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Abstract

We consider large buffer asymptotics for feed-forward networks of discrete-time
queues with deterministic service rate shared by multiple classes of streams. First we
review the concept of effective bandwidths for traffic streamssubject to a tail constraints
on the buffer occupancy. Next we discuss the effective bandwidth of the departure pro
cess of such a queue, proving that in fact the effective bandwidth of the output is at
worst equal to that of the input, and depending on the service rate, strictly less than
that of the input. We then define the notion of a decoupling bandwidth guaranteeing
that asymptotics within the network are decoupled.

These results provide a framework for call admission schemes which are sensitive
to constraints on the tail distribution of the workload in buffers or approximate cell
loss probabilities. Our results require relatively weak assumptions on both the traffic
streams and service policies. We consider the problem of "optimal" traffic shaping (via
buffering) subject to a loss or delay constraint. Finally, we discuss our results in the
context of resource management for ATM networks.

1 Introduction

An important open problem in the context of BISDN/ATM is that of designing appropriate
resource management schemes comprising call admission, routing and network planning for
a heterogeneous collection of users requiring multiple qualities of service. The difficulty
of this problem relative to traditional (circuit-switched) telephone networks, lies in the
multiplexing of heterogeneous packetized traffic streams and messages via switches and
communication links. In order for streams to share resources, one must guard against
traffic fluctuations by inserting buffers. To ease the task of managing such a network it is
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desirable to obtain an equivalent circuit-switched model. For example, suppose a collection
of sources, nj of type j 6 J-, which require a bandwidth a,-, share a link with capacity c.
One can easily check how much bandwidth is available by considering:

?

When appropriate, such a scheme can be extended to a network, as the counterpart of
traditional telephone systems, where a connection is set up if indeed physical resources are
available to link the source to the destination. Unfortunately, the interaction of multiple
types of traffic and resources in networks is typically not linear in the number of sources,
nor is it usually decoupled across the different types of streams.

There exists, however,~a remarkable collection of results for multi-type streams sharing
a single queuefor which an effective bandwidth and the accompanying linear constraint can
be found such that an asymptotic constraint on the tail distribution of the buffers' workload
is guaranteed. The goal herein is to investigate this idea for a network of queues. In this
paper we obtain the input/output map for the effective bandwidths of streams sharing a
queue. We will show explicitly that the reduction in effective bandwidth due to a buffer
depends on the release rate. We then consider the resource management problem for a
multi-class feed-forward network via the notion of decoupling bandwidths. Our results show
that when the queues' service rates are selected appropriately, the asymptotics for queues in
the network reduce to that of the single buffer case, and thus by way of effective bandwidths
a workable circuit-switched model is obtained.

The prototypical example is that of a Jackson network, for which the steady state
distribution is in fact product-form. The queuelength distribution for a queuei, is geometric
and simply depends on the ratio of the aggregate arrival intensity to the service rate of the
queue, i.e., pi = At//it-. In order to guarantee individual 6-constraints on the tail distribution
of the queue lengths

P(Qi >B) = pf+1 < 6B,
we require that At- < p,{8. Thus to manage resources in this network, it suffices to ensure
that the mean rate flowing through each node remains within the interval computed from
the constraint. A new traffic stream will not violate the imposed tail constraints if the
additional traffic along its route remains within the prescribed intervals.

In this paper we extend this scenario to a feed-forward network with multiple classes
of traffic streams, where the queues have deterministic service rate and arbitrary work
conserving service policies. The intuitive picture for our result is as follows: Consider a
large accumulation of customers (packets) for a queue deep in the network. Such an event
is necessarily due to an increase in the empirical arrival rate of the traffic streams sharing
that queue. When the asymptotics are "decoupled" these deviations from the mean rate
are such that other queues shared by these streams are invisible. The likelihood of a traffic
streams' deviations can then be computed at the network edge, where the statistics are
assumed to be known.

To our knowledge this is the first successful attempt to study the effective bandwidth
idea for large buffer asymptotics in networks. We note however, some previous work in this



area using bounding techniques by Kurose [23] and Chang[4]. Also in [10], we presented an
alternative point of view, investigating the asymptotics ofnetworks with negligible buffers
but where traffic streams were periodically averaged.

We begin by reviewing the notion ofeffective bandwidths for a single queue in §2 as
well as some fundamental concepts in the theory of large deviations. In §3, we consider
the large deviations of the departure process ofa queue. Having identified the properties
of the departure processes, we consider some examples of traffic shaping via buffering in
§3.1. In §3.2 we consider queues in tandem. We turn to more general aspects of resource
management for networks in §4. Asummary ofour results and conclusions can befound in
§5.

2 Single buffer asymptotics via large deviations

In this section we state the effective bandwidth result for a multi-class discrete-time queue
subject to constraints on the tail probability of the buffer occupancy. This discussion is
based on an in-depth study in an earlier paper [9], which purported to extend the results
of Kelly [20]. The large deviations techniques we use here were inspired by a heuristic
of Borovkov, see Walrand and Parekh [26, 25], and the results of Kesidis, Walrand and
Chang [22, 4]. See also the recent paper ofWhitt [27]. These ideas were furthered in [9],
where weexplored randomness and dependencies in the arrivaland service processes. There
exists much related work in this field. Notably, effective bandwidth results for Markov fluid
sources were obtained via spectral expansions, by Gibbens and Kelly [17], and Elwalid and
Mitra [15]. In addition some early work on this topic can be found in Hui [19] and Guerin,
Ahmadi and Naghshineh [18].

2.1 Large deviations

We begin by reviewing the statement and possible requirements for large deviation results
to hold. For a complete reference on the subject see Dembo and Zeitouni [12]. A sequence
of measures {/Jn}> on R, will satisfy a Large Deviation Principle (LDP) with good rate
function, /(•), if for every closed set F,

and for every open set G,

limsup —logfin(F) < —inf I(x),
n-foo n x€F

liminf —log u,n(G) > —inf I(x),

and {x :I(x) < a} is compact for a < oo. We only consider the setting where {p,n} denote
the distributions of the partial sums n^Sn = n'1 £"=1Xn, for a sequence of real-valued
random variables {Xn}. We then say that {Xn} satisfies an LDP with good rate function
/(•). Below we briefly discuss when such bounds do indeed hold.



The Gartner-Ellis Theorem establishes the existence of an LDP with convex good rate
function for a large class of sources. The requirements are that:

1. The limits A(0) = limn_oo £ logEexp[0Sn] exist (possibly infinite) for all 0 € R;

2. The originis in the interior, D\, ofthe effective domain D\ = {0 : A(0) < oo} of A(-);

3. A(-) is differentiable throughout D°h and steep, i.e., lim^oo!^^! = oo whenever
{9n} is a sequence in D£, converging to a boundary point of D

Under conditions 1-3 an LDP holds with the good rate function given by the convex dual
A*(-),°fA(.):

A*(x) = sup[0x - A(0)].
9

This result applies to i.i.d. sequences with EeeXl < oo for all 0, which corresponds to the
original large deviation estimate of Cramer. The result also applies to sequences with weak
dependencies.

A morespecific characterizationofsources for which LDPs hold can be found in [12]. For
example, coordinate functions of Markov chains satisfying strong uniformity conditions on
the transition kernel and tail will satisfy an LDP, see for example [13]. In this case, the rate
function can usually be interpreted in terms of the relative entropy rate of a deviant Markov
chain with respect to the original process. For stationary sequences satisfying appropriate
mixing and tail conditions similar results hold, see [3].

2.2 Effective bandwidths for single buffer

Theorem 2.1 [See [9]] Let {Xn} be a stationary ergodic process with EXn < 0, which
either satisfies an LDP with convex good ratefunction /(•), such that for all 0 < oo

1 n
A(0) = lim -logEexp[0 Y X(] < oo,

t=l

and A*(-) is strictly convex in a neighborhood of a* = arginfa>0A*(a)/a, or satisfies the
requirements for the Gartner-Ellis Theorem1. Then the Lindley process

Wn+l = [Wn + Xn]+

has a stationary distribution, say that of a random variable W, and for 6 > 0,

A{6) <0 <=» lim i logP(W >B) <-6.
B-+oo B

1Note that the Gartner-Ellis Theoremdoes not require finite log-moment generating functions.



Remark 2.1 Note that if A(0) < oo then lim^^ A*(x)/|a;| = oo, so a* above makes
sense (see [12] page 34). Also note that thestrict convexity ofA*(-) is closely related to the
differentiability of A(-) at some point, i.e., if A(-) were differentiable then A*(«) would be
strictly convex. Alternatively if the Gartner-Ellis Theorem is in force, then the steepness
and differentiability conditions guarantee not only that a* makes sense, but also the strict
convexity of A*(-) when the random variables are real-valued (see [14] page 224).

By letting Xn = A„ —c, where An denotes aggregate arrivals for a multi-class queue
with service rate c, Theorem 2.1 can be used to establish the following corollary.

Corollary 2.1 [See [9] or [22,4]] Consider a collection of independent sources, nj of each
type j € J, with slotted arrival processes {An}, each satisfying the conditions in Theorem
2.1, so that

^j(S) = lim^logEexV[6J2M]
t=l

Suppose they share a deterministic buffer with any work conserving service policy at rate c.
Then the following effective bandwidth result holds:

X>;<*j(*)<c, where aj(6) =̂ p- <=* jirn^-|logP(T^ >B) <-6,

and where W denotes the stationary workload.

The usefulness of this result is predicated on being able to compute or estimate (possibly
on-line) the effective bandwidth of a source. For a summaryof someanalytical formulae see
Kesidis et al. [22]. These include the usual i.i.d. sources, as wellas Markovmodulated fluids
or Poisson processes and Gaussian processes. The extension of our results to continuous-
time queues, such as the case of Markov modulated fluids, can be made rigorous via discrete
exponentially good approximations (see [12] for a definition) in which case the previous
arguments will apply. For an investigation of some ideas in quick estimation and policing
using effective bandwidths see Kesidis et al. [6, 21].

3 Effective and decoupling bandwidths for departures from
a queue

We begin this section by identifying the large deviation rate function of the departure
process from a stationary queue. For simplicity we consider a discrete-time queue with
constant service rate, though by analogy with Theorem 2.1, extensions to randomized and
dependent service times follow through directly.



Theorem 3.1 Let {An} be a stationary ergodic arrival process, such that EAn = m < c ,
which either satisfies an LDP with convex good rate function /(•), such that for all 9 < oo

A(0) =nhm i logEexp[0 ]T A{] <oo,
t=i

and A*(«) is strictly convexor satisfies the requirements for the Gartner-Ellis Theorem with
finite log-moment generating function. Then the Lindley process

Wn+1 = {Wn + An-c]+

has a stationary distribution, say that of a random variable W, andthe associated departure
process {Dn} satisfies an LDP with with convex good rate function given by A*(-) on [0,c]
and infinite on [0,c]c.

Remark 3.1 By contrast with Theorem 2.1,here we require that asymptotic log-moment
generating functions are bounded. This condition guarantees exponential tightness of the
distribution for the paths of normalized partial sums required to use the result of Dembo
and Zajic [11] in the proof below.

Proof: The stability condition, EAn < c, guarantees the existence of a stationary distribu
tion, see Loynes [24] or Walrand [26] Chap. 7. In particular, let Xn = An - c and

W™ = 0 n < -m,

WT+i = [Wnm + *n]+ n>-m,

then the distribution of Wfi1 converges monotonically to that ofW, where P(W < oo) = 1.
Similarly the departure process is monotonically increasing and converging to the stationary
distribution.

Since limitsA(0) exist and are bounded by Theorem 4.5.10 in [12], or directly from the
Gartner-Ellis Theorem, the rate function for the arrival process can be identified as the
convex dual of A(-), i.e.,

7(a) = A*(a) = sup[0a - A(0)].
B

Let S{? = Y%=i ^n, S£ = E?=i An denote the partial sums of the departure and arrival
processes for n > 0 and S£ = TH=n An for n < 0. We begin by considering the departures
for a stationary version of this queue. Note that

S^<W + S^ where W= max[Sft-- ic,0].
t>0

Using an argument similar to that in Theorem 2.1, or see Chang [4] we have that for e > 0
and large enough n,

Eexp[0Sf] < Eex?[0(S^ + W)]
< Eexp[ 0 max[5^ + Sft- - ic, S*] ]

< exp[(A(0) + €)n] +2 exp[(A(0) + c)n + (A(0) + e- 9c)i]
»>o

< C exp[(A(0) + c)n],



for some finite constant C as long as A(0) + e < c0. By Chebychev's bound we then have

P(Sn >n<*) < exp[-0na] Cexp[(A(0) +e)n]
So it follows by letting n —»• oo and e —• 0 that

Urn sup - log P(±S£ >a)<- sup[0a - A(0)] =-[Pa - A(0*)] =-A»,
n-*oo n \n J $

where we note that we have taken a < c so A(0*) < c9* guaranteeing the boundedness of
the asymptotic log-moment generating function for the departures.

We obtain a lower bound by considering a queue starting from Wo = 0. The cumulative
departure process of this queue clearly lower bounds that of the stationary version. Note
that

s? = s*-wn
= Si- ma? [S* - Sf + [n - i]c]

l<t<n

= min[S£, Sti + c, ..., Si1 + [n- l]c, nc]
Sf-nc = min[5^ - nc, 5^ - [n - l]c, ..., S?-c, 0].

Consequently,

p(s£>na) = P(Sf> - nc> n[a - c])
> P(sf - no n[a -c]\S*> no) XP(5^ >no)
= P(min[5^ - nc, ..., S* - c, 0] >n[a - c] \S£ - no n[a - c]\ x

P(5^ > no).

Taking the lim inf we find that

liminfilogp(is,:?>a>) >
n-»oo n \n J

liminf - logP (min[5^ - nc, ..., Sf - c, 0] >n(a -c)|5^-nc> n[a - c]\ +

lim inf - log P (s£ > no) > 0- A*(a).

The bound for the second term follows by a straightforward application of the large devi
ation principle for the arrival process. The asymptotic probability of the first term can be
estimated by wayof a result for the conditional distribution of the paths corresponding to
the normalized partial sum process. Indeed as exhibited in Figure 1, one can show that the
mass of the conditional distribution of paths leading to S£ - nc > n[a - c] concentrates
on a specific path lying above the endpoint n(a - c), such that the log of the probabiUty
that the path'sminimum remains above the endpoint goes to zero. This result is essentially
a consequence of the rate function's strict convexity. A discussion of this result is beyond
the scope of this paper, we refer the reader to the work ofAsmussen [2] and Anantharam



n (ct-c) Endpoint

Normalized partial
sum pathconditioned
on the endpoint constraint

Figure 1: Conditional path subject to constraint on the endpoint.

[1], for an investigation of the normalized partial sum paths of i.i.d. random variables, and
Dembo and Zajic [11] for a general result, which we use here, predicated on the existence
of an LDP.

Finally, observe that the rate function is clearly infinite on [0,c]c. The remaining steps
showing the LDP for open and closed sets are standard, see for example the text of Dembo
et al.[12]. •

As a corollary to this theorem consider the scenario in which the arrival process is an
aggregate of independent traffic streams.

Corollary 3.1 Consider a collection of independent sources, nj of each type j € J, with
slotted arrival processes {AJn}, each satisfying the conditions in Theorem 3.1. Suppose they
share a deterministic buffer according to a work conserving service policy with rate c. Then
the aggregate departure process satisfies an LDP with convex good rate function

Ad(")= inf X>;Ai(a;)>
I,i(i,W=« jzj

(1)

on the set [0,c] and infinite elsewhere. Define a*j{6) by the following duality relationship

Ad(S) = sup[a« - A»] = ^(6)6 - A^aK*))-
a

Note that

2aj(6)-aj(0) > a*j(6) =
dA*:

da

-l

(*) > «;(«)• (2)

We will call aj(^) the decoupling bandwidth ofa source of type j (see the remark below
for comments). The effective bandwidth of the output traffic stream, ar)(6), is given by

' T>jeJnJaA6) if EjeJriJQ:iW<c
OtD{f>) = <

c-\ ™f^.eJnjQj=c EieJ '̂̂ C^) °therwise-
8



Remark 3.2 We do not claim that the effective bandwidth of individual output streams
is necessarily reduced as we did in Corollary 3.1 for the aggregate departure process. A
technical result is missing here to identify the rate function of the test traffic stream over
the entire interval [0,c]. We conjecture that, individual sources may interact when the
decoupling constraint, Eq. 5, is not met. This might happen for example when a bursty
source shares a queue with a rather smooth source.

Outline of Proof: We begin by adapting the proof of Theorem 3.1 to the departure pro
cess of the test traffic stream. Let S£ , and 5^ denote the partial sums for the arrivals
and departures of our test stream, while S£* and S^' denote the cumulative arrivals and
departures for the other streams sharing the queue.

Unfortunately the simple proof for upper bound in the previous theorem does not follow
through. This would require a characterization of the tail for the stationary workload of the
test sequence. Nevertheless we can use the approach taken for the lower bound. Suppose we
start with an empty queue Wo = 0, the Loynes' construction permits us to conclude that
Wn is monotonically converging to the stationary distribution. Similarly the distribution
of the departures for the test sequence converges monotonically to that of the stationary
departure process. Thus we propose to bound the cumulative departures for the stationary
process, by finding a bound for thoseof the empty queue, which is monotonically increasing
to that of the stationary queue.

First note that for n > 0 we have,

SnD' + S°3-nc=S°-nc = min[S£ - nc, ...,i Sf - c, 0]
= minlS* +S^-nc,..., Sf +Sf - c, 0],

and by flow conservation S^ > Sj?. Fix e > 0 and let Sn denote the event

£n = {Sf8 € (im - ne,im -f ne), for i = 1,... n},

corresponding to the case where the partial sum path of the traffic sharing the queue with
the test stream maintains an arrival rate close to itsmean m= EA{. This event isofcourse
very likely to occur, in fact we have that

nlim ilogP(f„) = 0,
by the LDP results in Dembo and Zajic [11].

Observe that the cumulative departures of the test stream from the shared queue, can
only increase when the stream sharing this queue is set to zero. Also note that SA* > SD*
Thus, n - n •

P(5f >na) < P(S? > na \S? =0) =
P(Sf ~nc> n[a - c) \S? =0, Sf >na) x P(S* >na),

and

P(S°' -nc> n[a - c] \ S* = 0, S* >na) =
P(min[5f -nc,...,Sf - c, 0] >n[a - c] \Sf -nc> n[a - c]).

11



This conditional distribution converges to one as long as a < c, in which case by convexity
and the contractionjmnciple the partial sum process for the test stream remains above the
endpoint n[a —c], so we conclude that,

lim -logP(5f' -nc> n[a - c] \ S* = 0, S* > na) = 0

The second term is bounded using the LDP for the arrival streams. Combining these two
results we obtain the following upper bound:

lim sup-logP^f >na) <0+lim sup i log P(.?;?' >na) <-A*t(a).
n—*-oo n n—»oo n

We prove the lower bound in a similar fashion. By conditioning and using the indepen
dence of the streams we obtain,

P(5T?t > na) = P(Sj' -nc>n[a-c])>
P(min[^t + S? - nc,...,Sf + S? - c, 0] > n[a - c] + S?a | Sf > n[a + 2e], Sn) x

P(Sf>n[a-r2e]) x P(Sn).

Proceeding as above, we take the log and the normalized lim inf to find a lower bound.
First note that

liminfilogP (-Sf >a+2e) + lim -logP(Sn) > -A*t(a +2e) +0.
n-voo n \n J n—oo n ° v ty — tK '

Second we note that S^8 > S*?a and that we have conditioned on £n, so the conditional
probability is lower bounded by

P(mln[Sf + Sf-nc,...,Sf +Sf - c,0] > n[a - c] +S* | #' > n[a + 2e], Sn) >
P(min[S,^t + n[m - e] - nc,..., Sf + m- ne - c, 0] >

n[a - c] -f- n[m + e] | 5;f > n[a + 2e]) >
P(mm[Sf + n[m-c],...,Sf +m-c,0]>n[a +2e +m-c]\ Sf > n[a + 2e\).

Once more taking limits we have that

Jirn^ -logP(min[S;f +n[m - c],..., Sf +m- c,0] >

n[a + 2e+m-c]\Sf >n[a + 2e]) = 0.

As in Theorem 3.1 the conditional distributionconverges to one as long as a + 2e < c— m,
where m = EA{, in which case by convexity and the contraction principle the partial sum
process for the test stream remains above the endpoint n[a + 2e+ m - c). Finally we let
€ -+ 0 to obtain

Ummf-logPtSf' > na) > -liminfAJ(a + 2e) = -AJ(a)

12



Assuming Eq. 5 is in effect an argument identical to that in Corollary 3.1 shows that
the effective bandwidth ofthe departures for our test stream is equal to that ofthe input:

0 0 0<a<c

-r sup [a6-A*t(a)]
0 0<a<c-E>lJ

= -6W(S)6-ADt(a;(6)]=^P =at(6).
a

3.1 Examples: Departure processes and traffic shaping via buffering

In [9], we considered the impact on the effective bandwidth of memoryless rejection (or
marking) policies as well as rate filtering. We proved therein that among all memoryless
rejection policies with the same throughput a threshold function isoptimal in the sense that
it minimizes the effective bandwidth at the output, but only for i.i.d. arrival streams. An
examination of the impact of linear filtering with unit gain, in the case of Gaussian sources,
suggested that the effective bandwidth is invariant to filtering. Here we consider the effect
of traffic shaping via buffering.

The result in Corollary 3.1 suggests the impact of a buffered traffic shaping device.
Suppose we are given the task ofshaping a traffic stream such that the effective bandwidth
is minimized. Moreover we are given a ^-constraint on the tail of the overflow probability,
corresponding to a rough loss constraint. Alternatively a constraint on the delay before
entering the network could be considered. The goal is to select the optimal deterministic
release rate csuch that the queue length satisfies the constraint, and the effective bandwidth
of the departure process an(6) is minimized, i.e.,

mm
oo

<*d(6) (6)
such that lims^oo ^ log P(W > B) <-6

The results in the corollary prove that it is optimal to serve the customers at precisely
the effective bandwidth of the input, in the sense that this will minimize the effective
bandwidth of the output while satisfying the tail constraint. In retrospect this result is
quite intuitive: When the release rate is large, the stream is oblivious to the buffer and its
effective bandwidth remains unchanged. When the service rate is reduced to the minimum
acceptable level, i.e., the effective bandwidth of the input, then queueing in combination
with deterministic release, work to our advantage by smoothing the traffic stream entering
the network. Below we present two simple examples which should make these observations
concrete.

Example 1: We begin by considering asimple example of buffering aGaussian process

13



{An} with mean p and finite asymptotic variability

1 n
a2 = lim -Var(Y^ Aj) < oo.

n—*oo n xf—' •"
i=i

The log-moment generating function and its dual are given by:

A(6) = p6 +
62a2

2 ' v ' 2a2

The effective bandwidth of the arrival process is a(6) = p + $£, while the decoupling
bandwidth is a*(6) = p + 6a2. The effective bandwidth of the departure process from a
deterministic server at rate c is

( a(6) if a*(6) < c
aD(6) = <

c—̂C2J£\ otherwise.

Figure 2 exhibits the quantities we are considering as a function of 6. The effective band
width of the departure process is identical that of the arrival process for 6 < (c - p)ja2,
after which it is reduced and converges hyperbolically to the logical maximum of c, the
service rate of the queue.

a*(6) a(6)

/':

(G+fl)
2

ti-

(o-»
5

Figure 2: Input/Output effectivebandwidths for a buffered for Gaussian source.

Note that although thenotation isnot suggestive, the effective bandwidth ofthe output
depends on the service rate of the buffer. For given ^-constraint on buffer overflows, the
effective bandwidth of the departure process is minimized when we serve at rate c = a(6)
in which case we have

«!>(*) =*»+^[l-|] <«(«) =M+̂ .
This expression exhibits explicitly the benefits of optimal traffic shaping via buffering in the
sense of Eq. 7. A similar, but more involved calculation, for a buffer with a ^-constraint on
the distributions of delays could be carried out.

14



r1>orO=0

Figure 3: Input/Output effective bandwidths for a buffered On/Off Markov fluid source.

Example 2: A second example of interest is that of an On/Off Markov fluid. The
source has the following dynamics: it turns off (on) with intensity p (A), and generates
traffic at rate ro (7*1) when off (on). We will suppose 7*1 > c > ro = 0. The log-moment
generating function and its convex dual are given by (see [22, 8]):

MS) = fr1-M-A +>Wr,-M +A)» +4A,> =
2 ' x ' 7"i

where m= -fy- is the mean arrival rate. After some algebra we find a(6) = ^^ and

y/(ap) - y/in - a)\]

'*(i-)/SiiS) if*n-M +A<0

.*(1+^/4^r-X)0 °therwise
The effective bandwidth of the departure process is then given by

' a(<!>) ifa*(6)< c

- iVSo-ypgp otherwise.
<*£>(<$) = <

Figure 3 shows a typical graph of the input, output and decoupling bandwidths associated
with an On/Off Markov fluid. The effective bandwidth of the input stream increases to
the peak rate with 6 while that of the output process converges to the service rate c of the
buffer. Note if c > rx the buffer will not affect the stream at all.

The general solution ofthe optimal buffering problem in Eq. 7is given by:

aD(S) = a(6) 4^,

which in the case of the On/Off Markov fluid is

ar)(S) = a(6)=a(6) - [v7^^)-^!-^))^2
r\8
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3.2 Example: Asymptotics for tandem queues

In this section we consider the large buffer asymptotics for stable queues in tandem. As in
the single queue example thereexists a stationary distribution, see Walrand [26] page 245.

Figure 4: Tandem queues.

Using our characterization for the stationary output process we discuss resource man
agement for a simple scenario shown in Figure 4. The figure shows two queues, shared by
three traffic streams, we will assume the effective and decoupling bandwidths of the three
streams are given by a,-(£), a?(8), i = 1,2,3. We suppose the goal is to guarantee that

lim —logP(W{ > B)<-6 for i = 1,2.
B-+oo Jo

Using the result in Corollary 2.1, the above constraint will be satisfied for the first queue if

<*i(8) + ct2{6)<ci.

Now consider the second queue. If the service rate of the first queue is such that

«i(0) + a;(«)<Cl.

thenby Corollary 3.2 the effective bandwidth ofthe stream {D2} entering the second queue
is the sameas the arrivalprocess {A2^} i.e.,equals a2(6). Thus the constraint on the second
queue is guaranteed if

a2(6) + a3(6) < c2.

4 Resource management for networks

In this section we reconsider the example in §3.2 and extend our results to a generalized
networking scenario for which we discuss some ofthe practical aspects of resource manage
ment.

We begin by making two observations on the tandem queue example. First, note that
in order to guarantee decoupling we only need constraints on the aggregate traffic flow
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along routes sharing multiple queues (e.g., a^(S) <cx- ai(0)). Thus resource management
based on effective bandwidths should be organized on a per route basis. Second, note
that the decoupling constraint may or may not be subsumed by the effective bandwidth

constraint (i.e., o:i(0) + oc^(6) < ai(6) + a2(6)). Clearly it is advantageous to have a unique
criterion for resource management. In Remark 3.1 wediscussed a tight upper bound for the
decoupling bandwidth showing that for a single source thisconstraint will notbeoutrageous.
In practice, for a queue shared by multiple non-interacting routes, (i.e., multiple streams
sharing only this queue) the decoupling constraint will often be in effect once the effective
bandwidth requirements are satisfied. So guaranteeing decoupling will typically not be
more conservative than the effective bandwidth requirement. However the smoothing effect
of queues (suggested by Corollary 3.1) is expected to make an effective bandwidth scheme
based onthe statistics oftraffic at thenetwork edge somewhat conservative for a queue deep
in the network. A final point to address is the conservative nature of effective bandwidths
in and of themselves. An enlightening discussion ofthis issue can be found in Choudhury
et al. [5]; they have shown regimes for which the tail asymptotics considered herein are not
very precise, while others where they are seen to work quite well. Undoubtedly one should
be careful in interpreting these asymptotic results, however subject to verification these
approximations provide a reasonably simple integrated approach to resource management.

Figure 5: Resource management for networks.

Consider a set of queues Q. Let R denote a collection of routes, were each route is
determined as an ordered subset of Q. Let R(i), denote the set of routes sharing queue i
truncated before queue i, i.e., we need only consider the downstream paths. In order to
guarantee decoupling we must ensure that the traffic flows on routes, R(i), are decoupled
with respect to downstream queues. If the routes in R(i) are such that when rur2e R(i)
then ri nr2 = {%} then the decoupling constraints at queue i would be given by

<*W) + E «i(0)<c,-.
j€fl(t)-r
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for all r 6 R(i) —{i}, where ar(6),a*(6) denote the effective and decoupling bandwidths of
the traffic flowing along route r. However, in order to have flexible routing which is failure
proof and distributes loads, networks are likely to have alternative routes leading to the
same destinations, such is the case in Figure 5. In this case the aggregate flows sharing
downstream queues, must satisfy a decoupling constraint at upstream queues. The traffic
flows in any collection of routes in R(i) sharing downstream queues will need to satisfy a
decoupling constraint which is in fact stronger than those above. For example the network
in Figure 5 has seven possible routes{{1,2},{1,3}, {1,4}, {1,4,3},{2}, {4}, {4,3}}. Due to
the downstream interaction of routes {1,3} and {1,4,3} we require that in addition to the
individual decoupling constraints above we have

a{l,3}W + «{1A3>W + E <*i(°) < Cl-
J€fl(l)-{{1,3},{1,4,3»

Resource management based on sucha scheme, guarantees loss constraintsfor aggregate
trafficin the network, while complex service policies at eachnode may tradeoffperformance
among individual users requiring different qualities of service.

5 Summary

In this paper we have obtained a series of novel results on the large buffer asymptotics for
multi-class traffic streams sharing a feed-forward network of queues. We began by identi
fying the large deviation rate function for the output of a multi-class queue for aggregate
and individual streams. This result showed explicitly the smoothing properties of queues
in terms of the reduction of the effective bandwidth of streams. We introduced the notion
of decoupling bandwidths, to ensure that the asymptotics for every queue in a feed-forward
network are essentially decoupled, and hence that resource management can be carried out
by considering queues individually using the effective bandwidths for streams as specified
by users at the networkedge. These results are only valid for networks with "large" shared
buffers, but allow arbitrary work conserving service policies. Further research will focus on
the interplay between service policies which can successfully guarantee specific qualities of
service to certain users and the asymptotics of large but finite buffers.
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