginning of the load process. Some of the variation is essentially

random, but the rest is correlated with the shape of the simulation mesh. The test

set contains meshes that are relatively square as well as others that are long and

narrow. The long, narrow meshes are essentially one-dimensional in nature. Thus,

for nx > nyy the time grows almost linearly as nx is increased. For nx « nyy the time

grows superlinearly as both are increased. So even if two meshes give rise to almost

equal numbers of equations, they may not take equal time to factor if one is longer

and more narrow than the other. For example, the 50 x 5 mesh problem takes less

than half the time to factor as does the 25 x 10mesh, even though there is only a 4%

difference in the numberofequations in the twocases. Additional experiments factor
ing test matrices that were derived from a similarmesh-based problem confirmed the
above interpretation of the data.

The results for AC analysis are also affected by the increased importance
of the factorization process. Figure 3.9 shows the load, factor and solve times per

54

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

Analysis
DC

AC

TRAN

a

1.09 x 2.30±1 /is
1.50 x 1.92±1 ^s
0.87 x 2.34±1 ^s

2.181 ± 0.124

2.007 ± 0.097

2.201 ± 0.126

Table 3.3: Average per iteration time asa function of2D problem size

iteration for the 2D AC test. Even though iterative methods are still used 75% ofthe

AC CPU Usage

le+02

le+01

le+00

lc-01

le-02

Eqns

le+02 2 le+03 2

Figure 3.9: Major components ofper iteration AC time for 2D device

time, the factor time becomes the dominant component for large E because it grows so

rapidly.

In Table 3.3 the time per iteration for the three types of analyses is fit to

Equation 3.1. Superlinear growth is reflected by the fact that the p values are all

much greater than one. In fact, these values are all significantly worse than the

results presented in [PINT901, suggesting that development of a better sparse matrix

package might be in order. In addition, the parameter spreads are larger than in

55

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

the 1D case because of the irregularity in the underlying data. Thus, these formulas

are only good for order-of-magnitude calculations of the CPU time. If more accuracy

is required, a formula that accounts for the shape of the simulation mesh could be

developed. For a typical 20 x 20 mesh with 400 nodes and 1080 equations, this model

gives 4.5 s per DC iteration, 1.8 s per AC iteration, and 4.1 s per transient iteration.

The memoryusage in the 2D case is dominated by the memory used for the

sparse matrix L/U factors. Figure 3.10 shows the total memory allocated by CIDER

along with just the memory used to store the non-zero entries in the factored sparse

matrix. Tbtal memory usage is clearly being driven by the L/U factor storage. A fit

MB

20.00

16.00

10.00

5.00

0.00

DC Memory Usage

^

1

J 1
r

/v r~

r
N

-^V
0.00 1.00 2.00 3.00

total

kEqne

Figure 3.10: Tbtal memory usage of the 2D DC test

of the dynamic memory used3 by both the 1D and 2D DC tests to Equation 3.1 gives
the results in Table 3.4. In the 1D case, the model predicts sublinear memory growth
which is causedby the largejumps in the data. Hand calculations easily showthat the

memory growth is at least linear for this problem. Thus, extrapolation of this model

3The static memory usage was determined by running CIDER with no circuit loaded, and then it was
subtracted from thetotal memory in Figures 3.6 and 3.10 toobtain thedynamic memory usage.

56

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

OneD

TwoD

a

3.76 x 1.16±1 KB

0.54 x 1.30*1 KB

0
0.830 ± 0.024

1.265 ± 0.040

Table 3.4: Average memoryused as a function problem size

beyond the range measured is dangerous.

Disk storage per mesh node is larger in the two-dimensional case. First, a
pair of double-precision values is now required to save the the coordinates of each

mesh node. Second, four of the remaining variables (the electric field and the three

current densities) arevector quantities that also use two double-precision values. So
the default disk usage is 112 bytes/node. Disk usage can be minimized byexcluding
nonessential quantities but 40 bytes/node are still required. This is larger than the
minimum in the 1D case because the Y coordinates must be saved.

3.4 Benchmark Circuit Performance

As noted in Chapter 2, CIDER evolved from Codecs. Codecs performance

results are given in [MAYA88] for two DEC VAX architecture machines: the VAX 8650

and VAX 8800. In this section, new performance results for a number of RISC-based

UNIX systems are provided. These performance results are forCIDER, not the original

CODECS code. Due to various incompatibilities between CIDER and CODECS, direct

comparison ofthese new measurements to those reported in [MAYA88] is discouraged.

The goal here is not so much to help decide which ofthe particular machines considered

is best for this problem, but rather to help in understanding how much performance

is available now and how much is likely to be needed in the future.

Table 3.5 summarizes the system configurations used in this performance

test. Each system uses floating-point arithmetic hardware based on the IEEE floating

point standard. All except for the iPSC/860 are available locally at UC Berkeley. The

iPSC/860 system tested is installed in the Applied Electronics Laboratory at Stanford.

Only 1 of its 32 compute nodes was used for this test. The DECstation 5000/125 is

similar in design to the DECsystem 5000/240 used to run the device-level benchmarks

except that the clock rate is 60% higher. This has been verified by running the one-

57

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

Maker DEC HP Intel IBM SUN

Model 5000/125 9000/720 iPSC/860 RS6000/530 4/370

CPU MIPS R3000 PA/RISC1.1 i860XR RS/6000 SPARC

Clock Rate 25 MHz 50 MHz 40Mhz 25MHz 25MHz

Memory 32MB 16MB 16MB 32MB 56MB

OS Ultrix 4.2a HPUX8.07 NX/2 3.3.2 ADC 3.2 SunOS 4.1.1

C Compiler MIPS 2.1 HP C 8.71 PGC 2.0a XLC1.02 SUN 4.1.1

Identifier DEC HPUX IPSC RS6K SUN4

Table 3.5: RISC machine configurations used in test

dimensional DC benchmark test on both and comparing execution times.

It has been noted in [PATT90] that RISC architectures tend to be remarkably

similar. In that book, a comparative study including three ofthe five architectures used

here (the R3000, i860 and SPARC) is presented. The primary difference to note here is

the clock speed variations ofthe CPUs, which have a direct impact on the performance.

The minimum memory size of16MB is sufficient to hold the benchmark data sets in real

memory, eliminating the performance of virtual memory management as a concern.

However, the size ofdata caches is important in determining overall performance, since

data not held in fast cache memory must be accessed from the slower main memory.

In each case, the standard C compiler shipped with the operating system is used to

compile the source code using an optimization level of -02. In the following tables, the

Identifier field ofTable 3.5 is used to differentiate between the various systems.

A set of12 benchmark circuits has been used to exercise CIDER on the systems

tested. Input listings written in the CIDER circuit description format are provided in

Appendix B. The benchmark circuits include the 9 circuits used to test CODECS in

[MAYA88] as well as 3 new circuits that round out the benchmark set. All five of

the numerical model types supported by CIDER are represented. Table 3.6 briefly

summarizes the circuits used. Ofthe circuits that employ one-dimensional numerical

models, several have multiple numerical devices, whereas a single two-dimensional

numerical device is used in the remaining circuits. This limits the execution time ofthe

benchmarkset to a reasonable levelonallthe machines. Larger, moretime-consuming

circuits are considered in Chapter 5. Even for these relatively small circuits, the

number of circuit-level equations is always neghgible compared to the number of

58

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

Circuit

ASTABLE

CHARGE

COLPOSC

DBRIDGE

INVCHAIN

MECLGATE

NMOSINV

PASS

PULLUP

RECOVERY

RTLINV

VCO

Ckt Elts

8

7

8

3

10

24

6

7

7

4

4

10

Num Devs (Type)
2 (ID BJT)
I (2D MOS)
1 (ID BJT)
4 (ID DIO)
4 (ID BJT)
II (ID BJT)
1 (2D MOS)
1 (2D MOS)
1 (2D BJT)
1 (2D DIO)
1 (ID BJT)

6 (ID BJT)

Ckt Eqns
9

13

9

7

13

29

10

11

13

8

7

9

Dev Eqns
354

724

177

2388

708

1947

921

921

1081

1269

177

1062

Table 3.6: Serial benchmark circuit characteristics

MFLOP

379.5

1650.0

462.7

1714.8

127.2

371.5

380.5

198.5

3405.4

3946.9

22.7

731.3

device-level equations. The floating-point operation counts4 , measured in millions
(MFLOP), were obtained using PrxiE on the DEC-MIPS machine [PIX891. Although
actual operation countsmaybedifferent onthe othermachines, the DEC-MIPS results
are used as the standard for comparison purposes.

Despite efforts to ensure that the same computation is performed on each
machine, differences still arise in the results. These may be due to variations in the

instruction sequences generated by the compiler andthe floating-point hardware im
plementations. In addition, for a large code such as CIDER, it is difficult to rule out

undiscovered bugs as a potential cause of these variations. In any event, the bench

mark outputs are not identical on each machine. In Table 3.7, several measures of

the amountofcomputation performed are given. In order, the numbers presented are:
the number of transient iterations, the totalnumberof timepoints, and the number of

timepoints accepted/rejected. An entry of— indicates that the number is identical to

the results for the DEC-MIPS architecture. This allows differing results to stand out

more clearly. It should be pointed out that the timepoint numbers for the PULLUP

and RECOVERY circuit are identical, simply the result of a remarkable coincidence.

Overall, nearly identical results are obtained on all the benchmarks except for the

VCO circuit. This circuit, a voltage-controlled relaxation oscillator, is apparently very

4Since double-precision arithmetic is used throughout CIDER these are double-precision floating-point
operation counts.

59

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

Circuit

System
DEC HPUX IPSC RS6K SUN4

ASTABLE 7157

1766

1457/309

— — — —

CHARGE 1857

456

382/74

1826

454

383/71

— — —

COLPOSC 13775

3617

3044/573

— — — —

DBRIDGE 5144

1714

1627/87

— — — —

INVCHAIN 1378

354

313/41

— — — —

MECLGATE 1587

400

350/50

1641

411

353/58

— — —

NMOSINV 289

86

81/5

265

81

78/3

— — —

PASS 136

34

31/3

135

— — —

PULLUP 560

151

128/23

— — — —

RECOVERY 489

151

128/23

— — — —

RTLINV 711

199

175/24

— — — —

VCO 5408

1239

1036/203

5346

1224

1027/197

5427

1242

1040/202

5311

1222

1025/197

5361

1232

1032/200

Table 3.7: Iteration and timepoint counts on the various machines. Entries are:

total transient iterations, total timepoints computed, and number of timepoints ac
cepted/rejected. An entry of — means that the number is equal to that found in the
DEC column.

60

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

sensitive tovariations in themachine architecture. This may be due tothe particular
behavior of this circuit, which is characterized by fast switching transients followed
by long periods ofslow decay. Positive feedback during the switching would be partic
ularly capable ofamplifying small differences in the machine precision, resulting in
differences in the timepoint counts. However, to thenaked eye, the circuit waveforms
are indistinguishable. For the other circuits, only the HPUX machine gives results
that are different from the others. The reason for this is unknown.

Timing theexecutionofaprogram isnotasimple task. For thistest,execution
times are measured in terms of the amount of time spent executing user-level code.
The time spent executing system calls isnot included, buttypically represents asmall
fraction ofthe total CPU time. Wall clock timeis generally anineffective measure of
performance since UNIX isatime-shared operating system. This means that multiple
programs may becompeting for the CPU at the same time, thereby lengthening wall
clock times. However, on the IPSC system, the only time measurement available
is the wall clock time. Fortunately, the NX/2 node operating system does not allow
time-sharing ofcompute nodes so that using wall clock time is reasonable. Even after

taking these steps to obtain reproducible timing results, the execution times still vary
from one run to another for a given benchmark. This is caused by other programs
interfering with the execution ofCIDER. For example, on the time-shared machines,
all running programs must share the instruction and data caches. If other programs
use the caches heavily, CIDER takes extra time refilling the cache with its own data.

In order to reduce the importance of such problems,each benchmark was timed over

5 runs and the results were averaged. The spread in the total execution times is

typically 1-2% of the mean execution time. However, it is larger for the short running
benchmarks such as the RTLINV circuit. In the worst case, on the HP 9000/720 the
spread is 11% of the mean.

Table 3.8 gives timing results for each benchmark, as well as for the suite

taken as a whole. The numbers are: the total analysis time, the time for just the

transient analysis, and the time per transient iteration. Tbtalexecutiontime depends

strongly on the number and size ofnumerical devices in the circuit as well as the total

number ofiterations performed. A simple model for this is given by:

T = ND. Titer (3.2)

61

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

Circuit

System
DEC HPUX IPSC RS6K SUN4

ASTABLE 312

310

.043

77

76

.011

255

253

.035

128

127

.018

480

477

.067

CHARGE 2295

2257

1.215

490

481

.263

1026

1001

.539

561

550

.296

2358

2316

1.247

COLPOSC 366

365

.026

95

95

.007

313

311

.023

160

160

.012

562

561

.041

DBRIDGE 1991

1976

.384

474

471

.092

1149

1135

.221

612

606

.118

2313

2296

.446

INVCHAIN 102

95

.069

30

28

.020

85

77

.056

42

39

.028

157

147

.107

MECLGATE 297

280

.176

91

85

.052

248

227

.143

122

114

.072

461

434

.273

NMOSINV 549

471

1.630

112

95

.358

233

189

.654

136

115

.398

559

475

1.644

PASS 288

228

1.676

63

49

.363

128

92

.676

73

56

.412

294

232

1.706

PULLUP 5945

5479

9.784

1412

1296

2.314

1857

1688

3.014

1273

1165

2.080

5743

5292

9.450

RECOVERY 7015

6467

13.225

1375

1260

2.577

2150

1952

3.992

1455

1327

2.714

6767

6241

12.763

RTLINV 18

16

.023

5

4

.006

16

14

.020

8

7

.010

27

25

.035

VCO 593

588

.109

176

175

.033

484

477

.088

241

238

.045

908

900

.168

TOTAL 19771

18532

.481

4400

4115

.107

7944

7416

.193

4811

4504

.117

20629

19396

.505

Table 3.8: Benchmark execution times on various machines in seconds. Entries are:

total analysis time, transient analysis time and time per transient iteration.

62

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

Circuit #Dev. Active
System

DEC HPUX IPSC RS6K SUN4
ASTABLE

COLPOSC

INVCHAIN

MECLGATE

RTLINV

VCO

2

1

4

11

1

6

1.5

1.0

2.4

6.2

0.9

3.9

1.7

1.0

2.7

6.8

0.9

4.2

1.6

1.0

2.9

7.4

0.9

4.7

1.5

1.0

2.4

6.2

0.9

3.8

1.5

1.0

2.3

6.0

0.8

3.8

1.6

1.0

2.6

6.7

0.9

4.1

Table 3.9: Relative time per iteration per device for 1D bipolar circuits

where T is the total analysis time, Nis the number ofiterations performed, Dis the
number ofnumerical devices, and Titer is the time per iteration per device. The dif
ference between the total analysis time and the transient analysis time is primarily
contributed by the DC operating point analysis. For some ofthe circuits this operat
ing point time is neghgible, but for others, especially the ones using 2D models, the
operating point time is a significant portion of the overall execution time.

For a given type ofnumerical model, one might expect the time per iteration
per device tobe independent ofthe number ofdevices as suggested byEquation 3.2. In
Table 3.9 the relative time periteration perdevice is shownfor the 6 one-dimensional
bipolar circuits. The time per iteration for the COLPOSC circuit is used as the ref

erence. Also included are the number of numerical devices and the average number
of active numerical devices as described below. The time periteration does not scale
linearly withthe number ofdevices. The primary cause ofthisbehavior is thebypass
algorithm ofCODECS [MAYA88]. Bypassing reuses old values ofthe currents and con

ductances for latent devices, devices whose terminal voltages havenot changed much
from the previous iteration. This allows the expensiveoperations on latent numerical

devices to be skipped, thereby producing significant computational savings. As can

be seen the time per iteration more closely follows the average number ofactive (non-

latent) devices rather than the total number. Equation 3.2 can be modified to account

for this effect as follows:

T = N >D>Titer (3.3)

where D is the average number ofactive devices. In this model, the time per iteration

per device is constant; the number of active devices is what changes from circuit to

63

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

circuit. Another simple extension of Equation 3.2 can be defined for the case when

different types of numerical devices are mixed in a circuit (e.g. in a BiCMOS circuit)

where the time per iteration per numerical device is not constant:

A*

T=YNk'Dk'Titer (3.4)
Jk=i

where K is the number of different models used for numerical devices.

Considering that the benchmarks were chosen to complete in a reasonable

amount of time it is not surprising that the longest run is 7015 seconds, a little under

two hours, for the RECOVERY circuit running on the DEC-MIPS machine. However,

this leads to an important observation: given reahstic time constraints, the amount of

progress made at the circuit level (as measured by the number of timepoints computed)

is limited by the size of the mesh used for the numerical devices. This limits the

complexity of the circuits that can be simulated effectively using CIDER.

Example: Suppose the 1D bipolar transistor in the COLPOSC circuit were replaced

by the 2D bipolar used in the PULLUP circuit. Assume also that using a 2D model

does not change the circuit behavior significantly, so that the iteration count remains

approximately the same. In the same amount of time (365 seconds on the DEC-MIPS

machine), the 2D simulation would complete only about 37 iterations, 0.27% of the

total of 13775 needed. The entire run would take over a day and a half to complete.

While a 1D model might be suitable to use when designingthis circuit, the 2D model
is limited to use during final verification of the design. •

Another way to measure performance is by the amount of computation done

per unit time. Table 3.10 gives MFLOP/S ratings of the computational speed of each

machine. The MFLOP/S rating is computed by taking the total analysis time and

dividing into the FLOP counts given in Table 3.6. At the bottom of the table the

minimum, mean and maximumMFLOP/S ratings are shown. These are compared to

the LlNPACK benchmark and peak MFLOP/S ratings reported in [DONG93]. Because

the DS 5000/125 does not appear in that report, the LlNPACK rating for the DS

5000/200, which has an identical clock speed and CPU, was substituted. Of the 5

machines tested, the RS/6000 shows the most consistent performance across all the

benchmarks. On average, none ofthe machines achieves the performance reported
for the LlNPACK benchmark. The ratings are 4 to 6 times lower for CIDER. This

64

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

Circuit
System

DEC HPUX IPSC RS6K SUN4
ASTABLE

CHARGE

COLPOSC

DBRIDGE

INVCHAIN

MECLGATE

NMOSINV

PASS

PULLUP

RECOVERY

RTLINV

VCO

1.22

.72

1.26

.86

1.25

1.25

.69

.69

.57

.56

1.26

1.24

4.93

3.37

4.87

3.62

4.24

4.08

3.40

3.15

2.41

2.87

4.54

4.16

1.49

1.61

1.48

1.49

1.50

1.50

1.63

1.55

1.83

1.84

1.42

1.51

2.96

2.94

2.89

2.80

3.03

3.05

2.80

2.72

2.68

2.71

2.84

3.03

.79

.70

.82

.74

.81

.81

.68

.68

.59

.58

.84

.81

Minimum

Mean

Maximum

.56

.68

1.26

2.41

3.04

4.93

1.48

1.69

1.84

2.68

2.78

3.05

.58

.65

.84

LlNPACK

Peak

3.7 18

50

9.7

40

15

50

2.7

Table 3.10: Benchmark MFLOP/S ratings on various machines

65

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

is not surprising since the LlNPACK program has more regular data access patterns

that are typical of dense matrix calculations. This results in a high ratio of floating

point operations to total instructions executed. In contrast, Cider is dominated by

the loading and solving of sparse matrices, which involves irregular data access and

pointer manipulation. PIXIE traces of ClDER on the benchmark set show that only 10

to 12% ofthe instructions executed by CIDERare floating-point operations.

The DEC-MIPS machine results show most clearly that the performance is

most correlated with the size of the numerical model used, and not the number of

devices or number of iterations. All the 1D bipolar circuits achievevirtually identical

performance on the DS 5000/125. As the numerical model increases in size, the

performance usually degrades, especially on those machines that rely most heavily on

fast caches to achieve high performance (DEC-MIPS and HPUX). However, this trend

is reversed on the IPSC where the MFLOP/S rating actually improves as model size

increases. This can be partially explained by noting that the IPSC timings include

I/O overhead that is excluded on the other systems. I/O on the IPSC is particularly

slow because it involves communication between the compute node and the IPSC host

computer over a slow Ethernet link. As the model size increases, I/O becomes less

important compared to the model evaluation time, so performance improves.

3.5 Performance Requirements

Every computing environment places limits on the kinds ofproblems that can

be solved in it. Some of these restrictions are due to the computing hardware; CPU

speed, available memory,and disk space are a few. Other restrictions are imposedby

the people usingthe system. In the case ofmixed-level simulation, the most important

of these is the amount of time an IC designer is willing or able to wait for an answer

from the simulator. However, equitable sharing of computing resources amongst all

users may also be important. In particular, one user is not generally allowed to use

more than her fair share of CPU time if it disrupts the work of others. The central

question then for any design tool is whether or not it can provide a useful service to

the designer whileadhering to the restrictions ofhis computing environment.

In this section, anattempt is made to answer thisquestion byemploying the
resourceusage and performance data gatheredin the previous two sections. Estimates

66

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

Item

Timepoints (TP)
Iter/Point (N/TP)
Tbtal Iterations (JV)
Devices (D)
Device Size (E)
Tbtal Equations (DE)
Tbtal FLOPs

Estimate

100 - 5000

3-6

300 - 30000

1-50

150 - 5000

150 - 250K

17M - 196T

Example
1000

5

5000

10

2000

20K

87G

Table 3.11: Estimated size ofmixed-level simulation problem

are made ofthe computation performed when simulating larger circuits thantheones
inthe serial benchmark set. Both the consequences of using bigger meshes and more
numerical devices are considered. Several estimates are made so that reasonable
upper and lower bounds on the amountofcomputation can be determined.

These estimatesare usedin two ways. First, to determine what kindofenvi
ronment isneeded for mixed-level simulation given unlimited computing resources but
limited time for completion ofadesign. For the largest simulations, it is projected that
mixed-level simulation falls into the same class ofproblems as the grand challenges
ofscience and technology [LEWI92], which require supercomputer-or-better levels of
performance to solve. The second use of the resource estimates is to assess which re

quirements are likely to be the most limiting in a variety ofcomputing environments.

3.5.1 Estimated Problem Specifications

In Table 3.11, the key parameters needed to estimate the total number of

floating-point operations performed are given. The number of timepoints and iter

ations per timepoint needed are estimated using the data in Table 3.7. The upper
bounds have been dehberately increased to account for the possibihty of relatively

long simulation intervals. The example case is intended to result in a reasonable

estimate for a medium to large size problem capable of being run on present-day su

percomputers. The number of devices was estimated by examining circuit schematics

from a variety of published sources and counting the devices by hand. The maxi

mum of 50 devices is sufficient to design a wide range of circuits that typically appear

as standard cells in IC designs: digital logic gates, flip-flops, latches, comparators,

67

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

opamps, mixers, multipliers, and input and output buffers. In addition, multistage

ring oscillators from several technologies can be also simulated. This assumes that all

devices need to be modeled with the accuracy afforded by numerical simulation. If the

devices critical to the overall performance are few in number and only these devices are

numerically modeled, much larger circuits can be simulated. The number ofequations

is related to the density of the simulation mesh, and is intended to allow reasonable

quantitative accuracy to be achieved. However, it is recognized that the meshes used

are typically less accurate than those used for pure device simulation where larger

mesh sizes can be tolerated. The total number offlops performed is estimated using a

multistep procedure. The time to solve a problem with E equations is estimated using

the transient analysis iteration-time parameters in Table 3.3. This is then multiplied

by the MFLOP/S rating for a DECsystem 5000/240, which is estimated as the aver

age MFLOP/S rating of the DS5000/125 times the ratio of the respective clock speeds

(40MHz/25MHz). The result is a rough guess for the number of floating point opera

tions per device per iteration that is multiplied by the number ofdevices and iterations

to obtain the flops estimate. From this calculation, the number of flops ranges over

7 orders of magnitude from the smallest to the largest problem. Using the just the

FLOP counts in the table, it seems clear that design using small circuit problems is

certainly feasible on present-day workstations. For example, the RTLINV benchmark

fits the low-end circuit profile fairly well, and takes only 18 seconds to simulate on an

approximately 1 MFLOP/S machine (the DS5000/125). However, the largest problem

is well beyond the capabilities of even the fastest computers built today, and is likely

to remain so for some time to come. How far beyond is explored in the next section.

3.5.2 Estimated Resource Usage

Table 3.11estimates the size of the mixed-level simulation problemslikely to

beencountered during IC design. Thesenumberscan be converted into predictions for

the computational resourcesneededto solve such problems. The performance needed

depends on two factors: the amount of computation performed and the amount of

time allocated for the task. The timeavailable is subject to the expectations ofthe IC
designer. Generally, small problems areexpected torunquickly, whereas some waiting
will be anticipated for larger problems. In other words, the time allocated should be

68

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

Interval Length Seconds

Small Task 5Mins. 300

Coffee Break 15Mins. 900

Lunch Break lHr. 3,600
Overnight 12 Hrs. 43,200
Weekend 2 Days 172,800
Vacation lWeek 1,209,600

Table 3.12: Estimated time for designer idle periods

Item

Estimate

Small Large Example
Time Limit (S) 500 10000 2500

Performance (FLOP/S) 34K 20G 35M

Dynamic Memory (Bytes) 250K 1.3G 81M

Disk Space (Bytes) 18K 38G 7.7M

I/O Bandwidth (Bytes/S) 3.6K 380M 310K

Table 3.13: Estimated resources needed for mixed-level simulation

scaled with the problem size. However, a designer's work schedule is punctuated

with various idle periods that are ideal for performing simulations. The lengths of

these intervals are better estimates of the amount of time that can be set aside for

simulation. Table 3.12 lists some of these intervals along with their durations in

seconds. While at first it may seem optimistic to believe anyone would plan to run

simulations while away on vacation, this interval can be used effectively by other users

who take over the vacationer's workstation in his absence. However, more realistically,

several idle periods of approximately 500 to 1000 seconds are likely to occur during

the working day, and the 40,000 to 50,000 second idle overnight period can be very

useful in practice. However, the designer is likely to expect multiple simulations to be

performed overnight or over a weekend. In Table 3.13, the various estimates made so

far are combined to form machine requirements. Based on the above arguments, time

limits for the smallest, largest and example simulations are estimated as shown. Note

that the performance required must be sustained for the duration of the simulation,

so, based on the figures in Table 3.10, the peak machine performance needs to be 10

to 20 times larger than this. The memory needed is estimated using the memory

69

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

models in Table 3.4. (The static memory usage of approximately 1MB must be added

to these figures.) The lowest disk storage estimate is calculated assuming that 200

bytes per device per timepoint are needed to store the circuit waveforms and no device

internal states are saved. The number of timepoints accepted is assumed to be 90%

of the total number calculated. The upper Umit is estabhshed using an estimate of

100 bytes per mesh node (or 33 bytes per equation) to store the device internal state,

assuming every device state is saved at each timepoint. The same assumptions are

used for the example simulation, except that the additional assumption is imposed

that device solutions are saved for only 10% of the timepoints. The I/O bandwidth is

computed assuming a 1% time overhead is allowed to store the required data. At its

upper bounds, CIDER is estimated to require 20 GFLOP/S processing speed and 1.3GB

ofmain memory from the computing system used. This is comparable to the resources

needed by many of the grand challenge problems of science and technology.

3.5.3 Assessment of Limitations

A look at the characteristics of any of the RISC-based computers described

in Table 3.5 shows that they all have adequate performance and memory to solve the

small simulation problem in the allowed time. In fact, each has excess capacity as far

as this problem is concerned. The required disk space and I/O bandwidth are also well

within the capabilities ofthese computers. This suggests that less powerful computers

such as older RISC machines or personal computers could be used for such problems.

In contrast, the example problem requires more resources in some areas than

is currently possible with these machines. Disk space and I/O bandwidth are both large

but still manageable. The memory needed is noticeably greater than that installed in

these systems. However, it is possible today to obtain compute servers, such as the

DECsystem 500/240, that have more than 81MB of real memory installed. Thus, the

critical limit here is the floating-point CPU performance which is 10 to 50 times too

low on these machines to provide a sustained performance of35 MFLOP/S. Even using

the fastest RISC-based system available today (a DEC 10000-610 Alpha AXP system

running at 200 MHz or 43 MFLOP/S LlNPACK [DONG93]), one can optimistically ex

pect only about 10 MFLOP/S sustained performance for CIDER. The extra performance

gains must be supphed by either moving to a traditional vector supercomputer such

70

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

as a uniprocessor CRAY [DONG861 or a parallel supercomputer such as an Intel iPSC

[IPS92b]. In either case, CIDER would need to be partially rewritten to take advantage

of the special features of these systems.

For the largest problem, even today's fastest estabhshed supercomputers, all

of which employ multiple processors, are only rated with peak performances in the

neighborhood of 20 GFLOP/S [BELL92al. Achieving sustained performance at this

level requires an additional order of magnitude or more of peak performance. Next-

generation parallel supercomputers such as the Intel Paragon and Thinking Machines

CM5achieve this performanceusing massive parallelism(> 1000processors), but have

only been available for a short period of time at a small number of installations. By

way of contrast, large, fast memories with multi-gigabyte capacities are available in

present high-end supercomputing systems. In addition, I/O bandwidths greater than

a GB/S are available. The larger problem is likely to arise when trying to post-process

and visualize close to 40GB ofoutput data.

3*6 Summary

A detailed performance analysis of CIDER has been undertaken. Execution-

time profiles show that 99executing device-level code. Tests of the device-simulator

performance of CIDER show that the time per iteration is on the order of 10's of mil

liseconds for 1D numerical models and on the order ofseconds for 2D numerical models.

One to twenty MB ofmemory are used per simulation.

A set of 12 benchmark circuits have been run on 5 different RISC-based

computers. Tbtal run time for the benchmark set is between 4000 and 20000 seconds.

Converting to execution speeds, the 5machines have sustained performanceofbetween

0.7 and 3.0 MFLOP/S.

Using the preceding performance and memory usage measurements, esti

mates ofthe resource requirements needed to enable mixed-level-simulation-based IC

design have been made. Existing RISC-basedmachines are adequate forsmall design

problems. However, the largest problems, estimated to need sustained performance in

the 10's of GFLOP/S range, are beyond the capabihties of even the fastest computers

built today. Such very fast computers all use parallelcomputing to achieve high levels

of performance.

71

CHAPTER 3. PERFORMANCE ANALYSIS OF CIDER

Given this assessment of the needs of CiDER and the importance of parallel

computing in meeting those needs now and in the future, one obvious research direction

is to explore the potential for exploiting paralleUsm in CIDER. This is the subject of

the next chapter.

72

Chapter 4

Parallel Algorithms for

Mixed-Level Circuit and Device

Simulation

4.1 Overview

In the previous chapter, it is demonstrated that the performance and memory

capacity of present-day engineering workstations strongly limit the size and number

ofmixed-level simulations that can be used to design a particular circuit. In addition,

projections indicate that this will remain true even as individual workstations become

more powerful. In the absence of more efficient simulation algorithms, it becomes

necessary to employ larger, more powerful computing systems to reduce simulation

time or increase problem size. In particular, scalable, high-performance computing

(SHPC) systems such as the Intel iPSC/860 are a promising alternative for expanding

the domain of applicability ofmixed-level simulation. These systems employ parallel

processing technology to increase performance beyond that achievable by a uniproces

sor system. The number of processing elements can number into the 1000's; however,

a system with 10 to 100 elements would be more typical.

In this chapter, parallel algorithms for mixed-level circuit and device simula

tion are presented. Such algorithms are needed to exploit the multiple processing ele

ments in an SHPC system. First, the parallehsm available when using direct-method

73

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

circuit and device simulation is exposed. Algorithms are drawn from previous research

which exploit parallehsm at either the circuit or device level. Each algorithm is as

sessed in terms of its appropriateness for mixed-level simulation. Emphasis is placed

on determining each algorithm's strengths and weaknesses in a distributed-memory

computing environment. Based on this analysis, an architecture and algorithms for a

parallel mixed-level circuit and device simulator are proposed.

4.2 Terminology for Parallel Computer Architectures

Over the years, a wide variety of computers have been developed that are

based on parallel architectures. In this work, attention is restricted to those computers

that are capable of executing separate instruction streams with separate data sets on

each processor. Such multiple-instruction multiple-data (MIMD) machines [FLYN66]

are readily available commercially, largely because they are sufficiently general in

capabihty to be applied to a number of interesting problems. Within this class of

machines, there is still considerable variation in the architectural details. The machine

taxonomy used in [BELL92a] is used in this work to broadly classify these machines.

Two attributes related to memory organization distinguish between the differ

ent types of MIMD computers. First, the physical memory can be either centralized or

distributed throughout the machine. In either case, delays are incurred iftwo or more

processors need access to the same piece ofdata. Central memories are difficult to scale

to large numbers of processors since a connection must be provided for each one and

sufficient memory bandwidth must be available to avoid having memory access time

become a bottleneck in the computation. On the other hand, distributed memories can

be scaled to large sizes since only a few (often just one) processor-memory connections

are needed for each portion of the memory. SHPCs are therefore distributed-memory

machines. Because there are no direct connections between distributed memories, a

separate communication network must be provided to allow processors to exchange

information.

The second distinguishing attribute is the program's view of the memory. A

multiprocessor employs a single address spacethat can be supported in hardware using

either central or distributed memory. A multicomputer has multiple address spaces

and either the programmer or the compiler must generate explicit message-passing

74

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

commands tocommunicate data between computers. While there are many examples
ofdistributed-memory multicomputers, no examples ofcentral-memory multicomput
ers are identified in [BELL92al.

The distinctions between central or shared memory and distributed mem

ory at the hardware and software levels have not been well resolved in the parallel-
processing community. Part of the reason for this is that one class of hardware can

often beemulated using a different type ofhardware. As a result, it is easy tobecome
confused when discussing differences between the various architectures. In the fol

lowing, the conventionhas been adopted that when used alone the terms shared and

distributed memory always refer to the programmer's view of the memory. This is
appropriate since mostofwhat follows is concerned with howto program parallel ma
chines. When necessary, implementations onspecific typesofhardware are identified
usingthe full name ofthe hardware type(e.g. X was implemented onY, a distributed-
memory multicomputer). The term processor by itself refers to a single processing
element of either a multiprocessor or a multicomputer.

4.3 Obtaining High Parallel Efficiency

In a parallel algorithm, the problem to be solved is subdivided into smaller

tasks in the hope that overall execution time can be reduced by executing multiple
tasks at the same time. The degree to which an algorithm is successful in achieving
this goal is determined by several factors:

• Problem Parallelism : the number of tasks that can be executed independently

at any given time.

• Problem Granularity : the ratio between the number of computations in a task

and the average amount ofdata transferred between tasks.

• Machine Parallelism : the number of processing elements used to solve the

problem.

• Machine Granularity : the ratio between the computation rate and the commu

nication/synchronization rate of the machine.

75

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

• Load Balance : the degree to which the tasks are evenly distributed amongst the

processors.

The best measure of the effectiveness of a parallel algorithm is its speedup S:

where Ts is the execution time of the best serial algorithm and TP(P) is the execution

time of the parallel algorithm on P processors. This measure reflects the actual

improvement that the end user will see. However, it is often more convenient to talk

in terms of the algorithmic speedup Sa, the ratio of the execution time of the parallel

algorithm on one processor to the time on P processors:

5«(P) =gg (4.2)
The ratio between these two, Sa/S, is a constant that reflects the performance lost

when moving from a serial algorithm to a parallel one. This efficiency ratio, na, is

always less than or equal to one for three main reasons. First, the parallel algorithm

may be inherently less efficient on a uniprocessor, but still be chosen because it exhibits

better speedup than the best serial algorithm. Second, even if the two algorithms are

essentially the same, there is generally some overhead in the parallel algorithm in

order to manipulate the task structure. Finally, by definition, the serial algorithm

used has to be the best known. If the parallel algorithm is faster on a single processor

than the previous best serial algorithm, then it becomes the best serial algorithm.

The following equation is very useful in understanding the performance gains

offered by parallel processing [PATT901:

1

«i-m£)

where F is the fraction of the execution time of the original problem that can be run in

parallel on P processors. This formula, known asAmdahl's Law, implies that there is

a limit to achievable speedup determined by the sections of code that are essentially

serial in nature. However, in practical cases, the serial portion can be made small

enough that large speedups can stillbe attained. One situation where this happens is
when the parallel fraction grows with problem size faster than the serial fraction. For

example, in mixed-level simulation, the device-level execution time can be scaled up
by using larger meshes, while the circuit-level time remains constant.

Sa = „, m • F^ (4.3)

76

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

Amdahl's Law as shown assumes that perfect speedup is obtained on the

parallelized section of code. An alternative version of Amdahl's Law that takes into

account nonideal speedup ofthe parallel fraction is:

5°= (U-O +s^) (4-4)
'•'par

where S£ar is the speedup of the algorithmused for the parallel section of code.

Machine parallelism and granularity are determined by the architecture of

the target system and are relatively independent of the problem solved. (The total

number of processors available is fixed, but less may be used if it is known they willbe

ineffective.) The problem parallehsm is determined both by the total number of tasks

and the dependencies between the tasks. Since the total execution time is fixed, as

the number of tasks increases, the computation size per task decreases. In addition,

the amount ofcommunication and synchronizationneeded generally increases as the

size of the tasks decrease. Thus, problem parallelism and problem granularity are

intricately related, and attempts to improveone at the expense of the other may not

lead to reduced run times. Finally, load balance is affected by how well the problem

"fits" the machine. A multiplicity of factors affecting load balance complicates the

problem of scheduling, the mapping of tasks onto specific processors. In general, any

nonhomogeneity in the problem, the machine, or the mapping of the problem onto

the machine leads to load imbalance. Problem nonhomogeneities include differing

task sizes, differing amounts of communication, and different numbers of tasks at

different stages of the algorithm. Machine irregularities include heterogeneous ma

chine architectures, different clock speeds for processors with the same architecture,

and different amounts of memory on different processors. Mapping imbalances occur

when the problem parallehsm is not evenly divisible by the machine parallelism.

One way to visualize the dependencies between tasks is a task graph, as

shown in Figure 4.1. Each node in the graph corresponds to one task in the overall

computation. Each arc corresponds to a dependency between the node at the beginning

of the arc and at the end of the arc. The beginning node must execute to completion

before the end node can begin execution. Nodes are labeled with a task identifier and

the estimated number ofoperations needed to perform the task. Arcs are labeled with

the amount ofcommunication between the two tasks. A lower bound on the execution

time can be obtained by assuming that an unlimited number of processing elements

77

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

Figure 4.1: Example task graph

are available and that communication is instantaneous. In this case, total execution

time is equal to the maximum sum of the task times on any path that traverses the

graph from beginning to end [LEWI921.

Inevitably, some of the tasks must be executed serially on a single processor.

How the results of such serial tasks are accessed depends on the memory model ofthe

machine. In a shared-memory model, serial tasks can be performed by a single pro

cessor and the results left in the shared-memory where all processors can gain access

to them. On a distributed-memory machine, the task is still executed on one processor

with the results being passed to the other processors via explicit message-passing. In

some cases, it may be advantageous to avoid message-passing by distributing the task

input data instead and letting each processor compute the results on its own. This can

conceivably save time if the volume of input is less than the volume of output. This

optimization is known as task duplication.

4.4 Available Parallelism

In the previous section factors affecting parallel efficiency are identified. One

of these is the amount of parallelism inherent in the problem. Maximum paralleUsm

is achieved when the computational tasks can no longer be subdivided. However,

since parallehsm and granularity are interdependent, it is typical to approach the

problem by discussing different levels of parallehsm. Figure 4.2 shows the three

78

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

^ A*. Job Level
X

1 *
1 CO

ill 1 """'

•p w Circuit Level 1 "s 1

o

0 ' Device Level

Figure 4.2: Levels of available parallelism

main levels of parallelism that are observed in circuit design based on mixed-level

simulations. At the design level, the overall design flow is divided into a number

ofphases (for example, worst-case analysis or optimization), where each phase may
require a number ofsimulations. Each task at this level then corresponds to a complete

analysis of the circuit. At the circuit-level, an analysis is decomposed into the steps in

the direct-method circuit-simulation algorithm: CKTload, CKTfactor, CKTfeolve, and

CKTtrunc. Each task operates on some part of one of the main circuit data structures:

the per-device, per-model and per-instance lists or the circuit's sparse matrix and

RHS. At the device level, tasks are created by subdividing the work associated with

each numerical device: DEVload, DEVfactor, DEVsolve, DEVmisc, DEVcontrib, and

DEVtrunc. Parallelism is achieved by partitioning either the mesh or the device's

matrix and RHS.

In theory it is possible to exploit parallelism at more than one level at the

same time. For example, design-level parallelism and circuit-level parallelism can

be exploited simultaneously by running multiple simulations and distributing each

simulation across a subset of the total pool of available processors. By using such tech

niques, problem parallelism can be increased in situations where there are insufficient

tasks to keep all the processors busy. However, more sophisticated data structures and

scheduling algorithms will be needed to manage this multi-level parallelism.

Example: Suppose a worst-case analysis of a circuit requires simulations at low,

nominal, and high temperatures, a total of three simulations. In addition, suppose

that the circuit contains two identically modeled numerical devices. Assume that each

analysis takes two units of computation time, one for each numerical device. The

79

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

parallehsm available is six, the product of the design- and circuit-level parallelisms. •

4.5 Design-Level Algorithms

Depending on the specific phase of the design process, tens to hundreds of

tasks may be produced. Since tasks at the design level consist of individual circuit

simulations, little specialized software needs to be developed to manage these jobs.

Instead, the existing batch processing faculties ofthe operating system can be used for

job control. In a UNIX environment, Bourne and C Shell scripts can be used to man

age the necessary files and start the jobs. On a multiprocessor, job control software is

generally built into or layered on top of the operating system. For example, the DYNDC

operating system used by Sequent central-memory multiprocessors automatically dis

tributes jobs from a shared run-queue. In a networked IC design environment, the

RSH command can be used to start jobs asynchronously on remote machines in the

network. Alternatively, a simulation server process can be used on each workstation

that accepts and executes jobs that are submitted in the form of text input files. Load

balancing can be achieved by having the user choose where to submit jobs. However,

this can become a bottleneck if many jobs are needed, since each one requires time-

consuming and tedious direct user intervention. A network queuing system such as

DQS [GREE931 that runs on top of the existing workstation operating system may be

preferred. Such a system generally handles jobs from multiple sources and is prefer

able in a multiuser environment. In the longer term, a true, distributed operating

system such as SPRITE [OUST88] may become standard for managing processes in a

networked environment.

Ideally, whatever technique is used to distribute the jobs, the details of the

implementation should be hidden from the user. One way to accomplish this is by

integrating file and job management facilities into an IC design framework such as

is done in NECTAR [KELL90]. If the user-interface is well-planned, it will not need

to change when the underlying job distribution mechanism does. The design of such

a framework, specifically one that supports traditional IC design tasks as well as

technology CAD activities is beyond the scope of this thesis. For more information,
the reader is referred to [CHIN92].

The primary advantage of design-level parallehsm is that an optimized se-

80

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

rial mixed-level simulator can be used to run the jobs. Programmer productivity is
enhanced because software development tools for serial machines are currently better
than those for parallel machines. Updates and enhancements to the serial code are

immediately available in the parallel environment. The performance ofthis approach
is limited by a number of factors. First among these is the overhead associated with

starting a job on a machine other than the user's personal workstation. Time is re

quiredto send both the executable and input files to the destination processor, and to
return the output files to the user. Typically, this will take on the order of seconds to

accomphsh. Adesign phase consisting ofmany very short jobs will notachieve appre
ciable speedup using thisform ofparallelism. Fortunately (or unfortunately depending
onone's perspective), as shown in Chapter 3,mixed-level simulations typically require
minutes to hours of CPU time, so startup overhead is not a major problem. However
the original motivation for employing parallel processing is that the performance and
capacity of existing workstations is inadequate. Design-level parallel processing im
plicitly assumes the opposite of this belief: that mixed-level simulations can be run

on a single processor effectively. Thus, design-level parallehsm is likely to be limited

to circuitscontaining very few numerical devices. This limitationcan be overcome by
mixing design-level parallehsm with circuit-levelparallehsm as suggested earlier.

Example: Suppose that it is desired to obtain parameters for a compact MOSFET

model so that it closely approximates the behavior of a numerical model. Two-

dimensional MOSFET simulations are required at a number of channel lengths and

bias conditions in order to obtain the geometry and voltage dependences of the model

parameters. A mixed-level simulator used as a device simulator can obtain the nec

essary data. Since only one numerical device is simulated in each job, the job-per-

processor approach will work well. Overhead is not a concern since 2D simulations are

being used. •

4.6 Circuit-Level Algorithms

If the abnormally large computational needs of numerically modeled devices

are ignored for the present, then parallel mixed-level simulation is essentially identical

to parallel circuit simulation. Parallel algorithms for direct-method circuit simulation

81

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

have been the subject of intensive research in the past decade, and the available

literature has become extensive. Techniques have emerged for each of the major steps

in the circuit simulation algorithm. Of these, CKTload and CKTfactor/CKTfcolve are

the most important. The time for sparse-matrix loading grows linearly with circuit

size, while sparse-matrix solution time grows as 0(Nlml) to 0(N1S), where N is the

number of equations in the system [NEWT83]. The time for timestep calculation

and convergence checking also grow linearly with problem size but the constants of

proportionality are much lower.

Example: Figure 4.3 shows the time per iteration taken for both circuit loading and

Circuit Matrix CPU Usage

16401

10400

le-01

lo-02

le-03

le-04

lo-05

/

/
16400 16401 16402 16403 16404

load

factor

Eqns

Figure 4.3: Time per iteration to load and factor circuit matrices

solving under the following assumptions:

The time to evaluate a compact device model is 1.0 ms/iteration.

• The time to factor the matrix goes as 10.0/zs •N1A.

• There is one equation for every two devices in the circuit.

82

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

These assumptions are consistent with the results presented in [QUAR89]. In this

situation,the problem size mustbeat least565,000 equations before CKTfactor begins
to dominate the overall runtime. Since thedata in [QUAR89] only cover therange up
to about2,000 equations, in reahstic situations the load time will always dominate. •

The parallel techniques for matrix loading and solution are described next.

In 1989, the problem had been sufficiently well studied for a review paper to appear
in the Proceedings of the IEEE [SALE891. Tb a large degree, what follows summa

rizes the information found therein. Algorithms have been developed for a variety of
high-performance computer architectures. Early research focused on the use of vec

tor processors [VLAD821, [YAMA85] and special-purpose hardware [KO86J. Shared-

memory multiprocessors have been used in a large number of studies: [JAC087],
[BISC861, [COX911, [SADA87], [CHEN881, [CHAN88], [YANG901. In addition, algo
rithms and implementations for distributed-memory multicomputers have been re
ported [YUAN881, [TROT90], [PACH91]. Tb date, algorithms for scalable, distributed-

memory multiprocessors like the Kendall Square Research KSR1 havenot appeared.

4.6.1 Parallel Model Evaluation

It is well known that the task of linearizing and evaluating device models is

highly parallel [JAC087]. Difficulties arise when the individual device contributions

must be loaded into the circuit matrix and RHS. Some kind of synchronization or

communication is needed to ensure that the final system accurately reflects the state

of the Newton-Raphson iteration. Two basic approaches are available for controlling

access to the matrix and RHS: lock-based methods and barrier-based methods. Barrier-

based methods are applicable to both multiprocessors and multicomputers; locks can

only be employed on multiprocessors.

Lock-Based Methods

In a lock-based algorithm, access to certain critical sections ofcode is restricted

to the one process which that has acquired rights to the lock. If another process

attempts to acquire the lock, it blocks until the current owner releases the lock. In this

way, it is guaranteed that no two processes are executingthe critical section at the same

time. If the portion of each model-evaluation routine that accesses the circuit matrix

83

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

and RHS is protectedby a lock, the final system will be correct [JAC087]. However, this

approach suffers from the drawback that the time to acquire and release the lock is not

always neghgible compared to the time spent executing in the critical section. This is

especially true of distributed-memory multiprocessors, where the memory for the lock

will not necessarily reside locally on the processor, necessitating a non-local memory

access to acquire the lock. One way to circumvent this problem is to group several

model evaluations together into a single task and to load all the contributions for the

task after acquiring the lock. This decreases the importance oflocking and unlocking,

but increases the length of the critical section. The inherent problem granularity has

not changed; only the overhead in the algorithm has been reduced. A better approach

is to exploit the observation that most of the time processors will not be trying to access

the same locations in the shared memory. By providing multiple locks, one for each

row of the matrix, the likelihood of simultaneous locking is diminished. However, the

number of locking operations is increased because each device must access multiple

rows in order to load all its contributions. It will also be necessary to find groups of

devices that access the same rows in the matrix in order to form larger tasks.

Barrier-Based Methods

A barrier is used to prevent any one process from continuing onto the next

phase of a computation until all processes have finished the current phase, thereby

synchronizing the processes. In the context of circuit matrix loading, a barrier is used

to prevent any process from computing the final entries of the circuit matrix until all

contributions have been calculated. This approach thus requires considerable extra

memory while temporarily storing these contributions. (Afactor of 30% is reported in

[YANG90].) The ultimate matrix entries are computed by summing the contributions

toeachentry in parallel. Ona multiprocessor, the entries are collected intoa groups of
equal size, and each groupis assigned to a differentprocessor. Theoretically, the time

for this stepgoes as 0(NC/P), where N is the number ofmatrixentries, Cis an upper
bound on the numberofcontributions per entry, and P is the number ofprocessors.
However, this result ignores the effects of contention in a bus-based multiprocessor
and non-uniform memory-access time in a distributed-memory multiprocessor. As a
result, actual performance is likely to beworse than this result suggests.

84

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

On a multicomputer, the individual contributions will reside inthe separate,
local memories of the processors. Message-passing is then needed to transmit the
partial entries between processors. Inorder to simplify the coding of this step, it is
desirable to provide acopy ofthe entire sparse matrix on each processor on the system.
All processors then have a uniform view ofthe problem. In the first halfofthe matrix
load operation, each processor loads the contributions for the devices assigned to it into
itslocal copy ofthe matrix as they are computed. Ifnecessary, the elements are copied
from the linked-list sparse-matrix data structure to a buffer array prior to message
passing. Efficient global reduction operations can be used to sum the arrays in0(log P)
time per entry, or 0(N log P) in total. This assumes that the time to perform each step
ofthe global reduction is constant. On mesh-based multicomputers such as the Intel
Paragon, the necessary data will not immediately be available inadjacent processors,
and extra time will be needed for data transfer.

Special Considerations

The special characteristics of the matrix load problem arising from mixed-
level simulation have been ignored. In particular, it has been assumed that the time

permodel evaluation is relatively constant for alldevices, and that the time toupdate
the sparse matrix is comparable to the model-evaluation time. However, numerical
devices require the expensive solution of partial differential equations in order to

compute their contributions to the circuit matrix. In Chapter 3, it is shown that this

step dominates the overall computation timeand that the time per device is dependent
on the size ofthe mesh used to discretize the device, or the related measure of the size

of the device-level sparse system. In light of this, the time to evaluate the compactly

modeled elements of the circuit is hkely to be negligible. Only when the number of

numerical devices is a very small fraction of the total will this cease to be true.

Example: Assume that the CPU time to evaluate a compactly modeled semiconductor

device is 300.0/zs per transient iteration. Then, when using the execution time models

of Chapter 3, a typical 1D numerical diode with a 100 node mesh that takes about 30

ms per transient iteration is equivalent to 100compactdevices. Atypical 2D numerical

diode with a 20 x 20 mesh that takes roughly 4s per transient iteration is equivalent

to about 4s/300^s « 13,000 devices. •

85

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

If the compact devices and matrix access are ignored and the numerical de

vices are each assumed to take the same time to evaluate, an upper bound on the

speedup can be obtained using the following equation:

S(D,P) =£r (4.5)

where D is the number ofnumerical devices. Two limiting cases are easily identified:

S « P when D> P, and S = D when D < P. For small circuits, the latter limit is the

more important one. (In the extreme case of a circuit with only one numerical device,

apparently no parallehsm is available using this technique. However, tiny speedups

may be observed due distribution of the compact devices.) The various assumptions

leading to this result need to be examined. The assumption that the compact-model

evaluations are neghgible is generally true, but special cases exist where the time per

iteration can be considerable (for example, lossy transmission-line models [ROYC91]).

In addition, the assumption ofuniform evaluation time for numerical models is violated

when different mesh sizes are used for the various devices. This can occur in real

circuits, as shown later in Chapter 5. In such cases, the speedup is given by:

S(P) =-^p~ (4.6)
maxpi p

where Tp is the time to evaluate the devices assigned to processor p:

T»=YTd
donp

and Td is the non-unit time needed for device d. In this equation, no distinction is made

between numerical and compact devices; this provides a way to incorporate the effects

ofcomputationally expensive compact devices. The numerator is simply the total time

to evaluate all the devices. The denominator is the maximum time spent by any one

processor evaluating the devices assigned to it. Speedup is best when the maximum

time for a processor is minimized. This is a minmax optimization problem [LEWI92]

and is developed further in Section 4.9.

The assumption that the matrix accesstime is neghgible is now examined. For

a multiprocessor architecture with uniform-memory accesstime, the time to loadten to

twenty entries in the matrix and RHS is far outweighed by the time to calculate those

entries. Even the most inefficient locking methods are likely to achieve reasonable

86

CHAPTER4. PARALLEL CIRCUITAND DEVICE SIMULATION

performance. However, on systems where memory is distributed, the time to access
the data iscritically dependent on the speed ofthe underlying interconnect layer. The
sparse-matrix access time will be relatively low only if the volumeof communication

is low and the bandwidth is high. Formixed-level simulations, the circuits simulated
are relativelysmall. Specifically, if a small circuit is defined as one where the matrix
loading time isless than the matrix solution time, then evenifordinary compact models
were used, the circuits would be considered small. Adding the orders ofmagnitude
increase in load time due to numerical devices solidifies this observation, and also
increases the range of circuits that are considered small. Another definition of a
small mixed-level circuit is one where the average size ofthe device-level matrices is
greater than the size ofthe circuit matrix. Bythis definition, the circuits also would be
considered small. Thus, the amount ofdata accessed remotely islikely to be fairly low.
However, incertain distributed-memory multicomputers, thespeed oftheinterconnect
hasnotbeen scaled withthe speed ofthe processors, andspecial care mustbetakento
ensure that anabsolute minimum ofmessage traffic isgenerated. Practical examples
of this problem are demonstrated in the next chapter.

4.6.2 Parallel Sparse System Solution

Compared to parallelizing matrix loading, solving sparse systems of equa
tions is much more difficult. The algorithms required are more complex, and the

speedup is not as good. This is due in part to the complexity of optimized serial al

gorithms for L/U decomposition, and forward and back substitution. In the class of

all sparse-matrix problems, circuit-matrix problems are particularly difficult because

they typically involve nonsymmetric, unstructured, indefinite sparse matrices with

potentially complex-valued entries. For a survey of the available parallel algorithms

for symmetric, positive-definite systems, the reader is referred to [HEAT91]. Some

of the methods described there can be adapted to nonsymmetric systems, although

specialized algorithms for circuit simulation have also been developed [JAC0871. Re

spectable speedup and efficiency have been achieved on small numbers ofprocessors.

For example, efficiency between 70% and 80% is about average for up to 8 processors.

No good speedups on large numbers of processors have been reported, primarily at

tributable to the fact that the researchers seem not to have had access to large parallel

87

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

machines. Nonetheless, as the following example demonstrates, it is clear that the

existing methods will not perform well on larger machines.

Example: A parallel efficiency of 75% is achieved on 8 processors. When Amdahl's

Law (Equation 4.3) is used in reverse, the fraction of the solution parallelized is

approximately 95%. The maximum speedup is about 20, and the efficiency drops to

50% at 20 processors. •

Fortunately, as described in the Section 4.6.1, the matrices encountered at the

circuit-level in mixed-level simulations are typically small. Recall from Chapter 3 that

less than 0.5% of the total time is spent in the CKTfactor and CKTbolvephases for the

three example execution profiles. Thus, although sparse-matrix solution is of great

concern in stand-alone circuit simulation, it is much less important in mixed-level

simulations. As a result, respectable overall speedup can be achieved even when the

sparse-matrix solution is performed serially. Only for atypically large circuits that are

run on scalable parallel machines will the circuit-level matrix solution time become a

problem. Then it is unclear whether the existing methods will be able to provide even

small speedups on such a large number ofprocessors due to communication overheads.

4.7 Device-Level Algorithms

At the circuit-level, mixed-level simulation creates an abnormal balance be

tween load and solve times. At the device-level this is not the case. In almost all ways,

the device-level problem is identical to the problem of parallelizing direct-method de

vice simulation. However, comparatively speaking parallel device simulation is much

less well studied than parallel circuit simulation. The most notable example of a

parallel device simulator is PARALLEL Pisces [LUCA87a]. Other applications ofpar
allel machines to device simulation have focused on the iterative methods used in

three-dimensional device simulation [WU91], [WEBB91].

For the most part the operations needed for device simulation have direct

analogs at the circuit-level. The device-level matrix is loaded, factored and solved,
convergence is checked, and a new timestep is chosen. The two major additional
steps are norm-reduction during DC analyses, and numerical calculation of currents

and conductances. However, for direct-method device simulation, these extra steps

88

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

can be formulated as additional load and solve steps, reusing the already computed
L/U factors ofthe device matrix. Thus, the loading and solving algorithms for circuit
simulation are reconsidered in hght of the different tradeoffs involved in device sim
ulation. Inparticular, parallel sparse-matrix factorization becomes a necessity at the
device-level. Consequently, a summary of the matrix factorization technique used in
Parallel Pisces is provided.

4.7.1 Parallel Element Evaluation

In the context ofmixed-level simulation, there are two major differences be
tween loading at the circuit-level and loading at the device-level. First, whereas the
number ofdevices, especially numerical devices, is small at the circuit-level, this is
not necessarily true ofthe number ofelements ina device's mesh. As noted in Chap
ter 3, typical device meshes contain hundreds to thousands ofelements. At the same

time, theworkload perelement is more uniform thanat thecircuit-level. In general,
the same physical models are evaluated across the entiremesh, and each element is
the same shape as all the others. For example, the diode simulations in Chapter 3
result in nearly uniform element loads. A major exception to this occurs when dif
ferent material domains are contained in one device, as in a MOSFET. In this case,
the carrier-continuity equations do not need to be solved in the insulating regions,
and the physical models forcurrent terms need not be evaluated. Another exception,
also important in MOSFETs, is the physical model for the inversion-layer mobility.

This model is only applied in parts of the device and takes longer to evaluate than

the standard field-dependent mobility model used in the rest of device. As a result

of these factors, inversion-layer elements are more expensive to compute than other

semiconductor elements, which are more expensive than insulator elements. Dif

ferences in execution time for different element types should be taken into account

when assigning the element evaluations to the processors. However, other concerns

may limit the ability to distribute expensive regions of a device across the system.

Foremost among these is the problem that the time to access the sparse matrix can no

longer be neglected. In addition, the larger size of the device-level matrix demands an

approach which is more memory efficient than the naive replication approach used for

the smaller circuit matrix. A loading technique that is memory efficient and does not

89

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

require the use of locks is now presented. A second method closely tied to the factor

ization method used in PARALLEL PISCES is presented later. Both rely on the fact that

the device-level matrix is derived from a spatial discretization with only local coupling.

As such, they both would need to be modified in order to accommodate the non-local

coupling introduced by the inversion-layer mobility model. It is not immediately ap

parent howthis might be accomplished. This local coupling requirement explains why

this technique is not used more in circuit simulation, since feedback loops, clocks and

supply lines all introduce non-local coupling.

Element Coloring Method

Coloring is a technique used to divide up the device's elements by assigning

them to groups such that no two groups have elements which share nodes or edges

in common. It was originally developed for use on vector machines like the CRAY

computers [PINT90]. In Figure 4.4 a rectangular mesh has been divided using four

Figure 4.4: Coloring of a rectangular mesh using four colors

colors, the minimum necessary. Because there is no coupling between elements in the

different groups, there is no need to worry about two processors accessing the same

location in the matrix as long as the processors are synchronized between each group.
If the number ofelements in each group is large enough, the barrier overhead will be

negligible. (On a vector processor, this technique reduces the cost ofvector startup
operations.)

90

CHAPTER 4. PARALLELCIRCUIT AND DEVICE SIMULATION

Unless special efforts are made, the need for two processors to access the
same memory location restricts this method to use on multiprocessor architectures.
Presumably ifelements are known to have different computation times, the groups
can be created with this in mind. However, on a distributed-memory multiprocessor
ifelements ofdifferent colors that are spatially adjacent arenot assigned tothesame
processor, many non-local memory accesses will be generated, degrading the perfor
mance ofthe algorithm. This suggests a different method for creating groups based
on a spatial decomposition of the mesh. This method is described next.

4.7.2 Distributed Multifrontal Factorization

PARALLEL PISCES uses methods for matrix loading and factorization that are
based on the spatial coherence of the underlying problem. Because the same under
lying conceptual framework isused for both tasks, the algorithms end up being fairly
well-matched. However, the load balancing problem is not identical for both parts,
and conflicts may arise when partitioning the device.

Thebasic idea behind the technique is nested dissection ofthe problem mesh
[GEOR731, a divide-and-conquer method of computing. Nested dissection is a well-
known technique for ordering the equations in a sparse matrix in order to minimize
matrix fill-in. It proceeds by finding a set of nodes in the mesh which divide the mesh

into two halves. The equations are ordered by first considering all the nodes in one

half, then the nodes in the other half, and finally the nodes in the separator. Ordering
of the nodes in the two halves is performed by recursively applying the dissection

procedure to each half. The result is a nested, bordered block-diagonal (BBD) matrix

structure as shown in Figure 4.5. The generation and solution of such matrices on

a distributed-memory multicomputer is described in [LUCA87bl. This same matrix

structure has been used at the circuit level on both a central-memory multiprocessor

[CHEN88] and a distributed-memory multicomputer [YUAN881. A related circuit-

level implementation is described in [COX911.

The advantage of the nested BBD structure is that it can be decomposed

using a task graph similar to the one shown in Figure 4.6, where each task represents

a portion of the overall device matrix. At each step of the algorithm, one level of tasks

is factorized using L/U decomposition. Partially decomposed factors are then passed

91

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

Figure 4.5: Nested, bordered block-diagonal matrix

e © © © e e e

Figure 4.6: Task graph for NBBD matrix

to the next lower level, where they are combined and the process is repeated until at

the lowest level the entire matrix has been factored. Forward substitution follows

a similar procedure, while back substitution follows a reversed procedure where the

processors start out working together and end up working alone. The task graph
starts out with fairly high parallelism, but it is reduced by a factor of two at each

level. Ifthe task sizes are assumed uniform, then the speedup goes as <3(1-^77) on N
processors, where N is the number oftasks at the highest level. Typically, however,
task sizes will be larger at the lower levels. In this case, all the processors assigned
to ancestors ofa task can be grouped togetherto work in parallel. The tree-structure
ofthe task graph guarantees that no processor will beassigned to more than onetask
using thiscriterion. Ifless than TV processors areused, tasks in thehighest levels can

92

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

be grouped together into larger tasks before being assigned to the processors. This
fact istypically used to generate justenough levels so that each processor has one task
at the highestlevel. If the problem is sufficiently large, the initial tasks will bemuch
larger than the lower level tasks, andspeedup closer to the number ofinitial tasks will
be achieved. This can be useful when only small amounts ofparallehsm are needed at
the device-level.

Because ofthe way the algorithm isolates various sets ofnodes using sepa
rators, only part of the sparse matrix is held on each processor. This local matrix is
similar toan ordinary sparse matrix except thatequations exist only for thelocal setof
mesh nodes and all the sets used toseparate them. Thus, equations for the local nodes
reside on one processor; for thelast separator, each setresides on two processors, and
so on, until the equations for the first separator are represented on all the processors.
It is therefore desirable to keep the separator sizes small. Unfortunately, it is also a
good idea to keep thenumber ofnodes on each side ofthe separator balanced, which
conflicts with the previous goal. Several automated methodswhichtrade-off between

the two objectives have been developed. These include traditional heuristic techniques
such as the Kernighan-Lin algorithm [KERN70] as well as the more recently applied
spectral bisection approach [POTH90]. Nonetheless, in real situations it is often diffi

cultat each stepto find small separators that bisect the nodes. This is especially true
when the number ofbisections is high compared to the total number of nodes so that

very small sets of nodes need to be divided. As a result, task sizes are not uniform,
load balance is degraded, and speedup falls off.

Once the nodes of the graph havebeendistributed across the processors, an
implicit partitioning of the mesh elements has been defined as well. Since loading of
the device matrixis based onaloop overthe device elementsandwould becomplicated

if nodes belonging to different processors were part of the same element, the parti

tioning step must take this into account. Figure 4.7(a) shows a small mesh where this

constraint is violated and it is unclear which processorshould be assigned the element

marked with '?'. In Figure 4.7(b) the problem has been corrected by repartitioning

the nodes. Thus it can be seen that the partitioning problem is one of dividing the

elements into two sets where the nodes on edges common to the two sets become the

separator. The loading of the device matrix then takes place by having each processor

evaluate all elements that have been assigned to it. For all nodes in the separators,

93

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

• Processor #1 Nodes

O Processor #2 Nodes

© Separator Nodes

1 1 ¥ 9 T
1112 2

O O O 6 6
117 2 2

O O O O O

112 2 2

O O 0 0 0

112 2 2

—n © o o o

(a) Bad Partition

• Processor #1 Nodes

O Processor #2 Nodes

© Separator Nodes

1 1 1 1 1

1 1 1 1 1

2 2 2 2 2

T ~ T T T T I

2 2 2 2 2

O 0 O—O 0 0

(b) Good Partition

Figure 4.7: Two element partitions of a small mesh

partial contributions are calculated by two or more processors. These partial contri

butions are summed together during the course of the matrix factorization process. At

times, equipartitions ofthe element blocks may not equally divide the remaining non-

separator nodes because the nodes on the block boundaries have already been assigned

to separators. Since the device-level load phase is balanced when equal numbers of

elements are assigned to each processor while the device-level solve phase requires

balanced partitions of the nodes at each step, a trade-off must be made. The parti-

tioner should be able to optimize one or the other type of load balance depending on

which phase is likely to dominate the overaU computation time. For small problems,

element balance will be better, but for larger problems, node balance will give better

results.

4.8 Mixed-Level Algorithms

In the precedingsections the various alternatives forexploiting parallehsm in

mixed-level simulation have been reviewed. An architecture for a parallel mixed-level

circuit and device simulator is now proposed. Knowledge of the special characteris-

94

CHAPTER 4. PARALLELCIRCUIT AND DEVICE SIMULATION

tics of mixed-level simulation is used to guide the choice of algorithms and levels of
parallehsm exploited. Although algorithms are available for several architectures,
thearchitecture proposed here has been specifically designed for distributed-memory
multicomputers. It is also believed to be applicable to distributed-memory multipro
cessors, although this has not been fully investigated.

4.8.1 Previous Work

The idea of using parallel computing to speed up mixed-level simulations
is not new. In [MAYA88], the use of parallel model-evaluation is proposed where
an assignment of one numerical device to each processor is made. The same basic

idea ispresented in[SCHR91] where a master-slave process arrangement isproposed
for a network of workstations. The master job manages the circuit simulation and
distributes the devices to the workstations which actas slaves. Messages containing
the matrix updates are sent from the slaves back to the master, where the entries
are loaded into the master's circuit matrix. This computational model is equivalent
to the chent-server model that is used in an actual implementation on a network of

UNIX workstations [MEIN90]. Small device-level serverspermanently reside oneach
workstation in the network. The circuit simulation halfof a mixed-level simulator acts

as a client to these servers sending requests for numerical device simulations to be

initiated on particular processors as needed. All communication between the circuit

simulator and the device simulators is passed through the device-level servers.

4.8.2 Proposed Architecture

Of the three levels of parallehsm available, only circuit- and device-level par

allelism must be exploited by the simulator itself. As a result, design-level parallelism

has been excluded from consideration in the proposed architecture. Management of

this form of parallehsm is better left to a general-purpose CAD framework that can

provide such facilities for other related tasks such as layout synthesis, design-rule

checking, circuit extraction or design optimization.

Figure 4.8 shows the main software components ofthe algorithm architecture

and the calling relationships between them. Each processor receives the same code for

all components. However, the contents of the data structures vary from one processor

95

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

P copies: 1 per processor

Parallel

Sparse Matrix
Package

Figure 4.8: Components and call structure of proposed algorithm

to another. This programming approach is called the single program - multiple data

(SPMD) model.

The parallel circuit simulator core is capable of performing parallel model-

evaluation based on the assignment of devices to processor groups. The processor

groups are divided into different levels where each processor belongs to exactly one

group at each level. This is the only constraint on the group definitions. However,

typically groupswill be arranged sothat one level contains many, small groupsand the

otherlevels contain fewer and fewergroupswhich combine groupsat the previouslevel.

In Figure 4.9 a four-processor hypercube is divided into three levels of groups using

— Level 2: {0,1,2,3}

— Level 1: {0,2}, {1,3}
— Level0:{0},{l},{2),{3)

Processor / Node
— Connection Network

Figure 4.9: Processor groups for four nodehypercube

96

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

this technique. At the highest level all the processors are inone group and at thelowest
level each processor is in a group byitself. Compactly modeled devices are assigned
to one-processor groups; numerical devices are assigned to either single or multiple
processor groups. Every processor has a local copy of the circuit sparse-matrix data

structure, so that each may perform loading without contention. The overall circuit

matrix eventually resides in this local copy as well, after a barrier-based method is

usedtocompute it. The parallel device simulator is usedtocompute the contributions
ofthe numerical devices. For bestperformance this simulator should exploit both load
and solve phase parallehsm at the device-level. The devicesimulators on the different

processors coordinate work on the numerical devices that are assigned to multiple
processor groups. The different groups at a given level work on separate devices,
thusexploiting parallehsm atboth thecircuit- and device-levels simultaneously. Both
the circuit and device simulator call onthe parallel sparse-matrix package for direct-
method matrix solution. A serial mode must included in the sparse-matrix package,
since parallel matrix solution may not be effective for the small circuit matrices. The

load balancer supports all three of the other components by statically dividing tasks
among the processors.

A high-leveldescription ofthe multi-level model-evaluation algorithmfor tran

sient analysis executed by every processor in the system is shown in Figure 4.10. It

is an extended version of the algorithm in [PACH91] for parallel circuit simulation.

The main difference is an additional level of looping needed to access the processor

groups. Each processor has access to the complete circuit as described by the input

file. Either independently or in concert, a partitioning step is performed that assigns

devices to processor groups in a way that attempts to minimize load imbalances. Once

computed, the partition is held fixed, since the cost ofredistributing numerical devices

dynamically is prohibitive on distributed-memory machines. A loop over the group

levels is used to setup the necessary preliminary data structures (such as the mesh)

for the numerical devices. In addition, all remaining initiahzation prior to entering

the main loop is performed. On the first pass through the main loop the device-level

sparse-matrix structures are allocated.

The main loop consists ofa Newton-Raphson iteration followed by the compu

tation ofthe next time step. The Newton-Raphson iteration consists ofloading, solving

and testing for convergence. The load phase consists of a nested loop over the proces-

97

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

sor groups and the devices in each group. For compact devices and numerical devices

assigned to single processors, the contributions are directly loaded into the local copy

of the circuit matrix structure. For distributed numerical devices, one processor in

each group is designated to receive the matrix contributions and load them into its

copy of the circuit matrix. Then a reduction operation is performed to accumulate

the information in the local matrix copies into a global circuit matrix residing on a

single processor. If necessary, this global version is then broadcast to all processors.

If the global circuit matrix is only available on one processor, then it must factor and

solve the system and distribute the solution to the other processors. Otherwise, each

processor solves its local copy of the global system to obtain the solution. Convergence

is tested using another loop through the groups and devices, followed by a test to make

sure all processors have converged solutions. Once the Newton-Raphson iteration has

converged, the solution is saved by a designated processor, and then the next time

step is calculated. Timesteps based on local truncation errors are computed in each

processor group, breakpoint limiting is applied and then the global minimum timestep

is used as the next timestep.

4.8.3 Advantages and Disadvantages

The proposed architecture has two primary advantages over a simpler archi

tecture that only exploits circuit-level parallehsm. (This corresponds to a one-level

grouping in the proposed architecture where each group contains a single processor.

For future purposes this is referred to as the one-level model-evaluation algorithm.)

First, better speedup can be achieved in situations where there is a mismatch between

the number of numerical devices and the number of processors. For example, if D/P

is not an integer, the leftover devices can be solved in parallel at a higher grouping

level. This technique of dividingup only someof the iterations of a loop is known as

loop spreading [LEWI921. Although normally applied to much finer grained loops, the

techniqueisjust as applicable toverylargegrains as done here. Thesecond advantage

is the ability to solve larger device-level problems whennecessary. Parallel processing
at the device level distributes the memory usage of a numerical device across all the

processors in its group. On many parallel machines the amount of memory available

to a processor is restricted to the amountof real memory and cannot be extended by

98

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

usingvirtual memory techniques. In otherwords, a device that will not fit on a single
processor can be solved using the additional memory ofmultiple processors. By the
sameargument, the capabihtyofassigning numerical devices to different processors is
also an advantage ofthe useofcircuit-level parallehsm. Thus, the additional memory
that comeswith parallel machines is very important.

The primary disadvantage of this approach is the extra complexity involved
in its implementation. The algorithm requires not only a parallel circuit simulator

but also a parallel device simulator. Modifying a modular circuit simulator such as

SPICE3 to exploit parallel model-evaluation is relatively easy; redesigning a device
simulator to exploit parallelism at each stage of the computation as in PARALLEL

PISCES is a much greater undertaking. In addition, unless the device simulator is

designed withmixed-level simulation in mind, it maybe difficult to integrate into the
above scheme. The proposed algorithm demands considerable flexibility on the part
of the device simulator to support simulations in multiple processing groups. Such
flexibility would not generally be required of a stand-alone device simulator where a

single group containing all the processors would be normal.

One advantage of both approaches is the modularity of the basic mixed-level

algorithm itself, as noted in [MAYA881. The device simulator can be easily replaced
with another one as long as the basic operations required by the circuit-device interface

are still supported.

4.8.4 Software Requirements

The proposed architecture requires four major software modules: a paral

lel circuit simulator, parallel device simulator, parallel sparse-matrix package, and

a flexible partitioner / load balancer. If parallehsm at the device-level is ignored

(as in the one-level model-evaluation algorithm), then a serial device simulator and

sparse-matrix package can be substituted, and the load balancer can be simplified

substantially. Certain capabihties must be incorporated in each of the components

before they can be merged into a mixed-level simulator. It is assumed that the sim

ulator will support the three basic types of circuit analyses: DC, transient, and AC

small-signal analyses. Substantial savings in development time can be reahzed if a

serial mixed-level simulator is available as a starting point.

99

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

For this application, developing a parallel circuit simulator from a serial one

is a relatively easy job because the algorithm has been designed to have minimal

impact at the circuit level. This topic is covered in detail in Chapter 5.

The parallel device simulator has several requirements that are inherited

from the serial environment, as well as new ones due to the parallel algorithms. The

device simulator DSIM used in CIDER was custom developed for CODECS because a

sufficiently general simulator was not already available [MAYA881. Much of DSIM

was written from scratch; however, it was not necessary to write a sparse-matrix

package because SPARSE was available. The parallel situation is worse than that

originally observed in the serial case. General-purpose dense matrix software for

central-memory multiprocessors has recently become available [DONG91], but similar

software for distributed-memory machines and sparse matrices has notbeen publically

distributed. Developmentofan appropriate parallel sparse-matrix package is thus the

major obstacle in the implementation of a parallel device simulator. As demonstrated

in [LUCA87a], parallelizing the remainder ofthe device simulator is fairly straightfor

ward once a parallel sparse-matrix package has been defined. The main complication

arises in the dividing the mesh and equations among the processors in order to achieve

load balance.

The various requirements for the sparse-matrix package are summarized as

follows:

• It must be able to handle both the real and complex matrices that arise during

DC and AC analyses.

• Asymmetric matrices need to be supported.

• Multiple matrices arising from the different numerical devices need to be stored.

• Parallel solution ofmultiple matrices in separate processor groups is necessary

to allow mixed-level parallelism to be exploited.

• Since memory-storage requirements are unlikely to be known accurately until

runtime, dynamic-memory management should be incorporated.

Given that no up-to-date package for a single, real-valued, asymmetric sparse matrix
is currentlyavailable for distributed-memory machines, the above requirements seem

100

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

impossibly overambitious for a single sparse-matrix package. However, once such

a package does become available, the remaining features should be relatively easy,
although perhaps tedious, to implement. The trickiest problem will be support for
group-based processing, something that is presently an active area of research in

the parallel-processing community. However, by the time the basic matrix package
becomes available, group-based processing will be presumably better understood.

4.9 Mixed-Level Partitioner

The need to partition the workload to achieve load balance is a central part

of any parallel algorithm. This problem has already been encountered a number of

times in this chapter. The focus here is on a problem that arises in the multi-level

model-evaluation algorithm. This is the problem of assigning the devices in a circuit

to the multiple levels of processing groups. The goal is to find an assignment that

minimizes the maximum completion time ofall the device evaluations. In the absence

ofan exact solution to this problem,a heuristic approachbased on simulated annealing

[KIRK83], has been prototyped and several conclusions are drawn from observing its

performance.

4.9.1 Multi-Level Partitioning Problem

The multi-level partitioning problem is expressed as follows:

Problem 4.1 Given:

• D tasks {di,d2,...,do}, where each task represents the evaluation of a device

model.

• P processors labeled from 1 to P.

• Nq processor-groups where the gth group, G9, is a set of P9 processors. For

example,group {0,1,2,3} has P9 = 4processors.

• Nl levels ofprocessor-groups where the Ith level, L\, is a set of Nq,i groups and

where each processor p€ [1, P] appears in no more than one group at each level.

101

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

• A function T(dn,g) that models the amount oftime to execute task dn on the pro

cessors in group g. Models for non-uniform device evaluation time and imperfect

speedup on multiprocessorgroups are incorporated in this function.

Find: a mapping function M that assigns each device dn to group number M(dn) such

that the estimated time to execute all the tasks on the P processors is minimized. The

total time taken is calculated using:

T= YmaxTGg :GgeLi
1=1 °9

where the time for group Gy is computed as:

Tg9 = Y T^9)
dn:M{dn)=g

The total time taken is simply the sum over all levels of the maximum time taken by

any group in that level.

Two special cases of this problem have already been encountered in Sec

tion 4.6.1. Both cases assume that the number of levels Ni is equal to 1 and each

group contains 1 processor. That is to say, they both deal with a one-level partitioning

problem. In the first case, the time per task is assumed uniform or T(dn,g) = K. In

the second case, the time per task varies from device to device, which results in the

most general one-level partitioning problem.

4.9.2 Solution Methods

Finding an exact solution to Problem 4.1 in the general case is an essen

tially impossible proposition. There are {Nq)d possible permutations to consider so

an exhaustive search would take exponential time in the number of devices to per

form. In fact this problem is NP-complete [GARE79], which means no polynomial

time algorithm to find an exact solution is ever likely to be found. NP-completeness

is demonstrated by noting that the general one-level partitioning problem, which is

knownto be NP-complete from [GARE791, is a special caseofthe multi-levelpartition

ing problem. Given this, alternative heuristic methods must be used to obtain near

optimum solutions.

102

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

Even though the general problem is very hard to solve, at least one special
case has a trivial solution. For example, the unit time per task, one-level problem
can be solved exactly by assigning devices to the processors in round-robin fashion so

that each processor receives at most [^| devices. This leads to the speedup result in
Equation4.5. The round-robin algorithm has practical significance sincereal circuits
often fit this model reasonably well.

The best knownheuristic for partitioning problems is the Kernighan-Lin al
gorithm [KERN70] whichis used to bisect the nodes ofa graph such that the number
ofedges connecting the two halves is minimized. Extensions that involve multi-way
partitions andnon-uniform node sizes are also discussed in [KERN70J. However, this
algorithm is difficult to extend to the current situation becausethe node/task sizes can

vary over awide range ofvalues and because thecost ofataskdepends on which group
it is assigned to. An alternative approach to partitioning based on stochastic methods

is known as simulated annealing [KIRK83]. In this approach a partition is randomly
changed and the impact of the change on the partition's cost is assessed. If the cost is

decreased, the change is always accepted. If the cost increases, the change is accepted
witha probability that depends onhow far the algorithm has progressed. Initially the
probability is relatively high, so most changes are accepted; later, the probability is

decreased. The acceptance probability, Pa, is determined usingthe following equation:

P^=exp(^-) (4.7)

where AC is the cost increase and T is a temperature parameter that is slowly de

creased over time. Simulated annealing thus has four main components: a concise

description of a problem configuration, a set of moves to apply randomly to change the

configuration, a cost function that assesses the quahty of the configuration, and an

annealing schedule that determines how the temperature should be varied and how

many random moves should be made at each temperature. For the current problem,

the main advantages of simulated annealing are the flexibility that it allows in defin

ing the cost function, and the ease with which it can be adapted to new problems. For

example, reahstic estimates ofthe time per iteration for each device in the circuit can

be used when constructing the cost function. However, the main drawback is that it is

difficult to determine a good set ofmoves to make and a good annealing schedule. As a

result, implementations ofsimulated annealing generally require considerable tuning

103

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

before good results can be obtained consistently.

4.9.3 Trial Implementation

For this work, an experimental implementation of simulated annealing for

the multi-level partitioning problem has been implemented based on the generic ap

proach described in [JOHN89]. For information on obtaining the source code to this

implementation refer to Appendix E. Since the results from this implementation are

inconsistent, the details are only sketched out here. The implementation needs to be

tuned and improved before it can be incorporated in a working mixed-level simulator.

The configuration manipulated by the simulated annealer is the mapping function

M. A move consists ofchanging the mapping by reassigning a device to a new group.

Several strategies for selecting the device to be moved and its new group have been

tried. In addition, the annealing schedule has been varied to improve the performance.

The cost function attempts to model the execution time of the device evaluation re

alistically. For simple circuit elements and compactly modeled devices, a constant,

independent of the group size, is used which depends on the model complexity. For

numerical devices, the execution-time models developed in Chapter 3 are used. Tb

estimate the potential of parallel device simulation, a speedup model is incorporated

based on the results in [LUCA87b]. The time to execute a task on a multiprocessor

group is then given by:

T(dn,g) = Test(En, \Gg\) = Tmeaa(En)/Sest(Ent \Gg\) (4.8)

where Test is the estimation function, En is the number ofequations for device dn, \Gg\
is the number of processors in fifth group, Tmeas is an execution-time model cahbrated

with uniprocessormeasurements, and Sest is the estimated speedup whichdependson

both the numberofdevice equations and the numberofprocessors. In a true imple
mentation of the multi-level model-evaluation algorithm, the speedup model should

becahbratedusingmeasurements ofthe paralleldevice simulator's performance. The
final cost function is computed by taking the estimated total execution time and nor

malizing with the cost of running the tasks on a uniprocessormachine.

The main problem with the current implementation is that it fails to find ob

vious optimum solutions when confronted with simple problems. Forexample, when
equal timetasksare used andthenumber oftasksis evenly divisible bythe number of

104

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

processors, theannealer finds solutions thatassign some ofthedevices tomultiproces
sor groups even though the obvious solution is toevenly divide the devices among the
one-processor groups. In addition, because the algorithm is probabilistic it does not

reach the same solution when started from different points. Asa consequence, better
results can often be obtained byrunning the annealer multiple times and selecting the
best result encountered. This process would needtobeautomated before the annealer
couldbe incorporated as part ofa parallel mixed-level simulator.

Despite the problems of the simulated annealer, some insight into the un
derlying problem can be gained by examining the solutions obtained. First, in cases
where different types of devices (numerical and compact) are mixed in the same cir
cuit, the annealer places the numerical devices as best as it can and then places all of
thecompact devices on theleast loaded processor. Thus, one optimization might be to
ignore the compact devices during annealing and fix them in place on one processor
beforehand. Second, for small circuits and when the number ofdevices isnot evenly di
visible bythenumber ofprocessors, thebest performance isachieved byfirst assigning
devices evenly to the one-processor groups. Then the remaining devices are assigned
evenly to the next level of groups, and so on until no devices remain. For example,
with9 devices and 8 processors, 8 devices will be assigned tothe one-processor groups
and 1 device will be assigned to the 8-processor group. The higher parallel efficiency
of smaller groups of processors accounts for this behavior. Third, another effect of

having non-ideal speedup of device evaluation on multiprocessor groups is that the
annealer will avoid using extra processors ifthe extra cost ofcommunication overhead

increases the execution time for the task. In the above example, if the leftover device

obtains no speedup on the 8-processor group, the annealerwill place it in a 4,2 oreven

1 processor group instead.

The conclusion to be drawn in this section is that there is no simple solution

to the multi-level partitioning problem. However, in fight ofthe fact that a multi-level

partitioner is not needed until a parallel device simulator is also available, this is not

currently a major concern. In the next chapter, a mixed-level simulator implementing

the one-level model-evaluation algorithm is introduced that successfully employs a

simple round-robin scheduler to achieve reasonable speedups.

105

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

4.10 Summary

The computational bottleneck of mixed-level simulation has been addressed

by investigating the possibilities for the use ofscalable, high-performance distributed-

memory multicomputers. Three levels of parallelism are identified that can be ex

ploited by the multiple processors in such a system. At the design-level, tasks consist

of individual simulation jobs. At the circuit-level, the major tasks are the evaluations

of the numerically modeled elements of a circuit. At the device-level, each processor is

assigned a task that roughly corresponds to a portion ofthe semiconductor device being

simulated. Existing techniques for exploiting each of these levels of parallehsm have

been reviewed, and extensions that combine parallehsm from more than one level have

been introduced. In particular, an algorithm is proposed for combining parallelism at

the circuit and device levels in a single program. This algorithm employs the concept

of dividing a multiprocessor machine into multiple levels of processor groups. Tasks

are then assigned to these groups rather than to individual processors. This approach

adds a dimension of flexibility that can be used to achieve greater speedup than a task-

per-processor approach. Experiments with a simulated-annealing-based partitioning

program indicate that in some cases additional speedups may indeed be achievable

compared to a simpler implementation based solely on exploiting parallehsm at the

circuit level. However, the proposed algorithm requires several software components

that are not readily available on present parallel computing systems.

106

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

Read and parse the input file.

Generate the circuit data structure, the lists of devices

and the task/job structure.

Assign device instances to the processor groups.
Foreach (processor group level) {
Foreach (device in my group at this level) {

Setup data structures.

}
}
Establish a DC operating point.
Foreach (timepoint) {
Foreach (iteration) {
Foreach (processor group level) {

If (I am group leader) {
Calculate and stamp currents and conductances onto

my local Matrix and RHS for each normal element.

}
Foreach (numerical device) {
Coordinate with other group members to solve device equations

and calculate currents and conductances.

If (I am group leader) Stamp contributions onto Matrix and RHS,

}
1
Combine local Matrix and RHS to get global Matrix and RHS.
Factor and solve circuit-level equations.

Check locally for convergence.

Exchange convergence information with other processors.
If (Convergence reached) {
If (I am machine leader) {

Save the current circuit solution.

}
Foreach (processor group level) {

If (I am group leader) Save numerical device internal states.

}
Go to Next timepoint.

1
Next timepoint:

Foreach (processor group level) {
If (I am group leader) {

Calculate compact device instance truncation errors.

1
Foreach (numerical device) {

Coordinate with group members to compute truncation error

and maximum timestep for this device.

If (I am group leader) Update local maximum allowed timestep.

1
}
Find minimum allowed timestep across all processors.

}
}

Figure 4.10: Description of proposed algorithm

107

CHAPTER 4. PARALLEL CIRCUIT AND DEVICE SIMULATION

108

Chapter 5

Implementation on

Distributed-Memory

Multicomputers

5.1 Overview

In Section 4.8, two algorithms for mixed-level simulation on a distributed

memory multicomputer are outhned. In this chapter, two implementations of one of

those algorithms, the one-level model-evaluation algorithm, on different distributed

memory multicomputers are described. The first system considered is an Intel iPSC/860

hypercube, a scalable high-performance computer with a specially designed node ar
chitecture and communication system. The secondsystem is a cluster of standard en

gineering workstations communicating via Ethernet connections. Bothof these types
of systems are candidates for meeting the processing needs of mixed-level simulation

in an IC design environment.

Each system is described from both hardware and software points of view,

and basic performance measures are provided. The iPSC/860 is described first, and

the necessary modifications to the mixed-level simulator CIDER to support parallel

processing are presented. Global reduction of the circuit matrix is identified as a

potential performance bottleneck, and three different alternatives for implementing

this step are considered.

109

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

The performance of both implementations is investigated in Section 5.5. A

set of 17 benchmark circuits is used to test the performance. These circuits all contain

more than one numerical device, so that one-level model-evaluation offers at least

some hope of performance improvement. Using these benchmarks as examples, the

problems associated with one-level numerical-model evaluation are described. Several

limitations are identified, and solutions that work around the problems are given where

possible.

5.2 Description of the Hypercube

The one-level model-evaluation algorithm for multicomputers described in

Section 4.8 has been implemented on an Intel iPSC/860 hypercube. The iPSC is a

distributed-memory multicomputer: each compute node has its own address space and

data is shared via an explicit message-passing mechanism [BELL92aJ. Figure 5.1 is

a diagram of the system used for parallel-code development on the hypercube. Serial-

iPSC/860 Hypercube

Local RISC

Workstation

t \

Internet
Node-to-Host

Link

jl'^4'X^-^ Ethernet

ar

Cross

Development
System

System Resource
Manager

Figure 5.1: Hypercube software development system

code enhancement is performed on the local RISC workstation. The code is then

110

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

modified for parallel execution and compiled for the hypercube on the remote cross-

development system (XDS). After an initial investment in parallelizing the circuit

simulator (SPICB3), updates to the numerical device models can be performed rapidly

due to the simplicity and modularity of the algorithm. Simulation jobs are loaded

onto the cube by a host computer called the System Resource Manager (SRM), or

alternatively by the XDS acting as a remote host. From the SRM or XDS, users can

space-share the iPSC by allocating sets of nodes called cubes for individual problems.

Cubes are actually full smaller-dimensional hypercubes, so that code developed using

small cubes can easily be scaled up to larger systems.

5.2.1 Architecture of the iPSC/860

The iPSC/860 hypercube is the third generation of multicomputing systems

manufactured by Intel. At the time ofits introduction in 1990, the iPSC/860 was the

fastest scalable high-performance computer in the world. While previous generations

were based on Intel's x86 architecture CPUs, the iPSC/860 uses processing nodes

based on the i860XR CPU. The i860XR is a 40 MHz RISC microprocessor fabricated

using a 1.0 fjm CMOS technology, specially developed for high-performance computing

applications. Each compute node can support up to 16MB of physical memory. Both

program and data must fit into this space. Since virtual memory is not supported, this

represents a hard limit on the size of applications.

The processing nodes use a hypercube-connected communication network to

pass messages among themselves. A hypercube of dimension d contains P = 2d

processors and each processor connects to each of its d nearest neighbors. Two nodes

are neighbors if their node addresses differ by a single bit when expressed as binary

numbers. A message can be passed from any node to any other node in at most dhops,

the number of hops needed being equal to the number of differing address bits. As a

result, many standard operations that access all of the nodes run in 0(log P) time.

Example: Figure 5.2 shows a 4-d hypercube network. Nodes 3 (0011) and 11 (1011)

are connected since their addresses differ in the fourth bit. Nodes 0 (0000) and 15

(1111) are 4 hops apart, since all 4 address bits differ. •

The network hardware used is the same as that used in the previous genera

tion iPSC/2 system. As is shown later, this results in a large imbalance between the

111

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

1111

0001

1110

0000

Figure 5.2: Four-dimensional hypercube

compute and communicate speeds of the system. Seven of the eight 2.75 MB/s asyn

chronous, bidirectional channels in a node's Direct-Connect Module (DCM) are used to

connect up to 128 nodes in a 7-d hypercube. However, smaller systems are available

that use only some of these links. Unless a node is actually sending or receiving a

message, it is free to continuing computing while the DCM performs all the necessary

message routing functions. The eighth connection is used to attach compute nodes to

optional i386-based I/O nodes. These provide access to a large-capacity Concurrent

File System (CFS) and an Ethernet network. The CFS can provide fast I/O for storage

of output results and the Ethernet connection can be used for interactive graphics.

However, neither of these features is particularly useful in the current situation, since

data analysis and visualization take place on the local workstation which is isolated

from the iPSC/860 by the Internet. Also, since files stored in the CFS are not directly

accessible from the SRM, a special shell (nsh), which runs only on the nodes, must be

started to gather the results and return them to the SRM. As a result, the actual time

needed to access the results may not be improved greatly by using the CFS.

5.2.2 iPSC Software Environment

There are two main categories of software supphed for the iPSC/860: devel

opment software and cube-management software. These are in addition to the UNIX

operating system that runs on the SRM or the XDS.

Development software consists of compilers, system libraries, debuggers and

performance analysis tools. Since CIDER is written completely in the C programming

112

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

language, only the ice C compiler was needed for this work. The system libraries

contain the standard C libraries with extensions for message-passing, parallel file

access and graphics, and for controlling and finding out about the user's cube. The

NX/2 operating system is a small-kernel OS that runs on each compute node. It

provides the servicescontainedin the system libraries. The NX/2kernel is dehberately

kept small since it must share the node physical memory with the application. As

a result, some of the features available in a standard UNIX environment are not

available on the nodes. The message-passing library containsroutines for both point-

to-point communication as well as global operations that all processors participate

in. The global reduction routines are the primary communication mechanism used in

CIDER. Efficient routines are available for both integer and floating-point vectors to

find the global minimum and maximum, and for adding and multiplying the vector

elements. In each case, the results are automatically distributed to all processors

via a broadcast at the end of the routine. Because the one-level model-evaluation

algorithm is so simple, debugging of the parallel version is possible without the need

for a parallel debugger. Instead, standard debugging techniques such as insertion of

diagnostic output calls and comparing the output from a test run to a reference copy
areemployed. Application tuning has also been performed simplyby making program

modifications and observing the effecton the overall run time and the time taken by
certain critical sections.

Cube-management software consists of extensionsto the SRM or XDS oper
ating system. Since NX/2 only supports a single process running on each node, the

cube-management software provides the commands needed to space-share the iPSC.

Because these commands are layered on top of the host OS, running jobs on the iPSC

is more complicated than users are typically accustomed to. Generally, the user must

intervene to allocate a cube, run the job and then release the cube. If the job hangs,

the user must issue a kill command to the processes on his cube, which automatically

releases the cube as well. Since this can quickly become tedious, a C-shell script was

originally written to perform these actions automatically for CIDER. Use of a script

simplifies the task of running jobs for users who are unfamihar with the details of

the space-sharing mechanism. For example, additional resource management facili

ties are provided by the NQS network queuing system that is supphed with the iPSC

[IPS92a]. A more sophisticated version of the script that submits jobs to the NQS

113

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

system has recently been written. However, from the user's point of view the job

submission process remains substantially unchanged.

5.3 Description of the Workstation Cluster

A typical IC design environment is likely to contain a number ofengineering

workstations which are used primarily during normal working hours for computer-

aided design. These workstations represent a computational resource that is under

utilized on nights and over weekends. By harnessing the power of otherwise idle

workstations, speedups can be achieved at essentially no additional cost to the orga

nization.

The potential of this approach for the current problem has been investigated

by implementing one-level model evaluation on a cluster of DEC workstations con

nected togethervia an Ethernet communications network. A portable message-passing

package implemented on top of the basic operating system is used to provide high-level

operations equivalent to those available on the iPSC. However, the resulting paral

lel system, which conforms to the distributed-memory multicomputer model, is not

scalable. The network has a fixed bandwidth that is approximately three times lower

than the node-to-node bandwidth of the iPSC. In addition, the network is shared by all

computers on the network, even those not actively participating in the parallel com

putation. As a result, to avoid disturbing normal network operation and to prevent

communication from becoming the performance bottleneck, every effort must be made

to minimize communication in this environment.

5.3.1 Layered Distributed Computing Systems

Many systems have been developed for distributing computation across a

network. In this work, attention was restricted to systems that satisfied the following
criteria:

Publically Available The source code is readily available for free via the Internet.

Portable The package has beenportedto a wide variety ofserial as well as parallel
platforms.

114

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

Numerically Oriented The system was designed for use in large, numerically in

tensive computations.

The above requirements are motivated by the desires that the resulting implementa

tion be available to as wide an audience as possible and that it be relatively easy to

support both a cluster and a hypercube implementation. Three different systems sat

isfying these criteria were obtained: P4 [BUTL921 and TCGMSG [HARR911 developed

by researchers at Argonne National Laboratory and PVM [SUND901 originating from

Oak Ridge National Laboratory. Both P4 and TCGMSG are successors to the earlier

PARMACS [BOYL871 portable parallel-programming macros. Each system provides

a low-level message-passing application-programmer interface to allow the individual

computers to communicate. However, only the first two have built-in operations for

global reduction, so PVM is at a disadvantage in this respect. Since the primary goal

is to develop a working prototype quickly, no attempt has been made to obtain com

parative performance results for each system to determine which system is best. In

an Ethernet environment, more fundamental limits are imposed by the network, so

an efficient implementation of the message-passing software is not of major concern.

As a result no claim is made that the system chosen is in general the best system to

use for distributed computing, but only that it is best for this apphcation.

After installing and working with each system on test programs it has been

decided that the TCGMSG package is the simplest to use, to modify if needed, and to

support on both the iPSC and the workstation cluster. In part this is because TCGMSG

is basically an abstraction ofthe message passing interface ofthe iPSC. A thin layer of

software allows the native iPSC message-passing routines to be used in the iPSC port

ofTCGMSG. The extra layer ofsoftware adds a small amount of time to the overhead

when starting a new message. No noticeable deterioration in performance has been

detected when using the TCGMSG interface instead ofthe native routines in the iPSC

implementation of the one-level model-evaluation algorithm.

5.3.2 Network Hardware Environment

The iPSC/860 hardware is composed of a few well-defined components; vari

ation is restricted primarily to the number of nodes in the system and the amount of

memory installed per node. In contrast, there are limitless variations possible in a

115

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

Machine iPSC/860 DEC cluster

Number ofNodes 32 60

Node CPU i860XR MIPSR3000/3010
Clock Rate 40 MHz 25 MHz

Memory/Node 16MB 32MB

Nominal Data Rate 2.8 MB/s 1.25 MB/s

Connectivity Hypercube Bus

Node OS NX/2 3.3.2 Ultrix 4.2a

C Compiler PGC Sun4/4.0 2.0a MIPS 2.1

Optimization Level -02 -02

Table 5.1: Comparison of Parallel Machine Configurations

distributed computing environment. Node instruction-set architectures, clock speeds

and operating systems can all vary from one machine to another. In addition, the

network bandwidth, which is very important in distributed computing, can vary by

an order of magnitude or more from one installation to another. This sort of hetero

geneous computing environment makes distributed computing challenging since care

must be taken when using different types of machines that the information passed

does not become corrupted. Taking this into consideration, it is important whenever

discussing performance to identify as well as possible the system being tested.

In this work, the cluster consists entirely of DECstation 5000/125 worksta

tions connected by a lOMb/s Ethernet. Although other computers are available on

this net and TCGMSG does support heterogeneous computing, it has been decided

that debugging, performance evaluation and load balancing are greatly simplified if

the cluster is restricted to a homogeneous configuration. Distributed computation is

enabled by layering the TCGMSG message passing system on top of the native Ultrix

4.2a operating system ofthe DECstation. Table 5.3.2 shows a comparison between the

iPSC/860 and the DEC cluster configurations.

The nodes of these two configurations have been included in the CiDER serial

benchmark tests of Chapter 3. Those tests establish the computational performance

of the nodes. The general communication performance of the iPSC has been reported

in [DUNI91]. However, the specific performance for global reduction is not included

there. A test program has been used to specifically exercise double-precision global

reduction when adding together vectors ofvarious lengths. This program has been run

on both the iPSC and the DEC cluster in order to allow comparison between the two.

116

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

In both cases, measurements are made using wall clock time. On the DEC cluster,

this causes the times to vary significantly from one run to another due to interference

from the other machines on the network. However, this seems to be the fairest way

to measure time in such an environment, since idle time can account for a significant

portion ofthe runtime in mixed-level simulations formachines that are assigned fewer

or less computationally demanding numerical devices. If CPU time were to be used

instead, the idle time would not be reported on the hghtly loaded machines.

Figure 5.3 shows the time taken for global reduction on the iPSC for cube

sizes of 2, 4, 8, 16 and 32 processors and vectors up to 2000 entries in length. The

iPSC/860 Global Reduction Time

mSeconds

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00
kEntries

0.00 0.50 1.00 1.60 2.00

Figure 5.3: Global reduction execution time on the iPSC/860 for different numbers of

processors and vector lengths

maximum time is just under 15 milhseconds. In Figure 5.4 the time taken on the

DEC cluster under the same conditions is given. Five runs have been performed to

accumulate enough data that statistical variation is observed. Here the maximum

time is measured in seconds. As the number of processors is increased, the likelihood

of interference also increases, so the data are more scattered for P = 16 and P = 32.

117

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

DEC Cluster Global Reduction Time

Seconds

2.00

1.50

1.00

0.50

0.00

kEntries

0.00 0.60 1.00 1.50 2.00

Figure 5.4: Global reduction execution time on the DEC cluster for different numbers

of processors and vector lengths

Except for the 32 processor DEC cluster and for the larger iPSC cubes operating on

short vectors, the execution time is reasonablymodeled with an equation of the form:

T = a + (3L (5.1)

wherea, (3 are parametersthat depend onthe number of processors and Lis the length

of the vectors. It is expected that both a and (3 should grow as O(logP) since that is

how many message-passing steps are needed for global reduction. Table 5.2 shows the

parameters obtained by fitting the previous expression to the data in the two figures.

Forthe DECcluster, the minimum time taken at each vector length was used in order

to obtain a lower-bound estimate for the time. Theoretically, there is no upperbound
since any machine in the cluster may be arbitrarily loaded down during the course of

thereduction operation. These extractedcoefficients quantifywhatisalready apparent
from the figures: that the iPSC time grows slowly as additional processors areadded,
whereasthe cluster time grows almostlinearly with the number of processors. This is

118

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

of Processors

Number of Processors

iPSC/860 DEC Cluster

Q 0 a (3
2

4

8

16

32

0.6 ms

1.2 ms

1.7 ms

2.2 ms

2.6 ms

3.0 us
4.5 lis
5.4 lis
5.8 /xs
6.1/zs

5 ms

11 ms

16 ms

26 ms

46 ms

36 lis
83 jus

158 /zs
352 //s
940 a^s

Table 5.2: Extracted global-reduction-time coefficients for different numbers ofproces

sors and machine architectures

due to competition among the cluster nodes for access to the Ethernet. Both machines

have high message startup times in the milhsecond range. For a typical vector length of

500, the models predict that a 16-node iPSC subcube would take about 5 milhseconds

while the DEC cluster would take around 0.2 seconds, a factor of 40 higher. This

indicates that communication performance is a more important factor in determining

overall performance on the DEC cluster.

5.4 Implementing Parallel Model Evaluation

The implementation ofone-level model evaluation is based on the SPMD pro

gramming model1. Each compute node runs the CIDER executable, but is responsible

for a different set ofcircuit elements. The implementation is hostless; there is no need

to run a control process on the SRM of the iPSC to execute the non-parallel sections

of the code. Nodes exchange information when necessary and duplicate tasks so that

certain key data structures such as the circuit sparse matrix remain consistent across

all processors.

The modifications to the source code needed to parallelize CIDER are very

minor. One additional member is added to the circuit-element data structure that

stores the address of the node that owns that element. The owner node is responsible

for all updates to the circuit matrix for the element. The owner field is used to bypass

1The description that follows is oriented towards the iPSC implementation. On the workstation
cluster, compute node refers to one of the computers being used and the host and host process should be
interpreted as references to the user's own workstation and a separate process running there.

119

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

elements that are not owned by a node. Figure 5.5 shows the main loopofthe resistor

{
register RESmodel *model = (RESmodel *)inModel;

register RESinstance *here;

/* loop through all the resistor models */

for(; model != NULL; model = model->RESnextModel) {

/* loop through all the instances of the model */
for (here = model->RESinstances; here != NULL ;

here=here->RESnextInstance) {
ifOiere->RESowner != ARCHme) continue;

* (here->RESposPosptr) += here->RESconduct;

*(here->RESnegNegptr) += here->RESconduct;

*(here->RESposNegptr) -= here->RESconduct;

*(here->RESnegPosptr) -= here->RESconduct;

}
}
return(OK);

Figure 5.5: Main loop of resistor loading code

loading codedemonstrating this bypass step. The line indicated is the only line needed

to parallelize this particular loop. Similar small changes are needed in the other files

associated with a particular type of device, amounting to a total of less than 20 lines

of code for each type of device. Since certain information about the state of a device is

needed only by that device, memory for this information is only allocatedby the owner

node. This can provide a significant savings in memory usage when numerical devices

are used, since the device-dependentinformation for a numerical device is significant.

For example, the L/U factors of a device-level matrix are include in this category. The

disadvantage of this approach is that dynamic loadbalancing is essentially useless in

this system, because the costof transmitting all this information to anotherprocessor
is prohibitive.

Although the changes to the model libraries of CIDER are minimal, this is

less true for the main simulation driving routines. Trivial changesare needed to the

frontend toinitialize the architecture variables (node idand size), open various output
files (one diagnostic output for each node, one rawfile for the simulation output) and

120

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

ensure that the simulator output file is only written by one node.

The more interesting changes are in the simulator core. The first core routine

encountered in an analysis is the circuit setup routine. All processors receive a copy

of the input file which they use to setup a circuit's data structures. Once this is

done, the devices are divided among the processors by the partitioner. It is impossible

to automatically parallelize this step at compile time because the number of circuit

elements depends on the circuit being simulated. The iPSC implementation uses a

much simpler approach to partitioning than the one described in Section 4.9. Using

a loop, circuit elements are assigned to the processing nodes in round-robin fashion.

This has the effect of evenly distributing the numerical devices among the nodes as

best as is possible since they are all grouped together at the end ofthe loop. Although

simple, this approach seems to work fairly well in practice. However, it has obvious

hmitations that are exposed in Section 5.5.4.

Because there is no process running on the host computer available to execute

the serial sections ofcode, one or more compute nodes must be used to do this while the

remaining nodes sit idle. Two options for this problem have been considered: run the

serial code on one processor and broadcast the results as needed, or alternatively, run

the serial code on all processors and make sure that ah data structures accessed by a

serial section ofcode are identical at the beginning ofthe section. The second approach

is the more attractive ofthe two. Its disadvantage is that it takes roughly twice as long

to gather data together since extra communication is needed to broadcast the necessary

data. However, since this functionality is built in to the iPSC global reduction routines,

separate less efficient routines would have to be written to avoid this step. One

advantage is that less communication may be needed later in the algorithm. For

example, if solution ofthe circuit sparse matrix is done on one processor, a broadcast is

needed to send that solution to the rest ofthe processors which need it so that devices

can properly load the circuit matrix on the next iteration. Another advantage is that

it is easier to program because each node is free to execute any section ofcode without

risk that the necessary data is not present. This allows the elimination of tests that

would be need to be scattered through the code to prevent the use of uninitialized or

incorrect variable values.

121

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

5.4.1 Global Combining

The decision to use duplication of serial tasks on all processors is based

strongly on the availability of efficient global reduction operations on the iPSC. These

operations are needed at three points during the circuit Newton-Raphson loop: after

each processor computes its entries in the circuit (during CKTload), after each pro

cessor checks convergence of the circuit variables (during CKTfconvTest), and while

computing the next time step in a transient analysis (during CKTtrunc and DCtran2).

Summing the local circuit matrices is the most difficult of the three; the other two

are very simple. Convergence testing requires an integer global sum to find the num

ber of nonconverged devices. Timestep control uses floating-point global-minimum

operations to find the minimum allowed timestep.

Figure 5.6 shows the flow of data during this step of the one-level model-

evaluation algorithm. After the individual processors load their local matrix copies

they are combined via message-passing floating-point global-sum operations into a

global matrix that is then broadcast so that each processor has a copy. Each processor

then proceeds by computing its own local circuit L/U factors and continuing until it is

necessary to test for convergence. In addition to combining the circuit matrix, extra

combines are needed to check for errors during the load step (an integer operation)

and to combine the RHS vector (a floating-point sum operation). Error checking occurs

prior to combining the circuit matrix, while the RHS vector is passed along with the

circuit matrix and combined at the same time.

Three different strategies for combining the local circuit matrices have been

considered. These strategies differ in the number of communications needed and the

amount of memory needed. The amount of memory varies because an extra commu

nication buffer is needed to hold incoming messagesprior to actually performing the

requestedoperation. Theamountofmemory neededis thus proportional to the length

of the messages sent. Combining the local matrices is comphcated by the fact that

the sparse matrix package uses a linked-list data structure for storingand accessing
the matrix elements. Since global reductionoperates on an array of values, the ma

trix elements must be copied out ofthe matrixdata structure into a buffer. Only the
original non-zero elements need to be copied, since the fillin values are all zero prior

2DCtran is the SPICE3 subroutine thatcontains the transient analysis driving loop.

122

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

CPU#1 CPU #2

Parallel

Processing

Message

Passing

Parallel

Processing

Figure 5.6: Flow of data during CKTload and CKTbolve

to factoring the matrix. However, the existing data structures in the serial version of

SPARSE do not allow easy identification of the original sparse-matrix elements. By ex
tendingthe data structureswith a list that keepstrack of these elements,the parallel

version allows the original non-zeroes to be marked during a preprocessing step by
scanning the hst. Only the marked entries are copied into the buffer. The row index of

an element is used as a marker flag, thereby eliminating the need for extra memory to

hold it. The row index is restored in a subsequent post-processing step when the data

is copied back into the matrix from the buffer. Tb avoid the gathering step entirely,

one might consider initially allocating the matrix elements from a common pool that

is already stored as an array. However, this is not feasible in the current implemen

tation because the matrix element data structure contains other members besides the

123

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

actual data. Although it would be possible to change the data structure, the necessary

modifications would permeate the sparse matrix package and would likely degrade

the serial performance. Alternatively, more sophisticated global-combine operations

that use a non-unit stride as they scan the array would make it possible to skip the

intervening data.

The three approaches considered differ in the amount of the sparse matrix

buffered before the matrix is combined. Each procedure makes three passes through

the entire matrix: one to mark the original non-zeroes, one to buffer the elements

before combining and one to unbuffer afterwards3. The methods are:

Row-by-Row One row (or column) of the sparse matrix is buffered for each combine

operation.

All-Rows The entire matrix is buffered in one step before it is combined.

Fixed-Length A buffer that can store a fixed number ofelements is set aside initially.

Elements are added to the buffer until it becomes full or there are no elements

left. The buffer is then combined.

The row-by-row method is the simplest to implement and requires no extra memory

since the circuit solution vector and an intermediate vector can be used for the ele

ment and communication buffers. The all-rows approach is also straightforward to

implement, but requires twice the memory needed to store the matrix data since no

suitable element and communication buffers are available. This could be a problem if

a large circuit matrix is encountered. The fixed-length approach is the most difficult

to implement because it is necessary to periodically interrupt the buffering process,

possibly in the middle of a row, to combine and unbuffer. The amount of memory used

can be varied over a wide range. Two possibilities that limit this quantity are to use

the same buffers as used in the row-by-row approach or to allocate fixed length buffers

at compile time. Both approaches handle the occurrence of a large matrix gracefully.

The volume of communication is equal in all three cases to the number of

original non-zero elements in the matrix. If the overhead to send a message were

3An attemptto save time bycombining the first two passes bybuffering the non-zeroes in an order
unrelated to their location in the matrix producedincorrect results. Further investigation is needed to
clarify the source of this problem, but for the present, no real harm is done because the time for the
additional pass is not significant compared to the communication time.

124

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

neghgible, they would all take time proportional to the number ofelements. However,

message startup time on the iPSC is significant, and the approach that sends the

fewest messages runs fastest. Since the all-rows approach uses the minimum of one

combine operation, it is guaranteed to send the fewest messages as well. The row-by-

row approach uses one combine for each row in the matrix, and each operation is very

short (< 10 elements per row is typical of sparse matrices), the message overhead is

very high and this approach has the poorest performance. The fixed-length approach

uses anumber ofcombine operations equal to [771, where Nis the number of matrix
elements and L is the length of the buffer. If L is greater than N, only one combine is

needed in the fixed-length approach and its performance is equivalent to the all-rows

approach. If L does not scale with problem size, as the matrix size grows, more and

more combine operations will be needed. However, the performance will not degrade

significantly if L is chosen so that the message startup time is a small fraction of

the total message time. If L is scaled with problem size by using spare RHS vectors,

the number of combine operations will be equal to the average number of elements

per row, which should be relatively constant as problem size grows. (This assumes

that fillin elements are skipped. If fillin elements are also combined, the average

number of elements per row will grow with problem size.) The obvious disadvantage

of this approach is that the common case of a small mixed-level circuit matrix will

need multiple messages rather than a single one if a longer buffer were used.

Based on the above considerations and the results oftests of implementations

ofall three methods, the fixed buffer approach is used in CIDER. Its main advantage is

that it minimizes the number ofmessages sent compared to the row-by-row approach.

This is important on both the iPSC and the DEC cluster since message startup time

is not neghgible, as shown in Section 5.3.2.

5.4.2 An Alternative Programming Approach

The one-level model-evaluation algorithm lends itself naturally to a chent-

server (or host-node) view of the computation [MEIN90]. The circuit simulator is the

client and the device evaluator (which includes or communicates with the device sim

ulator) is the server. On the iPSC, the host program typically would run on the SRM

while the node program runs on the compute nodes. The host-node model is not used

125

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

on the iPSC for two reasons. First, two separate programs need to be maintained in

the host-node approach. This increases both initial development costs and later main

tenance costs. Special interfaces must be written to pass information such as model

parameters between the host and node programs. These interfaces are comphcated by

the fact that SPICE3 rehes heavily on pointer-based data structures which are difficult

to pass in messages4. Also, communication must take place across the host-to-node

link which has limited bandwidth [DUNI911. This could become a performance bot

tleneck if many nodes are trying to communicate with the host simultaneously. This

would also be true in a workstation cluster.

The second reason that the host-node model is not used is peculiar to the

design of SPICE3. It has been mentioned earlier that state information is saved for

many devices in the circuit. The primary examples ofthis are the previous solutions at

the circuit and device levels that are needed during a transient analysis. For SPICE3

which was designed to simulate large circuits, it would be inefficient to let each device

exchange its few state variables each time a new timestep was accepted. Thus, this

variable state information is collected into one long array and each device stores the

indices of its entries. The simulator core is then able to allocate, deallocate and swap

state information for the entire circuit simply by dealing with the state array as a

whole. In effect, information that could be hidden in each device is exposed to the
circuit in order to improve efficiency. Hov/ever, this whole approach is a problem

when the circuit and the devices reside on different processors because they must

now communicate the state information back and forth, or the simulator core must be

modified to allow devices to manage their own states. The second method would need

to be restricted to the numerical devices in the circuit where the overhead would be

small. In that case, the compactly modeled devices wouldbe assigned directly to the

host. Unfortunately, either method would require more extensive modification of the

program to implement.

The above two concerns are not as important when linking separate stand

alone circuit and device simulators together. In such a situation, the programs are

already beingmaintained and the extra development cost of linking them using the

4The main difficulty inpassing pointers inmessages is thattheaddress spaces oftheindividual nodes
are not shared. Thus, the pointer on one machine is not likely to point to the same item on another
node, but is in fact very likely to point to something random. Special care must then be taken when
pointer-based structures need to be communicated.

126

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

Circuit #CktElts # Num Devs (Type) # Ckt Eqns # Dev Eqns Analysis
ASTABLE 8 2 (ID NPN) 9 354 TRAN

BICMPD 9 2 (2D NMOS+NPN) 19 3745 TRAN

BICMPU 6 2 (2D PMOS+NPN) 13 3745 TRAN

CLKFEED 16 3 (2D NMOS) 22 8889 TRAN

CMOSAMP 5 8 (2D CMOS) 14 21312 DC

DBRIDGE 3 4 (ID DIO) 7 2388 TRAN

ECLINV 9 4 (2D NPN) 14 4324 DC

ECPAL 9 4 (2D NPN+PNP) 12 4948 AC

GMAMP 13 5 (2D NMOS+NPN) 11 8571 AC

INVCHAIN 10 4 (ID NPN) 13 708 TRAN

MECLGATE 24 11 (ID NPN) 29 1947 TRAN

LATCH 14 14 (ID NPN) 24 17010 TRAN

PPEF. ID 5 4 (ID NPN+PNP) 16 4854 TRAN

PPEF.2D 5 4 (2D NPN+PNP) 16 4948 TRAN

RINGOSC.IU 58 14 (2D CMOS) 124 37296 TRAN

RINGOSC.2U 58 14 (2D CMOS) 124 12894 TRAN

VCO 10 6 (ID NPN) 9 1062 TRAN

Table 5.3: Parallel benchmark-circuit characteristics

host-node approach is less significant. However, the performance would still be de

graded by the node-to-host link.

5.5 Parallel Performance Assessment

In this section the performances of both the iPSC and the DEC cluster im

plementations are presented. Several limitations of the one-level model-evaluation

algorithm are also identified and examined.

5.5.1 The Parallel Benchmark Inputs

A set of 17 circuits is used to test the parallel performance of CIDER. All

circuits contain multiple numerical devices so that one-level model evaluation is at

least potentially effective in producing performance improvement. In Table 5.3, the

characteristics of the circuits and the analyses performed are summarized. A wide

range ofcircuits are represented in the benchmark set. This demonstrates the general

127

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

applicability of CiDER to circuit design and is also useful in testing the program5.

The circuits are drawn from several sources and include digital, analog and nonlinear

analog designs. Five circuits are taken from the serial benchmark set, and the input

listings are identical to those found in Appendix B. Listings for the remainder are

found in Appendix C. In two cases (PPEF,RINGOSC) the same circuit has been run

more than once using different models for the numerical devices. The circuits range in

size from the smallest, 2 numerical device, 354 device-level equation ASTABLE circuit

to the largest, 14 numerical device, 37296 device-level equation RINGOSC.IU circuit.

5.5.2 Results for the IPSC/860

On the iPSC, each circuit has been run on every subcube of the system where

adding processors reduces the number of numerical devices per processor. Since the

maximum number of numerical devices is 14, the full 32-node hypercube is never

needed in these tests. In many cases, the limited memory of a single hypercube node

prevents large circuits from being run on small subcubes and this is indicated in the

tables of results. In each case, the subcube must be allocated before the run, loaded

with the executable, and then deallocated after the run. This time typically takes

about 30 seconds, and has been excluded from the measurements. Execution time is

measured using wall clock time because it is not possible to obtain the actual CPU

time. However, as mentioned in Chapter 3, the CPU time is close to wall clock time

because the iPSC nodes only contain one process at a time. Because the individual

processors take slightly different amounts of time to complete, the largest processor
time is taken as the runtime.

In Table 5.4, several measures of the time taken on the iPSC/860 by the
parallel version of CiDER are presented. Each entry contains 4 numbers: the total

analysis time followed by theoverall speedup, the time for themain analysis only (DC,
AC, etc.), and its speedup. For AC and transient analysis, this means the total time

includes the time to calculate the initialoperating point. For DC analysis, the main
analysis is not separable so the entry is omitted. When necessary, the execution time
for a single hypercube node is estimated by summing the times spent evaluating the

8Several bugs in the serial code were discovered only after running the parallel version on different
numbers of processorsand obtaining substantially different results.

128

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

Circuit

Number of Processors
1 2 4 8 16

ASTABLE 275

272

168

166

(1.64)

(1.64)

— — —

BICMPD 6763*
6162t

4950

4490

(1.37)

(1.37)

— — —

BICMPU 4600t
4038t

3132

2739

(1.47)

(1.47) z
— —

CLKFEED 14781*
12554t

— 5423

4585

(2.73)

(2.74)

— —

CMOSAMP 22892* — — 4497 (5.09) —

DBRIDGE 1170

1156

606

599

(1.93)

(1.93)

369

366

(3.17)

(3.16) z
—

ECLINV 2903t 1652 (1.76) 975 (2.98)
z

—

ECPAL 2125*

1446*
1072

723

(1.98)

(2.00)

568

390

(3.74)

(3.71)

— —

GMAMP 3565*

1853*
— — 1201

497

(2.97)

(3.73)

—

INVCHAIN 93

84

57

51

(1.63)

(1.65)

41

33

(2.27)

(2.54)

— —

MECLGATE 261

239

151

138

(1.73)

(1.73)

95

85

(2.75)

(2.82)

72

62

(3.63)

(3.85)

59

48

(4.42)

(4.98)

LATCH 5469*
5312t

2952

2871

(1.85)

(1.85)

1798

1753

(3.04)

(3.03)

1065

1041

(5.14)

(5.10)

641

624

(8.53)

(8.51)

PPEF. ID

PPEF.2D

205

164

3896*
3173*

105

85

2019

1650

(1.95)

(1.93)

(1.93)

(1.92)

57

46

1191

1001

(3.60)

(3.57)

(3.27)

(3.17)

— —

RINGOSC.IU 132043*
126625t

— — — 11067

10471

(11.93)

(12.09)

RINGOSC.2U 20370*
19675t

— 6270

6033

(3.25)

(3.26)

3397

3275

(6.00)

(6.00)

1869

1800

(10.90)

(10.93)

VCO 502

495

282

279

(1.78)

(1.77)

212

208

(2.37)

(2.38)

129

126

(3.89)

(3.93)

—•

Table 5.4: Execution time and speedup on the iPSC/860 system. The entries are: total

execution time in seconds (overall speedup) and time for the main analysis in seconds

(its speedup). Entries marked — could not be run on that cube. Entries marked f are

estimated times. See text for details.

129

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

numericalmodels ona larger cube6. Since this excludes a small amount ofcomputation

these estimates are slightly optimistic for the serial run time, so the actual speedup is

shghtly higher than reported here.

In all cases, use ofone-level model evaluation decreases the overall run time.

However, the efficiency and speedup vary from circuit to circuit. In some cases, the

speedup is very good (over 1.9 on 2 processors for the PPEF benchmarks, around 12

for the 14 device RINGOSC.IU circuit). In other cases, the speedup is much less

substantial (a best improvement of only 37% for the BICMPD example, a speedup of

4.4 on 16 processors for MECLGATE).

5.5.3 Results for the DEC Cluster

On the DEC cluster, different size processor groups are also used to run the

benchmarks. However, since the number of processors is not restricted to be a power

of two, the minimum number of processors needed is used when scaling the group size.

For example, the MECLGATE circuit is run on clusters of 2, 3,4, 6 and 11 processors.

This results, respectively, in at most 6,4,3,2 and 1 devices per processor. The memory

per computer in the cluster is higher, so theoretically it should be able to run large

circuits on smaller groups than in the hypercube case. However, because the DEC

machines are roughly 3 times slower than the iPSC nodes (cf. Section 3.4) the time

taken on a small machine may be infeasibly large. For example, the RINGOSC.IU

example takes over 12 hours to complete when running in a 14-DECstation group.

Although,it wouldalso fit in main memory on a 7-processor group, it wouldtake over

a day to complete one run. For similar reasons it is infeasible to compare run times
to those obtained on a single-processor CPU server such as the DECsystem 5000/240.

However, execution times for a single workstation have been estimated in the same

way as on the iPSC, by summing individual processor model-evaluation times. For

simplicity this has been done for all the benchmarks including the ones that fit easily
on one workstation.

Another difficulty in benchmarking network apphcations has already been

6The sizeofthelargercube does notmattersince no parallelismisexploitedduring the individual model
evaluations. Thus, comparable results areobtained ifany larger cube is used. However, for consistency,
the smallestcube that successfully completes the simulation is used to provide the model-evaluation
times.

130

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

encountered in the contextofmeasuring the communication performance ofthe cluster.

This is the problem of randomly varying run times caused by differing amounts of

load on the individual workstations and of network traffic. These variations can

significantly increase the run time above that achievable in a quiet environment.

Tb combat this problem, the network tests have been run on nights and weekends.

Workstations are selected by a program that chooses the most hghtly loaded machines

from the available pool of processors. This time can be significant7; in some cases it

is longer than the time required to perform the actual simulation. In addition, when

practical, multiple runs are performed and the lowest time encountered for a single

run is reported. Unfortunately, the outcome ofthis is that the most reliable timings are

obtained for the circuits with the poorest parallel performance. However, the timings

of the long running examples are sufficiently accurate to give a general idea of the

performance being achieved. In Figure 5.7, the results on the DEC cluster for the

LATCH example are plotted. The times usually cluster about a minimum value for a

given cluster size, but in several cases one or two of the runs take much longer.

In Tables 5.5 and 5.6, the minimum observed times for the parallel version of

CiDER running on the DEC cluster are given. The speedup quoted is the best observed

for any run, where the speedup is calculated by dividing the measured run time by the

estimated serial run time.

Based on these results, the benchmarks can be divided into three groups:

those whose best speedup is roughly equal to that obtained on the iPSC (BICMPD,

BICMPU, CLKFEED, CMOSAMP, ECLINV, ECPAL, GMAMP, PPEF.2D), those that

speedup, but not as well as on the iPSC (DBRIDGE, LATCH, PPEF.1D, RINGOSC.IU,

RINGOSC.2U), and those that start to slow down when more processors are used

(ASTABLE, INVCHAIN, MECLGATE, VCO). A look at the characteristics of the cir

cuits in each class confirms the supposition that the performance difference between

the iPSC and DEC cluster generally decreases as the per-iteration model-evaluation

time increases8. This is not surprising since the major difference between the two

7It takes about 3 minutes to obtain the CPU load for each ofthe 40 machines used in these tests. Ofthe
60 machines available, the other 20 were left out for several reasons, the most common being a request
from the machine's primary user.

8The one obvious exception is theRINGOSC.IU example, which uses thesame models as theother 2D
benchmarks. Thismaybe simplybean artifactofthe limitednumberofruns (2)madeforthis benchmark.
It could also be due to the large number of processorsand the long run time which make it more likely
that other jobs will interfere with a parallel job, thereby disrupting load balance.

131

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

#Proc.

Circuit

ASTABLE BICMPD BICMPU

1 325t
323t

20417^

18956*
14359*

12991*
2 409 (0.81)

405 (0.81)

14590 (1.42)

13483 (1.42)
9711 (1.51)
8784 (1.51)

DBRIDGE ECLINV ECPAL

1 1972*

1956t
8747t 5607t

4000t
2 1140 (1.73)

1130 (1.73)
5145 (1.75) 2834 (1.98)

2003 (2.00)
4 867 (2.28)

861 (2.27)
3002 (2.91) 1542 (3.69)

1096 (3.70)

CLKFEED CMOSAMP GMAMP

1 46450t
40598t

68373t 9544*

5092t
3 17384 (2.67)

15140 (2.68)

^~ —

5 —~~ —— 3207 (3.01)
1359 (3.75)

8
z

13819 (4.95) ^^~

Table 5.5: Execution times on the DEC cluster in seconds. The entries are: minimum

observed total execution time (best overall speedup) and minimum observed time for

the main analysis (best analysis speedup). Entries marked f are estimated times.

132

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

Proc.

Circuit

PPEF.1D PPEF.2D

1 367*

318*
12051*

10322*
2 199

174

(1.85)

(1.84)
6300

5781

(1.91)

(1.92)
4 122

107

(3.04)

(2.99)
3753

3279

(3.21)

(3.15)

INVCHAIN MECLGATE VCO

1 103*

94*
305*

288*
603*

599*
2 101

96

(1.02)

(0.98)

234

221

(1.32)
(1.32)

482

478

(1.25)

(1.25)
3 ™ 201

190

(1.56)

(1.55)
435

432

(1.41)

(1.41)
4 111

106

(0.93)

(0.89)

209

197

(1.49)

(1.48)
—

6 210

199

(1.49)

(1.47)

485

482

(1.25)

(1.24)
11

—

257

243

(1.29)

(1.22) z
LATCH RINGOSC.IU RINGOSC.2U

1 10562*

10382*
425769*

413406*
49328*

48385*
2 5850

5757

(1.81)

(1.80) •a^_

—

3 4414

4344

(2.41)

(2.40)
—

4 3825

3770

(2.80)

(2.79)
—

5 3179

3134

(3.35)

(3.34) „

—

7 2571

2532

(4.19)

(4.12)
— 8977

8809

(5.55)

(5.55)
14 1994

1971

(5.45)

(5.41)

42522

41030

(10.22)

(10.27)
5688

5584

(8.67)

(8.67)

Table 5.6: Execution times on the DEC cluster in seconds. The entries are: minimum

observed total execution time (best overall speedup) and minimum observed time for

the main analysis (best analysis speedup). Entries marked f are estimated times.

133

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

DEC Cluster Times for LATCH

kSeconds

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

o

o

o

o

b 0

\ °

a

D

' B

0.00 6.00 10.00 15.00

Minimum Trial
ooQUoaopooBODa

AllTrialB

Figure 5.7: Tbtal execution time for LATCH on the DEC cluster. Single processor

times are the sums of the device-level times from each multiprocessor run.

parallel machines is the performance of the communication network which is less im

portant when relatively more time is spent at the device-level than at the circuit-level.

5.5.4 Observed Limitations

The one-level model-evaluation algorithm has several limitations that become

apparent in these two implementations. As a result, in many cases the ideal speedup

of P on P processors has not been achieved. However, in some cases nearly ideal

speedup is obtained. In this section, the limitations are identified and examples

from the benchmark set are used to illustrate how the limitations can be of practical

importance. In addition, strategies for overcoming these limitations by exploiting
special cases are introduced.

134

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

Limited Number of Devices

The first and most important source of difficulty often is the limited paral
lehsm available to exploit in one-level model evaluation. The maximum number of

devices in the benchmark circuits is 14,so even though more processors are available

on both the hypercube and the cluster, they can not be used. This limitation comes

into play on every circuit, although it is more obvious when the number of numerical

devices is very small as in the ASTABLE, BICMPD and BICMPU circuits. The main

way to overcome this problem is by running multiple simulations at once; i.e. use

design-level parallehsm. By using the extra processors as a way to increase system
throughput, the time to finish a design task is greatly reduced. This approach has
been used often when running the simulations described in Chapter 6.

Example: On one weekend, while performing a device characterization application,
2 MOSFET device designs were simulated at 7 channel lengths with 3 sets of bias

conditions apphed to the devices. In total 42simulations wererun. Byusing the large
number ofDS5000/125 workstations and one DS5000/240 computeserver in the DEC

cluster, the simulations were all completedin less than a day. The shortest simulation

took8 hours20minutes to finish, the longest took18hours53minutesand the average
job took 12 hours 49 minutes. The faster compute server was able to finish 2 of the

jobs during this period. Overall, the 42 jobs would have taken roughly 538 hours or

22 days to complete on a single workstation. The speedup was therefore about 28 and

the efficiency was about 70%. •

Processor - Device Count Mismatch

The next limitation is the mismatch between the number ofprocessors avail

able and the number of numerical devices in the circuit. The speedup in this case is

limited by Equation 4.5 as repeated here:

S(D>p) = m (5-2)

where D is the number of numerical devices. This limit is a bigger problem on the

hypercube, where the number of processors must be a power of two. Only some of the

circuits have a device count That is also a power of two (e.g. DBRIDGE, CMOSAMP).

Even when the number of processors can be tailored to the problem, few good choices

135

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

may be available that exactly divide the number of processors. (Consider the case

where D is prime. Only when P = D will no performance loss be caused by this

problem.) In actual practice, this limitation has thus far been overcome by taking

P > D whenever possible and living with the resultant waste ofsome of the processors

when P > D.

Task Size Imbalance

Many of the circuits use a different numerical model for each kind of device

in the circuit. For example, BICMPD, BICMPU, and GMAMP are BiCMOS circuits

that contain both bipolar and MOS devices. Since different meshes are needed to

accurately simulate each kind of device, the time per iteration per device varies from

one to the next. This effect is accounted for in the speedup model of Equation 4.6

and in the annealing load balancer of Section 4.9. Another example of this problem is

when one-carrier simulation is used for the MOS devices as in all of the benchmarks.

Then the time per iteration is different for bipolar and MOS devices even if the mesh

sizes are similar because only 2 of the 3 semiconductor device equations are solved

for the MOS devices. A third example of this problem accounts for the some of the

differences in job execution time in the MOS device characterization example because

devices with different channel lengths need different mesh sizes. A final case that is

not represented in the benchmark set is when one- and two-dimensional numerical

device models are mixed in the same circuit.

Many of the benchmark circuits suffer from this problem, however the two

PPEF examples are the most interesting. These two circuits use numerical bipolar

models and have 2 NPN devices and 2 PNP devices. (PPEF.ID uses 1D models and

PPEF.2D uses 2D models.) Ontwo processors, the round-robin partitioner puts1NPN
and 1 PNP on each processor leading to almost perfect load balance; the efficiency on

the iPSC/860 is greater than 95%. However, on 4 processors the difference between

the NPN and PNP device meshes is exposed and the efficiency drops to 90% and 80%,

respectively for the 1D and2D cases. The drop islesspronounced in the 1D case because
the mesh sizes are closer to one another.

The simplest way to overcome this problem is by trying to match the mesh

sizes for the numerical devices as much as possible. However, this will in general

136

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

result in either compromised accuracy for devices whose mesh size are reduced or

extra unneeded accuracy for devices whose mesh sizes are increased.

Latent Devices

Even for circuits with identically modeled devices (e.g. DBRIDGE, ECLINV,

MECLGATE), the speedup predicted by Equation 4.5 may not be achieved. This is

caused by a fourth nonideality: differences in the activity of the numerical devices in

the circuit. During DC and transient analysis, some of the devices become latent and

are bypassed during the model-evaluation phase. Also during DC analysis, different

iterations counts may be needed to obtain convergence of the device-level Newton-

Raphson iteration. For AC analysis, latency is not as big a problem because at least

one device-level solution is needed for every device in the circuit at each frequency

point. Some imbalance may result because an iterative AC solver is used in DSIM.

However, the iterative solver usually converges in 2 iterations, and if it fails a single

direct-method solution is performed instead. As a result, ifthe numerical device models

are identical, most of the time the same amount of work is done for each numerical

device.

The effects of latency are accounted for in the serial execution time models

of Equations 3.3 and 3.4. An equation for the parallel execution time in the presence

of latency is now derived. For simplicity, the numerical models are assumed to be

identical. In the serial case, one time unit is taken for each active device so the

time taken is proportional to the number of active devices. In the parallel case, the

same holds true for each processor, so the time taken is proportional to the maximum

number ofactive deviceson any oneprocessor. Assumeat this point that each processor

is assigned the same number of devices (i.e. P divides D evenly). Assume also that

each device has a probabihty / of being active on any given iteration, and that the

devices become inactive independently of one another9. The probabihty that any one

processor has less than or equal to A active devices is given by:

V(A, rf, /) =Y[.)(/)'"(! "f)'-' (5.3)
BThis last assumption may not be true ofactual circuits, especiallydigital ones.

137

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

where d = D/P is the numberofdevices on a processor, () is the numberofways

to choose i active devices from the d total, and (/)*(1 - f)d~* is the probabihty that

exactly i devices are active. Therefore, the expected value of the maximum number of

active devices, (Dactive), is given by:

d

(DactiVe) =Ya' P(«> DIP' f)f ~(V(Q ~1. DlPi f))P\ (5-4)
a=l

where a is a number ofactive devices, and the expression in brackets is the probabihty

that the maximum number of active devices on the P processors is exactly equal to a.

As shown, Equation 5.4 is valid for any values of D, P and / where D/P is

an integer. However, it can be simplified considerably in special cases. In particular,

if the number ofdevices per processor is equal to 1, as suggested in Section 5.5.4, then

the expected number of active devices is 1 minus the probabihty that all the devices

are inactive:

{Dactive) = 1" (1 " ff (5.5)

If instead these same P devices are placed on a single processor, the expected value is

simply:

{Dactive) = P • / (5.6)

So the speedup in this special case is given by:

P- f
S=i-(i-/)P (5'7)

Figure 5.8 is a plot ofspeedup using Equation 5.7 for several different values of P. As

can be seen, for most values of P and /, the probabihty that all devices become latent

at the same time is very low, so the efficiency n = S/P is limited by the fraction of

active devices /. Essentially what this means is that there is less overall latency when

executing the model evaluations in parallel.

Example: An examination of event traces taken from a run of the RINGOSC.2U

benchmark verified that only a very small percentage of iterations had all 14 devices
inactive at the same time. •

In Table 5.7 the measured speedups (Smea*) obtained on the iPSC for cases

138

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

•

•

•

•

•

o

0

o

•

1

o

a

i

1

D

0

•

1

D

s ° .
Ill

- •

• *

t S t
: —

0.00 0.20 0.40 0.60 0.80 1.00

P=16
DBooeoa

P=8

Po*4**

P"2#*

p"l"

Figure 5.8: Speedup predicted in the presence of latency

where each processor has at most one device are compared to the speedup modeled

using Equation 5.7 (Sprcd) and to the average number ofactive devices ~D = D • /. The

value of P used is set equal to D, the number of numerical devices. The equation

remains valid in this case because it is known ahead of time that the extra processors

will not limit the execution time in the parallel case. The fraction of time a device

is active is computed by taking the total number of transient device-level iterations

and dividing by the number of circuit iterations and the number of devices. For the

most part, the average number of active devices provides a reasonable estimate of the

speedup that can be obtained. The difference between ~D and Smodei is also generally

neghgible.

There appears to be little that can be done to prevent latency effects from de

grading the speedup of the one-level model-evaluation algorithm. Since it is difficult

if not impossible to predict the activity ofthe devices before running the simulation, a

static load balancer cannot compensate for this effect in the device assignment step.

Dynamic load balancing during the simulation is also likely to be ineffective because

139

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

Circuit D / Smeas ^ model D

ASTABLE 2 0.77 1.64 1.63 1.54

CLKFEED 3 0.91 2.74 2.73 2.73

DBRIDGE 4 0.85 3.16 3.40 3.40

INVCHAIN 4 0.61 2.54 2.50 2.44

MECLGATE 11 0.56 4.98 6.16 6.16

LATCH 14 0.54 8.51 7.56 7.56

VCO 6 0.66 3.93 3.96 3.96

Table 5.7: Comparison of iPSC speedup with average number of active devices

latent devices can reactivate at any time thereby disrupting attempts to rebalance only

the currently active devices. As noted in [GATE931, turning off the bypass capabihty

altogether does no good because it increases the percentage ofactive devices at the ex

pense ofcomputing more model evaluations so that the overall execution time actually

increases. One possible solution is to move to the multi-level model-evaluation algo

rithm where the number of groups in the upper levels is small so that the probabihty

that all groups become inactive at the same time is increased. For example, at the

highest level where there is only one group, all the latency of the serial algorithm can

be exploited. However, the gain from increased latency exploitation is likely to be offset

by the decreased efficiency of parallel device simulation, so the overall performance

improvement would be less substantial.

Communication and I/O Overheads

The fifth hmitation of the one-level model-evaluation algorithm is heavily in

fluenced by the specific performance characteristics ofthe machine being used. Unless

communication and I/O overheads are decreased in the same proportion as the main

computation, they can become factors that limit overall speedup. Communication time

increases when processors are added to the one-level model-evaluation algorithm be

cause the global circuit matrix and RHS must be distributed to more processors. This

is more ofa problem on the DEC cluster, as demonstrated in Section 5.3.2, where the

time for global reduction scales greater than logarithmically with the number of pro

cessors. In addition, the relative speed of communication to computation, or machine

granularity, is worse on the cluster than on the iPSC.

140

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

Because the iPSC was specifically designed for high-performance message-

passing applications, its communication performance usually does not severely de

grade the speedup below what is predicted by the latency-dependent model of the

previous section. Only in cases where the task size is low and the number of proces

sors is high (e.g. the MECLGATE benchmark) does it begin to disrupt performance.

Ofmore concern is the I/O performance of the node-to-host link which is used to return

circuit- and device-level output to the System Resource Manager. The limited band

width of this link and the fact that all results go through it can turn it into a serial

bottleneck. While CPU time for the main computation decreases, the I/O time remains

constant and significant. As shown in [GATE931, for the MECLGATE example, the

time to save one numerical device's internal state accounts for about 40% of the total

time on 1 processor and about 70% of the total on 16 processors because it does not

scale down. The degradation would increase if more than one device state were saved,

and the overall computation rate would be I/O bound. One alternative that avoids the

node-to-host link is to use the concurrent file system. This wouldfree up the compute

nodes more quickly for otherjobs at the expense of having to retrieve the results using

the slow node shell.

On the DEC cluster, which was not originally designed to support message-

passing parallel processing, the network performance has a dramatic impact on the

overall performance. The worst case behavior is shown in Figure 5.9 for the MECL

GATE benchmark, where the total analysis time is actually increasing as more proces

sors are added to the problem. The reason for this behavior is the relatively short time

per iteration spent evaluating the numerical models in this circuit. Similar behavior

is exhibited by the 3 other circuits (ASTABLE, INVCHAIN, and VCO) that employ the

same one-dimensional numerical bipolar model.

Startup Overhead

The final limitation of the current implementations is the time to start a par

allel job. On a single workstation, a simulation can be started without any noticeable

delay. However, in a parallel environment, the time to set up the parallel machine

can be significant. On the iPSC, the cube used must be allocated initially, loaded with

the executable at the start of the run, and deallocated at the run's conclusion. On the

141

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

DEC Cluster Time for MECLGATE

Seconds

350.00

300.00

250.00

0

\ j
1

kj
!

200.00

150.00

100.00

50.00

0.00

0.00 2.00 4.00 6.00 aoo 10.00 12.00

Minimum Trial

Figure 5.9: Tbtal execution time in seconds for MECLGATE on the DEC cluster. Single

processor times are the sums ofthe device-level times from each multiprocessor run.

DECcluster, a script is run to determine which machines on the network will perform

the job. If two or more jobs need to be run, they must be started serially to prevent

them from selecting the same unloaded machines to use. A serial loop then spawns

the simulation processes on the various machines. Each spawning requires the CIDER

executable residing on a centralized host machine to be transferred across the network

to the chosen remote machine. This step is sometimes so time-consuming that built-in

alarm routines occasionally time out waiting for large clusters to initialize, and the

startup process is terminated.

Table 5.8 shows the times needed to run a null job on an 8-processor machine

in four different cases. The first two cases arethe preferred methods for starting jobs

on the iPSC and the DEC cluster, respectively. On the iPSC, the job is submitted to

NQS which takes careof allocating a cube for the job. On the DECcluster, the network

is first scanned for unloaded machines and then the TCGMSG parallel command

is used to bring up the machine. For this test, the pool of workstations scanned

142

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

Startup Method Time

iPSC - Queue 41

DEC - Scan 175

iPSC - Direct 40

DEC - Reuse 28

Table 5.8: Job startup times in seconds on the iPSC/860 and DEC cluster

contained 40 processors. The second two methods save time by bypassing steps in

the preferred methods. On the iPSC, a cube can be allocated directly, bypassing the

queueing system. However, such jobs are subject to preemption by jobs submitted to

NQS. The one second improvement does not seem to justify the risk. On the cluster,

a previous cluster configuration file can be reused, bypassing the network scan. This

saves almost two and a half minutes in startup time. Unfortunately, this approach is

dangerous because the machines listed in an old file may not be unloaded at a later

time10.

Since the startup time increases the fraction of time executing serially, Am

dahl's Law dictates that the job itself must be many times the startup time before

noticeable speedup is achieved. The system may be executing efficiently because the

parallel resources are not tied up during most of the setup time. However, from the

user's point ofview, the high startup cost decreases productivity and reduces the ability

to use mixed-level simulation for short 5 to 10 minute jobs.

5.6 Summary

The one-level model-evaluation algorithm has been implemented on two dif

ferent distributed-memory multicomputers. The first system is an Intel iPSC/860

hypercube, a scalable, high-performance computer. The second system is a cluster

of DEC engineering workstations. The TCGMSG portable message-passing package

provides communication services for both implementations. Fast message-passing is

available on the iPSC; the DEC cluster is slower due to the limited bandwidth of its

Ethernet connectivity. The programming effort involved in parallelizing CiDERis min-

10If the primary user of a workstation has returned in the meantime, he might be somewhat upset to
find a large mixed-level simulation running on his machine.

143

CHAPTER 5. DISTRIBUTED-MEMORY MULTICOMPUTERS

imized by the simplicity of the one-level model-evaluation algorithm. Parallehsm is

exploited primarily through the use of efficient global-reduction routines.

The performances of the implementations have been measured by running a

set of 17 benchmark circuits. The iPSC version shows good speedup and efficiency on

several of the benchmarks, but poor efficiency on some of the others. A best speedup

of 12 on 16 processors has been observed. In certain cases, the DEC cluster version

can match the speedup of the iPSC version. However, the slower performance of the

DEC cluster nodes makes the iPSC version the faster of the two. In other cases, the

poor communication performance ofthe DEC cluster causes runtime to increase when

large numbers of processors are used.

The reasons for the varied performances of the two implementations have

been traced to several limitations of the one-level model-evaluation algorithm. The

speedup available is limited by the number of devices modeled numerically and the

number of processors. In the extreme case of a circuit with only one numerical device,

no parallehsm is available using this technique. In practice, several other factors make

it difficult to achieve the best speedup predicted by Equation 4.5. First, in situations

where different meshes are used for the numerical devices in a circuit, the workload

per numerical device can becomeunbalanced. An example ofthis is a BiCMOS circuit,

where the bipolar and MOS devices require different mesh specifications to achieve

accurate solutions. Second, in DC and transient analyses, devices can become latent,

reducing their wdrkloads to nearly nothing. If numerical devices go latent, it is pos
sible for a processor to sit idle for lengthy periods while the other processors work on

the nonlatentdevices. This is another source of load imbalance that limits speedup.
Third, even though the amount of information passedbetween compute nodes is min

imal, the time taken by this step canbecome significant if there is a large imbalance

between the computation and communication speeds of the multicomputer. Since all

communication is overhead, it reduces the overall speedup. This effect is minimized

when the numerical device models are made larger(more mesh points are used). Fi

nally, the time to start a parallel job reduces the effectiveness of parallel computing
for short-running simulations.

144

Chapter 6

Applications of CIDER

6.1 Overview

Mixed-level circuit and device simulation has been used previously in a num

ber ofsituations where compact device models fail to provide accurate results. The hst

of such applications has grown steadily since the introduction of the earliest mixed-

level simulator MEDUSA [ENGL821. However, in the past, applications have been

limited to circuits containing only a few numerical devices, because of the enormous

computational burden imposed by mixed-level simulation. In this chapter, several ap

plications ofCIDER are presented that demonstrate how high-performance engineering

workstations and parallel computing can be used together to expand the range ofprob

lems that can be approached using mixed-level simulation. In addition, the extended

capabilities of CIDER compared to its predecessor CODECS are used to provide more

realistic numerical modeling of physical effects that are important in present-day IC

devices.

The chapter begins by introducing a hypothetical 1.0 /on complementary bipo

lar - complementary MOS (CBiCMOS) process. CIDER is used as a device simulator to

characterize the electrical performance of the various devices available in the process.

The results of device simulations are used in the remaining sections of the chapter to

obtain SPICE model parameters.

The first circuit apphcation is a study ofoutput resistance and gain modeling

in a variety of analog IC amphfier stages. Existing SPICE models provide only a

crude first-order modeling of the output resistance of transistors. As a result, large

145

CHAPTER 6. APPLICATIONS OF CIDER

qualitative and quantitative differences are observed when SPICE simulations are

compared to the results obtained from CiDER.

In a second application, the performance of a compound-device push-pull
emitter-follower (PPEF) output stage is examined. Results of simulations from both

SPICE and CIDER are compared andsubstantial differences are observed in the large-
signal performance ofthe output stage.

6.2 Hypothetical 1.0 /im CBiCMOS Technology

Before studying the performance of complete circuits, models must be devel

oped for each type of device available to the circuit designer. In a traditional approach
basedsolelyoncircuitsimulation, parameters for the devices' compact modelsmust be

determined eitherby measuring actual devices or from hand calculations guided by a
knowledge of the devicestructure. Foradvancedtechnologies, where two-dimensional

effects are important, usable hand calculations are generally difficult ifnot impossible
to perform. As a result, a parameter extractor has become an essential adjunct to
any new compact model developed [JENG90]. However, parameter extraction cannot

always be rehedonto produce physically correct values for the parameters [LIN93]. A

review of some ofthe deficiencies of existing compact models, and the difficulties that

arise in developing parameters for these modelsis presented in [MAYA881.

Inmixed-level simulation, numerically modeled devices are described directly
using parameters of the underlying technology: critical dimensions, doping profiles
and material parameters. Detailed descriptions ofproduction technologies are rarely,
if ever, published, since the information provided would give critical insight into the
process optimizations introduced by the manufacturer. Consequently, in this work,
a set of hypothetical device designs has been developed based on information drawn

from a number of sources: published descriptions of actual technologies [IRAN911,
[KAP0891, other simulation studies [BELL92b],[NAKA91] and informal discussions

with a device physicist [K093]. Four different device types are available: vertical
NPN and PNP polysihcon emitterbipolar transistors [KAP089] and NMOS and PMOS

surface-channel hghtly-doped drain (LDD) field-effect transistors [OGUR80]. Using
these devices 4 different technologies can be created: a high-speed complementary
bipolar process, a CMOS process, aBiCMOS process with fast, vertical NPN devices,

146

CHAPTER 6. APPLICATIONS OF CIDER

Process Parameter
Device Type

NPN PNP

Minimum Emitter Width (/mi)
Emitter-External Base Separation (/mi)
Poly Emitter Thickness (/an)
B-E Junction Depth (/im)
Peak Emitter Doping (cm-3)
B-C Junction Depth (/mi)
Base Peak Doping (cm-3)
C-Buried Layer Depth (/mi)
Epi Layer Doping (cm~3)
Buried Layer Peak Doping (cm-3)

1.0

1.5

0.2

0.11

3.0e20

0.25

7.8el7

1.0

1.0el6

5.0el9

1.0

1.5

0.2

0.12

3.0e20

0.40

2.6el7

1.0

1.0el6

5.0el9

Table 6.1: Key process parameters for bipolar devices

anda full CBiCMOS process. Issuesofmanufacturability ofthevarious process options
have notbeenaddressed. Asa result, it maynotbetechnically or economically feasible
to use these device designs in an actual production process.

Because the devicesare not based on a specific technologyand the simulated

performance has not been compared to measurements on actual devices, conclusions

based on strictly quantitative analysis cannot be made. However, the underlying
physical basis of the numerical modeling approach results in qualitatively correct

behavior of the simulated devices, as demonstrated next. In addition, the observed

behavior is also quantitatively reasonable, if not necessarily strictly accurate.

6.2.1 Bipolar Devices

Typical low-voltage high-speed bipolar technologies employ a number of ad

vancedprocessingtechniques to meet the necessaryperformance specifications. Athin

heavily doped epitaxial layer and oxide isolation are used to reduce parasitic capaci

tances. A buried layer is used to minimize collector series-resistance, and polysihcon

emitters are used to increase the forward current gain by a factor of 3-10 over that

achieved using an aluminum emitter contact. A description of the process flow for a

modern low-voltage process can be found in [GRAY931.

One- and two-dimensional numerical models have been developed for both

NPN and PNP transistors. A summary of the key dimensions and doping concentra

tions is provided in Table 6.1. A two-dimensional cross-section of the NPN device is

147

CHAPTER 6. APPLICATIONS OF CIDER

shown in Figure 6.1. The device structure is assumed bilaterally symmetric about the

Emitter
o

Base e y

-aaA

Region Simulated

n!
?
••

-A'

Collector

Figure 6.1: Cross section of NPN transistor

line A-A', so only half of the device is simulated. This corresponds to the assumption

that dual base contacts are provided for the device. Under the emitter, the doping is

uniform in the X direction, so the one-dimensional doping profile is taken along the

line A-A'. In Figures 6.2 and 6.3 the 1D profiles for the NPN and PNP devices are

shown. Lower peak doping and a deeper base-collector junction are used in the PNP

to increase the base Gummel number [SZE81J and current gain while still preventing

base punchthrough under normal operating conditions.

Accuracy in bipolar simulation requires good physical models for the intrin

sic carrier concentration 7i,-, the minority-carrier mobility in the base region and the

transport properties of the polysihcon emitter. CiDER extends the abilities of CODECS

to support bipolar simulation by incorporating many of the models and model parame

ters described in [SOLL90]. However, the polysihcon portion of the emitter is modeled

differently from how it is done in [SOLL90] by using a separate semiconductor region

that extends the underlying silicon emitter. In this region, all the material param

eters are the same as for similarly doped monosilicon except for the mobility, which

is reduced by a factor of 0.07 in accordance with the results presented in [ASHB87].

This capability is not available in CODECS because only one type of semiconductor

148

CHAPTER 6. APPLICATIONS OF CIDER

cn»A-3

6

2

le+20

5

2

le+19

5

2

le+18

5

2

le+17

5

2

le+16

5

2

le+15

6

\

\
\

1

f\

-/

\

f

0.00 0.60 1.00

Net Doping

Figure 6.2: 1D NPN Doping Profile

material is supported. Simulations using normal silicon underestimate the current

gain, because the higher mobility allows more current to flow in the emitter, thereby

increasing the base current.

CIDER model descriptions for the devices are listed in Appendix D. Two dif

ferent two-dimensional models are available for each device. One uses relatively

fine mesh in the X direction while the other is coarser and therefore closer to a

one-dimensional model with only approximate modehng of two-dimensional effects.

However, the per-iteration time and memory use for the coarse-mesh model are signif

icantly smaller than that ofthe fine-mesh model. These characteristics make it better

for use in mixed-level simulations.

One-dimensional simulations have been performed to characterize the DC

and AC electrical performance of these devices. The main device parameters are

summarized in Table 6.2. Briefly, the NPN (PNP) device has a maximum current

gain /3 = ^ of205 (82), a knee current density Jk of0.2 (0.09) mA/fim2, and a peak
transition frequency ft of 17.5 (5.5) GHz. These parameters are all measured at

149

CHAPTER 6. APPLICATIONS OF CIDER

cmA-3

3

le+20

3

le+19

3

le+18

3

le+17

3

le+16

3

le+15

3

lc+14

-^

0.00 0.60 1.00

Net Doping

Figure 6.3: 1D PNP DopingProfile

at a collector-base voltage \Vcb\ of 2.0V. The knee current density is defined as the

point where P drops to 1/2 its peak value. The Early voltage [EARL52] is calculated

from the change in the collector current for two different values of Vcb [GETR761.

Collector resistance is computed from the slope ofthe Ic - Vce curves in the saturation

region, and base resistance is computed using a variation on the input-impedance

circle method [NAKA91]. For the base resistance, the device was biased at a moderate

collector current density l/10th the knee current density. The emitter resistance

is found by simulating the device with a high emitter current and measuring the

voltage drop across the polysihcon layer using a plot of the internal potential of the

device. The collector and emitter zero-bias capacitances are obtained directly from

the small-signal admittances of the device when driven by a low-frequency input.

Since one-dimensional simulations are used, the collector-base capacitance excludes

the parasitic capacitance between the remote base contact and the buried layer. In

addition, the parasitic collector-substrate capacitance is not modeled by either the 1D

or 2D structures. If necessary, both parasitic elements could be reasonably modeled

150

CHAPTER 6. APPLICATIONS OF CIDER

Electrical Parameter
Device Type
NPN PNP

Maximum Current Gain, P
Knee Current Density, Jk (mA//mi2)
Forward Early Voltage, VAj (V)
Collector Resistance, rc, (Q)
Base Resistance, n (-G)
Emitter Resistance, re (/?)•
E-B capacitance, CJco (fF///m2)
C-B capacitance, CJc0 (fF//mi2)
Maximum Transition Frequency, ft (GHz)

205

0.2

24

330

180

0.67

2.3

0.3

17.5

82

0.09

23

750

310

0.46

1.4

0.3

5.5

Table 6.2: Key electrical parameters for 1.0 /mi x 10.0 /an BJT devices

using standard compact diode models with appropriately determined parameters.

Figure 6.4 shows a plot of the NPN collector and base currents, Ic and Ib,
versus the base-emitter voltage VBe for VCb = 2.0V. For large VBe, both collector and

base current roll offdue to a variety ofhigh current effects. Among these are high-
level injection at the emitter-base junction, basepushout, andvoltage drops across the
various parasitic resistances of the device. In addition, two-dimensional effects such

as current crowding and lateral basepushoutcan alsobe important. Thismultiplicity
of factors makes it difficult to model the behavior analytically in the high-current
regime. In Section 6.4, a circuitapplication is presented wherethe devices operate at
such high current levels.

6.2.2 MOS Devices

In a 1.0 /on channel-lengthMOSFET design,carefullyengineereddoping pro

files must be used to maintain reasonable current drive and threshold voltage while

still minimizing parasitic series resistance, and punchthrough and hot-electron effects

[JENG901. A thin gate oxide gives rise to high transconductance and it combines with

shallowsourceand drain junctions to suppress drain-inducedbarrier lowering(DIBL).

Unfortunately, the power supply voltage for 1.0 /xm technologies has remained at 5V,

which leads to increased electric fields within the devicecompared to previous MOS

FET generations. In order to avoid avalanche generation at the drain junction during

saturated MOSFET operation, hghtly doped pockets are added at each end of the

channel in order to smooth out the peak in the electric field that occurs near the drain

151

CHAPTER 6. APPLICATIONS OF CIDER

le-02

le-04

le-06

lc-08

le-10

le-12

NPN BIPOLAR GUMMEL PLOT

//
/

//
0.20 0.40 0.60 0.80 1.00 1.20

Figure 6.4: NPN Gummel plot for Vcb = 2.0F. Emitter area = 1 /mix 10 /on

side ofthe channel. LDD designs therefore reduce hot-electron device degradation but

also degrade current drivability and gain due to increased source-drain resistance.

Because a MOSFETs operation is inherently two-dimensional, only 2D nu

merical MOSFET models are available in CiDER. Figure 6.5 shows a device cross-

section for a 1.0 /on NMOS device. The 1.0 /on PMOS device has an identical cross-

section except for a change in polarity of all the doping impurities. This includes the

polysihcon gate layer, so the PMOS device has a P+ poly gate which leads to surface-

channel operation of the PMOS device. The key process parameters and dimensions

of the MOS devices are provided in Table 6.3. A three-dimensional view of the final

doping profile is shown in Figure 6.6. The substrate doping tapers off from a peak

doping of 1.0 x 1017cm~3 at the surface to a uniform concentration of 5.0 x 1016cm"3

at a depth of about 0.7 /on. The LDD implant is visible as a shght bump on the side of
the drain junction.

The primary physical parameter that should be modeled accurately for short-

channel MOSFETfc is the mobihty in the surface inversion layer. CiDER uses the

152

CHAPTER 6. APPLICATIONS OF CIDER

1.0 um

N+ Poly Gate

0.2 um

Region Simulated Bulk

Figure 6.5: Cross section of NMOS transistor

model described in [GATE90] to account for normal-field and lateral-field mobility

degradation1. This model was originally implemented in an updated version ofCODECS

that eventually evolved into CiDER. However, until the release of CiDERit has not been

publically distributed to the world at large. Direct solution of Poisson's equation by

the numerical model accounts for other short-channel effects such as channel-length

modulation and DIBL. Hot electron effects (avalanche generation) are not accounted for

'This effect is also known as velocitysaturation.

Process Parameter

Device Type
NMOS PMOS

Supply Voltage (V) 5.0 5.0

Minimum Gate Length (/mi) 1.0 1.0

Type of Gate N+ poly P+ poly
Oxide Thickness (A) 200 200

Junction Depth (/mi) 0.2 0.2

Substrate Doping (cm-3) 5.0el5 5.0el5

Implant Dose (cm-2) 1.6el3 1.6el3

LDD Length (/mi) 0.1 0.1

LDD Doping (cm-3) 4.0el7 4.0el7

Table 6.3: Key process parameters for MOS devices

153

CHAPTER 6. APPLICATIONS OF CIDER

NMOSFET Doping Profile

1.0e20

3.2el7

-jUuttO

Figure 6.6: 2D NMOS Doping Profile

in the model for two reasons. First, the two-dimensional avalanche generation model

has never been implemented with the complete set of derivatives added to the device-

level Jacobian matrix. This has resulted in noticeable convergence difficulties when

using the model. Second, impact ionization current is carried by both electrons and

holes and therefore requires full two-carrier device simulations. When it is omitted,

current flow consists almost exclusively of majority carrier current (by electrons in

NMOS, by holes in PMOS). Thus, one-carrier simulation can be used which results in

considerable savings in CPU time.

CiDER model descriptions for the MOS devices are listed in Appendix D along

with the bipolar descriptions. Because the distances in a two-dimensional MOSFET

cross section depend on the gate length of the device, a different model is needed for

each device length used in a circuit. Models are provided for gate lengths of 1, 2, 3,

4, 5, 10 and 50 /mi. Models for other lengths can be obtained by adjusting the model

distances that depend on the channel length.

Each of the devices was simulated for three sets of conditions: in the linear

region with low Vds of 50 mV and Vgs and VBs swept, in the "square-law" region with

Vds = Vdd and Vgs and Vbs swept, and in the saturation region with Vgs stepped

154

CHAPTER 6. APPLICATIONS OF CIDER

Electrical Parameter

Device Type
NMOS PMOS

Effective Channel Length, Leff (/mi)
Threshold Voltage, Vt (V)
Saturation Drain Current, Idsat (mA///m)
Subthreshold Swing, S (mV/decade)
Early Voltage, 1/A(V)

0.8

0.8

0.42

100

38

0.8

-0.7

0.13

100

30

Table 6.4: Key electrical parameters for 1.0 /mi L^rawn MOS devices

in 1 V increments and Vds swept from 0 V to Vdd> In total 42 simulations were

distributed across the workstations ofthe DEC cluster described in Chapter 5. The DC

characteristics ofthe 1.0 //m devices are summarized in Table 6.4. In short, the NMOS

(PMOS) device has a threshold voltage of 0.8 (-0.7) volts and maximum current drive

of0.42 (0.13) mA//*m ofwidth. The effective channel length listed is only approximate

since it varies significantly with both applied gate bias and drain bias in LDD devices

[HU871. The Early voltage is also an approximation since a constant value is not

accurate for characterizing the output resistance of short-channel MOSFETs. This

topic is covered more thoroughly in Section 6.3

In Figure 6.7, the saturation curves for NMOS and PMOS devices with W/L

= 10.0/mi/l.O/mi are shown. In the flat region of the curves, the increase in Ids with

increasing Vgs is limited by velocity saturation. For a fixed value of Vgs the current

increases shghtly wth increasing Vds due to channel-length modulation [FROH69] and

drain-induced barrier lowering [JENG90]. In the linear region, shown for the NMOS

device in Figure 6.8, the current actually increases sublinearly with increasing Vgs

due to normal-field mobility degradation, a voltage drop across the parasitic source

resistance, and a gate-voltage-dependent increase in the channel length that is typical

of LDD devices.

A key circuit used to measure the speed performance ofCMOS circuits is the

ring oscillator. The parallelversion ofCIDER for the iPSC/860is capable of simulating

this circuit in a reasonable amount of time. This capabihty allows the technology

performance to be directly characterized without the need to extract compact model

parameters in an intervening step. In Figure 6.9, the per-stage delay of a 7-stage

unloaded CMOS ring oscillator is shown as a function of the supply voltage. The

predicted performance is somewhat high because several capacitive parasitics have

155

CHAPTER 6. APPLICATIONS OF CIDER

MOSFET CHARACTERISTICS - SATURATION REGION

Ids (mA)

4.00

3.60

3.00

2.50 —

2.00

1.60

1.00

0.50

0.00

VdsCV)

-4.00 -2.00 0.00 2.00 4.00

Figure 6.7: MOS saturation region characteristics for 10.0/zm/1.0/xm devices. linear

increase ofmaximum current with Vgs is caused by velocity saturation.

been ignored. As the supply voltage decreases, the gate delay increases because less

current is available to charge and discharge the fixed capacitances of the circuit. The

simulations were performed on a 16 node subcube ofthe iPSC/860 and took between 2

and 4 hours of CPU time each to execute2.

6.3 Gain ofVarious Amplifier Cells

It would be nearly impossible to find an analog circuit that does not contain

some kind of amplification stage. As a result, the small- and large-signal gains of

amplifiers are key parameters in an analog IC design. Good device models are needed

to estabhsh the value of gain for a given circuit. Especially for very aggressive high

speed analog circuits where low-gain, wide-bandwidth amplifiers are used, designers

2Due to a bug in CiDER these simulations computed unnecessary circuititerations and thus took
longer to perform. For a better measure of the CPU time with the bug fixed, consult the results for the
RINGOSC.IU benchmark in Chapter 5.

156

CHAPTER 6. APPLICATIONS OF CIDER

NMOSFET CHARACTERISTICS - LINEAR REGION

Ids(uA)

140.00

120.00

100.00

80.00

60.00

40.00

20.00

0.00

]

-Vrs

Ids

(V)

0.00 1.00 2.00 3.00 4.00 6.00

Figure 6.8: NMOS linear region characteristics for a 10.0/mi/l.O/mi device. Reduction

in the transconductance gm = f|g| is caused by transverse-field mobihty degradation,
series resistance, and channel-length variation.

are aided by precise modeling of the devices in the circuit.

Given the importance ofgain calculations, it is surprising to note that most of

the existing compact transistor models in SPICE have difficulty accurately predicting

the gain formodern IC circuits. Tbsome degree this is due to analog design techniques

that minimize the importance of knowing the exact value of the gain. However, this

difficulty is also caused by advances in IC processing that introduce important new

physical effects and that invalidate some of the assumptions made for older technolo

gies.

In this section, mixed-level circuit and device simulation is used to study the

gain of several IC amplifier circuits. The deficiencies of output resistance modeling

in the existing MOSFET models of SPICE are well known [JENG90]; for the sake of

the current argument, the BSIM model is used to demonstrate limitations of these

models. The BSIM model is chosen because it models the important short-channel

157

CHAPTER 6. APPLICATIONS OF CIDER

CMOS Ring Oscillator Delay Per Stage

Td (PS)

250.00

200.00

150.00

100.00

60.00

0.00

2.00 2.60 3.00 3.50 4.00 4.60 6.00 5.50

Vdd (V)

Figure 6.9: CMOS ring oscillator delay per stage. Ring has 7 stages of inverters with

NMOS (PMOS) W/L = 3/1 (6/1) and no load capacitance.

effects reasonably well with a limited number of parameters. The BSIM2 model

can produce better fits, but requires a much larger number of parameters, many of

which are nonphysical. Only recently have compact models begun to appear that

address these limitations in a physical way [HUAN93]. In contrast, the physically

based numerical models of CiDER produce results that are consistent and physically

reasonable. Thus, mixed-level simulation holds the promise that improvedamplifier

designs might result if CIDER were tuned to an IC process and used to design real

amplifier circuits.

6.3.1 Ideal Inverter

In Figure 6.10, a simple circuit is shown that is used to determine the in

trinsic gain available from a single MOS transistor. The same circuit can be used for

bipolar transistors as well. However, the gain of bipolar circuits has previously been

158

CHAPTER 6. APPLICATIONS OF CIDER

Vdd

Iload ©
•O VOUT

VlN O- Mi

Figure 6.10: NMOS inverter with ideal load

investigated using CODECS, the predecessor to CiDER, in [ZARR89]. The transistor is

biased with a constant current source that provides an ideal load for the active device.

Figure 6.11 shows an exaggerated load line construction for this circuit. For each

value of the input voltage V/w, the output voltage Vout stabilizes at a point where

the current drawn by the transistor is exactly equal to that supplied by the current

source3. As the input voltage increases, the intersection point moves to the left and

the output voltage falls. The rate at which it falls is the gain of the circuit, av, which

is given by:

dVouT
a„ =

dVm
- dvff; dips dVps _
~ <"**_ =~ dVGS dIDS " 9m

ay OUT

(6.1)

where gm is the transconductance of the transistor, and r0 is its output resistance. All

three of these quantities (av,gm, r0) are bias dependent. The transconductance can be

obtained with reasonable accuracy using compact models as long as the drain current

is modeled within a few percent of its actual value [GRAA90]. However, modeling of

the output resistance requires that the slope ofthe Ids - Vps curves be well matched

in the saturation region.

3In practice, the current sourcetapers offfor output voltagevalueshigher than the maximumvoltage
ofinterest Vdd in order to prevent the output voltage from rising indefinitely when the transistor is off.
In simulations, such a current source can be modeled by an ideal current mirror employing very wide
transistors to create a very sharp corner in the load line as shown in the figure.

159

CHAPTER 6. APPLICATIONS OF CIDER

VlN

Ids

VOUT Vdd

Figure 6.11: Load line construction for ideal NMOS inverter

In Figure 6.12, the gain of the ideal inverter is graphed against the output

voltage for a 1 fim NMOS test device. The load current is set to 50 /uA, so the device

is operating at a current density of5 iiPJiim ofwidth. Two different MOSFET models

available in CiDER are used: the BSIM model and the CIDER numerical MOS model.

The numerical MOS model is the same as used in Section 6.2.2. The BSIM model

parameters have been chosen by trial and error to best match the results from the

numerical model. The curve produced by the numerical model is smooth over the entire

range of output voltage. Initially the gain is very low because the device is operating

in the triode region. As Vout increases, the device makes a gradual transistion from

triode to saturated operation. The output begins to increase roughly proportional to

VVout due to channel-length modulation. For high values ofVout, the curve deviates

from this dependence and begins to flatten out due to DIBL. In a real device, hot-

carrier output-resistance degradation would cause the gain to fall in this same region.

However, the numerical model does not include this effect and the effect of DIBL

can be isolated. In contrast to the numerical-model results, the BSIM results are

clearly non-physical. The gain curve demonstrates a sharp corner where the model

equations shift from the triode to the saturation region. In the saturation region, the

gain curve is concave up instead of concave down. In analog design, MOSFETs are

160

CHAPTER 6. APPLICATIONS OF CIDER

Gain of lum NMOS Device

Gain (V/V)

200.00

160.00

100.00

60.00

0.00

^

0.00 1.00 2.00 3.00 4.00 6.00

Compact BSIM

NumericafMOS

Vout(V)

Figure 6.12: Gain of 1.0 pm NMOS transistor at Iload of 50 //A. BSIM curve has a

sharp corner whereas the numerical-model produces a smooth curve.

sometimes biased with an output voltage just above the triode-saturation transition

point. The BSIM model severely overestimates the gain in this region as compared to

the numerical-model results4.

6.3.2 Source-Coupled Pair with Active Load

While a stand-alone device simulator possibly could be used to study the

preceding ideal inverter, a full mixed-level simulator is needed for the following circuit.

Moving a step up in complexity, Figure 6.13 shows an NMOS source-coupled pair

(SCP) with a PMOS current mirror acting as an active load. While a stand-alone

device simulator could be used to study the preceding ideal inverter, a full mixed-level

simulator is needed for this circuit. This type of circuit is commonly used as the input

4TheMOSlevel 3 model also has a sharp transition from triode to saturation and overestimates the
gain in this region. However, the transition is so sharp that SPICE is unable to obtain convergence as the
output voltage crosses the transition point. As a result, comparative results are not available.

161

CHAPTER 6. APPLICATIONS OF CIDER

Vdd

CT]
M4M3

-o Vout

VlNP O-

mTI [1 \MM2

•o Vinm

Figure 6.13: Schematic for source-coupled pair with active load

stage for CMOS operational amplifiers. The small-signal gain of this circuit can be
shown to be [GRAY93]:

av = <7ml,2(f*o2 II ^04) (6.2)

This assumes the circuit is operating with equal DC bias currents flowing through
transistors M\ and M2, so that the transconductance gmif2 is the same for both tran

sistors. When determining the large-signal behavior of this circuit, unequal currents

flow in eachtransistor and this formula is no longer applicable. Althoughclosed-form

expressions for the large-signal behaviorof the SCP exist in simplified cases (such as

with resistive loads [GRAY93]), no general expression is available. Therefore, it is nec

essary to resort to simulation, or direct measurement, to determine the performance
of this circuit.

Figure 6.14 shows a typical plot of the output voltage Vout as the positive

input Vinp is swept from 50 mV below to 50 mV above the negative input voltage
VINM. The bias current is twice that used in the ideal inverter so the NMOS devices

162

CHAPTER 6. APPLICATIONS OF CIDER

VOUT(V)

5.00

4.50

4.00

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0.00

Source-Coupled Pair with Active Load

/""
t4

•

*

'

#

•

-40.00 -20.00 0.00 20.00 40.00

VDD

vss"

VoUt

vsi"

VIN(mV)

Figure 6.14: Output voltage of source-coupled pair with active load

are operating at a current density of 5.0 mA/fim when both inputs are at the same

potential. The low output voltage is limited by the source voltage of transistor M2 as

M2 goes into the triode region ofoperation. On the high side, the output is limited by

the supply voltage of 5.0 V, and transistor M4 goes into the triode region. Between

these extremes, there is a high gain region where both M2 and M4 are operating in

the saturation region. However, from the plot it is clear that there are no distinct

boundaries to this region. In Figure 6.15, the slope of the output voltage (the gain)

is graphed against the value of the output voltage. Results are presented for cases

where all the devices are modeled numerically and where all are modeled using BSIM

models. The inverted bell shape of the numerical-model results is distinctly different

from the mesa shape of the BSIM results. The BSIM curve is shifted downward in

voltage because the devices are operating at higher Vps^at- In addition, the BSIM

curve displays two corners: one as M2 switches from triode to saturation on the left

side of the figureand the other when M4 switches from saturation to triode on the right

side. No such corners are visible in the numerical-model results; there is a smooth

163

CHAPTER 6. APPLICATIONS OF CIDER

Source-Coupled Pair with Active Load

Gain (V/V)

60.00

50.00

40.00

30.00

20.00

10.00

0.00

r i

i >\
2.00 2.50 3.00 3.50 4.00 4.50

Numerical MOS

Compact¥siM

Vout(V)

Figure 6.15: Gain of source-coupled pair with active load

transition between regions. The shape of the numerical-model curve is explained by

the following argument. The total drain-source voltage for both output transistors is

approximately constant. As the output voltage swings from low to high, the drain-

source voltage of M2 increases while that of M4 decreases. As already mentioned,

the gain of the ideal inverter increases as Vds increases due to increased incremental

output resistance. The same effect occurs here. However, as the output resistance

of M2 increases, that of M4 decreases. Near the center of the output range, the two

effects balance each other and a peak occurs in the gain.

The qualitative differences in the shapes of the two gain curves have impor

tant consequences forother types of simulations. Forexample, a small-signal analysis

of the BSIM-modelcircuit simulationwouldshownearly identical results independent

of the DC bias value of the output voltage. In contrast, the numerical-model results

would vary considerably. In addition, a large-signal sinusoidal analysis would show

httle distortion when using BSIM models until the output voltage reached the upper

and lower transition corners. With numerical models, significant distortion would be

164

CHAPTER 6. APPLICATIONS OF CIDER

produced independent of the output swing magnitude.

6.3.3 Two-Stage CMOS Opamp

A two-stage CMOS operational amplifier can be created by combining the

actively loaded source-coupled pair with an additional inverting stage based on the

ideal inverter. A schematic for this two-stage amplifier is shown in Figure 6.16. The

input stage is modified by inverting the polarities of the NMOS and PMOS devices.

Vdd,

©

Ibias
IOOuA

Vpl

©
o—

©
Vmi

Mi _

j.
M?

, . 15/1

♦—•—*—

©

^

_ Ms

M4
7.5/1

©
Ms
7.5/1 r1®1^

Vss

Figure 6.16: Schematic for CMOS two-stage amplifier

The ideal current source load is replaced by a PMOS current mirror as would be done

in a real implementation.

lb first order, the small-signal differential-mode gain ofthis amplifier is given

by:

o-v = (gmi,2(r02 II M)) (0m5(ro5 || r^)) (6.3)

where once again it is assumed that the input transistors are operating with equal

DC bias currents. The gain depends directly on small-signal parameters for 5 of

the 8 transistors, so these are the critical elements of the circuit. Due to matching

considerations, transistors M3 and M6 must use the same models as M4 and M8

165

3
Ms
15/1

©

Ms
15/1

3

CHAPTER 6. APPLICATIONS OF CIDER

Configuration
Transistor CPUs

Mx M2 M3 M4 M5 M6 M7 M8
A None B B B B B B B B 1

B Stagel N N N N B B B B 4

C Stage2 B B B B N N N N 4

D Nolnput B B N N N N N N 8

EA11 N N N N N N N N 8

Table 6.5: Two-stage CMOS amplifier test configurations. Entry ofB denotes transistor

modeled with BSIM; entry of N denotes numerical model. CPUs is the number of

hypercube nodes used to solve the problem.

respectively. For the simulations that follow, the bias transistor M7 could be replaced

by an additional current source; however, it would need to be a transistor in any case

if the value of the common-mode gain were needed. For this reason, it is modeled as a

transistor here as well.

One way to reduce the time taken by mixed-level simulation is to model only

some of the transistors numerically. However, it may be difficult to determine a priori

which transistors operate in regions where the existing compact models are inaccurate.

Tb investigate this approach, the two-stage amplifier has been simulated several times

with some of the transistors modeled numerically and some modeled using BSIM.

Table 6.5 lists the different configurations used to identify which transistors need

to be modeled numerically. In configuration A, none of the transistors are modeled

numerically, whereas in configuration E, they all are. In configuration B, only the

transistors of the first stage are modeled numerically while the others use BSIM

models. In configuration C, only the second stage transistors and their matching bias

transistors are modeled numerically. In D, only the two input transistors, Mi and M2,

use BSIM models. This may produce fairly accurate results since BSIM can model

the input transconductance gmi,2 reasonably well, and an error in ro2 is not critical

because it is combined in parallel with r^. In Figure 6.17, the output voltage at node

8 is graphed versus the input voltage difference Vin - V(4,7) for all 5 configurations.

The results were obtained on the Intel iPSC/860 using subcube sizes appropriate for

the number of numerical devices in the configuration. Four of the five cases are

clearly discernible in the figure; however, cases D and E are almost indistinguishable.

Ideally, the output voltage should pass through 0.0 V when Vin = 0.0 V. Unfortunately,

166

CHAPTER 6. APPLICATIONS OF CIDER

CMOS 2-Stage Operational Amplifier

Vin(mV)

-4.00 •2.00 0.00 2.00 4.00

Figure 6.17: Output voltage of two-stage amplifier

cases B and C have approximately 1.5 mV offsets because a matching relationship

has been broken. In a real design, if transistors M3, M4, and Ms are not matched, a

systematic offset voltage is known to arise [GRAY931. In this case, mismatched device

models produce the same effect. From the figure it is also apparent that certain cases

produce smoother output curves than others. A clear view of this phenomenon can

be obtained by plotting the gain, as shown in Figure 6.18. The degree of smoothness

is primarily dependent on whether or not the two output transistors M5 and M8 are

modeled numerically. For cases A and B there are visible transitions at the edges ofthe

high gain region due to triode-saturation region border-crossings in the BSIM model.

This effect is not apparent for case C where the two output transistors of the first

stage are modeled with BSIM because the devices always operate in saturation. In

terms ofoverall accuracy, only case D matches the behavior ofthe all-numerical-model

configuration with an acceptable level of accuracy.

From the above arguments, it should be clear that all but three of the tran

sistors (Mi, M2, and M7) are critical in determining the differential-mode gain. Since

167

CHAPTER 6. APPLICATIONS OF CIDER

CMOS 2-Stage Operational Amplifier

Gain (kV/V)

3.00

2.60

2.00

1.50

1.00

0.50

0.00

/ \
w

' \ i >

i\ 1
• i * \

t

\
i w

1'

i

J 1S\/
• :< 1

> if 1
i

i
j

1 1 M

i i

1
{ i
I t

1
i

I

I

l * • 1

1
•

i * '.

i

1
i I

.——*'-*-'
t' v

i

JL,
-4.00 •2.00 0.00 2.00 4.00

CStage2

DNoInput

EAlT""

Vin (mV)

Figure 6.18: Gain of the two-stage CMOS amplifier

a hypercube of at least 8 processors is needed to achieve maximum speedup for the

5 critical devices, it is unfortunately not possible to take advantage of this in this

example.

6.4 Push-Pull Emitter-Follower Output Stage

The primary goal ofan IC output stage is to supply power to a load device while

maintaining an acceptable level of signal distortion [GRAY93]. One commonly used

circuit for this purpose is the push-pull complementary emitter-follower (PPEF) circuit

shown in Figure 6.19 [PEDE911. If identical NPN and PNP devices are available,

excellent distortion behavior is observed. However, several nonideahties cause higher

distortion levels to appear under more reahstic circumstances. Power gain is achieved

in the form of the combined current gains of the compound NPN-PNP devices. Due

to high-level injection effects which reduce the high-current gain, the power gain falls

off as large amphtude voltages are apphed to the input. Given a set ofNPN and PNP

168

CHAPTER 6. APPLICATIONS OF CIDER

Vbu

Vi o o Vo

Vbl

Vld

Vee

Figure 6.19: Schematic of push-pull complementary emitter follower

device structures, the design of a PPEF proceeds by determining appropriate emitter

areas for the 4 devices and DC input bias voltages to meet the requirements of low

distortion and high power gain.

PPEF designs based on idealized devices modeled with the Ebers-Moll equa

tions and on nonideal devices modeled using the modified Gummel-Poon equations in

SPICE have been investigated previously in [YOUN90]. The main conclusions of that

work are summarized here. With identical idealized devices, low distortion is produced

due to cancellation of even-order harmonics. However, with nonidentical devices, the

even harmonics do not cancel. Low total harmonic distortion (THD) is thus achieved by

paralleling many output devices to achieve low effective base resistance and high knee

current, Ik- Compound devices reduce the loading of the PPEF stage on the previous

voltage-driving stage by supplying large overall DC current gain approximately equal

to the product of the /?'s ofthe individual transistors. The use ofsmall input devices is

suggested as a means to reduce the silicon die area consumed by the stage.

It is known that high-current effects are not well modeled by the modified

Gummel-Poon model ofSPICE [MAYA88], [ZARR89]. As an alternative, detailed phys-

169

CHAPTER 6. APPLICATIONS OF CIDER

ical simulations based on CiDER numerical models can be used to provide better mod

eling in this region of operation. Different conclusions as to the sizing of the various

devices and setting of bias voltages and currents may be reached when using such

models. In order to determine whether further investigation into the performance

of the compound-device PPEF is warranted, CiDER simulations have been performed

and the results compared to those obtained using SPICE compact models. Significant

qualitative and quantitative differences in the results indicate that design criteria

estabhshed using SPICE simulations need to be reevaluated using numerical device

modeling.

6.4.1 Factors Affecting PPEF Performance

There are three main factors affecting the total harmonic distortion (THD) of

the PPEF:

1. Crossover distortion as the upper and lower half circuits turn on and off.

2. Mismatches between the NPN and PNP devices.

3. Chpping.

Crossover distortion [PEDE91] dominates for lowvalues of I?/5, and can be minimized

by using large idling currents in Q2 and Q4. For moderate values of Vi, THD is limited

by nonlinearity in the output curve caused by unequal gain on the positive and negative

output swings and bias-dependent resistances. The source of this nonlinearity is the

differences in the compound devices in the upper and lower half-circuits. At very

high values of $i, distortion is generated due to chppingof the output waveform. For

example, the upper half circuit will not allow the output voltage to rise any higher

than:

Vo,max = VcC ~ VBE2 ~ VcEsatl (6.4)

before chpping begins. Vcc is the upper supply voltage, Vbei is the DC base-emitter

voltage of the PNP output transistor, and VcEsati is the collector-emitter saturation

voltage ofthe NPN input transistor. This upper limit is determined by the requirement

that Q\ remain turned sufficiently on to supply base current to transistor Q2. Because

BVj is the amplitude of the sinusoidal input voltage.

170

CHAPTER 6. APPLICATIONS OF CIDER

chpping distortion is so severe, it places an upper bound on the magnitude of Vi that
can be used to drive the PPEF. It also limits the maximum achievable power conversion

efficiency.

The power gain ofthe circuit is the product ofthe voltage gain and the current

gain. The voltage gain and current gains used must be the large-signal gains, which

vary as a function ofthe input voltage amplitude. The voltage gain Ay is approximately

constant at a value near 1. A rough formula for Ay is given by:

Ay = bc- (6.5)
1 -I- *

where R) is an effective input resistance of the compound device, pc is its effective

current gain, and Rl is the load resistance. For low load resistance, e.g. Rl = 50 Q,

large currents flow, and the gain may drop somewhat due to finite input resistance

and beta of the compound device. Large output devices should be used to minimize the

parasitic base resistance and prevent premature falloff ofbeta. The current gain Aj of

the PPEF is determined by the effective P's of the compound-device pairs, which are

approximately equal to the product of the P's of the individual transistors. Typically,

the output devices are sized such that they operate in a region where the transistor

P drops rapidly with increasing lc, as shown in Figure 6.20. As a result, total power

gain drops as the input voltage amplitude I?/ increases. This effectcan be reduced by

using larger output transistors that can supply more current before p begins to roll off.

However, larger transistors consume more die area, so a design tradeoff is involved in

determining the exact size needed for the output transistors. The input devices should

be sized to supply this level of current without degrading current gain themselves.

Finally, the input bias voltages should be set to provide sufficient idle current in the

output transistors to reduce crossover distortion without unnecessarily increasing the

standby power dissipation of the circuit.

6.4.2 Evaluation of PPEF Designs

The PPEF circuit in Figure 6.19has beensimulated using the CiDER 1D bipolar

models characterized in Section 6.2.1 and also using the SPICE modified Gummel-

Poon bipolar model. The Gummel-Poon model parameters have been determined

from a hand fit to the CIDER device characteristics. Reasonable fit is obtained in

171

CHAPTER 6. APPLICATIONS OF CIDER

DC BETA OF NPN TRANSISTOR

Beta (A/A)

le+02

le+01

\

BetaDC

IC(A)

le-11 le-09 le-07 le-05 le-03 le-01

Figure 6.20: DC Beta of an NPN bipolar transistor. Beta rolls off at high Ic due to

several high-level injection effects such as base pushout.

172

CHAPTER 6. APPLICATIONS OF CIDER

the moderate-current region, but large errors appear in the high-current region. The

model input descriptions for CIDER and SPICE are listed in Appendix D6 Note that the

SPICE model parameters (especially the parasitic resistances) do not agree with the

device parameters listed in Table 6.2, because they have been adjusted to provide a

good match of the high-current behavior in the models.

Two PPEF designs have been simulated: one with equal size devices for all

4 transistors and one with adjusted device sizes to remove some of the limitations of

the initial design. A unit-size device is set to have an emitter area of 1 pm. x 40 fim

which corresponds to the same area used in [YOUN90]. The load resistance is set to

50 Q, which is a typical off-chip load value. Bias voltages of 0.7 V are apphed to the

two input transistors to set up standby current in the output transistors. The input

voltage is driven with large-signal low-frequency sinusoidal inputs of magnitude up

to 4.0 V to determine the THD and power gain of the stage. The peak load-current

magnitude is therefore roughly 4.0V/50/2 = 80 mA, assuming an ideal voltage gain of

1. The input voltage has also been swept from Vee to Vcc to investigate the linearity

of the output characteristic.

For the initial design with equal-sized transistors, the quiescent bias current

in Q2 and Q4 is determined from an operating point simulation of the circuit to be

about 3.5 mA for SPICE and 2.9 mA for CIDER. These values are approximately 4%

ofthe estimated peak load current. Using the values from Table 6.2, the knee current

densities of the NPN and PNP devices are 8.0 mA and 3.6 mA, respectively. These

values are roughly one-tenth to one-twentieth of the estimated peak load current. As

a result, it can be anticipated that nonlinear p effects will result in low power gain at

high input amphtude, and that the upper half-circuit containing the PNP device will

be the limiting factor for chpping.

Figure 6.21 shows the output voltage of the PPEF as V> is swept from Vee =

-5 V to Vcc = 5 V. For the CIDER results, the curve is almost a straight line unless Vj <

-3.8 V or Vj > 3.5 V. The output voltage changes slope outside of these bounds due to

chpping. The chpping points are determined by the Vbe's of the output transistors

6The CiDER 1dmodels characterized in Section 6.2.1 and those usedhere differ in onerespect. The
effectivebase length of the PPEF models is 1.0 pirn, rather than the 0.5 /on listed in the appendix. This
increases the base resistance of the devices, and diminishes the base current in the high-current region.
The SPICE models used here have been fit to the 1.0 /rai CiDER models, and therefore do not agree as well
as they could with the 0.5 pm models.

173

CHAPTER 6. APPLICATIONS OF CIDER

PPEF Output Voltage

VOCV)

5.00

4.00

3.00

2.00

1.00

0.00

-1.00

-2.00

-3.00

-4.00

-5.00

jf

-4.00 -2.00 0.00 2.00 4.00

Initial /CIDER

Wtial'/SPiCE"

VI (V)

Figure 6.21: Output voltage of PPEF output stage. Clipping occurs for large positive

and negative input voltages

174

CHAPTER 6. APPLICATIONS OF CIDER

COLLECTOR CURRENT RATIO

ICraUo(A/A)

2.00

1.50

1.00

0.60

0.00

0.00 0.60 1.00 1.50

SPICE/CIDER

VBE(V)

Figure 6.22: Ratio of collector currents from Spice to CiDER

and the VcEsatS ofthe input transistors. Note that the SPICE and CIDER simulations

clip at different points. This is because the collector currents of the two models do not

agree at the same value of Vbe hi the high-current region. The graph in Figure 6.22

demonstrates this by showing the ratio of the SPICE NPN collector current to that

of CIDER as a function of Vbe- At the same level of collector current Ic (determined

primarily by V> and Rl), different VWs are obtained from the two models.

In Figure 6.23, the slope (gain) of the output characteristic is plotted versus

the input voltage. The average gain from SPICE is about 0.94, while that from the

numerical-model simulation is about 0.92. Qualitatively, both curves show clipping at

the edges of the central region, and a dip in the gain near the center due to crossover

distortion. Note that as expected, chpping occurs sooner for positive input voltage due

to the lower knee current of the PNP device. The CIDER results have multiple dips

and peaks and an asymmetry about V\ = 0 V that should give rise to increased second

harmonic distortion for small input amplitudes. In contrast, the SPICE curve has only

the one dip due to crossover. The reasons for these differences are not known.

An improved design results if the output devices are made twice as large as

175

CHAPTER 6. APPLICATIONS OF CIDER

PPEF DC Gain

•4.00 -2.00 0.00 2.00 4.00

Initial /CIDER

Tnitiai'/SPICE"

VI (V)

Figure 6.23: Gain of PPEF output stage. Ideal stage would have flat gain. Variations

in gain result in harmonic distortion in output waveforms.

176

CHAPTER 6. APPLICATIONS OF CIDER

the input devices, and the PNP devices are made 2.5 times larger than NPN devices.

This improves the current-carrying capacity of the output devices by delaying the

onset of high-level injection, and better balances the knee currents of the NPN and

PNP devices. As a result, power gain is improved and chpping occurs at a higher

positive input voltage. Also, crossover distortion is reduced somewhat, since for fixed

bias voltages of 0.7 V, there is more standby current in the larger output devices.

Improved linearity and output voltage range have been verified by comparing the new

gain curves to the results shown in Figure 6.23.

The total harmonic distortion and power gain of the original and improved

designs have been measured from transient simulations ofthe PPEF. A low-frequency

sinusoidal input voltage is apphed and the output voltage and input current are stored.

The low input frequency eliminates concerns about capacitive transients, so only a sin

gle cycle ofthe input needs to be simulated. The THD and power gain are determined

from Fourier analyses of the resulting waveforms. The power gain is defined as:

P~ V,ti ~ lib (66)
where fy and Vo are the fundamental magnitudes of the input and output voltages
and // and fo are the fundamental magnitudes ofthe input and output currents. Vo
and // must bemeasured, whereas I?/ is known a priori.

The THD is shown in Figure 6.24 for the four different cases: SPICE - initial

design, CIDER - initial design, SPICE - improved design, and CIDER - improved design.

In the original design, both CIDER and SPICE show increased distortion at large k/

due to chpping. This effect is less apparent in the improved-design simulations. For

the remaining values of 1^/, the improved design reduces the THD by about a factor
oftwo. Qualitatively, the differences in the large-signal output voltage characteristics

between SHCE and CiDER show up as differences in the THD. The Cider simulations

reach a peak THD between 0.8 V and 1.4 V 1?/ and then start to diminish. The

SPICE simulations show increasing THD until just before the onset of chpping. SPICE

therefore appears to overestimate the THD in this region. Comparison to experimental

data would be needed to determine which set of simulations (Cider or Spice) gives

more accurate results.

In Figure 6.25, the power gain of the PPEF is plotted for Vj up to 4.0 V. All

four simulations give substantially different results. The lower 2 curves are from the

177

CHAPTER 6. APPLICATIONS OF CIDER

THD(%)

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

PPEF Total Harmonic Distortion

—

—i
.._

A

/^ \
:
i
I

i

\

i

i
v^si

1

i / /
i /
i /
i / VI /

1 --' .-~"

// / y ♦'

•

i f *

,y

0.00 1.00 2.00 3.00 4.00

SPICE/Initial

CTDEROnitial""

SPICE/linproved

CIDERttmproved

VI (V)

Figure 6.24: Tbtal harmonic distortion (THD) ofPPEF designs. Rapid increase in THD

for large Vj is due to dipping.

178

AP(dB)

40.00

35.00

30.00

25.00

20.00

15.00

10.00

CHAPTER 6. APPLICATIONS OF CIDER

PPEF Power Gain

\

R"
"*"•-..

"••»..
^

K*o

Q

I \
\ *
\ 1

u

1

SPICE/Inilial

ClDER/Initial

SPICE/linproved

CIDER/Imp'roved

VI (V)

0.00 1.00 2.00 3.00 4.00

Figure 6.25: Power gain of PPEF designs. Gain falls off due to high-current beta

rolloff.

179

CHAPTER 6. APPLICATIONS OF CIDER

AV A/ AP THD to //
Design/Model (V/V) (A/A) (dB) (%) (mA) (mA)

Initial/SPICE 0.915 11.2 10.1 3.6 73.2 6.5

Initial/ClDER 0.923 44.9 16.2 0.50 73.9 1.6

Improved/SPICE 0.967 1920 32.7 0.26 77.4 0.040

Improved/ClDER 0.957 486 26.7 0.23 76.5 0.16

Table 6.6: Performance summary of PPEF designs. Initial design has area ratios for

Q\ to Q4 of 1:1:1:1. Improved design has area ratios 1:5:2.5:2. Unit device has emitter

area of l//m x 40 um.

original design which has less power gain. The CIDER results are consistently lower

than those from the SPICE Gummel-Poon model up until about 3.2 V. At that point,

chpping in the SPICE simulation rapidly reduces the power gain. For the improved

design, a similar relationship between the numerical and compact model results is

also seen. However, in both cases the power gain has increased significantly with

respect to the initial design. The falloff of power gain with increasing Vi has also

been reduced. Another observation is that with numerical modeling the falloff is more

rapid than with compact device modeling7. This is most likely due to the differences

in high-current modeling between the CiDERand SPICE models.

Several measures of the performance of the PPEF designs are assembled in

Table 6.6. For 1?} =4.0Vand ± 5.0Vsupplies, the CIDER simulations ofthe improved
design predict an output amplitude of 3.83 V, power gain of 26.7 dB, total harmonic

distortion of 0.23 %, peak load current of 76.5 mA, and input demand of 160 pA.

6.4.3 Two-Dimensional Simulations of the PPEF

So far only one-dimensional numerical device models have been used in CiDER

to evaluate the PPEF designs. However, the high-current behavior of bipolar transis

tors is affected by inherently two-dimensional phenomena such as emitter current

crowding and lateral base pushout. In order to determine whether the simulation

results change significantly in the presence ofthese 2D effects, simulations employing
the coarse-mesh 2D bipolar transistor models mentioned in Section 6.2.1 have been

performed. Because 2D simulations arecomputationally intensive, only the improved

7The rateoffalloffisroughly measured by finding the input voltage where thepower gain hasdropped
to 1/2 its maximum value.

180

CHAPTER 6. APPLICATIONS OF CIDER

PPEF Total Harmonic Distortion

THD(%)

0.30

0.25

0.20

0.15

0.10

0.06

0.00

0.00 1.00 2.00 3.00 4.00

SPICE

Txderid

CJDER2D

VI (V)

Figure 6.26: Comparison of THD predictions from different models. The 2D simula

tions show less distortion.

PPEF design has been simulated, and fewer input voltage amplitudes k/ have been

sampled. In addition, the simulations have been performed on 4-node subcubes of the

iPSC/860 described in Chapter 5 in order to reduce the simulation run times by exploit

ing parallehsm. Simulations ofthe 2D model using CiDER in a device-simulation mode

indicate differences between the 1D and 2D behavior, especially at high-current levels.

Differences in the simulated performance of the PPEF circuit can also be expected.

In Figure 6.26, the THD obtained from the 2D simulations is compared to

that obtained for the improved designwhen using 1D bipolar models or SPICE compact

models. In Figure 6.27, the power gain for these 3 cases is plotted. In both figures,

majordiscrepancies are observed. The 2D simulations predict lower average THD and
higher power gain. Further investigation is needed to identify the source of these

181

AP(dB)

40.00

38.00

36.00

34.00

32.00

30.00

28.00

26.00

CHAPTER 6. APPLICATIONS OF CIDER

PPEF Power Gain

***•*•

n\\

»M

\

\
\

0.00 1.00 2.00 3.00 4.00

SPICE

CIDER1D

CHER2D

VI (V)

Figure 6.27: Comparison of power gain predictions from different models. The 2D

simulations show greater power gain.

182

CHAPTER 6. APPLICATIONS OF CIDER

discrepancies. One contributing factor may be the level of standby current in the

output transistors. All three models predict different levels of standby current for the

given 0.7 V bias voltages, and therefore can be expected to show different THD from

crossover distortion. A possible direction for future research would be to adjust the
inputbias voltages to achieve identical standby current in all 3 simulations. However,
since all 3 models are supposedly simulating the same device in the real world, they
shouldproduce the sameresults withoutthe need for suchadjustment. At least 2 and

perhaps all 3 models are improperly simulating the behavior of real PPEF circuits.

Given that the SPICE Gummel-Poon and CiDER one- and two-dimensional nu

merical models all predict different levels of THD and power gain, it is difficult to

conclude that anyofthe models provides more accurate simulation results. Although
physically motivated reasoning would suggest that the 2D numerical models are most

accurate, this assertion needs to be tested by carefully comparing simulation results

to measurementsof actual PPEF implementations. In the mean time, PPEF designs

based solely on SPICE simulations may fail to meet their specifications due to poten
tiallyerroneous simulation results. Asa precaution, double-checking ofdesigns using
one- or two-dimensional CIDER simulations is warranted.

6.5 Summary

The serial and parallelversions of CIDER have been demonstrated using three

examples. In the first application, the expanded capabihties of CiDER compared to

its predecessor CODECS are shown. A hypothetical 1.0 pm CBiCMOS process has

been characterized. Advanced technology devices such as polysihcon-emitter bipolar

transistors and LDD MOSFETfc are incorporated into the process. The new physical

models ofCIDER allow these devices to be accurately modeled. Evaluation ofa 7-stage

CMOS ring oscillator is possible if the Intel iPSC/860 version ofCiDERis used.

The second application studies the gain of three different MOS amplifiers.

The simplest circuit is a MOS inverter with an ideal load, the next is an NMOS source-

coupled pair with an active PMOS current-mirror load, and the most complex circuit is

an 8-transistor two-stage CMOS opamp. The parallel version ofCiDERmakes analysis

ofthe 8-transistor circuit tractable. Simulation results obtained using the SPICEBSIM

model have been compared to results obtained using CIDER numerical models. The

183

CHAPTER 6. APPLICATIONS OF CIDER

poor modeling of output resistance in the BSIM model gives rise to nonphysical gain

predictions, as demonstrated by comparisonto the CIDER results.

In the third and final example, the large-signal performance of the push-pull

complementary emitter-followeroutput stage is investigated. In this circuit, compound

bipolardevices are used to providehigh load-currentdrivabihty while maintaining low

input demand. Forlarge-amplitude inputs, the output transistors operate in high-level

injection. It is well known that the SHCE modified Gummel-Poon bipolar transistor

model does not model high-current effects very well. CIDER simulations employing

one- and two-dimensional numerical models have been used to study the accuracy of

SPICE-model-based simulations. Simulation results show that large qualitative and

quantitative differences exist between compact-model results and numerical-model

results. These differences call into question design criteria for PPEFs developed using

Spice simulations.

184

Chapter 7

Conclusions

Used properly, a mixed-level circuit and device simulator can be a valuable

addition to the set oftools available to the designer ofintegrated circuits and devices.
However, the degree to which this is true depends on the capabihties and limitations
ofa particular implementation ofmixed-level simulation. This dissertation addresses

several topics which allrelate tothesame central question: how should existingmixed-
level circuit and device simulators evolve in the future to become more effective tools
for IC design?

Issues of concern for a mixed-level simulator are the same as for any other
large, complex piece of software:

Performance An adequate level of performance must be sustained to support the
routine tasks of IC design.

Reliability The program should rehably produce accurate results for any well-posed

simulation problem. In addition, an electrical IC simulator must contain appro

priate models for the physical effects that influence device and circuit behavior.

Utility It should be easy to both generate input for the program and evaluate the

simulation results. In addition, a general-purpose simulator should support a

wide range of analysis capabihties.

Portability The program must be capable of running on a wide variety of comput

ing systems. In mixed-level simulation, where performance requirements are

stringent, multiple parallel computing systems should also be supported.

185

CHAPTER 7. CONCLUSIONS

The recently developed circuit and device simulator CODECS [MAYA881 has

been used as the basis for a new, parallel mixed-level simulator CiDER. CiDER extends

the capabihties of CODECS in orderto addresseach of the four major issues of concern

identified above. In order to improve reliability, the basic proven algorithms ofCODECS

have been left untouched as much as possible when moving to a parallel computing

environment. These algorithms have been reviewed, and several extensions to improve

the modelingofimportant physicaleffects andthe ease-of-use ofthe user interfacehave

been introduced. A complete manual for CiDER with several examples is provided as

Appendix A.

A detailed performance analysis of CIDER has been performedto identify the

major computational bottlenecks of mixed-level simulation. In all cases considered,

evaluation ofthe numerically modeled elements accounts for over 99% ofthe total time

used. Experiments have been performed to measure the resources used by a set of

simple test problems. These measurements are used to create models for CPU and

memory usage that can predict the resource requirements in other situations. A set of

benchmark circuits has been run on 5 different RISC architecture computing systems

to estabhsh the serial performance of CiDER on actual circuit examples. For these

systems with clock rates ranging between 25 and 50 MHz, sustained performance for

the benchmark circuits averages from between 0.7 and 3.0 MFLOP/S. Estimates ofthe

resources needed in several simulation scenarios show that this level of performance

is well above that needed for small problems, an order of magnitude too slow for a

large but still manageable problem, and 4 orders ofmagnitude too slow for a problem

at the upper limits ofwhat might be encountered in IC cell design.

The computational bottleneck of mixed-level simulation has been addressed

by investigating the possibilities for the use ofscalable, high-performance distributed-

memory multicomputers. Three levels of parallelism are identified that can be ex

ploited by the multiple processors in such a system. At the design-level, tasks consist

of individual simulation jobs. At the circuit-level, the major tasks are the evaluations

of the numericallymodeledelements of a circuit. At the device-level, each processor

is assigned a task that roughly corresponds to a portion of the semiconductor device

beingsimulated. Existingtechniques for exploiting each of these levels of parallehsm

have been reviewed, and extensions that combine parallehsm from more than one

level have been introduced. In particular, an algorithm is proposed for combining

186

CHAPTER 7. CONCLUSIONS

parallelism at the circuit and device levels in a single program. Experiments with

a simulated-annealing-based partitioning program indicate that in some cases ad

ditional speedups may be achievable compared to a simpler implementation based

solely on exploiting parallehsm at the circuit level. However, the proposed algorithm

requiresseveralsoftwarecomponents that arenot readily available on present parallel
computing systems.

In order to meet current needs for performance enhancement, an imple

mentation of a one-level parallel model evaluation algorithm has been developed

for distributed-memory multicomputers. This implementation has been successfully
tested on two differentcomputing systems: a scalable, hypercube supercomputer and

a nonscalable clusterofengineering workstations. The primary advantage of this ap
proach is the relative simplicity with which it can beimplemented andmaintained. By
leaving the cores of the componentcircuit and device simulators virtually untouched,

the parallel mixed-levelsimulatorcanbe quickly and easily upgradedas modifications

are made to the component simulators. Benchmark testing ofthe simulator on the two

systems reveals that it is possible to achieve good speedup and efficiency using this

approach. In general, the hypercube implementation outperforms the clusterimple
mentation, even after taking into account the faster compute nodes of the hypercube.

However, in certain special cases, the speedups obtained are very similar. Unfortu

nately, the one-level approach has a number of limitations that prevent the full power

of the multicomputer from being used effectively. Chief among these is a ceiling on

the available parallelism equal to the number of numerically modeled devices in the

circuit. The other limitations all reduce the speedup achieved below this upper bound.

While options exist for minimizing the impact ofmost of these limitations, the unpre

dictable nature of imbalances caused by latent devices appears at this point to be an

insurmountable difficulty.

Despite the limited success of the parallel implementation, it is still an im

provement over the best serial algorithm. Examples have been provided that use this

improved performance to study circuits containing multiple, two-dimensional numer

ically modeled devices. A hypothetical 1.0 pm CBiCMOS process has been character

ized using CIDER. Parallel simulation allows the stage delay of a 7-stage CMOS ring

oscillator to be determined. The gain of several MOS amplifiers has been simulated

using both SPICE compact models and CIDER numerical MOS models. Analysis of the

187

CHAPTER 7. CONCLUSIONS

results shows that the SPICE models predict incorrect behavior, whereas the CiDER

numerical models result in qualitatively correct behavior. Parallel CIDER simulations

allow an 8-transistor two-stage CMOS operational amphfier to be simulated. Finally, a

compound-device push-pull complementary emitter-follower IC output stage has been

studied. Results from simulations using CiDER one- and two-dimensional numerical

bipolar models and from using the SPICE modified Gummel-Poon model do not agree.

Design criteria developed based on SPICE simulations need to be reevaluated based on

this new information. The expensive 2D transient simulations have been performed

on the hypercube supercomputer.

Future work should continue to address the four major issues ofconcern. The

existing implementation is believed to have sufficient accuracy, utility and performance

to enable the design of small cells such as opamps, comparators, and logic gates. This

beliefshould be checked by tuning the physical models in CiDER to an actual IC process

and then designing, manufacturing and testing several such small circuits.

If problems arise during this process, several options exist for improving the

current implementation. Performance may be enhanced by implementing the multi

level model-evaluation algorithm described in Chapter 4. Alternatively, or in concert,

the rectangular-mesh-based device simulator could be replaced by one employing a

more general and efficient meshing scheme such as used in PISCES [PINT85].

Although mixed-level circuit and device simulation has been available for

some time [ENGL82], only recently has it begun to attract significant attention in the

TCAD community. TCAD vendors have integrated this capability into their lines of

product offerings [TMA91]. However, someday in the future it may also have a place

alongside circuit simulators in the ICCAD toolbox. If so, parallel computers will surely

have a role in making this happen.

188

Appendix A

CIDER User's Manual

The CiDER User's Manual that follows is organized as a series of individual UNIX-

style manual pages. At the end of the manual, several examples illustrating the use

of CiDER are given.

189

INTRODUCTION Cider User's Manual INTRODUCTION

NAME

INTRODUCTION - Overview of CIDER's features / capabilities

DESCRIPTION

CIDER is a mixed-level circuit and device simulator that provides a direct link between
technology parametersand circuit performance. Amixed-level circuitand device simulator
can provide greater simulation accuracy than a stand-alonecircuit or device simulator by
numerically modeling the critical devices in a circuit. Compact models can be used for
noncritical devices.

CIDER couples the latest version of SPICE3 (version 3F.2) [JOHN921 to an internal
C-based device simulator, DSIM. SPICE3 provides circuit analyses, compact models for
semiconductor devices, and an interactive user interface. DSIM provides accurate, one-
and two-dimensional numerical device models based on the solution of Poisson's equation,
and the electron and hole current-continuity equations. DSIM incorporates many of the
same basic physical models found in the the Stanford two-dimensional device simulator
PISCES [PINT851. Input to CIDERconsists ofa SPICE-like description ofthe circuit and
its compact models, and PISCES-like descriptions ofthe structures ofnumerically modeled
devices. As a result, CIDER should seemfamiliar to designers already accustomed to these
two tools. For example, SPICE3F.2 input files should run without modification, producing
identical results.

CIDER is based on the mixed-level circuit and device simulator CODECS [MAYA881,
and is a replacement for this program. The basic algorithms of the two programs are the
same. Some of the differences between CIDER and CODECS are described below. The
CIDER input format has greater flexibility and allows increased access to physical model
parameters. New physical models have been added to allow simulation of state-of-the-art
devices. These include transverse field mobility degradation [GATE90] that is important
in scaled-down MOSFETs and a polysihcon model for poly-emitter bipolar transistors.
Temperature dependence has been included for most physical models over the range from
-50° C to 150°C. The numerical models can be used to simulate all the basic types of
semiconductor devices: resistors, MOS capacitors, diodes, BJTs, JFETs and MOSFETs.
BJTs and JFETs can be modeled with or without a substrate contact. Support has been
added for the management of device internal states. Post-processing of device states can
be performed using the NUTMEG user interface of SPICE3. Previously computed states
can be loaded into the program to provide accurate initial guesses for subsequent analyses.
Finally, numerous small bugs have been discovered and fixed, and the program has been
ported to a wider variety of computing platforms.

Berkeley tradition calls for the naming of new versions of programs by affixing a
(number, letter, number) triplet to the end of the program name. Under this scheme,
CIDER should instead be named CODECS2A.1. However, tradition has been broken in
this case because major incompatibilities exist between the two programs and because it
was observed that the acronym CODECS is already used in the analog design community
to refer to coder-decoder circuits.

Details of the basic semiconductor equations and the physical modelsused by CIDER
are not provided in this manual. Unfortunately, no other single source exists which de
scribes all of the relevant background material. Comprehensive reviews of device simula
tion can be found in [PINT901 and the book [SELB841. CODECS and its inversion-layer
mobility model are described in [MAYA881 and [GATE90], respectively. PISCES and its
models are described in [PINT851. Temperature dependences for the PISCES models used
by CIDER are available in [SOLL901.

190

INTRODUCTION Cider User's Manual INTRODUCTION

SYSTEM REQUIREMENTS

The program has been run successfully on the following operating system / hardware
combinations: (Ultrix 4,RISC), (SunOS 4,Sun4), (ADC 3,RS/6000), (UNDCSVR3, iPSC/860
node), (HPUX8,9000/700). Compatibility withothercomputer systems has notbeentested.

191

SPECIFICATION Cider User's Manual SPECIFICATION

NAME

SPECIFICATION - Overview ofnumerical-device specification

DESCRIPTION

The input to CIDERconsists ofa SPICE-like description of a circuit, its analyses and
its compact device models, and PISCES-like descriptions of numerically analyzed device
models. For a description of the SPICE input format, consult the SPICE3 User's Manual
[JOHN92].

Tb simulate devices numerically, two types of input must be added to the input file.
The first is a model description in which the common characteristics of a device class are
collected. In the case of numerical models, this provides all the information needed to
construct a device cross-section, such as, for example, the doping profile. The second type
of input consists ofoneor more elementlines that specify instances ofa numerical model,
describe their connections to the rest of the circuit, and provide additional element-specific
information such as device layout dimensions and initial bias information.

The format of a numerical device model description differs from the standard approach
used for SPICE3 compact models. It begins the same way with one line containing the
.MODEL keyword followed by the name of the model, device type and modeling level.
However, instead of providing a single long list of parameters and their values, numerical
model parameters are grouped onto cards. Each type of card has its own set of valid
parameters. In all cases, the relative ordering of different types of cards is unimportant.
However, for cards of the same type (such as mesh-specification cards), their order in the
input file can be important in determining the device structure.

Each card begins on a separate line of the input file. In order to let CIDER know that
card lines are continuations of a numerical model description, each must begin with the
continuation character, V. If there are too many parameters on a given card to allow it fit
on a single line, the card can be continued by adding a second '+' to the beginning of the
next line. However, the name and value of a parameter should always appear on the same
line.

Several features are provided to make the numerical model format more convenient.
Blank space can follow the initial V to separate it from the name of a card or the card
continuation V. Blank lines are also permitted, as long as they also begin with an initial V.
Parentheses and commas can be used to visually group or separate parameter definitions.
In addition, while it is common to add an equal sign between a parameter and its value,
this is not strictly necessary.

The name of any card can be abbreviated, provided that the abbreviation is unique.
Parameter name abbreviations can also be used if they are unique in the list of a card's
parameters. Numeric parameter values are treated identically as in SPICE3, so expo
nential notation, engineering scale factors and units can be attached to parameter values:
tau=lOns, nc=3.0el9cirr-3. In SPICE3, the value of a FLAG model parameter is
changed to TRUE simply by listing its name on the model line. In CIDER, the value of a
numerical model FLAG parameter can be turned back to FALSE by preceding it by a caret
'*'. This minimizes the amount ofinput change neededwhenfeatures such as debugging
are turned on and off. In certain cases it is necessary to include filenames in the input
description and these names may contain capital letters. If the filename is part of an
element line, the input parser will convert these capitals to lowercase letters. To protect
capitalization at any time, simplyenclose the string in double quotes'"'.

Theremainderofthis manualdescribes how numerically analyzed elementsandmodels
can be used in CIDER simulations. The manual consists of three parts. First, all ofthe

192

SPECIFICATION Cider User's Manual SPECIFICATION

model cards and their parameters are described. This is followed by a section describing
the three basic types ofnumerical models and theier corresponding element lines. In the
final section, several complete examples ofCIDER simulations are presented.

Several conventions areused inthecard descriptions. Inthecard synopses, thename of
a card isfollowed by alistofparameter classes. Each class isrepresented by a section inthe
card parameter table, in the same order as it appears in the synopsis line. Classes which
contain optional parameters are surrounded bybrackets: [...]. Sometimes it only makes
sense for a single parameter to take effect. (For example, a material can not simultaneously
be both Siand Si02.) In such cases, the various choices are listed sequentially, separated
by colons. The same parameter often has a number ofdifferent acceptable names, some of
which arethe listed in theparameter tables.1 These aliases areseparated by vertical bars:
T- Finally, in the card examples, the model continuation pluses have beenremoved from
the card lines for clarity's sake.

EXAMPLES

The model description for a two-dimensional numerical diode might look something like
whatfollows. This example demonstrates many ofthefeatures oftheinputfromat described
above. Notice howthe .MODEL lineand the leadingplusesform a borderaroundthe model
description:

.MODEL M-NUMERICAL NUMD LEVEL=2

+ cardnamel numberl=vall (number2 val2), (number3 = val3)
+ cardname2 numberl=vall stringl = namel
+

+ cardname3 numberl=vall/ flagl, ~flag2
+ + number2=val2, flag3

The element line for an instance ofthis model might look something like the following.
Double quotes are used to protect the filename from decapitalization:

dl 1 2 M-NUMERICAL area=100pnT2 ic.file = "diode.IC"

1Some of the possibilities are not listed in order to shorten the lengths of the parameter tables.
This makes the use of parameter abbreviations somewhat troublesome since an unlisted parameter may
abbreviate to the same name as one that is listed. CIDER will produce a warning when this occurs. Many
ofthe undocumented parameternames are the PISCES names for the same parameters. The adventurous
soul can discover these names by delving through the 'cards' directory of the source code distribution and
looking for the C parameter tables.

193

BOUNDARY, INTERFACE Cider User's Manual BOUNDARY, INTERFACE

NAME

BOUNDARY, INTERFACE - Specify properties of a domain boundary or the interface
between two boundaries

SYNOPSIS

boundary domain [bounding-box] [properties!
interface domain neighbor [bounding-box] [properties!

DESCRIPTION

The boundary and interface cards are used to set surface physics parameters along the
boundary ofa specified domain. Normally, the parameters apply to the entire boundary, but
there are two ways to restrict the area of interest. Ifa neighboring domain is also specified,
the parameters are only set on the interface between the two domains. In addition, if a
bounding box is given, only that portion of the boundary or interface inside the bounding
box will be set.

If a semiconductor-insulator interface is specified, then an estimate of the width of
any inversion or accumulation layer that may form at the interface can be provided. If
the surface mobility model (cf. models card) is enabled, then the model will apply to all
semiconductor portions of the device within this estimated distance of the interface. If a
point lies within the estimated layer width of more than one interface, it is assumed to
belong to the interface specified first in the input file. If the layer width given is less than
or equal to zero, it is automatically replaced by an estimate calculated from the doping near
the interface. As a consequence, if the doping varies so will the layer width estimate.

Each edge ofthe bounding box can be specified in terms ofits location or its mesh-index
in the relevant dimension, or defaulted to the respective boundary of the simulation mesh.

PARAMETERS

Name Type Description

Domain Integer ID number of primary domain
Neighbor Integer ID number ofneighboring domain
X.Low Real Lowest X location of bounding box, (um)
: DCLow Integer Lowest X mesh-index ofbounding box
X.High Real Highest X location of bounding box, (/im)
: DCHigh Integer Highest X mesh-index ofbounding box
YXow Real Lowest Y location ofbounding box, (um)
:IY.Low Integer Lowest Y mesh-index ofbounding box
YHigh Real Highest Y location ofbounding box, (um)
: IY.High Integer Highest Y mesh-index ofbounding box
Qf Real Fixed interface charge, (C/cmz)
SN Real Surface recombination velocity - electrons, (cm/s)
SP Real Surface recombination velocity - holes, (cm/s)
Layer.Width Real Width of surface layer, (pm)

194

BOUNDARY, INTERFACE Cider User's Manual BOUNDARY, INTERFACE

EXAMPLES

The following shows how the surface recombination velocities at anSi-Si02 interface might
be set:

interface dom=l neigh=2 sn=l.0e4 sp=1.0e4

In a MOSFET with a 2.0 pm gate width and 0.1 pm source and drain overlap, the surface
channel canbe restricted to the region between the metallurgical junctions and within 100
A (0.01 pm) ofthe interface:

interface dom=l neigh=2 x.1=1.1 x.h=2.9 layer.w=0.01

The inversion layer width in the previous example can be automatically determined by
setting the estimate to 0.0:

interface dom=l neigh=2 x. 1=1.1 x.h=2.9 layer.'w=0.0

SEE ALSO

domain, contact, mobility, models

195

COMMENT Cider User's Manual COMMENT

NAME

COMMENT - Add explanatory comments to a device definition

SYNOPSIS

comment [text]
* [text]
$[text]
[text]

DESCRIPTION

Annotations can be added to a device definition using the comment card. All text on
a comment card is ignored. Several popular commenting characters are also supported as
aliases: '*' from SPICE, '$' from PISCES, and '#' from UNIX shell scripts.

EXAMPLES

A SPICE-like comment is followed by a PISCES-like comment and shell script comment:
* CIDER and SPICE would ignore this input line
$ CIDER and PISCES would ignore this, but SPICE wouldn't

CIDER and UNIX Shell scripts would ignore this input line

196

CONTACT Cider User's Manual CONTACT

NAME

CONTACT - Specify properties of an electrode

SYNOPSIS

contact number [workfunction]

DESCRIPTION

The properties ofan electrode canbe set using the contact card. Theonly changeable
property is the workfunction of the electrode material and this only affectscontacts made
to an insulating material. All contacts to semiconductor material are assumed to be ohmic
in nature.

PARAMETERS

Name Type Description
Number Integer ID number of the electrode
Workfunction Real Workfunction ofelectrode material, (eV)

EXAMPLES

The following shows how the workfunction of the gate contact of a MOSFET might be
changed to a value appropriate for a P+ polysilicon gate:

contact num=2 workf=5.29

SEE ALSO

electrode, material

197

DOMAIN, REGION Cider User's Manual DOMAIN, REGION

NAME

DOMAIN, REGION - Identify material-type for section of a device

SYNOPSIS

domain number material [position]
region number material [position]

DESCRIPTION

A device is divided into one or more rectilinear domains, each of which has a unique
identification number and is composed of a particular material.

Domain (aka region) cards are used to build up domains by associating a material type
with a box-shaped section of the device. A single domain may be the union of multiple
boxes. When multiple domain cards overlap in space, the one occurring last in the input
file will determine the ID number and material type of the overlapped region.

Each edge of a domain box can be specified in terms of its location or mesh-index in the
relevant dimension, or defaulted to the respective boundary of the simulation mesh.

PARAMETERS

Name Type Description

Number Integer ID number of this domain

Material Integer ID number ofmaterial used by this domain
X.Low Real Lowest X location of domain box, (um)
rDCLow Integer Lowest X mesh-index ofdomain box

XJffigh Real Highest X location of domain box, (um)
:IXHigh Integer Highest X mesh-index of domain box
Y.Low Real Lowest Y location of domain box, (um)
:IY.Low Integer Lowest Y mesh-index ofdomain box

Y.High Real Highest Y location of domain box, (pm)
: IYHigh Integer Highest Y mesh-index of domain box

EXAMPLES

Create a 4.0 pm wide by 2.0 pm high domain out of material #1:
domain num=l material=l x.1=0.0 x.h=4.0 y.1=0.0 y.h=2.0

The next example defines the two domains that would be typical of a planar MOSFET
simulation. One occupies all ofthe mesh belowy = 0 and the other occupies the mesh above
y = 0. Because the x values are left unspecified, the low and high x boundaries default to
the edges of the mesh:

domain n=l m=l y.1=0.0
domain n=2 m=2 y.h=0.0

SEE ALSO

x.mesh, material

198

DOPING Cider User's Manual DOPING

NAME

DOPING - Add dopant to regions of a device

SYNOPSIS

doping [domains] profile-type [lateral-profile-type] [axis] [impurity-type] [constant-box]
[profile-specifications]

DESCRIPTION

Doping cards are used to add impurities to the various domains ofa device. Initially
each domain is dopant-free. Each new doping card creates a new doping profile that defines
the dopant concentration as a function ofposition. The doping at a particular location is
then the sum over all profiles ofthe concentration values at that position. Each profile can
be restricted to a subset ofa device's domains by supplying a list of the desired domains.
Otherwise, all domains are doped by each profile.

A profile has uniform concentration inside the constant box. Outside this region, it
varies according to the primary andlateral profile shapes. In 1D devices the lateral shape
is unused and in 2n devices they-axis is the default axis for the primary profile. Several
analytic functions can beused todefine theprimary profile shape. Alternatively, empirical
orsimulated profile data can beextracted from a file. For the analytic profiles, the doping
is the product ofa profile function (e.g. Gaussian) and a reference concentration, which
is either the constant concentration of a uniform profile, or the peak concentration for
any of the other functions. If concentration data is instead taken from an ASCII file
containing a list of location-concentration pairs or a SUPREM3 exportedfile, the name of
the file mustbe provided. If necessary, the final concentration at a point is then found by
multiplying the primary profile concentration by the value of the lateral profile function
at that point. Empirical profiles must first be normalized by the value at 0.0 to provide a
usable profile function. Alternatively, the second dimension can be included by assigning
the same concentration to all points equidistant from the edges of the constant box. The
contours of the profile are then circular.

Unless otherwise specified, the added impurities are assumed to be N type. However,
the name of a specific dopant species is needed when extracting concentration information
for that impurity from a SUPREM3 exported data file.

Several parameters are used to adjust the basic shape of a profile function so that the
final, constructed profile matches the doping profile in the real device. The constant box
region should coincide with a region of constant concentration in the device. For uniform
profiles its boundaries default to the mesh boundaries. For the other profiles the constant
box starts as a point and only acquires width or height if both the appropriate edges are
specified. The location of the peak of the primary profile can be moved away from the
edge of the constant box. A positive location places the peak outside the constant box
(cf. Fig. A.1), and a negative value puts it inside the constant box (cf. Fig. A.2). The
concentration in the constant box is then equal to the value of the profile when it intersects
the edge of the constant box. The argument of the profile function is a distance expressed
in terms of the characteristic length (by default equal to lpm). The longer this length, the
more gradually the profile will change. For example, in Fig. A.1 and Fig. A.2, the profiles
marked (a) have characteristic lengths twice those of the profiles marked (b). The location
and characteristic length for the lateral profile are multiplied by the lateral ratio. This
allows the use of different length scales for the primary and lateral profiles. For rotated

199

DOPING Cider User's Manual DOPING

Peak.Conc

X(um)

Location

Figure A.1: 1D doping profileswith location > 0.

profiles, this scaling is taken into account, and the profile contours are elliptical rather
than circular.

200

DOPING

X.Low

Cider User's Manual

N(X)

A

Peak.Conc

^s

X.High X(um)

Location

Figure A.2: 1D dopingprofiles with location < 0.

201

DOPING

DOPING Cider User's Manual DOPING

PARAMETERS

Name Type Description

Domains Int List List of domains to dope
Uniform: Linear Flag Primary profile type

: Gaussian: Erfc

: Exponential
: Suprem3: Ascii
: Ascii Suprem3

InFile String Name ofSuprem3, Ascii or Ascii Suprem3 input file
Lat.Rotate: Lat.Unif Flag Lateral profile type

: Lat.Lin: Lat.Gauss

: Lat.Erfc: Lat.Exp
X.Axis: YAxis Flag Primary profile direction
N.Type : P-Type : Donor Flag Impurity type

: Acceptor: Phosphorus
: Arsenic: Antimony
: Boron

X.Low Real Lowest X location ofconstant box, (um)
XHigh Real Highest X location of constant box, (pm)
YLow Real Lowest Y location ofconstant box, (um)
YHigh Real Highest Y location ofconstant box, (um)
Cone | Peak.Conc Real Dopant concentration^ cm-3)
Location | Range Real Location of profile edge/peak, (fim)
Char.Length Real Characteristic length of profile, (um)
Ratio.Lat Real Ratio of lateral to primary distances

EXAMPLES

This first example adds a uniform background P-type doping of 1.0 x 1016cm~3 to an entire
device:

doping uniform p.type conc=1.0el6

A gaussian implantation with rotated lateral falloff, such as might be used for a MOSFET
source, is then added:

doping gauss lat.rotate n.type conc=1.0el9
+ x.1=0.0 x.h=0.5 y.1=0.0 y.h=0.2 ratio-0.7

Alternatively, an error-function falloff could be used:
doping gauss lat.erfc conc=1.0el9
+ x.1=0.0 x.h=0.5 y.1=0.0 y.h=0.2 ratio=0.7

Finally, the MOSFET channel implant is extracted from an ASCII-format SUPREM3 file.
The lateral profile is uniform, so that the implant is confined between X = lpm and
X = 3/im. The profile begins at Y = Opm (the high Y value defaults equal to the low Y
value):

doping ascii suprem3 infile=implant.s3 lat.unif boron
+ x.1=1.0 x.h=3.0 y.1=0.0

SEE ALSO

domain, mobility, contact, boundary

202

ELECTRODE Cider User's Manual ELECTRODE

NAME

ELECTRODE - Set location of a contact to the device

SYNOPSIS

electrode [number] [position]

DESCRIPTION

Each device has several electrodes which are used to connect the device to the rest
of the circuit. The number ofelectrodes depends on the type ofdevice. For example, a
MOSFET needs4 electrodes. Aparticular electrode canbeidentified byits position in the
list ofcircuit nodes on the device element line. For example, the drain node ofa MOSFET
is electrode number 1, while the bulk node is electrode number 4. Electrodes for which an
IDnumber has notbeen specified areassigned values sequentially in theorder theyappear
in the input file.

For 1D devices, the positions oftwo ofthe electrodes are predefined to be at the ends
of the simulation mesh. The first electrode is at the low end of the mesh, and the last
electrode is at the high end. The position of the special 1D BJT base contact is set on the
options card. Thus, electrodecards are used exclusively for 2D devices.

Each card associates a portion of the simulation mesh with a particular electrode. In
contrast to domains, which are specified only in terms of boxes, electrodes can also be
specifiedin terms ofline segments. Boxesand segments for the same electrode do not have
to overlap. If they don't, it is assumed that the electrode is wired togetheroutside the area
covered bythe simulation mesh. However, pieces ofdifferent electrodes must notoverlap,
since this would represent a short circuit.

Each electrode box or segment can be specified in terms of the locations or mesh-indices
ofits boundaries. Amissing value defaults to the corresponding meshboundary.

PARAMETERS

Name Type Description
Number Integer ID number of this domain
X.Low Real Lowest X location of electrode, (/tm)
: DCLow Integer Lowest X mesh-index ofelectrode
X.High Real Highest X location of electrode, (pm)
:DCHigh Integer Highest X mesh-index of electrode
YLow Real Lowest Y location of electrode, (/tm)
:IY.Low Integer Lowest Y mesh-index ofelectrode
YHigh Real Highest Y location ofelectrode, (pm)
: IY.High Integer Highest Y mesh-index of electrode

EXAMPLES

The following shows how the four contacts of a MOSFET might be specified:
* DRAIN

electrode x.1=0.0 x.h=0.5 y.1=0.0 y.h=0.0
* GATE

electrode x.1=1.0 x.h=3.0 iy.l=0 iy.h=0
* SOURCE

203

ELECTRODE Cider User's Manual ELECTRODE

electrode x.1=3.0 x.h=4.0 y.1=0.0 y.h=0.0
* BULK

electrode x.1=0.0 x.h=4.0 y.1=2.0 y.h=2.0

The numbering option can be used when specifying bipolar transistors with dual base
contacts:

* EMITTER

electrode num=3 x.1=1.0 x.h=2.0 y.1=0.0 y.h=0.0

* BASE

electrode num=2 x.1=0.0 x.h=0.5 y.1=0.0 y.h=0.0
electrode num=2 x.l=2.5 x.h=3.0 y.1=0.0 y.h=0.0

* COLLECTOR

electrode num=l x.1=0.0 x.h=3.0 y.1=1.0 y.h=1.0

SEE ALSO

domain, contact

204

END CiderUser's Manual END

NAME

END - Terminate processing of a device definition

SYNOPSIS

end

DESCRIPTION

The end card stops processing of a device definition. It may appear anywhere within a
definition. Subsequent continuation lines of the definition will be ignored. If no end card
is supplied, all the cards will be processed.

205

MATERIAL Cider User's Manual MATERIAL

NAME

MATERIAL - Specify physical properties of a material

SYNOPSIS

material number type [physical-constants!

DESCRIPTION

The material card is used to create an entry in the list ofmaterials used in a device. Each
entry needs a unique identification number and the type of the material. Default values are
assigned to the physical properties ofthe material. Most material parameters are accessible
either here or on the mobility or contact cards. However, some parameters remain
inaccessible(e.g.the ionizationcoefficient parameters). Parameters for most physical effect
models are collected here. Mobility parameters are handled separately by the mobility
card. Properties of electrode materials are set using the contact card.

PARAMETERS

Name

Number

Semiconductor : Silicon

: Polysihcon: GaAs
: Insulator : Oxide
: Nitride

Affinity
Permittivity
Nc

Nv

Eg
dEg.dT
Eg.Tref
dEg.dN
Eg.Nref
dEg.dP
Eg.Pref
TN

SRH.Nref

TP

SRH.Pref

CN

CP

ARichN

ARichP

Type

Integer
Flag

Real

Real

Real

Real

Real

Real

Real

Real

Real

Real

Real

Real

Real

Real

Real

Real

Real

Real

Real

Description

ID number of this material

Type of this material

Electron affinity, (eV)
Dielectric permittivity, (P/cm)
Conduction band density, (cm-3)
Valenceband density, (cm-3)
Energy band gap, (eV)
Bandgap narrowing with temperature, (eV/°K)
Bandgap reference temperature, (°K)
Bandgap narrowing with N doping, (eV/cm-3)
Bandgap reference concentration - N type, (cm-3)
Bandgap narrowing with P doping, (eV/cm~3)
Bandgap reference concentration - P type, (cm-3)
SRH lifetime - electrons, (s)
SRH reference concentration - electrons, (cm-3)
SRH lifetime - holes, (s)
SRH reference concentration - holes, (cm-3)
Auger coefficient - electrons, (cm6/s)
Auger coefficient- holes, (cm6/s)
Richardson constant - electrons, (A/cm2/°K2)
Richardson constant - holes, (A/cmVK2)

EXAMPLES

Set the type ofmaterial #1 to silicon, then adjust the values ofthe temperature-dependent
bandgap model parameters:

206

MATERIAL Cider User's Manual MATERIAL

material num=l silicon eg=1.12 deg.dt=4.7e-4 eg.tref=640.0

The recombination lifetimes can be set to extremely short values to simulate imperfect
semiconductor material:

material num=2 silicon tn=lps tp=lps

SEE ALSO

domain, mobility, contact, boundary

207

METHOD Cider User's Manual METHOD

NAME

METHOD - Choose types and parameters ofnumerical methods

SYNOPSIS

method [types] [parameters]

DESCRIPTION

The method card controls which numerical methods are used during a simulation and
the parameters ofthese methods. Most ofthese methods are optimizations that reduce run
time, but may sacrifice accuracy or reliable convergence.

For majority-carrier devices such as MOSFETs, one carrier simulations can be used
to save simulation time. The systems of equations in AC analysis may be solved using
either direct or successive-over-relaxation techniques. Successive-over-relaxation is faster,
but at high frequencies, it may fail to converge or may converge to the wrong answer. In
some cases, it is desirable to obtain AC parameters as functions of DC bias conditions.
If necessary, a one-point AC analysis is performed at a predefined frequency in order to
obtain these small-signal parameters. The default for this frequency is 1 Hz. The Jacobian
matrix for DC and transient analyses can be simplified by ignoring the derivatives of the
mobility with respect to the solution variables. However, the resulting analysis may have
convergence problems. Additionally, if they are ignored during AC analyses, incorrect
results may be obtained.

A damped Newton method is used as the primary solution technique for the device-level
partial differential equations. This algorithm is based on an iterative loop that terminates
when the error in the solution is small enough or the iteration limit is reached. Error
tolerances are used when determining if the error is "small enough". The tolerances are
expressed in terms of an absolute, solution-independent error and a relative, solution-
dependent error. The absolute-error limit can be set on this card. The relative error is
computed by multiplying the size of the solution by the circuit-level SPICE parameter
RELTOL.

PARAMETERS

Name Type Description

OneCarrier

ACAnalysis
NoMobDeriv

Flag
String
Flag

Solve for majority carriers only
AC analysis method, (either DIRECT or SOR)
Ignore mobility derivatives

Frequency
ItLim

DevTol

Real

Integer
Real

AC analysis frequency, (Hz)
Newton iteration limit

Maximum residual error in device equations

EXAMPLES

Use one carrier simulation for a MOSFET, and choose direct method AC analysis to ensure
accurate, high frequency results:

method onec ac.an=direct

Tolerate no more than 10"10 absolute error in device-level equations, and perform no more
than 15 Newton iteration in any one loop:

208

METHOD Cider User's Manual METHOD

method devtol=le-10 itlim=15

209

MOBILITY CiderUser's Manual MOBILITY

NAME

MOBILITY- Specify types and parameters ofmobility models

SYNOPSIS

mobility material [carrier] [parameters! [models] [initialize]

DESCRIPTION

The mobility model is one of the most complicated models of a material's physical
properties. As a result, separate cards are needed to set up this model for a given material.

Mobile carriers in a device are divided into a number ofdifferent classes, each ofwhich
has different mobility modelling. There are three levels of division. First, electrons and
holes are obviously handled separately. Second, carriers in surface inversion/accumulation
layers are treated differently than carriers in the bulk. Finally, bulk carriers can be either
majority or minority carriers.

For surface carriers, the normal-field mobility degradation model has three user-
modifiable parameters. For bulk carriers, the ionized impurity scattering model has four
controllable parameters. Different sets of parameters are maintained for each of the four
bulk carrier types: majority-electron, minority-electron, majority-hole and minority-hole.
Velocity saturation modelling can be applied to both surface and bulk carriers. However,
only two sets of parameters are maintained: one for electrons and one for holes. These
must be changed on a majority carrier card (i.e. when the majority flag is set).

Several models for the physical effects are available, along with appropriate default
values. Initially, a universal set of default parameters usable with all models is provided.
These can be overridden by defaults specific to a particular model by setting the initializa
tion flag. These can then be changed directly on the card itself. The bulk ionized impurity
models are the Caughey-Thomas (CT) model and the Scharfetter-Gummel (SG) model
[CAUG67], [SCHA69]. Three alternative sets of defaults are available for the Caughey-
Thomas expression. They are the Arora (AR) parameters for Si [AROR82], the University
of Florida (UF) parameters for minority carriers in Si [SOLL90], and a set of parameters
appropriate for GaAs (GA). The velocity-saturation models are the Caughey-Thomas (CT)
and Scharfetter-Gummel (SG) models for Si, and the PISCES model for GaAs (GA). There
is also a set of Arora (AR)parameters for the Caughey-Thomas model.

210

MOBILITY Cider User's Manual MOBILITY

PARAMETERS

Name Type Description

Material Integer ID number ofmaterial

Electron: Hole

Majority: Minority
Flag
Flag

Mobile carrier

Mobile carrier type
MuS

EOA

EC.B

Real

Real

Real

Maximum surface mobility, (cm2/Vs)
Surface mobility lst-order critical field, (V/cm)
Surface mobility 2nd-order critical field, (V^/cm2)

MuMax

MuMin

NtRef

NtExp

Real

Real

Real

Real

Maximum bulk mobility, (cmz/Vs)
Minimum bulk mobility, (cm2/V-s)
Ionized impurity reference concentration, (cm-3)
Ionized impurity exponent

Vsat

Vwarm

Real

Real

Saturation velocity, (cm/s)
Warm carrier reference velocity, (cm/s)

ConcModel

FieldModel

Init

String
String
Flag

Ionized impurity model, (CT, AR, UF, SG, or GA)
Velocity saturation model, (CT, AR, SG, or GA)
Copy model-specific defaults

EXAMPLES

The following set of cards completely updates the bulk mobility parameters for material
#1:

mobility mat=l concmod=sg fieldmod=sg
mobility mat=l elec major mumax=1000.0 mumin=100.0
+ ntref=1.0el6 ntexp=0.8 vsat=l.0e7 vwarm=3.0e6

mobility mat=l elec minor mumax=1000.0 mumin=200.0

+ ntref=1.0el7 ntexp=0.9

mobility mat=l hole major mumax=500.0 mumin=50.0
+ ntref=1.0el6 ntexp=0.7 vsat=8.0e6 vwarm=1.0e6

mobility mat=l hole minor mumax=500.0 mumin=150.0
+ ntref=1.0el7 ntexp=0.8

The electron surface mobility is changed by the following:
mobility mat=l elec mus=800.0 ec.a=3.0e5 ec.b=9.0e5

Finally, the default Scharfetter-Gummel parameters can be used in Si with the GaAs
velocity-saturation model (even though it doesn't make physical sense!):

mobility mat=l init elec major fieldmodel=sg
mobility mat=l init hole major fieldmodel=sg
mobility mat=l fieldmodel=ga

SEE ALSO

material

BUGS

The surface mobility model does not include temperature-dependence for the transverse-
field parameters. Those parameters will need to be adjusted by hand.

211

MODELS Cider User's Manual MODELS

NAME

MODELS - Specify which physical models should be simulated

SYNOPSIS

models [model flags]

DESCRIPTION

The models card indicates which physical effects should be modeled during a simulation.
Initially, none of the effects are included. A flag can be set false by preceding it by a caret.

PARAMETERS

Name Type Description

BGN Flag Bandgap narrowing
SRH Flag Shockley-Reed-Hall recombination
ConcTau Flag Concentration-dependent SRH lifetimes
Auger Flag Auger recombination
Avalanche Flag Local avalanche generation
TempMob Flag Temperature-dependent mobility
ConcMob Flag Concentration-dependent mobility
FieldMob Flag Lateral-field-dependent mobility
TransMob Flag Transverse-field-dependent surface mobility
SurfMob Flag Activate surface mobility model

EXAMPLES

Turn on bandgap narrowing, and all of the generation-recombination effects:
el « Krrn «T-'h nnnffan anrtor awal

0—K. _ 07 — 0^—,

models bgn srh conctau auger aval

Amend the first card by turning on lateral- and transverse-field-dependent mobility in
surface charge layers, and lateral-field-dependent mobility in the bulk. Also, this line
turns avalanche generation modeling off.

models surfmob transmob fieldmob "aval

SEE ALSO

material, mobility

BUGS

Thelocal avalanche generation model for2D devices does not compute the necessary contri
butions to the device-levelJacobian matrix. If this model is used, it may cause convergence
difficulties and it will cause AC analyses to produce incorrect results.

212

OPTIONS Cider User's Manual OPTIONS

NAME

OPTIONS - Provide optional device-specific information

SYNOPSIS

options [device-type] [initial-state] [dimensions! [measurement-temperature]

DESCRIPTION

The options card functions as a catch-all for various information related to the circuit-
device interface. The type of a device can be specified here, but will be defaulted if none
is given. Device type is used primarily to determine how to limit the changes in voltage
between the terminals ofa device. It also helps determine what kind ofboundary conditions
are used as defaults for the device electrodes.

A previously calculated state, stored in the named initial-conditions file, can be loaded
at the beginning of an analysis. If it is necessary for each instance of a numerical model
to start in a different state, then the unique flag can be used to generate unique filenames
for each instance by appending the instance name to the given filename. This is the same
method used by CIDER to generate unique filenames when the states are originally saved.
If a particular state file does not fit this pattern, the filename can be entered directly on
the instance line.

Mask dimension defaults can be set so that device sizes can be specified in terms of
area or width. Dimensions for the special 1D BJT base contact can also be controlled.

The measurement temperature ofmaterial parameters, normally taken to be the circuit
default, can be overridden.

PARAMETERS

Name Type Description

Resistor Flag Resistor

: Capacitor Flag Capacitor
: Diode Flag Diode

: Bipolar | BJT Flag Bipolar transistor
: MOSFET Flag MOS field-effect transistor

:JFET Flag Junction field-effect transistor

: MESFET Flag MES field-effect transistor

ICFile String Initial-conditions filename

Unique Flag Append instance name to filename
DefA Real Default Mask Area, (m2)
DefW Real Default Mask Width, (m)
DefL Real Default Mask Length, (m)
Base.Area Real 1D BJT base area relative to emitter area
Base.Length Real 1D BJT base contact length, (pm)
Base.Depth Real 1D BJT base contact depth, (pm)
TNom Real Nominal measurement temperature, (°C)

EXAMPLES

Normally, a 'numos' device model is used for MOSFET devices. However, it can be changed
into a bipolar-with-substrate-contact model, by specifying a bipolar structure using the
other cards, and indicating the device-structure type as shown here. The default length is

213

OPTIONS Cider User's Manual OPTIONS

set to 1.0 pm so that when mask area is specified on the element line it can be divided by
this default to obtain the device width.

options bipolar def1=1.0

Specify that a 1D BJT has base area 1710th that of the emitter, has an effectivebase contact
depth of 0.2 pm and a length between the internal and external base contacts of 1.5 pm:

options base.area=0.1 base.depth=0.2 base.len=1.5

If a circuit contains two instances of a bipolar transistor model named 'ql' and 'q2', then
the following line tells the simulator to look for initial conditions in the files 'OPl.ql' and
'OPl.q2', respectively. The period in the middle of the names is added automatically:

options unique ic.file="OPl"

SEE ALSO

numd, nbjt, numos

214

OUTPUT Cider User's Manual OUTPUT

NAME

OUTPUT - Identify information to be printed or saved

SYNOPSIS

output [debugging-flagsl [general-infol [saved-solutions]

DESCRIPTION

The output card isused tocontrol theamount ofinformation that is eitherpresented to
or saved for the user. Three types ofinformation are available. Debugging information is
available as a means tomonitor program execution. This isuseful during long simulations
when one is unsure about whether the program has become trapped at some stage ofthe
simulation. General information abouta device such as material parametersand resource
usage can be obtained. Finally, information about the internal and external states of a
device is available. Since this data is best interpreted using a post-processor, a facility
is available for saving device solutions in auxiliary output files. Solution filenames are
automatically generated by the simulator. If the namedfile already exists, the file will be
overwritten. Afilename unique toa particular circuit orrun can begenerated byproviding
a root filename. This root name will be added onto the beginning ofthe automatically
generated name. This feature can be used to store solutions in a directory other than the
currentone by specifying the rootfilename as the path ofthe desired directory. Solutions
are only saved for those devicesthat specify the 'save' parameter on their instance lines.

The various physical values that can be saved are named below. By default, the
following values are saved: the doping, the electron andhole concentrations, the potential,
the electric field, the electron and hole current densities, and the displacement current
density. Values canbeadded to or deleted from this list byturningthe appropriate flag on
or off. For vector-valued quantities in two dimensions, both the X and Y components are
saved. The vector magnitude can be obtained during post-processing.

Saved solutions can be used in conjunction with the options card and instance lines to
reuse previously calculated solutions as initial guesses for new solutions. For example, it
is typical to initialize the device to a known state prior to beginning any DC transfer curve
or operating point analysis. This state is an ideal candidate to be saved for later use when
it is known that many analyses will be performed on a particular device structure.

215

OUTPUT Cider User's Manual OUTPUT

PA]

1

EtAMETERS

Name Type Description

All-Debug Flag Debug all analyses
ORDebug Flag Debug .OP analyses
DCDebug Flag Debug .DC analyses
TRAN.Debug Flag Debug .TRAN analyses
AC.Debug Flag Debug AC analyses
PZ.Debug Flag Debug .PZ analyses
Material Flag Physical material information
Statistics | Resources Flag Resource usage information

RootFile String Root ofoutput file names
Psi Flag Potential (V)

Equ.Psi Flag Equilibrium potential (V)
VacPsi Flag Vacuum potential (V)

Doping Flag Net doping (cm-3)
N.Conc Flag Electron concentration (cm-3)
P.Conc Flag Hole concentration (cm-3)
PhiN Flag Electron quasi-fermi potential (V)
PhiP Flag Hole quasi-fermi potential (V)
PhiC Flag Conduction band potential (V)
PhiV Flag Valence band potential (V)
E.Field Flag Electric field (V/cm)

JC Flag Conductioncurrent density (A/cm2)
JD Flag Displacement currentdensity(A/cm2)
JN Flag Electroncurrent density (A/cm2)
JP Flag Hole current density (A/cm2)
JT Flag Total current density (A/cm2)
Unet Flag Net recombination (cm~3/s)
MuN Flag Electronmobility Qow-field) (cm2/V-s)
MuP Flag Hole mobility (low-field) (cm2/Vs)

EXAMPLES

The following example activates all potentially valuable diagnostic output:
output all.debug mater stat

Energy band diagrams generally contain the potential, the quasi-fermi levels, the band edge
energies and the vacuum energy. The following example enables saving of the non-default
values needed to make energy band diagrams:

output phin phip phic phiv vac.psi

Sometimes it is desirable to save certain key solutions, and then reload them for use in
subsequent simulations. In such cases only the essential values ($, n, and p) need to be
saved. This example turns off the nonessential default values (and indicates the essential
ones explicitly):

output psi n.conc p.cone "e.f ~jn "jp ~jd

SEE ALSO

options, numd, nbjt, numos

216

TITLE Cider User's Manual TITLE

NAME

TITLE - Provide a label for this device's output

SYNOPSIS

title [text]

DESCRIPTION

The title card provides a label for use as a heading in various output files. The text can
be any length, but titles that fit on a single line will produce more aesthetically pleasing
output.

EXAMPLES

Set the title for a minimum gate length NMOSFET in a 1.0 pm BiCMOS process:
title L=1.0um NMOS Device, l.Oum BiCMOS Process

BUGS

The title is currently treated like a comment.

217

X.MESH, Y.MESH Cider User's Manual X.MESH, Y.MESH

NAME

X.MESH, Y.MESH - Define locations oflines/nodes in a mesh

SYNOPSIS

xjnesh positionnumbering-method [spacing-parametersl
y.mesh position numbering-method [spacing-parametersl

DESCRIPTION

The domains ofa deviceare discretized onto a rectangular finite-difference mesh using
x.mesh cards for 1D devices, or x.mesh andy.mesh cards for2D devices. Both uniform and
non-uniform meshes can be specified.

Atypical mesh for a 2D device isshown inFigure A.3. The mesh isdivided into intervals

Reference Lines

Location 0.0

Location 0.5

Width 1.0

Location 1.5

Automatic

Lines

'Interval

Uniform Spacing Nonuniform Spacing

Figure A.3: Typical mesh for 2D device.

by the reference lines. The other lines in each interval are automatically generated by
CIDER using the mesh spacing parameters. In general, each new mesh card adds one
reference line and multiple automatic lines to the mesh. Conceptually, a 1D mesh is similar
to a 2D mesh except that there are no reference or automatic lines needed in the second
dimension.

The location of a reference line in the mesh must either be given explicitly (using
Location) or defined implicitly relative to the location of the previous reference line (by
using Width). (If the first card in either direction is specified using Width, an initial
reference line is automatically generated at location 0.0.) The line number of the reference
line can be given explicitly, in which case the automatic lines are evenly spaced within the
interval, and the number of lines is determined from the difference between the current
line number and that of the previous reference line. However,if the interval width is given,
then the line number is interpreted directly as the number of additional lines to add to the
mesh.

For a nonuniformly spaced interval, the number ofautomatic lines has to be determined
using the mesh spacing parameters. Nonuniform spacing is triggered by providing a desired

218

X.MESH, Y.MESH Cider User's Manual X.MESH, Y.MESH

ratio for the lengths ofthe spaces between adjacent pairs oflines. This ratio should always
begreater than one, indicating theratio oflarger spaces tosmaller spaces. In addition to
the ratio, one orboth ofthe space widths at the ends ofthe interval must be provided. If
only one isgiven, it will be the smallest space and the largest space will be at the opposite
endofthe interval. Ifbothare given, the largest space will bein the middle ofthe interval.
In certain cases it is desirable to limit the growth of space widths in order to control the
solution accuracy. This can be accomplished by specifying a maximum space size, butthis
option is only available when one of the two end lengths is given. Note that once the
number ofnew lines isdetermined using the desired ratio, the actual spacing ratio may be
adjusted so that the spaces exactly fill the interval.

PARAMETERS

Name

Location

: Width

Number

: Ratio

Node

H.Start | HI
H.End | H2
H.Max | H3

Type

Real

Real

Integer
Real

Real

Real
Real

Description

Location of this mesh line, (pm)
Widthbetweenthis and previousmesh lines, (pm)
Number of this mesh line
Ratio ofsizes ofadjacent spaces
Space size at start of interval, (pm)
Space size at end of interval, (pm)
Maximum space size inside interval, (pm)

EXAMPLES

A 50node, uniform meshfor a 5 pm longsemiconductor resistor canbe specified as:
x.mesh loc=0.0 n=l

x.mesh loc=5.0 n=50

An accurate mesh fora 1D diode needs fine spacing near the junction. In this example, the
junction is assumed to be 0.75 pm deep. The spacing near the diode ends is limited to a
maximum of 0.1 pm:

x.mesh w=0.75 h.e=0.001 h.m=0.1 ratio=l.5

x.mesh w=2.25 h.s=0.001 h.m=0.1 ratio=1.5

The vertical mesh spacing of a MOSFET can generally be specified as uniform through
the gate oxide, very fine for the surface inversion layer, moderate down to the source/drain
junction depth, and then increasing all the way to the bulk contact:

y.mesh loc=-.04 node=l
y.mesh loc=0.0 node=6
y.mesh width=0.5 h.start=0.001 h.max=.05 ratio=2.0
y.mesh width=2.5 h.start=0.05 ratio=2.0

SEE ALSO

domain

219

NUMD Cider User's Manual NUMD

NAME

NUMD - Diode / two-terminal numerical models and elements

SYNOPSIS

Model:
.MODEL model-name NUMD [level]
+...

Element:
DXXXXXXX nl n2 model-name [geometry! [temperaturel [initial-conditions]

Output:
.SAVE [small-signal values]

DESCRIPTION

NUMD is the name for a diodenumerical model. In addition, this same model can be
used to simulate other two-terminal structures such as semiconductor resistors and MOS
capacitors. See theoptions card for more information on how tocustomize thedevice type.

Both 1D and 2D devicesare supported. These correspondto the LEVEL=1 and LEVEL=2
models, respectively. If leftunspecified, it is assumed that the device is one-dimensional.

All numerical two-terminal element names begin with the letter 'D\ The element name
is then followed by the names ofthe positive (nl) and negative (n2)nodes. After this must
come the name of the model used for the element. The remaining information can come in
any order. The layoutdimensions ofan element are specified relative to the geometry ofa
default device. For 1D devices, the defaultdevice has an area of lm2,and for2D devices, the
default device has a width of lm. However, these defaults can be overridden on an options
card. The operating temperature ofa device can be set independently from that of the rest
of the circuit in order to simulate non-isothermal circuit operation. Finally, the name of a
file containing an initial state for the device can be specified. Remember that ifthe filename
contains capital letters, they must be protected by surrounding the filename with double
quotes. Alternatively, the device can be placed in an OFF state (thermal equilibrium) at
the beginning of the analysis. For more information on the use of initial conditions, see the
SPICE User's Manual.

In addition to the element input parameters, there are output-only parameters that can
be shown using the SPICE show command or captured using the save/. SAVE command.
These parameters are the elements of the indefinite conductance (G), capacitance (C), and
admittance (Y)matrices where Y = G+jwC. By default, the parameters are computed at 1
Hz. Each element is accessed using the name of the matrix (g, c or y) followed by the node
indices of the output terminal and the input terminal (e.g. gll). Beware that parameter
names are case-sensitive for save/show, so lower-case letters must be used.

220

NUMD Cider User's Manual NUMD

PARAMETERS

Name Type Description
Level Integer Dimensionality ofnumerical model
Area Real Multiplicative area factor
W Real Multiplicative width factor
Temp Real Element operating temperature
ICFile String Initial-conditions filename
Off Flag Device initially in OFF state
gU Flag Conductance element Ga, (fi)
cU Flag Capacitance elementC-,, (F)
yU Flag Admittance element Yu, (Q)

EXAMPLES

A one-dimensional numerical switching-diode elementfmodel pair with an area twice that
ofthe default device (which has a size of1/rni x1pm) can bespecified using:

DSWITCH 1 2 M-SWITCH-DIODE AREA=2

.MODEL M_SWITCH_DIODE NUMD

+ options defa=lp ...
+

A two-dimensional two-terminal MOS capacitorwith a width of20pmand an initial condi
tion of 3V is created by:

DMOSCAP 11 12 M-MOSCAP W=20um IC=3v

.MODEL M-MOSCAP NUMD LEVEL=2

+ options moscap defw=lm
+ . . .

The next example shows how both the width and area factors can be used to create a power
diode with area twice that of a 6/mi-wide device (i.e. a 12/on-wide device). The device is
assumed to be operating at a temperature of 100°C:

Dl POSN NEGN POWERMOD AREA=2 W=6um TEMP=100.0

.MODEL POWERMOD NUMD LEVEL=2

+ . . .

This example saves all the small-signal parameters of the previous diode:
.SAVE @dl[gll] @dl[gl2] @dl[g21] @dl[g22]
.SAVE @dl[cll] @dl[cl2] @dl[c21] @dl[c22]

.SAVE @dl[yll] @dl[yl2] @dl[y21] @dl[y22]

SEE ALSO

options, output

BUGS

Convergence problemsmay be experienced when simulating MOS capacitorsdue to singu
larities in the current-continuity equations.

221

NBJT Cider User's Manual NBJT

NAME

NBJT - Bipolar / three-terminal numerical models and elements

SYNOPSIS

Model:
.MODEL model-name NBJT [level]

+ ...

Element:
QXXXXXXX nl n2 n3 model-name [geometry] [temperature] [initial-conditions]

Output:
.SAVE [small-signal values]

DESCRIPTION

NBJT is the namefora bipolar transistornumerical model. In addition, the 2D model
can be used to simulate other three-terminal structures such as a JFET or MESFET.
However, the 1D model is customized with a special base contact, and cannot be used for
other purposes. See the options card for moreinformation on how to customizethe device
type and setup the 1D base contact.

Both 1D and 2D devices are supported. These correspond to the LEVEL=1 and LEVEL=2
models, respectively. If left unspecified, it is assumed that the device is one-dimensional.

All numerical three-terminal element names begin with the letter *Q\ If the device is a
bipolar transistor, then the nodes are specified in the order: collector (nl), base (n2), emitter
(n3). For a JFET or MESFET, the node order is: drain (nl), gate (n2), source (n3). After
this must come the name of the model used for the element. The remaining information
can come in any order. The layout dimensions of an element are specified relative to the
geometry ofa default device. For the 1D BJT,the default devicehas an area of lm2, and for
2D devices, the default device has a width of lm. In addition, it is assumed that the default
1DBJT has a base contact with area equal to the emitter area, length of 1 pm and a depth
automatically determined from the device doping profile. However, all these defaults can
be overridden on an options card.

The operating temperature of a device can be set independently from that of the rest of
the circuit in order to simulate non-isothermal circuit operation. Finally, the name of a file
containing an initial state for the device can be specified. Remember that if the filename
contains capital letters, they must be protected by surrounding the filename with double
quotes. Alternatively, the device can be placed in an OFF state (thermal equilibrium) at
the beginningofthe analysis. Formoreinformation on the use ofinitial conditions, see the
SPICE User's Manual.

In addition to the element input parameters, there are output-onlyparameters that can
be shown using the SPICE show command or captured using the save/. SAVE command.
These parameters are the elements ofthe indefinite conductance (G), capacitance (C), and
admittance (Y) matrices where Y= G+jwC. By default, the parametersare computed at 1
Hz. Each element is accessed using the name ofthe matrix (g, c ory)followed bythe node
indices ofthe output terminal and the inputterminal (e.g. gll). Beware that parameter
names are case-sensitive for save/show, so lower-case letters must be used.

222

NBJT

PARAMETERS

Name

Level

Area

W

Temp
ICFile

Off

gU
cIJ

yU

Cider User's Manual

Type

Integer
Real

Real

Real

String Initial-conditions filename
Flag Device initially in OFF state
Flag
Flag
Flag

Description

Dimensionality ofnumerical model
Multiplicative area factor
Multiplicative width factor
Element operating temperature

Conductance element Gy, (Q)
Capacitanceelement Cy, (F)
Admittance element fry, (Q)

NBJT

EXAMPLES

A one-dimensional numerical bipolar transistor with an emitter stripe 4 times as wide as
the default device is created using:

Q2 1 2 3 M.BJT AREA=4

Thisexample savesthe output conductance (go), transconductance (gm) and input conduc
tance (gpi) of the previous transistor in that order:

.SAVE @q2[gll] @q2[gl2] @q2[g22]

The second example is for a two-dimensional JFET with a width of5pm and initial condi
tions obtained from file "IC.jfet":

QJl 11 12 13 M.JFET W=5um IC.FILE="IC.jfet"
.MODEL M-JFET NBJT LEVEL=2

+ options jfet
+ . . .

A final example shows how to use symmetry to simulate half ofa 2D BJT, avoiding having
the user double the area of each instance:

Q2 NC2 NB2 NE2 BJTMOD AREA=1

Q3 NC3 NB3 NE3 BJTMOD AREA=1

.MODEL BJTMOD NBJT LEVEL=2

+ options defw=2um
+ * Define half of the device now

+ . . .

SEE ALSO

options, output

BUGS

MESFETs cannot be simulated properly yet because Schottky contacts have not been im
plemented.

223

NUMOS Cider User's Manual NUMOS

NAME

NUMOS -MOSFET /four-terminal numerical models and elements

SYNOPSIS

Model:
.MODEL model-name NUMOS [levell
+...

Element:
MXXXXXXX nl n2 n3 n4 model-name [geometry! [temperaturel [initial-conditionsl

Output:
.SAVE [small-signal valuesl

DESCRIPTION

NUMOS is the name for a MOSFET numerical model. In addition, the 2D model can
be used to simulate other four-terminal structures such as integrated bipolar and JFET
devices with substrate contacts. However, silicon controlled rectifiers (SCRs) cannot be
simulated because of the snapback in the transfer characteristic. See the options card for
more information on how to customize the device type. The LEVEL parameter of two- and
three- terminal devices is not needed, because only 2D devices are supported. However, it
will accepted and ignored ifprovided.

All numerical four-terminal element names begin with the letter *M. If the device is
a MOSFET, or JFET with a bulk contact, then the nodes are specified in the order: drain
(nl), gate (n2), source (n3), bulk (n4). Ifthe device is a BJT, the node order is: collector (nl),
base (n2), emitter (n3), substrate (n4). After this must come the name ofthe model used for
the element. The remaining information can come in any order. The layout dimensions of
an element are specified relative to the geometry of a default device. The default device has
a width of lm. However, this default can be overridden on an options card. In addition,
the element line will accept a length parameter, L, but does not use it in any calculations.
This is provided to enable somewhat greater compatibility between numerical MOSFET
models and the standard SPICE3 compact MOSFET models.

The operating temperature of a device can be set independently from that ofthe rest of
the circuit in order to simulate non-isothermal circuit operation. Finally, the name of a file
containing an initial state for the device can be specified. Remember that if the filename
contains capital letters, they must be protected by surrounding the filename with double
quotes. Alternatively, the device can be placed in an OFF state (thermal equilibrium) at
the beginning of the analysis. For more information on the use of initial conditions, see the
SPICE

In addition to the element input parameters, there are output-only parameters that can
be shown using the SPICE show commandor captured using the save/. save command.
Theseparameters are the elements ofthe indefinite conductance (G), capacitance (C), and
admittance(Y) matriceswhereY= G+jwC. Bydefault, the parameters are computed at 1
Hz. Each element is accessed usingthe name ofthe matrix(g, cory)followed by the node
indices ofthe output terminal and the input terminal (e.g. gll). Beware that parameter
names are case-sensitive for save/show, so lower-case letters must be used.

224

NUMOS Cider User's Manual NUMOS

PARAMETERS

Name Type Description
Level Integer Dimensionality ofnumerical model
Area Real Multiplicativearea factor
W Real Multiplicativewidth factor

_L Real Unused lengthfactor
Temp Real Element operating temperature
ICFile String Initial-conditions filename
Off Flag Device initially in OFF state
gU Flag Conductance element Gy, (Q)
cU Flag Capacitance element Cy, (F)
yU Flag Admittance element yu, (Q)

EXAMPLES

A numerical MOSFET with a gate width of 5pm and length of 1pm is described below.
However, the model can only be used for 1pm length devices, so the length parameter is
redundant. Thedevice is initially biased near its threshhold bytakingan initialstate from
the file "NMLvth".

Ml 1 2 3 4 M-NMOS.1UM W=5um L=lum IC.FILE="NM1.vth"
.MODEL M.NMOS-1UM NUMOS

+ * Description of a lum device
+ . . .

This example saves the definite admittance matrix of the previous MOSFET where the
source terminal (3) is used as the reference. (The definite admittance matrix is formed by
deleting the third row and column from the indefinite admittance matrix.)

.SAVE @ml[yll] @ml[yl2] @ml[yl4]

.SAVE @ml[y21] @ml[y22] @ml[y24]

.SAVE @ml[y41] @ml[y42] @ml[y44]

Bipolar transistors are usually specified in terms of their area relative to a unit device. The
following example creates a unit-sized device:

MQ1 NC NB NE NS M.BJT

.MODEL M-BJT NUMOS LEVEL=2

+ options bipolar defw=5um
+ . . .

SEE ALSO

options, output

225

EXAMPLES Cider User'sManual EXAMPLES

NAME

EXAMPLE 1 - One-Dimensional Diode Capacitance

DESCRIPTION

This example demonstrates the use of CIDER as a means to obtain compact model
parameters. The junction capacitance of a diode is obtained by recording AC small-signal
parameters during a DC transfer curve analysis. The diode voltage is swept from a reverse
bias of 3.0V to a forward bias of 0.3V in 50mV steps. The diode capacitance @dl [ell]
is saved at each bias point. The results are then compared to a fit to the standard diode
junction capacitance model:

CJ0
CD = t v \MJ

INPUT FILE

One-Dimensional Diode Capacitance

Vpp 1 0 0.7v (PWL Ons 3.0v 0.01ns -6.0v) (AC lv)
Vnn 2 0 Ov

Dl 1 2 M-PN AREA=100

.model M-PN numd level=l

+ options defa=lp

+ x.mesh loc=0.0 n=l

+ x.mesh loc=1.3 n=201

+ domain num=l material=l

+ material num=l silicon

+ doping gauss p.type conc=le20 x.1=0.0 x.h=0.0 char.1=0.100

+ doping unif n.type conc=lel6 x.1=0.0 x.h=1.3

+ doping gauss n.type conc=5el9 x.l=1.3 x.h=1.3 char.1=0.100
+ models bgn aval srh auger conctau concmob fieldmob

+ method ac=direct

.OPTION ACCT

.DC Vpp -3.0v 0.3001v 50mv

.PRINT DC I(Vpp)

.SAVE ALL @dl[cll]

.END

RESULTS

Thedopingprofile for thesimulated diode isshown in Figure A.4. Thediode capacitance
is shownin Figure A.5as obtainedfromCIDERand from the standard SPICE modelwhere
CJ0=32.4fF, vj=0 .68, MJ=0.47. As can be seen the fit is excellent.

226

EXAMPLES Cider User's Manual

cmA-3

le+20

5

2

le+19

5

2

le+18

5

2

le+17

5

2

le+16

5

2

le+15

\

\
\
\
\
\
\
\

1 J

\

0.00 0.20 0.40 0.60 0.80 1.00 1.20

FigureA.4: 1D Diode Doping Profile

227

EXAMPLES

Net Doping

um

EXAMPLES Cider User's Manual

fF

45.00

40.00

35.00

30.00

25.00

20.00

9

j

i

i

1

j

/
-.•'

y
15.00 -H(—-

10.00

5.00

0.00

-3.00 -2.00 •1.00 0.00

EXAMPLES

CD (CIDER)

CD7SPICE3)

Figure A.5: Diode Capacitance from CIDER and SPICE3

228

EXAMPLES Cider User's Manual EXAMPLES

NAME

EXAMPLE 2 - One-Dimensional Bipolar FrequencyResponse

DESCRIPTION

This example demonstrates the use ofAC small-signal analysis in CIDER. The circuit
isanNPN emitter-coupled pairwith a PNP active load. The gain ofthiscircuit isprimarily
determined by the transconductance ofthe Q1-Q2 pair and the output resistances ofQ2
andQ4, which are difficult tomodel accurately using the existing SPICE compact bipolar
model. Matching considerations dictate the need for numerical modelsfor all four devices.
The doping profiles are representative ofa l.Oum complementary poly-emitter bipolar
process. ADC offset voltage of-0.5mv is needed to center the operating point at the point
of maximum gain.

INPUT FILE

Emitter Coupled Pair with Active Load

VCC 1 0 5v

VEE 2 0 Ov

VINP 4 0 2.9995v AC 0.5v

VINM 7 0 3v AC 0.5v 180

IEE 5 2 0.1mA

Ql 3 4 5 M.NPN AREA=8

Q2 6 7 5 M.NPN AREA=8

Q3 3 3 1 M.PNP AREA=8

Q4 6 3 1 M.PNP AREA=8

.AC DEC 10 10kHz lOOgHz

.PLOT AC VDB(6)

.model M-NPN nbjt level=l

+ options base.depth=0.15 base.area=0.1 base.length=l.0 defa=lp
+ x.mesh loc=-0.2 n=l

+ x.mesh loc=0.0 n=51

+ x.mesh wid=0.15 h.e=0.0001 h.m=.004 r=1.2

+ x.mesh wid=1.15 h.s=0.0001 h.m=.004 r=1.2

+ domain num=l material=l x.1=0.0

+ domain num=2 material=2 x.h=0.0

+ material num=l silicon

+ material num=2 polysilicon
+ doping gauss n.type conc=3e20 x.l=-0.2 x.h=0.0 char.len=0.047

+ doping gauss p.type conc=5el8 x.l=-0.2 x.h=0.0 char.len=0.100
+ doping unif n.type conc=lel6 x.1=0.0 x.h=1.3

+ doping gauss n.type conc=5el9 x.l=1.3 x.h=1.3 char.len=0.100

+ models bgn srh auger conctau concmob fieldmob
+ method devtol=le-12 ac=direct itlim=15

.model M-PNP nbjt level=l
+ options base.depth=0.2 base.area=0.1 base.length=l.0 defa=lp

229

EXAMPLES Cider User's Manual EXAMPLES

+ x.mesh loc=-0.2 n=l

+ x.mesh loc=0.0 n=51

+ x.mesh wid=0.20 h.e=0.0001 h.m=.004 r=1.2

+ x.mesh wid=1.10 h.s=0.0001 h.m=.004 r=1.2

+ domain num=l material=l x.1=0.0

+ domain num=2 material=2 x.h=0.0

+ material num=l silicon

+ material num=2 polysilicon
+ doping gauss p.type conc=3e20 x.l=-0.2 x.h=0.0 char.len=0.047
+ doping gauss n.type conc=5el7 x.l=-0.2 x.h=0.0 char.len=0.200
+ doping unif p.type conc=lel6 x.1=0.0 x.h=1.3
+ doping gauss p.type conc=5el9 x.l=1.3 x.h=1.3 char.len=0.100
+ models bgn srh auger conctau concmob fieldmob
+ method devtol=le-12 ac=direct itlim=15

.OPTIONS ACCT RELTOL=lE-6

.END

RESULTS

The doping profiles for the NPN and PNP devices are shown in Figure A.6 and Fig
ure A7, respectively. In order to center the operating point at the point of maximum gain,
a DC offset voltage of-0.5mv is needed on the positive input when the operating tempera
ture is 27°C(the default). In Figure A.8, the small-signal gains of the emitter coupled-pair
is plotted as a function of frequency. Both the differential-mode gain (calculated by this
input file) and the common-mode gain (calculated separately) are presented. In addition,
the differential-mode gain has been calculated at -50°C, 27°Cand 150°C. At 27°C, the low-
frequency differential-mode gain is 51.7 dB, the unity gain bandwidth is 15.2 GHz but the
phase-margin is only 13°. The low-frequency common-mode gain (calculated separately) is
-23.0 dB, so the common-mode rejection ratio (CMRR) is 74.7 dB. Notice that differential-
mode gain decreases as the temperature increases. This is caused by an increase in the
thermal voltage that degrades the transconductance of the input transistors. The output
resistances of Q2 and Q4 remain relatively constant with temperature.

230

EXAMPLES Cider User's Manual

cmA-3

5

2

le+20

5

2

le+19

5

2

le+18

5

2

le+17

5

2

le+16

5

2

le+15

5

\
\
\

f\

\
\
\

1

1

0.00 0.50 1.00

Figure A.6: 1D NPN DopingProfile

231

EXAMPLES

Net Doping

um

EXAMPLES Cider User's Manual

cmA-3

3

le+20

3

le+19

3

le+18

3

le+17

3

le+16

3

le+15

3

le+14

\

\
1

1
1

|\
I \

\
Y

0.00 0.50 1.00

Figure A.7: 1D PNP Doping Profile

232

EXAMPLES

Net Doping

um

EXAMPLES Cider User's Manual EXAMPLES

Gain (dB)

55.00

50.00

45.00

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

-5.00

-10.00

-15.00

-20.00

-25.00

-30.00

=| Av,DM
DDDonnn

Av,CM
•

•

•

•

•

•

•

i i

•

a

•

•

•

•

•

•

i
ann nDOu0ai

D •
D

1

° m

i

a m

i

oaooaaaaaai taaoooaaaaoooaaoaaaoi

u

onnooon- _o
Drin nD

•

°Oaaau
i i

Hz

le+05 le+07 le+09 le+11

Figure A.8: Small-Signal Gains ofEmitter-Coupled Pair

233

EXAMPLES Cider User's Manual

NAME

EXAMPLE 3 -Two-Dimensional MOSFET Transient Response

EXAMPLES

DESCRIPTION 4

The third example is an NMOSbootstrapped enhancement-load inverter. The transient ^
responseofthe circuit is calculatedas the input voltage is pulsedfromhigh to lowand back
again. A schematic of the circuit is shown in Figure A.9. Two-dimensional numerical

Vdd

Mi

1_
Vbootit*

VlN

€
M2

•—o Vout

CT =hD
Cl

Figure A.9: Bootstrap Inverter Schematic

models are used for the three MOS transistors. The only physical models enabled are the
concentration- and field-dependent mobility models. In addition, one-carrier simulation is
used in order to save CPU time. The cross-sectional geometry for each of the MOSFETS is
shown in Figure A.10.

3.0M.

0.7m.
500 A 0.4(1

n+:lel9

**J|i

2.0(1 psobstrate; 2J5el6 J

\ <

Figure A.10: Geometry ofNMOS Transistor

234

J.

T
0.2)1

EXAMPLES Cider User's Manual EXAMPLES

INPUT FILE

NM0S Enhancement-Load Bootstrap Inverter
if

Vdd 1 0 5.0v

•2 0 O.Ov

5 0 O.Ov PWL (0.0ns 5.0v) (Ins O.Ov) (10ns O.Ov) (11ns 5.0v)
(20ns 5.0v) (21ns O.Ov) (30ns O.Ov) (31ns 5.0v)
13 2 M-NMOS w=5u

3 4 4 M-NMOS w=5u

5 2 2 M-NMOS w=5u

0 O.lpf

4 O.lpf

.model M-NMOS numos

+ x.mesh 1=0.0 n=l

+ x.mesh 1=0.6 n=4

+ x.mesh 1=0.7 n=5

+ x.mesh 1=1.0 n=7

+ x.mesh 1=1.2 n=ll

+ x.mesh 1=3.2 n=21

+ x.mesh 1-3.4 n=25

+ x.mesh 1=3.7 n=27

+ x.mesh 1=3.8 n=28

+ x.mesh 1=4.4 n=31

+ y.mesh l=-.05 n=l

+ y.mesh 1=0.0 n=5

+ y.mesh 1=.05 n=9

+ y.mesh 1=0.3 n=14

+ y.mesh 1=2.0 n=19

+ region num=l material=l y.1=0.0
+ material num=l silicon

+ mobility material=l concmod=sg fieldmod=sg
+ mobility material=l init elec major
+ mobility material=l init elec minor

+ mobility material=l init hole major
+ mobility material=l init hole minor

+ region num=2 material=2 y.h=0.0 x.l=0.7 x.h=3.7

+ material num=2 oxide

+ elec num=l x.l=3.8 x.h=4.4 y.1=0.0 y.h=0.0

+ elec num=2 x.l=0.7 x.h=3.7 iy.l=l iy.h=l

+ elec num=3 x.1=0.0 x.h=0.6 y.1=0.0 y.h=0.0
+ elec num=4 x.1=0.0 x.h=4.4 y.1=2.0 y.h=2.0

+ doping unif p.type conc=2.5el6 x.1=0.0 x.h=4.4 y.1=0.0 y.h=2.0
+ doping unif p.type conc=lel6 x.1=0.0 x.h=4.4 y.1=0.0 y.h=0.05
+ doping unif n.type conc=le20 x.1=0.0 x.h=l.l y.1=0.0 y.h=0.2
+ doping unif n.type conc=le20 x.l=3.3 x.h=4.4 y.1=0.0 y.h=0.2
+ models concmob fieldmob

+ method ac=direct onec

.TRAN 0.2ns 40ns

¥ Vss

u •• Vin

+ (2

Ml 1

M2 1

M3 4

CL 4

CB 3

235

EXAMPLES Cider User's Manual EXAMPLES

.PRINT TRAN V(4)

.OPTIONS ACCT BYPASS=1 METHOD=GEAR

.END

RESULTS

The doping profile ofthe NMOS transistor is shown in Figure A. 11. Figure A. 12 shows
the important waveforms in the bootstrap inverter. When the input is high, the output is
low, the bootstrap capacitor CB is charged to.(Vdd - Vm - Vol) by transistor Ml. When the
input voltage drops to 0.0 V, transistor M2 charges the load capacitor CL. Normally, the
output voltage would stop rising when it reached (Vdd - VTn). However, the stored charge
on CB maintains thegate-source voltage of M2 above VTn and M2 remains on, allowing V0
to reach the full supply voltage VDD. When the input goes high again, the output isquickly
discharged by M3, and the voltage across CB is reset to its initial value. Notice that the
gate voltage ofM2 rises well above the upper supply voltage Vdd = 5.0v.

1.0e20

Figure A. 11: 2U NMOSFET Doping Profile

236

EXAMPLES Cider User's Manual EXAMPLES

7.50

7.00

6.50

6.00

5.50

5.00

4.50

4.00

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0.00

--- _-«- *
0

I
1

1
•

*

i
i

i

•

i

1
1

1
1

*
l

•

i
i

»

t
•
•

•

1

1

1

<

i

4
•

i

4
i

•

i

i

1
»

•

i
i

i

<

t

I

I

i

•

•

»

1

1

i
i

•

l
i

I

»

—i

*
i

i

1 .*
» .*
1 .*

V,
•

O-J—i —

* 1
•

1

; i

) • / / ; i

: I
4
f

{ i

i;
: i

l •

« :
4
1 • : •

!

I
4

< i
: i
! i i / : i

: i

i

*-/ — -< *f")C~ '
P

w
*

6

*:

? 0

0

I ':

r

\
9

] \ L
1

C
n

t

i i
K o

•••• •

0.00 10.00 20.00 30.00 40.00

Figure A.12: Output Waveforms of Bootstrap Inverter

237

Vin

Vout"

Vboot

VisY

nS

EXAMPLES Cider User's Manual EXAMPLES

NAME

EXAMPLE 4 -Two-Dimensional Doping Profiles

DESCRIPTION

There are several options for specifying two-dimensional doping profiles and it can
be confusing to understand how they operate. This example exercises these options by
simulating a typical source or drain junction ofa MOSFET with a variety ofprofiles. A
contour plot for each ofthe doping profiles is provided. Since CIDER does not have a
self-contained contour-plot capability, these results will be difficult to reproduce unless a
separate contouring program is available.

Ineach case, thebulk isuniformly doped with a P-type concentration of1.0 x 1016cm .
The N+ region isvaried from case to case. However, the concentration along theupper left
surface is always 1.0 x lO^cm-3 from x=0to x=0.5 except for thefinal two cases. Also,
theprofile characteristic length hasbeen chosen so thatthe junction depth isalways 0.2pm.

INPUT FILE

TWO-DIMENSIONAL SOURCE DOPING PROFILES

VSS 1 0 O.Ov

VBB 2 0 0.6v

Dl 1 2 M-SRCJUNC W=10u SAVE

.MODEL M-SRCJUNC NUMD LEVEL=2

+ x.mesh w=1.0 n=50

+ y.mesh w=0.4 n=20
+ domain num=l material=l

+ material num=l silicon

+ electrode num=l x.1=0.0 x.h=0.5 y.h=0.0

+ electrode num=2 y.l=0.4

+ doping unif p.type conc=1.0el6
+ *** (a) Box Uniform ***

+ doping unif n.type conc=1.0e20 x.1=0.0 x.h=0.7 y.h=0.2
+ *** (£>) Rounded Uniform

+ * doping unif n.type conc=1.0e20 x.1=0.0 x.h=0.5 y.h=0.0
+ * + location=0.2 lat.rotate ratio=1.0

+ *** (c) Linear ***

+ * doping lin n.type conc=1.0e20 x.1=0.0 x.h=0.5 y.h=0.0

+ * + char.len=0.2 lat.rotate ratio=l.0

+ *** (d) Exponential ***

+ * doping exp n.type conc=1.0e20 x.1=0.0 x.h=0.5 y.h=0.0
+ * + char.len=0.0217 lat.rotate ratio=l.0

+ *** (e) Gaussian ***

+ * doping gauss n.type conc=1.0e20 x.1=0.0 x.h=0.5 y.h=0.0
+ * + char.len=0.0656 lat.rotate ratio=l.0

+ *** (f) Complementary Error-Function ***

+ * doping erfc n.type conc=1.0e20 x.1=0.0 x.h=0.5 y.h=0.0
+ * + char.len=0.0727 lat.rotate ratio=l.0

+ *** (g) Gaussian - Lateral Ratio 0.5 ***

238

EXAMPLES Cider User's Manual EXAMPLES

+ * doping gauss n.type conc=1.0e20 x.1=0.0 x.h=0.5 y.h=0.0
+ * + char.len=0.0656 lat.rotate ratio=0.5

+ *** (h) Gaussian - Lateral Erfc ***

+ * doping gauss n.type conc=1.0e20 x.1=0.0 x.h=0.5 y.h=0.0
+ * + char.len=0.0656 lat.erfc ratio=1.0

+ *** (i) Gaussian - Deep Constant Box ***
+ * doping gauss n.type conc=1.0e20 x.1=0.0 x.h=0.5 y.1=0.1 y.h=0.1
+ * + char.len=0.0328 lat.rotate ratio=1.0

+ *** (j) Gaussian - Deep Peak Location ***
+ * doping gauss n.type conc=1.0e20 x.1=0.0 x.h=0.5 y.h=0.0
+ * + char.len=0.0328 location=0.1 lat.rotate ratio=1.0
+ method onec.

.OP

.END

RESULTS

As shown, the input file generates doping profile data for the case when the N+ doping
is 1.0 x lO^cm-3 down to 0.2 pm and out to 0.7 pm. However, Figure A.13 contains
contour plots for each of the ten different profiles defined in the input file. These plots
were generated by taking the logofthe absolute value ofthe net doping before generating
contours at half decade intervals. This is necessary since the doping varies by orders of
magnitude, especially near the N+ - P junction. In some cases a minimum concentration
of 1.0 x 1014cm~3 was added to prevent the contour program from generating too many
contours at the lightly dopedjunction boundary. Also, in some of the subfigures a single
deep contour is generated beneath and to the right of the junction as the doping returns to
the substrate concentration. This is due to a slight reduction in the net doping caused by
finite N-type impurity concentration coupled with the program generating a contourvery
near 1.0 x 1016cm"3.

Figure A. 13(a) shows the profile for the input file as shown. The constant box has been
extended by 0.2 pm in each dimension to create the rectangular junction. Since the doping
drops abruptly from 1.0 x lO^cm-3 to 1.0 x 1016cm~3 at the junction, all the contours are
right at the junction. Figure A. 130b) shows a similar abrupt junction where the boundary
is rounded for x > 0.5. This is accomplished by rotating the primary profile about the x
= 0.5, y = 0.0 corner of the constant box. The location is set to 0.2 pm so that uniformly
doped primary profile is non-zero down to 0.2 pm. In Figure A. 13(c), the N+ doping varies
linear from 1.0 x 1020cm~3 at the surface to 0.0 x lO^cm-3 at 0.2 pm. Since the slope of
the profile is so large, the junction is almost exactly at that depth as well. Although one
might expect the contours to be evenly spaced for a linear profile, they are actually almost
all near the junction because the contours are generated at half decade intervals. For the
exponential profile (Figure A. 13(d)), the contours are evenly spaced. The gaussian and
complementary error-function profiles in Figures A. 13(e) and A. 13(f) both fall off rapidly
near the surface like the exponential profile but generate unevenly spaced contours. From
the figures it is difficult to differentiate between the two except that fall-off of the gaussian
profile is slightly more gradual.

In the remaining portions of the figure, the primary profile is fixed as a gaussian
and other parameters are varied. In Figure A.13(g), the lateral ratio is cut in half, so
that the contours are no longer circular but are instead elliptical. This can be used to

239

EXAMPLES Cider User's Manual EXAMPLES

model the reduced lateral diffusion of dopants relative to vertical diffusion. A similar
effect can be created by using a different profile type to control the lateral diffusion as
in Figure A.13(h). The contours for x > 0.5 are neither circular or elliptical, since the
concentration of the N+ profile is now determined by multiplying the falloff factors of the
primary and lateral profiles. The junction intersects the surface nearer the left side of the
figure because the complementary error-function falls off more rapidly than the gaussian
when the characteristic lengths are equal.

The final two subfigures demonstrate the difference between the constant box and the
location parameter more clearly than the first two subfigures do. In Figure A.13(i), the
constant box (in this case, constant line segment) goes from x =0 to x =0.5 at a depth of0.1
pm. The concentration there isstill 1x 10^°cm~3. Since the profile issymmetric about the
constant box, the doping drops offboth above and below this line; there is now a junction
at the surface as well. The two junctions are connected as the profile is rotated about x =
0.5, y = 0.1. In Figure A.13(j) the constant box is left at the surface and only the peak of
the primary profile is moved to a depth of 0.1 pm. Rotation now takes place about x =0.5,
y =0.0. Alongthe left sides of the subfigures, the two profiles are the same. However, the
two junctions no longer merge forx > 0.5 pm as they do in Figure A.13(i).

240

EXAMPLES Cider User's Manual EXAMPLES

0.5

X (um)

(a) Box Uniform

(c) Linear

X(um)

(e) Gaussian

X (um)

Mini mini

1.00..16

iluoin

l.CO..20

(g) Gaussian - Lateral Ratio 0.5

(i) Gaussian - Deep Constant Box

(b) Rounded Uniform

(d) Exponential

(f) Comp. Error-Function

X(um)

(h) Gaussian - Lateral Erfc

0.25 0.6 0.76

X(um)

M im mi it

I.C3..H

Maximum

1.00..20

Mimmim

J8S».U

Maximum

l.OOo.aO

(j) Gaussian - Deep Peak Location

Figure A.13: Contours of 2D Doping Profiles

241

EXAMPLES Cider User's Manual EXAMPLES

242

Appendix B

CIDER Serial-Version

Benchmarks

243

APPENDDCB. CIDER SERIAL-VERSION BENCHMARKS

ASTABLE Benchmark

Figure B.l: ASTABLE schematic

ASTABLE MULTIVIBRATOR

VIN 5 0

VCC 6 0

RC1 6 1

RC2 6 2

RBI 6 3

RB2 5 4

CI 1 4 150PF

C2 2 3 150PF

Ql 1 3 0 QMOD AREA = 100P

Q2 2 4 0 QMOD AREA = 100P

DC 0 PULSE(0 5 0 1US 1US 100US 100US)

5.0

IK

IK

30K

30K

.OPTION ACCT BYPASS=1

.TRAN 0.05US 8US OUS 0.05US

.PRINT TRAN V(l) V(2) V(3) V(4)

.MODEL QMOD NBJT LEVEL=1

+ X.MESH NODE=l LOC=0.0

+ X.MESH NODE=61 LOC=3.0

+ REGION NUM=1 MATERIAL=1

+ MATERIAL NUM=1 SILICON NBGNN=1E17 NBGNP=1E17

+ MOBILITY MATERIALS CONCMOD=SG FIELDMOD=SG

+ DOPING UNIF N.TYPE CONC=lE17 X.L=0.0 X.H=1.0

+ DOPING UNIF P.TYPE CONC=lE16 X.L=0.0 X.H=1.5

244

APPENDIX B. CIDER SERIAL-VERSION BENCHMARKS

+ DOPING UNIF N.TYPE C0NC=1E15 X.L=0.0 X.H=3.0

+ MODELS BGNW SRH CONCTAU AUGER CONCMOB FIELDMOB

+ OPTIONS BASE.LENGTH=1.0 BASE.DEPTH=1.25

.END

CHARGE Benchmark

Figure B.2: CHARGE schematic

MOS CHARGE PUMP

VIN 4 0 DC OV PULSE 0 5 15NS 5NS 5NS 5 ONS 10ONS

VDD 5 6 DC OV PULSE 0 5 25NS 5NS 5NS 50NS 100NS

VBB 0 7 DC OV PULSE 0 5 ONS 5NS 5NS 5 ONS 10ONS

RD 6 2 10K

Ml 5 4 3 7 MMOD W=100UM

VS 3 2 0

VC 2 1 0

C2 1 0 10PF

245

APPENDDCB. CIDER SERIAL-VERSION BENCHMARKS

.IC V(3)=1.0

.TRAN 2NS 20ONS

.OPTIONS ACCT BYPASS=1

.PRINT TRAN V(l) V(2)

.MODEL MMOD NUMOS

+ X.MESH N=l L=0

+ X.MESH N=3 L=0.4

+ X.MESH N=7 L=0.6

+ X.MESH N=15 L=1.4

+ X.MESH N=19 L=1.6

+ X.MESH N=21 L=2.0

+

+ Y.MESH N=l L=0

+ Y.MESH N=4 L=0.015

+ Y.MESH N=8 L=0.05

+ Y.MESH N=12 L=0.25

+ Y.MESH N=14 L=0.35

+ Y.MESH N=17 L=0.5

+ Y.MESH N=21 L=1.0

+

+ REGION NUM=1 MATERIAL=1 Y.L=0.015

+ MATERIAL NUM=1 SILICON

+ MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG

+

+ REGION NUM=2 MATERIAL=2 Y.H=0.015 X.L=0.5 X.H=1.5

+ MATERIAL NUM=2 OXIDE

+

+ ELEC NUM=1 IX.L=18 IX.H=21 IY.L=4 IY.H=4

+ ELEC NUM=2 IX.L=5 IX.H=17 IY.L=1 IY.H=1

+ ELEC NUM=3 IX.L=1 IX.H=4 IY.L=4 IY.H=4

+ ELEC NUM=4 IX.L=1 IX.H=21 IY.L=21 IY.H=21

+

+ DOPING UNIF N.TYPE C0NC=1E18 X.L=0.0 X.H=0.5 Y.L=0.015 Y.H=0.25

+ DOPING UNIF N.TYPE C0NC=1E18 X.L=1.5 X.H=2.0 Y.L=0.015 Y.H=0.25

+ DOPING UNIF P.TYPE C0NC=1E15 X.L=0.0 X.H=2.0 Y.L=0.015 Y.H=1.0

+ DOPING UNIF P.TYPE CONC=1.3E17 X.L=0.5 X.H=1.5 Y.L=0.015 Y.H=0.05

+

+ MODELS CONCMOB FIELDMOB

+ METHOD ONEC

.END

COLPOSC Benchmark

COLPITT'S OSCILLATOR CIRCUIT

246

APPENDKB. CIDER SERIAL-VERSION BENCHMARKS

Vcc

Vee

Figure B.3: COLPOSC schematic

Rl 1 0 1

Ql 2 1 3 QMOD AREA = 100P

VCC 4 0 5

RL 4 2 750

CI 2 3 500P

C2 4 3 4500P

LI 4 2 5UH

RE 3 6 4.65K

VEE 6 0 DC -15 PWL 0 -15 1E-9 -10

.TRAN 30N 12U

.PRINT TRAN V(2)

.MODEL QMOD NBJT LEVEL=1

+ X.MESH NODE=l LOC=0.0

+ X.MESH NODE=61 LOC=3.0

+ REGION NUM=1 MATERIAL=1

+ MATERIAL NUM=1 SILICON NBGNN=1E17 NBGNP=1E17

+ MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG

+ DOPING UNIF N.TYPE C0NC=1E17 X.L=0.0 X.H=1.0

+ DOPING UNIF P.TYPE C0NC=1E16 X.L=0.0 X.H=1.5

247

APPENDKB. CIDER SERIAL-VERSION BENCHMARKS

+ DOPING UNIF N.TYPE C0NC=1E15 X.L=0.0 X.H=3.0

+ MODELS BGNW SRH CONCTAU AUGER CONCMOB FIELDMOB

+ OPTIONS BASE.LENGTH=1.0 BASE.DEPTH=1.25

.OPTIONS ACCT BYPASS=1

.END

DBRIDGE Benchmark

Vline

Figure B.4: DBRIDGE schematic

DIODE BRIDGE RECTIFIER

VLINE 3 4 O.OV SIN OV 10V 60HZ

VGRND 2 0 O.OV

Dl 3 1 M_PN AREA=100
D2 4 1 M_PN AREA=100
D3 2 3 M_PN AREA=100
D4 2 4 M_PN AREA=100
RL 1 2 1.0K

.MODEL M_PN NUMD LEVEL=1
+ ***************************************

+ *** ONE-DIMENSIONAL NUMERICAL DIODE ***

+ ***************************************

+ OPTIONS DEFA=1P

+ X.MESH LOC=0.0 N=l

+ X.MESH LOC=30.0 N=201

+ DOMAIN NUM=1 MATERIAL=1

+ MATERIAL NUM=1 SILICON

+ MOBILITY MAT=1 CONCMOD=CT FIELDMOD=CT

248

APPENDDCB. CIDER SERIAL-VERSION BENCHMARKS

+ DOPING GAUSS P.TYPE CONC=1E20 X.L=0.0 X.H=0.0 CHAR.L=1.0

+ DOPING UNIF N.TYPE C0NC=1E14 X.L=0.0 X.H=30.0

+ DOPING GAUSS N.TYPE C0NC=5E19 X.L=30.0 X.H=30.0 CHAR.L=2.0

+ MODELS BGN AVAL SRH AUGER CONCTAU CONCMOB FIELDMOB

+ METHOD AC=DIRECT

.OPTION ACCT BYPASS=1 METHOD=GEAR

.TRAN 0.5MS 50MS

.PRINT I(VLINE)

.END

INVCHAIN Benchmark

Vcc.

Figure B.5: INVCHAIN schematic

4 STAGE RTL INVERTER CHAIN

VIN 1 0 DC OV PWL ONS OV INS 5V

VCC 12 0 DC 5.0V

RC1 12 3 2.5K

RBI 1 2 8K

Ql 3 2 0 QMOD AREA = 100P

RB2 3 4 8K

RC2 12 5 2.5K

Q2 5 4 0 QMOD AREA = 100P

RB3 5 6 8K

RC3 12 7 2.5K

Q3 7 6 0 QMOD AREA = 100P

RB4 7 8 8K

RC4 12 9 2.5K

Q4 9 8 0 QMOD AREA = 100P

.PRINT TRAN V(3) V(5) V(9)

249

APPENDIX B. CIDER SERIAL-VERSION BENCHMARKS

.TRAN 1E-9 10E-9

.MODEL QMOD NBJT LEVEL=1

+ X.MESH NODE=l LOC=0.0

+ X.MESH NODE=61 LOC=3.0

+ REGION NUM=1 MATERIAL=1

+ MATERIAL NUM=1 SILICON NBGNN=1E17 NBGNP=1E17

+ MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG

+ DOPING UNIF N.TYPE C0NC=1E17 X.L=0.0 X.H=1.0

+ DOPING UNIF P.TYPE C0NC=1E16 X.L=0.0 X.H=1.5

+ DOPING UNIF N.TYPE C0NC=1E15 X.L=0.0 X.H=3.0

+ MODELS BGNW SRH CONCTAU AUGER CONCMOB FIELDMOB

+ OPTIONS BASE.LENGTH=1.0 BASE.DEPTH=1.25

.OPTION ACCT BYPASS=1

.END

MECLGATE Benchmark

Vee

Figure B.6: MECLGATE schematic

MOTOROLA MECL III ECL GATE

*.DC VIN -2.0 0 0.02

.TRAN 0.2NS 20NS

250

APPENDDCB. CIDER SERIAL-VERSION BENCHMARKS

VEE 22 0 -6.0

VIN 1 0 PULSE -0.8 -1.8 0.2NS 0.2NS 0.2NS IONS 20NS

RS 1 2 50

Ql 4 2 6 QMOD AREA = 100P

Q2 4 3 6 QMOD AREA = 100P

Q3 5 7 6 QMOD AREA = 100P

Q4 0 8 7 QMOD AREA = 100P

Dl 8 9 DMOD

D2 9 10 DMOD

RP1 3 22 50K

RC1 0 4 100

RC2 0 5 112

RE 6 22 380

Rl 7 22 2K

R2 0 8 350

R3 10 22 1958

Q5 0 5 11 QMOD AREA = 100P

Q6 0 4 12 QMOD AREA = 100P

RP2 11 22 560

RP3 12 22 560

Q7 13 12 15 QMOD AREA = 100P

Q8 14 16 15 QMOD AREA = 100P

RE2 15 22 380

RC3 0 13 100

RC4 0 14 112

Q9 0 17 16 QMOD AREA = 100P

R4 16 22 2K

R5 0 17 350

D3 17 18 DMOD

D4 18 19 DMOD

R6 19 22 1958

Q10 0 14 20 QMOD AREA = 100P

Qll 0 13 21 QMOD AREA = 100P

RP4 20 22 560

RP5 21 22 560

.MODEL DMOD D RS=40 TT=0.INS CJO=0.9PF N=l IS=1E-14 EG=1.11 VJ=0.8 M=0.5

.MODEL QMOD NBJT LEVEL=1

+ X.MESH NODE=l LOC=0.0

251

APPENDIX B. CIDER SERIAL-VERSION BENCHMARKS

+ X.MESH NODE=10 LOC=0.9

+ X.MESH NODE=20 LOC=l.1

+ X.MESH NODE=30 LOC=l.4

+ X.MESH NODE=40 LOC=l.6

+ X.MESH NODE=61 LOC=3.0

+ REGION NUM=1 MATERIAL=1

+ MATERIAL NUM=1 SILICON NBGNN=1E17 NBGNP=1E17

+ MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG

+ DOPING UNIF N.TYPE C0NC=1E17 X.L=0.0 X.H=1.0

+ DOPING UNIF P.TYPE C0NC=1E16 X.L=0.0 X.H=1.5

+ DOPING UNIF N.TYPE C0NC=1E15 X.L=0.0 X.H=3.0

+ MODELS BGNW SRH CONCTAU AUGER CONCMOB FIELDMOB

+ OPTIONS BASE.LENGTH=1.0 BASE.DEPTH=1.25

.OPTIONS ACCT BYPASS=1

.PRINT TRAN V(12) V(21)

.END

NMOSINV Benchmark

©
VlN O-

Vs

Vdd

Mi
10/2

H© I©
Vb

©

Figure B.7: NMOSINV schematic

252

Cl
2.0pF

APPENDDCB. CIDER SERIAL-VERSION BENCHMARKS

RESISTIVE LOAD NMOS INVERTER

VIN 1 0 PWL 0 0.0 2NS 5

VDD 3 0 DC 5.0

RD 3 2 2.5K

Ml 2 1 4 5 MMOD W=10UM

CL 2 0 2PF

VB 5 0 0

VS 4 0 0

.MODEL MMOD NUMOS

+ X.MESH L=0.0 N=l

+ X.MESH L=0.6 N=4

+ X.MESH L=0.7 N=5

+ X.MESH L=1.0 N=7

+ X.MESH L=1.2 N=ll

+ X.MESH L=3.2 N=21

+ X.MESH L=3.4 N=25

+ X.MESH L=3.7 N=27

+ X.MESH L=3.8 N=28

+ X.MESH L=4.4 N=31

+

+ Y.MESH L=-.05 N=l

+ Y.MESH L=0.0 N=5

+ Y.MESH L=.05 N=9

+ Y.MESH L=0.3 N=14

+ Y.MESH L=2.0 N=19

+

+ REGION NUM=1 MATERIAL=1 Y.L=0.0

+ MATERIAL NUM=1 SILICON

+ MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG

+

+ REGION NUM=2 MATERIAL=2 Y.H=0.0 X.L=0.7 X.H=3.7

+ MATERIAL NUM=2 OXIDE

+

+ ELEC NUM=1 X.L=3.8 X.H=4.4 Y.L=0.0 Y.H=0.0

+ ELEC NUM=2 X.L=0.7 X.H=3.7 IY.L=1 IY.H=1

+ ELEC NUM=3 X.L=0.0 X.H=0.6 Y.L=0.0 Y.H=0.0

+ ELEC NUM=4 X.L=0.0 X.H=4.4 Y.L=2.0 Y.H=2.0

+

+ DOPING UNIF P.TYPE CONC=2.5E16 X.L=0.0 X.H=4.4 Y.L=0.0 Y.H=2.0

+ DOPING UNIF P.TYPE C0NC=1E16 X.L=0.0 X.H=4.4 Y.L=0.0 Y.H=0.05

+ DOPING UNIF N.TYPE CONC=1E20 X.L=0.0 X.H=1.1 Y.L=0.0 Y.H=0.2

+ DOPING UNIF N.TYPE CONC=1E20 X.L=3.3 X.H=4.4 Y.L=0.0 Y.H=0.2

+

+ MODELS CONCMOB FIELDMOB

+ METHOD AC=DIRECT ONEC

.TRAN 0.2NS 30NS

.OPTIONS ACCT BYPASS=1

.PRINT TRAN V(l) V(2)

253

APPENDS B. CIDER SERIAL-VERSION BENCHMARKS

END

PASS Benchmark

©
Vin o-

Ri
200K

Cl
6.0pF

_ Mi
(?) 20/2

Vg
o

©

J
©

© Vb

/->. Vdrn _^3-®
Cs
6.0pF

Figure B.8: PASS schematic

TURNOFF TRANSIENT OF PASS TRANSISTOR

Ml 11 2 3 4 MMOD W=20UM

CS 1 0 6.0PF

CL 3 0 6.0PF

Rl 3 6 200K

VIN 6 0 DC 0

VDRN 1 11 DC 0

VG 2 0 DC 5 PWL 0 5 0.IN 0 1 0

VB 4 0 DC 0.0

.TRAN 0.05NS 0.2NS 0.ONS 0.05NS

.PRINT TRAN V(l) I(VDRN)

.IC V(1)=0 V(3)=0

.OPTION ACCT BYPASS=1

.MODEL MMOD NUMOS

+ X.MESH L=0.0 N=l

+ X.MESH L=0.6 N=4

+ X.MESH L=0.7 N=5

+ X.MESH L=1.0 N=7

254

APPENDDCB. CIDER SERIAL-VERSION BENCHMARKS

+ X.MESH L=1.2 N=ll

+ X.MESH L=3.2 N=21

+ X.MESH L=3.4 N=25

+ X.MESH L=3.7 N=27

+ X.MESH L=3.8 N=28

+ X.MESH L=4.4 N=31

+

+ Y.MESH L=-.05 N=l

+ Y.MESH L=0.0 N=5

+ Y.MESH L=.05 N=9

+ Y.MESH L=0.3 N=14

+ Y.MESH L=2.0 N=19

+

+ REGION NUM-1 MATERIAL=1 Y.L=0.0

+ MATERIAL NUM=1 SILICON

+ MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG

+

+ REGION NUM=2 MATERIAL=2 Y.H=0.0 X.L=0.7 X.H=3.7

+ MATERIAL NUM=2 OXIDE

+

+ ELEC NUM=1 X.L=3.8 X.H=4.4 Y.L=0.0 Y.H=0.0

+ ELEC NUM=2 X.L=0.7 X.H=3.7 IY.L=1 IY.H=1

+ ELEC NUM=3 X.L=0.0 X.H=0.6 Y.L=0.0 Y.H=0.0

+ ELEC NUM=4 X.L=0.0 X.H=4.4 Y.L=2.0 Y.H=2.0

+

+ DOPING UNIF P.TYPE CONC=2.5E16 X.L=0.0 X.H=4.4 Y.L=0.0 Y.H=2.0

+ DOPING UNIF P.TYPE C0NC=1E16 X.L=0.0 X.H=4.4 Y.L=0.0 Y.H=0.05

+ DOPING UNIF N.TYPE CONC=1E20 X.L=0.0 X.H=1.1 Y.L=0.0 Y.H=0.2

+ DOPING UNIF N.TYPE CONC=1E20 X.L=3.3 X.H=4.4 Y.L=0.0 Y.H=0.2

+

+ MODELS CONCMOB FIELDMOB

+ METHOD AC=DIRECT ONEC

.END

RTLINV Benchmark

RTL INVERTER

VIN 1 0 DC 1 PWL 0 4 INS 0

VCC 12 0 DC 5.0

RC1 12 3 2.5K

RBI 1 2 8K

Ql 3 2 0 QMOD AREA = 100P

.OPTION ACCT BYPASS=1

.TRAN 0.5N 5N

.PRINT TRAN V(2) V(3)

255

APPENDDCB. CIDER SERIAL-VERSION BENCHMARKS

Vcc

Figure B.9: RTLINV schematic

.MODEL QMOD NBJT LEVEL=1

+ X.MESH NODE=l LOC=0.0

+ X.MESH NODE=61 LOC=3.0

+ REGION NUM=1 MATERIAL=1

+ MATERIAL NUM=1 SILICON NBGNN=1E17 NBGNP=1E17

+ MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG

+ DOPING UNIF N.TYPE C0NC=1E17 X.L=0.0 X.H=1.0

+ DOPING UNIF P.TYPE C0NC=1E16 X.L=0.0 X.H=1.5

+ DOPING UNIF N.TYPE C0NC=1E15 X.L=0.0 X.H=3.0

+ MODELS BGNW SRH CONCTAU AUGER CONCMOB FIELDMOB

+ OPTIONS BASE.LENGTH=1.0 BASE.DEPTH=1.25

.END

VCO Benchmark

VOLTAGE CONTROLLED OSCILLATOR

RC1 7 5 IK

RC2 7 6 IK

Q5 7 7 5 QMOD AREA = 100P

Q6 7 7 6 QMOD AREA = 100P

Q3 7 5 2 QMOD AREA = 100P

256

APPENDIX B. CIDER SERIAL-VERSION BENCHMARKS

Vcc

©

Rci
IK

©

W ST1RQ6 l_l >RC2

1
Qs

Qs Q4 c

Qi
© ©

Cbi CB2

lpF

©

© Isi

Figure B.IO: VCO schematic

Q4 7 6 1 QMOD AREA = 100P

IB1 2 0 .5MA

IB2 1 0 .5MA

CBI 2 0 1PF

CB2 1 0 1PF

Ql 5 1 3 QMOD AREA = 100P

Q2 6 2 4 QMOD AREA = 100P

CI 3 4 .1UF

ISI 3 0 DC 2.5MA PULSE 2.5MA 0.5MA 0 1US 1US 50MS

257

lpF

IS2

5* IK

©

Q2

©

©

APPENDIX B. CIDER SERIAL-VERSION BENCHMARKS

IS2 4 0 IMA

VCC 7 0 10

.MODEL QMOD NBJT LEVEL=1

+ X.MESH NODE=l LOC=0.0

+ X.MESH NODE=61 LOC=3.0

+ REGION NUM=1 MATERIAL=1

+ MATERIAL NUM=1 SILICON NBGNN=1E17 NBGNP=1E17

+ MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG

+ DOPING UNIF N.TYPE C0NC=1E17 X.L=0.0 X.H=1.0

+ DOPING UNIF P.TYPE C0NC=1E16 X.L=0.0 X.H=1.5

+ DOPING UNIF N.TYPE C0NC=1E15 X.L=0.0 X.H=3.0

+ MODELS BGNW SRH CONCTAU AUGER CONCMOB FIELDMOB

+ OPTIONS BASE.LENGTH=1.0 BASE.DEPTH=1.25

.OPTION ACCT BYPASS=1

.TRAN 3US 600US 0 3US

.PRINT TRAN V(4)

.END

258

Appendix C

CIDER Parallel-Version

Benchmarks

259

APPENDKC. CIDER PARALLEL-VERSION BENCHMARKS

BICMPD Benchmark

©
f o

©

Cl
l.OpF

Vld
+ Wc!)vbk Q

Vss

Figure Cl: BICMPD schematic

BICMOS INVERTER PULLDOWN CIRCUIT

VSS 2 0 OV

VIN 3 2 OV (PULSE O.OV 4.2V ONS INS INS 9NS 2ONS)

Ml 8 3 5 11 M_NMOS_l W=4U L=1U
VD 4 8 OV

VBK 11 2 OV

Ql 10 7 9 M_NPNS AREA=8
VC 4 10 OV

VB 5 7 OV

VE 9 2 OV

CL 4 6 1PF

VL 6 2 OV

.IC V(10)=5.0V V(7)=0.0V

.TRAN 0.1NS 5NS ONS 0.INS

260

©

APPENDIX C. CIDERPARALLEL-VERSION BENCHMARKS

.PLOT TRAN I(VIN)

.INCLUDE BICMOS.LIB

.OPTIONS ACCT BYPASS=1

.END

BICMPU Benchmark

Vdd

Figure C.2: BICMPU schematic

BICMOS INVERTER PULLUP CIRCUIT

VDD 1 0 5.0V

VSS 2 0 O.OV

VIN 3 0 0.75V

VC 1 11 O.OV

VB 5 15 O.OV

261

o Vout

APPENDIX C. CIDER PARALLEL-VERSION BENCHMARKS

Ql 11 15 4 M_NPNS AREA=8
Ml 5 3 11 M_PM0S_1 W=10U L=1U

CL 4 0 5.0PF

.IC V(4)=0.75V V(5)=0.0V

.INCLUDE BICMOS.LIB

.TRAN 0.5NS 4.ONS

.PRINT TRAN V(3) V(4)

.OPTION ACCT BYPASS=1

.END

CLKFEED Benchmark

M4
100/L

C—3
Ms
100/1

©

© Ibias
50uA

Vin ©

IinQ)
Mi
5/5

©

Vs

LrO
Rlki
100G

Vdd,

VCK
Q

©

© Vg

5/5 ^

Vd

®"L®

© 100G

©
Vss

Figure C.3: CLKFEED schematic

SWITCHED CURRENT CELL - CLOCK FEEDTHROUGH

VDD 1 0 5.0V

262

3 Me
200/1

©

M2
10/5

Vld

APPENDKC. CIDER PARALLEL-VERSION BENCHMARKS

VSS 2 0 O.OV

UN 13 0 0.0

VIN 13 3 0.0

VL 4 0 2.5V

VCK 6 0 5.0V PULSE 5.0V O.OV 5.ONS 5NS 5NS 20NS 50NS

Ml 3 3 2 2 M_NMOS_5 W=5U L=5U
M2 4 5 2 2 M_NMOS_5 W=10U L=5U
M3 23 26 25 22 M_NMOS_5 W=5U L=5U
RLK1 3 0 100G

RLK2 5 0 100G

VD 3 23 O.OV

VG 6 26 O.OV

VS 5 25 O.OV

VB 2 22 O.OV

M4 7 7 11 M_PMOS_IDEAL W=100U L=1U
M5 3 7 11 M_PMOS_IDEAL W=100U L=1U
M6 4 7 11 M_PMOS_IDEAL W=200U L=1U
IREF 7 0 50UA

****** MODELS ******

.MODEL M_PMOS_IDEAL PMOS VTO=-1.0V KP=100U

.INCLUDE BICMOS.LIB

.TRAN 0.1NS 50NS

.OPTIONS ACCT BYPASS=1 METHOD=GEAR

.END

CMOSAMP Benchmark

CMOS 2-STAGE OPERATIONAL AMPLIFIER

VDD 10 2.5V

VSS 2 0 -2.5V

IBIAS 9 0 100UA

VPL 3 0 O.OV AC 0.5V

VMI 4 0 O.OV AC 0.5V 180

Ml 6 3 5 5 M_PMOS_l W=15U L=1U
M2 7 4 5 5 M_PMOS_l W=15U L=1U
M3 6 6 2 2 M_NMOS_l W=7.5U L=1U
M4 7 6 2 2 M_NMOS_l W=7.5U L=1U

263

APPENDIX C. CIDER PARALLEL-VERSION BENCHMARKS

t
Me
15/1

©

© Ibias
IOOuA

Vpl

©

©
Vmi

Vdd

3
M?

15/1

Mi
15/1

M2
1 f * f I *"**

£r©Tjr

M4
7.5/1

©

3
Ms

15/1

©

Ms
15/1

Ma
7.5/1

r®T ihi

Vss

Figure C.4: CMOSAMP schematic

M5 8 7 2 2 M NMOS 1 W=15U L=1U

M6 9 9 1 1 M PMOS 1 W=15U L=1U

M7 5 9 1 1 M PMOS 1 W=15U L=1U

M8 8 9 11 M_PMOS_l W=15U L=1U

*CC 7 8 0.1PF

.INCLUDE BICMOS.LIB

*.OP

*.AC DEC 10 IK 100G

.DC VPL -5MV 5MV 0.1MV

.OPTIONS ACCT BYPASS==1 METHOD=GEAR

.END

ECLINV Benchmark

ECL INVERTER

264

APPENDIX C. CIDER PARALLEL-VERSION BENCHMARKS

Q3

© Vin o-

Rl
662

Vcc

© ©

R2
662

Qi Q2

© l\®_f
R4

4.06K

Vee

o Vrf

R5
4.06K

Figure C.5: ECLINV schematic

(FROM MEINERZHAGEN ET AL.)

VCC 1 0 O.OV

VEE 2 0 -5.2V

VIN 3 0 -1.25V

VRF 4 0 -1.25V

*** INPUT STAGE

Ql 5 3 9 M NPNS AREA=8

Q2 6 4 9 M NPNS AREA=8

Rl 1 5 662

R2 1 6 662

R3 9 2 2.65K

*** OUTPUT BUFFERS

Q3 1 5 7 M_NPNS AREA=8

Q4 1 6 8 M_NPNS AREA=8

R4 7 2 4.06K

R5 8 2 4.06K

*** MODEL LIBRARY

265

Q4

©

APPENDKC. CIDER PARALLEL-VERSION BENCHMARKS

.INCLUDE BICMOS.LIB

.DC VIN -2.00 0.001 0.05

.PLOT DC V(7) V(8)

.OPTIONS ACCT BYPASS=1

.END

ECPAL Benchmark

VlNP o

Q3

©

Vcc^

Q4

©
-O VOUT

•O VlNMQi Q2

© ^ © f1 ©

Vee

Figure C.6: ECPAL schematic

EMITTER COUPLED PAIR WITH ACTIVE LOAD

VCC 1 0 5V

VEE 2 0 0V

VINP 4 0 2.99925V AC 0.5V

VINM 7 0 3V AC 0.5V 180

IEE 5 2 0.1MA

Ql 3 4 5 M_NPNS AREA=8
Q2 6 7 5 M NPNS AREA=8

266

APPENDDCC. CIDER PARALLEL-VERSION BENCHMARKS

Q3 3 3 1 M_PNPS AREA=8
Q4 6 3 1 M_PNPS AREA=8

.AC DEC 10 10K 100G

•PLOT AC VDB(6)

.INCLUDE BICMOS.LIB

.OPTIONS ACCT RELTOL=lE-6

.END

GMAMP Benchmark

Iin M

Vdd

30K

Figure C.7: GMAMP schematic

BICMOS 3-STAGE AMPLIFIER

*** IN GRAY & MEYER, 3RD ED. P.266, PROB. 3.12, 8.19

VDD 1 0 5.0V

VSS 2 0 O.OV

267

APPENDIX C. CIDER PARALLEL-VERSION BENCHMARKS

*** VOLTAGE INPUT

*VIN 13 0 O.OV AC IV

*CIN 13 3 1UF

*** CURRENT INPUT

UN 3 0 0.0 AC 1.0

Ml 4 3 2 2 M_NMOS_l W=300U L=1U
M2 7 7 2 2 M__NMOS_l W=20U L=1U

Ql 6 5 4 M_NPNS AREA=40
Q2 5 5 7 M_NPNS AREA=40
Q3 16 8 M_NPNS AREA=40

RL1 14 IK

RL2 1 6 10K

RBI 1 5 10K

RL3 8 2 IK

RF1 3 8 30K

*** NUMERICAL MODEL LIBRARY ***

.INCLUDE BICMOS.LIB

.AC DEC 10 100KHZ 100GHZ

.PLOT AC VDB(8)

.OPTIONS ACCT BYPASS=1 KEEPOPINFO

.END

LATCH Benchmark

STATIC LATCH

*** IC=1MA, RE6=3K

*** SPICE ORIGINAL 1-7-80, CIDER REVISED 4-16-93

*** BIAS CIRCUIT

*** RESISTORS

RCC2 6 8 3.33K

REE2 9 0 200

*** TRANSISTORS

Ql 6 8 4 M_NPN1D AREA=8
Q2 8 4 9 M NPN1D AREA=8

*** MODELS

.INCLUDE BICMOS.LIB

*** SOURCES

VCC 6 0 5V

268

APPENDIX C. CIDER PARALLEL-VERSION BENCHMARKS

VREF 3 0 2.5V

VRSET 1 0 PULSE(2V 3V O.lNS O.lNS O.lNS 0.9NS 4NS)
VSET 7 0 PULSE(2V 3V 2.INS O.lNS O.lNS 0.9NS 4NS)

*** LATCH

XI 1 2 3 4 5 6 ECLNOR2

X2 5 7 3 4 2 6 ECLNOR2

*** SUBCIRCUITS

.SUBCKT ECLNOR2 12 3 4 5 6

** RESISTORS

RS 6 11 520

RC2 11 10 900

RE4 12 0 200

RE6 5 0 6K

** TRANSISTORS

Ql 9 1 8 M_NPN1D AREA=8
Q2 9 2 8 M_NPN1D AREA=8
Q3 11 3 8 M_NPN1D AREA=8
Q4 8 4 12 M_NPN1D AREA=8
Q5 10 10 9 M_NPN1D AREA=8
Q6 6 9 5 M_NPN1D AREA=8
.ENDS ECLNOR2

*** CONTROL CARDS

.TRAN 0.01NS 8NS

.PRINT TRAN V(l) V(7) V(5) V(2)

.OPTIONS ACCT BYPASS=1

.END

269

APPENDDCC. CIDER PARALLEL-VERSION BENCHMARKS

Qe
Vnor

©"

c
Q5

Vcc

©

Rs
RC2 < 520
900

*—VA—Ku

ViNl lJ VlN2 i^J
RE6 @__ Ql @_
6K W |^ W Q2 Q3

y®y
©Q4

©
RE4
200

Figure C.8: LATCH schematic

270

Bias

Generator

Vcc

APPENDKC. CIDER PARALLEL-VERSION BENCHMARKS

PPEF Benchmarks

Vbu

Vin o

Vbl

Vld

Vee

Figure C.9: PPEF.ID and PPEF.2D schematic

PUSH-PULL EMITTER FOLLOWER - ONE-DIMENSIONAL MODELS

VCC 10 5.0V

VEE 2 0 -5.0V

VIN 3 0 O.OV (SIN O.OV 0.1V IKHZ) AC 1

VBU 13 3 0.7V

VBL 3 23 0.7V

RL 4 44 50

VLD 44 0 0V

Ql 5 13 4 M_NPN1D AREA=40
Q2 4 5 1 M_PNP1D AREA=200

Q3 6 23 4 M_PNP1D AREA=100
Q4 4 6 2 M_NPN1D AREA=80

.INCLUDE BICMOS.LIB

271

APPENDDCC. CIDER PARALLEL-VERSION BENCHMARKS

.TRAN 0.01MS 1.00001MS OUS 0.01MS

.PLOT TRAN V(4)

.OPTIONS ACCT BYPASS=1 TEMP=26.850C RELTOL=lE-5

.END

PUSH-PULL EMITTER FOLLOWER - TWO-DIMENSIONAL MODELS

VCC 10 5.0V

VEE 2 0 -5.0V

VIN 3 0 O.OV (SIN O.OV 0.1V IKHZ) AC 1

VBU 13 3 0.7V

VBL 3 23 0.7V

RL 4 44 50

VLD 44 0 0V

Ql 5 13 4 M_NPNS AREA=40
Q2 4 5 1 M_PNPS AREA=200

Q3 6 23 4 M_PNPS AREA=100
Q4 4 6 2 M_NPNS AREA=80

.INCLUDE BICMOS.LIB

.TRAN 0.01MS 1.00001MS OUS 0.01MS

.PLOT TRAN V(4)

.OPTIONS ACCT BYPASS=1 TEMP=26.850C RELTOL=lE-5

.END

RINGOSC Benchmarks

CMOS RING OSCILLATOR - 1UM DEVICES

VDD 1 0 5.0V

VSS 2 0 O.OV

XI 1 2 3 4 INV

X2 1 2 4 5 INV

X3 1 2 5 6 INV

X4 1 2 6 7 INV

X5 1 2 7 8 INV

X6 1 2 8 9 INV

X7 1 2 9 3 INV

272

APPENDKC. CIDER PARALLEL-VERSION BENCHMARKS

.IC V(3)=0.0V V(4)=2.5V V(5)=5.0V

+ V(6)=0.0V V(7)=5.0V V(8)=0.0V V(9)=5.0V

.SUBCKT INV 12 3 4

* VDD VSS VIN VOUT

Ml 14 13 15 16 M_PMOS_l W=6.0U
M2 24 23 25 26 M_NMOS_l W=3.0U

VGP 3 13 O.OV

VDP 4 14 O.OV

VSP 1 15 O.OV

VBP 1 16 O.OV

VGN 3 23 O.OV

VDN 4 24 O.OV

VSN 2 25 O.OV

VBN 2 26 O.OV

.ENDS INV

.INCLUDE BICMOS.LIB

.TRAN O.lNS INS

.PRINT TRAN V(3) V(4) V(5)

.OPTIONS ACCT BYPASS=1 METHOD=GEAR

.END

CMOS RING OSCILLATOR - 2UM DEVICES

VDD 1 0 5.0V

VSS 2 0 O.OV

XI 1 2 3 4 INV

X2 1 2 4 5 INV

X3 1 2 5 6 INV

X4 1 2 6 7 INV

X5 1 2 7 8 INV

X6 1 2 8 9 INV

X7 1 2 9 3 INV

.IC V(3)=0.0V V(4)=2.5V V(5)=5.0V V(6)=0.0V

+ V(7)=5.0V V(8)=0.0V V(9)=5.0V

.SUBCKT INV 12 3 4

* VDD VSS VIN VOUT

Ml 14 13 15 16 M_PMOS W=6.0U
M2 24 23 25 26 M_NMOS W=3.0U

VGP 3 13 O.OV

VDP 4 14 O.OV

273

APPENDKC. CIDER PARALLEL-VERSION BENCHMARKS

VSP 1 15 O.OV

VBP 1 16 O.OV

VGN 3 23 O.OV

VDN 4 24 O.OV

VSN 2 25 O.OV

VBN 2 26 O.OV

.ENDS INV

.MODEL M_NMOS NUMOS
+ X.MESH L=0.0 N=l

+ X.MESH L=0.6 N=4

+ X.MESH L=0.7 N=5

+ X.MESH L=1.0 N=7

+ X.MESH L=1.2 N=ll

+ X.MESH L=3.2 N=21

+ X.MESH L=3.4 N=25

+ X.MESH L=3.7 N=27

+ X.MESH L=3.8 N=28

+ X.MESH L=4.4 N=31

+

+ Y.MESH L=-.05 N=l

+ Y.MESH L=0.0 N=5

+ Y.MESH L=.05 N=9

+ Y.MESH L=0.3 N=14

+ Y.MESH L=2.0 N=19

+

+ REGION NUM=1 MATERIAL=1 Y.L=0.0

+ MATERIAL NUM=1 SILICON

+ MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG

+

+ REGION NUM=2 MATERIAL=2 Y.H=0.0 X.L=0.7 X.H=3.7

+ MATERIAL NUM=2 OXIDE

+

+ ELEC NUM=1 X.L=3.8 X.H=4.4 Y.L=0.0 Y.H=0.0

+ ELEC NUM=2 X.L=0.7 X.H=3.7 IY.L=1 IY.H=1

+ ELEC NUM=3 X.L=0.0 X.H=0.6 Y.L=0.0 Y.H=0.0

+ ELEC NUM=4 X.L=0.0 X.H=4.4 Y.L=2.0 Y.H=2.0

+

+ DOPING UNIF P.TYPE CONC=2.5E16 X.L=0.0 X.H=4.4 Y.L=0.0 Y.H=2.0

+ DOPING UNIF P.TYPE C0NC=1E16 X.L=0.0 X.H=4.4 Y.L=0.0 Y.H=0.05

+ DOPING UNIF N.TYPE CONC=1E20 X.L=0.0 X.H=1.1 Y.L=0.0 Y.H=0.2

+ DOPING UNIF N.TYPE CONC=1E20 X.L=3.3 X.H=4.4 Y.L=0.0 Y.H=0.2

+

+ MODELS CONCMOB FIELDMOB BGN SRH CONCTAU

+ METHOD AC=DIRECT ONEC

+ OUTPUT ALL.DEBUG

.MODEL M_PMOS NUMOS
+ X.MESH L=0.0 N=l

274

APPENDIX C. CIDER PARALLEL-VERSION BENCHMARKS

+ X.MESH L=0.6 N=4

+ X.MESH L=0.7 N=5

+ X.MESH L=1.0 N=7

+ X.MESH L=1.2 N=ll

+ X.MESH L=3.2 N=21

+ X.MESH L=3.4 N=25

+ X.MESH L=3.7 N=27

+ X.MESH L=3.8 N=28

+ X.MESH L=4.4 N=31

+

+ Y.MESH L=-.05 N=l

+ Y.MESH L=0.0 N=5

+ Y.MESH L=.05 N=9

+ Y.MESH L=0.3 N=14

+ Y.MESH L=2.0 N=19

+

+ REGION NUM=1 MATERIAL=1 Y.L=0.0

+ MATERIAL NUM=1 SILICON

+ MOBILITY MATERIAL=1 CONCMOD=SG FIELDMOD=SG
+

+ REGION NUM=2 MATERIAL=2 Y.H=0.0 X.L=0.7 X.H=3.7

+ MATERIAL NUM=2 OXIDE

+

+ ELEC NUM=1 X.L=3.8 X.H=4.4 Y.L=0.0 Y.H=0.0

+ ELEC NUM=2 X.L=0.7 X.H=3.7 IY.L=1 IY.H=1

+ ELEC NUM=3 X.L=0.0 X.H=0.6 Y.L=0.0 Y.H=0.0

+ ELEC NUM=4 X.L=0.0 X.H=4.4 Y.L=2.0 Y.H=2.0

+

+ DOPING UNIF N.TYPE C0NC=1E16 X.L=0.0 X.H=4.4 Y.L=0.0 Y.H=2.0

+ DOPING UNIF P.TYPE CONC=3E16 X.L=0.0 X.H=4.4 Y.L=0.0 Y.H=0.05

+ DOPING UNIF P.TYPE CONC=1E20 X.L=0.0 X.H=1.1 Y.L=0.0 Y.H=0.2

+ DOPING UNIF P.TYPE CONC=1E20 X.L=3.3 X.H=4.4 Y.L=0.0 Y.H=0.2

+

+ MODELS CONCMOB FIELDMOB BGN SRH CONCTAU

+ METHOD AC=DIRECT ONEC

+ OUTPUT ALL.DEBUG

.TRAN O.lNS 5.ONS

.PRINT V(4)

.OPTIONS ACCT BYPASS=1 METHOD=GEAR

.END

275

APPENDIX C. CIDER PARALLEL-VERSION BENCHMARKS

Vsp

Mi t<J5
6/1

Vdd.

©

© Vbp

Vgp

Vin ©

©piL '

'Q®LOT-Vout

©

VGN©®rG^DN
©L—I 1

VSN © © Vbn

©
Vss

®{>%>®{>®^

^<^<^<}^
Figure C.IO: RINGOSC.IU and RINGOSC.2U schematic

276

Appendix D

Model Libraries

This appendix contains the model descriptions used in the parallel benchmarks

of Chapter 5, and in the examples of Chapter 6. The input listings of Appendix C

assume that the remaining contents of this appendix have been placed in a file called

'BICMOS. LIB'.

**

* BICMOS.LIB: Library of models used in the 1.0 um CBiCMOS process
* Contains CIDER input descriptions as well as matching
* SPICE models for some of the CIDER models.
**

**

* One-dimensional models for a

* polysilicon emitter complementary bipolar process.

* The default device size is lum by lum (LxW)

.model M_NPN1D nbjt level=l
+ title One-Dimensional Numerical Bipolar
+ options base.depth=0.15 base.area=0.1 base.length=0.5 defa=lp
+ x.mesh loc=-0.2 n=l

+ x.mesh loc=0.0 n=51

+ x.mesh wid=0.15 h.e=0.0001 h.m=.004 r=1.2

+ x.mesh wid=1.15 h.s=0.0001 h.m=.004 r=1.2

+ domain num=l material=l x.1=0.0

+ domain num=2 material=2 x.h=0.0

+ material num=l silicon

+ mobility mat=l concmod=ct fieldmod=ct
+ material num=2 polysilicon
+ mobility mat=2 concmod=ct fieldmod=ct
+ doping gauss n.type conc=3e20 x.l=-0.2 x.h=0.0 char.len=0.047
+ doping gauss p.type conc=5el8 x.l=-0.2 x.h=0.0 char.len=0.100

277

APPENDIX D. MODEL LIBRARIES

+ doping unif n.type conc=lel6 x.1=0.0 x.h=1.3
+ doping gauss n.type conc=5el9 x.l=1.3 x.h=1.3 char.len=0.100
+ models bgn srh auger conctau concmob fieldmob
+ method devtol=le-12 ac=direct itlim=15

.model M_PNP1D nbjt level=l
+ title One-Dimensional Numerical Bipolar
+ options base.depth=0.2 base.area=0.1 base.length=0.5 defa=lp
+ x.mesh loc=-0.2 n=l

+ x.mesh loc=0.0 n=51

+ x.mesh wid=0.20 h.e=0.0001 h.m=.004 r=1.2
+ x.mesh wid=1.10 h.s=0.0001 h.m=.004 r=1.2

+ domain num=l material=l x.1=0.0

+ domain num=2 material=2 x.h=0.0

+ material num=l silicon

+ mobility mat=l concmod=ct fieldmod=ct
+ material num=2 polysilicon
+ mobility mat=2 concmod=ct fieldmod=ct
+ doping gauss p.type conc=3e20 x.l=-0.2 x.h=0.0 char.len=0.047
+ doping gauss n.type conc=5el7 x.l=-0.2 x.h=0.0 char.len=0.200
v doping unif p.type conc=lel6 x.1=0.0 x.h=1.3
+ doping gauss p.type conc=5el9 x.l=1.3 x.h=1.3 char.len=0.100
+ models bgn srh auger conctau concmob fieldmob
+ method devtol=le-12 ac=direct itlim=15

* Two-dimensional models for a

* polysilicon emitter complementary bipolar process
* The default device size is lum by lum (LxW)

.MODEL M_NPNS nbjt level=2
+ title TWO-DIMENSIONAL NUMERICAL POLYSILICON EMITTER BIPOLAR TRANSISTOR

+ * Since half the device is simulated, double the unit width to get

+ * 1.0 um emitter. Use a small mesh for this model.

+ options defw=2.Ou
+ output stat

+

+ x.mesh w=2.0 h.e=0.02 h.m=0.5 r=2.0

+ x.mesh w=0.5 h.s=0.02 h.m=0.2 r=2.0

+

+ y.mesh l=-0.2 n=l

+ y.mesh 1= 0.0 n=5

+ y.mesh w=0.10 h.e=0.004 h.m=0.05 r=2.5

+ y.mesh w=0.15 h.s=0.004 h.m=0.02 r=2.5

+ y.mesh w=1.05 h.s=0.02 h.m=0.1 r=2.5
+

+ domain num=l material=l x.1=2.0 y.h=0.0
+ domain num=2 material=2 x.h=2.0 y.h=0.0
+ domain num=3 material=3 y.1=0.0

278

APPENDIX D. MODEL LIBRARIES

+ material num=l polysilicon
+ material num=2 oxide

+ material num=3 silicon

+

+ elec num=l x.1=0.0 x.h=0.0 y.1=1.1 y.h=1.3
+ elec num=2 x.1=0.0 x.h=0.5 y.1=0.0 y.h=0.0
+ elec num=3 x.1=2.0 x.h=3.0 y.l=-0.2 y.h=-0.2
+

+ doping gauss n.type conc=3e20 x.1=2.0 x.h=3.0 y.l=-0.2 y.h=0.0
+ + char.1=0.047 lat.rotate

+ doping gauss p.type conc=5el8 x.1=0.0 x.h=5.0 y.l=-0.2 y.h=0.0
+ + char.1=0.100 lat.rotate

+ doping gauss p.type conc=le20 x.1=0.0 x.h=0.5 y.l=-0.2 y.h=0.0
+ + char.1=0.100 lat.rotate ratio=0.7

+ doping unif n.type conc=lel6 x.1=0.0 x.h=5.0 y.1=0.0 y.h=1.3
+ doping gauss n.type conc=5el9 x.1=0.0 x.h=5.0 y.l=1.3 y.h=1.3
+ + char.1=0.100 lat.rotate

+

+ method ac=direct itlim=10

+ models bgn srh auger conctau concmob fieldmob

.MODEL M_NPN nbjt level=2

+ title TWO-DIMENSIONAL NUMERICAL POLYSILICON EMITTER BIPOLAR TRANSISTOR
+ * Since half the device is simulated, double the unit width to get
+ * 1.0 um emitter length. Uses a finer mesh in the X direction.
+ options defw=2.Ou

+ output stat

+

+ x.mesh w=0.5 h.e=0.075 h.m=0.2 r=2.0

+ x.mesh w=0.75 h.s=0.075 h.m=0.2 r=2.0

+ x.mesh w=0.75 h.e=0.05 h.m=0.2 r=1.5

+ x.mesh w=0.5 h.s=0.05 h.m=0.1 r=1.5

+

+ y.mesh l=-0.2 n=l

+ y.mesh 1= 0.0 n=5

+ y.mesh w=0.10 h.e=0.003 h.m=0.01 r=1.5

+ y.mesh w=0.15 h.s=0.003 h.m=0.02 r=1.5

+ y.mesh w=0.35 h.s=0.02 h.m=0.2 r=l.5

+ y.mesh w=0.40 h.e=0.05 h.m=0.2 r=1.5

+ y.mesh w=0.30 h.s=0.05 h.m=0.1 r=l.5
+

+ domain num=l material=l x.1=2.0 y.h=0.0
+ domain num=2 material=2 x.h=2.0 y.h=0.0

+ domain num=3 material=3 y.1=0.0

+ material num=l polysilicon
+ material num=2 oxide

+ material num=3 silicon

+

+ elec num=l x.1=0.0 x.h=0.0 y.1=1.1 y.h=1.3

+ elec num=2 x.1=0.0 x.h=0.5 y.1=0.0 y.h=0.0

279

APPENDKD. MODEL LIBRARIES

+ elec num=3 x.1=2.0 x.h=3.0 y.l=-0.2 y.h=-0.2

+

+ doping gauss n.type conc=3e20 x.1=2.0 x.h=3.0 y.l=-0.2 y.h=0.0
+ + char.1=0.047 lat.rotate

+ doping gauss p.type conc=5el8 x.1=0.0 x.h=5.0 y.l=-0.2 y.h=0.0
+ + char.1=0.100 lat.rotate

+ doping gauss p.type conc=le20 x.1=0.0 x.h=0.5 y.l=-0.2 y.h=0.0
+ + char.1=0.100 lat.rotate ratio=0.7

+ doping unif n.type conc=lel6 x.1=0.0 x.h=5.0 y.1=0.0 y.h=1.3
+ doping gauss n.type conc=5el9 x.1=0.0 x.h=5.0 y.l=1.3 y.h=1.3
+ + char.1=0.100 lat.rotate

+

+ method ac=direct itlim=10

+ models bgn srh auger conctau concmob fieldmob

.MODEL M_PNPS nbjt level=2
+ title TWO-DIMENSIONAL NUMERICAL POLYSILICON EMITTER BIPOLAR TRANSISTOR

+ * Since half the device is simulated, double the unit width to get

+ * 1.0 um emitter length. Use a small mesh for this model.
+ options defw=2.Ou
+ output stat

+

+ x.mesh w=2.0 h.e=0.02 h.m=0.5 r=2.0

+ x.mesh w=0.5 h.s=0.02 h.m=0.2 r=2.0

+

+ y.mesh l=-0.2 n=l
+ y.mesh 1= 0.0 n=5
+ y.mesh w=0.12 h.e=0.004 h.m=0.05 r=2.5
+ y.mesh w=0.28 h.s=0.004 h.m=0.02 r=2.5
+ y.mesh w=1.05 h.s=0.02 h.m=0.1 r=2.5
+

+ domain num=l material=l x.1=2.0 y.h=0.0

+ domain num=2 material=2 x.h=2.0 y.h=0.0

+ domain num=3 material=3 y.1=0.0
+ material num=l polysilicon

+ material num=2 oxide

+ material num=3 silicon

+

+ elec num=l x.1=0.0 x.h=0.0 y.1=1.1 y.h=1.3

+ elec num=2 x.1=0.0 x.h=0.5 y.1=0.0 y.h=0.0

+ elec num=3 x.1=2.0 x.h=3.0 y.l=-0.2 y.h=-0.2
+

+ doping gauss p.type conc=3e20 x.1=2.0 x.h=3.0 y.l=-0.2 y.h=0.0
+ + char.1=0.047 lat.rotate

+ doping gauss n.type conc=5el7 x.1=0.0 x.h=5.0 y.l=-0.2 y.h=0.0
+ + char.1=0.200 lat.rotate

+ doping gauss n.type conc=le20 x.1=0.0 x.h=0.5 y.l=-0.2 y.h=0.0
+ + char.1=0.100 lat.rotate ratio=0.7

+ doping unif p.type conc=lel6 x.1=0.0 x.h=5.0 y.1=0.0 y.h=1.3
+ doping gauss p.type conc=5el9 x.1=0.0 x.h=5.0 y.l=1.3 y.h=1.3

280

APPENDDCD. MODEL LIBRARIES

+ + char.1=0.100 lat.rotate

+

+ method ac=direct itlim=10

+ models bgn srh auger conctau concmob fieldmob

.MODEL M_PNP nbjt level=2

+ title TWO-DIMENSIONAL NUMERICAL POLYSILICON EMITTER BIPOLAR TRANSISTOR
+ * Since half the device is simulated, double the unit width to get
+ * 1.0 um emitter length. Uses a finer mesh in the X direction.
+ options defw=2.0u

+ output stat

+

+ x.mesh w=0.5 h.e=0.075 h.m=0.2 r=2.0

+ x.mesh w=0.75 h.s=0.075 h.m=0.2 r=2.0

+ x.mesh w=0.75 h.e=0.05 h.m=0.2 r=1.5

+ x.mesh w=0.5 h.s=0.05 h.m=0.1 r=1.5
+

+ y.mesh l=-0.2 n=l

+ y.mesh 1= 0.0 n=5

+ y.mesh w=0.12 h.e=0.003 h.m=0.01 r=l. 5

+ y.mesh w=0.28 h.s-0.003 h.m=0.02 r=1.5

+ y.mesh w=0.20 h.s=0.02 h.m=0.2 r=l. 5

+ y.mesh w=0.40 h.e=0.05 h.m=0.2 r=1.5

+ y.mesh w=0.30 h.s=0.05 h.m=0.1 r=1.5
+

+ domain num=l material=l x.1=2.0 y.h=0.0
+ domain num=2 material=2 x.h=2.0 y.h=0.0
+ domain num=3 material=3 y.1=0.0
+ material num=l polysilicon
+ material num=2 oxide

+ material num=3 silicon

+

+ elec num=l x.1=0.0 x.h=0.0 y.1=1.1 y.h=1.3

+ elec num=2 x.1=0.0 x.h=0.5 y.1=0.0 y.h=0.0
+ elec num=3 x.1=2.0 x.h=3.0 y.l=-0.2 y.h=-0.2
+

+ doping gauss p.type conc=3e20 x.1=2.0 x.h=3.0 y.l=-0.2 y.h=0.0
+ + char.1=0.047 lat.rotate

+ doping gauss n.type conc=5el7 x.1=0.0 x.h=5.0 y.l=-0.2 y.h=0.0

+ + char.1=0.200 lat.rotate

+ doping gauss n.type conc=le20 x.1=0.0 x.h=0.5 y.l=-0.2 y.h=0.0
+ + char.1=0.100 lat.rotate ratio=0.7

+ doping unif p.type conc=lel6 x.1=0.0 x.h=5.0 y.1=0.0 y.h=1.3
+ doping gauss p.type conc=5el9 x.1=0.0 x.h=5.0 y.l=1.3 y.h=1.3

+ + char.1=0.100 lat.rotate

+

+ method ac=direct itlim=10

+ models bgn srh auger conctau concmob fieldmob

281

APPENDED. MODEL LIBRARIES

* Two-dimensional models for a

* complementary MOS process.

* Device models for lum, 2um, 3um, 4um, 5um, lOum and 50um are provided.
**

.MODEL M_NMOS_l numos
+ output stat

+

+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.-0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

+ x.mesh w=0.4 h.s=0.005 h.m=0.1 r=2.0

+ x.mesh w=0.4 h.e=0.005 h.m=0.1 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0

+

+ y.mesh l=-.0200 n=l

+ y.mesh 1=0.0 n=6
+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+

+ region num=l material=l y.h=0.0
+ region num=2 material=2 y.1=0.0
+ interface dom=2 nei=l x.l=l x.h=2 layer.width=0.0

+ material num=l oxide

+ material num=2 silicon

+

+ elec num=l x.l=2.5 x.h=3.1 y.1=0.0 y.h=0.0
+ elec num=2 x.l=l x.h=2 iy.l=l iy.h=l

+ elec num=3 x.l=-0.1 x.h=0.5 y.1=0.0 y.h=0.0

+ elec num=4 x.l=-0.1 x.h=3.1 y.1=2.0 y.h=2.0
+

+ doping gauss p.type conc=1.0el7 x.l=-0.1 x.h=3.1 y.1=0.0
+ + char.1=0.30

+ doping unif p.type conc=5.0el5 x.l=-0.1 x.h=3.1 y.1=0.0 y.h=2.1
+ doping gauss n.type conc=4el7 x.l=-0.1 x.h=l y.1=0.0 y.h=0.0
+ + char.1=0.16 lat.rotate ratio=0.65

+ doping gauss n.type conc=le20 x.l=-0.1 x.h=0.95 y.1=0.0 y.h=0.08
+ + char.1=0.03 lat.rotate ratio=0.65

+ doping gauss n.type conc=4el7 x.l=2 x.h=3.1 y.1=0.0 y.h=0.0
+ + char.1=0.16 lat.rotate ratio=0.65

+ doping gauss n.type conc=le20 x.1=2.05 x.h=3.1 y.1=0.0 y.h=0.08
+ + char.1=0.03 lat.rotate ratio=0.65

+

+ contact num=2 workf=4.10

+ models concmob surfmob transmob fieldmob srh auger conctau bgn
+ method ac=direct itlim=10 onec

.MODEL M_NMOS_2 numos
+ output stat

282

APPENDIX D. MODEL LIBRARIES

+

+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

+ x.mesh w=0.9 h.s=0.005 h.m=0.2 r=2.0

+ x.mesh w=0.9 h.e=0.005 h.m=0.2 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0
+

+ y.mesh l=-.0200 n=l

+ y.mesh 1=0.0 n=6

+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0

+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0

+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+

+ region num=l material=l y.h=0.0
+ region num=2 material=2 y.1=0.0
+ interface dom=2 nei=l x.l=l x.h=3 layer.width=0.0
+ material num=l oxide

+ material num=2 silicon

+

+ elec num=l x.l=3.5 x.h=4.1 y.1=0.0 y.h=0.0
+ elec num=2 x.l=l x.h=3 iy.l=l iy.h=l
+ elec num=3 x.l=-0.1 x.h=0.5 y.1=0.0 y.h=0.0
+ elec num=4 x.l=-0.1 x.h=4.1 y.1=2.0 y.h=2.0
+

+ doping gauss p.type conc=1.0el7 x.l=-0.1 x.h=4.1 y.1=0.0
+ + char.1=0.30

+ doping unif p.type conc=5.0el5 x.l=-0.1 x.h=4.1 y.1=0.0 y.h=2.1
+ doping gauss n.type conc=4el7 x.l=-0.1 x.h=l y.1=0.0 y.h=0.0
+ + char.1=0.16 lat.rotate ratio=0.65

+ doping gauss n.type conc=le20 x.l=-0.1 x.h=0.95 y.1=0.0 y.h=0.08
+ + char.1=0.03 lat.rotate ratio=0.65

+ doping gauss n.type conc=4el7 x.l=3 x.h=4.1 y.1=0.0 y.h=0.0
+ + char.1=0.16 lat.rotate ratio=0.65

+ doping gauss n.type conc=le20 x.1=3.05 x.h=4.1 y.1=0.0 y.h=0.08
+ + char.1=0.03 lat.rotate ratio=0.65

+

+ contact num=2 workf=4.10

+ models concmob surfmob transmob fieldmob srh auger conctau bgn
+ method ac=direct itlim=10 onec

.MODEL M_NMOS_3 numos
+ output stat

+

+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

+ x.mesh w=1.4 h.s=0.005 h.m=0.3 r=2.0

+ x.mesh w=1.4 h.e=0.005 h.m=0.3 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0

283

APPENDIX D. MODEL LIBRARIES

+

+ y.mesh l=-.02OO n=l
+ y.mesh 1=0.0 n=6
+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+

+ region num=l material=l y.h=0.0
+ region num=2 material=2 y.1=0.0
+ interface dom=2 nei=l x.l=l x.h=4 layer.width=0.0

+ material num=l oxide

+ material num=2 silicon

+

+ elec num=l x.l=4.5 x.h=5.1 y.1=0.0 y.h=0.0
+ elec num=2 x.l=l x.h=4 iy.l=l iy.h=l
+ elec num=3 x.l=-0.1 x.h=0.5 y.1=0.0 y.h=0.0
+ elec num=4 x.l=-0.1 x.h=5.1 y.1=2.0 y.h=2.0

+

+ doping gauss p.type conc=1.0el7 x.l=-0.1 x.h=5.1 y.1=0.0
+ + char.1=0.30

+ doping unif p.type conc=5.0el5 x.l=-0.1 x.h=5.1 y.1=0.0 y.h=2.1
+ doping gauss n.type conc=4el7 x.l=-0.1 x.h=l y.1=0.0 y.h=0.0
+ + char.1=0.16 lat.rotate ratio=0.65

+ doping gauss n.type conc=le20 x.l=-0.1 x.h=0.95 y.1=0.0 y.h=0.08
+ + char.1=0.03 lat.rotate ratio=0.65

+ doping gauss n.type conc=4el7 x.l=4 x.h=5.1 y.1=0.0 y.h=0.0
+ + char.1=0.16 lat.rotate ratio=0.65

+ doping gauss n.type conc=le20 x.1=4.05 x.h=5.1 y.1=0.0 y.h=0.08
+ + char.1=0.03 lat.rotate ratio=0.65

+

+ contact num=2 workf=4.10

+ models concmob surfmob transmob fieldmob srh auger conctau bgn

+ method ac=direct itlim=10 onec

.MODEL M_NMOS_4 numos
+ output stat

+

+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

+ x.mesh w=1.9 h.s=0.005 h.m=0.4 r=2.0

+ x.mesh w=1.9 h.e=0.005 h.m=0.4 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0

+

+ y.mesh 1=-.0200 n=l

+ y.mesh 1=0.0 n=6

+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0

+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0

+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+

284

APPENDIX D. MODEL LIBRARIES

+ region num=l material=l y.h=0.0
+ region num=2 material=2 y.1=0.0

+ interface dom=2 nei=l x.l=l x.h=5 layer.width=0.0
+ material num=l oxide

+ material nura=2 silicon

+

+ elec num=l x.l=5.5 x.h=6.1 y.1=0.0 y.h=0.0
+ elec num=2 x.l=l x.h=5 iy.l=l iy.h=l

+ elec num=3 x.l=-0.1 x.h=0.5 y.1=0.0 y.h=0.0
+ elec num=4 x.l=-0.1 x.h=6.1 y.1=2.0 y.h=2.0
+

+ doping gauss p.type conc=1.0el7 x.l=-0.1 x.h=6.1 y.1=0.0
+ + char.1=0.30

+ doping unif p.type conc=5.0el5 x.l=-0.1 x.h=6.1 y.1=0.0 y.h=2.1
+ doping gauss n.type conc=4el7 x.l=-0.1 x.h=l y.1=0.0 y.h=0.0
+ + char.1=0.16 lat.rotate ratio=0.65

+ doping gauss n.type conc=le20 x.l=-0.1 x.h=0.95 y.1=0.0 y.h=0.08
+ + char.1=0.03 lat.rotate ratio=0.65

+ doping gauss n.type conc=4el7 x.l=5 x.h=6.1 y.1=0.0 y.h=0.0
+ + char.1=0.16 lat.rotate ratio=0.65

+ doping gauss n.type conc=le20 x.1=5.05 x.h=6.1 y.1=0.0 y.h=0.08
+ + char.1=0.03 lat.rotate ratio=0.65

+

+ contact num=2 workf=4.10

+ models concmob surfmob transmob fieldmob srh auger conctau bgn
+ method ac=direct itlim=10 onec

.MODEL M_NMOS_5 numos

+ output stat

+

+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

+ x.mesh w=2.4 h.s=0.005 h.m=0.5 r=2.0

+ x.mesh w=2.4 h.e=0.005 h.m=0.5 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0

+

+ y.mesh l=-.0200 n=l

+ y.mesh 1=0.0 n=6

+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0

+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+

+ region num=l material=l y.h=0.0
+ region num=2 material=2 y.1=0.0
+ interface dom=2 nei=l x.l=l x.h=6 layer.width=0.0

+ material num=l oxide

+ material num=2 silicon

+

+ elec num=l x.l=6.5 x.h=7.1 y.1=0.0 y.h=0.0

285

APPENDIX D. MODEL LIBRARIES

+ elec num=2 x.l=l x.h=6 iy.l=l iy.h=l
+ elec num=3 x.l=-0.1 x.h=0.5 y.1=0.0 y.h=0.0
+ elec num=4 x.l=-0.1 x.h=7.1 y.1=2.0 y.h=2.0

+

+ doping gauss p.type conc=1.0el7 x.l=-0.1 x.h=7.1 y.1=0.0
+ + char.1=0.30

+ doping unif p.type conc=5.0el5 x.l=-0.1 x.h=7.1 y.1=0.0 y.h=2.1
+ doping gauss n.type conc=4el7 x.l=-0.1 x.h=l y.1=0.0 y.h=0.0
+ + char.1=0.16 lat.rotate ratio=0.65

+ doping gauss n.type conc=le20 x.l=-0.1 x.h=0.95 y.1=0.0 y.h=0.08
+ + char.1=0.03 lat.rotate ratio=0.65

+ doping gauss n.type conc=4el7 x.l=6 x.h=7.1 y.1=0.0 y.h=0.0
+ + char.1=0.16 lat.rotate ratio=0.65
+ doping gauss n.type conc=le20 x.1=6.05 x.h=7.1 y.1=0.0 y.h=0.08
+ + char.1=0.03 lat.rotate ratio=0.65

+

+ contact num=2 workf=4.10

+ models concmob surfmob transmob fieldmob srh auger conctau bgn

+ method ac=direct itlim=10 onec

.MODEL M_NMOS_10 numos
+ output stat

+

+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

+ x.mesh w=4.9 h.s=0.005 h.m=l r=2.0

+ x.mesh w=4.9 h.e=0.005 h.m=l r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0

+

+ y.mesh l=-.0200 n=l
+ y.mesh 1=0.0 n=6
+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+

+ region num=l material=l y.h=0.0
+ region num=2 material=2 y.1=0.0

+ interface dom=2 nei=l x.l=l x.h=ll layer.width=0.0
+ material num=l oxide

+ material num=2 silicon

+

+ elec num=l x.1=11.5 x.h=12.1 y.1=0.0 y.h=0.0
+ elec num=2 x.l=l x.h=ll iy.l=l iy.h=l

+ elec num=3 x.l=-0.1 x.h=0.5 y.1=0.0 y.h=0.0
+ elec num=4 x.l=-0.1 x.h=12.1 y.1=2.0 y.h=2.0
+

+ doping gauss p.type conc=1.0el7 x.l=-0.1 x.h=12.1 y.1=0.0
+ + char.1=0.30

+ doping unif p.type conc=5.0el5 x.l=-0.1 x.h=12.1 y.1=0.0 y.h=2.1

286

APPENDED. MODEL LIBRARIES

+ doping gauss n.type conc=4el7 x.l=-0.1 x.h=l y.1=0.0 y.h=0.0
+ + char.1=0.16 lat.rotate ratio=0.65

+ doping gauss n.type conc=le20 x.l=-0.1 x.h=0.95 y.1=0.0 y.h=0.08
+ + char.1=0.03 lat.rotate ratio=0.65

+ doping gauss n.type conc=4el7 x.l=ll x.h=12.1 y.1=0.0 y.h=0.0

+ + char.1=0.16 lat.rotate ratio=0.65

+ doping gauss n.type conc=le20 x.1=11.05 x.h=12.1 y.1=0.0 y.h=0.08
+ + char.1=0.03 lat.rotate ratio=0.65

+

+ contact num=2 workf=4.10

+ models concmob surfmob transmob fieldmob srh auger conctau bgn

+ method ac=direct itlim=10 onec

.MODEL M_NMOS_50 numos
+ output stat

+

+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

+ x.mesh w=24.9 h.s=0.005 h.m=5 r=2.0

+ x.mesh w=24.9 h.e=0.005 h.m=5 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0

+

+ y.mesh l=-.0200 n=l

+ y.mesh 1=0.0 n=6

+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+

+ region num=l material=l y.h=0.0

+ region num=2 material=2 y.1=0.0
+ interface dom=2 nei=l x.l=l x.h=51 layer.width=0.0

+ material num=l oxide

+ material num=2 silicon

+

+ elec num=l x.1=51.5 x.h=52.1 y.1=0.0 y.h=0.0

+ elec num=2 x.l=l x.h=51 iy.l=l iy.h=l

+ elec num=3 x.l=-0.1 x.h=0.5 y.1=0.0 y.h=0.0

+ elec num=4 x.l=-0.1 x.h=52.1 y.1=2.0 y.h=2.0

+

+ doping gauss p.type conc=1.0el7 x.l=-0.1 x.h=52.1 y.1=0.0

+ + char.1=0.30

+ doping unif p.type conc=5.0el5 x.l=-0.1 x.h=52.1 y.1=0.0 y.h=2.1
+ doping gauss n.type conc=4el7 x.l=-0.1 x.h=l y.1=0.0 y.h=0.0

+ + char.1=0.16 lat.rotate ratio=0.65

+ doping gauss n.type conc=le20 x.l=-0.1 x.h=0.95 y.1=0.0 y.h=0.08

+ + char.1=0.03 lat.rotate ratio=0.65

+ doping gauss n.type conc=4el7 x.l=51 x.h=52.1 y.1=0.0 y.h=0.0

+ + char.1=0.16 lat.rotate ratio=0.65

+ doping gauss n.type conc=le20 x.1=51.05 x.h=52.1 y.1=0.0 y.h=0.08

287

APPENDDCD. MODEL LIBRARIES

+ + char.1=0.03 lat.rotate ratio=0.65

+

+ contact num=2 workf=4.10

+ models concmob surfmob transmob fieldmob srh auger conctau bgn
+ method ac=direct itlim=10 onec

.MODEL M_PMOS_l numos

+ output stat

+

+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

+ x.mesh w=0.4 h.s=0.005 h.m=0.1 r=2.0

+ x.mesh w=0.4 h.e=0.005 h.m=0.1 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0

+

+ y.mesh l=-.0200 n=l

+ y.mesh 1=0.0 n=6

+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0

+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0

+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+

+ region num=l material=l y.h=0.0
+ region num=2 material=2 y.1=0.0

+ interface dom=2 nei=l x.l=l x.h=2 layer.width=0.0
+ material num=l oxide

+ material num=2 silicon

+

+ elec num=l x.l=2.5 x.h=3.1 y.1=0.0 y.h=0.0
+ elec num=2 x.l=l x.h=2 iy.l=l iy.h=l

+ elec num=3 x.l=-0.1 x.h=0.5 y.1=0.0 y.h=0.0
+ elec num=4 x.l=-0.1 x.h=3.1 y.1=2.0 y.h=2.0
+

+ doping gauss n.type conc=1.0el7 x.l=-0.1 x.h=3.1 y.1=0.0
+ + char.1=0.30

+ doping unif n.type conc=5.0el5 x.l=-0.1 x.h=3.1 y.1=0.0 y.h=2.1
+ doping gauss p.type conc=4el7 x.l=-0.1 x.h=l y.1=0.0 y.h=0.0
+ + char.1=0.16 lat.rotate ratio=0.65

+ doping gauss p.type conc=le20 x.l=-0.1 x.h=0.95 y.1=0.0 y.h=0.08
+ + char.1=0.03 lat.rotate ratio=0.65

+ doping gauss p.type conc=4el7 x.l=2 x.h=3.1 y.1=0.0 y.h=0.0
+ + char.1=0.16 lat.rotate ratio=0.65

+ doping gauss p.type conc=le20 x.1=2.05 x.h=3.1 y.1=0.0 y.h=0.08
+ + char.1=0.03 lat.rotate ratio=0.65

+

+ contact num=2 workf=5.29

+ models concmob surfmob transmob fieldmob srh auger conctau bgn
+ method ac=direct itlim=10 onec

.MODEL M PMOS 2 numos

288

APPENDED. MODEL LIBRARIES

+ output stat

+

+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

+ x.mesh w=0.9 h.s=0.005 h.m=0.2 r=2.0

+ x.mesh w=0.9 h.e=0.005 h.m=0.2 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0

+

+ y.mesh l=-.0200 n=l

+ y.mesh 1=0.0 n=6
+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+

+ region num=l material=l y.h=0.0
+ region num=2 material=2 y.1=0.0

+ interface dom=2 nei=l x.l=l x.h=3 layer.width=0.0

+ material num=l oxide

+ material num=2 silicon

+

+ elec num=l x.l=3.5 x.h=4.1 y.1=0.0 y.h=0.0

+ elec num=2 x.l=l x.h=3 iy.l=l iy.h=l

+ elec num=3 x.l=-0.1 x.h=0.5 y.1=0.0 y.h=0.0

+ elec num=4 x.l=-0.1 x.h=4.1 y.1=2.0 y.h=2.0

+

+ doping gauss n.type conc=1.0el7 x.l=-0.1 x.h=4.1 y.1=0.0
+ + char.1=0.30

+ doping unif n.type conc=5.0el5 x.l=-0.1 x.h=4.1 y.1=0.0 y.h=2.1
+ doping gauss p.type conc=4el7 x.l=-0.1 x.h=l y.1=0.0 y.h=0.0
+ + char.1=0.16 lat.rotate ratio=0.65

+ doping gauss p.type conc=le20 x.l=-0.1 x.h=0.95 y.1=0.0 y.h=0.08
+ + char.1=0.03 lat.rotate ratio=0.65

+ doping gauss p.type conc=4el7 x.l=3 x.h=4.1 y.1=0.0 y.h=0.0
+ + char.1=0.16 lat.rotate ratio=0.65

+ doping gauss p.type conc=le20 x.1=3.05 x.h=4.1 y.1=0.0 y.h=0.08
+ + char.1=0.03 lat.rotate ratio=0.65

+

+ contact num=2 workf=5.29

+ models concmob surfmob transmob fieldmob srh auger conctau bgn

+ method ac=direct itlim=10 onec

.MODEL M_PMOS_3 numos
+ output stat

+

+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

+ x.mesh w=l.4 h.s=0.005 h.m=0.3 r=2.0

+ x.mesh w=1.4 h.e=0.005 h.m=0.3 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

289

APPENDED. MODEL LIBRARIES

+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0

+

+ y.mesh l=-.0200 n=l
+ y.mesh 1=0.0 n=6
+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0
+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0
+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+

+ region num=l material=l y.h=0.0
+ region num=2 material=2 y.1=0.0
+ interface dom=2 nei=l x.l=l x.h=4 layer.width=0.0

+ material num=l oxide

+ material num=2 silicon

+

+ elec num=l x.l=4.5 x.h=5.1 y.1=0.0 y.h=0.0
+ elec num=2 x.l=l x.h=4 iy.l=l iy.h=l

+ elec num=3 x.l=-0.1 x.h=0.5 y.1=0.0 y.h=0.0

+ elec num=4 x.l=-0.1 x.h=5.1 y.1=2.0 y.h=2.0
+

+ doping gauss n.type conc=1.0el7 x.l=-0.1 x.h=5.1 y.1=0.0

+ + char.1=0.30

+ doping unif n.type conc=5.0el5 x.l=-0.1 x.h=5.1 y.1=0.0 y.h=2.1
+ doping gauss p.type conc=4el7 x.l=-0.1 x.h=l y.1=0.0 y.h=0.0
+ + char.1=0.16 lat.rotate ratio=0.65

+ doping gauss p.type conc=le20 x.l=-0.1 x.h=0.95 y.1=0.0 y.h=0.08
+ + char.1=0.03 lat.rotate ratio=0.65

+ doping gauss p.type conc=4el7 x.l=4 x.h=5.1 y.1=0.0 y.h=0.0
+ + char.1=0.16 lat.rotate ratio=0.65

+ doping gauss p.type conc=le20 x.1=4.05 x.h=5.1 y.1=0.0 y.h=0.08
+ + char.1=0.03 lat.rotate ratio=0.65

+

+ contact num=2 workf=5.29

+ models concmob surfmob transmob fieldmob srh auger conctau bgn
+ method ac=direct itlim=10 onec

.MODEL M_PMOS_4 numos
+ output stat

+

+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

+ x.mesh w=1.9 h.s=0.005 h.m=0.4 r=2.0

+ x.mesh w=l.9 h.e=0.005 h.m=0.4 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0

+

+ y.mesh l=-.0200 n=l

+ y.mesh 1=0.0 n=6

+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0

+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0

+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0

290

APPENDED. MODEL LIBRARIES

+

+ region num=l material=l y.h=0.0
+ region num=2 material=2 y.1=0.0
+ interface dom=2 nei=l x.l=l x.h=5 layer.width=0.0
+ material num=l oxide

+ material num=2 silicon

+

+ elec num=l x.l=5.5 x.h=6.1 y.1=0.0 y.h=0.0
+ elec num=2 x.l=l x.h=5 iy.l=l iy.h=l
+ elec num=3 x.l=-0.1 x.h=0.5 y.1=0.0 y.h=0.0
+ elec num=4 x.l=-0.1 x.h=6.1 y.1=2.0 y.h=2.0
+

+ doping gauss n.type conc=1.0el7 x.l=-0.1 x.h=6.1 y.1=0.0
+ + char.1=0.30

+ doping unif n.type conc=5.0el5 x.l=-0.1 x.h=6.1 y.1=0.0 y.h=2.1
+ doping gauss p.type conc=4el7 x.l=-0.1 x.h=l y.1=0.0 y.h=0.0
+ + char.1=0.16 lat.rotate ratio=0.65

+ doping gauss p.type conc=le20 x.l=-0.1 x.h=0.95 y.1=0.0 y.h=0.08
+ + char.1=0.03 lat.rotate ratio=0.65

+ doping gauss p.type conc=4el7 x.l=5 x.h=6.1 y.1=0.0 y.h=0.0
+ + char.1=0.16 lat.rotate ratio=0.65

+ doping gauss p.type conc=le20 x.1=5.05 x.h=6.1 y.1=0.0 y.h=0.08
+ + char.1=0.03 lat.rotate ratio=0.65

+

+ contact num=2 workf=5.29

+ models concmob surfmob transmob fieldmob srh auger conctau bgn
+ method ac=direct itlim=10 onec

.MODEL M_PMOS_5 numos
+ output stat

+

+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

+ x.mesh w=2.4 h.s=0.005 h.m=0.5 r=2.0

+ x.mesh w=2.4 h.e=0.005 h.m=0.5 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2 .0

+

+ y.mesh l=-.0200 n=l

+ y.mesh 1=0.0 n=6

+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0

+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0

+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0

+

+ region num=l material=l y.h=0.0
+ region num=2 material=2 y.1=0.0

+ interface dom=2 nei=l x.l=l x.h=6 layer.width=0.0
+ material num=l oxide

+ material num=2 silicon

+

291

APPENDED. MODEL LIBRARIES

+ elec num=l x.l=6.5 x.h=7.1 y.1=0.0 y.h=0.0

+ elec num=2 x.l=l x.h=6 iy.l=l iy.h=l
+ elec num=3 x.l=-0.1 x.h=0.5 y.1=0.0 y.h=0.0

+ elec num=4 x.l=-0.1 x.h=7.1 y.1=2.0 y.h=2.0

+

+ doping gauss n.type conc=1.0el7 x.l=-0.1 x.h=7.1 y.1=0.0
+ + char.1=0.30

+ doping unif n.type conc=5.0el5 x.l=-0.1 x.h=7.1 y.1=0.0 y.h=2.1
+ doping gauss p.type conc=4el7 x.l=-0.1 x.h=l y.1=0.0 y.h=0.0
+ + char.1=0.16 lat.rotate ratio=0.65

+ doping gauss p.type conc=le20 x.l=-0.1 x.h=0.95 y.1=0.0 y.h=0.08
+ + char.1=0.03 lat.rotate ratio=0.65

+ doping gauss p.type conc=4el7 x.l=6 x.h=7.1 y.1=0.0 y.h=0.0
+ + char.1=0.16 lat.rotate ratio=0.65

+ doping gauss p.type conc=le20 x.1=6.05 x.h=7.1 y.1=0.0 y.h=0.08
+ + char.1=0.03 lat.rotate ratio=0.65

+

+ contact num=2 workf=5.29

+ models concmob surfmob transmob fieldmob srh auger conctau bgn

+ method ac=direct itlim=10 onec

.MODEL M_PMOS_10 numos
+ output stat

+

+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

+ x.mesh w=4.9 h.s=0.005 h.m=l r=2.0

+ x.mesh w=4.9 h.e=0.005 h.m=l r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0

+

+ y.mesh l=-.0200 n=l

+ y.mesh 1=0.0 n=6

+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0

+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0

+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+

+ region num=l material=l y.h=0.0
+ region num=2 material=2 y.1=0.0

+ interface dom=2 nei=l x.l=l x.h=ll layer.width=0.0
+ material num=l oxide

+ material num=2 silicon

+

+ elec num=l x.1=11.5 x.h=12.1 y.1=0.0 y.h=0.0
+ elec num=2 x.l=l x.h=ll iy.l=l iy.h=l

+ elec num=3 x.l=-0.1 x.h=0.5 y.1=0.0 y.h=0.0
+ elec num=4 x.l=-0.1 x.h=12.1 y.1=2.0 y.h=2.0
+

+ doping gauss n.type conc=1.0el7 x.l=-0.1 x.h=12.1 y.1=0.0
+ + char.1=0.30

292

APPENDED. MODEL LIBRARIES

+ doping unif n.type conc=5.0el5 x.l=-0.1 x.h=12.1 y.1=0.0 y.h=2.1
+ doping gauss p.type conc=4el7 x.l=-0.1 x.h=l y.1=0.0 y.h=0.0
+ + char.1=0.16 lat.rotate ratio=0.65

+ doping gauss p.type conc=le20 x.l=-0.1 x.h=0.95 y.1=0.0 y.h=0.08
+ + char.1=0.03 lat.rotate ratio=0.65

+ doping gauss p.type conc=4el7 x.l=ll x.h=12.1 y.1=0.0 y.h=0.0
+ + char.1=0.16 lat.rotate ratio=0.65

+ doping gauss p.type conc=le20 x.1=11.05 x.h=12.1 y.1=0.0 y.h=0.08
+ + char.1=0.03 lat.rotate ratio=0.65

+

+ contact num=2 workf=5.29

+ models concmob surfmob transmob fieldmob srh auger conctau bgn
+ method ac=direct itlim=10 onec

.MODEL M_PMOS_50 numos
+ output stat

+

+ x.mesh w=0.9 h.e=0.020 h.m=0.2 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

+ x.mesh w=24.9 h.s=0.005 h.m=5 r=2.0

+ x.mesh w=24.9 h.e=0.005 h.m=5 r=2.0

+ x.mesh w=0.2 h.e=0.005 h.m=0.02 r=2.0

+ x.mesh w=0.9 h.s=0.020 h.m=0.2 r=2.0

+

+ y.mesh l=-.0200 n=l

+ y.mesh 1=0.0 n=6

+ y.mesh w=0.15 h.s=0.0001 h.max=.02 r=2.0

+ y.mesh w=0.45 h.s=0.02 h.max=0.2 r=2.0

+ y.mesh w=1.40 h.s=0.20 h.max=0.4 r=2.0
+

+ region num=l material=l y.h=0.0
+ region num=2 material=2 y.1=0.0

+ interface dom=2 nei=l x.l=l x.h=51 layer.width=0.0

+ material num=l oxide

+ material num=2 silicon

+

+ elec num=l x.1=51.5 x.h=52.1 y.1=0.0 y.h=0.0

+ elec num=2 x.l=l x.h=51 iy.l=l iy.h=l

+ elec num=3 x.l=-0.1 x.h=0.5 y.1=0.0 y.h=0.0

+ elec num=4 x.l=-0.1 x.h=52.1 y.1=2.0 y.h=2.0

+

+ doping gauss n.type conc=1.0el7 x.l=-0.1 x.h=52.1 y.1=0.0
+ + char.1=0.30

+ doping unif n.type conc=5.0el5 x.l=-0.1 x.h=52.1 y.1=0.0 y.h=2.1
+ doping gauss p.type conc=4el7 x.l=-0.1 x.h=l y.1=0.0 y.h=0.0
+ + char.1=0.16 lat.rotate ratio=0.65

+ doping gauss p.type conc=le20 x.l=-0.1 x.h=0.95 y.1=0.0 y.h=0.08
+ + char.1=0.03 lat.rotate ratio=0.65

+ doping gauss p.type conc=4el7 x.l=51 x.h=52.1 y.1=0.0 y.h=0.0
+ + char.1=0.16 lat.rotate ratio=0.65

293

APPENDED. MODEL LIBRARIES

+ doping gauss p.type conc=le20 x.1=51.05 x.h=52.1 y.1=0.0 y.h=0.08
+ + char.1=0.03 lat.rotate ratio=0.65

+

+ contact num=2 workf=5.29

+ models concmob surfmob transmob fieldmob srh auger conctau bgn

+ method ac=direct itlim=10 onec

**

* BSIM1 NMOS and PMOS 1.0 pm models.

* Gummel-Poon bipolar models.
**

.model M_NSIM_1 nmos level=4
+vfb= -1.1908

+phi= .8399
+kl= 1.5329

+k2= 193.7322m

+eta= 2m

+muz= 746.0

+u0= 90.0m

+x2mz= 10.1429

+x2e= -2.5m

+x3e= 0.2m

+x2u0= -10.0m

+mus= 975.0

+ul= .20

+x2ms= 0.0

+x2ul= 0.0

+x3ms= 10

+x3ul= 5.0m

+tox=2.00000e-02

+cgdo=2.0e-10

+cgso=2.0e-10

+cgbo=0.0

+temp= 27

+vdd= 7.0

+xpart

+n0= 1.5686

+nb= 94.6392m

+nd=0.00000e+00

+rsh=30.0 cj=7.000e-004 cjsw=4.20e-010
+js=1.00e-008 pb=0.700e000

+pbsw=0.8000e000 mj=0.5 mjsw=0.33
+wdf=0 dell=0.20u

.model M_PSIM_1 pmos level=4
+vfb= -1.3674

+phi= .8414

+kl= 1.5686

+k2= 203m

+eta= 2m

294

APPENDED. MODEL LIBRARIES

+muz= 340.0

+u0= 35.0m

+x2mz= 6.0

+x2e= 0.0

+x3e= -0.2m

+x2u0= -15.0m

+mus= 440.0

+ul= .38

+x2ms= 0.0

+x2ul= 0.0

+x3ms= -20

+x3ul= -10.0m

+tox=2.00000e-02

+cgdo=2.0e-10

+cgso=2.0e-10

+cgbo=0.0

+temp= 27

+vdd= 5.0

+xpart

+n0= 1.5686

+nb= 94.6392m

+nd=0.00000e+00

+rsh=80.0 cj=7.000e-004 cjsw=4.20e-010
+js=1.00e-008 pb=0.700e000
+pbsw=0.8000e000 mj=0.5 mjsw=0.33
+wdf=0 dell=0.17u

.model M_GNPN npn
+ is=1.3e-16

+ nf=1.00 bf=262.5 ikf=25mA vaf=20v

+ nr=1.00 br=97.5 ikr=0.5mA var=l.8v

+ rc=20.0

+ re=0.09

+ rb=15.0

+ ise=4.0e-16 ne=2.1

+ isc=7.2e-17 nc=2.0

+ tf=9.4ps itf=26uA xtf=0.5

+ tr=10ns

+ cje=89.44fF vje=0.95 mje=0.5
+ cjc=12.82fF vjc=0.73 mjc=0.49

.model M_GPNP pnp
+ is=5.8e-17

+ nf=1.001 bf=96.4 ikf=12mA vaf=29v

+ nr=1.0 br=17.3 ikr=0.2mA var=2.0v

+ rc=50.0

+ re=0.17

+ rb=20.0

+ ise=6.8e-17 ne=2.0

+ isc=9.0e-17 nc=2.1

295

APPENDED. MODEL LIBRARIES

+ tf=27.4ps itf=26uA xtf=0.5

+ tr=10ns

+ cje=55.36fF vje=0.95 mje=0.58
+ cjc=11.80fF vjc=0.72 mjc=0.46

296

Appendix E

CIDER Source Code Listing

The source-code Ustings for the programs used in this dissertation can be ob

tained from the following address:

Software Distribution Office

Industrial Liaison Program
Department ofElectrical Engineering and Computer Science
University ofCalifornia at Berkeley
Berkeley, CA 94720

All programs (the serial and parallel versions ofCiDERand the experimental simulated

annealer) are contained in the one CIDER source distribution.

297

Bibliography

[APTE92] D. R. Apte and M. E. Law. Comparisonofiterative methods forAC analysis

in PISCES-IIB. IEEE Transactions on Computer-Aided Design, 11(5):671-

673, May 1992.

[AROR82] N. D. Arora, J. R. Hauser, and D. J. Roulston. Electron and hole mo

bilities in silicon as a function of concentration and temperature. IEEE

Transactions on Electron Devices, ED-29:292-295, February 1982.

[ASHB87] P. Ashburn, D. J. Roulston, and C. R. Selvakumar. Comparison of exper

imental and computed results on arsenic- and phosphorus-doped polysil

icon emitter bipolar transistors. IEEE Transactions on Electron Devices,

ED-34:1346-1353, June 1987.

[BANK81] R. E. Bank and D. J. Rose. Global approximate Newton methods. Nu-

merische Mathematik, 37:279-295,1981.

[BANK85] R. E. Bank, W. M. Coughran, Jr., W. Fichtner, E. H. Grosse, D. J. Rose,

and R. K. Smith. Transient simulation of silicon devices and circuits.

IEEE Transactions on Computer-Aided Design, CAD-4(4):436-451, Octo

ber 1985.

[BELL92a] G. Bell. Ultracomputers: a teraflop before its time. Communications of

the ACM, 35(8):27-47, August 1992.

[BELL92b] A. Bellaouar, S. H. K. Embabi, and M. I. Elmasry. Low-voltage scaled

CMOS and BiCMOS digital circuits. IEEE Transactions on Electron De

vices, 39:1005-1009, April 1992.

298

BIBLIOGRAPHY

[BISC86] G. Bischoff and S. Greenberg. CAYENNE: a parallel implementation of

the circuit simulator SPICE. InDigest ofTechnical Papers, IEEE Interna

tional Conference on Computer-Aided Design, pages 182-185, November

1986.

[BOYL87] J. Boyle, R. Butler, T. Disz, Glickfeld B., R. Lusk, R. Overbeek, J. Pat

terson, and R. Stevens. Portable Programs for Parallel Processors. Holt,

Rinehart, and Winston, New York, 1987.

[BRAY72] R. K. Brayton, F. G. Gustavson, and G. D. Hachtel. A new efficient algo

rithm for solving differential-algebraic systems using implicit backward

differentiation formulae. Proceedings ofthe IEEE, 60(1):98-108, January

1972.

[BUTL92] R. Butler and E. Lusk. User's guide to the p4 programming system.

Technical Report ANL-92/17, Argonne National Laboratory, October 1992.

[CAUG67] D. M. Caughey and R. E. Thomas. Carrier mobilities in silicon empirically

related to doping and field. Proceedings of the IEEE, 55(12):1292-1293,

December 1967.

[CHAN88] M.-C. Chang and I. N. Hajj. iPRIDE: a parallel integrated circuit simulator

using direct method. In Digest of Technical Papers, IEEE International

Conference on Computer-Aided Design, pages 304-307, November 1988.

[CHEN88] C.-C. Chen and Y.-H. Hu. Parallel LU factorization for circuit simulation

on a MIMD computer. In Proceedings, 1988 IEEE International Confer

ence on Computer Design, pages 129-132, October 1988.

[CHIN92] G. Chin and R. W. Dutton. A tool towards integration ofIC process, device,

and circuit simulation. IEEE Journal ofSolid-State Circuits, 27(3):265-

273, March 1992.

[COX91] P. F. Cox, R. G. Burch, D. E. Hocevar, P. Yang, and B. D. Epler. Direct

circuit simulation algorithms for parallel processing. IEEE Transactions

on Computer-Aided Design, 10(6):714-725, June 1991.

299

BIBLIOGRAPHY

[DONG86] J. J. Dongarra. A survey ofhigh performance computers. In IEEE COM-

PCON, pages 8-11, March 1986.

[DONG91] J. Dongarra and J. Demmel. LAPACK - a portable high-performance nu

merical library for linear algebra. Supercomputer, 8(6):33-38, November

1991.

[DONG93] Jack J. Dongarra. Performance ofvarious computers using standard lin

ear equation software. Technical Report CS-89-85, Oak Ridge National

Laboratory, March 111993. Available from netlib@ornl. gov.

[DUFF86] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse

Matrices. Clarendon Press, Oxford, 1986.

[DUNI91] T. H. Dunigan. Performance ofthe Intel iPSC/860 and Ncube 6400 hyper-

cubes. Parallel Computing, 17(10-11):1285-1302, December 1991.

[EARL52] J. M. Early. Effects ofspace-charge layer widening injunction transistors.

Proceedings, IRE, 40:1401-1406, November 1952.

[ENGL82] W. L. Engl, R. Laur, and H. K. Dirks. MEDUSA - a simulator for modular

circuits. IEEE Transactions on Computer-Aided Design, CAD-l(2):85-93,

April 1982.

[FLYN66] M. J. Flynn. Very high-speed computing systems. Proceedings ofthe IEEE,

54(12):1901-1909, December 1966.

[FROH69] D. Frohman-Bentchkowsky and A. S. Grove. Conductance ofMOS transis

tors in saturation. IEEE Transactions on Electron Devices, ED-16(1):108-

113, January 1969.

[GARE79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-completeness. W. H. Freeman and Company, San

Francisco, 1979.

[GATE90] D. A. Gates. An inversion-layer mobility model for CODECS. Memoran

dum No. UCB/ERL M90/96, Electronics Research Laboratory, University
of California, Berkeley, October 1990.

300

BIBLIOGRAPHY

[GATE93] D. A. Gates, P. K. Ko, and D. O. Pederson. Mixed-level circuit and device

simulation on a distributed-memory multicomputer. In Proceedings ofthe

IEEE 1993 Custom Integrated Circuits Conference, May 1993.

[GEOR73] A. George. Nested dissection of a regular finite element mesh. SIAM

Journal ofNumerical Analysis, 10:345-363,1973.

[GETR76] I. Getreu. Modeling the bipolar transistor. Tektronix, Beaverton, OR,

1976.

[GRAA90] H. C. de Graaff and F. M. Klaasen. Compact Transistor Modelling for

Circuit Design. Springer-Verlag, Wien, 1990.

[GRAY93] P. R. Gray and R. G. Meyer. Analysis and Design ofAnalog Integrated

Circuits, Third Edition. John Wiley & Sons, New York, 1993.

[GREE93] T. Green, R. Pennington, and D. Reynolds. Distributed queuing system ver

sion 2.1 release notes, March 221993. Available from ftp .scri.fsu.edu.

[GROU90] NCSA Software Tools Group. NCSA HDF Vset version 2.0. Univer

sity of Illinois at Urbana-Champaign, November 1990. Available from

ftp.ncsa.uiuc.edu.

[GUY 79] N. B. Guy Rabbat, A. L. Sangiovanni-Vincentelli, and H. Y. Hsieh. A mul

tilevel Newton algorithm with macromodeling and latency for the analysis

of large-scale nonlinear circuits in the time domain. IEEE Transactions

on Circuits and Systems, CAS-26(9):733-740, September 1979.

[HACH71] G. D. Hachtel, R. K. Brayton, and F. G. Gustavson. The sparse tableau

approach to network analysis and design. IEEE Transactions on Circuit

Theory, CT-18(1):101-113, January 1971.

[HARR86] D. S. Harrison, P. Moore, R. L. Spickelmier, and A. R. Newton. Data

management and graphics editing in the Berkeley design environment. In

Digest ofTechnical Papers, IEEE International Conference on Computer-

Aided Design, pages 20-24, November 1986.

[HARR91] R. J. Harrison. Portable tools and applications for parallel computers. In

ternational Journal ofQuantum Chemistry, 40:847-863, December 1991.

301

BIBLIOGRAPHY

[HEAT91] M. T Heath, E. Ng, and B. W. Peyton. Parallel algorithms for sparse linear

systems. SIAM Review, 33(3):420-460, September 1991.

[H075] C. W. Ho, A. E. Ruehli, and P. A. Brennan. The modified nodal approach

to network analysis. IEEE Transactions on Circuits and Systems, CAS-

22(6):504-509, June 1975.

[H083] C. Ho, J. D. Plummer, S. Hansen, and R. W. Dutton. VLSI process

modeling - Suprem III. IEEE Transactions on Electron Devices, ED-

30(11):1438-1453, November 1983.

[HU87] G. J. Hu, C. Chang, andY.-T. Chia. Gate-voltage-dependent effective chan

nel length and series resistance of LDD MOSFETs. IEEE Transactions

on Electron Devices, ED-34(12):2469-2475, December 1987.

[HUAN93] J.H. Huang, Z. H. Iiu, P. K. Ko, C. Hu, and M. C. Jeng. A robust physical

and predictive model for deep-submicrometer MOS circuit simulation. In

Proceedings ofthe IEEE 1993 Custom Integrated Circuits Conference, May

1993.

[IPS92a] Intel Corporation, Beaverton, OR. iPSC/860 Network Queueing System

Manual, March 1992.

[IPS92b] Intel Corporation, Beaverton, OR. iPSC/860 System User's Guide, March

1992.

[IRAN91] A. A. Iranmanesh, V. Ilderem, M. Biswal, and B. Bastani. A 0.8

pm advanced sing-poly BiCMOS technology for high-density and high-

performance applications. IEEE Journal ofSolid-State Circuits, 26:422-

426, March 1991.

[JAC087] G. K. Jacob. Directmethods in circuit simulation using multiprocessors.

Memorandum No. UCB/ERL M87/67, Electronics Research Laboratory,

University ofCalifornia, Berkeley, October 1987.

[JENG90] M.-C. Jeng. Design and modeling of deep-submicrometer MOSFETb.

Memorandum No. UCB/ERL M90/90, Electronics Research Laboratory,

University ofCalifornia, Berkeley, October 1990.

302

BIBLIOGRAPHY

[JOHN89] D.S. Johnson, C. R. Aragon,L. A. McGeoch, and C. Schevon. Optimization

by simulated annealing; part I, graph partitioning. Operations Research,

37(6):865-892, November-December 1989.

[JOHN92] B. Johnson, T. Quarles, A. R. Newton, D. O. Pederson, and A. Sangiovanni-

Vincentelli. SPICE3 version 3f user's manual. Technical report, Depart

ment ofElectrical Engineering and computer Science, University ofCali

fornia, Berkeley, October 1992.

[KAP089] A. K. Kapoor and D. J. Roulston, editors. Polysilicon Emitter Bipolar

Transistors. IEEE Press, 1989.

[KELL90] T. M. Kellesoglou. NECTAR: A knowledge-based framework for analog

circuit verification. Memorandum No. UCB/ERL M90/112, Electronics

Research Laboratory, University ofCalifornia, Berkeley, December 1990.

[KERN70] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partition

ing graphs. Bell System Technical Journal, 49:291-307,1970.

[KIRK83] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimization by simu

lated annealing. Science, 220(4598):671-680, May 1983.

[K086] H. F.-H. Ko. A special-purpose architecture and parallel algorithms on a

multiprocessor system for thesolution of largescale linearsystems ofequa

tions. PhD thesis, Department of Electrical Engineering and Computer

Science, University ofCalifornia, Berkeley, 1986.

[K093] P. K. Ko. Private communication, 1993.

[KUND86] K. S. Kundert. Sparse matrix techniques and their appUcation to circuit

simulation. In A. E. Ruehli, editor, Circuit Analysis, Simulation and

Design, pages 281-324. North-Holland, New York, 1986.

[LAUX85] S. E. Laux. Techniques for small-signal analysis of semiconductor de

vices. IEEE Transactions on Computer-Aided Design, CAD-4(4):472-481,

October 1985.

[LEWT92] T. G. Lewis and H. El-Rewini. Introduction to Parallel Computing.

Prentice-Hall, Englewood Cliffs, NJ, 1992.

303

BIBLIOGRAPHY

[LEN93] W. W. Iin and P. C. Chan. Fix to negative output conductance problem in

BSIM2 model. IEEE Transactions on Electron Devices, 40(5):1024-1028,

May 1993.

[LINI86] W. Liniger, F. Odeh, and A. RuehU. Integration methods for the solution

of circuit equations. In A. E. RuehU, editor, Circuit Analysis, Simulation

and Design, pages 235-279. North-Holland, New York, 1986.

[LUCA87a] R. Lucas and T. Blank. Parallel PISCES. In Proceedings ofthe IEEE 1987

Custom Integrated Circuits Conference, pages 119-123, May 1987.

[LUCA87b] R. F. Lucas, T. Blank, and J. J. Tiemann. A parallel solution method for

large sparse systems ofequations. IEEETransactionson Computer-Aided

Design, CAD-6(6):981-991, November 1987.

[MAYA88] K. Mayaram. CODECS: a mixed-level circuit and device simulator. Mem

orandum No. UCB/ERL M88/71, Electronics Research Laboratory, Uni

versity of California, Berkeley, December 1988.

[MAYA92] K. Mayaram. Coupling algorithms for mixed-level circuit and device sim

ulation. IEEE Transactions on Computer-Aided Design, 11(8):1003-1012,

August 1992.

[MEIN90] B. Meinerzhagen, J. M. J. Krucken, K. H. Bach, F. M. Stecher, and W. L.

Engl. A modular approach to parallel mixed level device/circuit simu

lation. In Proceedings, 1990 VLSI Process IDevice Modeling Workshop

(VPAD), pages 170-172, 1990.

[MET90] Meta-Software, Inc., Campbell, CA. HSPICE User's Manual, h9001 edi

tion, 1990.

[NAGE75] L. W. Nagel. SPICE2: A computer program to simulate semiconductor

circuits. Memorandum No. ERL-M520, Electronics Research Laboratory,

University ofCalifornia, Berkeley, May 1975.

[NAKA91] T. Nakadai and K. Hashimoto. Measuring the base resistance of bipolar

transistors. In Proceedings, 1991 IEEE Bipolar Circuits and Technology

Meeting, pages 200-203, September 1991.

304

BIBLIOGRAPHY

[NEWT83] A. R. Newton and A. L. Sangiovanni-VincentelU. Relaxation-based elec

trical simulation. IEEE Transactions on Electron Devices, ED-30(9):1184-

1206, September 1983.

[OGUR80] S. Ogura, P. J. Tsang, W. W. Walker, D. L. Critchlow, and J. F. Shepard.

Design and characteristics of the Ughtly-doped drain-source (LDD) insu

lated gate field-effect transistor. IEEE Transactions on Electron Devices,

ED-27:1359-1367, August 1980.

[OUST88] J. K. Ousterhout, A. R. Cherenson, F. Doughs, M. N. Nelson, and B. B.

Welch. The Sprite operating system. IEEE Computer, 21:23-36, February

1988.

[PACH91] P. S. Pacheco, J. M. del Rosario, and T. Rashid. ParaUel SPICE on dis

tributed memory multiprocessors. Supercomputer, 8(6):119-126, Novem

ber 1991.

[PATT90] D. A. Patterson and J. L. Hennessy. Computer Architecture: A Quantita

tive Approach. Morgan Kaufmann PubUshers, San Mateo, CA, 1990.

[PEDE91] D. O. Pederson and K. Mayaram. Analog integrated circuits for communi

cation: principles, simulation, and design. Kluwer Academic Publishers,

Boston, 1991.

[PINT85] M. R. Pinto, C. S. Rafferty, H. R. Yeager, and R. W. Dutton. PISCES-

II user's guide and supplementary report. Technical report, Stanford

Electronics Lab., Stanford University, 1985.

[PINT90] M. R. Pinto. Comprehensive semiconductor device simulation for silicon

ULSI. PhD thesis, Stanford University, 1990.

[PIX89] Digital Equipment Corporation, Maynard, MA. Pixie - Ultrix 4.2a Manual

Page, 1989.

[POTH90] A. Pothen, H. D. Simon, and K.-P. Iiou. Partitioning sparse matrices with

eigenvectors of graphs. SIAM Journal of Matrix Analysis and Applica

tions, ll(3):430-452, 1990.

305

BIBLIOGRAPHY

[QUAR89] T. L. Quarles. Analysis of performance and convergence issues for circuit

simulation. Memorandum No. UCB/ERL M89/42, Electronics Research

Laboratory, University of California, Berkeley, April 1989.

[ROOS50] W. van Roosbroeck. Theory of flow of electrons and holes in germanium

and other semiconductors. Bell System Technical Journal, 29:560-607,

1950.

[ROYC91] J. S. Roychowdhury, A. R. Newton, and D. O. Pederson. An impulse-

response based linear time-complexity algorithm for lossy interconnect

simulation. In Digest of Technical Papers, IEEE International Conference

on Computer-Aided Design, pages 62-65, November 1991.

[SADA87] P. Sadayappan and V. Visvanathan. Circuit simulation on a multiproces

sor. In Proceedings of the IEEE 1987 Custom Integrated Circuits Confer

ence, pages 124-128, May 1987.

[SALE89] R. A. Saleh, K. A. GalUvan, M.-C. Chang, I. N. Hajj, D. Smart, and T. N.

Trick. ParaUel circuit simulation on supercomputers. Proceedings of the

IEEE, 77(12):1915-1931, December 1989.

[SCHA69] D. L. Scharfetter and H. K. Gummel. Large-signal analysis of a siUcon

Read diode oscillator. IEEE Transactions on Electron Devices, ED-16:64,

January 1969.

[SCHR91] M. Schroter. Transient and smaU-signal high-frequency simulation of

numerical device models embedded in an external circuit. COMPEL,

10(4):377-387, December 1991. NASECODE VII Transactions.

[SELB84] S. Selberherr. Analysis and Simulation of Semiconductor Devices.

Springer-Verlag, Wien, 1984.

[SIMP91] M. R. Simpson. PRIDE: An integrated design environment for semicon

ductor device simulation. IEEE Transactions on Computer-Aided Design,

10(9):1163-1174, September 1991.

306

BIBLIOGRAPHY

[SING86] K. Singhal and J. Vlach. Formulation of circuit equations. In A. E.

RuehU, editor, Circuit Analysis, Simulation and Design, pages 45-70.

North-HoUand, New York, 1986.

[SOLL90] E. G. SoUey, Jr. Temperature dependence of physical parameters for im

proved bipolar device simulation. Master's thesis, University of Florida,

1990.

[STRU85] R. D. Strum and J. R. Ward. Electric Circuits and Networks, Second

Edition. Prentice-HaU, Englewood Cliffs, NJ, 1985.

[SUND90] V. S. Sunderam. PVM: A framework for paraUel distributed computing.

Concurrency: Practice & Experience, 2(4):315-339, December 1990.

[SZE81] S. M. Sze. Physicsof Semiconductor Devices, Second Edition. John WQey

& Sons, New York, 1981.

[TMA91] TMA PISCES-2B circuit analysis advanced appUcation module. Technol

ogy Modeling Associates, Inc. product announcement, 1991.

[TROT90] J. A. Trotter and P. Agrawal. Circuit simulation algorithms on a dis

tributed memory multiprocessor system. In Digest of Technical Papers,

IEEE International Conference on Computer-Aided Design, pages 438-

441, November 1990.

[VLAD82] A. Vladimirescu. LSI circuit simulation on vectorcomputers. PhD thesis,

Department of Electrical Engineering and Computer Science, University

of CaUfornia, Berkeley, 1982.

[WEBB91] D. M. Webber, E. Tbmacruz, R. Guerrieri, T. Tbyabe, and A. Sangiovanni-

VincentelU. A massively paraUel algorithm for three-dimensional device

simulation. IEEE Transactions on Computer-Aided Design, 10(9):1201-

1209, September 1991.

[WONG91] A. S. Wong and A. R. Neureuther. The intertool profile interchange for

mat: a technology CAD environment approach. IEEE Transactions on

Computer-Aided Design, 10(9):1157-1162, September 1991.

307

BIBLIOGRAPHY

[WU91] K.-C. Wu, G. R. Chin, and R. W. Dutton. A STRIDE towards practi

cal 3-D device simulation - numerical and visualization considerations.

IEEE Transactions on Computer-Aided Design, 10(9):1132-1140, Septem

ber 1991.

[YAMA85] F. Yamamoto and S. Takahashi. Vectorized LU decomposition algorithms

for large-scale circuit simulation. IEEE Transactions on Computer-Aided

Design, CAD-4(3):232-239, July 1985.

[YANG90] G.-C. Yang. PARASPICE: a paraUel circuit simulator for shared-memory

multiprocessors. In Proceedings, 27th ACMIIEEE Design Automation

Conference, pages 400-405, June 1990.

[YOUN90] D. Young. Department of Electrical Engineering and Computer Science,

University ofCalifornia, Berkeley, 1990. EE199 Report.

[YU85] Z. Yu and R. W. Dutton. SEDAN III - a general purpose, one-dimensional

semiconductor analysis program. Technical report, Integrated Circuits

Lab., Stanford University, Stanford, CA, July 1985.

[YUAN88] C.-P. Yuan, R. Lucas, P. Chan, and R. Dutton. ParaUel electronic circuit

simulation on the iPSC system. In Proceedings ofthe IEEE 1988 Custom

Integrated Circuits Conference, May 1988.

[ZARR89] M. Zarrabian. Evaluation of SPICE modeling of bipolar transistors with

CODECS. Master's thesis, Department of Electrical Engineering and

Computer Science, University of California, Berkeley, 1989.

308

	Copyright notice 1993
	ERL-93-51

