
 

 

 

 

 

 

 

 

 

Copyright © 1993, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



SYSTEM SUPPORT FOR SOFTWARE FAULT

TOLERANCE IN HIGHLY AVAILABLE

DATABASE MANAGEMENT SYSTEMS

by

Mark Paul Sullivan

Memorandum No. UCB/ERL M93/5

13 January 1993



SYSTEM SUPPORT FOR SOFTWARE FAULT

TOLERANCE IN HIGHLY AVAILABLE

DATABASE MANAGEMENT SYSTEMS

by

Mark Paul Sullivan

Memorandum No. UCB/ERL M93/5

13 January 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



System Support for Software Fault Tolerance in
Highly Available Database Management Systems

Copyright ©1992
by

Mark Paul Sullivan



Abstract

System Support for Software Fault Tolerance in Highly Available
Database Management Systems

by

Mark Paul Sullivan

Doctor of Philosophy in Computer Science
University of California at Berkeley

Professor Michael Stonebraker, Chair

Today, software errors are the leading cause ofoutages infault tolerant systems. System
availability can be improved despite software errors by fast error detection and recovery
techniques that minimize total downtime following an outage. This dissertation analyzes
software errors in three commercial systems and describes the implementation and evalua
tion of several techniques for error detection and fast recovery in adatabase management
system (DBMS).

The software error study examines errors reported bycustomers in three IBM systems
programs: the MVS operating system, the IMS DBMS, and the DB2 DBMS. The study
classifies errors by the type of coding mistake and the circumstances in the customer's
environment that caused the error to arise. It observes ahigher availability impact from
addressing errors, such as uninitialized pointers, than software errors as a whole. It also
details the frequencies and types ofaddressing errors and characterizes the damage they do.

The error detection work evaluates the use of hardware write protection both todetect
addressing-related errors quickly and to limit the damage that can occur after a software
error. System calls added to the operating system allow the DBMS to guard (write-protect)
some of its internal data structures. Guarding DBMS data provides quick detection of
corrupted pointers and similar software errors. Data structures can be guarded as long as
correct softwareis given ameans to temporarilyunprotect the data structures before updates.
The dissertation analyzes the effects of three different update models on performance,
software complexity, anderror protection.

To improve DBMS recovery time, previous work on the POSTGRES DBMS has sug
gested using astorage system based on no-overwrite techniques instead ofwrite-ahead log
processing. The dissertation describes modifications to the storage system that improve
its performance in environments with high update rates. Analysis shows that, with these
modifications and some non-volatile RAM, the I/O requirements ofPOSTGRES running a
TP1 benchmark will bethe same as those of aconventional system, despite the POSTGRES



force-at-commit buffer management policy. The dissertation also presents an extension to
POSTGRES to support the fast recovery of communication links between the DBMS and
its clients.

Finally, the dissertation adds to the fast recovery capabilities of POSTGRES with two
techniques for maintaining B-tree indexconsistency without logprocessing. Onetechnique
is similar to shadow paging, but improves performance by integrating shadow meta-data
with index meta-data. The other technique uses a two-phase pagereorganization scheme
to reduce the space overhead caused by shadow paging. Measurements of a prototype
implementation and estimates of the effect of the algorithms on large trees show that they
will have limited impact on data manager performance.



Ill

Acknowledgements

My readers, Mike Stonebraker, Ram Chillarege, Arie Segev, and John Ousterhout, had
manyinsightful suggestions. Reading anddigesting adissertation aslong as this one was a
lotof work for allof them, and I appreciate their thoroughness. The work presented in this
dissertation was supported in part by National Science Foundation grants MEP-8715235
andIRI-9107455.

My research advisor, Mike Stonebraker, ledme to this thesis topic. His enthusiasm for
database management systems and computer science research is in large part responsible
for my decision to remain in graduate school after I finished my Master's degree. I have
enjoyed working with himand hope I have picked upsome of his savvy about howto build
systems and how to identify productive researchareas.

I was fortunate to be able to work at IBM Research as a graduate student. Ram
Chillarege arranged for me to work with IBM and gain access to the raw software error
data analyzed in ChapterTwo. I have learned a lot from Ram both about how to conduct
research and howto increase theimpact of my work onpeople building real systems. From
IBM, Al Garrigan, Dave Ruth, Hakan Markor, Janice Crawford, and Chris Byrne helped
Ram and I tounderstand, gather, and present the error data presented inChapter Two of the
dissertation.

I would like to thank the XPRS group for its contributions to my research. John
Ousterhout, Dave Patterson and Randy Katz gave me comments on both the presentation
and early direction of the guarding work. During the XPRS retreats, discussions withDave
Lomet and Marc Weiser were especially helpful in shaping my research direction. The
other graduate students inthe XPRS group, especially John Hartman, Ann Drapeau, Pete
Chen, Ken Shirriff, Mendel Rosenblum, and Ethan Miller, provided critical feedback.

In completing the dissertation, Ihave come to rely on the advice and encouragement of
the Berkeley computer science community. Ramon Caceres, Chris Black, Ethan Munson,
Vance Maverick, David Bacon, LuPan, Srinivasan Keshav, Diane Hernek, and Marti Hearst
all gave both suggestions and moral support Stuart Sechrest and Peter Danzig took me
under their wings when I first arrived at Berkeley. I would not be going into computer
science research now if Doug Terry had not encouraged mywork when I was completing
my Master's degree. Mark Noworolski, Scott Leubking and my officemate-in-law, Keith
Bostic, have always had ideas for improving my work, many of which were perfectly
reasonable. Jim Mott-Smith went out ofhis way to fix the obscure bugs in Sprite that only



IV

seemed to arise when I ran POSTGRES on the Sprite machines. Carol Paxson's help was
critical in the high-speed chase portion of the signature gathering process.

Without the work that many people have put into POSTGRES, myresearch would have
been impossible. I would like to thank Jeff Meredith, Joe Hellerstein, Cim Taylor, Curt
Kolovson, Anant Jhingran, Paul Aoki, Spyros Potamianos, Jolly Chen, Sunita Sarawagi,
Greg Kemnitz, John Forrest and especially Wei Hong for their energetic discussions and
their perseverance in long study sessions. Claire Mosher and Chandra Ghosh helped keep
the frightening UC bureaucracy at bay.

Three people from the graduate student community have beenespecially helpful. Mike
Olson and I developed the B-tree consistency support presented in Chapter Five and he
implementedthe techniques in POSTGRES. Mike's insightinto POSTGRES and software
design have been an important influence on the rest of my research as well. Mary Baker
workedwith me on fastrecovery issues in POSTGRES andcontributed suggestions to the
client/server protocols in Chapter Four. Her advice on organization and presentation of
ideas has been valuable at many points during the research that led to this dissertation. I
have benefited from my officemate Margo Seltzer's clear thinkingandexperience in many
ways while I havebeen at Berkeley. Manyof the insights anddesigndecisions that appear
in this dissertation crystallized during longdiscussions with her. I hopethat I am fortunate
enoughto work with peopleof this caliber when I leave Berkeley.



Contents

List of Figures viii

List ofTables x

1 Introduction 1
1.1 Software Failures and DataAvailability 1
1.2 A Model of Software Errors 4
1.3 Existing Approaches to Software Fault Tolerance 5
1.4 Organization of This Dissertation 7

2 A Survey of SoftwareErrors in Systems Programs 10
2.1 Introduction 10
2.2 Previous Work H
2.3 Gathering Software Error Data 13

2.3.1 Sampling from RETAIN 15
2.3.2 Characterizing SoftwareDefects 16

2.4 Results 19
2.4.1 Error Type Distributions 20
2.4.2 Comparing Products byImpact 31
2.4.3 ErrorTriggering Events 32
2.4.4 Failure Symptoms 37

2.5 Summary 39

3 Using Write-Protected Data Structures in POSTGRES 42
3.1 Introduction 42

3.1.1 System Assumptions 43
3.2 PreviousWorkRelated to GuardedData Structures 45
3.3 Modelsfor UpdatingProtectedData 47

3.3.1 Overview of Page Guarding Strategies 47
3.3.2 The ExposePage Update Model 50
3.3.3 The Deferred Write UpdateModel 52
3.3.4 The ExposeSegmentUpdate Model 57



CONTENTS vi

3.4 PerformanceImpact of GuardedData Structures 58
3.4.1 Performance of theGuarding System Calls 58
3.4.2 Guarding in a DBMS with a Debit/Credit Workload 60
3.4.3 Reducing Guarding Costs Through Architectural Support 64

3.5 Reliability Impact of Guarded Data Structures 65
3.6 Summary 67

4 Fast Recovery in the POSTGRES DBMS 69
4.1 Introduction 69
4.2 A No-Overwrite StorageSystem 72

4.2.1 Saving Versions UsingTupleDifferences 73
4.2.2 GarbageCollection and Archiving 75
4.2.3 Recovering the Database After Failures 80
4.2.4 ValidatingTuples During Historical Queries 86

4.3 Performance Impactof Force-at-Commit Policy 86
4.3.1 Benchmark 87

4.3.2 Conventional Disk Subsystem 90
4.3.3 Group Commit 91
4.3.4 Non-Volatile RAM 92
4.3.5 RAID Disk Subsystems 94
4.3.6 RAIDand the Log-Structured FileSystem 95
4.3.7 Summary 97

4.4 Guarding the Disk Cache 97
4.5 Recovering Session Context 99

4.5.1 Communication Architecture of POSTGRES 100
4.5.2 Recovery Mechanism for POSTGRES Sessions 102
4.5.3 Restarting Transactions Lost During Failure 103

4.6 Summary 105

5 Supporting Indices in the POSTGRES Storage System 107
5.1 Introduction 107

5.2 Assumptions 110
5.3 Support for POSTGRES Indices Ill

5.3.1 Traditional B-Tree Data Structure Ill

5.3.2 Sync Tokens and Synchronous Writes 112
5.3.3 Technique One: Shadow Page Indices 113
5.3.4 Technique Two: Page Reorganization Indices 118
5.3.5 Delete, Merge, and Rebalance Operations 121
5.3.6 Secondary Paths to LeafPages: B^-tree 123

5.4 Concurrency Control 126
5.5 Using Shadow Indices in Logical Logging 128
5.6 Performance Measurements 131



CONTENTS vii

5.6.1 Modelling The Effect of Increased Tree Heights 132
5.6.2 Measurements of thePOSTGRES B^-Tree Implementation ... 134
5.6.3 Estimating Additional I/O Costs During Recovery 136

5.7 Summary 137

6 Conclusions 138
6.1 Future Work 140

6.1.1 ProvidingAvailability for Long-Running Queries 140
6.1.2 FastRecovery in a MainMemory Database Manager 141
6.1.3 Automatic Code and Error Check Generation 141
6.1.4 High Level Languages 142

Bibliography 143



VU1

List of Figures

1.1 Causes of Outages in Tandem Systems 3

2.1 DB2 ErrorType Distribution 20
2.2 IMS ErrorType Distribution 21
2.3 MVS Regular Sample ErrorType Distribution 21
2.4 Control/Addressing/Data ErrorBreakdown DB2, IMS, and MVS Systems 22
2.5 Summary of Addressing ErrorPercentagesin PreviousWork 24
2.6 Distribution of the Most Common Control Errors 25

2.7 Distribution of the Most Common Addressing Errors 28
2.8 MVS Overlay Sample ErrorType Distribution 29
2.9 DB2 ErrorTrigger Distribution 33
2.10 IMS ErrorTrigger Distribution 33
2.11 MVS ErrorTrigger Distribution 34
2.12 ErrorType Distribution for Error-Handling-Triggered in DB2 36
2.13 ErrorType Distribution for Error-Handling-Triggered in IMS 36
2.14 MVS Overlay Sample Failure Symptoms 38
2.15 MVS Regular Sample Failure Symptoms 38
2.16 IMS Failure Symptoms 39
2.17 DB2 Failure Symptoms 40

3.1 POSTGRES Process Architecture 44

3.2 Example of Extensible DBMS Query 49
3.3 Expose Page Update Model 51
3.4 Deferred Write Update Model 53
3.5 Remapping to Avoid Copies in Deferred Write 56
3.6 Costs of Updating Protected Records 61

4.1 Forward Difference Chain 74

4.2 Backward Difference Chain 74

4.3 Creating an Overflow Page 78
4.4 Tuple Qualification 83
4.5 Phases of the Client/Server Communication Protocol 101



LIST OF FIGURES ix

5.1 Conventional B-Tree Page 112
5.2 Shadowing Page Strategy 113
5.3 Shadowing Page Split 115
5.4 Two Page Splits During the Same Transaction 115
5.5 Page Split For Page Reorganization B-Trees 119
5.6 A Merge Operation on a Balanced Shadow B-Tree 122
5.7 Normal B^-Tree 124
5.8 Worst-Case Inconsistent BUnk-Tree 124
5.9 Height of Tree for Different Size B-Trees 133



List of Tables

2.1 AverageSize of an Overlay 30
2.2 Distance From Intended Write Address 31

2.3 Operating System andDBMS Error Impacts 32

3.1 Raw Costs of GuardingSystem Calls 59
3.2 Performance Impact of Guarding a CPU-BoundVersion of POSTGRES . 63
3.3 Performance Impact ofGuarding an IO-BoundVersion of POSTGRES . . 63

4.1 Summary of I/O Traffic in a Conventional Disk Subsystem 91
4.2 GroupCommit in a Conventional Disk Subsystem 92
4.3 Summary of I/O traffic When NVRAM is Available 93
4.4 Comparison of Random I/Os in RAID and aConventional Disk Subsystem 95
4.5 Comparison of I/Os in LFS RAID and a Non-LFS Conventional Disk Sub

system 96

5.1 Insert/Lookup Performance Comparison 135



Chapter 1

Introduction

1.1 Software Failures and Data Availability

Commercial computer users expect their systems to be both highly reliable and highly
available. Given a system's service specification, the system is reliable if does notdeviate
from the specification when itperforms its services. The system is available ifitis prepared
to perform the services when legitimate users requests them. A fault tolerant system isone
that is designed toprovide high availability and reliability in spite of failures in hardware
or software components of the system. Once a fault tolerant system is in production, it
maintains high reliability through error detection, halting an operation rather than providing
an incorrect result. Fault tolerant systems achieve high availability by recovering transient
state quickly after an error is detected, minimizingdown time to increase overall availability.

Traditionally, fault tolerant systems have focused on detecting and masking hardware
(material) faults through hardware redundancy [41]. In today's fault tolerant systems,
however, software failures, rather than hardware failures, are the largest cause of system
outage [29]. Figure 1.1 compares outage distributions in three years ofa five year study
ofTandem Corporation's highly available systems. In the figure, outages are classified by
the nature of the failure that caused the outage. Software outages are caused by failures
of the operating system, database management system, or application software. Hardware
outages are caused bydouble failures ofhardwarecomponents, includingmicrocode. Errors
made by the people who manage and maintain the system are separated into operator
and maintenance errors, since the system's owners controlled day-to-day operations while
Tandem wasresponsible for routine maintenance. Environment failures include fires, floods,
and power outages of greaterthan one hour.

Tandem's studies found that outages shifted over time from a fairly even mixacross all
sources to adistribution dominated by software failures. From 1985 to 1989, software went
from causing 33% of outages to62%. By 1989, the second and third largest contributors,



CHAPTER 1. INTRODUCTION 2

operations and hardware, were at fault only 15% and 7% of the time, respectively.
For Tandem, the trend is not due to worsening software quality, but to success in

curtailing outages caused byhardware and maintenance failures. Overall, Tandem's systems
have gradually become more reliable; the mean time between system failures has risen from
8 years to 21 years. Thereliability of the hardware components from which thesystems are
built has increased. Hardware redundancy techniques have gone a long way in detecting
and masking faults when those hardware components do wear out. The increasingly
reliable hardware also needs lessmaintenance. When maintenance is required, manyof the
maintenance tasks have been automated in order to limit the errors that the maintenance

engineers can make. The rateof operator errors hasremained constant, but it should soon
improve for some of the same reasons that maintenance error rates improved. Operator
interfaces are becoming less complex, hence, operators are less likely to make mistakes.
Over time, more of the tasks currently done by operators will be automated as well, which
removes the opportunity for operator errors. Thus, while progress in these areas has had
a noticeable impact, the growing dominance of software outages is making continued
advances in non-software faulttolerance less andless important.

A second study from Tandem indicates another software-related limit to system fault
tolerance [28]. Even when software does not cause the original outage, it often determines
the duration of the outage. Once anoutage of any sortoccurs, the system must reestablish
software state lost at the time of the failure. While the system is reinitializing, it is
unavailable to its users. A thorough approach to improving system availability must also
address software restart time.

This dissertation focuses on partof the softwarefault tolerance problem: improving the
reliability and availability of the database managementsystem (DBMS). The integrity and
availability ofdatamanagedby aDBMS is usuallyanimportantfeature ofthe environments
in which fault tolerant systems areused. In Tandem's outage study, the DBMS accounted
for about a third of the software failures (the remainder being divided between operating
system, communication software, and other applications). While we focus on the DBMS,
much of the work is applicableto other systems programs.

Before presenting the approachto software fault tolerancetaken in the dissertation, this
chapter introduces a model of errors and describes some existing software fault tolerance
techniques. The model and some of the terms defined in the first section below will be

used throughout the dissertation. A review of the software fault tolerance literature is in the

section following the description of the errormodel. The final section below outlines the
remainder of the dissertation.



CHAPTER!. INTRODUCTION

Percent of

Failures

• 1985

• 1987

• 1989

70

60

50 « -|-

40«

30 «

20« i~

10
1

m !=!l!L_p ^ uxmrn

Hardware Maint.

Software Operator Environ.

Figure 1.1: Causes of Outages inTandem Systems. The chart represents the
results of three years ofa five year study. Outages are classified bythenature
of the component that failed. The graph shows a dramatic shift to software
as the primary cause of system outage. Thebars for a given year donotsum
to 100% because the causes of some outages could not be identified.



CHAPTER 1. INTRODUCTION 4

1.2 A Model of Software Errors

The software error model used in this dissertation highlights one of the significant
differences between hardware and software failure modes, error propagation. Using
redundancy, hardware components can detect their own errors and often recover without
disturbing the system. Software errors, on theother hand, sometimes cause damage that
is not detected immediately. The damaged system can initiate a sequence of additional
software errorsas it executes, eventually causing the system to corrupt permanent data or
fail. Error propagation complicates software failure modes, making the code difficult to
reason about, test, and debug. Reproducingpropagation-relatedfailures during debugging
is difficult sinceerror propagation can be timingdependent

To explore software fault tolerance techniques in the DBMS, we propose a model that
distinguishes betweensoftwareerrorsbasedon the waysin whichtheypropagatedamageto
otherparts ofthe system. The model breaks software errors into three classes: control errors,
addressing errors, and data errors. Control errors include programmermistakes such as
deadlock in which the point of control (the program counter) is lost or the program makes
an illegal state transition. The only corruptionthat occurs is to the variables representing
the current stateof theprogram. Controlerrorscanpropagateonly when the brokenmodule
communicates with other parts of the system. Addressing errors corrupt values that the
faulty routine did not intend to operate on. An uninitializedpointer would be an addressing
error, for example. Propagation from addressingerrors is the most difficult to control since,
from the standpoint of the module whose data has been corrupted, the error is "random":
it happens at a time when the module designers do not expect to communicate with the
faulty module. Data errors corrupt the values computed by the faulty routine. A data
error causes the program to miscalculate or misreport a result. Like control errors, data
errors can propagate only to modules related to the routine with the error. Unlike many

addressing errors, the source of the corruption in a data or control error can be tracked
during debugging by examining the code that is known to use the corrupted data.

In future database management systems, the impact of the cross-module error propaga
tion caused by addressing errors may increase because of two trends in DBMS design: data
manager extensibility and main memory resident databases. Extensible DBMSs include
extended relational systems [67], object-oriented systems [7], and DBMS toolkits [15]. An
extensible DBMS lets users or database administrators add access methods, operators, and
data types to manage complex objects. Moving functionality from DBMS clients to the
DBMS itself improves application performance but could worsen system failure behavior.
Extensibility allows different object managers with varying degrees of trustworthiness to
run together in the data manager. Every time one user on the system tries to use a new
object manager or combine existing ones in a different way, there is a risk of uncovering



CHAPTER 1. INTRODUCTION 5

latent errors. Because of addressing errors, this risk is not confined to the person using the
new feature; it affects the reliability and availability achievedby all concurrentusers of the
database.

System designers haverealized for some time thatDBMS performance would improve
dramatically if the database residedentirelyin main memory instead of residingprimarily
on disk (e.g. [21]). Years ago, mainmemorycapacity wasthe factor limiting the appeal of
main memory DBMSs. In high-end systems today, however, main memories large enough
to hold many databases are available, and memory prices are dropping. Commercial
systems stilldo not use mainmemory DBMSs, probably because system designers believe
that data stored main memory is more likely to be corrupted by errors than data stored
on disk. Corruption due to hardware and power failures can be eliminated if existing
redundancy techniques based onthose discussed in [41] are applied tolarge main memories.
Operator and maintenance errors could harm data on disk as easily as data inmemory. This
leaves software errors as the largest remaining reliability difference between disk-resident
databases memory-residentones. In amain memory DBMS, the danger oferror propagation
makes addressing errors one of the most important differences in the risk to data in main
memory and on disk.

1.3 Existing Approaches to Software Fault Tolerance

Current strategies for reducing the impact of software errors on systems fall into two
classes: fault prevention and fault tolerance. System designers wouldobviously prefernotto
have software errors atall than toinvent techniques for tolerating them. Somesoftwareerrors
are prevented through modular design, exhaustive testing, and formal software verification.
A survey of error prevention techniques is presented in [55]. Although most software
designs incorporate one ormore of these techniques, the complexity and size of concurrent
systems programs such as the operating system and database management system make
error prevention alone insufficient for achieving high system reliability and availability.

Since fault prevention alone is not effective, software fault tolerance techniques are
used to detect and mask errors when they occur in the system. Like hardware fault
tolerance, software fault tolerance isusually based onredundancy. Because software errors
are usually design errors, rather than material failures, redundancy-based techniques have
limited effectiveness in software. Redundant hardware components can be expected to
fail independently, but software design errors often do not cause failure independently in
each redundant components. Most redundant software schemes onlymasksoftware errors
triggered byhardware transients and unusual events, such as interrupts, that might arrive at
the redundant components at different times.



CHAPTER 1. INTRODUCTION 6

Systems that tolerate software faults usually employ either spatial redundancy, tem
poral redundancy, or a hybrid of the two. Spatial redundancy uses concurrent instances
of the program running on separate processors in thehope thatan error that strikes in one
instance will notoccur in any of the others. In temporal redundancy, the system tries to
clean up any system state damaged by theerror andretry the failed operation. Wulf[78]
makes thedistinction between spatial andtemporal redundancy in a paperon reliability in
the Hydra system.

N-version programming [4] is a famous spatial redundancy technique designed as a
software analog of the triple modularredundancy (TMR) techniques commonly used for
hardware fault tolerance. In N-Version programming, there are several versions of a
program each of which is designed and implemented by a different team of programmers.
The N versions run simultaneously, comparingresults and voting to resolve conflicts. In
theory, the independent programs will fail independently. In practice, multiple version
failures are caused by errors in common tools, errors in program specification, errors in
the voting mechanism, and commonalities introducedduring bug fixes [75]. Furthermore,
experimental work [42][64] has indicatedthat evenindependent programmers often make
the same mistakes. Not surprisingly, different programmers find the same tasks difficult
to code correctly. For example, differentprogrammers often forget to check for the same
boundary conditions.

Most database management systems rely on temporal redundancy to recover from
softwareerrors. Most of recovery techniques surveyed in Haerder and Reuter [33] restore
the database to a transaction-consistent state in the hopes that the error does not occur. The
database management system's clients then reinitiate any work aborted as a result of the
failure. In [60], Randell describes a temporal redundancy method calledrecovery blocks.
At the end of a block of code, an acceptance test is run. If the test fails, the operation is
retried using an "alternate" routine. Ideally, this is a reimplementationof the routine that is
simpler,but perhaps less efficient, than the originalroutine. Recoveryblocks require fewer
hardware resources than N-version programs, but may be ineffective for the same reasons
as N-version programs.

Process pairing [8] is a hybrid between spatial and temporal redundancy in which
an identical version of the program runs as a backup to the primary one. The primary
and backup run as separate processes on different processors. In addition to masking
unrepeatable software errors, process pairs reduce the availability impact of hardware
errors since the primary and backup run on differentprocessors. If a hardware error causes
the processor running the primary process to fail, the backup process will take over the
clients of the primary. Because only one team of programmers is required, a process
pair is considerably cheaper than an N-version program. Auragen [14] used a similar
scheme. Another spatial/temporal redundancy hybrid method uses redundant data in the



CHAPTER!. INTRODUCTION 7

same address space to reconstruct data structures damaged by errors [73]. When anerror is
detected during anoperation onthedata structure, thestructure isrebuiltusingtheredundant
data and the operation is retried.

A system can only tolerate software errors if these errors are detected in the first
place. The most common approach to error detection in systems programs is to lace the
program with additional code that checks for errors. Sometimes these include data structure

consistency checkers that pass overprogram data and examine it for internal consistency.
By detecting errors quickly, even systems withoutredundant components limit the chance
that minor errors will propagate into worse ones.

Unfortunately, checking for errors is expensive. No published figures are available
regarding the cost of error checking in the DBMS, but run time checks for array bounds
overruns in Fortran programs can double program execution time [31]. Furthermore,
the checkers themselves can have software errors. Error checking is not usually done
systematically. The checking code has to be maintained as the software it checks is
maintained. Implementing and testing error checkers increases development cost.

1.4 Organization of This Dissertation

Thedissertation makes three contributions towards thegoal of improving software fault
tolerance in database management systems. First, it assembles and analyzes a body of
information about software errors that will beuseful to software availability and reliability
researchers. Second, it describes the implementation and evaluation of a mechanism for
detecting addressing errors that can beused inconjunction with existing ad-hoc consistency
checkers. Finally, it extends theDBMS fast recovery techniques of thePOSTGRES storage
system [66] in orderto improve availability.

Chapter Two examines error data collected after software failures at IBM customer
sites in order to improve system designers' understandings of the ways in which software
causes outage. The chapter presents the results of two software error studies in the MVS
operating system and theIMS and DB2database management systems and compares these
results to those of earlier software error studies.1 Chapter Two shows that 40-55% of the
errors reported in these three systems werecontrol errors, while addressing anddata errors
were 25-30% and 10-15%, respectively (others could not be classified according to the
model). In addition to thecontrol/addressing/data error breakdown, Chapter Two provides
finer grain classes that include more detail about exactly how the programmer made the
error. The MVS studygives some specific information about the error propagation caused
by addressing errors. For example, theseerrors are morelikely thanother software errors

1MVS, IMS and DB2 are trademarks of IBM Corporation.



CHAPTER I. INTRODUCTION 8

to have high impact on the availability experienced by customers. Addressing errors in
MVS tend to be small andoften corrupt data very near the data structure that the software
intended tooperate on. Thisand other data presented inChapter Two can beusedto provide
a larger picture of software failures in high-end commercial systems that, we hope, will be
useful to others studying fault tolerance and software testing outside of the contextof the
dissertation.

Chapter Three focuses ontheuse ofhardware write protectionboth todetect addressing-
related errors quickly and to limitthedamage that can occur after a software error. System
calls added to the Sprite operating system allow theDBMS to guard (write-protect) some
of its internal data structures. Guarding DBMS data provides quick detection of corrupted
pointers and array bounds overruns, acommon source of software error propagation. Data
structures can be guarded as long as correct software is given a means to temporarily
unprotect the data structures before updates. The dissertation analyzes the effects of
three different update models on performance, software complexity, and error protection.
Measurements of a DBMS thatuses guarding to protect its bufferpoolshowtwo to eleven
percent performance degradation in a debit/credit benchmark run against a main-memory
database. Guarding has a two to three percent impact on aconventional disk database, and
read-only data structures can be guarded without any affect on DBMS performance.

To lessenthe availability impactoferrors oncetheyare detected, theDBMS must restart
quickly after such errors are detected. Chapter Four develops an approach to fast recovery
centered on thePOSTGRES storage system [66]. Theoriginal POSTGRES storage system
was designed to restore consistency of the disk database quickly, but did not consider
fast restoration of non-disk state such as network connections to clients. Chapter Four
describes extensions to POSTGRES required for fast reconnection of the DBMS and its
client processes. The chapter also describes a setof optimizations that reduce the impact
of the storage system on everyday performance, making fast recovery more practical for
databases withhightransaction rates. Finally, Chapter Four presents an analysis of the I/O
impact of the POSTGRES storage system on aTP1 debit/credit workload. This analysis
shows that the optimized storage system does the same amount of I/O as a conventional
DBMS when a sufficient amount of non-volatile RAM is available.

Chapter Five also widens theapplicability of thePOSTGRES fast recovery techniques
by extending the POSTGRES storage system to handle index data structures. While the
POSTGRES storage system recovery strategies are effective for restoring theconsistency
of heap (unkeyed) relation without log processing, different strategies must be taken for
mamtaining the consistency of more complex disk data structures such as indices. The
two algorithms described in Chapter Five allow POSTGRES to recover B-tree, R-tree,
and hash indices without a write-ahead log. One algorithm is similar to shadow paging,
but improves performance by integrating shadow meta-data with index meta-data. The



CHAPTER 1. INTRODUCTION 9

other algorithm uses atwo-phase page reorganization scheme toreduce the space overhead
caused by shadow paging. Although designed for the POSTGRES storage system, these
algorithms would also be useful in a conventional storage system as support for logical
logging. Using these techniques, POSTGRES B-tree lookup operations are slower than a
conventional system's by3-5% under most workloads. Inafew cases, POSTGRES lookups
also require an extra diskVO. Ontheother hand, thesystem can begin running transactions
immediately on recovery without first restoring the consistency of the database.

The sixth chapter concludes and describes some avenues for future research. Because
thedissertation has four verydistinct sections, theliterature review for each chapter willbe
included in the chapter. Together, these chapters attack three problems of interest to fault
tolerant system designers: they describe the character of software errors, improve error
detection, and widen the applicability of some existing fast recovery techniques.



10

Chapter 2

A Survey of Software Errors in Systems
Programs

2.1 Introduction

Any technique for improving system reliability and availability has underlying it a
model of system failure. A given technique is successful only if real systems fail in ways
covered by the model. The introduction described a model of system failure based on
three kinds of software errors that propagate errors indifferent ways. This model guided
our approach to mamtaining high availability in POSTGRES and motivated some of the
techniques described in Chapters Three, Four, and Five. In this chapter, we present an
analysis oferrors discovered in three commercial systems programs. The analysis helps to
clarify the control/addressing/dataerrormodel, hence, the reliability and availability impact
of the techniques described in the dissertation.

The chapter describes two studies of software errors identified in the MVS operating
system and the IMS and DB2 database management systems. The data available for the
studies comes from an internal IBM database of error reports. Each report was filed by a
customer service representative when the software failed at a customer site in the field. The
IBM programmers who repair a fault amend the error report with further details about the
fix. Thestudies onlyconsidered errors forwhich fixes were eventually found.

We classified the IBM errordatain several different ways, each considering the cause
of an error from a slightly different perspective. Chapter Two concentrates on two of
these classifications: error type and error trigger. The error type provides insight into the
programmingmistakes thatcause softwarefailures atcustomersites. Abetterunderstanding
of programming mistakes willhelp programmers, recovery system designers, andsoftware
tool designers to improve code quality. The error trigger illustrates the circumstances



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 11

under which latent errors arise at customer sites. Since software testing is supposed to
uncover these latent errors before the code is shipped to customers, the trigger data should
help show how testing strategies can be improved. The chapter also includes statistics on
failure symptoms that characterize the way the system failedwhen it executed the faulty
code.

Because boththeoriginaldataand theclassification process areproneto error,studying
several differentprogramswasimportant. Eachprogram provides a fairlyindependent error
sample; the programmers and the people who wrote bug reports were different for each
one. MVS is notan idealsource of errordata,since it is anoperating system not a database
management system. However, many of the resource management issues in DBMSs and
OSs are the same. DBMS and OS programs also have similar size, are written in similar
systems programming languages, and have the same kinds ofconcurrency, availability, and
performance requirements. Given the available data, MVS seemed a good choice for an
additional source of error information.

A secondreason that MVS was chosen as a sourceoferror data is that MVS maintenance
programmers noted the existence of addressing errors in a standard way. In MVS, the
damage caused by an addressing-related error is called an overlay by IBM field service
personnel. Searching for error reports that use this term allowed us to collect a large
sample of error reports that discuss addressing-related errors. These error reports could
be compared to MVS error reports as a whole. Because the error detection mechanism
described in Chapter Three only affects addressing errors, it was important to gather as
much additional information aspossible about the character ofaddressing errors.

The chapter is organized as follows. Section Two summarizes several related software
error studies. Section Three describes the data used in the IBM studies and the classification
systems used to characterize the data. Section Four presents the results of the studies,
and Section Five summarizes the implications of these results for our system availability
techniques. For additional details about the studies themselves, see [70], which compares
addressing errors to errors overall in MVS, and [71], which focuses on control errors and
discusses differences between operating system and database management system errors.

2.2 Previous Work

We would have likedtousea survey ofdatacollected andanalyzed byotherresearchers
to evaluate the effectiveness of the POSTGRES error detection techniques, rather than
gather ourown data. Unfortunately, error studies are often difficult to adapt to purposes
other than theonesthattheoriginal researchers hadinmind. Several earlyerrorstudies tried
to show theimportance of clearsoftware specifications for improved code quality. Endres



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 12

[24] studied software errors found during internal testing of the DOS/VS operating system.
His classification was oriented towards differentiating between high-level design faults
and low-level programming faults. Glass [27] provides another high-level, specification-
oriented picture of software errors discovered during the development process. Neither
study gave much detail about what kind of coding errors caused the programs to fail, so
neither is of much help to us.

Another important reason why existing surveys of software errors are not ideal for
studying system availability is that they focus only on errors discovered during the system
test and code development phases of program life cycles. The errors that actually affect
availability are the ones discovered at customer sites, after development and testing are
complete. Another early errorstudy, [74], provides some of the same level of erroranalysis
that our study provides, but on errors discovered during the testing and validation phases.
Basili and Perricone study the relationship between software errors and complexity in
Fortran programs [9]. Their study finds a predominance of errors in interfaces between
modules, but the study also focuses on development and test phases. In [43], Knuth
describes both design and coding errors uncovered in his TeX text processing program.
The presentation includes some efforts at fault categorization, but is largely a collection
of anecdotes. It is less applicable than the other studies since the program was written by
one person, rather than a team of programmers, and it is a very different application from
database manager. Like the other studies, it coversmostly program development andearly
test phases.

A few researchers have examined failures in system softwareatcustomer sites, but they
providelittle detailaboutthe types of software errors thatled to the failure. One example is
Levendel's study of the software thatmanages the ESS5 telephone switch [48]. The study
does not break errors into classes, but instead uses error data to estimate the effectiveness

of some standard reliability metrics. These metrics use trends in bug-fixrates to guesshow
many more errors remain in a given piece of code. Managers can use this information to
make decisions about release dates, but it is not the kind of information that can be used to

evaluate potentialerrordetection or recovery strategies.
Several studies used data from errorlogs to track failures at customer sites [16][38][56].

Error log records are generated automatically by the system aftera program fails. Because
the log entries are generated automatically, they give extremely high-level representations
of the error. For example,the log entrymight be acodeindicating that the program triedto
store into aninvalidaddress. The error log doesnot includethe semantic informationabout
the error needed to determinewhat the programmer did wrong.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 13

2.3 Gathering Software Error Data

The data available for our studies came from an IBM internal field service database

called REmote Technical Assistance Information Network (RETAIN). RETAIN serves
as a central database for hardware problems, software problems, bug fixes, and release
information. Whenan IBM system fails,IBMservice personnel useRETAIN to determine
if the same failure has occurred at another site. If so, information stored in RETAIN
identifies a tape containing a fix for the problem. If theproblem has neveroccurredbefore,
peoplemust be assignedto trackdown and repair the softwareerror that caused the failure.
It is quite possible forthe same error to occur atmultiple sites. Although IBM fixes errors
as soon as possible when they aredetected, customers often delay installing thefixes until
their systems have to be taken down for other reasons, such as maintenance. In these
cases, the customerprefers torisk the occurrence ofaknown bug rather than suffer periodic
additional outages to install fixes.

When a new software error has arisen in an IBM product, a customer service person
files an Authorized Program Analysis Report (APAR) describing the fault in RETAIN.
Every APAR identifies a few standard attributes associated with the faulty software, such
as the type ofmachine running the software, the software release number, a symptom code
describing the failure, and a severity rating. The service person filing the APAR also adds a
text description of the error if any information is available. After the error isrepaired, one
ofthe programmers responsible forthe repair writes adescription of the fix and amends the
initial problem description andseverity rating.

An APAR does notcontain standardized fields identifyingthe"cause"ofafault. Seman
tic information about the fault and the circumstances under which itarises isonly contained
in the APAR text. The text is oriented toward future RETAIN searches by IBM service
personnel after the fault occurs at a differentsite. Often it contains more information about
the effects of the fault than about the fault itself.

IBM saves an APAR for each distinct error that occurs initssoftware products, but the
APAR does not include an accurate count of the frequency with which that error occurs.
Problem Reports, or PMRs, are filed for each customer outage whether it is caused by
a unique fault ornot. Since PMRs include a field for the APAR associated with a given
software problem, they could be used, in theory, todetermine the frequency of observed
faults. PMRs, however, are not retained by IBM for more than a few months. Also, the
accuracy of somePMR-APAR associations is questionable. If an untraceable softwareerror
occurs, IBM serviceand the customersitewill oftenagreeto reboot the newestversion of
the software and hope for the best. If the fault was transient, the error will seem togo away
even if the new software does notcontain a fix. Earlier studies, such as [28], suggest that
transient softwarefaults are fairly frequent.



CHAPTER 2. A SURVEYOFSOFTWARE ERRORS IN SYSTEMS PROGRAMS 14

Some software errors are worse, from the customer's perspective, than others, so it
would be a mistake for the error studies to give all APARs in RETAIN equal weight.
APARS describing errors with little or no impact on availability were discarded in our
studies. These included suggestions for user interface changes anderrors which affected
the presentation but notthecontent ofprogram results (e.g. garbage characters areprinted
to theterminal aftertheprompt). Errors with especially high impact were singled out to be
examined in more detail. RETAIN does notidentify high impact errors directiy, butseveral
standardAPAR attributes can be used to estimate the impactof the error described.

SeverityCode is supposed to indicate how badly inconvenienced thecustomer wasby the
outage. It is also used do indicate the priority of the bug to the people who assign
maintenance programmers to fix it Severity one APARs have the worst affect on
availability. The customer has stated that work at his or her site cannot progress until
the fault is fixed. Severitytwoerrors havecustomerimpact, but havelower priority to
the maintenance teams because the customerhas found a circumventionor temporary
solution to the fault Severity three and four APARS correspond to lesser damage
and can range from annoyance to look and feel or interface problems.

HIPER TheHighlyPERvasiveerrorflagisassigned bythechangeteamthatfixes thefaulty
code. HIPER software errors are those considered likely to affect many customer
sites — not just the one that first discovered the error. Flagging an error as HIPER
provides a message to branch offices to encourage their customers to upgrade with
this fix.

BPL errors destroy the operating system's recovery mechanism and require it to initiate
an Initial Program Load (IPL) or "reboot." An IPL is clearly a high impact event
since it can cause an outage of at least 15 minutes. This metric is probably the most
objective of the impact measurements since there is little room for data inaccuracy.
While labeling an error HIPER or severityone is a judgement call, the occurrence of
IPL is difficult to mistake. Note that IPL is an effective impact estimator for MVS,
but in the DBMS error study there were no errors that cause the operating system to
IPL. DB2/IMS errors in which the DBMS failed and had to restart should be counted

as high impact, but this information was not always included in the APAR.

Using these impact estimators, RETAIN's APARs can be broken into three groups. Low
impact APARs with severity ratings of three and four were discarded from the study.
Severity two APARs were serious enough to be consideredin the study, but not labeled as
high impact Errors flagged as HIPER, IPL, or severity one are considered high impact
errors. When error distributions are presented later in the chapter, high impact errors will
be singled out and presented separately.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 15

The MVS study uses error data from the MVS Operating System for the period 1986-
1989, representing several thousand machine years of execution. It only includes errors
in the operatingsystem and some of the low-level softwareproducts that are bundledwith
it. The IMS and DB2 APARs were drawn from thoserecordedagainst those two database
management systems in the years 1987-1990. The second study took errors from a later
period because it was conducted a year later andbecause DB2 was not mature enough in
1986 to have a large APAR base.

2.3.1 Sampling from RETAIN

If it werepossible to classify APARs using software, each of the APARs in RETAIN
associated with MVS, IMS and DB2 could be classified in order to find the complete
distribution of errors for those products. RETAIN provides some help in this regard. It
allows users toidentify subsets ofAPARs using simplekeyword searches on the keyedfields
(e.g. HIPER, severity). Keyword searches allow us to report customer impact statistics
based onthe entire population ofAPARs associated with each product.

The error type and triggering event, unfortunately, are too complex toidentify without
reading the APAR text and extracting fault information from the change team's problem
description. Classifying the thousands ofavailable APARs toget this information would be
beyond the resources available for this study. Therefore, we sampled from the population
of available APARs in order to restrict the number of APARS to be read.

For the MVS study, we constructed two sets ofAPARs —the regular sample and the
overlay sample. To gather the regular sample we drew 150 APARs from the population of
all severity one or two APARs from 1986-1989 filed against MVS. To derive the overlay
sample, we could not justtake the subset ofMVS APARs that involved overlay errors since
the MVS sample itself was so small. Instead, we searched the text parts of the APAR
for strings containing words such as "overlay" and "overlaid." From thisrestricted set of
APARs, we drew APARs that were potential overlays. IBM software engineers use the term
overlay to mean "stored on top of"data currently in memory, so occasionally the overlay
is legitimate behavior unrelated tothe error described. Further reading allowed us toweed
out APARs in which the overlay was not caused by broken software, leaving 91 overlay
APARs. For the DBMS study, we randomly sampled 201 of IMS's severity one and two
APARs and 222 of DB2's.

The MVS regular sample isnot taken inthe straightforward way because ofa sampling
error in the initial phases of the first study. We had first planned to examine only severity
one APARs. Later, we realized that severity two errors had ahigh enough customer impact
that it would be a mistake to ignore them in the study. To overcome this problem, we
pulled a second independent random sample from the population of severity two APARs.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 16

Wethencombinedthe results from the severity one andtwo samples in the proportionthey
are represented in the population. We used boot-strapping [22] to combine the samples
rather than a simple weightedaverage. Boot-strapping is a common statistical technique
that does not build in any assumptions about the distribution of the parent population as
would a weighted average.

2.3.2 Characterizing Software Defects

The error studies approach the "cause" of an error from both the standpoint of a
programmer/recovery-manager and from the standpoint of a system test designer. Error
type is the low level programming mistake that led to the software failure. The error
trigger classificationwas meant to giveinsight into the softwaretesting process. Both IBM
and its customers test software thoroughly before the customer relies heavily enough on
the software for its failures to have an impact When an error arises at a customer site,
some aspect of the customer's execution environment must have caused the defective code

to be executed, even though the same code was never executed during system test. The
error trigger classification distinguishes the different kinds of events that cause errors that
remained dormant during testing to surface at the customer site. Better understanding of
these triggering events should improve the testing process.

To identify error type and error trigger classes, we made several passes through the
sample looking for commonalities in the errors. Once some general categories were
chosen, we read each APAR more carefully, placing it into one of the possible categories
for error type and one category of error trigger. Each of the APARs in the samples
was associated with only one error type and error trigger even though the same APAR
occasionally mentioned several related faults in the software. After classifying the APARs
we found several categories with one or two APARs in them, which we merged into larger,
more general classes. Several of the one and two APAR categories were grouped together
into an "Other" category when they could not reasonably be grouped together with APARS
of a more meaningful error type.

Error 'types

A few programming errors caused most of the errors in the programs we studied. These
were the error types defined during the study of MVS:

Allocation Management : One module deallocates a region of memory while the region
is still in use. After the region is reallocated, the original module continues to use it
in its original capacity. The few errors in which the memory region allocated was too
small for the data to be stored in it were counted as allocation management errors as



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 17

well. Arguably, these should have been placed in the Copying Overrun class instead,
but there were not enough of these to make much difference to the study results.

Copying Overrun : The program copies bytes past the end of a buffer.

Data Error : An arithmetic miscalculationor other error in the code makes it produce or
read the wrong data.

PointerManagement : A variable containing the address of data was corrupted. For
example, a linked list is terminated by setting the last chain pointer to NIL when it
should have been set to the head element in the list.

Statement Logic : Statements were executed in the wrong order or were omitted. For
example, a routine returns tooearly under some circumstances. Forgetting to check
a routine's return code is also a statement logicerror.

Synchronization : Anerror occurred in locking code or synchronization between threads
of control.

Type Mismatch : A field is added to a message format or a structure, but not all of the
code using thestructure is modified toreflect thechange. Type mismatch errors also
occur when the meaning of a bit in a bit field is redefined.

Undefined State : The system goes into a state that the designers had not anticipated. For
example, theprogram may have nocode tohandle anend-of-session message which
arrives beforethe session is completely initialized.

Uninitialized Variable : A variable containing either a pointer or data is used before it is
initialized.

Other : Several error categories which had few members were combined into a single
category called Other.

Unknown : The error report described the effects ofthe error, but not adequately enough
for us to classify it.

During the DBMS study, weadded three error types tothesetused toclassify MVS. The
additional errortypes represent a refinement totheclassification system based on thedatain
thesecond study. Errors from each of these classes were present in MVS, butuncommon,
so theyfell into the Otherclass in the original MVS study.

Interface Error : A module's interface is defined incorrecdy or used incorrectly by a
client.



CHAPTER 2. A SURVEY OFSOFTWARE ERRORS IN SYSTEMS PROGRAMS 18

Memory Leak : The program does notdeallocate memory it has allocated.

Wrong Algorithm : The program works, but uses the wrong algorithm to do the task at
hand. Usually these were performance-relatedproblems.

Error Triggering Events

This classification describes the circumstances which allowed a latent error to surface in

thecustomer environment. Forevery errorin the sample, weassigned oneof thefollowing
trigger events:

Workload : Often software failures occur under limit conditions. Users can submit

requests with unusual parameters (e.g., please process zero records). The hardware
configurationmay be unique (e.g., systemis run with a faster disk than was available
during testing). Workload or system configuration could be unique, (e.g., too little
memory for network message buffering).

Bug Fixes : An error was introduced when an earlier error was fixed. The fix could be
in error in a way that is triggered only in the customer environment, or the fix could
uncoverother latent bugs in related parts of the code.

Client Code : A few errors occurred when errors were propagated from application code
runninginprotectedmode. Inorderfor these toappear in theAPARs thatwesampled,
the code for recoveringfrom the propagatederror wouldhave had to contain a fault

Recovery or Exception Handling : Recovery code is notoriously difficult to debug and
difficultto test completely. The DBMSdata distinguishesfull DBMS recovery (using
the log) from cleanup after transient errors (exception handling).

Timing : Timing triggers are an important special case of workload triggers in which
an unanticipated sequence of events direcdy causes an error. An error that only
occurs when the program is interruptedat an inopportunemoment would be a timing-
triggered error.

Unknown : The triggering event could not be determined from the available data.

Failure Symptom Codes

When an APARis opened, a symptomcode is recordeddescribingone of the external
effectsof the fault. This field is often used by customer service personnel to search for an
existingfix when an error is first discovered. Theyfocus on symptoms because symptoms
are usually the best information available about a fault when it first occurs.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 19

The symptom code ofan APAR was not assigned as part ofour APAR studies; we simply
used and analyzed data already present in RETAIN. Also, a single failure may have many
symptoms. Maintenance programmers decide which is the most interesting one to record
in the APAR symptom code field. "Interesting" failure symptoms for the maintenance
programmer may not be interesting for fault tolerance research. For example, the unusual
error message that the system printed to the screen before it went into an infinite loop might
be recorded as the failure symptom, rather than the infinite loop itself.

Failure symptoms fall into these classes:

ABEND : An abnormal programtermination occurred. The currentlyrunning application
program failed and must be restarted.

Address Error : The systemfails after trying to use a bad address.

Endless Wait : Processes wait for an event that will never occur.

Incorrect Output : Thesystem produces incorrect output without detecting thefailure.

Infinite Loop : The system goes intoan infinite loop.

Error Message : The system cannot perform the requested function butprints an error
message on the screen andperforms local recovery ratherthanABENDing

2.4 Results

We describe the results of the two IBM studies together in the following section,
comparing MVS,IMS,and DB2 wherever possible. Theresults sectionis dividedinto four
subsections, based on the different APAR categorization schemes defined in Section2.3.
The largest ofthese four subsections discusses error type, the categorization based ontypes
ofprogrammermistakes. The error type subsection gives breakdownsofcontrol,addressing,
and data errors in order to provide a better understanding of the error propagation model
given in Chapter One. It also gives finer-grain description of programmer errors based on
theerrortypes defined in Subsection 2.3.2. The second subsection compares thenumber of
high impact errors in the DB2, IMS, MVS overall, and MVS overlay-only APAR samples.
The next subsection, which describes error triggering events, will be of most interest to
system testsuitedesigners. However, it is alsoofinterest inrecovery system design because
it indicates the frequency of repeatable software errors. The fourth subsection gives the
failure symptoms that describe the system behavior after the error occurred.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 20

Error Type

Allocation Mgmt

Copying Overran

Pointer Mgmt

Uninitialized Var

Undefined State

Interface Error

Memory Leak

StatementLogic

Synchronization

Data Error

Wrong Algorithm

Other

High Impact APARs

Freq(Perct)

18 ( 8.1%)

12 ( 5.4%)

23 (10.4%)

14 ( 6.3%)
^^^^^^^^ 45 (20.3%)

15 ( 6.8%)

8 ( 3.6%)

16 ( 7.2%)

20 ( 9.0%)

19 ( 8.6%)

20 ( 9.0%)

12 ( 5.4%)
uuiHiiinniHUiiiim|iim

10 20 30 40

Number of Apars

! All APARs
222 APARs, 68 High Impact

Figure 2.1: DB2 Error Type Distribution.

2.4.1 Error Type Distributions

Figures 2.1and2.2summarize theerrortypedistributions foreachdatabase management
system. Figure2.3 shows a breakdown of errortypes from the regularsamplein the MVS
study. Eachfigureshows two distributions: one for availability-related APARs as a whole,
and one for high impact APARs. The high impact distribution is superimposed on the
overalldistributionsince the high impact APARs are a subsetof the overall APAR sample.
Each bar in the figure represents one of the error types definedin Section 2.3.2. The length
of the bar showsthe numberof errors represented in the APAR samplewhichwere caused
by that type of error.

In both DBMS products, undefined state, a control error, was the largest error type.
In IMS, undefined state errors accounted for 40% of the whole and 29% of the high
impact errors. The next largest class was pointer management, an addressing error, which
accounted for 11% of the APARs sampled. In DB2, undefined state accounted for 20%
of APARs and 18% of the high impact ones. DB2's next highestclass overall was again
pointermanagement errorswith 10%. Undefined statewasan important sourceof errorsin
MVS, but it did not dominate the error type distributionas much as in IMS and DB2 (17%
of the whole and 25% of the high impacterrors). Thepointermanagement class in MVS
was 12% of errors, about the same as it was in the two DBMSs.

The remainder of this subsectionexploresthe error type data in greaterdetail. First, we



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 21

Error Type Freq (Perct)

Allocation Mgmt. 10 ( 5.0%)

Copying Overrun I 7 ( 3.5%)

Pointer Mgmt. 22 (10.9%)

Uninitialized Var. o 12 ( 6.0%)

Undefined State _] 80 (39.8%)
Interface Error ZJ 15 ( 7.5%)

Memory Leak i 7 ( 3.5%)

Statement Logic mm 17 ( 8.5%)

Synchronization 9 ( 4.5%)

Data Error Bl_J 10 ( 5.0%)

Wrong Algorithm |i 4 ( 2.0%)

Other

0

8 ( 4.0%)

20 40 60 80

Number of Apars

1 High Impact APARs U All APARs

201 APARs, 38 High Impact

Figure 2.2: IMS Error Type Distribution.

Error Type

Allocation Mgmt.

Copying Overrun

Pointer MgmL

Uninitialized Var. f
Type Mismatch

Undefined Stale

Synchronization

Statement Logic

Data Error

Unknown

Other

PTF Compilation

10 15

Percent of APARs

High Impact APARs |]A11 APARs
150APARs, 16 HighImpact

Figure 2.3: MVS Regular Sample Error Type Distribution.



CHAPTER 2. A SURVEYOF SOFTWARE ERRORS IN SYSTEMSPROGRAMS 22

Percent of

Total Faults

• MVS
H IMS
H DB2

Control Data

Addressing Unclassified

Figure 2.4: Control/Addressing/Data Error Breakdown DB2, IMS, and MVS
Systems.

combine error types into the broaderclasses of control, addressing, and data error used in
the modelin ChapterOne. Next,we describe theprogramming mistakes that led to control
errors and to addressing errors. The subsections focus on undefined stateerrors since they
dominate thecontrol errordistribution andonthekinds oferrorpropagation thatresultfrom
addressing errors.

Control/Addressing/Data Error Model

Figure 2.4 groups the errors in the threeproducts into the categories of control-related
errors, addressing-related errors, data-related errors and unclassified errors. To produce
Figure 2.4, error type categories defined in Section 2.3.2 were combined into the cate
gories of the control/addressing/data model. Errors in the unclassified group were largely
performance-related problems (e.g. Wrong Algorithm) and errors in the "unknown" and
"other" categories. The MVS study has the largest fraction of unclassified APARs in part
because it was the first study and our errortypes were lesswell-defined during that study.
TheY-axis in thischartshows thepercentage oferrors from eachproduct'ssample thatfall
intoeach class, nottheabsolute number of APARs. MVS, in thischart, is theMVS regular
sample.

In all threeproducts, controlerrorsmakeup the most significant fraction of errorsand



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 23

addressing errors, the second most significant. Control errors are more common than the
other two, composing 40% to 55% of the total for each product. A much larger fraction
of the IMS errors are control-related than errors in the other two products. In part, this
is because IMS was late in the product life cycle during the time covered by the study.
Few new features are added to IMS any more, so most of the changes to the code occur
during maintenance. From thedata, it seems that maintenance programmers have difficulty
understanding all of theimplications of a given change to thecontrol flow of the program.
DB2 has moredata errors than the othertwo products. Many of theseerrors weremistakes
in calculating the cost of a prospective query plan during the planning stage of query
execution.

Because this data comes from errors discovered once the software had been released to

customers, there are two possible causes for theerror distributions in Figure 2.4. Possibly,
the distributions represent the frequency with which each kind of programming mistake
occurs. Programmers may simply be more likely to make control errors than data errors.
A more likely explanation of the figure, however, is that some errors, such as data errors,
are detected relatively easily during program development and test by standard debugging
techniques. Hence, the distribution in the figure is skewedtowards the errors thatare hardest
to detect during normal development and test. As will be shown below, control errors often
occur during error handling. If the error condition is difficult to generate during system
test, the error handling code might not be fully tested. Incomplete testing may prevent
some addressing errors from beinguncovered early, as well. Addressing errors sometimes
cause corruption of storage that is near a data structure managed by faulty code. The
order in which data structures are allocated may determine which one is damaged by the
error. Because testing cannot cover all allocation orders, the error may never occur during
development and test.

In Chapter One, we suggested that addressing-related errors were the most dangerous
error class in terms of error propagation. An addressing error can corrupt data unre
lated to the module in which the error occurs, hence can be difficult to find and remove.

Addressing-related errors, including copy overruns, allocation management, pointer man
agementproblemsand uninitializedpointers, make up 25 to 30 percentof the APARs filed
against IMS, MVS, and DB2. This is consistent with several other studies of software
errors in operating systems summarized in Figure 2.5. The published studies in the figure
are from DOS/VS [24] and MVS (one from [76] and two from [56]). The Unpublished
I study was a survey of errors reported in the 4.1/4.2 releases of BSD, a UNIX-like op
erating system [69]. 1 The Unpublished II operating system error study was conducted
internally at a company that would not allow the release of its name. Control and data

1UNDC is currently a trademark of UNIX Systems Laboratory in theUS and other countries, however,
pending litigation calls this point into question.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 24

601

Percent of

Total Faults

Addressing

DOS/VS MVSH Unpubll
MVS I MVSHI Unpubin

Figure 2.5: Summary of Addressing Error Percentages in Previous Work.

errors are not pictured because the studies in the figure did not categorize errors in a way
that mapped to the control/addressing/data error model. Each study identifiedsome errors
as addressing-related, however,which allows some comparison between these studies and
our own.

The BSD study showed many fewer addressing-related errors than the other studies.
Most of the errors in the BSD study were synchronization or configurationproblems related
to device drivers and network protocols. The error report information available did not
distinguish between errors discovered in test phase and production-use phase and many
of the device driver problems would probably have been discovered during testing in a
commercial enterprisewith a large,in-housequalityassurance group. If we couldconsider
only post-test-phase software errors in BSD, the fraction of addressing errors might be
closer to that seen in the other studies.

Together,the availableinformation on programmermistakessuggests that at least twenty
to thirty percent of the faults that cause systems to fail involve addressing errors. Thirty
percentmay not be an upperbound since thesestudies usuallyonly report addressingerrors
when they are the primary cause of a software failure. Even in the APAR data, an error
reportdescribinga controlor data errorwilloccasionally mentionthat the systemfailedwith
an address trap, indicating that secondaryaddressing errors occurred but were considered
too unimportant to describe in the APAR.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 25

Percent of

Control Faults ^
50

E3 mvs

HlMS

H DB2

Undefined

State

Statement

Logic

Synch- Memory
ronization Leak

Figure 2.6: Distribution of the Most Common Control Errors.

The next four subsections describe control and addressing errors in more detail. The
first subsection lists the major causes of control errors. The second details the dominant
control error, undefined state. Thethirdsubsection gives thedistribution of addressing error
types along with some examples, and the fourth describes some additional information on
addressing errors gatheredin the MVS overlay study.

Characterizing Control Errors

Figure 2.6 shows the distributions of the most common of the control-related error

types for each of the IBM products studied. Each bar in the figure represents one of the
error types defined in Section 2.3.2. The MVS bars represent error type distributions in
the MVS regular sample, not the overlay sample. The MVS sample has no memory leak
errors because memory leak wasnot selected as anerrortypeuntil the DBMS error study.
There werememory leakerrors in MVS, butsofew thatwedidnotidentify it as a separate
error type during the study. Memory leak counts as a control error because these errors
eventually cause the system to be reinitialized in order to allow reallocation the memory
lost in the leak.

For each of the products, undefined state is the most common control error. In DB2
and IMS, synchronization-related errors are fairly common. The DB2 synchronization
errors usually occur when DB2 is used interactively, and they are often related to cleanup



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 26

after errors. Clean up after the user cancels a command from the keyboard caused some
synchronizationproblemsin DB2, also. MVSsynchronizationerrors were usuallyrelated to
communicationprotocols, althoughsomeof thehighestimpactones were errors in interrupt
handlers. Because the majority of control errors in the DBMS are caused by undefined
state, the next subsection describes these errors in some detail.

DBMS Undefined State Errors

An undefined state error occurs when an event in the program execution environment
arises which the program has not anticipated. The program either has no code to handle
the event or misinterprets the event and makes a faulty state transition as a response. The
MVS study showed that undefined state errors were common, but did not provide details
about what caused them. In general," the undefined state errors involved concurrency. For
example, a process takes a page fault, then an interrupt for an I/O completion, and never
completely initializes the page tableof the faultedpage.

In the DBMS study, we kept more systematic notesabouthow undefined statesarose in
the program. This turned out to be important since undefinedstate was even more common
in the twoDBMS products than they were in theoperating system. These errorsrepresent
20% of all DB2errors sampled from RETAIN and40% of all IMS errors. In bothsystems,
undefined stateerrorshad a slightiy lowerimpact than the average error.

ForIMS,abouta thirdof theundefined state errors occurredwhen theprogram losttrack
of its current state. In IMS, current state for network connections, database recovery, and
log management is represented by a collection of flags. Sometimes the program changes
state without updating the flags correcdy, or checks the wrong combination of flags to
determine thecurrentstate. Many of these APARs hadto do witherrorhandling. Anerror
would occurcausing the program to change state, but flags representing the current state
would notbereset. Theprogram made thewrong response to subsequent events because it
was mistaken about its current state.

Another thirdof the IMSundefined stateerrors were"missing case"problems in which
a programmer forgot about a state or an external event that could arise during execution.
Some of these were classic boundary conditions. For example, the programmer writes a
routine comparing one element to each of the elements in a list and does not consider that
the list couldhave zeroelements. Many others arose afterunanticipated error conditions.
For example, a higher level and a lower level routine each expect the other to handle
authorization failures. When the higher level routine sees an authorizationfailure, it fails
since it expects the error to have been handled at a lower level.

Most of the remaining undefined stateerrors in IMS came from incomplete protocol
specifications or implementations. Theprotocol might notbecomplete because it doesnot



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 27

consider some states that arise. For example, after an error condition, some kinds of log
records do not make sense. A log record specifying changes to sessions does not make
sense if there is no longer a current session. Sometimes the implementation omittedstates
that were defined in theprotocol. A bug fix occasionally prevented aportion of theprotocol
implementation from being executed.

InDB2, thesame kinds of behaviorwere observed butinsomewhat different proportions.
The missing case problems were much more common in DB2than in IMS. Nearly halfof
the undefined state errors were due tounhandled error conditions orforgotten states arising
from boundary conditions. Additional DB2 undefined state problems resulted when data
structure consistency checkerswere calledat the wrong time. Sometimes the error checks
detected inconsistencies that were not going to cause the software to fail. About fifteen
percent of undefined state errors in DB2 were false alarms due todata structure consistency
checkers.

As one would expect, about two thirds of the undefined state errors in each database
manager happened because the programmer omitted logic from the program rather than
because the programmer did something incorrecdy. Therefore, undefined state problems
generally arose not from mishandled events but from forgotten events.

Characterizing Addressing Errors

Figure 2.7 shows thedistributions of the most common of theaddressing-related error
types for each of the IBM products studied. The figure shows pointer management, allo
cation management, and copyoverrun errors for the IMS sample, theDB2 sample, and the
MVS regular sample. As in the control error figures, the length of thebar tells the percent
of allcontrol errors that fall into the type associated with the bar. The miscellaneous errors
in this case were largely uninitialized pointer errors (in particular, the large number of
miscellaneous addressing errors in MVS were often uninitialized pointer errors).

Among these three common types of addressing-related faults, pointer management
problems were thelargest classification, accounting for 35-40% of theaddressing faults. A
fairly common type of pointermanagement error was mis-termination of a linked list data
structure. Another common pointer error arose when twodifferent kinds of pointers could
be stored in the same location (i.e. as in PASCAL or C union types). The programmer
would mistake a pointer of onetype for apointer of another type. A third common pointer
management subclass were "register reuse"errors. The language in which IMS, DB2, and
MVS are written allowed programmers toexplicidy control register use, if necessary. This
explicit control allowed for mistakes in which two variables were assigned to the same
register, allowing the second value stored to overwrite the first. If thiswas a pointer value,
an overlay often followed.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 28

Percent of

Address Faults

^MVS

• IMS
H DB2

50

40 <

30«

20«

10«

jli
II

In

iit
i
I

II

% a' 5?

r
i.

In
III

Alloc Mgmt Ptr Mgmt

Copy Overrun Misc

Figure 2.7: Distribution of the Most Common Addressing Errors.

Using the MVS Overlay Sample to Understand Addressing Errors

BecauseMVSerrorreports gaveadditionaltextualcluesaboutaddressing-relatederrors,
the MVS overlayerror sample was constructed containing 91 overlay-only error reports.
The overlay sample shows that some overlay errors eventually follow after non-overlay
error typeshaveoccurred. Forexample, a synchronization error sometimes allowedunsyn-
chronized access topointerdatastructures. TheAPAR describing the synchronization error,
then, mentioned that MVS used the corruptedpointersat the time of the failure. Figure 2.8
gives the breakdown of errortypesfor thissample. Eachbarin thefigure represents anerror
typedefined in Section2.3.2. As in theprevious figures, thehighimpactAPAR distribution
is super-imposed over the overall error distribution.

Sincemost of the MVS operatingsystem's tasksinvolve managing a system of control
blocks and buffers connected by pointers, one might expect that these pointers would
account for most of the overlay errors in MVS. In fact, pointer management errors and
uninitialized pointers were important, but accounted for only 18% of the overlay APARs
studied and 27% of the high impact overlay APARs.

Together, copying overruns (miscopying data into buffers) and allocationmanagement
errors (deallocatingstorage incorrectly)accountedfor 39% of the total overlayAPARs and
34%of the high impactones. Although allocation management and copyingoverrunhave
about the same number of APARs filed against them,copyingoverrunshave lower impact.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 29

Error Type

Allocation Mgmt.

Copying Overrun

Pointer Mgmt.

Synchronization

Type Mismatch

Undefined State

Uninitialized Var.

Unknown

10 15

Percent of APARs

Perct

High Impact APARs All APARs

91 APARs, 28 High Impact

Figure 2.8: MVS Overlay Sample Error Type Distribution.

Many of these errors appeared in the terminal I/O handling code or in code for displaying
messages on the console. Copyingoverruns were oftencaused by overflows or underflows
of the counter used to determine how many bytes to copy. Many other copying overruns
were "off-by-one" errors. In network-managementcode and terminal I/O handlers, buffers
are processed slightlyand passed from one routine to another. If the offset to the beginning
of valid dataor thecountof validbytes is corrupted, copying overruns occur. Mostcopying
overruns involved only a few bytes. The few overruns which had high impact, however,
caused massive corruption of memory.

One would expect some overlays to be caused by unsynchronized access to storage.
In the APARs we studied, however, more overlay errors came from memory allocation
mistakes than from mistakes in acquiring andreleasing locks. Even when thecomplexity of
theprogrammingtask involves synchronization, the erroritself involved garbagecollection.
For example, a process can request a software interrupt and then free a region of memory
before the interrupt is scheduled. If the interrupt tries to use this freedmemory, an overlay
occurs. In this case, synchronization is correct since the interrupt is not scheduled while
the original process is using the memory region. Garbage collection is not correct, since
the region is freed before the operating system has finished with it. When unsynchronized
access to memory did occur, usually too few levels of interrupts had been masked. In these
cases, unmasked interrupts allowed concurrent access to linked list data structures.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 30

Overlay Size Percent of Overlay APARS
Less than 100 bytes 48.4

100 to 256 bytes 25.3

One or more pages 4.4

Unknown size 22.0

Table 2.1: Average Size ofan Overlay.

Thefewoverlay errorsthatoccurred afterthesystem went into an undefined statewere
fairly severe. For the most part, these errors occurred in page fault handling. When the
page fault handler became confused about aprocess state, the process eventually corrupted
so much of the system that no recovery was possible. The errors were often extremely
complex. The reports usually listed a long chain of separate events and propagations that
had to occurbeforethe failurehappened.

The overlay sample allowed ustocollect two additional pieces ofinformation about how
addressing errorspropagate: theoverlay's sizeandits distance from thecorrectdestination
address. Table 2.1 shows the average size of an overlay inbytes. Note that most overlays
aresmall: nearly halfareless than 100 bytes. Table 2.2 gives a rough "distance" between
the overlaiddata and the area that should have been written. For example, acopying overrun
error corrupts dataimmediately following thebuffer that theoperating system is supposed
tobe using, hence, has distance "Followingdata structure." An example ofthe distance type
"Within data structure" is a type mismatch error inwhich the operating system overlays a
field of the same structure it intends to update.

Summarizing the size and distance tables, we find that most of the overlays are small
with a vast majority of them close to their intended destination. In the cases in which
both source and destination of the overlay could be determined, only about a fourth of the
overlays were "wild stores" that overwrote distant, unrelated areas of storage.

This subsection has described an APAR categorization based onerror type. The error
type category hasbeen used to show what kinds ofprogrammer mistakes cause the system
tofail at customer sites. Theotherimportant APAR categorization schemes based onerror
trigger and failure symptoms are described insections 2.4.3 and 2.4.4, respectively. Before
beginning the trigger and symptom subsections, we compare the customer impact of the
APARs filed against MVS, IMS, and DB2. Estimating the impacts of the MVS errors is
especially important because it allows us tocompare the impact of the overlay and regular
sample.



CHAPTER2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 31

Overlay Distance Percent of Overlay APARS
Following data struct 30.8

Anywhere in storage 18.7

Within data struct 26.4

Unknown 24.2

Table 2.2: Distance From Intended Write Address.

2.4.2 Comparing Products by Impact

Table 2.3 compares the fraction of APARS that have high impact in MVS, IMS, and
DB2. The rows show the differences between the products in Severity one errors (errors
identified by the customer as highimpact), HIPER errors (erroridentified by maintenance
programmers as highlypervasive) andhighimpact errors overall. For theMVS overlay and
regular samples, the tablelists the fraction of errors thatcause the system to IPL (reboot).

Comparing the high impact errorpercentages in the MVS overlay and MVS regular
sample shows that overlay errors have higher availability impact than non-overlay errors.
Table 2.3 lists 30.8 percent of the overlay errors as high impact. When overlay and non-
overlay errors are considered together in the regular sample, the high impactAPAR total
drops to 18percent. Overlay errors were three times more likely to beflagged asHIPER or
IPL than MVS errors overall.

The high impact of overlay-related errors is almost certainly because of errorpropaga
tion. Thepotential forerrorpropagation is onefactor field service personnel consider when
theyflag APARS as HIPER. The higher HIPER rate in overlay errors was one reason for
the higher impact of overlay APARs. Also, propagated errors lessen the effectiveness of
system recovery mechanisms, hence, force the system to IPL after an error.

The table also indicates that DB2 has higher impact errors than MVS and IMS by all
three impactmetrics. DB2 is still fairly early in its productlife cycle, and softwaredefect
rates have been shown to godown over time. Perhaps theimpact of DB2'sAPARs willgo
down over time as well.

Several other reasons for the high HIPER and Severity ratings in DB2 have been
suggested to us by the product developers. Different people assign HIPER and severity
ratings forIMS, MVS andDB2. The service people assigned toDB2 may bemore willing to
take the customer's side than the servicepeoplein the older products. Also, MVS and IMS
customers know exacdy what these products should do; if the applications that use these
products continue to work well, the customer is satisfied. System test can anticipate the



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 32

Percent of APARs

Impact Metric MVS Regular MVS Overlay IMS DB2

IPL (reboot) 6.3 19.8 NA NA

HIPER 5.2 18.7 12.5 21.0

Severity 1 12.6 17.6 9.5 16.0

Overall 18.0 30.8 19.0 30.0

Table 2.3: Operating System and DBMS Error Impacts. The same APAR
could fall into each high impact category: EPL, HIPER, and Severity 1. Thus,
the Overall high impact errors figureis less than the sum of the figures in the
other three rows.

workloadfor theseproductsfairlywell. Ontheotherhand,DB2customersarewritingmany
new applications. System test probably has a harder time anticipating the way these new
applications will use the DBMS. The fact that high impactDB2 errors are often triggered
by unusualworkloads and boundaryconditions supports this suggestion.

2.4.3 Error Triggering Events

This section characterizes the events that make latent faults surface in code that has

passed through system test. Most softwarefaults that affect availability at customer sites
have remained latent in the code for some time. Often, the program has been executed
successfully for months at many other sites before it fails for one customer. The triggeris
meant to capture the condition that causes defectivecode to be executed. By determining
triggering events for the APARs examined in the two studies, we hoped to help quality
assurance engineersretargetfuture testingeffortsaswellasfocuseffortsin buildingrecovery
systems.

Figures 2.9, 2.10, and 2.11 summarize the triggering events found in DB2, IMS, and
MVS. The bars in this case are the error trigger events defined in Section 2.3.2. Again,
the bar length shows the number of APARs from the sample associated with the event
represented by the bar. As in the figures for error types, the high impact distributions are
super-imposed on top of the overall trigger event distributions.

Conventional wisdom says that softwarefailures at customer sites are usually timing-
related. Because it is impossible to test all possible interleavings of events before the
software is released, failures are assumed to involve untested interleavings of events that
occur after months or years of use in the field. Our data does not support this hypothesis.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 33

Error Trigger Event

Workload

Timing

Exception Handling

Freq (Pcrct)

107 (48.2%)

28 (12.6%)

22 ( 9.9%)

Database Recovery 36 (16.2%)

Bug Fixes

Client Code

Unknown |"
23 (10.4%)

4 ( 1.8%)

2 ( 0.9%)

VPARs

APARs,68 High Impact

0 20 40 60 80 100

Number of Apars

H] High Impact APARs |_j All I

222

Figure 2.9: DB2 Error Trigger Distribution.

0 10 20 30 40

Number of Apars

High Impact APARs j| All APARs

201 APARs,38 High Impact

Figure 2.10: IMS Error Trigger Distribution.



CHAPTER 2. A SURVEY OF SOFTWAREERRORS IN SYSTEMS PROGRAMS 34

Error Trigger Event p^

34%

11%

13%

16%

2%

13%

12%

Workload a^ll^P^^^i lllll
Timing §iill

Recovery |jl||3.f;:$$

Bug Fixes SS$x*$x*#^?$|

OientCode \

Unknown &&&8M

No-Trigger IBB
r

0 10 20 30

Percent of APARs

11High Impact APARs [§§ AU APARs

ISO APARs, 16HighImpaa

Figure 2.11: MVS Error Trigger Distribution.

Timing directiy triggers arelatively small percentage oferrors ineach ofthe APAR samples
we examined. The dominant trigger for most errors is unusualworkloadconditions. Most
failures recorded in our APAR samples occurred when customers used new features, new
hardware configurations, or used oldfeatures ina new way.

In IMS, most high impact errors were triggered bybug fixes (45%) and error handling
(both full DBMS recovery 24% and low level exception handling 5%). In DB2, workload
(35%) and error handling (24% full recovery and 7% exception handling fora total of31%)
were the most common high impact triggers. MVS had few high impact errors. The ones
we saw were divided fairly evenly between recovery, unusual workload conditions and
unusual timing. Whenhighandlowimpacterrorsarecombined, workload is the dominant
trigger type for DB2 and MVS. Considering both high and low impact IMS triggers, many
triggering events such as workload, DBMS recovery, exception-handling, and bug fixes are
more common than timing. Overall, all three systems had roughly the same proportion of
timing-triggerederrors (IMS 12%, DB2 13%, MVS 11%) but, inthe database manager, the
timing-triggered errorshad low impact

Workload triggered fewer errors inIMS than inthe other two systems, probably because
the workload in IMS has become very well-defined over time. System test for IMS can
anticipate most error conditions and much ofthe product's workload, sounusual boundary
conditions do not arise as often. DB2, on the other hand, has a more broadly-defined
workload (adhoc queries), which ismore difficult tocoverduring test. Hence, asubstantially
higher fraction of its errors aredetected in thefield by untested workload conditions.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 35

Bugfix errors in IMS have much higher impact than they do in the other systems, but
thatprobably comes from theproduct's agerather than from its testing procedures. Because
IMS is late in its product life cycle, littie if any new functionality is added to the system.
Thehigherimpactof maintenance-related APARs mayjust reflect the fact that mostof the
activity on IMS is maintenance-related thanin theothertwosystems.

The text of the MVS APARs often indicated that code reuse was involved in the errors

triggered by unusual workload conditions. Programmers often use the services provided
by an old module rather than write new ones with slighdy different functionality. Over
time, some modules are usedfor things the original designer never considered. While this
increases productivity, it also lessens the effectiveness of the original module-level testing.
The tests run on the old module by the original programmer do not stress aspects of the
module used by newer clients. Thehigh level tests run byquality assurance do not stress
the differences between the services the module was designed to provide and the service
for which it is eventually used. Code reuse may also have caused reliability problems in
thetwo DBMS products, butit was notas apparent in theAPARs for these products.

Thefact thatunusual workload conditions accounted for such a highpercentage of the
triggering events in the three products was surprising. Boundary conditions are the type
of error that one would expect testing to detect most easily. In fact, many unanticipated
boundary conditions continue to arise after the software is released. What this data indicates
is thatinadvertendy "testing"newfeatures in a production environment is a common cause
of outage. From this fact, wecandraw two conclusions. First, test designers should not be
focusing on new ways to uncover timing-related errors, but shouldfocus instead on better
ways to find untested boundary conditions. Second, errors described in the APARdatabase
are very likely to berepeatable. If the boundary condition arises repeatedly, the system is
likely to fail in the same way repeatedly. Redundancy-based recovery strategies, such as
N-version programming [4] and process pairs [8], are unlikely to help much against this
kind of error.

Control Errors and Recovery-RelatedTriggers

In both DB2 andIMS, failures triggered byfaults in error handling or DBMS recovery
code are likely to be related to undefined state. Compare theerror typedistribution for all
sampledDB2APARs tothesub-populationoferrors triggered byerrorhandling (Figures 2.1
and 2.12). The distribution shifts from 20% undefined state errors to 36%. In IMS, the
shift is from 40% undefined state errors to54% in thesub-population defined by theerror-
handling trigger (compare Figures 2.2 and 2.13). The shift shows that undefined state errors
are more likely to arise during recovery than other errors.

Unanticipatederror conditions are implicatedin a significantfraction of undefined state



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 36

Error Type

Allocation MgmL

Copying Overrun

PointerMgmt

Uninitialized Var.

Undefined State

Interface Error

Memory Leak

StatementLogic

Synchronization

Data Error

Wrong Algorithm

Other

Perct

12%

5%

7%

7%

7%

0%

7%

0%

5%

3%

3%

• lllll|IMIIIIII|IIIMIIII|ll

0 10 20 30

Percent of APARs

High Impact APARs ! AllAPARs
58 APARs, 21 High Impact

Figure 2.12: Error Type Distribution for Error-Handling-Triggered in DB2.

Error Type Pact

Allocation Mgmt B 3%
Copying Overrun 1%

Pointer Mgmt || 8%
Uninitialized Var. || 5%

Undefined State 6^^^^^^^^^ 54%
Interface Error mi 8%

Memory Leak IH 6%

Statement Logic 9 6%

Synchronization 1 4%

Data Error 1 1%

Wrong Algorithm Q 1%

Other

(

3%

) 10 20 30 40 50

Percent of APARs

B High Impact APARs 1 AllAPARs
79 APARs, 11 High Impact

Figure 2.13: Error Type Distribution for Error-Handling-Triggered in EMS.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 37

errors. Sometimes unanticipated error conditions directly caused the undefined state (i.e.
the error condition itself was not handledcorrectly). In IMS, error conditions also played
a partin the problem of maintaining statevariables. For example, when an errorcondition
causedthe program to changestate, the conditionitself was handledcorrectly, but the state
management variables were not reset.

When the database manager goes through full recovery from disk, it must construct
some consistent state from the current contents of the database. The recovery protocol
must anticipate all possible error states that the database is left in. In general, the logging
protocols that record changes to the data in the database work correctly, but error states
occur at the boundary of operating system owned resources and DBMS records of those
resources. For example, the protocol for restoring the database from the log mightwork
correctly, while maintaining the consistency of the operating system directories owned by
the database managerdoes not.

2.4.4 Failure Symptoms

Figures 2.14 and 2.15 summarize thesymptoms of the failures that occurred whencode
containing errors was executed. Remember that symptom is an attribute assigned by the
programmer fixing the broken software. The assignment is made primarily to assist others
who come across similar problems in finding the fix, i.e. the primary goal is to assign a
unique symptom, not the symptom of the failure most relevant toan availability study. For
example, if the operating system prints an unusual error message and then takes an address
fault, the error message, not the address fault is the "symptom" of the failure.

In spite of these problems with the symptom data, some interesting observations can
be made about it. Figure 2.14 shows that only 39 percent of overlay errors are detected as
addressing violations. One could imagine that addressing errors such as pointermanagement
errors always make the system take an addressing fault and fail without propagating the
error. Even if this 39 percent figure is understated by the way symptom codes are assigned,
the low number of addressing faults suggests that the subsystem damaged by an overlay
uses the corrupted data before failing. Unfortunately, guessing whether or not propagation
occurs is necessary since APARs usually do not say anything about the chain ofpropagated
errors.

As expected, overlay errors are more likely to cause addressing faults than non-overlay
errors. The most common non-overlay error types, undefined state and synchronization,
often appear in network and device management protocols and usually cause processes to
wait for events that never happen. Non-overlay errors are also more likely tocause incorrect
output than overlay errors. Incorrect output failures include jobs lost from the printer queue
or garbage characters written into console messages. None of the errors classified in the



CHAPTER 2. A SURVEY OFSOFTWARE ERRORS IN SYSTEMS PROGRAMS 38

Failure Symptom
Pcrct

Endless Wait

0 10 20 30
Percent of APARs

[ J All APARs| High Impact APARs

91 APARs, 28 High Impact

Figure 2.14: MVS Overlay Sample Failure Symptoms.

Failure Symptom

Endless Wait

Pcrct

11%

Error Message

Infinite Loop —J
17%

1%

Incorrect Output
27%

Address Error

ABEND

1
]

21%

21%

APARs

APARs, 16

0 5

Pei

l Impac

10

ccn

AT

15

tof AP

ARs

20

Mb

25

All

150 High Impact

Figure 2.15: MVS Regular Sample Failure Symptoms.



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 39

FailureSymptom Perct

Endless Wait

ErrorMessage

Infinite Loop

IncorrectOutput

Address Error

ABEND |:S5::i.'::«::««i«:::::Kl^

10%

15%

5%

24%

17%

29%

111111111111111111111111111111
0 5 10 15 20 25

Percent of APARs

High Impact APARs HI All APARs

199APARs, 38HighImpact

Figure 2.16: IMS FailureSymptoms.

studycausedfailures whichcorrupteduser data.
IMS (Figure 2.16) and MVS have similar distributions of failure symptoms. More of

IMS's software faults result in ABENDs (abnormal program termination) than MVS's and
IMS takes slightly fewer address faults (as a percentage ofall failures) than the operating
system. Remember that IMS had more control errors and fewer addressing errors than the
other two programs, so it is not surprising that fewer ofits errors are detected by hardware
addressing violations.

DB2 has the lowest percentage oferrors that result in addressing faults and the largest
that result inABENDs. It has fewer Endless Wait and Infinite Loop failures than the other
programs, in part because it has a timeout mechanism that turns some kinds of deadlock
errors into ABENDs. The Performance failures in DB2 usually occur when the wrong
access path is takento the data—a problem thatcannotarise in MVS or IMS since access
todata is less flexible than in relational database managers.

2.5 Summary

Chapter Two has gathered together data from several sources to develop a picture
of software faults and the ways they cause system unavailability and unreliability. The
bulk of the chapter summarizes and analyzes data gathered from four years of software



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS INSYSTEMS PROGRAMS 40

Failure Symptom

Endless Wait

Error Message

Infinite Loop

IncorrectOutput

Address Error

DB2 ABEND

MVS ABEND

Performance

Perct

Percent of APARs

High Impact APARs j| All APARs
222 APARs, 68 High Impact

Figure 2.17: DB2 Failure Symptoms.

faults discovered in IBM systems programs at customer sites. The data comes from
defects reported in the MVS operating system, IMS database management system, and
DB2 database management system. It has been sampled from RETAIN, IBM's field error
database, which represents several thousand machine hours ofproduct use atcustomer sites.

Each errorin theMVS, IMS,andDB2surveys was classified byerrortype, errortrigger,
impact, and failure symptom. Together, these classifications provide several different per
spectives on the"cause"of the software fault. Most importantly, the error typecorresponds
to a low level programming error that causes outage. This characterization should be the
most useful in recovery system design. The error trigger describes the circumstance that
allowed the error to surface in the field and characterizes potential areas for enhancement
in system test.

In Chapter One, we highlighted the importance of addressing errors and error prop
agation. The two studies presented in Chapter Two have illustrated several important
characteristics of addressing errors and the ways in which they propagate damage to other
modules in the system:

1. The ranking of control errors, addressing errors, and data errors was the same across
all three products. About half of all errors were control errors, 25-30 percent were
addressing errors, and 5-10 percent were data errors. The remainder could not be
classified using the model, usually because they affected system performance but



CHAPTER 2. A SURVEY OF SOFTWARE ERRORS IN SYSTEMS PROGRAMS 41

neither corrupted data nor propagatederrors.

2. Addressing-related"overlay" errors have a much higher impact on customer avail
ability thanregular errors in MVS. These errors are more likely to damage the MVS
recovery mechanisms than other errors. IBM programmers view them as higher risk
than other errors to the customer base if left unrepaired. Also, customers viewing
the failures caused by errors are more likely to rankerrors involving overlayashigh
impact than the averageMVS error.

3. Ourdata shows thatmost overlays are small (on the order of a few bytes) andabout
75% occur near theaddress that the software was supposed to write. "Wild pointers"
that could damage any module in memory were onlyabout 25% of addressing errors.

These observations about the character of software errors will be used to motivate and

evaluate the techniquesin Chapters Three, Four, andFive. The remainderof the dissertation
looks atways todetect addressing errors, ways tolimit the propagation that they can cause,
and ways to recoverquickly after such an error is detected.

The chapter presented additional information that is unrelated to propagation and ad
dressing errors, but information that other researchers should find useful. For example,
the error trigger classification showed that untested boundary conditions in the software
trigger amajority of failures. This suggests that many of the software errors surveyed were
repeatable, incontrast totheTandem errors reported in [28]. Recovery and timing-triggered
failures are fewbuttendto have ahighimpact whentheydooccur. This information should
help guide thedesign of tools to help software testing. Chapter Twoalso shows that control
errors are dominated by the undefined state error type. These errors are often related to
error handling, and usually involve omitted code rather than state transitions which are
handled incorrectly. Such an observation suggests that tools to improve aprogrammer sys
tem designer's understanding of the states the program can go into, especially after errors,
will improve reliability. We hope that these and other observations from this chapter will
some day assist the designers of system test suites, software development tools, reliability
evaluation techniques, andrecovery mechanisms.



42

Chapter 3

Using Write-Protected Data Structures
in POSTGRES

3.1 Introduction

Chapter Three focuses on theerrordetection problem, describing andevaluating tech
niques for detecting addressing errors. Chapter Two showed that addressing errors are
an important class of software error. Addressing errors areimplicated in twenty to thirty
percent of all software outages, and these errors have higher customer impact than other
errors. Also, the introduction of the dissertation explained that addressing errorswere the
mostdangerous source of error propagation; control and data errors usually do not affect
data belonging to parts of the system unrelated to the faulty code.

In order to detect addressing errors in the DBMS, we have modified POSTGRES to use
the hardware that supports virtualmemory to protectsomedata structures frompropagated
errors. Several system calls were added to the Sprite operating system [58] to allow the
DBMS to guard (write protect) parts of its address space. The DBMS uses these services
to protect data in its buffer pool. To provide read-writedata with protection against errors,
the DBMS must support an update model that allowscorrect software to modify protected
data, but prevents accidental updates by incorrect software. Different update models will
make different tradeoffs regarding software complexity,performance, and the kind of error
protection offered.

We have experimented with three models for updatingguarded data structures: Expose
Page, Deferred Write, and Expose Segment, A single DBMS can use different update
models in differentprogrammodules, if necessary. The Expose Pagemodelis the simplest
one. The DBMS must recognize that it is about to update a protected record, unprotect
the page containing the record, and reprotect the page after it is updated. In the Deferred



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 43

Write model, theDBMS copies arecord it intends to update intounprotected memory and
updates the copy. At the end of transaction, a system call recopies the updated record into
protected memory. Finally, the Expose Segment model lets the DBMS make a system call
to unprotect all guarded data atonce. After the update, a second system call reprotects the
guarded data.

Inall three models, guarding DBMS data allows thehardware to detect illegal attempts
towrite to protected pages. Systems could useguarding support to improve error detection
both during development and in production systems. As a debugging tool, guarding can
help find software errors earlier in thedevelopment cycle. Afterproduct release, guarding
lessens the impact of addressing-related errors by detecting errors at the time propagation
occurs rather than afterthedamaged data is used. Because guarding detects aclass oferrors
not well-covered by data consistency checkers, it complements existing fault tolerance
techniques. For multi-process DBMS architectures, guarding can prevent one DBMS
process' errors from corrupting data structures used by the other processes — improving
overall DBMS availability. In an extensible data manager, guarding is a compromise
between running application code inaseparate process and riuining it as a full fledged part
of the DBMS. Much of the protection of the separate address space model is retained ata
cost much closer to the single-address space model.

This chapter is divided into five sections. The remainder of the first section describes
relevant features of the POSTGRES DBMS and Sprite operating system test beds on
which we have implemented guarding. The second section presents previous workrelated
to guarding. This chapter's third section details the update models and describes their
implementations. The fourth section shows some performance results and evaluates the
reliability effects of guarding based onthe statistics about system software errors presented
in Chapter Two. A fifth sectiongives some conclusions.

3.1.1 System Assumptions

The discussion that follows requires some understanding of the POSTGRES process
architecture depicted inFigure 3.1. The POSTGRES DBMS consists ofseveral cooperating
server processes. Each DBMS server process has its own private address space, butall of
them share a single common memory region. The shared region contains a lock table,
buffer pool, and other in-memory data structures used byall of the server processes. DBMS
application programs run in separate address spaces and communicate with the DBMS
using message passing.

POSTGRES has an unconventional storage system [66], but the results of this chapter
should still be applicable to more traditional DBMS designs. The POSTGRES storage
system has a "no overwrite" policy in which data records are not updated directly. An



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 44

Application

Process

Server

Process

Log Tail

Shared
Caches

Buffer Pool
Meta-Data

Lock
Table

Application

Process

Server

Process

Buffer Pool

Shared Memory Region

Figure 3.1: POSTGRES Process Architecture. Both server processes can
address the shared memory regioncontainingthe buffer pool. Conversations
betweenserver processes and applications usea message passing interface.



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 45

"update" marks the current version of the record as invalid and inserts a new version of the

record into the relation. Out-of-date records are removed (or archived) by a background
garbage collector process. Guarding is implemented below the level of the POSTGRES
storage system and does not take advantage of its no-overwrite property.

POSTGRES is extensible, so code implementing user-defined operators, access meth
ods, and data types can be added to the DBMS. Most extension code will access the database

through routines in the core POSTGRES modules. Generally, the core POSTGRES rou
tines, not the extension code, must implement the POSTGRES support for guarding. Some
extensions, however, such as user-defined access methods, have their own page formats.
These extensionshaveto know aboutanduse guarding directly. For example, B-tree access
methodshad to be modified to unprotect pages beforeadding or deletingkeys.

The Sprite operating system, which we modified to support guarding, is a UNIX-like
distributed operating system being developed at Berkeley. We chose Sprite as a test bed
because the source code was available and well-documented. A DECstation 3100 served as

ahardware platform for the guarding experiments. l It uses a software-loaded, hash-based
Translation Lookaside Buffer (TLB). The guarding implementation does notrely on any
DECstation 3100 hardware characteristics. However, the cost of updating TLB entries is
hardware-specific andwill be reflected in thecostof guarding.

3.2 Previous Work Related to Guarded Data Structures

Nowthattheguarding mechanisms have beendescribed, wecan compare themtosimilar
mechanisms used by other systems. An alternative to protecting shared data structures
with guarding is to keep those data structures in one address space and the clients of the
data structures in another. In order to make such an architecture practical, a fast cross-
address-space procedure call mechanism like that of the Taos operating system [11] is
required. The Taos Lightweight Remote Procedure Call (LRPC) is optimized for RPC-
stylecommunication in whichonly a few parameters are passed between caller and called
routine. The Service Request Block (SRB) mechanism in the MVS/XA[35] operating
systemis similar to LRPC. An SRB is ahighpriority thread ofcontrol whichcanbe created
in aremote address space. Both LRPC and SRB use a fast path through the scheduler and
some sharedmemory to reduce overhead.

Guarding provides the same kinds of protection against non-malicious damage as does
an address space boundary. However, access to read-only records is faster than would
be possible in a separate address space implementation. Since database workloads often
require theDBMS to scan through large amounts of data before selecting some for update,

DECstation isatrademark of Digital Equipment Corporation.



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 46

faster readperformance is adistinctadvantage.
Tandem's process pair mechanism [8] also relies onmultiple address spaces to prevent

propagation of software errors. The Tandem data manager has a primary and "hot spare"
process executing at the same time on different machines. The primary executes all trans
actions and sends checkpoint messages to the spare. If the primary fails, the spare can
reconstruct the data manager's state from the checkpoint messages. While errors might
propagate within the primary, they are less likely to propagate to the spare.

While process pair prevents the samekinds of errors as guarding does, it is much more
expensive. Keeping the spare up to date requires resources for sending and processing
checkpoint messages. Worse, the implementation of the checkpoint protocolis non-trivial.
Modifications to the DBMS may affect the checkpoint protocol, making them expensive
to implement and test Finally, the model does not help detect errors. The primary and
spare both havelarge, unprotected buffer pools. An undetected pointer error can damage a
bufferwithoutmaking the primary turnovercontrol to the spare. The corrupted buffer will
eventually corrupt permanent data.

The 801 System [17] uses pageprotection bits to provide operating system support for
DBMS locking and logging, rather thanusing page protection to increase fault tolerance.
A data manager runningon the 801 does not set locks explicitly. Memory management
hardware detects areadorawriteto anunlockedbufferandtheDBMS traps to theoperating
system. The operating system then sets locks andimplements physicallogging of 128byte
subpages. To support fine-grain locking, the 801 memorymanagement unit provides write-
protection at subpage granularity. The samehardware would support subpage granularity
guarding.

Unlike a system using guarded data structures, the 801 treats any attemptto write to one
of its buffers as legitimate. By moving responsibility for locking from the DBMS to the
operating system, the 801 is losing information available to the DBMS about which data is
updated erroneously. If a bad pointer causes a write to an unlocked buffer, the 801 locks
the buffer and logs it normally. Under the same circumstances, a guarded system would
immediately halt the transaction.

Implementing protected operations such as locking in the operating system is one
alternative to guarding. However, installing the DBMS code in the operating system
makes the operating system vulnerable to errors in the installed code. Guarding gives the
DBMS implementor more freedom to decide what code is reliable enough to have access
to protected data. More debugging support is available for user programs than for the
operating system, so implementing protected subsystems in the DBMS is more practical
than implementing them in the operating system.

Guarding provides some of the same protections as a protected subsystem mechanism
without requiring any special hardwareorrestrictingthe designer's choice of programming



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 47

environment. Existingprotectedsubsystem mechanisms oftenrelyon specialmemoryman
agement hardware [62], [79], or type-safe languages [45]. Guardingcan be implemented
on conventional hardware and used with common systems programming languages. Of
course, guarding is designed to protect against accidental damage not malicious damage.
Existing protected subsystem mechanisms were designed to protectagainst both.

We chose toimplement thevirtual memory support required forguarding bymodifying
theoperating system. It would also bepossible tosupport guarding using theMach external
pager [80]. Implementing guarding direcdy inthe operating system should make guarding
more efficient.

3.3 Models for Updating Protected Data

3.3.1 Overviewof Page Guarding Strategies

The basic idea inpage guarding is that the DBMS write-protects its own data in order
todetect accidental updates tothat data. Clearly, any attempted update toread-only data is
illegitimate, so write-protecting such data will prevent all errors from corrupting it. When
data can be legitimately updated, the guarding implementation must allow the DBMS to
disable guarding and overwrite the protected data. POSTGRES can use guarding to protect
either its buffer pool orall ofthe shared memory region shown inFigure 3.1. The different
models presented inthis section allow the DBMS to enable and disable write protection in
different ways. Each model will make different tradeoffs in terms of the kinds of errors
it protects against and itsperformance impact. Before going into the model tradeoffs and
implementation details, we present two examples that outline the models and show how
guarding would work in practice in an extensible DBMS.

A Simple Example

The basic guarding models will all bedescribed in thesubsections thatfollow in terms
ofthis simple example. The example assumes that the DBMS has only guarded the DBMS
buffer pool. In the example, the DBMS runs a simple Postquel query such as:

replace (emp.salary = emp.salary * 1.1)
where emp.name = "Mike Stonebraker"

which gives Mike Stonebraker a ten percent raise. To execute this query in the simplest
case, the DBMS scans the employee relation examining the "name" field of each record
for "Mike Stonebraker." In POSTGRES, records are stored on the disk in database pages
and buffered in a main memory buffer pool. To examine the records on a given page,



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 48

the DBMS executor asks a buffer pool manager to determine if the page is currently
buffered. If it isnot buffered, the buffer pool manager reads the page into the buffer pool,
replacing an existing page if necessary. When Mike Stonebraker's employee record has
been located, the executor calculates the new salary value using the record and calls a
lower-level "replace" operation. The replace operation installs this new salary value into
the record. In POSTGRES, replacing a value in a record is done logically rather than
physically by creating a new version of the employee record containing the new salary
value.

Eachof the guardingmodelshas a differenteffecton the implementation of the POST
GRES replaceoperation. In the firstguarding model, Expose Page, two system calls called
UnguardPage and GuardPage are used to change write access to protected data. These
allow the DBMS to changeprotection at the finest granularity supported by the underlying
processorarchitecture. Tochange the salaryin Mike's employeerecord, the page containing
therecordis unprotected at the beginning of thereplace operation using UnguardPage and
protectedagain at the end of the replace operation GuardPage. The Expose Segment model
looks to the DBMS muchlike the Expose Page model, but the underlying implementation
is different Because the implementation is different, theprotection/performance tradeoffs
are different also. Details will be presented later in the chapter. In the Expose Segment
model of guarding, ExposeData and HideData are used to obtain and remove write access
to protecteddata insteadof UnguardPage andGuardPage.

Theremaining model, Deferred Write, does notchange thebufferpoolprotection during
the replace operation, but insteaddefers the protection change until the end of transaction.
In this model, the POSTGRES replace operation creates a temporary version of Mike's
updated employee recordin a scratch areaof the DBMS address spaceand links a pointer
to the temporary versioninto a list of deferredupdates. At the end of the transaction, the
DBMS passes throughthe linked list installing eachof the updates into protectedmemory
with a single system call, InstallData. The bufferpool data structures are modified during
the replace operation, so that if the transactionrereferencesMike's employeerecord, it sees
the updated temporary version rather than the out-of-date protected version. Again, the
implementation details and advantages of this technique are described in the sections that
follow.

What Can Guarding Strategies Achieve in an Extensible DBMS?

The query in Figure 3.2 helps illustrate why guarding should be both inexpensive and
effective in an extensible database management system. The hypothetical database in
the example is a mixture of relational data and non-relational molecule data, designed for
commercialpharmaceuticals research. The query uses a relationaloperator and a molecule-



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 49

append available_markers (id = molecule.id,
expire__date = molecule.patent_date+x*15 years'',
etc.)

where

(molecule.patent_date < x*January 1990'')
AND

(molecule.has_benzene_ring == TRUE)
AND

(similarity(penicillin,molecule.structure) > 0.90)
AND

(similarity(root-beer,molecule.structure) < 0.05)

Figure 3.2: Example of Extensible DBMS Query. The figure shows a query
against a database that has been extended to handle molecule data. The
function similarity isa hypothetical graph matching function that determines
how similar two molecules are and returns a value between 0 and 1.

oriented extension operator called similarity. When a record is selected by the query, a
conventional relational update is used tosave orupdate the resulting records.

The DBMS query can be divided logically into two phases: a qualification phase in
which operators determine which database data to update, and an update phase in which
the selected records are modified or created. In its qualification phase, the DBMS passes
over the data, applying a combination of extension and relational operations. During
qualification, the DBMS does not need permission to write to the database data that it is
examining. During the update phase, this permission is needed, but the DBMS applies a
different, and possibly more trustworthy set offunctions and/or operators. In the example,
the update operations are fairly unsophisticated integer operations while the qualifications
are extension operations.

Guarding support allows the DBMS to explicidy identify its qualification phase, telling
the operating system through a set ofsystem calls that any operator writing tothe database
atthis time isinerror. The qualification could still have bugs; itcould, for example, qualify
the wrong record. It could also corrupt a value in unprotected memory which is later, in



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 50

the update phase, used to generate avalue stored in protected memory. However, these are
much more benign errors from the standpoint of error propagation than addressing errors
that "randomly" corrupt records in thebuffer pool during qualification. For onething, both
of the errors mentioned can beundone if the transaction aborts since the transaction system
logged the errors before allowing the updates. If a stray pointer corrupts the buffer pool,
on the other hand, it does so without logging the change. Also, if these errors involve
DBMS extensions, data unrelated to the extensions is unlikely to be corrupted by the error.
Uncontained addressingerrors can affect entirely unrelateddata.

The remainder of this section discusses three different models that the DBMS could use

to support the guarded data abstraction. Each subsection that follows describes one of the

three update models.

3.3.2 The Expose Page Update Model

In the ExposePage update model, a DBMS processunguards a recordbefore writing to
it andreguards the recordafterthe write. Because write-protection is enforced in hardware
at page granularity, unguarding one record also unguards all of the records on the same
page. The page granularity of guarding does not imply page granularity for transaction
locks, since transaction locks areenforced by software.

Managing protected data in the buffer pool using this model is straightforward. When
the data manager updates, inserts, or deletes a record on a buffer page, it unprotects the
page with a system call. While the page is unprotected, data in the record can be changed
or additional records can be allocated on the page. The UnguardPage system call clears a
write-protectionbit in the page table entry (PTE) associated with the page containing the
data. UnguardPage also clears protection in the hardwareTLB entry associated with the
page. The GuardPage system call restores the protection bits in the page table and TLB
entry.

After the DBMS has updated a record, it does not necessarily have to reguardthe record
immediately. If the DBMS delays reprotecting the data, subsequent updates to the same
record do not pay the costs of turning page protection on and off. Unfortunately, the
longer the page remains unguarded, the less protection is offered. Delaying the reguard
operation also increases the opportunity for the DBMS to "forget" to reguard the page. Our
implementation unguards one record at a time, reguardingeach record before updating the
next. If two POSTGRES processes unguardthe same page at the same time, the last one to
reguard the page issues the actual GuardPage call.

In the Sprite sharedmemory implementation, unguardinga page for one DBMS process
unguards it for all of the others as well. Sprite uses a single software page table for each
shared memory segment When UnguardPage clears the protection bits for a page, all



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 51

Share IBuflBa: Fool

HI Protected Page

I | Unprotected Page

MMHIIMMIMII

Updated Record

Figure 3.3: Expose Page Update Model. The smallest granule of hardware
write protection containing the record of interest is unprotected before the
record isupdated. For most architectures, thisunitisa page.

POSTGRES processes can write to the unprotected page. Thus, while one process updates
the page, faulty code executed by another process can corrupt it.

A GuardedRead system call helps reduce the vulnerability of buffer pool pages by
allowing them to remain protected during anI/O operation. The DBMS uses the Guard
edRead system call in place ofthe normal read system call to load pages from disk into
the buffer pool. In the absence of an explicit GuardedRead call, POSTGRES would have
tounprotect the page before issuing the read. The page would remain unprotected for all
DBMS processes until the read completed and the issuer reprotected the page. In Guard
edRead, the operating system turns off page protection briefly while data is copied from
system buffers into the user address space, rather than leaving itoff during the entire I/O.

Expose Page is best for detecting pointer errors affecting pages containing infrequently
updated records. "Hot" pages containing frequentiy updated records will be unprotected
much of the time, so they will receive less benefit from guarding than cold pages. The
major costs associated with Expose Page are an increased number of system calls and
the additional TLB operations required to change page protections. If guarding were
implemented on a processor with a virtually-addressed cache, changing page protection
status from read-write to read-only would require the page to be flushed from the cache.
Virtually-addressed caches store protection bits inthe processor cache with the cached data.
The protection bits can only be changed by reloading the cache line from memory. Hence,



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 52

a cache flush is normally required to change the protection bits forcached data.

3.3.3 The Deferred Write Update Model

The second model of DBMS data structure protection is designed to leave the record
guarded until the end of transaction. When a DBMS process needs to update a record, it
copiestherecord intowritable memory andupdates thecopyrather thanupdating therecord
in place. After the update is complete, an InstallData system call copies the new record
value into the protectedpage. InstallData takes as an argument anarray of<source address,
destination address, length> triples, so severalrecordscan be installed with a single system
call.

InstallData combines an UnguardPage operation and a GuardPage operation into a
single system call, so the user-level process never modifies protected memory directly.
In InstallData, the operating system changes the TLB entry for the page containing the
protected version of the record, copies the new version of the record into the page, and
reprotects the page. Unlike the Expose Page model, Deferred Write does not modify the
page table entry, just the entry in the TLB. As Section 3.2.2 has explained, processes can
share page table entries, so modifying the page table entry disables protection for all of
the DBMS processes that share the page. Because processes do not share TLB entries, the
protectedpage is not vulnerable to errors in other POSTGRES processes during the install
operation.

The reason that InstallData does not have to modify page table entries is that only the
operating system ever has write access to the protected data. Page table entries are used
to create TLB entries; the protection bits in the page table entry determine the protection
bits in the corresponding TLB entry. Modifying protection in only the TLB entry allows
access to a page until a TLB flush occurs or the entry is replaced in the TLB. When the
page is referenced again, a new TLB entry is constructed and the page becomes protected
again. To mask protection faults in this case, InstallData sets a copy-in-progress bit in the
process control block before copying a record into a protected page. If a protection fault
occurs due to a reconstructed TLB entry, the fault handler will use the copy-in-progress bit
to detect that fault was spurious. It then unprotects the TLB entry and allows the write to
proceed. Because the operating system copies records into protected pages in a tight loop,
TLB entries will rarely be replaced and the extra protection fault will occur too infrequently
to affect performance. The copy-in-progress bit is cleared and the TLB entry is reprotected
before the DBMS process returns from the InstallData system call.

As in the Expose Page model, Deferred Write offers the DBMS programmer some
latitude in deciding when to install the new version of the record into shared memory. The

updated record could be reinstalled immediately after the update. It could also be installed



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 53

Hj Protected Page

| | Writable Memory Original]

Figure 3.4: Deferred Write Update Model. A record is copied to writable
memory before it is updated. Later, it will be copied back into protected
memory using an InstallData system call.

after several updates or at transaction commit time. Inourimplementation of the Deferred
Write model, guarded records are installed at transaction commit time.

Deferred Write is designed to work with record-level locking. Records from the same
page may be updated concurrently by different DBMS server processes as is shown in
Figure 3.4. When a DBMS server process copies a record toits private memory, it locks
the recordbut not the page containing the record. Whilethe latestversion of the record is
in oneprocess's private memory, thatprocess holds a transaction-duration lockon the data.
The update is installed at transaction commit time before the lock is released.

Although updates to data on a page can be deferred until the end of a transaction,
record-level locking requires undeferred updates to the page header whenever a new record
is created on a page. A counter in the page header describes the amount of free space
on a page. The DBMS must decrement this counter when a new record is added. When
record-level locking is used, concurrent transactions are allowed to create records on the
same page. Thus, changes to the free space counter must be immediately visible to all
DBMS server processes. When allocating records on the page, the DBMS can use the
InstallData system call to update the free space counter, but cannot defer the update until
the end of the transaction.

Before making an InstallData system call, the DBMS must check that the destination
page is still present in the buffer pool. In long-running transactions, the disk page from



CHAPTER 3. USINGWRITE-PROTECTED DATA STRUCTURES IN POSTGRES 54

which an updated record was taken could have been evicted from the buffer pool. If a
record mustbeinstalled in a page that is nolonger in the buffer pool, the DBMS reads the
pageback into memory beforeinstalling the data.

Some modifications to the POSTGRES record manager were required to support De
ferred Write. If the DBMS asks for a record on a page, therecord manager has to see if
there is already a writable copyof therecord. If therecord has notbeen copied, the record
manager returns a pointer to the protected record. Otherwise, the copy is returned. A hash
table tells the record manager whetheror not there is currently an unprotected copy of the
record. If the DBMS decides to update a record, it first tells the record manager to make
sure the record is writable. The request to make a record writable is logically at the same
place the DBMS would lock the data. Hence, the existence of copiesdid not cause radical
changes to the DBMS software.

While DeferredWrite has a higher impact on software architecture than Expose Page,
it provides more protection to guarded records than the ExposePage model does. Deferred
Write updates protected records during a system call, so the DBMS can never store into a
bufferpool page withoutissuingan InstallData system call. Addressing errors are unlikely
to cause the DBMS to "accidentally"call InstallData. They can still damage the writable
copy of a record before it is installed into the buffer pool. They can also damage the
meta-data that tells where the record will be installed in the buffer pool, causing it to be
installed in the wrong place.

Combining Deferred Write with a little additional error checking reduces error risk
further. The DBMS currently checks that the update to be installed by an InstallData does
not cross record boundaries before issuing the system call. Deferred Write also allows
the DBMS to check for addressing errors thatcorrupt storage nearby the record modified.
When the modifiable copy of a record is created, the DBMS can put known bit patterns
before and after the copy. Some addressing errors which occur near the record can be
detected by looking for corruptionof these known bit patterns. In a conventional system
and in Expose Page, these "nearby" addressing errors would be undetectable.

With DeferredWrite model ofguarding, corrupting therecorddirectly(asin dataerrors)
orinstallingthe updateto the wrongplaceon the pageare the most likely ways ofcorrupting
the protected data. At some additional cost, even these errors could be detected. The DBMS

could checksum the record and its associated meta-data when the record is modified. By
recalculating the checksum before installing the record into the buffer pool, the DBMS
would be able to detect some of these additional addressing errors.

DeferredWrite has an additional advantage over both Expose Page and conventional
DBMS transaction management When badsoftware corrupts data, often the damage is not
detected immediately. By the time the DBMS notices the error, it cannot tell how much
data has been affected; the faulty code that halted the system could have caused a large



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 55

cluster of undetected errors. With guarding and Deferred Write, however, the DBMS knows

that protected data cannot be corrupted until the InstallData system call at the end of the
transaction. If a transaction detects that it has corrupted some of its data, it simply throws
away all uninstalled data. Any undetected damage to data records caused by the transaction
will be thrown away as well. When record-level locking is used, the free space counter on
a page can be modified during the transaction, but only a limited portion of the DBMS ever
changes the free space counter. Thus, a limited amountof error checking ensures that data
in the bufferpool is not damagedby the failingtransaction, evenif the extentof propagated
damage is unknown.

Aconventional DBMS aborts thecurrent transaction when anerrorisdetected andhopes
that abort processing removes the effects of undetected errors. Aborting the transaction
will remove thedamage only if the erring software accurately recorded its updates in the
log. Some errors, like those caused by corrupted pointers, corrupt data without logging the
before-image of therecord intothelog. The most practical way fora conventional DBMS
to get the same guarantee as the Deferred Write update model is to invalidate the entire
bufferpool after detecting an error.

Page Remapping Techniques for Large Objects

Deferred Write is similar in some respects to the shadow paging technique used in
System R [51]. Shadow paging is a no-overwrite transaction management technique in
which a new block on thediskis allocated forevery page modified bya transaction. When
the page isevicted from memory orforced todisk, it goes tothe new location. The update
is committed by remapping the new page into the original page's position in its home
relation. Shadow paging has fallen into disfavor as a recovery management technique
because itprevents relations from being allocated ondisk inkeyed order. Thus, scans of the
relations lose theperformance advantage ofsequential disk reads. While shadow paging and
Deferred Write are superficially similar, shadow paging was not used in conjunction with
write protection in System R anddid notprovide theerrordetection benefits of Deferred
Write. Also, unlike shadow paging, Deferred Write does not affect the allocation of the
database pages onthe disk, hence does not hurt sequential read performance.

An in-memory variation ofshadow paging could be used inconjunction with guarding
tolimit copying costs for large objects. For small record sizes, the cost ofcopying arecord
to a writable location andcopying it backmaynotbesignificant, butas therecordsizerises
sodo the copy costs. When objects are large, remapping the DBMS buffer pool meta-data
can reduce copy costs.

Instead of copying a large, possibly multi-page object to writable memory, a region of
(shared) protected memory is unprotected and the pages containing the object are copied



CHAPTER3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 56

p| Protected P*gc

f~l Unprotected Page

A B C D Map
Buffer

Figure 3.5: Remapping to Avoid Copies in Deferred Write. Page B contains
a large object. Instead of updating the object in private memory, an unused
page of the buffer pool is unprotected and the object is copied there. After
the update is complete, the new version of pageB is protected, the buffer map
is changed, and the old version of pageB is freed.

there (SeeFigure3.5). Because it is unprotected, the copyof the objectcan be updatedin
place. Tocommitthe updates to the object, the DBMS reprotects the page and changesthe
buffermap, whichassociates disk blocks with theirlocation in the bufferpool. The pages
that contained the original version of the object are nowfreed for use in further updates. For
higherperformance, the original version's pagescould be unprotected in the same system
call that protects the new version's pages. The freed pages will then be already unprotected
when they are needed for the next update.

The remapping variation of Deferred Write is only cost effective when the object
updated is large relative to the size of a database page. In normal Deferred Write, updating
a protected object requires the DBMS to copy the object twice. The first copy occurs when
the original version of the object is copied into unprotected memory. Second, after the
object is updated, the new version is copied back into protected memory. The remapping
variation of Deferred Write incurs two costs in place of the second copy. First, there is a
smallcost to change the bufferpool meta-dataafter the update. Second and more important,
the entirepage containingthe updatedobjectmustbecopiedinto an unprotectedpage before
the update occurs, rather than just the object If the object being modifiedis small, the cost
of the single page-sized copy is larger than the cost of copying the object twice.



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 57

3.3.4 The Expose Segment Update Model

The Expose Segment update model is similar to the Expose Page model, however,
protection is addedto orremoved from all guarded pages at once. When the DBMS makes
an ExposeData system call, all protected data becomes visible. A second system call,
HideData returnsthe protectionto all exposed data.

Expose Segment provides less protection than the other two models since nothing is
protected from the routines which update critical data structures. The reason for using
the Expose Segment model is that it simplifies the management of guarded data in some
modules. Using theExpose Segment model, aDBMS programmer can unprotect data for a
procedure anditsdescendants inthe call tree withoutknowing exactly which protected pages
will be written. For POSTGRES, we found the Expose Segment model to be convenient
for small, fast, and trustworthy operations that needed access todata on several pages. For
example, we used it to protect a shared memory hash table in the implementation of the
lock table.

To further simplify programming inthe Expose Segment model, weuse apre-processor
to place calls to ExposeData and HideData in procedures. The DBMS programmer flags
with akeyword any procedure which is to update protected data. The pre-processor adds
ExposeData and HideData calls at the first line and before all return statements inthe targeted
procedures. The pre-processoreliminates a class of errors in which data is never hidden
again after an ExposeData call. Italso makes adding protection to new data structures very
easy.

To implement the Expose Segment update model in Sprite, wemodified the operating
system routine that handles write-protect faults. The ExposeData system call sets a"trusted"
bit in the DBMS process's control blockindicating that the process has permission toupdate
protected data, but nopage table and TLB entries are changed. When the process tries to
update protected data, it takes a"false" protection fault The operating system fault handler
distinguishes true and false protection faults by examining the trusted bit in the process
control block. On a false protection fault, the operating system clears the protection bits
from the page's TLB entry and the process proceeds with the update. When the data is
hidden again, the trusted bit iscleared and the mappings for any guarded pages still in the
TLB are returnedto read-only status.

The simplest approach to restoring page protection during HideData wouldbe to flush
the TLB, but flushing and reloading the TLB is expensive. Our implementation maintains
a small log in the process control blockcontaining page numbers whoseTLB entries have
been unprotected. The HideData system call passes through the log and resets the protection
bits inthe TLB entries corresponding tothe logged page numbers. If the logever overflows,
theentire TLB must be flushed to reprotect theexposed pages.



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 58

The Expose Segment model of guarded update is similar to a conventional protected
subsystem. Other protected subsystems (the operating system kernel, for example) require
more complicated mechanisms since they are expected to prevent malicious as well as
accidentaldamage.

A slightly less safe version of Expose Segment can reduce thehighsystem call overhead
inherent in this model. If the DBMS needs to update a single protected page, the Expose
Segment model forces it to enter theoperating system three times. The DBMS process first
makes anExposeData system call. Second, it takes a false protection fault whenit attempts
to updatethe protectedpage. Finally, the DBMS process makes a HideData system call to
restore protection to the page. The DeferredWrite model requiresonly one system call and
Expose Page requires two.

The ExposeData system call could be eliminated to improve performance. This system
call is only necessary to inform the operating system that the DBMS process is placing
itself in trustedmode; it setsthe trustedbit in the DBMS process controlblock. The DBMS
could put the trustedbit in its own address space if, at system initializationtime, it identified
the address of the trusted bit to the operating system. Now, instead of making a system
call to expose the segment, the DBMS process would set the trusted bit in its own address
space. When the operating system handles the false TLB protection fault later, it looks
for the trusted bit in the reserved area instead of the process control block. The HideData
system call is still necessary since it updates TLB entries to remove write permission on
the protected data. This variation of Expose Segment is less safesinceit is possible for the
application to "accidentally" go into protected mode by corrupting the trustedbit.

3.4 Performance Impact of Guarded Data Structures

Because the DBMS and operating system have to do extra work during updates of
guarded records, guarding will decrease DBMS performance for update-intensive work
loads. The extra costs involved in guarding include the additional system calls and TLB
operations requiredto change page protections. In the DeferredWrite updatemodel, addi
tionalprocessing is requiredto create andkeep trackofrecordcopies. This sectionevaluates
the performanceof guarding in two ways. Section 3.4.1 presents some of the raw costs of
accessing protected data in all three guarding models. Section 3.4.2 shows the impact of
guardingon the overall performance of a DBMS numing a debit/credit workload.

3.4.1 Performance of the Guarding System Calls

Table3.1 shows therawcostsofthe guarding system calls: UnguardDataandGuardData
from the Expose Page model, InstallData from the DeferredWrite model, andExposeData



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 59

System Calls Elapsed Tune ± Std Dev
UnguardData 62.2 fis ± 0.6
GuardData 63.0 fis ± 0.4
InstallData 74.5 fis ± 0.4
ExposeData 21.6 fis ± 0.4
HideData 21.2 fis ± 0.4

Table 3.1: Raw Costs of Guarding System Calls. These are the elapsed times
in microseconds of the five different system calls added to the DECstation
3100 version of Sprite to support guarding. Each entry in the table is the
meanof five measurements and a measurement is the mean of 10,000 system
calls.

and HideData from the Expose Segment model. These measurements were taken on a
DECstation 3100 version of the Sprite operating system augmented with guarding support.
Each entry in the table gives the mean and standard deviation of five measurements. Each
measurement is the mean of 10,000 system calls. In InstallData, only a single byte of
protecteddatais modified in orderto limittheeffect ofdatacopying overhead, which is not
present in the other system calls.

The costs of ExposeData andHideData as shown in this test can largely be attributed
to Sprite system call overhead. ExposeData simply sets a bit in theprocess control block
and returns. HideData checks that no pages have been unprotected and clears the bit
UnguardData and GuardData are slower than ExposeData since they must operate on the
DECstation 3100's Translation Lookaside Buffer. The measurements show that GuardData

is slightly slower than UnguardData. The system calls are identical except forthe bits that
are loaded into the TLB, so if this difference is actually significant, it is a feature of the
hardware not the software. InstallData is the slowest of these system calls, but it is much
less expensive than UnguardData and GuardData combined. Since InstallData is logically
a combination of these two operations, we can see that there is a performance advantage to
combining the unguardand guardoperations into a singlesystem call.

The graph in Figure 3.6 shows thecost of updating a small record on a protected page
in each of the models. The X axis in the figure is the number of bytes in the record and
the Y axis is the elapsed time in microseconds. As in Table 3.1, each measurement is
taken from theelapsed time of 10,000 operations, where anoperation copies a record into
guarded memory. Each data point on the graph is the mean of five measurements and
the standarddeviation for these measurements is always less then 2% of the mean. The



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 60

graph also includes curves showing the cost of a simple bcopy into unprotected memory
and the cost of copying a record from one address space to another using UNIX pipes.
Pipes are not the fastest possible interprocess communication mechanism, however, these
measurements give a reasonable comparison between protecting data structures through
guarding and protecting them by maintaining separate address spaces for a protected data
structure and its clients.

All five curves in Figure 3.6 have the same slope, determined by the cost of copying
the bytes in the record. The basic overhead for each of the four protection models shown
differs significantly. The multi-process model has the highest overhead. This is probably
dominated by context switch time. Expose Segment is the nextmostexpensive, but it is
still less than halfthecost of themulti-process model. It is more expensive than the other
guarding models because the DBMS must trap to the operating system three times per
record modified in thismodel. A system call is required to expose theprotected data and to
hide it again. Then, thedata manager faults to the operating system one more timewhen it
first refers to thedata. Expose Page is less expensive than Expose Segment because it only
enters theoperating systemtwice: onceto unguard thedata andonceto guard it again. It is
moreexpensive than Deferred Write, because Deferred Write enters the operating system
only once.

3.4.2 Guarding in a DBMS with a Debit/Credit Workload

The micTobenchmarks described in the previous section donot give acomplete picture
of the cost of guarding. In order to measure the impact of guarding on a full system,
we compared several different versions of POSTGRES, each with a different protection
strategy, using a workload based on the TP1 debit/credit benchmark [1]. In our version
of this benchmark, two thousand transactions were run against a small database. Each
transaction retrieves a tuple from an account relation, updates the account relation and
two other smaller relations (branch and teller), and appends a record to a fourth relation
(history). Accounthas 10,000 records andis 200 pages long. In this benchmark, Branch
has onerecord and Teller ten, soeach is onlyonepage long.

We measured guarding under both a CPU-bound and a disk-bound workload. In the
CPU-bound benchmark, POSTGRES operates on thebenchmark database without forcing
its updates to disk at commit time. The benchmark database is small in order to allow the
DBMS to store the entire database in main memory. Because the database is small and
updates are not forced to disk, the CPU-bound benchmark does no I/O operations at all
and saturates the CPU. To make the benchmark disk-bound, we turned force-at-commit
back on. The resulting I/O operations bring CPU utilization down to about 25 percent.
Both benchmarks were runsingle-user onaDECstation 3100 implementation of theSprite



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 61

Elapsed Time

in Microseconds

550.00 j-

500.00 f

450.00 f

400.00 r

350.00 f

300.00 f

250.00 f

200.00 f

150.00 f

100.00 r

50.00 f

0.00 f

0.00 50.00 100.00

Multi-Process

Expose Segment

Expose Page

Deferred Write

Bcopy

Record Size in Bytes

Figure 3.6: Costsof UpdatingProtected Records. This graph showsthe cost
of updating a protected record using the Expose Page, Deferred Write, and
Expose Segment models of guarding. They are compared to a multi-process
protection mechanism in which a data structure is protected from its client
by placing it in a separate address space from the client. In the Multi-Process
model, interprocess communication is through UNIX pipes. The graph also
shows the cost of unprotected access to the record through a simple bcopy.



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 62

operating system.

Wecompared sixdifferentversions of POSTGRES toanormal version withnoguarding
support. The unprotected copy version usedthe Deferred Write update model but did not
protect the pages. Comparing the unprotected copy POSTGRES to normal POSTGRES
shows the overhead in Deferred Write attributable to copy management, but not to write
protection. Three POSTGRES versions each use a different one of the update models
described in the paper. The read-only queries version was actually a modified version of
thebenchmark run withExpose Page guarding. Thisversion is justa sanity-check to show
that guarding does not impose any costs when records are notupdated.

Thelast POSTGRES version,fullprotection, protects all of shared memory—including
thelock table, some shared memory lookup tables, and thebuffer pool. Thefull protection
version uses the Expose Page update model to update data in the buffer pool and Expose
Segment to update all other data structures.

Tables 3.2and 3.3 compare theprotection overhead for each of thesixprogram versions.
Each benchmark run of twothousand transactions was repeated five times togetan average
elapsed time. If the standard deviation of the five elapsed times was greater than one percent
of the average, theoriginal five runs were discarded and all five runs were repeated. The
tables present their results as the percent increase inthe average elapsed timecaused by the
protection mechanism.

The two tables show that the least expensive model for updating guarded buffers is
Expose Page. Expose Segment is slighdy more expensive, again, probably because Expose
Segment requires both system calls and aTLB fault to access protected data while Expose
Page only requires system calls. In the disk-bound case, the costs of the different models
are roughly the same. Since guarding does notaffect disk accesses, it has a large impact
onlywhen there is high CPU utilization. As one would expect, the read-only transaction
workload showed no additional expense dueto guarding.

Thesoftware overheadrequired tomanage record copies inDeferred write is apparently
significant. The Deferred Write model has about the same cost as Expose Segment, even
though InstallData is the cheapest guarding system call. Comparing the unprotected copy
DBMS to the Deferred Write DBMS shows that much of the expense is related to copy
management. From profile data, we have seen that nearly all of the copy management
costs come from allocating, freeing, and searching for record copies in thecopyhash table.
Because records are small in thebenchmark, physical copying does notaffect performance.

The full protection version of the DBMS is much slower than the versions that only
protected the bufferpool. This version requires a guarded-memory update whenever the
process sets a lock or pins a bufferin the buffer pool. Since pins and locks are acquired
more often thanbuffersareupdated, the cost is higher.

The measurements in this section illustrate thecosts of guarding in a system that uses



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 63

Update Model
Protection

Overhead

Expose Page Guarding
Read-only Queries

7%

0%

Expose Segment Guarding
Full Shared Memory Protection

10%

87%

DeferredWrite Guarding
Copy costs only

11%

6%

Table 3.2: Performance Impactof Guarding a CPU-Bound Version of POST
GRES. The CPU-Bound case was constructed by running a debit/credit
benchmark on a database that was small enough to fit in memory. With
out guarding, the DBMS ran about 10transactions persecond.

Update Model
Protection

Overhead

Expose Page Guarding
Read-only Queries

2%

0%

Expose SegmentGuarding
Full Shared Memory Protection

3%

5%

DeferredWrite Guarding
Copy costs only

3%

2%

Table 33: Performance Impact of Guarding an IO-Bound Version of POST
GRES. The IO-Bound case was constructed byrunning thesame debit/credit
benchmark on the same small database, but forcing updates to disk on com
mit. The CPU utilization in this case is 25%.



CHAPTER 3. USINGWRITE-PROTECTED DATA STRUCTURES IN POSTGRES 64

memory management hardware available today. While these costs are notexorbitant, they
will be too much for some high performance systems. The next subsection discusses ways
in which changes to memory management units can reduce the costs of guarding so that
even high performance systemscanwriteprotect data.

3.4.3 Reducing Guarding Costs Through Architectural Support

Oneoftheadvantages ofthecurrent guarding implementationis thatit usesconventional
memory managementhardware, making it apractical tool forexisting systems. However,if
virtual memorymanagement hardware were redesigned, the performance impact of guard
ingcouldbe significantly reduced. A large part of thecostofourguarding implementation
is the trap to the operating system required to change read/write access to protected data
structures. The UnguardData, GuardData, and InstallData system calls also must copy
arguments from user spaceto kernel space. Modifying the operatingsystem and the virtual
memory management hardware to allow unprivileged processes to protect and unprotect
parts of their address spaces could bring the cost of guarding down by as much as forty
percent (assuming system calls are 22 microseconds and argument passing takes about 5
microseconds).

Protection violations aredetected by the address translation mechanism in the memory
managementunit of the processor. Usually, a bit indicating whether a page is writable is
stored with the virtual-to-physical address mapping forthe page. When the virtual address
is translated to aphysicaladdress, the protection bit is checkedto make surethatthe address
beingstored into is writable. We havebeencalling thehardware thatmanages this mapping
theTranslation LookasideBuffer (TLB), butimplementations ofthe mappinghardware vary
widely. The VAX has two levels of hardware tables mapping virtual address to physical
address [49]. In the DECstation 3100 [40], this mapping is a hardware hash table entry. In
a machine with a virtually-addressed cache such as the SPARC n, the information is stored
with the cache line. Cheng [18] describes some of the expenses involved in managing
protection changes in such an environment

Usually, the same (supervisor-mode) instructions areused to change the TLB's virtual-
to-physical address mapping as are used to change the protection bits. Unprivileged pro
cesses cannot execute these instruction since allowing unprivileged processes to change
virtual-to-physical address mappingswould be a security hole. If unprivilegedaccess were
allowed, any process could allowitself to address any partof physicalmemory. Modifica
tionof protection bits canbe a security hole aswell in UNIX systems sincecode segments
are shared between processes. If a malicioususer unprotected a shared code segment and
modified the code, he or she could make other processes executing that shared code take
actions unintended by the owners of those processes.



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 65

To allow unprivilegedprocesses to guard andunguard datain their own address spaces
quickly, the processor instruction set should include a separate, unprivileged instruction
to store a protect/unprotect bit into a TLB entry. The TLB entry would have to have an
additional bit and/or mode that allowed the operating system to protect some TLB entries
from modification (e.g. code segments).

Even with hardware support, the operating system wouldhave to cooperate with user
processes in order to implement user-level guarding operations. TLBs can be flushed at
any timeby the operating system, for example, after acontext switch operation. When the
operating system reinitializes a TLB entry, it will do so using the protection information
stored in the process page table. If a user process unguards a record using the new
instruction, takes acontext switch, and then accesses theunguarded data, it will fault; the
operating system will have reguarded it after the context switch. Therefore, a user-level
guard/unguard operation must not only physically change the protection of the data, but
also save thenew page status in a waythat allows the operating system to determine that
status during a TLB reload.

One can imagine many implementations ofuser-level unguard operations. For example,
in the POSTGRES guarded buffer pool experiments, most of the buffer pool was guarded
most of the time. Records were unguarded temporarily during updates, but then reguarded
immediately, and only one page per DBMS process was ever unprotected at a time. An
effective implementation for POSTGRES would be a system call with which the user
program specifies abuffer containing a listof currendy unprotected pages. The user-level
unguard routine would keep the list up to date. After aprotection fault onaguarded page,
the operating system could check this buffer for the virtual address (or virtual page number)
ofatemporarily unprotected page. The protection fault will only occur if the TLB entry is
lost between the unguard operation and the modification of the unguarded record.

3.5 Reliability Impact of Guarded Data Structures

The control/addressing/data error model presented inthe introduction was designed to
breakerrors into classes differentiatedby theireffects on guarded data. In order for guarding
to detect errors, failing software must try to update protected data illegally. If broken
software always managed to unguard data structures before corrupting them, guarding
would notdetect errors effectively. Guarding would also have noimpact if software failures
simply cause the program to halt without ever overwriting any data. From the error model
and the data in Chapter Two, we can estimate how much impact guarding will have on
software reliability.

Data errors wouldcorrupt guarded data orcause theprogram to produce invalid results



CHAPTER 3. USING WRJTE-PROTECTEDDATA STRUCTURES IN POSTGRES 66

in spite of the guarding protection, but, fortunately, these errors were uncommon. Data
errors occur when the software calculates and stores the wrong data value. Guarding will
not protect against these errors; the faulty DBMS code will simply turn off the protection
and corruptthe data. The data in Chapter Two shows, however, that the assert statements
and other standard debugging and antibugging techniques used in current systems do an
excellentjob of detecting data errors, limitingthis risk to guarded data.

Control errors are also unaffected by guarding, but because they do not corrupt data,
not because they turnoff guarding. Control errors corrupt transient program state or cause
deadlock, but do not directly overwrite anything. After a control error, the system only
needs to reinitialize transient state and begin accepting transactions again. The secondary
effects of the error sometimes involve addressing failures, however. For example, some
control errors in the MVS study had "address trap" failure symptoms, meaning that the
control error was detected by the system when the code tried to access unaddressable
memory. While guarding will not detect control errors, it will limit the possibility of error
propagation after a control error occurs.

Guarding will be most likely to detectaddressing errors, suchas uninitialized pointers.
The studiesin Chapter Two indicatethataddressing errors make up twenty to thirty percent
of recorded software errors. Accordingto Chapter Two, however, addressing errors tend
not to be the "wild pointer" errors that randomly corrupt data arbitrarily far away from
the data that the failing module was using. When we could tell from the APAR which
data structure was corrupted, 75% of the time the data structure was very near the data
that the programmerintended to update. Guarding is unlikely to detect these addressing
errors. "Wild pointers" represented only a quarterof the addressing-relatederrors; hence,
the errors most likely to be detected by guarding make up make up about 5 to 7.5 percent
of all software errors.

While guarding will not detect most software errors, reducing the number of software
outages by even five percent will be extremely helpful in many environments. ChapterTwo
also showed that addressingerrorshave the highest impact on the customer, either because
they caused the most serious outages or were the most difficult for the system to recover
from. Moreover, even when the resulting outage is minor, addressing errors represent
some of the most difficult software errors to find and fix. By the time the damage has
been detected, the module containing the erroris no longer executing. Anecdotal evidence
from the development of POSTGRES and other systems suggests that much more than five
percentof the system development effort goes into finding andrepairing addressing-related
faults.



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 67

3.6 Summary

This chapter describes modifications to the operating system and database manager
which are designed to limit software error propagation in the DBMS.Write-protecting the
data manager's bufferpoolallows early hardware detection of addressing-related software
errors. Guarding reduces the complexity of software failure by preventing errors from
propagating to protected data structures. Guarding techniques can also improve recovery
speed since limiting potential error propagation decreases the amount of work required at
recovery time. While any DBMS could use these techniques, they are especially important
to aextensible DBMS such as POSTGRES. With a guarded system, one person using (or
developing) new access methods or data types has smaller impact on the availability and
reliability achieved by his or her peers.

Itis difficult to quantify the reliability improvements that will result from using guarding
in commercial systems. Chapter Two showed that 25-30% of software errors in several
existing systems are addressing-related. Only 25% of those were "wild pointers" that
damaged parts of the system unrelated to the component with the error, though. This
implies that guarding will eliminate about 5-7% of software errors. However, some of
these software errors were among the most difficult todetect byordinary means, so a5-7%
reduction in software errors may result inamuch larger reduction inthe engineering effort
required to produce areliable software system. These errors are also ofhigher than average
customer impact, so the reliability increase perceived by the customer will probably be
more than 5-7% as well.

In general, the performance impact of guarding is comparable to the impact of other
software techniques for detecting software errors, such as data structure verifiers or array
bounds checks. Guarding can be implementedefficiently by taking advantage ofprocessors
with software-loaded TLBs. For read-only workloads, guarding provides the DBMS with
additional protection at no extra cost. For update-intensive workloads, experiments have
shown that the additional CPU demand caused by guarding isonly afew percent when small
records are updated. Page remapping techniques could be used as amethod for reducing
copy cost for largerecords.

In deciding whether or not to guard data structures, system designers face a tradeoff
between potential reliability and availability improvement and asmall but measurable per
formance loss. For some systems, no reliability gain will be worth any loss inperformance.
Others may be willing to accept the small performance loss in order to achieve any relia
bility improvement. Still other systems may want the option of switching from guarded to
normal operations atdifferent points in the system lifetimeor for different customers.

Over time, trends in system cost will probably tilt the performance/protection tradeoff
in the favor of guarding. As processors become faster, the additional processing demands



CHAPTER 3. USING WRITE-PROTECTED DATA STRUCTURES IN POSTGRES 68

caused by guarding willbecome less of aconcern. The bigpotential risk to the long-term
usefulness of guarding techniques is that the cost of changing page protection might not
scale with processor performance. However, hardware designers have been made aware of
the need for fast protection changes inother applications such as distributed shared memory
[2], so,hopefully, theywillconsider thisissue in future processor architectures. Meanwhile,
the need for guarding will almost certainly increase over time. Falling memory prices are
increasing the sizesof disk caches like the DBMSbufferpool. Some data in the cache will
remain unused for long periodsoftime. It is essentialthatbadwrites into this data,however
infrequent, be caught at the time of the errorrather than the first time the data is used. It
is also essential for fast recovery that these gigantic caches not be reloaded from the disk
after software failures. Finally, as non-volatile RAM becomes less expensive, it will be
more likely to be more frequently used as stable storage by applications such as database
management. Non-volatile RAM will never be as resistant to failure as disk storage without
some protection from addressing errors.



69

Chapter 4

Fast Recovery in the POSTGRES DBMS

4.1 Introduction

A fast, simple recovery mechanism is critical to highly available data management in
fault tolerant systems. As Chapter One pointed out, faster recovery leads directly to higher
availability. Long software restart times lengthen the outages that occur after any kind
of failure, and longer outages decrease system availability. Section 2.4.3 of Chapter Two
illustrated the reliability risk due to recovery system software. Many software outages
caused by control errors were related to recovery and error handling code. The data
indicates that recovery systems are hard to implement correctly and hard to maintain.
Testing recovery systems is also difficult since it requires test suite designers to anticipate
failure conditions that will arise in the field. This is a daunting task in a large software
system.

Traditionally, fault tolerant systems have tried tomask failures and avoidrecovery rather
than improve recovery speeds. For example, Tandem [8], Stratus [77], Auragen [14], Harp
[50], XRF [36] and HA-NFS [12] all maintain aprimary and one ormore backup systems
in order to avoid recovering when the primary fails. When a failure occurs, operation
switches over to the backup system rather than delay users while the primary recovers.
Unfortunately, the protocol forkeepingbackups up to date is expensive andits correctness
is very difficult to verify. Also, even if the protocol works correctly, there is no guarantee
that software errors will not propagate from theprimary to thebackup.

Another common approach to masking failures is to provide a multi-level software
recovery mechanism. The Integrity-S2 [39] operating system attempts to correct internal
data structures when it finds errors in them. If two failures occur within a few minutes,
then the system assumes the correction did not work and goes through a full recovery.
MVS [3] uses a multi-level recovery scheme in which different portions of the system can
fail and recover independently. Another two-tiered recovery mechanism [6] implemented



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 70

in the Sprite operating system uses a reserved area of memory to hold backup copies
of state associated with the distributed file system and distributed applications. In the
event of control errors and most addressing errors, the backup state can be used for quick
regeneration of operating system and application program state without diskoperations or
communication with remotesites. When poweroutages, hardware errors, or software errors
corrupt the reserved memory, the normal, slow recovery path is used.

The POSTGRES approach to maintaining high availability is to improve the speed of
system recovery after errors aredetected. Failureis not masked, as is the case with hardware,

buta fast recovery mechanism still improves availability by eliminating longoutages after
failures. The approach requires little to be done during recovery that is not done during
a normal system restart, so the recovery system may be easier to debug and test than
conventional multi-level recovery mechanisms. In contrast, most database management
systems use write-aheadlog (WAL) recovery techniques (surveyed in [33]). In WAL, all of
the updates applied to the database are writtento alog. The log is processed during system
restart to ensure that no committed updates arelost and no abortedupdates remain. After
theWAL survey was published, ARIES [53] took many steps to improve the concurrency
and restart performance of the basic write-ahead logging techniques, but increased the
complexity of the recovery system software. Even in ARIES, database recovery time is
proportional to the number of log records that must be processed during recovery. To
significantly improverecovery times, log processing must be eliminated.

The work in this dissertation takes as its starting point the 1987 POSTGRES storage
system, which uses no-overwrite techniques to combine support for historical data with
support for transaction management [66]. The details of the no-overwrite storage system
are left to Section 4.2, but, briefly, the storage system works by creating a new version of
any tuple updatedby the DBMS rather thanupdating the tuple in place. If the DBMS fails
and the updating transaction aborts, the previous version of the tuple remains and can be
used forrecovery. Falling back to the previous version does not involve log processing, so
the storage system requires little work at restarttime.

While the designers of commercial database systems desire the faster recovery that is
possible without write-ahead log processing, this community has not applied the POST
GRES storage system ideas to commercial DBMSs. The two most likely reasons for this
involve recovery from media failures and performance considerations. POSTGRES as
sumes thatthe I/O subsystem handles mediarecovery, hence, it depends on eithermirrored
disks or RAID (Redundant Array of Inexpensive Disks [59]) disk subsystems. Tradition
ally, write-ahead logs have been used in mediarecovery for non-mirrored disks. Because
RAID storage systems are now commercially available, this is becominglessof a problem.
A more important reason that the POSTGRES storage system ideas are not widely used
is that the original design does not perform as well as traditional storage systems when



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 71

the database must support a very high update rate. The data structures used to implement
the no-overwrite transaction support in POSTGRES made retrieving tuples from such a
database expensive. Also, POSTGRES must use a force-at-commit buffer management
policy: all buffers containing tuples updated by the transaction must be written to disk
before transaction commit. Most database management systems do not use this policy
because it causes the DBMS to do much more disk I/O than would be necessary with
a write-ahead logging policy. To increase the usefulness of POSTGRES* fast recovery
techniques in applications such as banking and stock trading in which both high update
rates and fast recovery are important, the performance impact of the storage system must
be reduced.

Chapter Fourof thisdissertation makes fourcontributions tofastrecovery in thedatabase
management system. The firsttwo increasetheapplicability of the POSTGRES storagesys
tem in environments withhighupdate rates, allowing these environments to takeadvantage
of POSTGRES' fastrecovery. First, thechapter suggests several changes to thewaytuples
are stored in POSTGRES. By changing the way that tuples are stored, we speed access
to the data in the database. Section 4.2 describes the original POSTGRES storage system
and the new optimizations. Second, Section 4.3 uses an analytic model to evaluate the
I/O impact of the storage system on a RAID. It shows how non-volatile RAM and modern
file systems such as the log-structured file system (LFS) [61] can eliminate the additional
I/Ocosts associated with POSTGRES' no-overwrite techniques. Together, the techniques
described in Section 4.2andtheanalysis of Section 4.3should increase theapplicability of
no-overwrite transaction supportto applications withhigh updaterates.

Chapter Four also considers recovery of several kinds of DBMS state that theoriginal
POSTGRES storage system ignored. When the DBMS recovers from a failure, it must
reestablish four kinds of context lost duringthe failure:

(1) Disk Database Context: The database on the disk must be made transaction-consistent

(2) Disk Cache: Afterafailure, theDBMS must reloadfrequently-accessed databasepages
into main memory.

(3) Session Context: Network connections between the DBMS server and its clients are

lost during the failure. Reconnecting a client to the server means reauthenticating
the client, reinitiating the networkprotocol, and determining if any messages were
in transit at the time of the failure. In some systems, human intervention is even
required to restart application programs after the DBMS server fails.

(4) Current Transaction Context: Thetransactions executingat the timeof thefailurehad
some transient state associated with them — for example, the query plan structures,



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 72

the lock table,andthe temporary relations holdingintermediate state. This statemust
be reinitialized.

The POSTGRES storage system addresses item (1) from the list. Sections 4.4 and 4.5
describe methods of recovering disk cache and session context, items (2) and (3) from
the list, which were ignored in the original storage system. Regeneration of the current
transaction context, item(4)inthelistabove, is left as future work. Theissueofregenerating
transaction context is not important when the DBMS only executes short transactions. In
thiscase, the fastest, simplestway ofrecovering lost transaction context is to reexecute the
aborted transactions. Strategies for reestablishing the transaction context of long-running
transactions areoutlined in the final chapterof the dissertation.

4.2 A No-Overwrite Storage System

The POSTGRES storage system differs from mostother DBMS storage systems in that
user data is not updated in place. Instead, POSTGRES creates a new version of the tuple
and updates thenewversion. When atuple is logically deleted, it is actually marked invalid
and left physically in place. Instead of write-ahead log processing, POSTGRES recovers
from failures by falling backto the previous version ofthedata. If thetransaction is aborted,
theDBMSdetects and ignores anychanges to thedatabase made by thetransaction. Even if
the transaction commits, the updated tuple versions remain accessible to usersas historical
data. Because the new version of thedata is physically located in the data pages, all data
pages written by the transaction mustbe written to stable storage or non-volatile memory
before the transaction commits. In [33], this policy for managing data pages is called
force-at-commit.

The subsections that follow describe the POSTGRES Storage System and several en
hancements to it. The first four subsections describe the most important issues affecting
the performance and costof the transaction system: (a) storage of tuple versions, (b)recla
mation of space in data pages, (c) therun-time detection of invalid updates, and (d) access
to historical data. The third of these subsections discusses theactual recovery mechanism.
Much of thecurrent section summarizes design points of the original POSTGRES Storage
System design and is included here for completeness. Some changes have been made to
improve recovery speed, to simplify parts of the storage system, and to improve perfor
mance. In other places, we describe details of the storage system that were omitted in
[66]. The differences between the original POSTGRES storage system and the version
modified for the dissertation will be identified as they arise. The version implemented for
this dissertation is referred to as the "modified" version in the text.



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 73

4.2.1 Saving Versions Using Tuple Differences

In order for the POSTGRES no-overwritestorage system to make more efficient use of
space, consecutive versions of the same tuple are storedas a sequence of tuple difference
records rather than a sequence of full tuples. When a tuple is initially inserted into a
relation, an anchor point record is constructed representing the full tuple. Subsequent
updates are represented as difference records containing only the fields of the new tuple
version thatdiffer from theprevious version. The difference records are chained together
so that starting at the anchor point and following the chain will allow POSTGRES to
reconstruct any version of the tuple.

Theoriginal POSTGRES storage system useda difference recordmanagement scheme
based on forward difference chains. In forward differencing, the anchor point is the
oldest available version of the tuple. The difference chain goes from the oldest available
version to the newest one, hence, queries referring to the current version of thetuple must
pass through the entiredifference chain to construct the tuple (seeFigure 4.1). As records
are updated, the difference chain will grow and references to current data will become
increasingly expensive.

The modified POSTGRES storage system used in this dissertation improves access
to current data using backward difference chains. The anchor point in this case is the
most recent version of the tuple. When an update occurs, a link is constructedfrom the
newly-generated version to the current version in the difference chain. Because the current
version of the tupleis readily available, scans andupdates of thecurrentdatabase are fast.

Unlike the anchor pointin a forward difference chain, the anchor point in a backward
difference chain can contain fields from several different tuple versions. For example, if
a transaction updates one attribute value in a four attribute tuple, as in Figure 4.2, the
most recent version of the tuple contains fields from two differencerecords. Therefore, the
anchorpointis structuredasanarray with anelement foreach of thetuple'sattributes. Each
element points to the most recent value for the given attribute. Because of its array-style
anchor point, backward differencing uses more space than forward differencing. Forward
differencing simply used theoldest available tuple difference record as its anchor point.

It should be clear from Figures 4.1 and 4.2 that, while both forward differencing and
backward differencing arelogically no-overwrite techniques, the data on stable storage is
physically overwritten after each update. Data is transferred between main memory and
disk in page-sized units. When a new difference record is added to a page, theentire page
isrewritten to stable storage. We assume that database pages are written todisk atomically
except in the case of a media failure. We assume that this as well as other media failures

is detectable. On devices (and file systems) in which page writes cannot be guaranteed
to be atomic, POSTGRES or the operating system would have to checksum each page in



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS

TO Tl

Line

vZ

Field2

\y

T2

Table

VT
&

Field4Field2

T3

Anchor
Point

¥-
Heidi

Field2

Field3

Field4

74

Figure4.1: Forward Difference Chain. This data pagecontains four tuples, only one
of which, T3, is shown. The line table entry points to the anchor point (in bold). The
forward difference chain connects the records representing versions vO, vl, and v2.
To construct the current version of a tuple, the DBMS starts with vO and follows the
difference chain.

TO Tl

£

Line

T2

Table

_— Anchor
— Point

_U L
vT

5>Field2
vT

T3

5>Field4Field2

•
-»

vO

->Fieldl

Field2

5>Field3

Field4

Figure 4.2: Backward DifferenceChain. In this figure, T3 uses an array-style anchor
point (in bold, as above) and a backward difference chain. The difference chain is

shown as dotted arrows connecting the records associated with versions v2, vl, and
vO. The anchor point array points to the youngest member of the chain and to the
most up-to-date values ofT3's fields. Since only Field2 and Field4 have been updated,
two of these field values come from vO and two come from v2.



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 75

software and examine the checksum everytime the page is read from disk.
POSTGRES indices are described in depth in Chapter Five, but one detail regarding

them is important to this section. Records in a POSTGRES index point to the line table
entry on thedatapageratherthanan individual record. Because the line tableentrypoints
to the anchor point, the indexcan be used to find any version of the tuple. Thus, the no-
overwrite policydoesnot force the DBMS to update index records everytimedata records
are updated.

4.2.2 Garbage Collection and Archiving

Tuple difference chains reduce the amount of space taken up by historical data, but
theno-overwrite policy willeventually cause thedatabase to run out of diskspace without
an additional strategy for reclaiming storage space. The original POSTGRES storage
system allowed space to be reclaimed in three ways. First, any tuple versions created by
transactions that later aborted can be garbagecollected and removed from the database at
any time. Second, historical data can bemoved toacheaper storage medium such asoptical
disk, freeing up space on the faster medium. Third, historical data older than a user-defined
threshold can be destroyed. This section will, for ease of presentation, address garbage
collection andthearchiving/destruction ofhistorical dataasseparate functions. Thesection
occasionally refers to the garbage collector and the archiver as separate entities when, in
fact, they are implemented in a singleprogram calledthe vacuum cleaner.

In its garbage collection capacity, the vacuum cleaner examines each page of each
relation inthedatabase, reorganizing thepage toeliminate tuple versions createdbyaborted
transactions. A page is reorganized byfirst allocating a temporary page in memory, then
copying allhistorical and current tuple versions tothe new page. The copying is necessary
because theinvalid tuple versions created byaborted transactions areinterspersed with valid
tuple versions onthepage. After the new page has been constructed, theDBMS bufferpool
meta-data is modified so that the newpage replaces the old one.

During garbage collection, thelayout of thedatapage changes, butthecontents of valid
tuples on the page do not change. Therefore, garbage collection does not conflict with
transactions' two-phase read and write locks on the page's tuples. If it did conflict, the
garbage collector would have to lock tuples during garbage collection, reducing overall
concurrency and allowing the garbage collector to deadlock with existing transactions.
High concurrency during garbage collection is important since themost frequently updated
relations have both the highest concurrency requirements and consume the most space if
not vacuumed frequently.

While two-phase locks are not required, some coordination between the garbage col
lector and transactions in the DBMS is necessary because the DBMS process can have



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 76

pointers into the old version of thepage. The DBMS must detect that garbage collection
has occurred andrevalidate these pointers before theoldpage isreallocated. When garbage
collection completes, the garbage collector stores apointer tothe new version of thepage in
thebuffer header structure associated withtheoldpage. Whenever theDBMS re-examines
a tuple, it checks to see if thereis a newversion of thepage. If thereis a newversion, the
backend process reassembles the tuple using pointers to the difference records in the new
pageandunpins the old version of thepage. When the lastpin on thepage is released, the
buffer containing theoldversion canbereallocated. The garbage collector must also hold
thelatch(semaphore) associated withthepagewhile it copies tupleversions from theold to
thenew page. TheDBMS normally uses this latch during updates to synchronize allocation
of space onthepage, soholding thelatch prevents updates during garbage collection. Until
garbage collection has completed, theDBMS does notknow how much space is available
on the page sonospace canbeallocated forthenew tuple version created by anupdate.

When archiving, the vacuum cleaner chooses a time value ARCH-DELAY seconds
before the current time and declares that to be the archive start time. The archiver selects
alltuple versions committed before the start time and copies them tothearchive ordestroys
them. Toensurethatit copies thecorrecttuples, thearchiver uses thePOSTGRES historical
data(ortime query) facility to lookuparchivable tuples (described inSection 4.2.4). Since
the time query only returns data that was valid at the archive start time, uncommitted
updates are never copied to the archive. The current POSTGRES implementation stages
archived tuple versions to a magnetic disk write buffer before writing them to thearchive,
since access to the archive media (tape or write-once optical disk) is typically anorder of
magnitude slower than access to disk.

After the data is archived, the archiver deletes historical tuple versions from the mag
netic disk relation. It will usually also have to construct a new tuple difference record
representing the oldest available tuple version. Because consecutive tuple versions share
many attribute values, theoldest available tuple version probably incorporates attribute val
ues from difference records that the archiver has deleted. The new tuple difference record
retains these shared attributes in the non-archived version of the relation. Details of the

archive and its cache aredescribed in [57]. The archive indexing strategies are addressed
in [44]. Unlike thegarbage collector, the archiver must use two-phase locking toguarantee
that no transactions are using historical data when it is moved to the archive.

Constructing Overflow Pages to Support the No-Overwrite Policy

In the no-overwrite storage system, the policy for managing page overflow has a
significant impact on DBMS performance. Because of the no-overwrite policy, repeated
updates to tuples on a data page eventually fill the page. The space reclamation strategies



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 11

described above will not always prevent pages from filling, especially in a high-update-rate
environment. Since high-performancecommercial database management systems can run
at rates of hundreds of transactions per second, pages fill up too rapidly. Minimum-sized
tuples in the original storage system are about 64 bytes, even when differencing is used.
Thus, approximately 127updates fill an 8Kpage containing one tuple.

Theoriginal storage system simply extends thetuple difference chain toanewpagewhen
a transaction tries to update tuples on a fullpage. In thehigh-update-rate environment, this
strategycauses performance to degraderapidly, especiallywhen the DBMS uses forward
difference chains. Whenever a tuple is accessed or updated, each page in the multi-page
forward difference chain has tobeaccessed. "Hot" tuples that receive frequent updates will
form the longest multi-page tuple chains. Therefore, the tuples that are used the most often
will have the greatest access cost.

Backward difference chains improve the access to multi-page tuple chains in some
importantcases, but atgreater storage overhead. Only the pages containingcurrent attribute
values need to be examined ifbackward difference anchor point arrays are allowed to point
across page boundaries. Inthe case inwhich the same attribute field isupdated repeatedly,
only two pages are accessed: the one containing the anchor point and the one containing
the most recent difference record. However, the anchor point array entries must be larger
if they can point across page boundaries. Only two bytes per pointer are required if the
chains are contained within apage, while six bytes (a four-byte page number and atwo-byte
offset) are required topoint to a difference record on another page. Also, updates require
both the anchor point and difference record page to be updated. In forward differencing,
only the page containing the difference record ismodified during an update.

The modifiedPOSTGRES storage system uses an alternative strategy tolimit the perfor
mance impactofmulti-page tupledifferencechains, astrategy basedonpagereorganization.
If a transaction updates a tuple on a full page, the DBMS creates an overflow page and
moves some of the tuple difference records from the original page to the overflow page
using a technique detailed below. Managing overflow pages recoverably is more complex
than the original POSTGRES storage system strategy, but in the common case it allows
access to the current database to take place without examining more than one page per tuple.

There are two possible strategies for creating overflow pages. The simplest strategy
would betoconstruct a new anchor point for each tuple from the original page on the new
overflow page. If all of the current version's attribute fields are assembled on the overflow
page, the current tuple version can always beconstructed from a single page. Theheader
of the new page would have a pointer back to the original page in order to allow access to
historical data from the current version of the data. Unfortunately, the DBMS may have
many indices referring torecords onthe originalpage. Each index would have tobeupdated
inorder for indexed access tothe data toremain fast. If there are many records onthe page



CHAPTER 4. FAST RECOVERYIN THEPOSTGRES DBMS

Original
Tim<
Nowr

>rical
;ions

Page Histc
Vers

Old-Version
Overflow Page

New-Version
Overflow Page

,—
—$>

Time
Now

Historical
Versions

<*
^

Figure 4.3: Creating an Overflow Page. When the original pageoverflows, it
is split into two pages. The old page contains historical tuple versions and the
new page contains the current versions. While the old page is written asyn
chronously to stable storage, the new page is mapped to a temporary location
on disk. Once the old pagehas been written to stable storagesuccessfully,the
new page is allowed to overwrite the original page in the database and the
temporary location can be reused.

78

andmanyindexes on therelation, creating anoverflow pagewouldrequireupdates to many
other pages and again have significantperformanceimpact.

A betterstrategy is to move the older versions of the tuples on the original page to the
overflow page,as shown in Figure4.3. Thatway, index entries stillpoint to the samepage
andthatpagestillcontains themostrecentversion of the tuple. Overflow pagesarechained
togetherso that any historicalversionof the data can be reached by a multi-page scan.

Creating an overflow page containing historical tuple versions in a way that prevents
information from being lost in a crash is tricky. To create an overflow page, the DBMS
creates two new pages: the new-version overflow page and the old-versionoverflow page.
Thenew-version overflowpagecontainsthemostrecentversion ofeachtupleon theoriginal
page. The old-version contains the historical versions of tuples on the originalpage. Once
the old-version page has been saved in stable storage, the new-version page can be used
in place of the original. Until the old-version page has been successfully written to stable



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 79

storage, the original page contains the only stable version of the historical tuples on the
page. If the new-version page were allowed to replace the original page before the old-
version page was stable, a crash could destroy the historical tuple versions. The DBMS
logically replacesthe originalpage with the new-version page by modifying the buffer pool
meta-data. Buffer pool cache meta-data tells which buffer in main memory is associated
with a given pageof the database. If a pageis everwrittento disk, the buffer pool meta-data
tells where it should be written.

Creating overflow pages is not very expensive if a small amount of non-volatile RAM
is available, but, if disk is used for stable storage, overflow causes an extra disk write. In
theoriginal storage system, overflow causes thenewpage to be written to stable storage (to
committhe new tupleversion) andthe original page to be written to stable storage (to link
the previous version to the new one). When non-volatile RAM is available, the modified
version of the POSTGRES storage system creates its new-version overflow page and old-
version overflow page, then blocks while theold-version overflow page is copied to stable
storage. After theold-version page has been copied, theDBMS replaces the original page
with the new page. When the transaction causing the overflow commits, the new-version
page is written to stable storage. As in the original POSTGRES storage system, twopages
on stable storage are updated.

When disk is used for stable storage, the new scheme cannot block the DBMS while
the old-version overflow page is written to stable storage. Disk latency is too long for
such a strategy to be efficient Instead, the DBMS writes the old-version page to disk
asynchronously. As above, the tuples on the original page must remain intactuntil the old-
version overflow page is written to disk. To allow the DBMS to commit transactions before
the write of theold-version page has been confirmed, the new-version page is mapped to
a temporary location on disk. The temporary page is chained to the original page and the
old-version is chained to the new-version as is shown in Figure 4.3. On a commit, the
original page and the new-version page must both be written to disk. The original page
mustbe written in order to preserve its pointer to thetemporary location of the new-version
page. Thus, three pages are written to disk on an overflow instead of two.

In summary, theno-overwrite storage system musthave some policy for creating over
flow pages. The original storage system's policy of allowing tuple difference chains to
span several pages forces the DBMS to examine more than one page during the update of
a single tuple. Even if the vacuum cleaner runs hourly, these chains of pages couldrun to
tens of pages for highly-updated tuples in ahighperformance DBMS.The modified storage
system puts historical dataon a new pageinsteadof the newly-createddata, so that access
to the current database remains fast even if the vacuum cleaner runs infrequently. This
strategy will resultin anextradisk writeperoverflow, however, if no non-volatile memory
is available for stable storage.



CHAPTER 4. FAST RECOVERY IN THEPOSTGRES DBMS 80

4.2.3 Recovering the Database After Failures

The DBMS recovery system must mask any inconsistencies in the database resulting
from a DBMS failure. InPOSTGRES, these inconsistencies take the form of tuple versions
that were created by transactions that later aborted. In a conventional system, data pages
can contain two kinds of inconsistencies. First, tuples may have been updated in place by
transactions that were aborted. Second, tuples updated bycommitted transactions maynot
have been written to stable storage before thefailure. Both kinds of storage system require
somerecovery actions to ensure that transactionsstartingafter systemrestart never use this
inconsistent data.

After a failure, a conventional log-based DBMS makes the entire database consistent
before allowing users to access the data. The log in a conventional DBMS contains a
sequence of records representing updates to the database and records telling which trans
actions have committed. At recovery time, the DBMS reads the log to find out which
transactions have committed, then examines the data pages affected by each log record
to make sure that committed updates have been applied and that aborted ones have not.
Recovery, in conventional systems, is usually I/O bounddue to the many data pages that
haveto be read. The cost will be proportional to the lengthof the log.

The subsection that follows describes the techniques used to detect and ignore invalid
tuple versions in POSTGRES. Because the DBMS can detect invalidtuples on use, it does
not have to remove inconsistencies in the database at systemrestart time. We discuss the
cost of POSTGRES database recovery after describing the technique for detectinginvalid
tuple versions.

Transaction Status File

When a POSTGRES transaction begins, a slot is reserved for the transaction in the
transaction status file maintained by the DBMS. A transaction identifier, or XID, is a
pointer to this transaction status file slot. The status file records the current state of both

current and past POSTGRES transactions. In the original storage system, the transaction
can be in one of three states— committed, aborted, and in-progress — while the modified
storage system only requires committed and aborted states. The in-progress state was used
for synchronization between the POSTGRES vacuum cleanerdescribed in Section 4.2.2 and
current transactions. The modifiedstorage systemuses more conventionalsynchronization
techniques, so it can use one-bit rather than two-bit slots to encode each state.

Queries of historical data require the DBMS to maintain a second file called commit
time file in the originalPOSTGRES storagesystem. Whena transaction commits, it stores
the current time in the commit time file. Time queries use this commit time to determine
when data written by the transaction became valid. Note that the commit time must be



CHAPTER4. FAST RECOVERY IN THE POSTGRES DBMS 81

written before the transaction is committed so that each committed transaction has a valid

commit time. The commit time file is decomposed into slots in the same way as the
transaction status file, although each slot is four bytes wide instead of one bit wide. This
allows the DBMS to use the same XID to look up a transaction's commit time and current
state.

POSTGRES backend processes actually reserve blocks of XIDs instead of allocating
them individually. The DBMS maintains on stable storage the next available XID, next-
XID, which indicates the first XID that can be allocated to a transaction after a system
failure. When a POSTGRES backend runs out of XIDs, it updates next-XID on stable
storage to reserve the next available block. As transactions are initiated by clients, the
backend process assigns XIDs from its block consecutively. Because the block is owned
by a single process, the backends do not need to coordinate the allocation of a new XID;
they only need to ensure that one of them at a time is allocating new XID blocks. Larger
XID blocks lessen the overhead of XID allocation, but increase the number of unallocated

XIDs that will have to be discarded during a failure.

Identifying the Updating Transaction

At run time, the POSTGRES storage system must detect and ignore updates to the
databasemade by transactions that were later aborted. The storage system stores XIDs in
mple difference records to identify the transaction that created, updated, or deleted a given
mple version. By mapping the XIDs to slots in the transaction status file, the DBMS can
determine whether or not these transactions.have committed. Because tuples are locked
using a conventional two-phase locking scheme [25], a transaction will block ifit encounters
tuples created or written by other in-progress transactions. Therefore, any uncommitted
mple updates that the transaction encounters are invalid.

The modified POSTGRES storage system stores an XID in the anchor point of the
mple and in each mple difference record. The anchor point of a mple stores the tuple's
inserterXid, the XID of the transaction that insertedthe mple into the database. The XID
in each mple difference record identifies the transaction that updated or deleted the mple
version represented by the difference record. If no transaction has attemptedto update or
delete a mple version, the XID field in the difference record contains an invalid transaction
identifier.

In the original storage system, additional XIDs were stored, but these turn out not to be
necessary. Each difference record kept its own minXid and maxXid. The minXid identified
the transactionthat created the mple versionand the maxXidtold which transaction updated
or deleted the mple version. Clearly, the maxXid ofone difference record is the same as the
minXid of the following one, so these two fields could be merged into a single XID field in



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 82

the modified storage system.

The modified storage system also maintains in each anchor point a field called the
commandID indicatingthe DBMS command, or querylanguage statement, that last mod
ified the mple. Each query language statement is a separate command. When a command
changes a mple, thechange is notvisible untilthenext command. So,forexample, a record
inserted intoarelation during a query will notbevisible in thedatabase until afterthequery
that inserted it completes. Each POSTGRES process maintains a command counter for
its currently executing transaction. The DBMS stores the current command counter value
in the tuple's commandID field when the mple is created and modifies the commandID
field every time the mple is updated. A transaction ignores a given mple version if that
transaction was the one to modify the mple and the current command matches the tuple's
commandID.

Instead of associating a single commandID with the entire mple, the original storage
system associated a maxCommand anda minCommand witheachmpleversionin the same
way as maxXid and minXid. The modifiedstorage system uses a single commandID field
for the mple because the command is only everrelevant to the last mple in the difference
chain. Thecommand field is onlyusedwhen a transaction hasupdated a mplealready and
is examining the mple again. Since the current command cannot see its own updates, it
cannot havecreatedmore than one elementin the mpleversion chain. Therefore, the only
mple version that could possibly have been created by the current command is the most
recent mple version. The maxCommand and minCommand becomea singlefieldbecause
the mple cannot be created and deleted in the same command.

Detecting Invalid Tuple Versions

Aconventional database management system uses writeaheadlogprocessing toremove
an aborted transaction's updates after recovery. POSTGRES detects and ignores these
invalid updates whenever the updated mple is used after the failure. Because the DBMS
maintains previous versions of every mple updated (using the difference record chain
described above), ignoringan invalidupdate simply means usingwhichever of the previous
versions wasvalidat the time that the aborted transaction began its update.

An invalid update can be:

(A) An invalid insert. A transaction createsa new mple, inserts it into the database, then
aborts due to a failure. If a later transaction examines this mple, it must ignore all
mple difference records associated with the transaction.

(B) An invalid delete. A transaction coulddeletean existing mplefrom the database and
abort If a later transaction examines the mple,it must ignorethe delete.



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS

Anchor Point

EEC]

iVersion \y

m Fieldl Field2

Anchor Point

ET

iVersion 1

£02 Fieldl

' Vgsion2\^

^EXlField2

Field2

Anchor Point

man

iVersion 1

#12 Fieldl Field2

' Version 2\f/

J>|T3 Field2

Figure 4.4: Tuple Qualification. This figure shows the same tuple at three
instances in time. On the left, the tuple is inserted by transaction Tl. Tl
writes its XID in the inserterXid slot in the anchor point. In the center,Field2
is replaced by transaction T2. T2 writes its XID in the XID slot of the first
version of the tuple. Finally, on the right, transaction T3 deletes the entire
tuple.

83

(C) An invalid replace. A transaction could replace a field in an existing mple, creating
a new mple version. If the transaction aborts, latertransactions must use a previous
mple version in the difference record chain, the one that was valid when the aborted
transaction made its update.

An invalid update may create more than one mple version. For example, a transaction
may insert a mple intothedatabase andthen update it, creating a mple with twodifference
records in it. If the transaction then aborts, both difference records are invalid. Only
versions at the end of the mple difference chain can be invalid since two-phase locking
prevents one transaction from updating another's uncommitted mpleversions.

To find invalid updates, we must check for each of the three cases in the list above.
Each check requires us toconsider anXID associated with themple. Note that thechecks
described below require only one of these three XIDs to be looked up in the transaction
status file. Checking forinvalid tuples isacommon operation andexamining thetransaction
status file is relatively expensive, soreducing the number of lookups to one permple gives
a performance advantage.

Weonlycheckfor case (A),invalidinserts, if thereis exactiy one mpledifference record
in the chain. To check forcase (A), we examine the inserterXid associated with themple
header. If thatXIDis associated with an aborted transaction, the mple is invalid. If there
are several mple differencerecords in the chain, we treat it like case (C), even if the same
transaction has initiated all of the updates.

To check for case (B), we examine the XID associated with the last difference record in



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 84

thetuple's difference record chain. If that XID is NULL, no transaction has attempted to
delete the mple. If the XID is valid and maps to an ABORTED transaction status file bit,
thena transaction attempted to deletethe mpleandaborted. In thiscase,we fall backto the
last mple version created by a transaction other than the aborted one.

We only check for case (C) if no transaction has attempted to delete themple. To see
how to detect an invalid replace operation one must remember how a replace operation is
implemented in the POSTGRES storage system. To replace a field in anexisting mple, a
transaction creates a newmple difference record containing thereplaced fields anda NULL
XID field. The transaction stores its own XID in the XID field of the current difference

record in the mple (effectively"deleting" this differencerecord) and links the new version
to thefront of the difference record chain. Thus, a later transaction checks if thereplace
transaction has committed by examining the XID of the second difference record in the
chain. This XID ismappedtothe COMMITTED/ABORTED stateofthereplace transaction
using the transaction status file. If the transactionhas committed, the last difference record
describesthe current mple version. If this transaction hasaborted,the last differencerecord
created by an earlier transaction is the valid one.

If thelasttransaction toupdate ordelete themple has aborted, we have tosearch through
the mple difference chain tolocate the last valid version. The DBMS searches through the
chain until it finds a difference record with an XID field different from the XID of the
aborted transaction. If none is found and if the inserterXid is also equal to theinvalid XID,
the entire difference chain was inserted by a single aborted transaction and is invalid. If
a new XID value is found, the difference recordfollowing theonecontaining thatXID is
the last valid version. Obviously, if the inserterXid is the first XID notequal to the aborted
transaction's XID, the initial mple versionis the validone.

Recovery Costs in the POSTGRES StorageSystem

Three factors contribute to thecosts of recovery in POSTGRES. First, thesystem must
be reinitialized aftera failure. While no log processing is required, the DBMS must do
some work toinitialize thestorage system. Second, theDBMS must check forinvalid mple
versions onuse. Third, overflow pages occasionally result inanextra I/Otofind thecurrent
version of a mple. These costs areaddressed oneat a time in theparagraphs thatfollow.

At restart, the modified POSTGRES storage system simply allocates a newXIDblock
for eachbackend process andreinitializes its in-memory datastructures. New XID blocks
must be allocated after a failure because the DBMS cannot tell which XIDs from the

old blocks had been allocated at the time of the failure. Because of efficiency concerns,
transactions do not stably record the fact thatan individual XID has been allocated (only
XID blocks). The original storage system also needed to scan the tail of the transaction



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 85

status file, converting the state of each in-progress transaction to abortedin order to show
that the transactions in-progress at the time of the failurehave aborted.

Although mple validation is required for every mple examined by a transaction, vali
dation is notveryexpensive. Profiles of thedebit/credit benchmark used in Chapter Three
showed that validationconsumed about 1.5% of the DBMS' CPU time; 1.3% came from
mapping the XID to a transaction status file slot.

The profile does not include the cost of reading transaction status file blocks from the
disk. If the transaction status file is too large to store in memory, additional disk reads will
be required to validate mples. Notice from the previous subsection that at most one XID
per mpleis everlookedup in the transaction status file, butonediskread permple scanned
would still make the storage system prohibitively expensive.

Fortunately, the vacuum cleaner can be used to compact the transaction status file,
keeping the file small enough to be cached in main memory. To implement compaction,
the vacuum cleaner must record the XID of the oldest in-progress transaction at the time
the vacuum cleaner begins its sweep of the database. Afterthe sweep is over, thedatabase
contains no invalid mple versions with updater XIDs smaller than this oldest in-progress
transaction's XID. Now, if this oldest-unresolvedXID is recorded,it can be used to validate
mple versions. The transaction status file need not be consulted for XIDs smaller than the

oldest-unresolved XID; these transactions have definitely committed. The status file could
even betruncated attheoldest-unresolved XIDin order to save disk space.

Because transaction status can berepresented with asingle bit, relatively small amounts
of memory are required for the status file cache. A DBMS that executes 128 transactions
per second consumes only 512 KBytes of status file in nine hours. Thus, even at high
transaction rates, the garbage collector can easily ensure that the status file lookups never
go to disk by running every few hours. Extremely long running transactions, however,
can prevent the status file from being compacted and affectthe performance of the entire
system.

Finally, when theDBMS fails during the creation of an overflow page, theDBMS must
read twopages inorder to find the most recent version of the mples onthe page. Figure 4.3
showed how POSTGRES created temporary pages toprevent historical mple versions from
being destroyed. If the temporary page exists, it must beread into memory the first time
the page is accessed after a failure, requiring two VOs to find the mples onthe page instead
of one.

POSTGRES requires much less I/O to recover its data than a conventional write-ahead
logging system. The conventional system must read each page referred toby alog record
during recovery. Many of the data pages read induringrecovery willbereplaced inmemory
before the data on them is used by new transactions. Thus, these I/Os would never have
happened if the system hadnot failed. POSTGRES onlyrecovers a page whenthe data on



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 86

the page has been accessed by a current transaction. At that point, the page must be read
into memory anyway. In the normal case, the current andprevious version of a mple reside
on the same page. Evenif thecurrent version of thempleis invalid, no extraI/Ois required
to access the data.

4.2.4 Validating Tuples During Historical Queries

When users query historical data, POSTGRES examines transaction commit times to
ensure that mples were valid during the time periodof interest. To determine the commit
time of ample version, the DBMS maps difference record XIDs to commit timesusingthe
commit time file. If the current version of the mple is in the time period of interest, the
DBMS must also check that the version was not written by an aborted transaction, using
the transaction status file as described above. Status file lookups are necessary because it
is possible for an aborted transaction to have a valid commit time. A failure might have
occurred between the time that the DBMS updated the commit time file and the time it
updated the status file, effectively aborting the transaction. Historical queries must use
two-phase locking in order to prevent the archiver from removing mples from magnetic
disk while the query is in progress.

In order to improve the performance of POSTGRES time queries, the original storage
system copied the commit time into mples during garbage collection. Thus, the commit
time file did not needto be searched forqueries of data olderthan the lastgarbage collector
run. POSTGRES also maintains a cache of committimesto allow time queries to proceed
without constantly accessing the disk to. read transaction commit times. However, this
cache must be 32 times as large as the status cache since POSTGRES represents commit
time using fourbyte quantities. If not enough memoryis available for the cache, then time
queries will have to access the commit time file on disk during validation.

4.3 Performance Impact of Force-at-Commit Policy

Commercial database management systems do not use a force-at-commit policy for
managing datapagesbecausethis policyhas poorperformance on conventional disk-based
stable storage. If several data pages are forced to different locations on the disk, commit
is delayed while the disk arm seeks to each location. At commit time, a write-ahead
logging storage system only writes log records synchronously; data pages can be written
asynchronously when they are ejectedfrom the DBMS disk cache. By placing the log on a
separate device from the restof the database, the conventional DBMS doesnot haveto pay
for any disk seeks at commit time.



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 87

Modern system architectures and file organizations have a large impact on the perfor
mance of POSTGRES' force-at-commit policy. This section compares theI/O performance
of POSTGRES to that of a conventional DBMS that uses a write-ahead log. In order to
separate the expense of the POSTGRES historical data feature from the expense of fast
recovery, we will also consider two versions of POSTGRES: one with and one without

the historical data feature. The analysis considers: (a) conventional disk subsystems, (b)
non-volatile RAM (NVRAM) stable storage, (c) RAID parallel disk subsystems [59], and
(d) Log-Structured File Systems (LFS) [61]. This analysis is based on the analysis in [66]
which didnotconsider RAID, LFS,archiving costs, ortheimpact of large diskcaches. The
analysis in this sectionshowsthaton asystem with asufficientamountofnon-volatileRAM
and a log-structured file system, POSTGRES (with history disabled) performs about the
same as a conventional system, despite the force-at-commit policy. With history enabled,
POSTGRES performs at least thirty percent more I/O than a conventional DBMS.

4.3.1 Benchmark

Forthe comparison,we use an analyticmodel basedon the TP1 debit/creditbenchmark
[1]. A transaction in theTP1 benchmarkrandomly accesses two"hot"relations (Branch and
Teller), and one "cold" relation (Account). Each of these is first read then written. Finally,
the transaction appends to a History relation, and writes any necessary logrecords. In the
subsection that follows, we describe first the parts of TP1 transaction execution that the
conventional system and both versions of POSTGRES execute in the same way. Then, we
describe thedifferences between the three DBMS versions when executing this benchmark.

Assume thatthereis enoughmainmemoryavailable to cache allof the two hotrelations,
but not all of the cold one. Thus, in steady state, the DBMS must read one Account page
from the disk and write one (different) Account page to the disk on every transaction.
History relation mples contain 50 bytes of data and a mple header. In POSTGRES, the
header is 60 bytes so 74 history mples can fit on a single 8K page. Therefore, a History
block must be written to disk every 74 transactions, on average. A conventional system
will maintain less information in its mple header. If the header is 10 bytes, then a history
page is filled every 136 transactions.

InthePOSTGRES storage system, the four data blocks updated by TP1 and thetransac
tion stams file block must be forced to stable storage afterevery transaction. The versionof
POSTGRES in which history is disabled never creates overflow pages. Instead, it garbage
collects historical data on a given page whenever the page fills. For the analysis, we will
also assume that the version of POSTGRES with history disabled does not record commit
times. Thecommittimes are onlyrequired by historical queries. Since thehistory-disabled
version of POSTGRES is not preserving historical data, there is no reason for the DBMS



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 88

to maintain commit times.

In a conventional file system, a TPl transaction constructs log records containing the
before- andafter- image of theupdated mples. Atcommit time, these logrecords areforced
to stable storage in a single write. We assume that the log records required to describe 20
TPl transactions fill a log page. This corresponds to about 400 bytes of log record per
transaction.

Conventional systems typically do notkeepthe write-ahead logon the samedisk as the
database in order to avoid disk seeks at commit time. Since the DBMS always appends
to the log, storing it on a separate device from the database means that the disk head is
always near thetailof thelogandlog writes are sequential I/Os. To make thecomparison
fair, POSTGRES is also allowed one disk to use for sequential writes. Unfortunately,
POSTGRES does not have a data structure like the log with a strictly sequential access
pattern. If transactions commitinroughly thesameorderthattheyareinitiated, however, the
transaction stams file andtransaction commit time file will beaccessed nearly sequentially.
For the analysis, we assume that the version of POSTGRES that has disabled historical
queries stores the transaction stams file on a separate device. The version of POSTGRES
withhistory support will storethe commit timefile on the separate device.

To simplify the presentation, we will call one sequential I/O two sevenths, 0.29, of a
random I/O. Thenumber is taken from a Fujitsu Eagle drive that has an average seek time
of 30ms, average rotational latency of 8ms, and transfer speed of 4ms per 8Kpage. Thus,
the average sequential I/O takes 12ms andthe average random one takes 42ms.

Historical Data and Archiving Costs

Theversion of POSTGRES thatpreserves historical datapaysadditional costs to main
tainthisdata. The system mustcreateoverflow pages as described in Section 4.2.2to store
the historical mpleversions until they are archived. The system must maintain a commit
time file so users canquery the historical data as described in Section 4.2.4. Finally, the
historical data musteventually be copiedto an archive device in orderto leaveroom on the
disk for data that is generatedby new transactions.

To record the historical data, overflow pages must be created every time a page fills.
The rateatwhich overflow pages aregenerateddepends onhow much freespace isreserved
on eachpage for updates. If each database pagecontains a single mple, 127 updates to a
TPl Account, Branch, or Teller mple can occur before thepage fills. If thirty percent of
thepage is reserved forhistorical data, 51 mples can be stored oneach page anda page is
filled every 38updates. Forthe analysis, we assume that 30percent of a page is left free
when thepageis initialized. TPl replaces three mples per transaction anda pageis filled
on average every38 updates, so the DBMS must write to an overflow page every 3/38, or



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 89

0.08, transactions, on average.

In some environments, the cost of migrating data from the magnetic disk onto the
archive device could be ignored. In these environments, there is a slow period, perhaps
at night, when historical data can be moved from magnetic disk to the archive device.
For this analysis, however, we assume that there is no slow period or the slow period
comes infrequentlyenoughthat storage will needto bereclaimed during operation. This is
quitereasonable when a page fills every 38 updates and the DBMS has a sustained, high
transaction rate. If the DBMS runs at 128transactions persecond, it createsin anhourabout
36,864 overflowpages andhistorical data consumes 288 MBytes of disk space. Therefore,
the analysis assumes that the cost of a transaction must include the cost of archiving the
historicaldata generatedby the transaction.

While we must account for archiving costs, the analysis only considers the cost of
archiving overflow pages, not the cost of examining and archiving historical mples on
current pages of the database. Overflow pages andthe commit time file grow as a function
of the transaction rate, so it is relatively easy to determine how much of their costs to
account to each transaction. The vacuum cleaner also examines all of the non-overflow

pages for historical data. However, this cost depends on the size of the database and the
rate at which the vacuum cleaner runs; it is independent of the transaction rate. In order
to simplify the analysis, we will assume that thevacuum cleaner runs infrequently enough
relative to the transaction rate that archiving costs will be dominated by the commit time
file and overflow page cost.

As stated in section 4.2.2, archived data is not written direcdy to the archive device in
POSTGRES. Instead, the pages are accumulated in a writebufferon magneticdisk. When
the buffer fills, it is reread from disk and the data is finally written to the archive. Thus, to
preserve the historicalmple versions on a singleoverflow page, the DBMS must:

(a) Create the overflow page and write it to the disk in the current database,

(b) During vacuum cleaning, read the page from disk to find the archivable data on the
page.

(c) The vacuum cleaner writes the page to the archivewrite buffer.

(d) The vacuum cleanerdeletes the mples from the overflow page in the currentdatabase
and rewrites it.

(e) The vacuum cleanerrereadsthe write buffer from the disk and pushes it to the archive.

The operationsmust be done in this order to prevent the archiveddata from being lost in a
failure.



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 90

We showed above thateach overflow pagegenerated causesseveral I/Os when allof the
archiving costs are takeninto consideration. Each overflow page results in onerandom read
(b), one sequential read (e), andthree random writes (a,c,d) in the current implementation
of POSTGRES. Thus, the total historical data cost is 3*0.08 or 0.24 random writes per
transaction and 0.08*1.29 or 0.1 random reads per transaction, plus one update to the
commit time file per transaction.

This section ignores some additional costs related to the archive device manager de
scribed in Section 4.2.2. We assume that the archive device itself is not a bottleneck.

Currently, the optical disk archive used by POSTGRES runs at 1/40 of the speed of a
magnetic disk. POSTGRES does enough disk I/O that the archivedevice is not a bottleneck
at present Also, the 1987POSTGRES storage system design assumes that new indices are
constructed forthedata onceit is movedto thearchive. The costofcreating andmamtaining
these indices is ignoredin the analysis.

4.3.2 Conventional Disk Subsystem

We see the following costs in a conventional disk subsystem:

The conventional DBMS and both versions of POSTGRES each do one random read to

get the page containing the transaction's account record.

The conventional DBMS writes oneaccount page todisk tomakeroomin its cache for the
new account page. Every 136 transactions, it fills a history relation block that must
eventually be written to disk. The cost of these History relation updates is 1/136,
rounded to 0.007.

Each version of POSTGRES writes the four pages that were updated by the transaction:
account, teller, branch, andhistory. The force-at-commit policyrequires these pages
to be written to stable storage at transaction commit.

The conventional DBMS writes the page containing itslog records todisk sequentially at
a cost of 0.29 random I/Os.

Thehistory-disabled version of POSTGRES writes thetransaction stams file sequentially
at a cost of 0.29 random I/Os.

The history-enabled version of POSTGRES writes the transaction stams file and the
transaction commit time file. Together, these cost 1.29 random I/Os since one of
these files will be written sequentially. As shown in the previous section, it also does
0.1 random reads and 0.24 random writes per transaction on average for overflow
pages.



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 91

Conventional Disk System Read Write Total
POSTGRES (history-enabled) 1 + .1 4 + .24 + 1.29 6.63
POSTGRES (history-disabled) 1 4+ .29 5.29
Write-Ahead Log 1 1 + .007 + .29 2.30

Table 4.1: Summary of I/O Traffic in a ConventionalDisk Subsystem. POST
GRES was not designed to be run without non-volatile RAM to use as stable
storage. The conventional system is able to make much more effective use of
the cache because of its write-ahead log.

These I/Os are summarized in Table 4.1.

The analysis shows that, in a conventional disk storage system, the POSTGRES no-
overwritepolicyismuchmoreexpensive thanwrite-aheadlogging, whetherhistorical datais
retained or not. There aretwoimportant reasons why theconventional system outperforms
POSTGRES in this environment. First, the conventional system cantake better advantage
ofcaching than POSTGRES to mask disk writes to the branch, teller, andhistory relations.
The conventional system uses thelogtomake updates tothese relations recoverable sodirty
blocks from these three relations do notneed to be written to diskso frequentiy. Second,
the history-enabled version ofPOSTGRES records additional information that conventional
systems do not: commit times and overflow pages. This result is different from the one in
[66] because the benchmark used in thatanalysis never rereferenced pages once they were
written. Hence, the conventional system could not use the disk cache to absorb writes.

4.3.3 Group Commit

Most high performance DBMSs use a mechanism called group commit to reduce the
cost of transaction commit. In group commit, the DBMS batches several transactions and
commits them at the same time. Group commitimproves performance of a conventional
DBMS because the log records from all transactions in the group can be written to disk
together in a single I/O operation. Instead of having one log write per transaction, there
is 1/G where G is the commit group size. Group commit does not decrease the number
of random I/Os done by the conventional system on a benchmark like TPl, because the
transactionsusually update account records on differentpages.

POSTGRES receives some benefit from group commit also. Many transactions can
share the same write to the stams file and commit time file. All of the transactions in the

group will usually append to the same History relation page, as well. Some of the updates



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 92

Group Commit, Group Size 20 Read Write Total
POSTGRES (history-enabled) 1.1 2.4+0.014+ .24+ 0.05 3.80

POSTGRES (history-disabled) 1 2.4 + 0.014 3.41

Write-Ahead Log 1 1 + 0.007 + 0.014 2.02

Table 4.2: Group Commit in a Conventional Disk Subsystem. POSTGRES
benefits more than the conventional system from groupcommit, sincesome of
the many random I/Os are eliminated. The four POSTGRES force-at-commit
I/Os for theTPl relations become 2.4 I/Os because some pages in therelations
are rereferenced by consecutive transactions in the group. The table shows
the I/O traffic when the group size is 20.

to branch and tellerwill fall on the samepages. In a POSTGRES TPl database with 1,000
branches and10,000 tellers, theBranchrelation has17pages andtheTellerrelation has 169.
This figure considers theoverhead ofPOSTGRES page headers, mple headers, andassumes
an average of 20 percentof each non-overflow pagecontains free space or historical data.
Assuming that each TPl transaction chooses a record to update at random, the expected
number of pages can be calculated for any group size. At group size 20, about 5% of the
Teller pagewrites fall ontodirtypagesas do 60%of theBranch writes. Thus, transactions,
on average, write .95 and .40percentof a Teller or Branch page, respectively, for a totalof
1.35 random I/Os. At group size 20, POSTGRES will write the History relation once per
group or 0.05 times per transaction. The total number of random I/Os for the four relations
is2.4. The transaction stams file and log are written sequentially once pergroup for a cost
of 0.05 * 2/7 or 0.014. The history-enabled versionof POSTGRES writes the commit time
file once pergroup at a costof 0.05 random I/Os pertransaction.

4.3.4 Non-Volatile RAM

The original POSTGRES storage system was designed to use non-volatile RAM to
reduce the number of random I/Os required at commit time. POSTGRES would use
NVRAM, presumably in combination with guarding, as stable storage so data could be
stored recoverably without writes todisk. NVRAM changes thecosts of the three systems
to the following:

Again, each DBMS does one random read to get the page containing the transaction's
account record. The conventional DBMS must write a dirty account page to disk



CHAPTER 4. FASTRECOVERY IN THEPOSTGRES DBMS 93

Non-Volatile RAM Read Write Total (P=l)
POSTGRES (history-enabled) 1.1 1.014+ 2*(1-P)+ 0.24 2.35
POSTGRES (history-disabled) 1 1.014+ 2*(1-P) 2.01
Write-Ahead Log 1 1.007 + 0.014 2.02

Table 4.3: Summary of I/O traffic When NVRAM is Available. The number

of random I/Os required by POSTGRES depends on the amount of NVRAM
available. If all of the branch and teller relationscan be cached, POSTGRES
with the history feature enabled is about seventeen percent slower than the
other two systems. POSTGRES with history disabled is slightly faster than
the conventional system in this environment because it does not have to write
log pages.

every transaction in orderto make room in thecache for the newpage. POSTGRES
will have to do the same, although it is making room in NVRAM for the account
record to be written at commit time.

POSTGRES will be able to store the tail of the History relation in NVRAM. As before,
theconventional system fills a history relation block every 136transactions at a cost
of 0.007 random I/Os per transaction. In POSTGRES, History relation blocks are
filled every 74 transactions at a cost of 0.014 random I/Os per transaction because
POSTGRES has larger mple headers. POSTGRES will use NVRAM to mask writes
to the history relation until a page has filled.

When enough NVRAM can be made available, POSTGRES can buffer TPl's two hot
relations in NVRAM also. The branch and teller relations together take about 1.5
MBytes, in POSTGRES. Let P be the fraction of the two hot relations that can be
stored in NVRAM.

When NVRAM is available, theconventional DBMS onlywrites logrecords to diskwhen
a logpage has filled. We assumed thatthis would take 20transactions, so thelogging
cost is 0.05 sequentialor 0.014 random I/Os per transaction.

If NVRAM were available, POSTGRES would certainly keep the tails of the stams file
and the commit time file there. Every 64K transactions, a stams file block fills and
must be written to disk. In the historical-query version of POSTGRES, a commit



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 94

time file block fills every 2K transactions. These numbers are small enough that we
will omit them from the analysis.

The history-enabled version of POSTGRES stillmust writeoverflow pages to disk every
38 transactions.

Table 4.3 summarizes disk activity required for each storage system when NVRAM is
available for stable storage. The POSTGRES costs are parameterized by P, the fraction of
the hot relations that can be buffered in NVRAM. In POSTGRES, a TPl database with
1,000 branches and10,000 tellers couldbe buffered in about 1.5 MBytes of NVRAM. This
figure considers the overhead of POSTGRES page headers, mple headers, andassumes an
average of 20 percentof each non-overflowpagecontains free spaceor historicaldata.

POSTGRES andthe conventional system have comparable speeds if enough NVRAM
is available for POSTGRES to cache the hot relations. The conventional system cannot
take much advantage of NVRAM; the only improvement it sees due to NVRAM is fewer
log writes. POSTGRES can use NVRAM to absorb disk writes in the same way the
conventional system used the volatile RAM cache. The NVRAM also masks the cost of
maintaining a commit time file for the history-enabled version of POSTGRES.

4.3.5 RAID Disk Subsystems

Next, we consider the cost of running POSTGRES on a RAID disk subsystems[59].
RAIDsare parallel disk subsystems that useparity to provide media recovery atlower costs
than standard techniques such asdiskmirroring. A RAIDis divided intostripes ofN-l data
blocks and one parity block, each on a different disk. If one disk fails, each block on the
failed disk canbe reconstructed usingthe parity block andthe N-2 otherdata blocks from
its stripe. Unfortunately, maintaining parity blocks worsens random write performance
significantly. When a data blockis randomly written, the I/O subsystem must (a) read the
parity block, (b) reread the data block from disk soitsoriginal value can be determined (c)
compute a new parity block from the old parityblock, old datablock, and new data block,
and (d) write the parity block out again. Thus, each random write causes two additional
random reads and an additional random write. The additional reads can be eliminated for

random I/Os if theI/O subsystem has enough physical memory available for caching parity
blocks and the original values of the data blocks. Since the DBMS is already delaying
writes as long as possible, such caching is unlikely to be very effective, especially when
NVRAM is available.

Because of parity blocks, RAID quadruples the number of random I/Os required by
every transaction in either storage system. Therefore, RAID increases the amount of I/O
that takes place when insufficient NVRAM is available to buffer the hot relations. The



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 95

RAID +NVRAM P=1.0 P=0.875 P=0.5
POSTGRES (history-enabled) 6.12 7.12 10.12
POSTGRES (history-disabled) 5.06 6.06 9.06
Write-Ahead Log 5.04 5.04 5.04
Conventional disk + NVRAM P=1.0 P=0.875 P=0.5

POSTGRES (history-enabled) 2.35 2.60 3.35

POSTGRES (history-disabled) 2.01 2.26 3.01

Write-Ahead Log 2.02 2.02 2.02

Table 4.4: Comparison of Random I/Os in RAID and a Conventional Disk

Subsystem. Readingand writing RAID parityblocks increases the penalty
for insufficient NVRAM to buffer random writes in POSTGRES. P is the

fraction of the branch and teller relations that can be buffered in NVRAM.

The upper part of the table shows the affect of limited NVRAM when the

database resides on a RAID. The lower part of the table shows the effect of
NVRAM when a conventional disk subsystem is used. The P=1.0 column in
the lower table is the same as the right column of Table 4.3.

2*(1-P) random writes from Table 4.3become 8*(1-P) random I/Oswhen parityblocks are
considered. This becomes one extrawrite per transaction on average whenP is 0.875 and
four extra writes per transaction when P is 0.5.

4.3.6 RAID and the Log-Structured File System

Finally,the Log-StructuredFile System(LFS)describedin [61]can be used to eliminate
the random writes required by the DBMS andto reduce thecostof mamtaining parity on
a RAID. LFS organizes the disk as a collection of half-megabyte segments. One of these
segments is the current segment, or tail of the log. Whenan updatedfile block is forced to
disk in LFS, the file system appends the block to thecurrent segment rather than seeking
to the block's original location on disk and writingit there. The file system meta-data is
updated in memory and logged to the current segment also, so future reads can find the
newerversion of the block. Eventually, LFSgarbage collects old segments, throwingaway
out-of-date blocks. The blocks that are not out-of-date ("live" blocks) are coalesced into a
new segment and rewritten.

LFS improves DBMS performance on a RAID because it turns random writes into
sequential writes. When enough NVRAM is available to allowthe systemto buffera large



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 96

LFS/RAID/NVRAM P=1.0 P=0.875 P=0.5
POSTGRES (history-enabled) 2.12 2.27 2.72
POSTGRES (history-disabled) 1.61 1.86 2.61
Write-Ahead Log 1.62 1.62 1.62
Conventional disk + NVRAM P=1.0 P=0.875 P=0.5

POSTGRES (history-enabled)
POSTGRES (history-disabled)
Write-Ahead Log

2.62 2.87 3.62

2.01 2.26 3.01

2.02 2.02 2.02

Table 4.5: Comparison of I/Os in LFS RAID and a Non-LFS Conventional
Disk Subsystem. LFS sequentializes I/O and eliminates the I/Os associated
with calculating parity block changes for the blocksupdated by a TPl trans
action. As in the previous tables, P is the fraction of the branch and teller re
lations thatcanbebuffered inNVRAM. Ten percent ofeach segment garbage
collected by LFS is assumed to be live data. Again,POSTGRES can outper
form a conventional DBMS in this environment because it writes fewer log
pages and pays little penalty for non-sequential write behavior.

amount of data, thewrite traffic formany transactions can bebatched together into a large
sequential write. If the data is written todisk infull stripes, the stripe's parity block can be
computed from the N-l other blocks in the stripe. This eliminates the cost ofreading parity
blocks andamortizes thecostof writing a parity block over N-l blocks of userdata.

While LFS turns random writes intosequential writes, garbage collection increases the
number of blocks that must beread and written bythe TPl transaction. Garbage collection
cost depends on how much live data is contained in the garbage collected segment. If F
is the fraction of live dataon a garbage collected segment, theTPl transaction mustread
one block andrewrite F blocks for every block of free space it reclaims. Therefore, each
random write from Table 4.3becomes roughly (2+F) sequential VOs, or2/7* (2+F) random
VOs when LFS is used. Table 4.5 shows the bottom line: when LFS is used and enough
NVRAM is available, thePOSTGRES storage system is asfastor faster thana conventional
storage system. LFS reduces the cost of constructing parityblocks and eliminates the disk
seeking that force-at-commit causes in non-LFS file systems.

Not addressed here is the fact that LFS randomizes the layout of pages on disk, so
sequential reads during queries are effectively impossible. This problem is discussed in
[63] and database reorganization strategies tominimize this effect isa subject ofcontinuing



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 97

research. Measurements presented in [63] comparing sequential Account file reads after

fourhoursofTP1 transactions on LFS and aconventional file system show the LFS readto
be about 1/3 slower than the conventional file system read.

4.3.7 Summary

Insummary, large amounts ofNVRAM are crucial totheperformanceofPOSTGRES for
update-intensive applications such as TP1. A WAL-based system is able to buffer updated
pages involatile memory and use the write-ahead log toguarantee the durability of updates.
POSTGRES can only buffer updated pages in NVRAM. Therefore, the performance of
POSTGRES iscomparable to that of aWAL-based DBMS if the heavily-updated parts of
the DBMS can be cached in NVRAM. When POSTGRES isused with aRAID, the penalty
for insufficient NVRAM increases byabout four times; four random I/Os are required for
every random I/O required on aconventional disk system. Using alog-structured file system
changes the way in which RAID parity blocks are calculated, hence eliminates this penalty.
Thus, even on aRAID I/O device, POSTGRES performs well when enough non-volatile
RAM is available. This section also indicates that, while aDBMS can use the fast recovery
features of POSTGRES without losing performance, the historical data feature reduces
performance by about seventeen percent in ahigh-update-rate environment.

The analysis in this section also drives home the importance of techniques like page
guarding to both conventional systems andto POSTGRES. Using NVRAM as stable storage
only makes sense if data stored there is safe from errors. Because of the increasing
importance of software errors, systems can only assume that data in NVRAM is safe from
errors if precautions such as guarding are taken.

Finally, we have assumed in this section that thearchive device itself is notabottleneck.
Current POSTGRES measurements [57] show that data can be archived to optical disk at
about a fortieth the rate that it can be stored on magnetic disk. Given the current archiver
implementation, archive data is not generated quickly enough for the archive to limit
performance. However, POSTGRES archives all information that a conventional DBMS
would store in its log. Performance ofaconventional high performance DBMS is usually
limited by log device speeds. Hence, itis conceivable that aredesign ofthe storage system
would make archiving a bottleneck.

4.4 Guarding the Disk Cache

Large main memory disk caches help DBMS performance significantly, but make the
outage thatoccurs after a software failure more noticeable to customers. After a software
failure, the disk cache (DBMS buffer pool) is usually discarded because the extentof the



CHAPTER 4. FASTRECOVERY IN THE POSTGRES DBMS 98

damage caused by the error is unknown. Rather than risk propagating corrupted data into
the permanent database, the DBMS reinitializes the disk cache using the clean versions
of thecached pages on disk. The recovery cost of demand-paging thedatabase into main
memory is:

disk-seek-time * effective-cache-size/page-size.

Ignoring theeffectof disk arm contention with currently executing transaction, recovering
the disk cache takes about 4 minutes if the disk seek time is 30ms, the effective cache size
is 64Mbyte andthe page size is 8 KBytes.

Chapter Two, however, showedthat the most common types of errors are not the ones
most likely to damage data in the buffer pool. Most errors are control errors which do
not affect the guarded buffer pool. If the buffer pool is guarded to preventcorruption by
addressing errors, the DBMS canreusetheold bufferpoolaftera failure. Reliabilityis only
affectedif errors havepropagated to bufferpoolpages, but not to pages stored on disk (or
in stable memory). This section describes the situations under which additional reliability
risk does occur. We must consider four separate cases.

First, an error could corrupt the values that are being inserted into the database. For
example, a data error could cause ten dollars to be deducted from a bank account instead of

one dollar. If the transaction is allowed to commit, these errors will become unrecoverable
whether the buffer pool is guarded or not. Because of transaction durability, all updated
tuples become permanent at transaction commit time. In a conventional system, the cor
rupted values are written to the log; in POSTGRES, the corruptedvalues are written into
data pages and forced to stablestorage. Thus, recovering from a guarded buffer pool does
not increase reliability risk due to this first class of errors.

Second, an errorcould corruptdataon the same page as a tuple updated by the DBMS.
In POSTGRES, this corruptedpagewill be writtento stablestorage atthe end oftransaction.
In aconventionalDBMS, the corruptedpagewill remainin the buffer pool until it is replaced
or until the next checkpoint. If the DBMS fails before the page would have been written
to stable storage in a conventional system, recovering the buffer pool from disk would
clear the damaged page, hence guarding reduces reliability in this case. In POSTGRES,
the damaged page is written to disk at transaction commit, so reloading the buffer pool
provides no benefit Presumably, the DBMS wouldreloadany pages that were unprotected
at the time of the failure. This class of errors argues strongly for the deferred write model
of guarding, which is unlikely to affect unmodified records on a page containing modified
ones.

Third, an error could corrupt a page that is not updated by any transactions at all.
The data from ChapterTwo shows that it is unusual for "random" pages in memory to be



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 99

damaged by errors. When they do occur, such errors are also the ones that are most likely
to be detected by guarding.

The fourth error case to consider is corruption of the buffer map. Buffers areidentified
by a mapping between<relation ID, blockNumber> andthe buffer. Even if the page is not
physically corrupted by an error, corrupting the mapping will effectively corrupt the data.
By saving -delation ID, blocknumber> pair in the header of each data page, this kind of
error can be detected on use.

In summary, recovering without reloading the buffer pool will improve availability at
some risk to DBMS reliability. Given the available dataon software errors and the lack of
available techniques for measuring software reliability, it ishard toquantify the increase in
risk. Case two, corrupting data near updated tuples, and case three, random corruption of
the buffer pool are the only ways the recoverable cache can decrease reliability. The exact
increase in risk depends on how effective guarding is at preventing errors and how long
errors remain undetected after they occur. Thedata in Chapter Two is notconclusive, butit
indicates that the risk to guarded data in the buffer pool is small, especially if the deferred
write model of guarding is used.

4.5 Recovering Session Context

In order for aDBMS client program tosubmit queries to the POSTGRES backend (or
server) process, it must establish a communication session with several kinds of statethat
can be lost in a failure. Reestablishing sessions between clients andthe server is slow for
four reasons. First, recovery is client-driven. The clients must detect through timeouts
that the DBMS server has failed before any recovery actions can begin. Second, restoring
sessions requires messages to be exchanged between client and server processes, hence
transmission delays are incorporated into the recovery time. Third, when the server has
manyclients, allof themtry to reconnect atthe same timeandcontend for server resources.
Finally, if a client is awaiting confirmation of a transaction commit, it must query the
database to determine whether or not the commit occurred before the system crash. If the
transaction did not commit, the client must resubmit it. When atransaction is short enough
(e.g. debit/credit workload), the entire transaction can be contained in asingle message so
every client needs to find out if its last transaction committed before submitting anew one.

This section describes techniques developed in thecourseofthis dissertation for reducing
the impact of these problems. In the modified version of POSTGRES, recovery is server-
driven. It allows sessions to becreated andstored soclients donothave torunthereconnect
protocol before new queries are submitted to the DBMS afterafailure. The session recovery
mechanism also integrates the POSTGRES storage system and the communication protocol



CHAPTER 4. FASTRECOVERY IN THE POSTGRES DBMS 100

inorder todetermine quickly whether ornot aclients' last transaction succeeded. Finally,
therecovery mechanism takes advantage ofguarded memory to limit thenumber of clients
thatneedto communicate withthe server during recovery from software errors.

4.5.1 Communication Architecture of POSTGRES

Theoriginalversionof POSTGRES hada backend-per-clientsoftwarearchitecture; one
backendprocesswas createdfor each DBMS clientrequesting servicefrom the DBMS. In
the original version of POSTGRES, the DBMS was considered available again when the
DBMS server was ready to accept new connections from clients. Little work had been done
to help clients determine how to reestablish state lost in the failure.

Partly in order to support fast recovery, the architecture was changed so that all clients
connect to and share a pool of DBMS backend processes. When a message arrives from
one of the clients, it is queued in shared memory. Every time a backend process becomes
idle, it chooses a session with pending work and does the work. Once a client's session is
assigned to a given backend process, the backend continues working with the client until
the end of a transaction. This simplifies the implementation substantially since backend
processes are not multi-threaded and POSTGRES has a great deal of per-transaction state.
In order to simplify the protocols described below, we assume that a client does not submit
more than one transaction in a single message.

To simplify the description of the recoverymechanismthat follows, we break communi
cation between client and server into fivephases based on the status of the client's outstand
ing transaction: unsubmitted, submitted, queued, executing, and committed/unconfirmed.
These phases are summarized in Figure 4.5. When a client has no outstanding transaction,
the communication protocol is in the unsubmitted phase. The second phase, submitted,
takes place while the message initiating the transaction is in transit between the client and
the server. The queued phase fills the time between the arrival of the message and the
assignment of the transaction to a backend process for execution. The executing phase is
next and may involve additional message traffic between the client and server. After the
DBMS commits the transaction, the protocol begins the committed/unconfirmed phase
which lasts until the client receives confirmation of the commit from the server. Because all

executing transactions are aborted anyway after a failure, unconfirmed aborts are effectively
the same as executing transactions. When transactions abort, the executing phase simply
continues until the abort confirmation arrives at the client After the commit/abort status of

the transaction is confirmed, the unsubmitted phase begins again.
Before sending transactions to the DBMS server, the client application must authenticate

itself and initialize a session. The original version of POSTGRES used a communication
protocol implemented using operating-system-supplied virtual circuits (TCP/IP [20]). For



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 101

Client Prepares

Next Transaction

Transaction

in Transit

Awaiting Service

at DBMS

Executing at

DBMS Server

Confirmation

in Transit

Client Prepares

Next Transaction

Unsubmitted

Phase

Submitted

Phase

Queued

Phase

Executing

Phase

Committed/

Unconfirmed

Phase

Unsubmitted

Phase

Figure 4.5: Phases of the Client/Server Communication Protocol. The unsub
mitted phase ends when the client sends a message containing a transaction
to the DBMS server. The submitted phase ends when the server accepts the
messages and queues its contents for service. The queued phase ends when
a server process is available to execute the transaction. The executing phase
ends when the server commits the transaction. The committed/unconfirmed
phase ends when the client receives confirmation of the transaction's commit.
The executing phase may contain other client/server communication if the
transaction requires more than one message and this phase leads directly to
the next unsubmitted phase if the transaction is aborted.



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 102

the work described in the current Section, POSTGRES was modified to use a reliable
datagram protocol built on top of the unreliable datagrams provided by the operating
system (UDP [20]). Reimplementing parts of the network protocol at user level gave
POSTGRES control over the system state used in interprocess communication. Because
this state is managed by POSTGRES instead of the operating system, it can be saved at
session establishment time and restored after a failure. As in TCP/IP connections, reliable

datagram sessions are established in a three-messageexchange between the client and the
server in which sequence numbers are established and the client is authenticated. The
dissertation considers only server recovery, hence, the section that follows contains no
provisions for saving and restoring state present only at the client.

4.5.2 Recovery Mechanism for POSTGRES Sessions

To reestablish communication with a client after a failure, the server must restore four

kinds of session state:

(1) Authentication information: When a client has been authenticated, the server gener
ates an authentication token. The client must send the token with every subsequent

message to prove it has been authenticated.

(2) Peer address: The client and server must each record the other's network address.

(3) DBMS context: In addition to the communication-related context, clients have some

database-related context that is maintained with the session. For example, the client
states the name of the database it is operating on when it establishes a session.

(4) Sequence numbers: A sequence number is recorded for the next incoming and outgo
ing network packet in order to detect lost and duplicated packets.

The first three items are generated at the beginning ofthe session and not modified again until
the session is closed. Sequence numbers change every time a message is sent or received
and the server's sequence numbers must agree with the sequence numbers maintained at
the client. Saving the sequence numbers of a session that is actively being used is two
expensive to be practical, however, an established, but unused, session can be described by
a small structure containing the first three kinds of state plus the initial sequence numbers
for the session.

In order to have sessions that are ready to use at recovery time, POSTGRES allows clients
to create backup sessions and save the server side of the backup session on stable storage.
After a failure, the client and server can begin to use the backup sessions immediately
without going through the normal session establishment protocol. When a client initially



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 103

connects to the server, it establishes several sessions simultaneously, using a single three-
way message exchange. Each of these sessions has a unique authentication token, but
all share the same peer address and DBMS context. One of the sessions established is

designated the active session and used for the initial communication between client and

server. The other sessions are linked into an ordered list and saved on stable storage.
Backup sessions are always activated in theorder assigned them when theywere created.

After a failure, a backup session can be activated in oneof two ways. First, either the
client orthe server can activate a session simply by sending amessage using that session.
The client can also ask the server toactivate abackup session automatically if the primary
session has failed. To request an automatic activation, the client appends abackup session's
session ID and authentication token to every request it sends to the server. If the primary
session has been lost in a failure, the DBMS acts as if it received the message using the
backup session. Eventually, new sessions can be established toreplace the ones destroyed
during the failure, but the database isavailable while the backup sessions are beingreplaced.

Theautomatic activation mechanism isdesigned tohelp avoid additional communication
when aclient submits anew transaction after a server failure. Without such amechanism,
the server wouldreject the first message each client sent after a failure and force the client
toresend the message using one of the backup sessions. This mechanism just piggybacks
the information that would be resent onto the first message, making the message eight bytes
longer but avoiding aretransmission after afailure. Note that only the message that initiates
atransaction can specify abackup session. Once the transaction begins, the client mustdo
extra work tohandle transaction aborts as described below anyway, so the extra message
traffic cannot be saved.

4.5.3 Restarting Transactions Lost During Failure

Because all communication between client and server is associated with atransaction,
the recovery action required to restore data thatwas in transit at the time of the failure is
fairly straightforward. If agiven client session was in the submitted or queued phase, the
outstanding transaction must be resubmitted. If the transaction was executing at the time
of the failure, it has been aborted. An aborted transaction can be resubmitted unless the
transaction is complex enough that higher level abort recovery procedures are required.
Forthis section, we will assume that if an aborted transaction cannot be resubmitted then
fast recovery is impossible. If the transaction was in the unsubmitted, then the client
simply continues normally. If the client was in the committed/unconfirmed phase, it can
continue without resubmitting the transaction as soon as it confirms that the transaction has
committed. Thus, to recover the data in-transit at the time of the failure, the client must
only determine whether or not to resubmit the last transaction.



CHAPTER 4. FAST RECOVERYIN THEPOSTGRESDBMS 104

Todetermine whichphase thecommunication protocol wasin at the timeof the failure,
POSTGRES uses the transaction identifiers (XIDs) discussed in Section 4.2. In addition
to the four items of session state described above, each POSTGRES session is allocated
an XID. The initial XIDis sent to the client as partof the session establishment protocol.
Every time the server confirms a transaction commit, a new XID is allocated and sent to
the client in the confirmation message. The client saves the currentXID of the session to
be used in recovery if the server ever fails.

After a failure, the server sends a recover message to each client, telling the client that
a failure has taken place. After receiving a recover message, the client assumes that the
last transaction was either lost or aborted and resubmits it using a new session. The client
also sends the both the XID and the session ID used by the transaction the first time it was
submitted. These two items will be used to determine if the transaction was committed but

unconfirmed when the server failed.

After receiving the resubmitted transaction, the DBMS server looks up the XID sub
mitted by the client in the transaction status file. If the status file shows that the transaction
has committed, the transaction was committed but unconfirmed at the time of the failure.

The server resends a confirmation message in this case and does not reexecute the transac
tion. If the lookup returns "aborted," the transaction was in one of the other states when
the server failed. The DBMS then assigns the transaction a new XID, the one associated
with the current session, and executes it The transaction cannot reuse the old XID since

uncommitted tuple versions with that XID may have been created before the failure.
If the server fails again before completing the resubmitted transaction, the client will

resubmit the transaction again using the next availablebackup session. As before, the client
must send the XID used when the transaction was originally submitted and the session
ID of the initial session over which the transaction was submitted. Since the sessions are

ordered, the server will realize that it has received the second resubmission of a transaction

(the original session ID and the current session ID will differ by two). This time, the server
must check two XIDs when it receives the resubmission. Either the original submission
of the transaction or the first resubmission may have resulted in transaction commit. The
XID for the session used in the first resubmission is determined from the backup session
structure stored on stable storage. Again, if either of them committed, a confirmation is
sent to the client Ifneither did, the transaction is reexecuted using the XID associated with
the current session.

If the server fails more than two times without completing a transaction, the same
procedure is followed until the client runs out of backup sessions. Each time the server
fails, the clientresubmits the transaction usinga newbackup session. Becausesessions are
ordered and the client sent the session ID of the first session used to submit the transaction,
we can find all XIDs that might have been associated with the transaction. The DBMS



CHAPTER 4. FAST RECOVERY IN THE POSTGRES DBMS 105

checks the XID for each session between the initial one and the current one, sending a
confirmation messageif one of them is committed. The session structures on stable storage
are used to find the XID associated with each of the intermediate sessions. Once the

transaction is executed and the client receives a confirmation of the commit, it will send a
new transaction (not a recovery message). When the server receives the new transaction,
the old sessions can be garbage collectedfrom stable storage.

Using these techniques, the server still must send a recover message to every client
at recovery time, and every client that has an outstanding transaction must resubmit that
transaction. If guardedmemory is available, however, the server can recover with reduced
message traffic after software failures. Guarded memory buffers are used to store the
messages containing queued transactions. By also maintaining a guarded memory list of
clients that have acknowledged their commit confirmation message, the server can avoid
sending messages to most clients in the unsubmitted state as well. At recovery time,
the server sends recover messages to some clients in the resubmit state and all clients
in the executing and committed/unconfirmed state. Only clients in the executing and
committed/unconfirmed state ever resubmit transactions. Fewer messages from the server
and fewer clients requesting recovery actions will help the system scale to larger numbers
of clients.

4.6 Summary

Fast recovery techniques such as those discussed inthis chapter are an important com
ponent of the fault tolerant system. The error detection mechanisms normally used in fault
tolerant systems and the new error detection mechanism presented in Chapter Three halt
the system when an error is detected. This makes the system more reliable, prevents it
from producing incorrect results, butalso makes the system less available to its users. In
addition to detecting its errors, the system must minimize the length of time that it takes
beforebeginning to accept new transactions. Also, themechanisms used to limit downtime
must be simple enough that they do not reduce reliability as they increase availability.

Because processing the write-ahead log consumes the bulk of the recovery time in a
conventional system, the keyfast recovery feature inPOSTGRES isthe 1987 storage system
design, which allows systems torestart without log processing. This chapter builds on the
original storage system design by providing enhancements that improve storage system
performance on transaction processing workloads. The enhancements include backward
differencing of tupleversions, shorter tupledifference chains, a shortened transaction status
file, and a faster strategy for system restart We also provide more details to data page
garbage collection than were considered in theoriginal design.



CHAPTER 4. FASTRECOVERY IN THE POSTGRES DBMS 106

This chapter does athorough analysis oftheimpact of thePOSTGRES force-at-commit
buffer management policy on TPl performance. The analysis shows that the optimized
version of the POSTGRES storage system does the same amount of I/O as a conven
tional storage system when a sufficient amount of non-volatile RAM is available and the
POSTGRES historical data feature is disabled. For TPl, about 1.5 MBytes of NVRAM
is required for performance comparable to a WAL DBMS. When a RAID disk subsys
tem is used, POSTGRES still performs as well as a conventional system as long as the
log-structured file system (LFS) is used. When the POSTGRES historical data feature is
enabled, the analysis shows that POSTGRES performs about seventeen percent more I/O
operations.

Finally, this chapter extends POSTGRES fast recovery support by with mechanisms
for recoveringthe staterequired for communicationbetween clients and the DBMS server.
Saving client/server connections in stable storage allows the client to begin submitting
transactions to the serverimmediately after the serverrecovers from a failure, without first
goingthrough aconnection reestablishment protocol. The chapter alsodiscusses theeffects
of using the guarded memory facility introduced in Chapter Three to reduce the need to
reload the disk cache after a failure.

Technologytrendsare making the fastrecovery benefitsofPOSTGRES more practical in
many environments, particularly high end dataprocessing systems. Increasing CPU speeds
are reducingthe already small performance impactof POSTGRES garbage collection and
run-timechecks. Hopefully, the performance impactof guarded memory will be reducedin
faster processors as well. The costs related to force-at-commit canbe controlled if enough
NVRAM are made available to the DBMS. NVRAM prices are dropping and are currently
about four to six times the cost of volatile RAM [5]. As cost effective, high performance
systems become easier to build with new generationsof hardware,customers will be more
willing to trade limited amounts of transaction performance forhigh availability.



107

Chapter 5

Supporting Indices in the POSTGRES
Storage System

5.1 Introduction

Both the original version ofPOSTGRES and the extended one presented in Chapter Four
addressed ways that no-overwrite strategies in the management ofheap (unkeyed) relations
could improve DBMS availability. Chapter Five considers the effects of no-overwrite
recovery strategies on DBMS index data structures, an issue omitted from the original
POSTGRES storage system. In this chapter as in the previous one, the goal is to support
fast DBMS recovery and reduce down time after failures. By recovering without relying on
awrite-ahead log, the database becomes available immediately after the DBMS isrestarted.
If the failure causes inconsistencies in the index data structures, these are detected and
repaired as they are encountered. From an availability standpoint, this is abetter strategy
than checking for andrepairing allinconsistencies atDBMS restart time.

Most database management systems treat indices and heap relations in different ways
because indices have higher concurrency requirements than heap relations and have more
complex structure. For example, ahigh performance DBMS often uses two-phase locking
only on the heap relations and short-term locks on B-tree index pages. In two-phase locking,
data updated by atransaction remains locked until the transaction commits. Non-two-phase
locking improves concurrency inindices because many unrelated index keys are accessed
using the same internal pages of the index. If one transaction modifies a shared internal
page, two-phase locks would prevent other transactions from using the page until the first
transaction committed. Non-two-phase locking complicates recovery, however, because
one transaction, A, can insert a key using a shared page modified by another transaction,
B. If A commits, it must also commit the shared page inorder to commit the inserted key.



CHAPTER 5. SUPPORTING INDICES IN THEPOSTGRES STORAGE SYSTEM 108

If B aborts, it must not undo any modifications to the shared page or it might alsoremove
access to the key inserted by transaction A.

ThePOSTGRES storage system techniques described in Chapter Fourwill not provide
recovery when these non-two-phase locks are used. The POSTGRES storage system
associates a transaction identifier (XID) with any update to the database. When the data
is examined, the XID is mapped to a status bit to determine whether or not the transaction
has committed. Because XIDs are allocated to transactions, one transaction cannot commit

changes that depend on updates made by other transactions.
A second problem for index management in the POSTGRES storage system is that

inserting a single key into an index sometimes requires several pages to be updated. For
example, in a B-tree index, adding a key to a leaf page can cause the leaf page to split,
which in turn causes the leaf's parent to be updated. The page split modifies the contents of
severalpages and changes the inter-pagepointers that maintain index structure. Failing after
some but not all of the updated pages have been written to stable storage leaves the index
structurally inconsistent In a conventional DBMS which uses a write-ahead log (WAL)
protocol for recovery, the atomicity of index updates is guaranteed by log processing at
recovery time (e.g. [54]). In these systems, the log records describing structural changes
to the index are written to stable storage beforethe updatedindexpages. During recovery,
the structural changes are redone and the inconsistent pointers are repaired before new
transactions are allowed to update the index. Because POSTGRES has no log, it requires
other solutions.

In [52], the DBMS maintains consistency ofB-tree indices by adding extra synchronous
disk writes and by controlling page write order. For example,ifa newindexpage P is created
in a page split, P must be forced to stable storage synchronously before any page ofthe index
that contains a pointer to P. POSTGRES index management assumes that synchronous
writes to a single file are unordered for two reasons. First, using several synchronous writes
per page split would significantly worsen page split performance. Controlling write order
in a single multi-page synchronous write is not allowedin UNIX-based operating systems
and would worsen the performance ofdisk scheduling algorithms even ifit were allowed. A
second and more important reason not to depend on write ordering for index management
is that it will not work for some common kinds of indices. Section 5.3.6 describes an

example from the Blink-trees used in POSTGRES. No writeorderexists that will leave this
datastructure consistent during theentire pagesplitl. In file systems that support efficient
transactionalupdates to files, such as the versionof the log-structuredfile system described

1When the chapter refers to "conventional" B-trees, it assumes that write-ahead logging is used for
recovery, not ordered writes. Commercial systems sometimes use the ordered write model despite its
problems. Customers also sometimes use non-recoverable indices, preferring to rebuild the indices from
scratch when the indices are corrupted to suffering the performance penalties of the ordered-write model.



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 109

in [63], solutions basedon control of write orderwill perform well and will be simpler than
the techniques described in this chapter.

This chapter presents two general techniques for maintaining index consistency with
out using write-ahead logging. In both techniques, the DBMS detects on first use any
inconsistencies in the index caused by interrupted updates. When an inconsistency in the
index is discovered, consistency is restored by reexecuting incomplete page split ormerge
operations. Although we have implemented them only for Blink-trees, the same techniques
can be used for R-trees [32], extensible hash indices [26], and other B-tree variants such as
B*-trees [19].

One of the two techniques uses a no-overwrite strategy which is similar to shadow
paging [51]. The before-image of a page to be split is left intact on stable storage until
the two half-pages resulting from the split have been written out. Although recovery
mechanisms based onshadow paging have been abandoned incommercial systems because
of theperformance problems experienced by System R [30], theyare apractical mechanism
for managing indices. Shadow paging makes sequentially-ordered pages in the file non
sequential on the disk. While non-sequential ordering ruins the performance of clustered
relation scans, it isnot an issue for index files. The shadowing technique, however, requires
theindex to store pointers to the locations of before-images of its pages. These additional
pointers cause the shadow page B-tree to use more disk space than aconventional B-tree.

The second technique, pagereorganization, eliminates that space overhead, but performs
poorly when the same index page splits many times during the same transaction. The page
reorganization scheme ensures that keys moved from one page to another in a split are
always available on either the source or destination page. A hybrid between the two
algorithms could preserve the best features ofeach at acost of greater software complexity.
Thehybrid wouldusedifferent algorithms for splitting pages near therootand near theleaf
of the B-tree. Using the shadowing technique at the leaf nodes where page splits are most
common would maintain high performance during page splits. Using page reorganization
nearthe root would reduce space overhead.

The index management techniques used in POSTGRES can even improve the perfor
mance and reliability of aconventional write-ahead log storage system. In these systems,
B-tree index implementations record structural changes to the index in the log. The keys
involved inpage splits and merges must bephysically copied into the log inorder toguaran
teethe structural integrity of the index. Using POSTGRES indices would allow the system
to log the keys inserted and deleted from the index, but not the keys involved in struc
tural changes. Combining POSTGRES index management with conventional write-ahead
logging would have both performance and software fault tolerance benefits.

This remainder of this chapter is divided into five parts. The first one lists some
assumptions used throughout the chapter. The second section describes the new index



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 110

management techniques. A third section discusses the implications of the techniques for
a conventional storage system basedon write-ahead logging. The fourth sectionevaluates
the performance impactof these techniques and the fifth section givesconclusions.

5.2 Assumptions

An index allows the DBMS to improve access to tuples in a base relation. Entries in
the index are <V, TID> pairs where V is a key value and the ITD (tuple identifier) is a
pointer(page number,offset) to atuple in the baserelation. The index implementationmust
support an insert operation that adds entries to the index, a delete operation that removes
entries, and a lookup operation that returns the TID associated with a given key. B-trees
often allow a GetNext and GetPrevoperation which returns the <V, TID> pair following
or preceding the last key looked up. In POSTGRES, these operations are implemented as
options to the normal lookup operation.

The algorithms described in this chapterrequireeach key managed by the index to be
unique. Since indices are sometimes built using attributes that can have duplicate values,
the DBMS must convert each user-visible key value V into a pair <V, 01D> before it is
entered into the index. The OID is the unique object identifier associated with the object
referred to by the index entry. Because the OIDs are unique, the keys inserted into the
index are unique. This conversion adds four bytes to the size of every key. Note that the
Lehman-Yao concurrency control algorithms used in most B-tree implementations make
the same assumption. Therefore, these four bytes of overhead are not an overhead we
associate with the shadow or page reorganization B-trees in the analysis of this chapter.

In POSTGRES, all pages that are modified by a transaction must be written to stable
storage before the transaction commits. For the purposes of this paper, when the DBMS
syncs its pages, all modified pages are written to disk. They are written to disk in an
order chosen by the operating system, not the DBMS. When a crash occurs during a sync
operation, any subset of the synced pages may have been written to disk. We assume that
single-page disk writes are atomic. The sync system call is assumed either to block the
DBMS or to notify the DBMS when all the pagewrites have been completed. The sync
operation corresponds to the limited control over page write order that the UNIX operating
system gives its users. UNIX allows groupsof pages to be written to disk together, but does
not allow the application to control the write orderof the pageswithin a group. Also, it is
possibleforone transaction to be updatingdata in apageatthe time thatanother transaction
is syncing the page.

To make the index recoverable without log processing, the DBMS must ensure that
currently valid keys are visible and invalid keys are invisible to index lookup operations.



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 111

The POSTGRES storage system can detect and ignore records pointed to by invalid keys,
so recovery only needs to ensure that valid keys are not lost.

In POSTGRES indices, there are two possible sources of inconsistencies: inter-page
and intra-page inconsistencies. Inter-page inconsistencies occur when a pointer to page
B is stored in page A. A failure could occur after A has been written to stable storage
but before B has been. An intra-page inconsistency happens if a page is written to stable
storage while theDBMS is adding a keyto thepage or deleting a keyfrom it. Concurrency
control prevents two processes from modifying a page at the same time. However, for
performance reasons, POSTGRES does not reacquire a lock on the page when it forces
the page to stable storage. If one process is modifying the page while another commits,
the page will be inconsistent on stable storage. After a crash, the DBMS must detect the
inconsistencyand repair it.

5.3 Support for POSTGRES Indices

This section describes two algorithms for implementing indices in the POSTGRES
storage system. We will describe both in terms of B^-trees, but R-trees [32] can be
managed using the same algorithms. Techniques analogous to those discussed for B1"*-
trees can be used with extensible hashing [26]. The application ofour techniques tohashing
is discussed briefly in [72].

This section describes the basic B-tree data structure, then the modifications to that
data structure required for the POSTGRES shadow and page reorganization algorithms.
Separate sections highlight the parts ofthe algorithms required tosupport Blink-trees, delete
operations, and short term locking.

5.3.1 Traditional B-TVee Data Structure

In a traditional B-tree [10], each page ofthe tree contains an array of<keyydata> pairs
and a header that describes space allocation on the page (see Figure 5.1). The order of the
keys on the page is recorded bya linetable. Each entry of the line table contains anoffset
to the beginning ofa <key4ata> pair inthe page. Ifa new key isadded toapage, the line
table entries are reordered, not the <key,data> elements stored onthe page. Onan internal
page, the data element associated with a key is a pointer to a child page. Ona leafpage,
the data element associated with akey isa tuple identifier (TID) —apointer to adata page
and a line table entry on that page.

Comer [19] describes B-tree data structures in some detail, but several details of the
insert and delete operations areimportant enough forouralgorithms to summarize here. In
the simplest B-tree, a split occurs when the amount of free space in a page goes below a



CHAPTER 5. SUPPORTING INDICES INTHE POSTGRES STORAGE SYSTEM 112

Key

ChildPtr

Key

ChildPtr

Key

ChildPtr

Key

ChildPtr

Key

ChildPtr

Figure5.1: Conventional B-Tree Page.

threshold. To split a page, one new page is allocated. Half of the <key,data> pairs from
the old page are inserted into the new one and deleted from the old. A <key,data> pair
representing thenew pageis added to thesplit page's parent. When thelastkeyis removed
from a page, the page is freed.

Some variations of the B-tree data structure use a merge operation to rebalance two
neighbor pages if inserts or deletes cause one page to have many more keys than its
neighbor. Merge moves keys from theheavy page tothelight oneandadjusts thekeyvalue
on theparent page to reflect the change. Simple variations on the basic POSTGRES page
split algorithmswill support page merges. These variations are described in Section 5.3.5
after the basic algorithms have beenpresented.

5.3.2 Sync Tokens and Synchronous Writes

The POSTGRES index management algorithms need to be able to determine whether
two B-treepages linkedby pointers werewritten out during the samesyncoperation. To
record this information, POSTGRES maintains a global sync counter that counts sync
operations in whichthe B-treeunderwent structural changes. Afterevery syncoperation in
which anindexsplitoccurred, theDBMS increments theglobal synccounter. A maximum
sync counter guaranteed to be larger than the global sync counter is maintained on stable
storage. If the currentglobalsynccounterapproaches themaximum, a newmaximum must
be chosen and written to stable storage. After a crash, the maximum sync counter is used
to reinitialize the global sync counter.

A sync token is the value of the global sync counter at onepoint in time. Synctokens
are saved on index pages to detect inter-page inconsistencies. The value of the maximum



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 113

Current

Key

Figure 5.2: Shadowing Page Strategy. Keys on internal pages of the tree
contain a prevPtr and a childPtr. The childPtr points to the most up-to-date
version of the page (current). Because current might be on volatile storage,
prevPtr points to the most recent version of the page that has definitely been
written to stable storage.

sync counter at the time of the most recent systemcrash is called the last crash sync token.
If the DBMS shuts down cleanly, the global sync counter and last crash sync token are
written to stable storage.

5.3.3 Technique One: Shadow Page Indices

In POSTGRES shadow B-trees, every key on an internal page contains a pointer to
the current and previous version of the child page associated with the key. Instead
of an array of <key,childPtr> pairs on the page, the shadow B-tree page is an array of
<key,childPtr\prevPtr> triples (see Figure5.2). The previous page associated with a key is
a page containing the key value which is guaranteed to be on stable storage. The current
page pointed to by childPtr is the most up-to-dateversionof the page, which may be stored
in volatile memory. If the system crashes and the current page is lost in the crash, the
previous page will be used to construct a new current page in a manner described below.

Page Split Algorithm for Shadow B-trees

When splitting a page P in the shadow B-tree, two new pages are allocated—call them
Pa and P&. Half of the keys from P are copied to Pa and half to jP&. During the split, the
keys on P are neither modified nor overwritten. When Pa and P& are initialized, the value



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 114

of theglobal sync counter is recorded in a syncToken field in each page's header.
After the split, P's parent page, A,must beupdated. Page A initially contains a key Kl

which points to P. Thetraditional B-tree split algorithm calls fora new key, K2, containing
a pointer to Pb, to be added to A. In the shadow paging algorithm, A is updated in the
following manner:

(1) The new key K2 is allocated on A. K2's childPtr field contains the page number of
page Pb.

(2a) If P's sync token is different from thecurrent global sync counter, P musthave been
writtento stablestoragealready. In thiscase, theprevPtrs for bothK2 and Kl are set
to point to P, and P is added to an in-memory to-be-freed list. After the next sync
operation, P will be added to the indexfreelist (seeFigure5.3).

(2b) If P's sync token is the same as thecurrent global sync counter, theprevPtr for Kl
mustbereusedsince P is not yeton stable storage. Kl's prevPtr is assigned to K2's,
andP is freedimmediately. This situation onlyoccurs if twosplits occurat the same
key between sync operations (see Figure5.4).

(3) K2 is inserted into page A's line table.

(4) Kl is modified so thatits childPtr field contains thepage number of Pa instead of P.

If adding K2 to thepage A causes A to split, the same algorithm is followed unless A
is the B-tree root page. If the root page splits, a new root page is created containing two
<key,data> pairs pointing to the two halves of the oldroot The first page of the index is a
meta-data page containing a pointer to the current rootof the tree. like internal page keys,
therootpointer must contain a previous andcurrent page pointer.

In order to prevent an intra-page inconsistency, we must becareful when adding K2to
the line table. The line table entries are intra-page pointers, offsets within the page, which
point tokey values. The linetable isordered, sothe line table entry following Kl's offset is
selected tohold K2's offset. The line table isextended byfirst copying the last entry in the
line table one element beyond the line table, then incrementing the nKeysfield of the page
header. Next, allofthe line table entries between Kl's and the last one are copied one entry
to theright of theircurrent position. Finally, K2'soffset is saved in theentry afterKl's.

Adding elements to theline table in this manner limits thekind of intra-page inconsis
tency that canoccur. Even if one transaction forces a B-tree page to stable storage while
another is adding a line table entry, we guarantee that the only possible intra-page incon
sistency is a duplicate entry in the line table. The subsections below explain how these are
detected and removed.



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 115

Keyl EGsylKey2

-> childPtr

-> prevPtr

V V -3

p ^ Pt,
Keyl
Key2 IES EM

Figure 53: Shadowing Page Split. Page P has split. After using the syncToken to
verify that P is on stable storage, the original prevPtr value for Keyl on page A is
discarded. P becomes the previous page for both Keyl and the new Key2.

A

-> cltildttr

\ \ 4r ' ^ prevPtr
\

\
%

\

\ f\ f\1'-W M N\

P Pa, '- n

Figure 5.4: Two Page Splits During the Same Transaction. First P splitthen Pa split
in the same transaction. Pai,Pa29 and Pb all share the same previous version since any
key onany oneof thesepages that existed before the failure isrecorded stablyon page
P.



CHAPTER 5. SUPPORTING INDICES IN THEPOSTGRES STORAGE SYSTEM 116

Detecting Inconsistencies in the Index

Section5.2 pointedout that, in POSTGRES B-trees, only two kindsof inconsistencies
couldpotentially ariseaftera failure: inter-page andintra-page inconsistencies. Intra-page
inconsistencies occurwhena duplicate lineremains in thepageasdescribed in the previous
subsection. A crash during a B-tree update can cause an inter-page inconsistency only if
the parent, A, is written to stable storage before the crash, but not the child. In that case, A
points to an uninitialized page or a page that has been reused. If A was not written, then
the new child page is inaccessible, but the parent-child link is consistent. Reclamation of
pages that become inaccessible in a crash is discussed in a subsection below.

The key whose insert originally caused an interrupted page splits may or may not have
been lost in the failure, but, because of the POSTGRES force-at-commit policy, that key
will not make the index inconsistent. If the key is present, it is certainly uncommitted.
The transaction that caused the interrupted page split must have been aborted by the crash.
POSTGRES transactions force all writes to disk at commit time, so the split could not have
been interrupted if the transaction had committed. If an uncommitted key is on a leaf page,
it points to an invalid heap record (or no heap record) and POSTGRES will ignore it as
explained in Chapter Four. The committed keys in the subtree rooted at any B-tree internal
page are the same whether the split occurs or not. Thus, the failure effectively causes one
or more spontaneous page splits, but does not affect the committed contents of the index.

POSTGRES detects both inter-page and intra-page inconsistencies in the index during
the course of normal index operations. When descending from A to P during a key lookup,
insert, or delete, the DBMS determines from A the minimum and maximum key values that
should be on P before stepping from A to P. At P, the minimum and maximum key values
actually present on the page are compared to the expected key range. If the key ranges are
the same, the parent-child link is consistent and the search can continue. If the key ranges
differ or if the page is zeroed, the DBMS has detected an inter-page inconsistency.

The DBMS detects an intra-page inconsistencies by checking whether or not adjacent
entries in the line table contain the same offset value. Intra-page inconsistencies only need
to be detected and repaired when a key is added to or deleted from a page. The duplicate
entry will not cause key lookups to fail, so it can be ignored during key lookups.

Repairing Inconsistencies in the Index

As soon as a broken inter-page pointer link is discovered, the DBMS completes the
work lost in the interrupted page split operation. The prevPtr shows the page that existed
before the split. To reinitialize the out-of-date child page, the DBMS uses the keys on the
parent page to determine the range of keys that were on the missing page. These keys are
copied direcdy to the child page from the page pointed to by prevPtr. The sync token on



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 117

the child page is initialized to the current global sync counter. After the child page has

been reinitialized, the B-tree search can continue using the new child page. Note that it is
possible that both halves of the page split were lost in the crash. If that is the case, the loss
of each is detected and repaired independendy.

If the root page is split and the new version of the root is lost, the prevChild page is
copied direcdy to the child page. If no root page existedbefore the failure (i.e. all keys
insertedinto the treewerelost), theroothasnoprevChildpageandis initializedto anempty
page.

The DBMS repairs an intra-page inconsistency by deleting the duplicate entry. The
DBMS copies line tableentriesleft untiltheduplicate is the lastentryin the line table, then,
decrements nKeys in the page header.

Free Space Management

During normal operation, a linked list of pointers to the pages freed from an index
is kept on an in-memory freelist associated with that index. Because the freelist is in
volatile storage, it does notsurvive system failures and must eventually beregenerated. As
discussed inChapter Four, POSTGRES heap relations require agarbage collector as part of
thestorage system's archiving feature [66]. Adding index freelist regeneration toitscurrent
archiving tasks does notmake garbage collection much more expensive. While the freelist
isbeing regenerated, new pages can always be allocated by extending the index file as long
as the file system does not run outof disk space. We assume that crashes are infrequent
enough and disk space is plentiful enough that the index file can be extended while the
freelist is being regenerated.

The volatile memory freelist is only lost if the system fails. When the DBMS is shut
down cleanly, the index freelist is written to disk. Index meta-data records the number of
entries in the freelist and a pointer to the list on disk. When the DBMS is restarted, the
freelist from disk is used to initialize a new in-memory freelist Before any of the pages
from the freelist areused in new page splits, the meta-data pointer to thefreelist ondisk is
invalidated. The listhas to be invalidated ondisk since allpages on the disk freelist will
become free again after a failure. If pages are taken from the in-memory freelist in the
mean timeand allocated to page splits, these pages could be reallocated when the DBMS
restarts.

The freelist in POSTGRES indices also must record information about the contents
of the free page in order to ensure that broken parent-child pointer links in the shadow
B-tree will be detected. To show what information is necessary, we first review how the
freelist is used in a shadow B-tree page split First, two new pages, Pa andPb, areallocated
from thefree list Next, half the keys from the original page P arecopied to each of the



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 118

newly-allocated pages. Then, areference to P is added to ato-be-freed temporary freelist,
whose contents are added to the true freelist only after the page splithas beencommitted.
Finally, P's parent A is updated so it contains pointers to Pa andP6. Rememberthatwhen
the DBMS later descends from A to Pa during the search for a B-tree key, the DBMS
compares the range of keys on Pa to the range of keys that A indicated would be on that
page. If the child page contains a different key range, aninter-page inconsistency hasbeen
detected; page A was been writtento stable storage beforea failure, but not Pa.

This technique fordetecting inter-page inconsistencies restricts the way the DBMS can
allocate pages from the freelist to hold the new child pages P0 and P&. At the time of the
page split, the page allocated to P0 from the freelist contains whatever keys were on that
page at the time it was deallocated. Inter-page inconsistencies will not be detected unless
the keys containedon the freelistpageallocated to P0 in the pagesplit arenot legalcontents
ofpagePa. If the freelist pageand Pa contain the samekey range, the DBMS will be unable
to determine if Pa was written out to stable storage before the system failed. In order for
the inter-page inconsistency to be detected, the freelist must record the key ranges of the
pages in the list. When a page P is deallocated during a page split, the first and last key
value on P must be recorded in the freelist along with the usual pointerto the deallocated
page. This allows the DBMS to check that the pageis not reallocatedto hold the same key
range.

5.3.4 Technique Two: Page Reorganization Indices

The B-tree modifications describedabove add fourbytes to eachkey on aninternalpage
(for a prevPtr). If keys are small, the extra fourbytes will reduce B-tree fanout andincrease
the height of the tree. Increasing the height of the tree increases the average cost of data
access.

The page reorganization algorithm reduces this loss of fanout by eliminating the prevPtr
from the <key4ata> pairs in a B-tree page. In this algorithm, however, splitting page P
does not reclaim space on the page immediately. During the split, the DBMS copies half
the keys on P to a new page andreorganizes P according to the algorithmdescribed below
(see Figure 5.5). After reorganization, P's original keys are intact on the page, so space
has been made available on the new peer but not the original page P. If the DBMS ever
fails after P is written to stable storagebut before P's new peer is, no keys are lost. The
reorganized page P can still be used for recovery. Once a sync operation successfully
writes both the reorganized P and its new peer to stable storage, the space on page P
containing the duplicated keys is reclaimed. If the DBMS must add keys to the original
page P before the next sync operation, it initiates an extra sync operation and blocks until
the sync completes. Once the sync operation is done, the space containing the duplicate



CHAP7ER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 119

Before

BHHninrin
W

K3 1

Kl ,,

K2 , ,

K4

After

Header [•
i

.. . _Y_

< >

K4

K3

K2 , ,

Kl

Header p

K4

K3

Figure 5.5: Page Split For Page Reorganization B-Trees. After the split, the
reorganized page Pa is mapped on top of the old page P on disk. Keys K3
and K4 are saved in the free space region of P0. If all of the split pages are
successfully written to stable storage, the area containing K3, K4 and the
corresponding line table entries becomes free space.

keys on P can bereclaimed and theDBMS canadda new keyto thepage.
Thepagereorganization algorithm adds thefields prevNKeysandnewPage to thepage

header. If theprevNKeys field on a page is non-zero, thepage stillcontains backup keys to
be usedin recovery. If prevNKeys is zero, thepageis safefor update. Below, we describe
a splitof pageP into Pa and Pb. Pa is thereorganized page. Pb is thepagethatwillcontain
thenew key thatcaused thesplit. Note thatPa may beeither theleftor therightchildafter
the split. ThenewPage pointer in thereorganized page (Pa) points to Pb; newPage in Pb is
null.

A split of page P proceeds as follows:

(1)Two new pages are allocated. P0 is allocated in memory only; it is not backed up on
the disk. Pb is allocated normally.

(2) Half of P's keys are copied to Pa and half to Pb, just as in a normal split. The
prevNKeys field on Pb is initialized to zero. On Pa, it is initialized with the number
of keys on the original page P.

(3) The keys from Pb are now copied to the free space area of Pa. These keys are not
allocated on the page, just copied into the page's free space region. A line table for



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 120

the keys is set up just beyondthe line tablefor P0. Pa is guaranteed to have space
enough for P&'s keys and line table because all of this information was stored on the
original page P.

(4) The sync tokensof Pa and Pb are initialized usingthe globalsync counter.

(5) Pa is remapped (in the in-memorybufferpool meta-data) to P's location on disk.

(6)The newkey whose insertion caused the splitis added to Pb. P's parentpage is now
updated to reflect the split.

Detecting and Repairing Inconsistencies

POSTGRES uses thesame technique fordetectinginter-page inconsistencies in thepage
reorganization B-trees as it did in the shadow pageB-trees. When the DBMS is searching
for a key, it steps from parentpage to childpage. At eachstep, the DBMS checks that the
keyrange on the childis consistent withthekeyrange indicated by theparent Intra-page
inconsistencies aredetected andrepaired in thesame way in both types of B-trees.

Repairing inter-page inconsistencies is slighdy more complex in thepagereorganization
B-tree, however. In the shadow B-trees, inter-page inconsistencies couldoccuronlyif the
parent page was written to stable storage before either of the new child pages created in
the page split. In the page reorganization B-trees, the children are not symmetric so five
different kinds of inconsistencies can occur:

(a) only P0 is written to disk (replacingP),

(b)only Pa and Pb are written (Pb is inaccessible from theparent),

(c) only the parent and PQ are written,

(d) only the parent and Pb are written,

(e) only the parent is written.

If onlyPb is written, the treeis notinconsistent (butpagePb is lost). Notethateachof these
inconsistencies willbedetected bythesame kindofrangecheckusedin the shadow B-tree.

Aswas thecase in shadow B-trees, theinconsistencies arerepaired as soon as they are
detected. In cases (a) and (b), the tree becomes consistent by regenerating P (assigning
prevNKeys to nKeys reallocates the duplicate keys). In case (c), Pb is regenerated by
copying theduplicate keys saved onPa. Incase (d), P0 isregenerated byremoving thekeys
thatarerepresented on Pb. In case (e), the splitis repeated to generate both Pa and Pb.



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 121

Every time a key is added to or deleted from a page, the DBMS must check whether
or not the free space on the page needs to be reclaimed. If the prevNKeys field is zero,
there are no extra keys stored in free space. Otherwise, the sync token on the page must be
checked. There are three cases:

(1) If the sync token is the same as the global sync counter, no sync operation has occurred
since the page was initialized, so the duplicate keys on the page are still required for
recovery. The DBMS must block for a sync operation before the key can be added to
the page.

(2) If the sync token is greater than or equal to the last crash sync token but different
from the global sync counter, the new key can be added normally. A sync operation
has definitelycommitted Pa and Pb, and the keys on P0 will no longer be needed for
recovery.

(3) If thepage sync token is less than the last crash sync token, we cannotimmediately
tell if the splitwas committed successfully. TheDBMS has crashed since this page
was written. If the page's siblingfrom the last split was lost in the crash, the backup
keys on this page are still needed for recovery.

In the last case, the newPage pointeris usedto findthe sibling. If the siblingexists and
has the same sync token as the current page (or a larger one), the sibling does not need
to be recovered; the parent and both halves of page P made it to stable storage after the
split If the siblingis zero or has an older sync token, the siblingis out of date and must be
recovered. After a new key is inserted, the prevNKeysfield should be zeroed so we do not
check for inconsistencies again until the next page split.

5.3.5 Delete, Merge, and Rebalance Operations

In a conventionalstorage system,deleting a record from the database forces the DBMS
to delete all index keys that refer to that record from the database as well. If the transaction
thatdeleted the recordaborts, the DBMS mustreinsert therecordandall of the indexkeys
that referred to it. As ChapterFour explained, POSTGRES is not a conventional system.
When a record is logically deleted, it remains physically in place but is marked invalid.
When the DBMS encounters an index key that points to a logically-deleted record, it is
ignored. Eventually, a vacuum cleanerprocess deletes therecordandits relatedindexkeys.

This strategy means that the index recovery algorithms used by POSTGRES do not
need to consider the problem of reinserting index keys after a failure. The vacuum cleaner
only physically deletes index keys when the transaction that logically deleted them has
definitely committed. If the DBMS halts without completing a given index key delete



CHAP7ER 5. SUPPORTING INDICES IN THEPOSTGRES STORAGE SYSTEM 122

KeylKey2Key5

vvt

Old

Heavy

Keyl
Key2

Old

Light

-*\

New

Heavy

-V> childPtr
»

-£> prevPtr

Figure 5.6: A Merge Operation on a Balanced Shadow B-ltee. Some keys,
including Key2, have been moved from the heavy page to the light page in
order to even the sizes of the two pages. On the ancestor page, A, a dummy
key hasbeenaddedto represent the keys moved from heavyto light.

operation, the vacuum cleaner will eventually encounter the key again after DBMS restart
and delete it. Therefore, theonly recovery-related problem that needs to beconsidered in
delete operationsis ensuringthat no structuralinconsistencies in the index occur as a result
of failed delete operations.

For the simplest kinds ofB-trees, deletes have less potential for causing inconsistencies
than inserts. Delete operations remove inter-page pointers from pages rather than store
them on pages. Thus, deletes never leave pointers to allocated but uninitialized pages as
occurred in pagesplits. In thesimplest B-trees, a page is ready to deallocate when thelast
key onthat page isdeleted. When apage P isempty, Ps key onthe parent page isdeleted.
As was the case with prevPages in the shadow algorithm, P cannot actually bedeallocated
until the parent has been written tostable storage inthe next sync operation. Delaying P's
deallocation ensures that it will notbereallocated while pointers to the page still exist in
valid parts of the index on stable storage. Intra-page (line table) inconsistencies resulting
from interrupted deletes look exacdy like interrupted inserts (duplicate entries remain in
thelinetable), andarehandled in thesame way.

Ingeneral, themerge operations required bybalanced B-trees (B*-trees) canbehandled
by the recovery algorithms in the same way aspage splits. Page reorganization can treat
merge operations exacdy like splits. When the merge operation moves keys from the heavy



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 123

page to the light page to balance the two, it leaves the two peers in exacdy the same state
as twopagereorganization peers: the heavy pageis treated as the originalpeer in the split,
andthe lightpageis treated as the "new"peercreated by the split. The "new" peer in this
case initially contains a few keys, but the recoverymechanismwill not need to be aware of
this.

For shadowing, merge operations must be done a littie more carefully since the new
light page effectively has two prevPages, the original light page and the original heavy
page. The merge proceeds as usual, keys are moved from the heavy page to the light page,
however, instead ofmodifying the key for the light page on the ancestor, we add anew key.
The new key represents those keys moved from the heavy to the light page during the merge
operation. Itschild page is the new version ofthe light page; itsprevPage is the oldversion
ofthe heavy page. After the new pages are written to stable storage, this dummy key and
the light key can be merged in order to reclaim space on the ancestor page. See Figure 5.6
for an example.

The first five subsections of section 5.3 described shadow and page reorganization
algorithms for managing basic B-tree operations without a write-ahead log. However,
POSTGRES and many commercial systems use a slightly more complex variation on the
basic B-tree called a B^-tree. These data structures have additional pointers between
pages to achieve better performance. Section 5.3.6 explains how these structures work
and shows the changes required to support them without a write-ahead log. Section 5.3.7
discusses conventional index concurrency control algorithms and the ways in which they
can be modified tosupport the POSTGRES index recovery techniques.

5.3.6 Secondary Paths to Leaf Pages: BUnk-tree

In Blink-tree indices, the performance ofindexed scans is improved with adoubly-linked
peer pointer chain between leaf pages with consecutive keys (see Figure 5.7). The peer
pointers allow scans tomove from leafpage to leafpage without reading additional internal
pages. Key inserts still traverse the path from root to leaf. When a page is split, the left
neighbor (or right and left, in the shadow page algorithm) of the page must be re-linked so
that the peer pointer path is consistent

B^-trees have more complicated failure modes than simple B-trees. There are two
paths toany given leafpage; akey on the leafpage may be reached by either the peerpointer
or the root-to-leafpath. Techniques like those described above could be used to correct
inter-page inconsistencies ineither path, but, in the worst-case failure mode, the two paths
could become inconsistent with one another. For example, in Figure 5.8, the root-to-leaf
path contains the post-split version ofagiven page (in bold), while the old peer pointerpath
contains the pre-split version of the page.



CHAPTER 5. SUPPORTING INDICES IN THEPOSTGRES STORAGE SYSTEM 124

/7^

Figure 5.7: Normal B^-Tree. Leaf nodes /, areconnected to one anotherby
peer pointers. The path from parent to child is referred to as the root-to-leaf-
path.

Figure 5.8: Worst-Case Inconsistent B^-Tree. Page P has split and A, P(
and Pb were written to stable storage before the system crashed. P's peers,
K and L, were not. Thus, the tree has a peer pointer path consistent with the
tree before the split and a root-to-leaf path consistent with the tree after the
split.

o>



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 125

Even this worst-case failure does not actually corrupt the index unless a key is added
to or deleted from one of the duplicate pages created by the failure. The transaction whose
incomplete split created the duplicate paths did not commit (otherwise both paths would
have been successfully written to disk). Until the first insert/delete after the failure, the
duplicatepages contain the same set of validkeys.

Detecting Inconsistencies in the Index

During a B^-tree scan, the peer pointer path ischecked for inter-page inconsistencies.
Unfortunately, thekey ranges used todetect inconsistencies in theroot-to-leafpathcannot
beused forthe peer pointer path. Onthe peer pointer path, a page does notknow itspeer's
key range and cannot record it accurately unless each page is updated when keys areadded
to its peer.

To detect inconsistent peerpointer paths, weuse two additional sync token fields which
must beincluded in thepage header—one associated with each peerpointer. IfPI and P2
arepeerpages, Pi's pointer to P2 and P2's pointer to PI must have the same sync token
associated with them. When the peer pointers are reconciled during the split, the sync
tokens for thepeer pointers on the neighbor pages mustbe reset also.

Comparing two peers' sync tokens during path traversal will detect any inconsistency in
the path. Ifalink isbroken byacrash during update, the sync tokens onadjacent pages will
notagree. Aninconsistent linkis repaired byfollowing theroot-to-leafpath to the correct
peer. If the root-to-leaf path is broken, it is repaired using one of the repair algorithms
described above.

Even sync tokens do notdetect the existence of two completely separate pointer paths
as occurs in Figure 5.8. In this case, thepeer pointer path is internally consistent (and the
sync tokens match), but the peer pointer path is not consistent with theroot-to-leaf path.
Whenever a key is inserted into a page P, we must ensure that P is linked into the most
recent peer pointer path.

When inserting akey into page P, the DBMS first checks that P's sync token isgreater
than the lastcrash sync token. If so, we know the page is partof a consistent peerpointer
path. The path only becomes inconsistent duringa system failure. Otherwise, the DBMS
must follow thepeerpointer pathin both directions from the leafpage targeted for insert.
The search stops when a page with adifferent sync token isdiscovered (page sync token not
peerpointer sync token). If thepeerpointer path is consistent until thispoint, theleafpage
inserted into is reachable alongthe peerpointerpath. Oncethis is done,we reinitialize the
sync token onthepage. This will prevent theDBMS forrechecking thepath on subsequent
insertions. Because we are inserting a key into thepage, the pagewill be written to stable
storage anyway. Thus, the reinitialized sync token will reach stable storage at the end of



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 126

transaction without causing any extra I/O.
In the worstcase, searching this path is the most expensive part of this algorithm. If

many page splits occur at the same time, the resulting pages have the same sync token.
An insert into one of these pages, will cause each of them to be read. Even in this case,
insert performance is affected onlyfor the first keyinserted into each page in the path after
a failure; key lookup is not affected at all, even after failures. Insert performance after a
crash couldbe improved in this worstcase with a small LRUcache of sync tokens. When
a sync token is verified (by searching the peer pointer path during aninsert and finding no
inconsistencies), the token should be added to the cache. On an insert, the cache is checked
before verifying the peer path. A cache of size one would handle the worst-case, which
occurs when a large index is created in a single transaction. In this case, each pagein the
index has the same sync token.

5.4 Concurrency Control

The POSTGRES Blbk-tree implementation uses aconcurrency control algorithm based
on the one designed by Lehman and Yao [47]. In Lehman-Yao, readers and writers must
descend the tree from root to leaf to find the page containing a givenkey. Writers ascend
again as splits or deletes propagate up from the leaf. When descending, locks are not
coupled; readers always release onelock before acquiring thenext When ascending, locks
are coupled; the lock on achildpageis released onlyafterthelock on thecorrect parent page
is acquired. As pointed out in [46], this algorithm is deadlock-free, since lock coupling is
only usedwhentraversing the treein onedirection. Lockcoupling in bothdirections allows
deadlock whenareader holding alock on ancestor, A, tries to acquire alock on childpage
P atthe same time a writer holding alock on P (during a page split) tries to lock A.

Complexity arises in Lehman-Yao from the fact thata reader descending from A to P
may find thatP has splitduring theperiodwhenthereader was notholding anylocks. When
descending, the reader saves a pointer to a childpage P, releases the lock on the parent,
andacquires the lock on P. It is possible for thereader to be descheduled by the operating
system right before it acquires the lock on P. Other processes could split P before the
reader is rescheduled. In the original Lehman-Yao scheme, the page splitoperation could
move the key soughtby the reader from P to a neighbor page. Pages are neverdeallocated
inLehman-Yao B-trees and apage split always moves thehigher-valuedkeys toanewpage,
leaving the lower-valued onesin place. Thus, if thereader finds thatthekey it is searching
for is no longer in P, the reader moves horizontally in the tree (again, without coupling)
untilit finds the key. In the unlikelyeventthatthere have beenmanypage splits during the
descent, the reader may traverse many pages.



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 127

POSTGRES B-trees, especially the shadow B-trees, mustaccountfor pagedeallocation.
Because POSTGRES pages can be deallocated after a split, the DBMS must ensure that,
when a page is deallocated, no descheduled reader will reawaken and try to examine the
deallocated page. Our algorithm calls on the reader to pin the buffercontaining the child
page in memory before releasing the parent lock. The allocator knows not to reallocate
pagesin buffers with a pin countgreaterthanone. Thereadermay unpin the bufferas soon
as the child's lock is released. This solutiondoes not add synchronization overhead since
the buffermust be pinned in memory beforeuse anyway. Lanin and Shasha [46] discuss
two more complex techniques for solving this problem in the case of pages recycled after
the last key is deleted.

Also unlike Lehman-Yao, the reader process in POSTGRES shadow B-trees must find
out which pages wereproduced in the split of the childpage P. Lehman-Yao guarantees
that P itself is one of the pages that results from the split. The readerprocess can start its
horizontal movement from the original page P andbe guaranteed to findanykey that was
on P at the time of the split For POSTGRES pagereorganization B-trees,this is still true.
For shadow B-trees, the page P was replaced with two newpages. To allowthe reader to
find these pages, we adda page replacement pointer to theB-tree page header. Thepage
replacement pointeron the originalpage is set to point to the new left page. Whenever a
process visits a page with a non-null page replacement pointer, it traverses the link to the
new left child. This is analogous to the horizontal movement described above, required
when thekey ofinterest was onthehigh halfofa split page. Note thatthepagereplacement
pointer is only of interestwhen the page is pinnedin memory by a current reader. It does
not ever need to be written to disk and does not need to survive failures.

The original Lehman-Yao locking algorithm also assumed that peer pointers were
unidirectional; each page only had a pointer to its right peer. This restriction means
that rightward scans are faster than leftward scans. In order to eliminate the restriction,
we introduce a new locking protocol to ensure that peer pointers are adjusted correcdy.
The POSTGRES protocol relies on a new type of lock called a split lock that allows us
to distinguish page splits from reads andwrites. Splitlocks conflict only withsplit locks.
Only theprocess holding a split lockcansplit apage oraddkeys toapage. Other processes,
however, may adjustpeer pointerson the page without holdingthe split lock.

The protocol will be described in detail below, but the description will be easier to
follow if it is clear how bidirectional peer pointers can give rise to deadlock. When a
DBMS process splits a page, it first acquires a lockon thepage to ensure that, during the
split, no otherprocesses add keys, delete keys, or concurrently attempt to split the page.
When the splitis complete, theprocess mustadjust thepeerpointers so that the newpages
resulting from the split are accessible from the original page's neighbors. To adjust the
neighbor page's peer pointers, each neighbor page must be locked. This situation is a case



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 128

of lockcoupling. The DBMSprocess is holding alockonthepage being splitand acquiring
a lock on its neighbor. If two adjacent pages are split concurrendy, a deadlock can occur
aseach process holds its own page and tries to acquire the neighbor. In the unidirectional
pointer case, processes never lock couplein opposite directions so deadlocknever occurs.
Deadlock is possible in the bidirectional case because two processes are lock coupling in
opposite directions.

POSTGRES uses normal (write) locks onpages incombination withthenewsplitlocks
in order to avoid deadlock when two processes lockcouple in opposite directions. When a
DBMS process inserts akey intoa page, it first acquires awrite lockon the page to prevent
other processes from inserting keys at the same time. If the process finds that a page must
be split, it releases thewrite lock,acquires asplit lock,and reacquires thewrite lock. Then,
if the split is still necessary (someone else could have gotten the write lock and split the
page after the process released thewritelock), theprocess splits the page. Finally, the write
lockon the original page is released and peer pointers on neighboring pages are updated.
Updating a neighboring peer pointers requires a write lock on the neighbor page, but not
a split lock on the neighbor page. The split lock on theoriginal page is released once the
neighbor's peerpointers havebeenupdated.

Deadlocks are impossible since processes acquire the split lock before the write lock,
and acquire only one such pair in the tree ata time. Because splitlocks and write locks do
notconflict, processes can holdasplit lockononepage and acquire a(write) lockonapeer
without causing deadlock.

Concurrent access can make inter-page links temporarily inconsistent, soouralgorithm
must distinguish between true inconsistencies and false inconsistencies that arise during
concurrent updates. When a link token inconsistency is discovered, the two inconsistent
tokens arecomparedto the lastcrash sync token. If one orbothof the inconsistenttokens is
morerecentthanthelastcrash sync token,thentheinconsistency was atransient onecaused
by concurrent access. If both are older than the last crash sync token, the inconsistency
couldnot have been causedby a concurrent update.

5.5 Using Shadow Indices in Logical Logging

Thus far, we have discussed our index management techniques in terms of the POST
GRES storage system, however, the same techniques can beusedto support logical logging
in a conventional WAL-based storage system. Conventional indexmanagement schemes,
suchasthe one usedby ARIES/IM [54], require allmodifications to the index to be written
into the log. If a tupleis updated, the DBMS logs allkeys inserted into indices as aresult
of the update. If an index insert results in a page split, all keys moved from one page to



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 129

another in the split must be logged as inserts into the destination page. Deletes from the
original pagein a splitare logged simply aschanges to the line table(i.e. anabbreviated log
record is constructed that tells which key range was moved from the pagein the split). As
statedin the introductionto this chapter, conventional systems use the logged information
to restore the index to consistency after a failure.

A logical logging scheme does not save index changes in the log. When a tuple is
updated,changes to the tuple are logged but not the keys inserted into or deleted from the
index. Instead, the logged tuple attributes serve as implicit log records for the indices on
thoseattributes. Duringrecovery, the index keys affectedby an updatecanbe derived from
the logged attribute values. If the logged changeis undoneor redone, the DBMS deletes or
inserts keys into the indices asnecessary. The DBMS must detectandignore reinsertion or
redeletionof the same <key,data> pair.

The difference between the logical log andthe conventional log is that the logical log
contains only the keys inserted into or deleted from the index. It does not log keys that
move around within the index due to page split and merge operations. While the logical
log allows the system to determine which keys have been inserted into or deleted from the
index, it does notmaintain the structural integrity of theindex. Someother technique, such
as the ones described in this chapter, must be used to maintain index consistency during
page splits. A conventional system using the POSTGRES index consistency techniques
wouldnotneedto synctheindexafterevery transaction. InthePOSTGRES storage system,
the DBMS hadto sync the index afterevery transaction in order to make the keys inserted
ordeleted by that transaction permanent. Syncingthe logical log makes inserts anddeletes
to the indexpermanent whenlogical logging is used. Log processing will restore anykeys
lost during the failure.

Logical logging has some performance and disk space advantages over conventional
index management The conventional logis longer than thelogical log, since conventional
logs store many<key4ata> pairs after a split oramerge. Because the conventional system
must log all keys moved from the original page to the new peer page, each page splitadds
at least half a page to the log (8 KBytes and4 KBytes are typical page sizes). The longer
logmeans moredata needs to be written to diskon commit, andmorelog pages needto be
read from the disk during recovery. The conventional log log takes up more space on disk
as well.

Moreimportandy,logicallogginghassome faulttolerance advantages overconventional
B-treemanagement. Little special case code is required for recovery. The same insert and
delete operations usedfor normal execution are also used for recovery. Specializedrecovery
code includes only the code to repeat the incomplete page split after an inconsistency
is detected. Also, because logical logging stores a high level representation of index
operations, systems using it are less likely to propagate damage causedby software errors



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 130

into the log. If, for example, an internal index page is corrupted by a software error,
conventional physicalloggingtechniques can copythe corrupted keys into the log. During
recovery, the corrupted keys will be restored to the index. Logical logging never copies
information from the index into the log. If software corrupts an index, the index can be
recoveredusing a backup version (or checkpoint) and the log.

When comparing System R to ARIES, Mohan and Levine [54] suggest four reasons
why the write-ahead logging techniques used by ARIES are superior to the shadow-based
logging approach used in System R[30]. These four objections do not apply to logical
logging using shadow B-trees:

(1) DeadlocksDuring Undo: The usual response to a deadlock is to abortone of the
deadlocked transactions. Sinceabortrequires an undo, the potential for deadlocks during
undomeans onlyoneaborting transaction canbeactive ata time. Thelockcoupling strategy
described in Section 5.4 prevents processes from deadlocking during index operations.
Therefore, concurrent aborts canexecute concurrent shadow B-tree operations.

(2) Concurrency OverheadDuringRecovery: If several processes areused forrecov
eryin System R, concurrency overhead is incurredduring logical undoandredooperations.
ARIES requires noconcurrency control fortheindex during recovery because recovery op
erations canbeapplied toeachpageindependendy. Parallel recovery of shadow B-trees will
haveto use concurrency controljust as System R did, butthe locksinvolved are short-term
locks, not two-phase locks. Recent simulation results indicate that when short term locks are
usedconcurrencycontrol overheadwillnotlimitrecovery performance. In [65], theconcur
rency control scheme from [47] wassimulated on a DBMS running al00% insertworkload
with enough main memorybuffering for 75% of the B-tree. The simulations showedthat
the workload was I/O-bound even at high degrees of multi-programming. If concurrency
overheadhad significandy affectedperformance, the simulation workload could not have
been I/O bound, especially withsuch a large amount of buffer space available.

(3) I/O Overhead During Recovery: System R and shadow B-trees require more I/O
operations duringrecovery thanARIES because logical undooperations must traverse the
path from the root to leaf for every operation undone or redone. ARIES' page-oriented
recovery can usually undo or redoan operation with a single readandwrite of a leafpage.
The additional I/O requiredby the shadowing scheme, however, is small. The root and the
upperpagesof the B-treeindexmust be loadedintomemory as the first fewoperations are
processed. Unless memory is scarce, these pageswill remain in memory during the rest
of log processing. Page-oriented recovery may not require these pages to be brought in
during recovery, but the pages will have to be brought in before any useful workis done
withtheindex afterrecovery. Also, operational logging willactually reduce thenumber of
diskreads required to process thelog since thelogitselfis much more compact.

(4) B-tree Consistency After Failures: DBMS failures can leave indices inconsistent



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 131

unless the file system uses shadow paging. Mohan and Levine's objections to maintaining
indexconsistency with shadow pages are based on the poorperformance of shadow paging
in System R.

Because System R used shadow paging in the file system, it had to use the technique
to supportrecovery on both indices and data files. For data files, shadow paging reduced
the performance of sequential scans dramatically. Shadow paging makes sequentially-
ordered pages in the file non-sequential on the disk. The techniques also force an extra
lookup(through the page map) fordirect access to file pages. The consistency maintenance
techniques described in this paper allow either no shadowing at all (page reorganization
algorithm), or shadowing limited to index files only. In indices, the sequential orderof
the pages on the disk is unimportant for performance. As shown in the next section, our
shadowing-based algorithm does haveanimpacton performance, but not as pronounced as
the impact of shadow paging on System R's data files.

In summary, even in a DBMS thatrelieson conventional write-ahead logging insteadof
the POSTGRES storage system, the index recovery techniques from Chapter Five can be
helpful. Using our index recovery techniques in conjunction with logical loggingreduces
the amount of information stored in the log, giving both performance and fault tolerance
advantages over more conventional index management While a similar logical logging
scheme caused performance problems in System R, the POSTGRES techniques havebeen
designed to avoid these problems.

5,6 Performance Measurements

The index management techniques described in thischapter increase the costof indexed
access to the data in the database in several ways. First, shadow B-trees have larger space
requirements than conventional B-trees. The prevPtrs stored in the shadow B-tree keys
make the keys bigger so fewer keys fit on a page. Thus, shadow B-trees will eventually
become higher than conventional B-trees with the same number of keys. Higher B-trees
mean more pageswill have to be accessed to get to the indexeddata. In order to illustrate this
cost,Section 5.6.1 presents acomparison of shadow andnormal B-treeheights. Second, the
DBMSmustcheck for inter-page inconsistencies as it descends from page to page in thetree
(the key-range checks are described in Subsection 5.3.3). To quantifythe cost of checking
for inter-page inconsistencies, we have implemented both techniques and measured the
implementations. Section 5.6.2 presents these measurements. Third, several special cases
cause POSTGRES B-trees todoanextra diskreadorwriteeitherduringrecovery orduring a
page split Section5.6.3enumerates thesecases andestimates theirimpacton performance.



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 132

5.6.1 Modelling The Effect of Increased TVee Heights

One performance concern regarding POSTGRES Blink-tree indices is thatthe additional
space overhead they incurwill increase the height of the tree, thusdriving up access costs.
In order to quantify thiscost, we calculated the index capacity at fixed heights for normal,
page reorganization, and shadow Blink-trees. As expected, normal trees add levels the most
slowly, and shadow trees add levels the mostquickly. Page reorganization trees grow at
nearly thesame rate asnormal trees, sowe have omitted them from theanalysis that follows
for the sake of brevity.

Figure 5.9 illustrates the differences in heightbetweennormal B-trees andPOSTGRES
shadow page B-trees for different tree sizes. The curves in Figure 5.9 labelled "Normal
4-Byte" and "Shadow 4-Byte" show the heights of normal and shadow BDnk-trees storing
four-byte keys. The curves labelled "Normal 20-Byte" and "Shadow 20-Byte" show the
storage capacity vs. height tradeoffs for trees with twenty-bytekeys. Note that the X axis
in Figure 5.9 is logarithmic. The shaded regions highlight the tree sizes at which shadow
trees have greater height than normal trees. For all regions of the X axis which do not
have values in the shaded areas, shadow and normal trees have the same height. The trees
modelled have 8-KByte pages. Normal Blink-trees have 6-byte internal page keys while
shadow Blink-trees have 10-byte internal page keys because ofthe 4-byte prevPtr. The page
header inanormal tree is 16 bytes while the shadow tree header is36bytes because of sync
tokens and the replacement pointer.

The growth rate usedin thecalculations is pessimistic for the shadowing strategy, since
tree height is calculated assuming that keys are inserted in worst case order (ascending
values). Ascending order leaves the maximum amount of unused free space in the index
and forces the tree to grow at the fastest rate. If the trees grew more slowly, the curves
wouldhave the same relationship to one another (the shaded regions wouldhave the same
area), butthe steps wouldoccur atlarger tree sizes. We used a page sizeof 8 KBytes in the
analysis, since this is the default in POSTGRES.

The figure shows that prevPtr overhead in shadow trees has lower impact as key size
increases. At height three, thedifference incapacity between thetrees storing twenty-byte
keys is much smaller than thedifference between those storing four-byte keys. The space
consumedby prevPtrs in internal pages causes areduction in fanout, whicheventually causes
greater treeheightat smaller capacities. The reduction in fanout caused by shadowing is a
function of theratio of overhead tokey size. Larger keyshave proportionally less overhead,
hence, show a proportionally smallerreductionin fanout.

In practice, the space overhead for shadow index prevPtrs will usually not affect tree
height, evenwhenkey sizeis small. Small trees have few levels of internal pages, soprevPtr
overhead is negligible. The heights of B^-trees with several levelswill coincide formost



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 133

Height
4.00 —

3.00

2.00

1.00 -

le+02 le+03 le+04 le+05 le-K)6 le+07

Normal 4-Byte
Shadow 4-Byte

Normal 20-Byte

Figure 5.9: Height of Tree for Different Size B-Trees.

Number

Of Keys



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 134

tree sizes, so the height impact of shadowing will still beminimal. If an intermediate-height
shadow tree becomes stable at one of the non-coincident values, running areorganization
utility will redistribute free space and reduce theheight of the index to the same level as a
normal tree. Significant height differences that could notbemasked through reorganization
wouldarise onlyif keys were small and if thetree had many levels. However, evenwiththe
worst-case insertion order, a B^-tree of either type storing four-byte keys would exceed
the 2 GByte maximum size of a Unix file before it reached five levels.

5.6.2 Measurements of the POSTGRES B^-TVee Implementation

To measure the performance of the shadow and page reorganization index implemen
tations, we ran two tests against each type of index. The first test built indices of three
different sizes using four-byte keys. As inthe calculations of the previous subsection, these
measurements give worstcase performance; keys were added in ascending order in order
to give thelargest number of page splits and greatest tree height The second testretrieved
8,000 random keys from each index created in the insertion test. Keys were uniformly
distributed throughout the range represented in the index. Measurements weremadeon a
DECstation 5000/200runningUltrix 4.0 andPOSTGRES.

The times shown inTable 5.1 are the mean elapsed times of ten repetitions of each test
The standard deviation of each set of measurements was less than 2.5% of the mean. Each

entry in the tableincludes, in parentheses, a normalized time for that test. The normalized
time is calculated by dividing the elapsed time for the test by the elapsed time of the
conventional B-tree. Forexample, a shadow B-tree with a normalizedread time of 1.02
is two percent slower than aconventional B-tree on the same workload. Only time spent
in the B^-tree access method, and in the routines that it calls, is reported in the table.
This includes the cost ofreading and writing index pages from and tothe operating system
cache, but does not include the cost of committing transactions. Commit cost will depend
on the logging scheme chosen.

The results show that the shadow algorithm iswithin three percentof the cost ofordinary
Blink-trees for insertions. The highercost is due to the addedexpense ofverifying inter-page
links in traversing the tree. For reads, the shadow tree percentages are about three and a
half percent worse than ordinary Blink-trees. These measurements only show the CPU costs
of the algorithm; they do not account for extra I/O that would be necessary if the shadow
tree is higher than the normal B-tree. In each of the cases shown here, the heights of the
shadow B-tree and normalized B-tree are the same. For the ranges at which the shadow
tree is higher than the normal tree, each shadow lookup would pay an additional I/O.

Costsforthepagereorganization algorithm are similar. Reads arebetweenthreeandfour
percent more expensive than for the normal tree. Page reorganization insertions, however,



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 135

Operation
B-tree Type

Size of Index in Keys
10,000 20,000 40,000

Inserts

Normal

Page Reorg

Shadow

12.065 s

(1.000)
24.269 s

(1.000)
51.307 s

(1.000)
12.584 s

(1.043)
25.191 s

(1.038)
53.718 s

(1.047)
12.318 s

(1.021)
24.924 s

(1.027)
52.282 s

(1.019)
8,000 Lookups

Normal

Page Reorg

Shadow

9.122 s

(1.000)
12.492 s

(1.000)
19.536 s

(1.000)
9.441s

(1.035)
12.879 s

(1.031)
20.259 s

(1.037)
9.368 s

(1.027)
12.892 s

(1.032)
20.200 s

(1.034)

Table 5.1: Insert/Lookup Performance Comparison.



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 136

aremore expensive, between three and five percenthigher than the cost for insertions into
an ordinary B^-tree. Extra work must bedone toorder data onold pages during splits in
pagereorganization. As noted elsewhere in this chapter, pagereorganization is best suited
to environments with low insertion rates.

The overall costofusingeitherindex management strategy is likely to be very small for
many workloads, since the DBMS spends litde of its time in the index access methods. For
example,in theWisconsinbenchmark [13], POSTGRES spends only 3.6percent of its time
in the indexedaccess methods. The debit/credit benchmark usedint Chapter Three spends
only 16 percent of its time in the index access methods. Even4.7 percent of this, ourworst
performance degradation, is smaller than the measurement errorin the benchmark.

5.6.3 Estimating Additional I/O Costs During Recovery

The POSTGRES index management techniques have several workload-dependent I/O
costs that were not measured in the dissertation. In the normal case, a POSTGRES B-tree

page splitandaconventional B-treepagespliteach require three pages to be writtento disk:
the parent andeachchild. A pagereorganization B-tree, however, will force a synchronous
pagewrite if the sameindex pagesplitstwice during the sametransaction. If keys are four
bytes long and pages are 8 KBytes, inserting 292 keys in the worst-case order during a
single transaction could cause this additional synchronous write.

The other workload-related I/O cost occurs the first time keys are insertedinto some
page reorganization B-tree or Blink-tree pages after a failure. In both trees, inserting a
key into a page P sometimes requires the DBMS to read additional pages to determine
whether the page split that created P was committed. For example, when a page split
occurs in a pagereorganization B-tree, the duplicate keys on the reorganized pagecannot
be overwritten unless the peer pagehas definitely been writtento stable storage. The first
time a key is inserted into the page afterthe splithas beencommitted, the page is marked
(prevNKeys is cleared) so later key insertions do nothaveto consider the state of the peer.
When no failure has occurred sincethe split, comparing the sync token on the page to the
global sync counter provides this information without examining the peer. If the first key
insertion to a reorganized page occurs aftera failure, however, the peermust be read and
examined to ensure that it has the same token as the reorganized page (or a larger token).
Whenthe first key insertion to aB^-tree page occurs after a failure, theDBMSmustcheck
thatthe page is linked into the peerpointer path asexplained in Section 5.3.6. Again,extra
work must be done if no key has been inserted into a page since the split that created the
page.

Without workload measurements, it is difficult to determine exacdy how often each
of these situations will occur in practice. If we assume that key values are drawn from a



CHAPTER 5. SUPPORTING INDICES IN THE POSTGRES STORAGE SYSTEM 137

uniform distribution, however, we can estimate the number of pages that are untouched at
the time of acrash. To estimate the numberof pages forwhich extra l/Os were required, we
simulated the construction of 8,000 B-trees each with a randomly-selected size averaging
40,000 ± 500 random-valued4-byte keys. These are two-level trees with about 128 pages.
On average 0.05 pages were untouched since their last page split. Hence, the additional
I/O was rarely required. Simulating 1,000 larger B-trees with 1,000,00 4-byte keys each,
we found an average of 17 untouched pages that would have to be examined on recovery.
However, one of these pages would only be encountered every 1,000 key insertions, so the
extra recovery work would still have a limited effect on performance.

5.7 Summary

The POSTGRES DBMS relieson ano-overwrite storage system to avoidlog processing
during recovery. By avoidinglog processing, POSTGRES recovers from failures quickly
and eliminates a great deal of the complex recovery code found in most data managers.
Unfortunately, concurrency requirements and inter-page pointers make the POSTGRES
storage system techniques difficult to apply to indexdata structures such as Blink-trees.

In this chapter, we have presented two techniques for managing indices without using
eitherwrite-ahead log processing or the usualno-overwrite techniquesof the POSTGRES
storage system. The first technique is based on shadow paging; the second on page
reorganization during splits. Both algorithms use redundant information in index pages to
detect inconsistencies caused by system failures as they areencountered. Inconsistencies
are removedby repeating the interruptedpagesplitormergeoperations. The two techniques
will alsobe useful in WAL-based data managers thatwantto avoidphysicalloggingduring
page splits.

Measurementsofa prototype implementation suggestthat the algorithms will have litde
overall effect on data manager performance. Performance measurements show that key
insertsandlookups will only be threeto five percentslowerwhen the tree is entirely in main
memory. Estimates of the effect of the algorithm on tree height show that key lookups in
shadow-page B1Wc-trees will read one more page from the disk than lookups inconventional
Blink-trees under some workloads.

The height estimates andperformancemeasurements alsoindicatethatahybrid between
the two algorithms could reduce costs while preservingthe best features of each algorithm.
Using shadow paging near the leaf pages would eliminate the cost of page reorganization
splits in the part of the tree in which splits aremost common. Using page reorganization
nearer the root would reduce space overhead caused by prevPtrs in internal pages and
significandy increase fanout.



Chapter 6

Conclusions

138

The days whenusers simplyaccepted that computer systems couldgodownforhours or
even minutes are rapidly drawing to aclose. In the future, fault tolerance willno longer be
aspecialty service required onlybymilitary systems, hospitals, banks and stock exchanges.
Trends inthe prices of non-volatile RAM(NVRAM) and hardwarereliability have reduced
the costs of the hardware components of fault tolerant systems. The advances in operator
interfaces and maintenanceof fault tolerant systems will probablyentermainstream systems
soon as well. This will lead to widely-available, reasonably-priced conventional systems
that mask most hardware errors and power outages. The tools used to administer these
systems will prevent many operator and maintenance errors.

However, in order for modern systems toremain reliable and available for long periods
of time, they mustrun reliable system software. More careful software engineering will
help some, but software will always be complex enough that software failures will occur.
In the face of these failures, the fault tolerant system must be able to halt rather than
produce incorrect results. Once halted, the system must recover quickly, hopefully without
interrupting the users. Regeneration of lost program state must be fast, both to mask
failures from users of the system and to eliminate the temptation for system designers to
buildcomplex, unreliable recovery systems.

This dissertation has examined the software fault tolerance problem from the standpoint
of database management systems. It has addressed three problems faced by the designers
of fault tolerant software. First, it presented and analyzed data from software errors
uncovered in commercial systems in order to help characterize software errors. Second,
it described and evaluated a technique for detecting addressing errors and controlling the
error propagation that theycause. Finally, it extended thePOSTGRES fast recovery feature
to improve every day performance in high-update-rate environments and to handle fast
recovery of communication state and index data structures.

Using data from commercial systems programs, Chapter Two assessed someof theroot



CHAPTER 6. CONCLUSIONS 139

causesof software outage. We proposed a model of errors based on different kinds of error
propagation: control, addressing, and data errors. Studies of the MVS operating system,
IMS database manager, and DB2 database manager showed that the distribution of these
three kinds of errors was similar over the three systems. Control errors were about half
of all errors, addressing errors 25-30%, data errors 10-15%, and the rest miscellaneous.
Chapter Two showed that programs lost their point of control largely due to forgotten error
conditions orunanticipated program events. Addressingerrors oftenhad todowithmemory
management, notnecessarily with badpointers. Addressing errors hadhigher than average
customer impact, probably because error propagation madethem difficult to diagnose and
correct. The data presented in Chapter Two showedthatmost addressing errors were small
and affected working data structures rather than data structures far away from the point
of control. Finally, repeatable errors were relatively common. This fact combined with
the difficulty of designing primary/backup communication protocols bodes ill for the most
common redundancy-based software fault tolerance techniques.

ChapterThree proposed and evaluated several models of page guarding, atechnique that
uses conventional virtual memory hardware to limit propagation of addressing errors. The
models differed in the manner in which the DBMS specified legitimate updates to the data,
offering different protection/cost tradeoffs. An implementation on the DECstation 3100
showed seven toeleven percent impact for protecting thebuffer pool in an update-intensive
main-memory database, butonly two to three percent impact for the same database when
disk VOs were considered. While Chapter Two indicated that the kinds of "wild pointer"
errors that would be most easily detected by guarding were uncommon, these errors are
among the hardest to find and fix using conventional debugging techniques. More important
than their error detection ability, the guarding techniques help eliminate the set of errors
that affect data cached in main memory differendy than data written todisk. Intheguarded
version of POSTGRES, the primary reliability difference between data on disk and data
cached in main memory is that the data structures used to manage the two resources are
different, hence, are subject to different softwareerrors.

Chapters Four and Five attacked the system availability problem by extending the
POSTGRES DBMS fast recovery features in several ways. In the original POSTGRES
storage system design, the DBMS was optimized for fast restart rather than fast commit
in order to improve system availability. Chapter Four described enhancements to the
POSTGRES storage system thatreduce its cost in a high-update-rate environment. These
enhancements include backwarddifferencing and anewstrategy for handling overflow pages
that together make access to the current database fast even when the database contains a

great dealofhistorical data. Performance analysis in Chapter Four suggeststhat with these
enhancements, POSTGRES does the same amount of I/O as a conventional DBMS if (1)
a sufficient amount of non-volatile RAM is available and(2) the log-structured file system



CHAPTERS. CONCLUSIONS 140

(LFS) is used, and (3) the POSTGRES historical data feature is disabled. If historical data

is enabled, the analysis shows that POSTGRES does about seventeen percent more I/O.
ChapterFouralso showed how changes to the use of the transaction status file can eliminate
all examination of this file during system restart. Because the databaseremains unavailable
until clients are actually connected to the DBMS, Chapter Four added to POSTGRES
techniques for quickly recovering communication between clients and the DBMS server.
Chapter Five extended the POSTGRES storage system to handle index data structures
without a write-aheadlog. It described two index management techniques, one based on
shadow pages and one based on page reorganization.

Overall, the POSTGRES fault tolerance strategy has been to anticipate technology
shifts — faster processors, non-volatile RAM — and assume that new hardware can be
used to mask the performance impact of simplerrecovery strategies and additional error
detection. Non-volatile RAM makes the POSTGRES storage system possible by softening
the performance impact of force-at-commit buffer management. Faster processors mean
that additional processing costs associated with guarding and POSTGRES on-demand
database recovery will be litde noticed by customers. Faster processors will alsomean that
using the same routines for recovery and for normal processing will have limited effects
on performance. This has important reliability implications in, for example, the index
managementcode, since the code used at recoverytime is continually tested during normal
processing instead of just at recovery time.

6.1 Future Work

6.1.1 Providing Availability for Long-Running Queries

The recovery model discussed in this dissertation considered the DBMS to be available
if new transactions could be initiated against the data. It did not consider the cost of
discarding workdoneby uncommittedtransactions. Inahigh-update-rate, short-transaction
environment, the current POSTGRES model works well. Forcing the clients to simply
resubmit failed transactions is a worthwhile complexity/availabilitytradeoff.

When the DBMS is used for long-running complex queries, however, restarting the
query after a failure may be unacceptable. Complex queriescan run for minutes or hours,
evenin ahighperformance system. If the DBMS fails frequendy relative to queryexecution
time, users may not be able to make any progress on their work even though the database
is "available"in that users can submit new queriesat a moment's notice.

To providehigh availabilityfor long-runningqueries,POSTGRES would haveto check
pointintermediate state suchas the current state of thequeryplan andtemporary relations.
Current commercial systems use savepoints to limit the rollback of long-running trans-



CHAPTERS CONCLUSIONS 141

actions, but savepoints only record updates made by the long running transaction. The
complex query checkpointmechanism wouldrecord intermediate state of read-only trans
actions and record some DBMS data structures in addition to database changes. Such a
mechanism wouldrequire a tunable parameter to setthe frequency with whichcheckpoints
are taken. An additional open question in the design of such a systemis determining how
to restorethe two-phase locks associated with the query.

6.1.2 Fast Recovery in a Main Memory Database Manager

An important disadvantage of the POSTGRES Storage System is its reliance on a
force-at-commit strategy for managing buffers. RAID, LFS, and NVRAM minimize this
disadvantage, but still the cost of using magnetic disk as stable storage is a significant
cost in today's systems. Obviously, database management systems designed to reside in
mainmemory, rather than disk, would eliminate concerns related to force-at-commit [21].
POSTGRES can use NVRAM to lessen its commitcosts, but it is still designed for a disk
database. For example, care is taken that previous and current tuple versions reside on
the same disk page to reduce the I/Os required during recovery and on index scans. As
NVRAM prices approach those of conventional main memory, the idea of maintaining
a main memory large enough to safely store an entire database becomes more and more
practical.

Such a system could maintain highreliability and availability using variations on the
page guarding and POSTGRES fast recovery techniques. The database itself would be
organized probably as a single append-only logto facilitate page guarding; only the tail of
the log would ever be unguarded. Indexing strategies might be changed since structures
such as B-Trees were designed for speedy access to data on disk. The garbage collection
strategies wouldbecloser to those ofthelog-structured file system than totheonesdescribed
in this dissertation. The storage system would be unlike a conventional write-ahead log
in that the logcontains actual data values, notjust undo/redo information for recovery. A
fast main memory database management system wouldrequire some kindof checkpointing
mechanismin orderto providemedia recovery.

6.1.3 Automatic Code and Error Check Generation

Much ofthecontrol error problem in IMSandDB2hadtodowithprogrammers"missing
acase"—not considering anerror condition ortimingcondition thatmight arise. Software
engineering tools that track where error conditions are handled would be helpful. This is
especially trueduring program maintenance. The change teamthatrepairs a softwareerror
discovered in the field may not always understand how the change affects the rest of the



CHAPTER 6. CONCLUSIONS 142

program control flow. Regression testing alone does not seem to show whether all error
conditions that were handled previously are still handled after abug fix. Inolder programs
such as IMS, a significant fraction of software errors come from program maintenance.
Software engineering tools that helped show how small modifications to the code affect
programcontrol flow would be helpful.

DB2 had a small number of false error detections that occurred when the program
changed, but the assert statements designed to detect badinternal state did not. Software
engineers wouldhelpalleviate this problem by designing tools to (a) generate assert state
ments, or (b) flag assert statements that are affected when code is changed. Solution (a)
requires less work for programmers, but, on the surface, seems more error prone. Pro
grammers are supposed to think about assert statements. If assert statements are generated
automatically, incorrect data structures can generate incorrect assert statements.

6.1.4 High Level Languages

Throughout thisdissertation, we have assumed that the current generation of low-level
systems languages will remain popular among system designers. While these languages
will probably never go away, it is conceivable that fault tolerant system designers will
switch over to languages with more debugging and anti-bugging features than the ones
used to construct POSTGRES and the systems studied in Chapter Two. One important
area of future work is to examine the error characteristics of languages such as C++ [23],
Hermes [68], and Modula-3 [34] withhigher degrees of typesafety than current languages.
Many of theaddressing-related errors catalogued inChapterTwoinvolvederrors inmemory
management, unsafepointeroperations, anderrors in type coercion (uniontype problems)
that these languages are designed to prevent To ourknowledge, no detailed error studies
of systems programs written in these languages exist It would be interesting to find
out whether such languages have additional classes of errors not found in conventional
programming languages.

The programming language Ada[37] has abuilt-inexception handling facility. Wehave
seen that many errors in systems programs result from mishandlederrorconditions. Since
many large Adaprograms existnow, astudy of errorreports in this language - especially in
users' exception handling code - wouldbeinteresting. Such astudy wouldalso beusefulto
designers of software engineering toolsthat help programmers writecodeto handle errors.



143

Bibliography

[1] Anon, et al. A Measure of Transaction Processing Power. Technical Report 85.1,
Tandem Corporation, January 1985.

[2] A. Appeland K. Li. Virtual Memory Primitives for User Programs. Proceedings ofthe
4th International Conference on Architectural Support for Programming Languages
and OperatingSystems, April 1991.

[3] M. Auslander, D.Larkin, and A. Scherr. Evolution of MVS. IBM Journal ofResearch
and Development, 25(5), September 1981.

[4] A. Avizienis. The N-Version Approach to Fault Tolerant Software. IEEE Transactions
on SoftwareEngineering, SE-11(12), December 1985.

[5] M. Baker, S. Asami, E. Deprit, J. Ousterhout, and M. Seltzer. Non-Volatile Memory
for Fast, Reliable File Systems. Proceedings of the 5thInternational Conference on
Architectural Support for Programming Languages andOperating Systems, October
1992.

[6] M. Baker and M. Sullivan. The Recovery Box: Using Fast Recovery to Provide
High Availability in the UNIX Environment. Proceedings of the Summer USENIX
Conference, June 1992.

[7] J. Bannerjee, W.Kim,H. Kim,andH. Korth. Semantics and Implementation of Scheme
Evolution in Object-Oriented Databases. Proceedings of the SIGMOD Conference,
pages 311-322, December 1987.

[8] J. Bartiett A NonStop Kernel. Proceedings of the 8th Symposium on Operating
System Principles, 1981.

[9] V. Basili and B. Perricone. Software Errors and Complexity: An Empirical Investiga
tion. Communications oftheACM, 27(1),January 1984.



BIBLIOGRAPHY 144

10] R. BayerandC. McCreight. Organization and Maintenance ofLarge Ordered Indexes.
Actalnformatica, 1(3):173-189,1972.

11] B. Bershad, T. Anderson,L. Lazowska, andH. Levy. LightweightRemote Procedure
Call. Proceedings of the 12th Symposium on Operating System Principles, pages
102-122, December 1987.

12] A. Bhide, E. Elnozahy, andS. Morgan. Implicit Replication in a NetworkFile Server.
IEEE Workshop on Management ofReplicatedData, November 1990.

13] D.Bitton, D.DeWitt, and C.TYirbyfill. Benchmarking Database Systems, aSystematic
Approach. Proceedings oftheVery Large DataBasesConference, November 1983.

14] A. Borg, W. Blau, W. Graetsch, F. Herrman, and W. Oberle. Fault Tolerance Under
UNIX. ACM Transactions onComputer Systems, 7(1),February 1989.

15] M. Carey, D. DeWitt, D. Frank, G. Graefe, M. Muralikrishna, and E. Shekita. The
Architecture of the ExodusExtensible DBMS. Proceedings oftheIEEE International
Workhop on Object-Oriented Systems, September 1986.

16] X. Castillo and D. P. Siewiorek. Workload, Performance and Reliability of Digital
Computing Systems. Digest 11thInternational Symposium on Fault-Tolerant Com
puting, 1981.

17] A. Chang and M. Mergen. 801 Storage: Architecture and Programming. ACM
Transactions on Computer Systems, 6(l):28-50, February 1988.

18] R. Cheng. Virtual Address Cache in UNIX. Proceedings of the Summer USENIX
Conference, 1987.

19] D. Comer. The Ubiquitous B-Tree. ACM Computing Surveys, 11(4), 1979.

20] D. Comer. Internetworking with TCP/IP. Prentice Hall, Englewood Cliffs, New
Jersey, 1988.

21] D. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker, and D.Wood. Implemen
tation Techniques for MainMemory Database Systems. Proceedings oftheSIGMOD
Conference, June 1984.

22] B. Efron and R. Tlbshirani. Bootstrap Methods for Standard Errors, Confidence
Intervals, andotherMeasures of Statistical Accuracy. Statistical Science, l(l):54-77,
1986.



BIBLIOGRAPHY 145

[23] M. Ellis and B.Barnestroup. The AnnotatedC++Reference Manual. Addison-Wesley,
1990.

[24] A. Endres. An Analysis of Errors and Their Causes in System Programs. IEEE
Transactions on Software Engineering, SE-1(2), 1975.

[25] K.P. Eswaran, J.N. Gray, R.A. Lorie, and I.L. Traiger. The Notions of Consistency and
Predicate Locks in a Database System. Communications oftheACM, 19(11):624-633,
November 1976.

[26] R. Fagin, J. Nieverrgelt, N. Pippenger, and H. Strong. Extensible Hashing — A
Fast Access Method forDynamic Hashing. ACM Transactions onDatabase Systems,
4(3):315-334, September 1979.

[27] R. Glass. Persistent Software Errors. IEEE Transactions on Software Engineering,
SE-7(3), March 1981.

[28] J. Gray. Why do computers fail and what can be done about it? Proceedings of the
5thSymposium onReliability inDistributed Software andDatabase Systems, 1986.

[29] J. Gray. A Census of Tandem System Availability Between 1985 and 1990. IEEE
Transactions on Reliability, 39(4), October 1990.

[30] J. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price, F. Putzolu, and
I. Traiger. The Recovery Manager of the System R Database Manager. ACM Com
puting Surveys, 13(2), June 1981.

[31] R. Gupta. A Fresh LookatOptimizing Array Bounds Checking. Proceedings ofACM
SIGPLAN Notices Conference onProgramming Language Design andImplementa
tion, pages 272-282, June 1990.

[32] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. Proceedings
ofthe SIGMOD Conference, pages 47-57,1984.

[33] T. Haerder and A. Reuter. Principles of Transaction-Oriented Recovery. ACM Com
puting Surveys, 15(4), 1983.

[34] S. Harbison. Modula-3. Prentice Hall, Englewood Cliffs, New Jersey, 1992.

[35] IBM. MVS/Extended Architecture Overview, publication number gc28-1348.

[36] IBM Corporation. MS/VS Extended Recovery Facility (XRF): Technical Reference,
1987.



BIBLIOGRAPHY 146

[37] J. Ichbiah, J. Heliard, O. Roubine, J. Barnes, B. Krieg-Bruckner, and B. Wichmann.
Preliminary Ada Reference Manual. SIGPLAN Notices, 14(6), June 1979.

[38] R. Iyer and D. Rossetti. Effectof System Workload onOperating SystemReliability:
A Study on IBM 3081. IEEE Transactions on Software Engineering, SE-11(12),
December 1985.

[39] D. Jewett. Integrity-S2 - A Fault-tolerant UNIX Platform. Digest21st International
Symposium on Fault-Tolerant Computing, June 1991.

[40] Gerry Kane. R2000 RISC Architecture. Prentice Hall, Englewood Cliffs,New Jersey,
1987.

[41] W. Kim. Highly Available Systems for Database Applications. ACM Computing
Surveys, 16(1), March 1984.

[42] J. Knight, N. Levenson, and L. StJean. A Large Scale Experiment in N-Version
Programming. Digest 15thInternational Symposium on Fault-Tolerant Computing,
1985.

[43] D. Knuth. The Errors ofTeX. Software: Practice &Experience, 19(7), July 1989.

[44] C. Kolovson. Indexing TechniquesforMulti-Dimensional SpatialDataandHistorical
Data inDatabase Management Systems. PhD thesis, University of California, Berke
ley, EECS Department, Computer Science Division, 1990. UCB/ERL TR M90/105.

[45] B. Lampson and D. Redell. Experiencs with Processes and Monitors in Mesa. Com
munications oftheACM, 23(2):105-117, February 1980.

[46] V. Lanin and D. Shasha. A Symmetric Concurrent B-tree Algorithm. Proceedings
FallJointComputer Conference, pages 380-389,1986.

[47] P. Lehman and S. Yao. Efficient Locking for Concurrent Operations on B-trees. ACM
Transactions on Database Systems, 6(4), December 1981.

[48] Y. Levendel. Defects and Reliability Analysis of Large Software Systems: Field
Experience. Digest 19thInternational Symposium onFault-Tolerant Computing, June
1989.

[49] H. Levy and P. Lipman. Virtual Memory Management in the VAX/VMS Operating
System. IEEE Computer, 15(3), March 1982.



BIBLIOGRAPHY 147

[50] B. liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira, and M. Williams. Repli
cation in the Harp File System. Proceedings of the 13th Symposium on Operating
System Principles, October 1991.

[51] R. Lorie. Physical Integrity in a Large Segmented Database. ACM Transactions on
Database Systems, 2(1):91-104, March 1977.

[52] D. Menasces and O. Landes. Dynamic Crash Recovery ofBalancedTrees. Proceedings
on Reliability in Distributed Software and Database Systems, pages 131-137, July
1981.

[53] C.Mohan, D.Haderle, B. Lindsay, H.Pirahesh, andP. Schwarz. ARIES: A Transaction
Recovery Method Supporting Fine-Granularity Locking and Partial Rollbacks Using
Write-Ahead Logging. ACM Transactions onDatabase Systems, 17(1), March 1992.

[54] C. Mohan and F. Levine. ARIES/IM: An Efficient and High Concurrency Index
Management Method Using Write Ahead Logging. Technical Report RJ6846, IBM,
1989.

[55] D. Morgan and D. Taylor. A Survey of Methods for Achieving Reliable Software.
IEEE Computer, 10(2), February 1977.

[56] S. Mourad and D. Andrews. On the Reliabilityofthe IBM MVS/XA Operating System.
IEEE Transactions onSoftware Engineering, SE-13(10):1135-1139, October 1987.

[57] M. Olson. Extending the POSTGRES Database System to Manage Tertiary Storage.
Master's thesis, University of California, Berkeley, EECS Department, Computer
Science Division, May 1992.

[58] J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson, and B. Welch. The Sprite
Network Operating System. IEEE Computer, 21(2):23-36, February 1988.

[59] D. Patterson, G. Gibson, and R. Katz. A Case for Redundant Arrays of Inexpensive
Disks (RAID). Proceedings ofthe SIGMOD Conference, June 1988.

[60] B. Randell. System Structure for Software FaultTolerance. IEEE Transactions on
Software Engineering, SE-1(2), June 1975.

[61] M. Rosenblum and J. Ousterhout. The Design and Implementation of aLog-Structured
File System. Proceedings of the 13th Symposium on Operating System Principles,
pages 1-15, October 1991.



BIBLIOGRAPHY 148

[62] M. Schroeder and J. Saltzer. A Hardware Architecture for Implementing Protection
Rings. Communications ofthe ACM, 15(3):157-170, March 1972.

[63] M. Seltzer. File System Performance andTransaction Support. PhD thesis, University
of California, Berkeley, EECS Department, Computer Science Division, 1992.

[64] T. Shimeall and N. Leveson. An Empirical Comparison of Software Fault Toler
ance and FaultElimination. IEEE Transactions on Software Engineering, SE-17(2),
February 1991.

[65] V. Srinivasan and M. Carey. Performance of B-Tree Concurrency Control Algorithms.
Proceedings ofthe SIGMOD Conference, pages 416-425, June 1991.

[66] M. Stonebraker. The POSTGRES Storage System. Proceedings of the Very Large
Data Bases Conference, pages 289-300, September 1987.

[67] M. Stonebraker and L. Rowe. The Design of POSTGRES. Proceedings of the
SIGMOD Conference, June 1986.

[68] R. Strom, D. Bacon, A. Goldberg, A. Lowry, D. Yellin, and S. Yemini. Hermes: A
LanguageforDistributed Computing. Series in Innovative Technology. Prentice Hall,
Inc., 1991. ISBN 0-13-389537-8.

[69] M. Sullivan. Software Errors Reported in 4.1 and 4.2BSDUNIX. Unpublished notes
from a survey of the BSD error reportdatabase, 1990.

[70] M. Sullivan and R. Chillarege. Software Defects and Their Impact on System Avail
ability— A Study of Field Failures in Operating Systems. Digest21st International
Symposium onFault-Tolerant Computing, June 1991.

[71] M. Sullivan and R. Chillarege. A Comparison of Software Defects in Database
Management Systems andOperating Systems. Digest22ndInternational Symposium
on Fault-Tolerant Computing, July 1992.

[72] M. Sullivan and M. Olson. An Index Implementation Supporting Fast Recovery for
thePOSTGRES Storage System. Technical Report M91-98, University ofCalifornia,
Berkeley, 1991.

[73] D. Taylor, D. Morgan, and J. Black. Redundancy in Data Structures: Improving
Software Fault Tolerance. IEEE Transactions on Software Engineering, SE-6(5),
May 1980.



BIBLIOGRAPHY 149

[74] T. Thayer, M. Lipow, and E. Nelson. Software Reliability. TRW and North-Holland
Publishing Company, 1978.

[75] K.Tso and A. Avizienis. Community Error Recovery inN-Version Software: A Design
Study with Experimentation. Digest17thInternational Symposium onFault-Tolerant
Computing, 1987.

[76] P. Velardi and R. Iyer. A Study of Software Failures and Recovery in the MVS
Operating System. IEEE Transactions onComputers, C-33(6):564-568, June 1984.

[77] S. Webber and J. Beirne. The Stratus Architecture. Digest 21stInternational Sympo
sium on Fault-Tolerant Computing, June 1991.

[78] W Wulf. Reliable Hardware/Software Architecture. IEEE Transactions onSoftware
Engineering, SE-1(2), June 1975.

[79] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack.
HYDRA: The Kernel of a Multiprocessor Operating System. Communications ofthe
ACM, 17(6):337-345, June 1974.

[80] M. Young, A. Tevanian, R. Rashid, D. Golub, J. Eppinger, J. Chew, W. Bolosky,
D. Black, and R. Baron. The Duality of Memory and Communication in the Imple
mentation of aMultiprocessor Operating System. Proceedings ofthe 11th Symposium
on Operating System Principles, pages 63-76, December 1987.


	Copyright notice 1993
	ERL-93-5 (1 of 3)
	ERL-93-5 (2 of 3)
	ERL-93-5 (3 of 3)

