

Copyright © 1993, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

BED: The Implementation of a

Process Specification Editor

by

Stephan R. Smoot

Memorandum No. UCB/ERL M93-46

16 June 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California

94720

BED: The Implementation of a

Process Specification Editor

Stephen R. Smoot

Electrical Engineering and Computer Science
University of California at Berkeley

Berkeley, California 94720
smoot<^CS.Berkeley.ED U

May 21, 1993

Abstract

The Berkeley I'rocesa Flow Lan^uai^e (BPFL) is an application-driven proB;ramming
languat^e for modern semiconductor processing. This report describes the <iesiKn and
implementation of a graphical editor for BPFL. Semiconductor process specifications
are complex and require elaborate constructs to specify manufacturing operations, sim
ulation inputs, and dynamic scheduling. As a programming language, BPFL simplifies
the e.xpression of such tasks. However because programming languages are not good
interfaces for non-programmers, a powerful and usable editor for the language is impor
tant. .A. graphical editor for BPFL (BED) has been developed. BED uses a library of
processing abstractions to simplify specifications. BED has iconification and hyperlinks
to pack more information into a small screen area.

Table of Contents

List of Tables iv

1 Introduction 1

1.1 Outline of the Report 2

2 Background 3
2.1 Semiconductor Fabrication Environment 3

2.1.1 Design and Production of Semiconductors 3
2.1.2 Traditional Process Specification 4

2.2 Introduction to BPFL 6

2.3 Prior Work Using BPFL 6
2.4 Other Specification Editors 7
2.5 The Role of BED 9

3 System Capabilities 10

4 Extended Example 12
4.1 Starting up BED 12
4.2 The Edit Window 12

4.2.1 Parts of the Edit Window: The Menu bar 14

4.2.2 Parts of the Edit Window: The Status Area 14

4.2.3 Parts of the Edit Window: The Wafer-set Descriptors 17
4.2.4 Parts of the Edit Window: The Process-Flow Display 17
4.2.5 Parts of the Edit Window: The Editing Operations 20
4.2.6 Loading Another Routine to Edit 21

4.3 Adding a New Wafer-set 25
4.4 Adding a new procedure call 25
4.5 Selecting Libraries to Reference 26
4.6 Using the Help system 28
4.7 User Dialogs 28
4.8 Hypermedia in BED 28

4.8.1 Introduction 31
4.8.2 Using Hypermedia in BED 31

5 Implementation 3g
5.1 Motivations 4q
5.2 Problems 40

6 Conclusions 43

Bibliography 44

lU

List of Figures

2.1 A VED edit window 3

4.1 A BED edit window I3

14

18

18

4.2 The status area
4.3 The topmost section of a process specification
4.4 Dialog box for entering new argument values
4.5 The topmost section of a process specification after two iconifications and

change in wafer-sets from that in Figure 4.8
4.6 Nested steps with iconified procedure-calls
4.7 The Edit Buttons on the Edit Window
4.8 The creation operations in the edit window
4.9 Top portion of Process flow with measure-bulk-resistivity deleted. .
4.10 Information on the implant procedure
4.11 Initial Load Panel
4.12 The BED load-procedure panel, where the process-flow wet-oxidation has

been selected (shown highlighted in the lower right)
4.13 A second edit window, editing the wet-oxidation flow
4.14 Panel for the addition, removal, and creation of wafer-sets
4.15 Initial selection box for a procedure call
4.16 Adding a call to the wet-oxidation procedure
4.17 Dialog box to change libraries used by a process-flow
4.18 A sample help panel
4.19 The forms for editing user dialogs
4.20 A typical comment hyperlink
4.21 Selection of which previous run log to access

19

19

20

20

21

22

23

23

24

25

26

27

28

29

30

32

32
4.22 \ BPFL code e.xample with hyperlinks to previous performance nodes shown. 34
4.23 A log entry for the formation step of the CMOS-16 process 35
4.24 A log entry for the formation step of the CMOS-16 process (scrolled). ... 36
4.25 A graph of the S/D Tox data (the data from Figure 4.28) 37
4.26 These are the logdescriptions. Clicking on a line will summon that particular

log entry into another window 33

IV

List of Tables

4.1 The operations provided in the File pull-down menu 15
4.2 The additional operations in the third pull-down menu. Edit 16
4.3 The Options pull-down menu's choices 16
4.4 The CIM menu entries 16

Chapter 1

Introduction

Manufacturing a useful silicon wafer is a complicated process. It typically takes

several weeks during which the wafer is processed by many different people and machines.

Each production step involves precise specification of multiple parameters, some of which

depend on the results of previous steps. To manage the manufacturing process, Work-in-

Progress (WIP) systems have been developed to track the wafers. To be really effective,

however, these systems must understand the nature of the effects the wafer is to receive,

called a wafer specification. The creation of a proper specification for a wafer is challenging

and complicated; it is best accomplished via a specification editor. This report describes

the creation of such an editor and its use in the manufacturing process.

A process specification must meet many varied criteria. It must represent the

specification in a way that makes it simple to edit. It must have access to other specifications

and libraries of common processing steps. It must allow the specification of detailed events

in a reusable way. It must be readable by programs (e.g., process simulators) and by

people (e.g., operators, technicians, engineers, etc.) with different levels of experience. The

specification must be connected with the results from previous processing runs, called logs,

so that the specification may evolve intelligently. Such processing logs can encompass a

wide variety of data and data formats, adding additional difficulties.

This paper describes the design and implementation of the BPFL Editor (BED)

that was designed to solve these problems. It employs a graphical interface to facilitate

use by people with different levels of training. The user interface metaphor is based on an

outline processor, enabling its users to hide information with which they are not concerned.

The editor has a built-in interface to a library of procedures, leveraging off procedural

abstraction and reuse. BED also employs b3rperlinks to permit arbitrary connections from

specifications to data and other specifications.

1.1 Outline of the Report

The report begins with a description of its background, describing the semicon

ductor fabrication environment, the Berkeley Process Flow Language, and prior work in the

area. In the next chapter, the capabilities that BED provides are detailed. These capabili

ties are then demonstrated in an extended example in Chapter 4. Chapter 5 describes the

implementation, the concerns that motivated it, and the problems encountered. The final

chapter summarizes the conclusions drawn.

Chapter 2

Background

2.1 Semiconductor Fabrication Environment

This section describes the semiconductor manufacturing environment and tradi

tional approaches to process specification editors.

2.1.1 Design and Production of Semiconductors

A process engineer designs an integrated circuit (IC) manufacturing process. Pro

cess engineers determine the sequence of chemical and physical processes that act on the

silicon wafer to produce the desired product. The goal of IC manufacturing is to produce

defect-free silicon wafers as cheaply as possible.

The processing of wafers is carried out by agents [39, 9]. An agent can be either a

machine, a machine operator, or a combination. Some processing steps can be performed by

micro-controlledmachines that download equipment-specific programs (called recipes) and

execute them. Commands in a recipe control gas flows, temperatures in reactor chambers, or

the depositing of materials from a reservoir. Other actions must be carried out by operators

by hand, such as creating loads for larger batch processing (e.g. furnace runs) and moving

wafers between processing areas.

There are many different processing steps that can be carried out on the wafers in

the course of fabrication. These include the addition of thin isolating or conducting layers,

the removal of layers (selectively, as controlled by masks), the introduction of impurities,

and so forth. Wafers are also tested during processing to determine corrections to ensure

process quality. In addition, events are logged to document exactly what happened to the

wafers to assist in debugging the process and in scheduling machinemaintenance. Operation

sequences can becomecomplex, becauseof timing constraints betweensteps, the necessity of

keeping wafers cleanand possible interference between steps. Semiconductor manufacturing

is done in runs on batches of wafers, called wafer-sets, that t3rpically contain 25-50 wafers.

The requirements on a process specification vary with the kind of factory in which

it is run. In research and development factories (or laboratories), a processes specification

undergoes rapid change to determine the optimal settings for a particular process step on

a particular type (or piece) of equipment. Successive runs change the specification based

on information from previous runs. Specialty factories produce low volume application-

specific custom IC products (ASICs). These plants run many different process types, and

they must reconfigure for each run. The object is to reduce the cost of reconfiguration by

proper scheduling. In high volume commodity product factories, it is essential that a single

process has a high yield and that it is schedtded properly with the other processes being

manufactured to maximize the output of the factory. Process specifications must be fiexible

enough to work in all of these environments.

In addition to being used during fabrication, semiconductor processes are also

simulated. Many different simulators have been built to model the manufacturing envi

ronment [19, 15, 27, 41]. These simulators are used in several different ways. One can

use a simulator to assist in creating new process specifications. Simulation results aid in

translating process specifications to work effectively on new equipment. They can also as

sist in determining what parameters are necessary to achieve desired changes in a wafer.

It is important to be able to translate a process specification into a format suitable for a

simulation program.

2.1.2 Traditional Process Specification

The traditional mechanism for specifying a process is the run-sheet. A run-sheet

can either be on paper or stored on a computer. It describes each operation to be performed

on the wafers. Typically the run-sheet only summarizes the steps by naming them and

giving a few key parameters (e.g., a recipe name or temperature setting). The complete

definition of an operation is found in a large manual, called the process manual, that

includes complete listings of equipment, recipes, parameters, and expected measurements

taken during processing. The run-sheets tend to be erratic in their specihcity, because their

audience is technicians and operators. A run-sheet is passed around the factory with the

wafer-set it describes, thus there is little danger of operators mixing up wafers from different

processes. Operators make mistakes by occasionally misinterpreting the sheet's instructions

and by mis-entering parameters and recipe identifiers. Test measurements are recorded on

the run-sheet for use by other operators down the line.

The introduction of micro-controlled machines that can download recipes has

changed the way processing is specified. These machines greatly simplify operator tasks

The run-sheet remains, but the process manual has changed to contain descriptions of the

machine recipes. These recipes are downloaded to the controller from a central processing

database which reduces errors due to misprocessing, although the possibility of data-entry

errors remains. Of course using recipes introduces a possible update problem, as the pro

cessing manual and machine-readable recipe can become desynchronized, potentially giving

inconsistent directions.

The introduction of computers to the manufacturing floor has increased efficiency

by allowing run-sheets and process manuals to be stored electronically. Computers permit

better collection of process data and better management of the manual and recipes. This

switch has also caused a change in the way processing engineers and operators think about

run-sheets. The sheets are organized hierarchically, consisting of levels of operations to be

performed, rather than simple lists of steps.

This change in viewpoint and the increase in electronic data collection combined to

inspire the creation of Work-in-Progress (WIP) systems. WIP systems track the progress of

a process through its sequence of operations, manage equipment scheduling, test data and

so forth. Early WIP systems did not have equipment controllers, so operators performed

the individual steps by hand (i.e., operators put the wafers into the oven, load the recipe

floppy disk into the controller, and enter the commands to start processing). Current WIP

systems can download and execute recipes, monitor processing, and collect data about the

process (e.g. temperature readings, etc.) for some equipment. Some research is currently

being done on more integrated control that includes feedback and feed-forward control [4].

These systems require more sophisticated micro-controllers and computer systems [17]. For

such systems, it is even more important to have a unified specification system in order to

'Of course, there are problems with this simplification too, seefor exzLmple [7].

avoid writing detailed (and possibly different) specifications for each software system used

in the process.

2.2 Introduction to BPFL

The Berkeley Process Flow Language (BPFL) was developed because semicon

ductor processing is so complex. A process-flow is composed of steps and procedure calls

connected by the language control statements. Procedures are sequences of operations that

form an isolated processing step. A procedure can have arguments so that different calls exe

cute different operations. A process module is often represented as a procedure. Procedures

are collected together in libraries, that are version-controlled (as are process-flows).

All processing steps operate on wafers. In this report, we refer to a group of

wafers that receive identical treatment as a wafer-set In previous BPFL papers, these were

referred to as lots. We use lot to describe the entire set of wafers for a run (i.e., the union

of all of the wafer-sets). Thus a split-lot produces two different wafer-sets. During the

processing, some steps may be carried out on all of the wafers (the lot), while others are

performed only on specific subsets of wafers, such as test wafers (which form a wafer-set).

BPFL has a wide array of control statements. It supports vhile loops, for loops,

and if-then-else commands. In addition, it has rework loops that repeatedly execute

operations until a test is satisfied. Another control primitive is the constrain command

that puts a requirement to be satisfied between two operations (such as "must happen

within one hour of each other") and has an alarm to raise if the constraint is violated. The

viewcase statement separates particular instructions for the different uses BPFL can be

put to (such as statements for controlling the WIP system and statements sending input to

simulators). A complete description of BPFL is given elsewhere, see [13, 40, 39].

2.3 Prior Work Using BPFL

Process-flows specified in BPFL were initially edited using text editors, because

BPFL is a programming language. However, text editors were unsatisfactory because the

syntax of the language caused too many problems for its intended users, who as a rule have

no programming background.

The next attempt at an editor was a structured editor called SEPS [33]. SEPS was

built using the Cornell Program Synthesis Generator [28]. SEPS uses a database to store

different versions of BPFL programs, and it has routines for browsing through the database

and performing queries. It provides templates for code writing and performs syntax and

semantic checking. However, users did not like SEPS because the editor was difficult to

use, it had poor error handling and it was too '^confining." Users wanted to be able to

(temporarily) enter incorrect syntax and use commands from typical text editors, such as

emacs.

To address these problems a graphical editor called VED [35] was created. This

editor converted BPFL code into a graph of steps. The steps were displayed, and browsed

using a mouse (See Figure 2.1). Many operations could be performed without touching

the keyboard. This approach had some merit, but was abandoned. The graphical notation

required too much space on the screen to display a small number of processing steps. In

addition, the graph notation resulted in poor performance because of layout computations.

Finally, the space constraints in the nodes obscured the details of a step, requiring additional

operations to disclose step parameters and other additional information. Thus, VED was

abandoned in progress, and BED was developed.

2.4 Other Specification Editors

While the above work has all been done using BPFL at UC Berkeley, other re

searchers have produced specification editors. This section briefly describes the functionality

of comparable systems.

Wenstrand's Process Design Aid (PDA) [38, 37] is an editor for process speci

fications in Stanford's Manufacturing Knowledge System (MKS) [26]. MKS provides a

knowledge-based framework for CIM; it supplies persistent objects, has good support for

multiple materials and outputs of processes, and encompasses a large knowledge base. PDA,

like BPFL, provides for multiple uses of process specification — both for manufacturing and

simulation programs. It supports a hierarchical model of process specification, including

reusable components (they are similar to BPFL's process-flows in their reusability and func

tion, but are objects rather than procedures). Until recently it did not support complex

control-flow operations, however work by Basile has addressed this issue [2, 1].

The Computer Aided Fabrication Environment (CAFE) [20] developed at MIT

supports functions similar to BPFL used in conjunction with the WIP system [13]. Similar

/pic2/picasso/lib/po/ved/flowi/cmos-16«b
8r*«ElI4^^ wrtiM<«WiwSv«^<!iaCLaaaa«*rtwwwscSsaM

ALLOO.fE-VVAPERS

V/£Ll-rOf;MAT10M^

ACTi"£-AREA^

FIELD-JMPL

r^'^'^"''The Full (BPFt> vIbwa links represent'Lot flow*

Clcse j ^'Describe

Figure 2.1: A VED edit window

to BED and the WIP system, CAFE uses a database to store processinginformation [14,5].

CAFE*8 process editor is similar to early work on a structured editor for BPFL. It uses a

programming-language style of process description, and edits the text representation of the

process specification. Regular text editors are used, though forms-based panels are used to

manipulate some stored data.

Recent work at Texas Instruments and Stanford has created the Integrated Man-

ufacturing/TCAD Specification System [11]. This system integrates the different manufac

turing systems in use in the Stanford Fab, encompassing recipes, electronic rim-sheets, and

simulators. It has a graphical interface and uses a library of modules and a persistent object

store. The recipe integration and help system are better in this system than the analogous

features in BED. However, its overall specification browser is weaker.

2.5 The Role of BED

BED further develops process specification editor technology. BED uses BPFL so

that it has a very expressive, general, and extensible language for describing specifications.

Through its use of the INGRES database, BED achieves the persistent information that

PDA has through its objects. The graphical interface in BED is easier to use than CAFE's

text approach. BED addresses the same issues as IM/TCAD system, but from a different

viewpoint, and with an extended definition of a process specification.

10

Chapter 3

System Capabilities

This chapter briefly describes the facilities available in BED. They are demon

strated in detail in the extended example in the next chapter.

BPFL gains much over other speciflcation languages because it is a full program

ming language rather than a sequence of simulator instructions, a list of machine settings,

or a collection of nested objects. Anecdotal evidence has shown that a signiflcant amount

of time in a fab is spent handling exceptional conditions, something at which programming

languages are good [10]. In BPFL, it is trivial to specify alternate operations to execute in

cases of a failure, or automatic repair steps to perform. In addition general calculation and

data management operations are easy to do.

BPFL takes advantage of experience gained in the fab via the processing libraries.

Procedures that perform related functions are gathered into a library. This makes them

easy to update together and provides a mechanism for the reuse of common operations.

Procedures are common abstractions which may be used over and over, often to different

effects through argument speciflcation.

The version-control system allows a user to modify specifications for private runs.

This feature is essential in a research environment. It also alleviates any worry that tech

nologies will be "lost" as equipment is changed in the fab. All old specifications are saved

and can be used years after their archival. Storing them in a database allows general queries

to be used to locate particular specifications.

The graphical representation of the processing steps in BED makes the relation

ships between the steps much clearer than many other systems (See Figure 4.1), especially

the important "contains" relationship. This form of presentation eases comprehension of

11

new specifications. BED also supports hypermedia to link together different types of data.

Using links, specifications can contain other types of data, such as images of SEM pictures

of a wafer surface, video clips demonstrating equipment operations, graphical displays of

wafer profiles, and dynamic analysis of logged data, in addition to text notes and descrip

tions. This auxiliary data can be accessed by a general h3rpermedia system. The system

allows arbitrary connection of data to particular specifications. One immediate use is the

connection between processing steps and the log entries of operators from previous times

they have run wafers using the specification. This connection gives easy access to comments

and notations about possible problems or successful results. The system even has a graph-

generating subsystem to enhance data visualization and provide "dynamic data" that can

be displayed in different ways by its examiner.

Users can alter the process specification presentation to clarify the BPFL state

ments. Customizations range from changes in font size and color use to the invention of

new presentation elements. This customization allows for local improvements over the initial

design decisions in BED and extensions to BPFL.

From BED, one can connect to the different programs that make up the UC

Berkeley CIM system:

1. Faults is a program for maintaining information about Fab equipment
maintenance and repairs of equipment and other systems described in [21,
22].

2. WIP is the the Work-in-Progress System described in [13, 12].

3. Facility is a facility monitoring tool described in [34].

4. BCAM is a framework of equipment control and diagnostic applications,
see [4].

BED also has a help system, so new users can get on-line assistance for their tasks.

The information displayed by BED can be changed to prevent users from being overwhelmed

by the complexity of the processes they are examining. For example, the user can scroll

around the specification, so that it need not all fit on the screen at once, see Figure 4.18.

Users can also iconify pieces that are uninteresting. BED supports multiple windows to

facilitate sweeping changes. Which wafer-sets are displayed may be changed, and users can

look up documentation for procedures when they desire to see it.

12

Chapter 4

Extended Example

This chapter demonstrates the capabilities of BED through an extended example.

The example concentrates on the new features BED provides:

• The iconiiication of steps not desired by the user.

• The integration of the library system and versioning system in a database.

• The use of hypermedia to expand the capabilities of the specification language.

• The button strip of common actions to simplify editing operations.

• The online help system.

4.1 Starting up BED

The first step is running BED. The run-bed command is executed to start up the

editor. At first, BED loads the specification last edited. In this case, the main window

(shown in Figure 4.1) shows the CMOS-16 process. The specification appears in an edit

window of which there may be several in use at one time.

4.2 The Edit Window

To meaningfully go through an example, one must first understand the various

areas in the Edit Window and their function.

^MSSBE!

WWM'WmWA'.WA'MW

m.

»»>}}}}>

WiSMit>inmfi

•£lKliV.

Step PLLCCRTE-Uf^FERS—i
^ i:sll flllocdtr Lcit

' nil •• tsiTf iwlk rvsi'rlivlLM

sUl ktL iixiditieri
ii'i*

Sjep UELL-IMPLflNT
ILdll lM|>10nt

.«•*:

j * call arml infilani

rail rlcir tccidb*

Ij* call ttrlfi TTtl ft
"EfrHp'ORIVE-IH^

(•ill ia*li

Am^2}

rail nmrf iKidr thickjv>M

loc«t^0fi^' '' «I(NWEID

Figure 4.1: A BED edit window

i}U)Uia}M}mmu}m}>)m>mi

JiiUJWMUiMMMUUJ

it<fmmMSi

• ETD •

Era • •

Efn • •

ETBf • n

pfEfn •

EfEfn •

EfETD •!

ETLsfD •

EfSf • •

4.2.1 Parts of the Edit Window: The Menu bar

At the top of the BED window is a menu bar. Currently BED has five different

menus from which to select. The first menu, Picasso, has only the entry Quit which is

used to finish the editing session.

The second menu is the File menu. It has the commands that relate to file

operations (in reality these are database operations). These commands are detailed in

Table 4.1.

The third menu, Edit, contains familiar editing operations: cut, paste, delete,

move, and copy. These perform the same operations as the side-buttons, discussed later in

this Section. However it also has some additional features, listed in Table 4.2

The fourth menu, Options, has several functions, listed in Table 4.3, to change

the interface or the view of the process specification.

The final menu, CIM, provides interfaces with the other programs in the Berkeley

CIM system, see Table 4.4.

4.2.2 Parts of the Edit Window: The Status Area

Cjer.eral:

Figure 4.2: The status area.

Below the menu bar is an area that displays general information about the process

being edited (See Figure 4.2). In the upper left corner, it shows the name of the process-

flow being edited. To its right is the name of the process library in which the procedure is

defined (possibly empty for top-level process-flows). Below these two fields are the Owner

and Author fields. The Owner field names the person holding a lock on the process (as part

of the version system), usually the current user. The Author denotes the original author of

the code. The final line gives the Status/Version, displaying the status of the process-flow

(i.e. private, testing, or released) along with its version number and last modification date.

Table 4.1: The operations provided in the File puU-down menu.

Open: Examine another flow pops up a dialog box (Figure 4.11) to select
which flow to examine. It creates a new edit window with that process flow
loaded.

Load: Examine A different flow also pops up a selection dialog box (Fig
ure 4.11), but replaces the current flow in the current edit window with the
selected process-flow.

Close: Close this window destroys the current edit window (if it is the only
edit window, this is the same as selecting Quit from the Picasso menu).

New: Create new flow opens another edit window to permit the creation of
a new process-flow.

Save flow installs the current process-flow as a new version of the process-
flow. (It pops up a dialog box to permit renaming, new major versions,
and selecting the status of the process-flow version.)

Revert to previous version undoes all changes since the last load by reload
ing the process-flow.

Change libraries included pops up a dialog box (Figure 4.17) to add require
ments on which libraries (and which versions of the library) are required
by the current process-flow.

Load previous flow performance turns on the display of hyperlinks to the
runs of the process-flow. It pops up a dialog box to choose which runs are
to be accessed (Figure 4.21).

Edit Flow Documentation pops up a panel to change the documentation
provided with the process-flow (or library).

Documentation (Help) pops up a panel that displays a help file for using
BED (Figure 4.18).

Print flow diagram currently does nothing. It is intended to print a version
of the process-flow on an appropriate printed. The print-representation of
process-flows has not been flnalized.

15

16

Table 4.2: The additional operations in the third pull-down menu, Edit.

Make Hyper Link allows the user to create a link from a particular point in
the process-flow code to another object.

Edit in Text Form pops up a window with the current process-flow in its text
form (BPFL).

Edit User Dialogs pops up a dialog box to select a user-dialog, and then a
window in which the user-dialog is displayed (allowing the BED user to
change what text is displayed, stored, etc.).

Table 4.3: The Options pull-down menu's choices.

Select Wafer-Sets to display This allows the user to add or remove wafer-
sets from the on-screen display (See Section 4.3).

Examine run-log is a facility to look at the results of running the process-
flow in the Fab. It pops up a menu to choose which run of the process
to examine (Figure 4.21), and then a menu of each log entry for that
run (Figure 4.26), from which the user can examine particular log entries
(Figures 4.23 and 4.24).

Change View (BPFL, Fab, etc) modifies how BFFL's viewcase instruc
tions are interpreted for display.

Color Bindings allows the user to set how colors are mapped in the interface.

Table 4.4: The CIM menu entries.

Faults A program for maintaining information about Fab equipment mainte
nance and repairs.

WIP Begin a session with the Work-in-Progress System.

Facility A facility monitoring tool.

BCAM An equipment control and diagnostics tool.

17

The documentation (comments) for the process-flowcan be reached through a menu-option^

as described in this Section. All of these fields are display-only, and may be turned off by

the user.

4.2.3 Parts of the Edit Window: The Wafer-set Descriptors

Immediately below the Status Area are the Wafer-set Descriptors (See Figures 4.1

and 4.3). Each operation in a process-flowacts upon the specified wafer-sets. The names of

these wafer-sets are given at the top of edit window. The names actually form the top of a

wafer-set selection column of the process code, as described below. Clicking on a wafer-set

name wiU deactivate the display of information about that wafer-set.

4.2.4 Parts of the Edit Window: The Process-Flow Display

The edit window is the most important part of the interface — the part that

actually displays a process specification. The BPFL code that controls the process is in the

main body of the edit window. It has both vertical and horizontal scrollbars so that it is

not constrained in size. At the top of this area are the arguments to the process-flow. In

the example (Figure 4.3), there is one argument named implant-split, and it is set to

true. If there were more arguments, they would be listed below this line. As the arguments

are expected to be supplied to the process-flow when it is executed, the displayed value is

merely the default. To change the default value, the user simply clicks on it, which pops up

a dialog box (similar to the one shown in Figure 4.4), and changes the value through the

dialog box.

Following the arguments is the first Step of the flow. In this case, it is the

Allocate-veifers step. As can be seen in Figure 4.3, the step contains two procedure-calls:

allocate-lot and meas\ire-bulk-resistivity. These procedure calls have arguments,

allocate-lot has three arguments: names, sizes, and snapshot. They are listed below

the line with the procedure name on it. For each argument there is a value to its right. When

the arguments are supplied, they are printed in regular type (as are all of the arguments to

allocate-lot). However, when the default value supplied by the procedure being called

is used, the printed value is italicized (as is the argument to measure-bulk-resistivity).

To change the argument value, the user clicks on it, which creates a dialog box (Figure 4.4).

This dialog box permits the entry of the value, or the selection of the defatdt value, which

step PLLOCPTE-UAFERS
^ nail allrxuitp lot iSiHaEa

'"Tcmos'lnwelt nch). -
llst^pcoduct-iot-sfie^'l;

•it -."'w'-j.: spoc

^ cull nMsurt* ivjlk-rtnixutivitij
«• i ♦

•

•

r-tfiltial V vV '

Figure 4.3: The topmost section of a process specification.

is done by clicking on the use default button.

bed:t:dit.dijloq

i
DErrtULT

IMte S9

Figure 4.4: Dialog box for entering new argument values.

»y,9X'-

As mentioned above, all processes take place on entire wafer-sets. For example, the

measure-bulk-resistivity procedure operates only on the Nwell wafer-set, as indicated

by the checkboxes to the right of the process-name. Of the four boxes only the one in the

second column is checked. If the box in the column corresponding to a wafer-set name

is shown "checked," the process acts on that wafer-set (thus allocate-lot acts on three

wafer-sets: Cmos, Nwell, and Nch). To change whether or not a wafer-set is acted upon

requires a simple button click on the box, selecting or de-selecting it.

•mm».

'MUfiW «f*ff*!l»lfPf.

lep ALLQCATE-U^^FEr MgwaUMMyWW M>W MW MM>WM•W•" M•• '

> Cdil all(jr<lfcp lot

Figure 4.5: The topmost section of a process specification after two iconifications and a

change in wafer-sets from that in Figure 4.8.

On the left of each box (i.e., procedure-caJI, step description, or argument list)

there is an arrow. The arrow indicates the version of the particular item that is being

shown; an arrow pointing up indicates a "long" version. To conserve screen real-estate,

the user may use the mouse to click on an up-arrow to close the display of the item, in

other words, the step or operation is iconified. An example of a display with the arguments

and allocate-lot call iconified, along with the changes to the wafer-sets operated on by

measure-bulk-resistivity changed, is in Figure 4.5. This required a total of five mouse

clicks. De-iconification is accomplished by clicking on down-pointing arrows.

\ call

tep

call inpldnt.

f call af¥tpal inplant EfEfn •

Figure 4.6: Nested steps with iconified procedure-calls.

In BPFL, steps can be nested, as Figure 4.6 demonstrates by examining the next

step in the CMOS process-flow (most displayed procedure-calls are iconified). In addition

SWPii

wm^m

i ^ fookup

m

Figure 4.7: The Edit Buttons on the Figure 4.8: The creation operations

Edit Window. in the edit window.

to steps and procedure-calls, BFFL features while loops, if statements, constraints, rework-

loops, etc. Each operator can have a customized display form.

The remaining feature of the edit window is the button labeled "i" next to the

step names, these buttons denote a hyperlink which are discussed in Section 4.8.

4.2.5 Parts of the Edit Window: The Editing Operations

Commonly used editing operations are provided in a button strip on the left side

of the window (as well as in the pull-down menus). The buttons are shown in Figures 4.7

and 4.8. Clicking on a button will change the cursor to the same shape as that which the

button displays, to make clear the current editing operation or mode (except for undo which

happens immediately). After selecting an operation, clicking with the mouse middle button

will execute the specihed action. Thus, for example, entering delete mode and clicking on

the measure-bulk-resistivity procedure call in Figure 4.5 will delete it; the results of

this action are shown in Figure 4.9.

Figure 4.9: Top portion of Process flow with measure-bulk-resistivity deleted.

Clicking the middle mouse button while in move mode selects the specifled steps

(and any substeps) and moves them to another location. Copy works simiiajly, except that

it leaves a copy of the initial steps in the original place. Undo does not actually act as a

mode; it merely undoes the last action. Clicking on a procedure-call while in lookup mode

brings up a new window that contains the deflnition of the called procedure. For example,

clicking on the implant call in Figure 4.6 will open the window shown in Figure 4.10.

There is a different column of buttons to create new BPFL structures, see Fig

ure 4.8. Clicking on one of these buttons will change the cursor to display the object being

created. Clicking in the process-flow description area will insert the structure there. This

action may cause a dialog box to pop up prompting for information about the structure

being created.

4.2.6 Loading Another Routine to Edit

Pulling down the File menu and selecting Open: Examine another flow loads

another procedure to edit. This command pops up a panel to select the library from which

to load a specification (see Figure 4.11). After clicking in the first column on a library to

use, the second column is filled with the choices of versions for the library. After selecting

a version, the procedures within the library are listed in the third column. A fully selected

routine is shown in Figure 4.12. Clicking on the OK button loads that procedure.

Loading another process-flow to edit, in our case wet-oxidation, causes a new

edit window to appear (as displayed in Figure 4.13). This window is in all respects identical

impl«nt

p-StJtiJi?/vrr3icif)rp
) versiC

pDeacription
Irmlants wa€eSm„anci perform^..anneaLl

SPecl'es:Hm<BxX) .

€1.0el3 /cm'^2}

energyjgtiOO kevi

Figure 4.10: Information on the implant procedure.

Library

General

cfnos-llb

equif^ent
iitho
material

|.],llL4IJ.IBJ-I.UgTSn!l

I! if-wafer

ucb-std

Library

General

cmos-iib

equipment

lithe

material

physical-constants
pif-wafer _
ucb-std

Versi on Procedure

Figure 4.11: Initial Load Panel.

FuHied^ue Pcriel

Version Procedure

fast-sinter

implant

measur e-bulk-resistivity
measure-nitride-thicknes

measure-oxide-thickness

measure-poly-thickness
measure-sheet-resistance

n2-anneal

nitridation

well-drive

et-oxidation

Figure 4.12: The BED load-procedure panel, where the process-flow wet-oxidation has

been selected (shown highlighted in the lower right).

epjPLEcStOt

»//».

riAwfflwXMji;

.'•I.w.vs

tiiSiZB

isma:

¥SSN®

m

mm.

%(Mmmm<i.m<mm(Hmmimmxmmmm\

^ call fnul

T call lewc-dtalfif;
1.1 c'/ »'rn

^ / ' U.a-clecn , ^i,
' procflffcrr ' .yC,',
'",' , •• taroet-thlckness - '//

"' ts«p!fet«re , .C'i

prerox-tim ^yk
post-^^^tinc

^ ••'''• - •jS^^ulDP-fcrtt-lisl' ' / •f'W'7'^ ••

tar^et-t-thickness ' r '.
lerp.peraiturd .. '̂̂ V'• '̂
$V^£TOXS

postT"ox-time

einnenMime , '/:'^ - '
ttyianl^ tj'tanSJ) ' ' '

• call «rw in Id

^ I i] i 171« in It t

Figure 4.13: A second edit window, editing the wet-oxidation flow.

to our original example, so we shall return to it.

4.3 Adding a New Wafer-set

From time to time, users may wish to change which wafer-sets are displayed, or

even to create a new wafer-set to use. To change the wafer-sets displayed, the user selects the

Select Wafer-set to Display menu entry, and uses a dialog box to specify the changes,

see Figure 4.14. (Of course, the user can also turn off the display of wafer-sets by clicking at

the top of their column.) Clicking on the checkboxes in this dialog window controls whether

the wafer-set is to be shown. Entering a name in the "new lot" text entry box will create

it as a wafer-set and add it to the list of wafer-sets.

bed slots diiioq

Figure 4.14: Panel for the addition, removal, and creation of wafer-sets.

4.4 Adding a new procedure call

While modifying a specification, it is often necessary to insert an operation between

two others. Clicking on the type of operation (such as the procedure-call button from

Figure 4.8) and then clicking between the two operations will insert anew operation. These

clicks create a dialog box to query for the procedure name, as shown in Figure 4.15. If the

bedi^et—pioc.dtaloq

Call Procedure...

Figure 4.15: Initial selection box for a procedure call.

name is sufficiently unique, the user can type it. (The appropriate version for the procedure

is worked out from which libraries are currently being used.) If the user wants to use the

browser to locate the proper version, clicking on the Locate button will bring up the the

procedure library window shown in Figures 4.11 and 4.12. As with all dialogs, clicking on

Cancel ceases the operation requested. Selecting a procedure (e.g., wet-oxidation) will

bring up another panel. This panel (Figure 4.16) describes the procedure at its top. Its

bottom section gives the default and required arguments. Required arguments have a white

background and must be supplied, default arguments have a gray background.

4.5 Selecting Libraries to Reference

When BPFL code is interpreted it needs to specify from which libraries to draw its

procedures. The libraries are changed via the Change Libraxies Included" menu entry.

The dialog box used is shown in Figure 4.17. The dialog box will list all of the libraries

currently being referenced along with their version numbers. The version use may be one

latest uses the most recent released version of the library.

query uses the most recent version of the library at the time of the creation
of the process-flow specification. If a newer version is in existence at the
time the flow is run, it generates an alarm to query the operator for which
version to use.

static locks a particular library version (released or unreleased) down. It will
use this version unless it is explicitly changed within the process-flow.

SKiSKia&ySi;

Call Procedure

w4Wmm

oyiciati cn :;.rx;r^Sg:>

time:

ter" :er3ture: 900 degC5

6 mini

post'^ax-time: 5 mini

annteal.rtimet;' mini

target-*thickness:

Figure 4.16: Adding a call to the wet-oxidation procedure.

McOjj5juiiiKdiS:ujitojjj.tim^

Figure 4.17: Dialog box to change libraries used by a process-flow.

The "new library" field allows the user to add a library dependency. Adding a new library

will create a box for it (like the one for the cmos library shown in the Figure) and allow its

version to be specified.

4.6 Using the Help system.

A sample help panel is shown in Figure 4.18. It may be examined by using the

scrollbar, or via text searches. It is accessed from the File pull-down menu. The cur

rent version of help does not support hyperlinks or multi-part displays (i.e. a composite

document with drawings, tables, images, etc.).

4.7 User Dialogs

From time to time a process specified with BPFL will prompt the operator with

questions about test results or other information. These interactions are specified by ex

ecuting a user-dialog command. When executed, this command displays a form for the

operator to fill out. The form is printed on the operator's terminal. The forms for these

dialogs are stored in the database and can be edited from BED. A sample for computing

results from measuring oxide thickness with the nanospec is shown in Figure 4.19.

4.8 Hypermedia in BED

This Section describes the hypermedia facilities used in BED.

BLDHcfp Ponel

Visual Editor For BPFLV A W<«4» WW»A VWlfWI4>«'»ZW

'i$"both'a brt^wser'and'editor' fpr, BPFL'-' ^
lofdgrams* It will take a program in the '
tjraditional text, ^peciFioation and map it into a^
gr'paHlcai''representation^' '^The'-interface has
several piecest-/^,;'?'

oJ^Xhe Pull-down Henu^s
''-•1='/ There are fivej- - j-

Picasso — allows ^dne;to'quit ' J
:^''Fiie -r-one-to select'a flow to/,^^

„4, . allows one to examine a flow'̂
ailows.one to call up this helpl

allows one to select a routine j
, from the database - '

allows postscript printing of'a

Figure 4.18: A sample help panel.

|LIS WIP c

Run ID: •<

Status: c

Step Path: c.
Procedure: c_

Notes: f

Run Name: e.

Process Plow: c.

Location: f.

Instrument: c

Expected value: c_

indexIThickness

Thickness Measurenent Log

User: c

Step: c

Time: c

Tag: c

Average measurement: c
Standard Deviation: c^

Create Delete Edit Hove Undo Order Save FormAttr >

Figure 4.19: The forms for editing user dialogs.

31

4.8.1 Introduction

Hyperlinks are arbitrary connections between different parts of a document. They

were initially discussed by Bush as "Non-sequential writing," see [8]. The term "hypertext"

was invented by Ted Nelson [23]. Hyperlinks basically provide a non-linear form of reading

where instead of reading from one page to the next in a set order, one may jump about the

text. In most computer applications (which make hypertext practical), hypertext systems

are defined in terms of nodes and links. Links connect the source section to the destination,

which is called a node. Thus, one begins reading the start node, and may follow links

from it to other nodes (which may in turn have further links). Links are arbitrary in the

sense that they do not form a part of the regular structure of the computer interface. One

trivial example is the help provided by many software packages, where an operator who is

(linearly) entering data may clickon a help button and read an informative description about

the task (a trivially simple hypertext system). BED makes use of hypermedia which is a

generalization of hypertext. The document can contain the usual sort of hypertext features,

but in addition may contain non-text data forms, such as video sequences, audio recordings,

dynamically updated graphs, etc. One place BED uses hypermedia is by integrating video

clips into the process specification. Hypermedia opens up a new range of possibilities for

many applications. For example, fabs might add digitized audio of operator comments, or

integrate automatic comparisons of videotaped wafers with the wafers being manufactured.

4.8.2 Using Hypermedia in BED

Hypermedia is used extensively in BED. In fact, there is no comment command

in the BED version of BPFL because commenting is subsumed by the hypermedia system.

Instead of putting a comment next to a statement, one creates a hyperlink to the comment.

Then the comment can have arbitrary text and other media about the statement, and

perhaps even hyperlinks to other parts of the specification. For example the i button next

to measure-bulk-resistivity in Figure 4.1 indicates a comment. Clicking on it displays

the window in Figure 4.20, which is a hyperlink. The presence of these links in indicated by

the i's next to the name of an operation (See Figure 4.1 or 4.22). Clicking on the i will pop

up a menu that lists jthe different hyperlinks attached to this operation. The menu contains

a short name for the link and an indication of the type of the node at the link's end.

Hyperlinks are also used to integrate log entries with the specification. One

Comit^ntCtext)

5s^4\ JXr^syi

Figure 4.20: A typical comment hyperlink.

♦ .ib #2
.V. vS<^JS

4/2 4/9 s fang^l I
- -.N-. -.s s -.Wn. ^V.^^^ « •^c\\>\.\ ^

577/92^. s^aiigll
•{«!:&

—*

Figure 4.21: Selection of which previous run log to access.

close

33

BED mode displays the links to previous runs of the speciiication shown mixed in with

the processing operations. This is done by selecting a menu entry (Load previous flow

performance), and selecting which previous process runs to include links to. A ssmiple

window used to choose a previous run is shown in Figure 4.21. In this window, the date

and operator of previous runs are given, along with the option to choose them all. If a link

is selected, the buttons to access them (links) will show up on the edit screen (they appear

as tiny R*s, see Figure 4.22).

Clicking on an R button will bring up the log entry for that operation, as illustrated

in Figures 4.23and 4.24. This appears as another window (usually in a corner of the screen).

This new window can be referenced independently from the edit window. The log window

has a scroll bar to examine all of its contents. The log entry may have hyperlinks or active

data within it. Active data can take the form of video clips, audio, or graphs. A graph is

the presentation in a new window of a table of data, such as in Figure 4.25 . The graph

was summoned by clicking on the graph data button in Figure 4.24. It is also possible to

browse a log via its table of contents, as displayed in Figure 4.26.

^ cul I M'elUUIV UXtcL*

n c/ m

Figure 4.22: A BPFL code example with hyperlinks to previous performance nodes shown.

Loy LtiUy

J

4bA I

I .^V ^'* '̂ ' * ' *\"*gt •'̂ -

v*H •»< "^Si >
dj7<.raia •«.•!•!• MBSS74 9 •> B *i*J U BSiV CS ti Bvi

i;;

stbl: 30% End point t time: i;^30% Overetch:
Poly yas completely etched and patterns were good^'-t^Si

9:20-10:20 ;%%
•}%; 5* Coated front side with PR* PR film uniformity was J

bad* Some areas were not covered by PR* Coated the'
^ 2nd PR film* Some areas still could not be covered*

Removed PR in technics-c to redo PR coating* 4?
Prgm+^ll, Trackl* Uniformity was good* Spin and hard^^;
biike twice* tp
Etched back side in sinkS using Si etchant and 5:1 Bt^i

S* Removed PR in technics-c and sinkS*

^ \ Tox in S/B area (nanospeO?

*i?i'yfflfyy??^:'j°W?!^WW"'UiiiD»,iww»Waw»wgiigogiiMw^i.iwMiMi.j,;j.;ww^^

Figure 4.23: A log entry for the formation step of the CMOS-16 process.

Close

6.

LogL'fitiy(l/i!1)

baketwice;^^^^^
EtchedbackeideinsinkBusingSietchantand5;1BfF
ReioavedPRintecNiics-cand^4;
TdxinS/Barea(nanospec):^o^

D!N+S/L1P+S/D

cnosiS-l1532
cnosiS-2

dttidsiS-3

iSiUBiiiiil^^M^1

:sdsiS"r>^>?^fT7112_j583"::i;T
cro5l6-67001577

cnoslC-717C0?573
1715isZZ

c-^orlC-9'|6741530^1
crroslE-lO|B44-'̂'"|514-^-1

fSSSS

psms

?♦Cleanedwafers<10sec,dipin25:1BHF),PSGcontrol

Figure4.24:AlogentryfortheformationstepoftheCMOS-16process(scrolled).

Figure 4.25: A graph of the S/D Tox data (the data froin Figure 4.28).

38

•'i ''/^A ''<'S'"""' '•;'/; V" •'>-s-- '̂V;

SaS2222raS?2fiP'

?>y9t8a3i6ffiaySWs

«MM

:e!H2-»£«S«<i!

IMMM

•y"»!?AW«SV«NWi«Jw.S'CvI*XvI

MWtUMlMWWM ^ 'SS^iwwMwm

mx--'-'¥. jr;.s'A ;^rwC^

®''f>f'f"3^;'.-/:: /•- -/1

»ww>>>»««

•$6:
V" "''' " "i 1 V^:;;*y'3a: '!?rphtf>''̂ ^tixvgf

close

Figure 4.26: These are the log descriptions. Clicking on a line will summon that particular

log entry into another window.

39

Chapter 5

Implementation

The BED system is composed of many different modules. This chapter describes

the modules and their implementation. The motivation for each part of the design is given.

Finally the problems with the implementation are discussed.

BED is primarily implemented in the Common Lisp Object System (CLOS) [36,

18]. It uses the Picasso Application Toolkit (version 2.1) [31, 29] for most of the interface.

Picasso is an X Window System [32] toolkit in CLOS. It provides high-level abstractions for

interface development. In total, BED contains seven thousand lines of CLOS and Picasso

code. Approximately half of this code has to do with the specialized outline widget that

implements the edit window's body. A custom widget was used as the Picasso implemen

tation, using nested collection widgets, was very slow (e.g., it required half minute window

repaints). The rest of the code implements the connections to the database, specialized

translation routines, the wafer-set widget, the various window formats BED uses, and the

editing functions. The help system is a collection of text hies, loaded into Picasso browsers.

Some of the interface is implemented in Tcl/Tk [25, 24]. A Tk hypertext widget

allows arbitrary Tk widgets to be embedded in a scrolling field [16]. BED capitalizes upon

this widget to implement the hypermedia and hyperlink features. Only two hundred lines of

Tel code were written to provide this functionality. However, the log entries are technically

in Tcl/Tk also, having been converted into mixed text and Tel commands. As these can be

automatically generated, they are not included in the total, but can represent a significant

amount of '^code;" the log entries for a single run of CMOS-16 make up three thousand

lines.

40

5.1 Motivations

The combination of Picasso and CLOS was chosen for several reasons. First,

Picasso provides high-level abstractions for user interface development, abstracting away

many of the details of an X application. In particular, Picasso's framework frees the pro

grammer from the details of window creation and destruction, hides many style decisions,

automatically creates buttons and links them to functions, etc. Second, CLOS and Lisp

provide high-level programming language tools. Lisp languages tend to be good at string

manipulation, which simplifies the implementation of editors. Finally, the Picasso source

was available should any changes be needed to support BED. While no new features were

added, its availability made it possible to fix the toolkit rather than have to write application

code to avoid bugs.

Tcl/Tk was chosen for the implementation of the hypermedia system because it

provides muchof the functionality very cheaply. A previous Picassoproject [3] implemented

a hypertext/hypermedia system, and was known to be slow. This motivated a search for

another way to implement that part of BED. Tcl/Tk features a hypermedia widget as an

extension [16]. In addition, Tcl/Tk programs tend to be very small, so they could easily

be used alongside Picasso. Finally, other research at Berkeley [30] is being done integrating

video with Tcl/Tk, allowing the simple addition of video to BED.

5.2 Problems

The fundamental problem with the implementation of BED is that it is too large

and slow. The executing image is approximately 28 megabytes. In addition, XI1 and

INGRES must be running, although INGRES may be run remotely, so the actual local load

may be small. Even running on a machine with 40 megabytes of real memory, BED is still

too slow. Recent experiments to improve space/time performance of large Lisp programs

have been disappointing [6].

An additional problem with using Lisp for an interface package is that periodic

garbage collection causes annoying pauses in the display. This bothers some users even more

than the general slowness. A better integration of graphics package and Lisp environment

would ameliorate this problem. The bottom line is that Lisp is an excellent prototyping

environment, but a poor environment for developing production applications.

41

The Picasso interface to Td/Tk is primitive. All non-interface computation is on

the Lisp side, and it simply tells the Td code what to display. However the development

of a function in Picasso similar to the Td send primitive would have allowed a more equal

division of work and a more interactive system.

The primary difficulty experienced was with speed. While some optimizations

increased the speed of some BED operations, BED still has longer delays than users like

(such as its eight minute startup time). It is believed that the speed problems stem irom

using Picasso. Apparently, the generality Picasso provides comes with a high recalculation

cost whenever the interface changes, a high start-up cost (though this was known before

implementation), and a high window-creation cost. Part of this time is consumed by the

slow creation time for CLOS objects and dasses. A new implementation entirely in Td/tk

has been begun; initial results show a dramatic speed increase.

An additional problem was with the database design. BPFL process-flows are

stored either in files that are referenced by the database or in the database itself. When

reading text files, the editor has to parse the files on every load to determine how they should

be displayed. This parsing is somewhat slow and ineffident. Unfortunatdy, the database

retrieval of the files is also slow. However, having the spedfications in the database enables

a broader range of queries to be done on their text.

A continuing problem is the use of screen real estate. Most X applications are

developed to be one of many running at a time on a user's screen. However it is difficult

to fit a reasonable amount of process specification along with the editing tools in a small

window. Thus, the average editor window consumes half a screen. This problem has spurred

several innovations in BED: the iconified procedures, the scrollbars, and the separation of

hyperlinks from the text. No magic solution for this problem is evident. Possible solutions

range from using a virtual desktop, to speeding up window creation/deletion times so much

that it is natural for the user to do so frequently.

As mentioned in Chapter 3, the system is general. However, some of the flexibility

is confusing to the user. For example, the different "look" of language elements can be

changed. However, this requires one to understand a complex calling mechanism and write

CLOS/Picasso code to display an element in a different way. This exposure is undesirable; a

friendlier mechanism is needed. Unfortunately doingthis is nearly identical to writing a user-

interface generator, which is a large and complex tool. It is desirable to find some middle

ground that could make this possible without all the complexities of a full-blown interface

42

generator. Similarly the different layout customizations cannot be easily set because they

are hidden in the menu hierarchy. It would be better if BED recognized the changes made

in its presentation style and automatically stored them (such customizations range from

colors and fonts to automatic iconiiication).

43

Chapter 6

Conclusions

BED makes three important contributions to specification editing. First, it ex

pands the definition of a specification to include diverse but useful related data such as

video clips and dynamic tables. Second, BED presents the first use of outline processing

tools for online specification editing. Third, BED uses a database to track specification

changes and a deep library structure. An additional contribution is in the user interface

reabn: what is successful about BED is all of the little details of the interface. Such features

include having different fonts for default and specified arguments, denoting hyperlinks in

a small amount of space, and supporting iconihcation. Each of these features represents a

small portion of the code, but makes the system much more pleasant to use. While this

implementation of a specification editor has serious performance problems, the functionality

it provides is both useful and novel.

44

Bibliography

[1] Donald G. Basile. Flow Controlfor Object-Oriented Semiconductor Process Represen
tations, PhD thesis, Stanford University. Dept. of Electrical Engineering, 1992.

[2] Donald G. Basile, Paid Losleben, and Krishna Saraswat. FLEECE — Flow Control
Extensions for Object-Oriented Semiconductor Process Representations. In Seventh
Annual SRC/DARPA CIM-IC Workshop, August 1992.

[3] B. S. Becker and L. A. Rowe. HIP: A Hypermedia Extension of the PICASSO Ap
plication Framework. Master's thesis. University of California at Berkeley, Electronics
Research Laboratory, Berkeley, CA 94720,1990. Available as technical report number
UCB/ERL M90/121.

[4] Bart J. Bombay. The BCAM Control and Monitoring Environment. Master's thesis.
University of California at Berkeley, Electronics Research Laboratory, Berkeley, CA
94720, September 1992. Memorandum No. UCB/ERL M92/113.

[5] Duane S. Boning. Semiconductor Process Design: Representations, Tools, and Method
ologies. PhD thesis, MIT, January 1991.

[6] John Boreczky and Lawrence A. Rowe. Building Common Lisp Applications with
Reasonable Performance. Technical report, UCB, 1993. To be published.

[7] Harry Braverman. Labor and Monopoly Capital: The Degradation of Work in the
Twentieth Century. Monthly Review Press, 1975.

[8] V. Bush. As we may think. Atlantic Monthly, pages 101-108, July 1945.

[9] Duane S. Boning (ed.). Technology CAD Framework Architecture. TCAD Framework
Architecture Committee, 1.1 edition. May 1990.

[10] John B. Goodenough. Exception Handling: Issues and a Proposed Notation. Commu
nications of the ACM, 18(12):683-696, December 1975.

[11] R. HartzeU, P. Griffin, J. Shott, E. Wood, and P. Losleben. Integrated Manufactur-
ing/TCAD Specification System. In SeventhAnnual SRC/DARPA CIM-IC Workshop,
August 1992.

[12] Christopher J. Hegarty, Lawrence A. Rowe, and Christopher B. Williams. The Berke
ley Process-Flow Language WIP System. In SRC Techcon '90, 1990. Also available

45

in techreport fonn as UCB/ERL-M90/77 from the Electronics Research Laboratory,
College of Engineering, UC Berkeley, Berkeley, CA 94720.

[13] Christopher James Hegarty. Process-Flow Specification and Dynamic Run Modification
for Semiconductor Manufacturing. PhD thesis. University of Califomia at Berkeley,
Electronics Research Laboratory, Berkeley, CA 94720, April 1991. Memorandum No.
UCB/ERL M91/40.

[14] Michael Heytens and Rishiyur S. Nikhil. GESTALT: An £hq)ressive Database Pro
gramming System. ACM SIGMOD Record, 18(l):54-67, March 1989.

[15] C. P. Ho, J. D Plummer, S. E. Hansen, and R. W. Button. VLSI process modeling —
SUPREM-IIX. IEEE Trans. Electron Devices, ED-30(11):143-152, November 1983.

[16] George Hewlett. Graph-1.0. Available by ftp from barkley.berkeley.edu in
pub/tcl/extensions/graph-l.O.tar.Z., 1992.

[17] Doug Johnson, Texas Instruments. Presentation at UC Berkeley, 1991.

[18] Sonya E. Keene. Object-Oriented Programming in Common Lisp: A Programmer's
Guide to CLOS. Addison-Wesley Publishing Company, 1989.

[19] K. Lee and A. R. Neureuther. SIMPL-2 (SIMulated Profiles from the Layout — version
2). In Symposium on VLSI Technology, May 1985.

[20] Michael B. McHrath, Donald E. Troxel, Duane S. Boning, Michael L. Heytens, and
Paul Penfield Jr. CAFE — The MIT Computer Aided Fabrication Environment. In
Proceedings of the Ninth lEEE/CHMT International Electronics manufacturing Tech
nology Symposium, 1990.

[21] David C. Mudie and Norman H. Chang. FAULTS: An Equipment maintenance and
Repair System. In lEEE/CHMT International Electronics Manufacturing Technology
Symposium, October 1990.

[22] David C. Mudie and Norman H. Chang. FAULTS: An Equipment Maintenece and
Repair System Using a Relational Database. Technical Report UCB/ERL-M90/95
and M91/44, UC Berkeley, Electronics Research Laboratory, College of Engineering,
UC Berkeley, Berkeley, CA 94720, October 1990.

[23] Theodor Holm Nelson. Literary machines : the report on, and of, Project Xanadu
concerning word processing, electronic publishing, hypertext, thinkertoys, tomorrow's
intellectual revolution, and certain other topics including knowledge, education and
freedom. Ted Nelson, Swarthmore, PA, 1987.

[24] John K. Ousterhout. An Xll Toolkit Based on the TCL Language. In Proceedings of
the 1991 Winter USENIX Conference, pages 105-115, 1990.

[25] John K. Ousterhout. TCL: An Embeddable Command Language. In Proceedings of
the 1990 Winter USENIX Conference, pages 105-115, 1990.

46

[26] JefF Yung-Choa Pan, Jay M. Tenenbaum, and Jay Glickson. A Framework for
Knowledge-Based Computer-Integrated Manufacturing. IEEE Transactions on Semi
conductor Manufacturing^ 2(2):33-46, May 1989.

[27] M. R. Pinto, C. S. RafFerty, and R. W. Dutton. PISCES 11; Poisson and Continuity
Equation Solver. Technical report, Integrated Circuits Lab, Stanford University, Palo
Alto, CA 94305, 1984.

[28] T. Reps and T. Teitelbaum. The Synthesis Generator Reference Manual. Department
of Computer Science, Cornell University, Ithaca, NY, July 1987.

[29] Lawrence A. Rowe, Joe Konstan, Brian Smith, Steve Seitz, and Chung Liu. The Picasso
Application Framework. Memorandum UCB/ERL M90/18, Electronics Research Lab
oratory, College of Engineering, University of California, Berkeley, CA 94720, March
1990.

[30] Lawrence A. Rowe and Brian Smith. A Continuous Media Player. In Third Inter
national Workshop on Network and Operating System Support for Digital Audio and
Video, pages 334-344. IEEE Computer and Communication Societies with ACM SIG-
COMM,SIGOIS,and SIGOPS, November 1992. Seealso Memorandum No. UCB/ERL
M-M92/126 Electronics Research Laboratory, Berkeley, CA 94720.

[31] Patricia Schank, Joe Konstan, Chung Liu, Lawrence A. Rowe, Steve Seitz, and Brian
Smith. Picasso Reference Manual. Memorandum UCB/ERL M90/79, Electronics
Research Laboratory, College of Engineering, University of California, Berkeley, CA
94720, September 1990.

[32] Robert W. Scheifler, James Gettys, and Ron Neuman. X Window System C Library
and Protocol Reference. Digital Press, 1988.

[33] Jeffrey C. Sedayko and Lawrence A. Rowe. A Structured Editor for Process Specifica
tion, May 1990. Masters report, available as Memorandum UCB/ERL M90/48.

[34] Brian C. Smith and Lawrence A. Rowe. An Ad Hoc Query Interface for IC-
CIM Databases. IEEE Transactions on Semiconductor Manufacturing, 5(4):281-289,
November 1992.

[35] Stephen R. Smoot. VED: A Visual Editor for BPFL. Unpublished, August 1991.

[36] Guy L. Steele. Common Lisp: The Language. Digital Press, second edition, 1990.

[37] John S. Wenstrad, Hiroshi Iwai, and Robert W. Dutton. A Manufacturing-Oriented
Environment for Synthesis of Fabrication Processes. In IEEE International Conference
on Computer-Aided Design (ICCAD), pages 376-379. Dig. Tech. Papers, November
1989.

[38] John Stewart Wenstrad. An Object-Oriented Model for Specification, Simulation, and
Design of Semiconductor Fabrication Processes. PhD thesis, Stanford, Integrated Cir
cuits Laboratory, Stanford University, Palo Alto, CA 94305, March 1991. Technical
report number ICL91-003.

47

[39] C. B. Williams. A Process-Flow Speciiicatioii Language for Manufacturing Semicon
ductor Integrated Circuits. PhD Thesis, University of California at Berkeley, in prepa
ration.

[40] C. B. Williams and L. A. Rowe. The Berkeley Process-Flow Language: Reference
Document. Memo 87.73, Electronics Research Lab, U.C. Berkeley, October 1987.

[41] A. S. Wong. An Integrated Graphical Environment for Operating IC Process Simula
tors. Memo 89.67, Electronics Research Lab., UC Berkeley, May 1989.

	Copyright notice 1996
	ERL-93-46

