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ABSTRACT

Synchronous dataflow (SDF) semantics are well-suited to representing and compiling

multirate signal processing algorithms. A key to this match is the ability to cleanly express itera

tion without overspecifying the execution order of computations, thereby allowing efficient

schedules to be constructed. Due to limited program memory, it is often desirable to translate the

iteration in an SDF graph into groups of repetitive firing patterns so that loops can be constructed

in the target code. This paper establishes fundamental topological relationships between iteration

and looping in SDF graphs, and presents a scheduling framework that provably synthesizes the

most compact looping structures for a large class of practical SDF graphs. By modularizing dif

ferent components of the scheduling framework, and establishing their independence, we show

how other scheduling objectives, such as minimizing data buffering requirements or increasing

the number of data transfers that occur in registers, can be incorporated in manner that does not

conflict with the goal of code compactness.

1This research was supported by DARPA, AT&T Bell Laboratories, Semiconductor Research Corporation
and the Office ofNaval Research via the Naval Research Laboratory.



Introduction

In the dataflow model ofcomputation, pioneered by Dennis [5], a program is represented

as adirected graph in which the nodes represent computations and the arcs specify the passage of
data. Synchronous dataflow (SDF) [14] is a restricted form ofdataflow in which the nodes, called

actors, consume a fixed number ofdata items, called tokens or samples, per invocation and pro

duce a fixed number of outputsamples per invocation. SDFandrelated models have been studied

extensively in the context of synthesizing assembly code for signal processing applications, for
example [7, 8, 9, 10, 16, 18,19, 20].

Figure 1 shows a simple SDF graph with three actors, labeled A, B and C. Each arc is

annotated with the number of samples produced by its source and the number of samples con

sumed by its sink. Thus, actor A produces two samples on its output arc each time it is invoked

and Bconsumes one sample from its input arc. The "D" on the arc directed from B to Cdesig
nates a unit delay, which we implement as an initial token on the arc.

In SDF, iteration is induced whenever the number of samples produced on an arc (per

invocation of the source actor) does not match the number ofsamples consumed (per sink invoca

tion) [12]. For example, in figure 1, actor B must be invoked two times for every invocation of

actor A. Multirate applications often involve a large amount of iteration and thus subroutine calls

must be used extensively, code must be replicated, or loops must be organized in the target pro

gram. The use of subroutine calls to implement repetition may reduce throughput significantly

however, particularly for graphs involving small granularity. On the other hand, we have found

that code duplication can quickly exhaust on-chip program memory [11]. Thus, it may be essen

tial that we arrange loops in the target code. In this paper we develop topological relationships

between iteration and looping in SDF graphs.

We emphasize that in this paper, we view dataflow as a programming model, not as a form

of computer architecture^]. Several programming languages used for DSP, such as Lucid[24],

SISAL[15], and Silage[9] are based on, or include dataflow semantics. The developments in this

paper are applicable to this class of languages. Compilers for such languages can easily construct
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Introduction

a representation of theinputprogram as a hierarchy of dataflow graphs. It is important for a com

piler to recognize SDF components of this hierarchy, since in DSP applications, usually a large

fraction of the computation can be expressed with SDF semantics. For example, in [6] Dennis

shows how to convert recursive stream functions in SISAL-2 into SDF graphs.

In [11], How evaluated a scheme in which existing schedulers that did not consider loop

ing were augmented with a post-processing phase that detected successively occurring repetitive

firing patterns, and concluded that such simple tactics were ineffective for generating the most

compact programs. To synthesize lean looping structures, the scheduler must exploit specific

topological properties in the SDF graph. How demonstrated such a property by showing that we

can often greatly improve looping by clustering subgraphs that operate at the same sample rate,

and scheduling such subgraphs as a single unit. Figure 1 shows how this technique can improve

looping. A naive scheduler might schedule this SDF graph as CABCB, which offers no looping

possibility within the schedule period. However, if we first group the subgraph {B,C} into a hier

archical "supernode" Q, a scheduler will generate the schedule AQ.CI To highlight the repetition

in a schedule, we let the notation (n XiX2...Xm) designate n successive repetitions of the firing

sequence X1X2...Xm. We refer to a schedule expressed with this notation as a looped schedule.

Using this notation, and substitutingeach occurrence of CI with a subschedule for the correspond

ing subgraph, our clustering of the uniform-rate set {B,C} leads to either A(2BC) or A(2CB),

both of which expose the full potential for loopingin the SDF graph of figure 1.

We explored the looping problem further in [4]. First, we generalized How's scheme to

exploit looping opportunities that occur across sample-rate changes. Ourapproach involved con

structing the subgraph hierarchy in a pairwise fashion by clustering exactly two nodes at each

step. Our subgraph selection was based on frequency of occurrence —we selected the pair of

adjacent nodes whose associated subgraph had the largest repetition count. The "repetition count"

Fig.l. A simple SDF graph.
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Introduction

of asubgraph can be viewed as the number of times that aminimal schedule for the subgraph is

repeated in aminimal schedule for the overall graph. We will define this concept precisely in the
next section.

Bynot discriminating against sample-rate boundaries, our approach exposed looping more

thoroughly than How's scheme. Furthermore, by selecting subgraphs based on repetition count,

we reduced datamemory requirements, an aspectthatHow's scheme did not address.

Clustering asubgraph must bedone with care since certain groupings cause deadlock. For

example, combining C and Din figure 2 results in a graph for which no periodic schedule exists

because the grouping "hides" a critical delay. Similarly, deadlock can be introduced when a

grouping encapsulates asource actor. Thus, for each candidate subgraph, we must first verify that

its consolidation does notresult in an unschedulable graph. One way to perform this check is to

attempt to schedule the new SDF graph [13], but this approach is extremely time consuming if a

large number ofclustering candidates must be considered. In [4], we employed acomputationally

more efficient method inwhich we maintained the subgraph hierarchy on the acychc precedence

graph rather than the SDF graph. Thus we could verify whether or not a grouping introduced

deadlock by checking whether ornotit introduced acycle in the precedence graph. Furthermore,

we showed that this check can be performed quickly by applying a reachability matrix, which

indicates for any two precedence graph nodes (invocations) P^ and P2, whether there is a prece

dence path from P.j to P2.

Two limitations surfaced in the approach of [4]. First, the storage cost of thereachability

matrix proved prohibitive for multirate applications involving very large sample rate changes.

Fig. 2. An example of how clustering a subgraph in an SDF graph can result in deadlock.
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Observe that this cost is quadratic in the number of distinct actor invocations (precedence graph

nodes). For example, a rasterization actor that decomposes an image into component pixels may

involve a sample-rate change on the order of 250000 to 1. If the rasterization output is connected

to a homogenous block (for example, a gamma level correction), this block alone will produce on

the order of (250000)2 = 6.25xl010 entries in the reachability matrix! Thus very large rate

changes preclude straightforward application of the reachability matrix; this is unfortunate

because looping is most important precisely for such cases. The second limitation in [4] is its fail

ure to process cyclic paths in the graph optimally. Since cyclic paths limit looping, first priority

should be given to preserving the fiill amount of looping available within the strongly connected

components [1] of the graph. As figure 3 illustrates, clustering subgraphs based on repetition

count alone does not fully carry out this goal.

In this paper, we develop a class of scheduling algorithms that extract the most compact

looping structure from the cyclic paths in the SDF graph. This scheduling framework is based on

a topological quality that we call"tight interdependence". We show that for SDF graphs thatcon

tain no tightly interdependent subgraphs, our framework always synthesizes the most compact

looping structures. Interestingly and fortunately, a large majority of practical SDF graphs seem to

fall into this category. Furthermore, for this class of graphs, our technique does notrequire use of

the reachability matrix, the precedence graph, orany other unreasonably large data structure. For

10D

(a) (b) (c)

Fig. 3. This example illustrates how clustering subgraphs based on repetition count alone can
conceal looping opportunities that occur within cyclic paths. Part (a) depicts a multirate SDF
graph. Two pairwise clusterings lead to graphs that have schedules -- {A, B}, having repetition
count 2, and {A, C}, having repetition count 5 the clustering of Band C results in deadlock)
Clustering the subgraph with the highest repetition count yields the hierarchical topology in (b
for which the most compact schedule is (2B)(2QAC)BQACB(2QAr) => (2B)(2(ffi)cW2MC-B(2(2A)C). Clustering the subgraph {A,B} of lower regititionACcou7i"^ d7picf<3Fpart(Sds
the more compact schedule (2QAB)(5C) => (2(2B)(5A))(5C). Khy
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Background

graphs that contain tightly interdependent subgraphs, we show that our scheduling framework

naturally isolates the minimal subgraphs that require special care. Only when analyzing these

"tightly interdependent components", do we need to apply reachability matrix-based analysis, or

some other explicit deadlock-detection scheme. We emphasize that the techniques developed in

this paper extend the developments of[4] by improving the analysis ofcyclic subgraphs. In par

ticular, our earlier method still applies to acyclic subgraphs for organizing looping while keeping
buffering requirements low. However, when it is used only for acyclic graphs, deadlock is not an

issue, and thereachability matrix is no longer required.

An important aspect of our scheduling framework is its flexibility. By modularizing the

framework into "sub-algorithms", we allow other scheduling objectives to be integrated inaman

ner that does not conflict with code compactness objectives. Also, we show how decisions that a

scheduler makes about grouping, or "clustering", computations together can be formally evalu

ated in terms oftheir effects on program compactness. As an example, we demonstrate avery effi

cient clustering technique for increasing the amount of buffering that is done in machine registers,

as opposed to memory, and we prove that this clustering strategy preserves codes space compact
ness for a large class of SDF graphs.

Because we focus on the fundamental limits ofprogram compactness via loops, the meth

ods developed in this paper cannot be directly applied to the general parallel processing case.

However, we believe that these techniques will be helpful to understanding problems that com

bine parallelizationand looping objectives, and we are currently investigating such problems. The

techniques of this paper do apply to targetsystems that exploit instruction-level parallelism, such

as superscalar and pipelined architectures.

2 Background

An SDF program is normally translated into a loop, whereeach iteration of the loop exe

cutes one cycle of a periodic schedule for the graph. In this section we summarize important prop

erties of such periodic schedules. Most of the terminology introduced in this and subsequent

sections is summarized in the glossary at the end of the paper.
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For an SDF graph G, we denote the set of nodes in G by N(G) and the set of arcs in G by

A(G). For an SDF arc oc, we let source(a) andsink(a) denotethe nodes at the source and the sink

of oc; we letp(oc) denote the numberof samples produced bysource(a), c(cc) denotethe number of

samples consumed bysinkia), and we denote the delay ona by <fe/ay(a).We define a subgraph

of G to be that SDF graph formed by any Z c N(G) together with the set of arcs {a GA(G) Isour-

ce(oc), sink(a) € Z}. We denote the subgraph associated with the subset of nodes Z by

subgraph(Z, G); if G is understood, we may simply writesubgraph(Z). Finally, if N^ and N2 are

two nodes in an SDF graph, we say that N-j is a successor of N2 if there is an arc directed from N2

to N^ we say that Nj is apredecessor of N2 if N2 is a successor of N^ and we say that N-, and N2

are adjacentif N-\ is a predecessor or successor of N2.

We can think of each arc in G as having a FIFO queue that buffers the tokens that pass

through the arc. Each FIFO contains an initial numberof samplesequal to the delay on the associ

ated arc. Firing a node in G corresponds to removing c(cc) tokens from the head of the FIFO for

each input arc oc, and appending p(g>) tokens to the FIFO for each output arc (3. After a sequence of

0 or more firings, we say that a node isfireable if there are enough tokens on each input FIFO to

fire the node. An admissablesequential schedule ("sequential" is used to distinguish this type of

schedule from a parallel schedule) for G is a finite sequence S = S^ S2 ... SN of nodes in G such

that each Sj is fireable immediately after S1? S2,..., SM have fired in succession.

We say that a sequential schedule S is a periodic schedule if it invokes each node at least

once and produces no net change in the number of tokens on any arc's FIFO — for each arc cc,

(the number of times source(a) is fired inS)xp(a) = (the number of times sink(a) is fired in S)x

c(cc). A periodic admissable sequential schedule (PASS) is a schedule that is both periodic and

admissable. We will use the term valid schedule to describe a schedule that is a PASS, and the

termconsistent to describe an SDFgraph thathasa PASS. Except where otherwise stated, wedeal

only with consistent SDF graphs in this paper.

In[13], it is shown that for each connected SDF graph G, there isa unique minimum num

ber oftimes that each node needs to be invoked inaperiodic schedule. We specify these minimum

firing rates by avector ofpositive integers qG, which is indexed by the nodes inG, and we denote
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the component of qG corresponding to a nodeN by qG(N). Every PASS for G invokes each node

N a multiple ofqQ(N) times, and corresponding to each PASS S, there is a positive integer /(S)

called the blockingfactor ofS, such that S invokes each N € N(G) exactly /qG(N) times. We call

qG the repetitions vector ofG. For example in figure 3,qG(A) = 10, qG(B) =4, and qG(C) =5. An

efficient algorithm tocompute qG ispresented inthe appendix. The following properties ofrepeti
tions vectors are established in [13]:

Fact 1:The components of arepetitions vector are collectively coprime.

Fact 2: The balance equation qG(source(a)) xp(cc) = qG(sink(a)) x c(oc) is satisfied foreach arc

ocinG.

Given a subset Zofnodes ina connected SDF graph G, we define qG(Z) =go/({qG(N) IN

GZ}), where gcd denotes the greatest common divisor. We can interpret qG(Z) as the number of

times that G invokes the "subsystem" Z. We will use the following property of connected sub

systems which is derived in [3].

Fact 3: IfGis a connected SDF graph, and Zisaconnected subset ofN(G), then for each NGZ,

qG(N) = qQ(Z)q8Ubgmph(z)(N).

For our hierarchical scheduling approach, we will apply the concept of clustering a sub

graph. This process is illustrated in figure 3. Here subgraph({A, C}) of (a) is clustered into the

hierarchical node QAC, and the resulting SDF graph is shown in (b). Similarly, clustering

subgraph({A, B}) results in the graph of (c). Each input arc a to a clustered subgraph P is

replaced by an arc a' havingp(cc') =p(oc), and c(cc') = c(cc) x qG(sink(a))/qG(N(P))t the number of

samples consumed from a in one invocation ofsubgraph P. Similarly wereplace each output arc

p with p such that c(p') = c(p), andp(P') =p(P) x qG(source(a))/qG(N(P)). The following proper

ties of clustered subgraphs are proven in [3]

Fact 4: SupposeG is a connectedSDF graph, Z is a subsetof nodesin G, G' is the SDF graph that

results from clustering subgraph(Z) into the hierarchicalnode Q and Sf is a PASS for G\ Suppose

that Sz is a PASS for subgraph(Z) such that for each N G Z, Sz invokes N (qG(N)/qG(Z)) times.
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LetS* denote theschedule thatresults from replacing eachappearance of Q. in S withSz. Then S*

is a PASS for G.

Fact 5: Suppose G is a connected SDF graph, Z is a subset of nodes in G, and G' is the SDF graph

that results from clustering subgraph(Z) into the node £1 Then qG<Q)= qG(Z); and for any node N

in G' other that Q qG-(N) = qG(N).

Given a directed graph G, we say that G is strongly connected if for any pair of distinct

nodes A, B in G, there is a directed path from A to B and a directed path from B to A. We say that

a strongly connected graph is nontrivial if it contains more than one node. Finally, a strongly con

nected component of G is a subset of nodes Z such that subgraph(Z, G) is strongly connected, and

there is no strongly connected subset of N(G) that properly contains Z. For example {A, B} and

{C} are the strongly connected components of figure 3(a).

Similarly, we define a connectedcomponent of a directed graph to be a maximal subset of

nodes Z such that if A and B are distinct members of Z, then there is a directed path from A to B,

or there is a directed path from B to A, or both. For example in figure 4, the connected compo-

® © d^—®

Fig. 4. A directed graph that has three connected components.

nents are {A}, {C, D, F}, and {B, E}.

Given a connected SDF graph G, and an arc a inG, we define total_consumed(a, G) tobe

the total number of samples consumed from a in a minimal schedule period for G. Thus total -

consumed(a, G)=qG(sink(a))c(a). Finally, given an SDF graph G, a looped schedule S for G and

anode NinG, we define appearances^, S) to be the number oftimes that Nappears inS, and we

say that Sis asingle appearance schedule iffor each NGN(G), appearances^, S) = 1. For
example, consider the two schedules S, =CA(2B)C and S2 =A(2B)(2C) for figure 1. We have
appearances(C, SO =2; appearances(C, S2) =1; S, isnot asingle appearance schedule because C

appears more than once; and S2 is a single appearance schedule. Single appearance schedules
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Subindependence

form the class of schedules that allow in line code generation without any code space or subrou

tine penalty.

3 Subindependence

Our scheduling framework for synthesizing compact nested loop structures is based on a

form of precedence independence, which we call subindependence.

Definition 1: Suppose that Gis a connected SDF graph. If Z\ and Z2 are disjoint subsets ofN{G)

we say that "Z\ is subindependent ofZg in G" if for every arc a inGsuch that source(a) GZ2

and sink(a) E Z15 we have delayid) ^ total_consumed{a, G). We occasionally drop the "in G"

qualification if G is understood from context. If {Z^ is subindependent of Z2) and (Z^ u Z2 =

N(G)), then we write (Z^ IG Z2), and we say thatZ^ is subindependent in G.

Thus Zi is subindependent of Z2 if no samples produced from Z2 are consumed by Z1 in

the same schedule period that they are produced; and Z^ IG Z2 if Z^ is subindependent ofZ2, and

Z-\ and Z2 form a partition of the nodes in G. For example, consider figure 3(a). Here qG(A, B, C)

= (10, 4, 5), and the complete set of subindependence relationships is (1) {A} is subindependent

of {C}; (2) {B} is subindependent of {C}; (3) {A, B} IG C; and {C} is subindependent of {B}.

The following property of subindependencefollows immediately from definition 1.

Fact 6: Suppose that G is a strongly connected SDF graph and X, Y, and Z are disjoint subsets of

N(G). Then

(a) (X is subindependent of Z) and (Yis subindependent of Z) =>(XuY) is subindependent of Z.

(b) (X is subindependent of Y) and (X is subindependentof Z) => X is subindependent of (YuZ).

Our scheduling framework is based on the following condition for the existence of a sin

gle appearance schedule, which is developed in [3].

Fact 7: An SDF graph has a valid single appearanceschedule iff for each nontrivial strongly con

nected component Z, there exists a partition X, Y of Z such that X \subgraph{Z) Y, and

subgraph(X) and subgraph^) each have single appearance schedules.
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A slightly different form of this condition was developed independently by Ritz et al. in

[21], which discusses single appearance schedules in the context of minimum activation sched

ules. For example, the schedule A(2CB)for figure 1results in 5 activationssince invocationsof C

and B are interleaved. In contrast, the schedule A(2B)(2C) requires only one activation per actor,

for a total of 3 activations. In the objectives of [21], the latter schedule is preferable because in

that code generation framework thereis a large overhead associated with each activation. How

ever such overhead can often be avoided with careful instruction scheduling and register alloca

tion, as [18] demonstrates. We prefer the former schedule, which has less looping overhead and

requires less memory for buffering.

Fact 7 implies that for an SDF graph to have a single appearance schedule, we must be

able to decompose each nontrivial strongly connected component into two subsets in such a way

that one subset is subindependent of the other. Another implication of fact 7 is that every acychc

SDF graph has a single appearance schedule. Wecan easily construct a single appearance sched

ule for an acychc SDF graph. We simply pick a root node N^ schedule all of its invocations in

succession; remove N^ from the graph and pick a root node N2 of the remaining graph; schedule

all of N2's invocations in succession; and so on until we have scheduled all of the nodes. By this

procedure, we get a cascade of loops (qG(Ni) Ni) (qG(N2) N^ ... (qG(N|<) N,<), which gives us a

single appearance schedule.

Definition 2: Suppose thatG is a nontrivial strongly connected SDFgraph. Thenwe say thatG is

loosely Interdependent if N(G) can be partitioned into Zy and Z2 such that Z, \G Z^. We say

that G is tightly interdependent if it is not loosely interdependent.

For example, consider the strongly connected SDFgraph in figure 5. Therepetitions vec

tor for this graph is qG(A, B, C) =(3,2,1). Thus the graph is loosely interdependent if and only if

(di £ 6) or (d2 £ 2) or (d3£ 3).

In this section we have introduced topological properties ofSDFgraphs thatarerelated to

the existence of single appearance schedules. In the following section we use these properties to

develop our scheduling framework and to demonstrate some ofits useful qualities.
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The Class of Loose Interdependence Algorithms

The Class of Loose Interdependence Algorithms

The properties ofloose/tight interdependence are important for organizing loops because,

as we will show, the existence of a single appearance schedule is equivalent to the absence of

tightly interdependent subgraphs. However, these properties are useful even when tightly interde

pendent subgraphs are present. The following definition specifies how to use loose interdepen
dence to guide the looping process.

Definition 3: Let A^ be any algorithm that takes as input a nontrivial strongly connected SDF

graph G, determines whether Gis loosely interdependent, and ifso, finds asubindependent subset

of N(G). Let A2 be any algorithm that finds the strongly connected components of a directed

graph. Let A3 be any algorithm that takes an acychc SDF graph and generates a valid single

appearance schedule. Finally, let A4 be any algorithm that takes a tightly interdependent SDF

graph, and generates avalid looped schedule of blocking factor 1. We define the algorithm L(A1s
A2, A3, A4) as follows:

Input: a connected SDF graph G.
Output: a valid unit-blocking-factor looped schedule SL(G)
for G.

Step 1: Use A2 to determine the nontrivial strongly connected
components Z1r Z2, ..., zs of G.

Step2: Cluster Zu Z2, ..., Z8 into nodes Clu Q.2t ..., Qs
respectively, and call the resulting graph G'.
This is an acyclic SDF graph.

Step3: Apply A3 to G'; denote the resulting schedule S' (G) .
Step 4:

Fig. 5. An illustration of loose and tight interdependence. Here d1s dp, and d3 represent the num
ber of delays on the associated arcs. This SDF graph is tightly interdependent ifand only if (di <
6), (d2<2),ara/(d3<3).
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The Class of Loose Interdependence Algorithms

for i = l, 2, ..., s
Apply At to subgraph (Zj);
if X, Y £Zj are found such that X \subgraph (Zt) Y,
then

• Determine the connected components X-|,X2, ...,XV of

subgraph (X), and the connected components
Y1fY2, ...fYw of subgraph (Y) .
• Recursively apply algorithm L to construct the

schedules

Sx= (qo(Xi) SL(subgraph(X^ )... (qG(Xv) SL(subgraph(Xv)),
Sy= (qQ (Y!) SL (subgraph (Y^))... (qG (Yw) SL (subgraph (Yw)) .
• Replace the (single) appearance of Q\ in Sf (G)
with Sx Sy.

else (subgraph (Zj) is tightly interdependent)
•Apply A4 to obtain a valid schedule Sj for
subgraph (Zj) .
•Replace the single appearance of Qj in S with
(qG(Zj) Sj) .

end-if

end-for

The for-loop replaces each "Q" in Sf(G) with a valid
looped schedule for subgraph (Zj) . From repeated application of
fact 4, we know that these replacements yield a valid looped

schedule S|_ for G. We output Sl.B

Remark 1: Observe that step 4 does not insert or delete appearances of actors that are not

contained in a nontrivial strongly connected component Zj. Since A3 generates a single appear

ance schedule for G\ we have that for every node N that is not contained in a nontrivial strongly

connected component of G, appearances^, SL(G)) = 1.

Remark 2: If C is a nontrivial strongly connected component of G and N6C, then since

SL(G) is derived from S'(G) by replacing the single appearance of each Qt, we have appearanc

es^, SL(G)) = appearances^, SL(subgraph(C))).

Remark 3: For each strongly connected component Z* whose subgraph is loosely interde

pendent, Lpartitions 7^ into Xand Ysuch that X \subgraph(Z£ Y, and replaces the single appear

ance ofQk in S*(G) with Sx Sy. If Nis a member ofthe connected component Xj, then N€ Y, so

appearances^, Sx Sy) =appearances(N, SL(subgraph(X^)). Also since Ncannot be in any other
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strongly connected component besides 7^, and since S'(G) contains only one appearance ofQk,
we have appearances^, SL(G)) =appearances^, Sx Sy). Thus, for / = 1, 2,..., v, N GXj =>
appearances^, SL(G)) = appearances^, SL(subgraph(X^)). By the same argument, we can

show that for / = 1, 2,..., w, N € Yj => appearances^, SL(G)) = appearances^, SL(subgra-
ph(Y{))).

L(*» •> •» •) defines afamily of algorithms, which we call loose Interdependence algo
rithms because they exploit loose interdependence to decompose the input SDF graph. Since
nested recursive calls decompose agraph into finer and finer strongly connected components, it is
easy to verify that any loose interdependence algorithm always terminates. Each loose interdepen
dence algorithm X=L^, A2, A3, A4) involves the "sub-algorithms" A1s A2, A3, and A4, which
we call, respectively, the subindependence partitioning algorithm ofX, the strongly connected
components algorithm ofA, the acyclic scheduling algorithm ofk, and the tight scheduling algo
rithmofk.

We will apply a loose interdependence algorithm to derive anonrecursive necessary and
sufficient condition for the existence of a single appearance schedule. First, we need to introduce

two lemmas.

Lemma 1: Suppose Gis aconnected SDF graph; Nis a node in Gthat is not contained in any
tightly interdependent subgraph ofG; and Xis aloose interdependence algorithm. Then Nappears
only once in SX(G), the schedulegenerated by X.

Proof. From remark 1, if N is not contained in a nontrivial strongly connected component ofG,

the result is obvious, so we assume, without loss of generality, that N is in some nontrivial

strongly connected component H^ of G. From our assumptions, subgraph^) must be loosely

interdependent, so Xpartitions HA into X and Y, where X Isubgraph^) Y. Let H/ denote that

connected component of subgraphQi) or subgraph^) that contains N. From remark 3, appear-

ances(N, SX(G)) = appearances^, Sx(subgraph(fi.^))).

From our assumptions, all nontrivial strongly connected subgraphs of U{ that contain N

are loosely interdependent. Thus, if N is contained in a nontrivial strongly connected component
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H2 of Hi', then Xwill partitionH2, and we willobtain a propersubsetH2 of Hi' such that appear-

ances(N, Sx(subgraph(H^))) = appearances(N, Sx(subgraph(U2))). Continuing in this manner,

we get a sequence H-j1, H2f,... of subsets of N(G) such that each Hj' is a proper subset of Hh', N is

contained in each Hj1, and appearances^, Sk(G)) =appearances(N, Sx(subgraph(H^))) =appear-

ances(N, Sk(subgraph(¥L2))) = •••• Since each Hjf is a strict subset of its predecessor, we can con

tinue this process only a finite number, say m, of times. Then N € Hm\ N is not contained in a

nontrivial strongly connected component of subgraph(H„j), and appearances^, S^(G)) =

appearances^, ^(subgraphijti^))). But from remark 1, S^subgraphi^^)) contains only one

appearance of N. QED.

Lemma 2: Suppose that G is a strongly connected SDF graph, P £ Af(G) is subindependent in G,

and C is a strongly connected subset ofN(G) such thatCnP*CandCnP*0. Then C n P is

subindependent in subgraph(C).

Proof. Suppose that a is an arc directed from a member of (C-(Cn P)) to a member of (CnP).

By the subindependence of P in G, delay(a) £ c(a) x qG(sink(a)), and by fact 3, qG(sink(a)) £

qSubgn3pnc)(sink(a)). Thus, delay(a) £ c(a) x q8Ubgmph(C)(sink(a)). Since this holds for any a

directed from (C-(Cn P)) to (C n P), we conclude that (C n P) is subindependent in C. QED.

Corollary 1: Suppose that G is a strongly connected SDF graph,Z^ and Z2 are subsetsofN(G)

such that Zi IG Z2, and T is a tightly interdependent subgraphof G. ThenN(J) c z^ or N(J) £ z2.

Proof (By contraposition.) If N(J) has nonempty intersection with both 7^ and Z2, then from

lemma 2, N(J) n Zi is subindependent in T, so T is loosely interdependent. QED.

Theorem 1:Suppose that Gis a strongly connected SDF graph. Then Ghas a single appearance

schedule iff every nontrivial strongly connected subgraph ofGis loosely interdependent.

Proof. <= Suppose every nontrivial strongly connected subgraph ofGis loosely interdependent,

and let Xbe any loose interdependence algorithm. Since no node in Gis contained in a tightly
interdependent subgraph, it follows from lemma 1that SX(G) is a single appearance schedule for
G.
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=> Suppose that G has a single appearance schedule and that C is a strongly connected

subset ofN(G). Set Zq =G. From fact 7, there exist X0, Y0 £ Zq such that Xq \subgraph(Z0) Y0,
and subgraph(X0) and subgraph(Y0) both have single appearance schedules. IfX0 and Y0do not

both intersect C then C is completely contained in some strongly connected component 7^ of
subgraph(Xo) orsubgraph(Y0). We can then apply fact 7 topartition ZA into X,,YU and continue

recursively in this manner until we obtain a strongly connected 7* £ N(G), with the following
properties: Zk can be partitioned into Xk and Yk such that Xk \subgraph(Z^ Yk; Cc z^; and (Xk n
C; and (Yk n C) are both nonempty. From lemma 2, (X,< n C) issubindependent insubgraph(C),
so C must be loosely interdependent. QED.

Corollary 2: Given a connected SDF graph G, any loose interdependence algorithm will obtain
a single appearance schedule if one exists.

Proof. If a single appearance schedule for Gexists, then from theorem 1, Gcontains no tightly
interdependent subgraphs. In other words, no node inGis contained ina tightly interdependent

subgraph ofG. From lemma 1, the schedule resulting from any loose interdependence algorithm
contains only one appearancefor each actor in G. QED.

Thus, a loose interdependence algorithm always obtains an optimally compact solution

when a single appearance schedule exists. When a single appearance schedule does not exist,

strongly connected graphs are repeatedly decomposed until tightly interdependent subgraphs are

found. Ingeneral, however, there may be more than one way to decompose N(G) into two parts so

that one of the parts is subindependent of the other. Thus, it is natural to ask the following ques

tion: Given two distinct partitions {Z^ Z2} and {Zj\ Z{\ such that ZA \G 7^ and Zy \G Z£, is it

possible thatoneof these partitions leads to a more compact schedule than theother? Fortunately,

as we will show in the remainder of this section, the answer to this question is "No". In other

words, any two loose interdependence algorithms that use the same tight scheduling algorithm

always lead to equally compact schedules. The key reason is that tight interdependence is an addi

tive property.
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Lemma 3: Suppose that G is a a connectedSDF graph,Y and Z are subsets ofN(G) such that (Y

n Z)* 0, andsubgraph^) andsubgraph^) are bothtightly interdependentThensubgraph^ u

Z) is tightly interdependent.

Proof. (By contraposition.) Let H=YuZ, and suppose thatsubgraph^) is loosely interdepen

dent. Then there exist Hi and H2such that H = Hi u H2 and Hi \subgraph(H) H2. From Hi u H2 =

YuZ, and Y n Z* 0, it is easily seenthatHi and H2 both have a nonempty intersection withY,

or they bothhave a nonempty intersection withZ. Without lossof generality, assume that Hi n Y

* 0 andH2 n Y * 0. From lemma 2, (Hi n Y)is subindependent insubgraph^), andthus subg

raph^) is not tightly interdependent. QED.

Lemma 3 implies that each SDF graph G has a unique set {Ci, C2, ..., Cn} of maximal

tightly interdependent subgraphs such that i*j => N(C\)n N(C) =0, and every tightly interdepen

dent subgraph in G is contained in some Q. We call each iV(Cj) a tightly interdependent component

of G. It follows from theorem 1 that G has a single appearance schedule iff G has no tightly inter

dependent components. Furthermore, since the tightly interdependent components are unique, the

performance of a loose interdependence algorithm, with regards to schedule compactness, is not

dependent on the particular subindependence partitioning algorithm, the sub-algorithm used to

partition the loosely interdependent components. The following theorem develops this result.

Theorem 2: Suppose G is an SDF graph that has a PASS,N is a node in G, and A, is a loose inter

dependence algorithm. If N is not contained in a tightly interdependent component of G, then N

appears only once in SX(G). On the otherhand, if N is contained in a tightly interdependent com

ponent T then appearances(N, SX(G)) = appearances^, Sx(subgraph(J))) — the number of

appearances of N is determined entirely by the tightscheduling algorithm of X.

Proof. If N is not contained in a tightly interdependent component of G, thenNis notcontained in

any tightly interdependent subgraph. Then from lemma 1,appearances^, SX(G)) = 1.

Now suppose that Nis contained in some tightly interdependent component T ofG.If T=

N(G) we are done. Otherwise we set M0 =N(G), and thus T* M0; by definition, tightly interde
pendent graphs are strongly connected, so Tis contained in some strongly connected component
C of subgraph(MQ).
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IfT is aproper subset of C, then subgraph(C) must beloosely interdependent, since other

wise subgraph(J) would not be a maximal tightly interdependent subgraph. Thus, Xpartitions

subgraph(C) into X and Y such that X ]subgraph{C) Y. We set Mi to be that connected component

ofsubgraph(X) or subgraph(Y) that contains N. Since X, Y partition C, Mi isaproper subset of
Mo. Also, from remark 3, appearances^, Sx(subgraph(M0))) = appearances^, Sx(sub-
graphQAA))), and from corollary 1,N(J) £ Mi.

On the other hand, ifT=C, then we set Mi =T. Since T* M0, Mi is aproper subset ofM0;
from remark 2, appearances^, Sx(subgraph(M0))) =appearances^, Sx(subgraph(M^))); and
trivially, Tc Mi.

IfT* Mi, then we can repeat the above procedure to obtain aproper subset M2 ofMi such
that appearances^, Sx{subgraph(M^))) =appearances^, S^subgraph^^)), and N(J) £ M2.
Continuing this process, we get asequence Mi, M2,.... Since each Mj is aproper subset ofits pre
decessor, we cannot repeat this process indefinitely — eventually, for some k ^ 0, we will have

N(J) = Mk. But, byconstruction, appearances^, SX(G)) =appearances^, Sx(subgraph(M0))) =

appearances^, Sx(subgraph(M,))) = ... =appearances^, Sx(subgraphQA^)); and thus appear
ances^, SX(G)) =appearances(N, Sx(subgraph(J))). QED.

Theorem 2 states that the tight scheduling algorithm is independent of the subindepen

dence partitioning algorithm, and vice-versa. Anysubindependence partitioning algorithm makes

sure that there is only one appearance for each actor outside the tightly interdependent compo

nents, and the tight scheduling algorithm completely determines the number of appearances for

actors inside the tightly interdependent components. For example, if we develop a new subinde

pendence partitioning algorithm thatis more efficient in some way (e.g. it is faster or minimizes

data memory requirements), we can replace it for any existing subindependence partitioning algo

rithm without changing the"compactness" of the resulting schedules — we don'tneed to analyze

its interaction with therestof the loose interdependence algorithm. Similarly, if we develop anew

tight scheduling algorithm that schedules any tightly interdependent graph more compactly than

the existing tight scheduling algorithm, we are guaranteed that using the new algorithm instead of

the old one will lead to more compact schedules overall.
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Computational Efficiency

The complexity of a loose interdependence algorithm Xdepends on its subindependence

partitioning algorithm AsP, strongly connected components algorithm X<.c, acyclic scheduling algo

rithm Xqq, and tight scheduling algorithm Xts. From the proof of theorem 2, we see that X& is

applied exactly once for each tightly interdependent component. For example, the technique of

[4] can be applied as the tight scheduling algorithm. This technique involves a hierarchical clus

tering phase that has time complexity1 0(number of arcs x number of nodes), followed by a
scheduling phase that is linear in the total number of firings. One drawback of this algorithm, as

mentioned in section 1, is that it requires a reachability matrix, which has quadratic storage cost.

However, we greatly reduce this drawback by restricting application of the algorithm to only the

tightly interdependent components. Weare currently investigating other alternatives to scheduling

tightly interdependent SDF graphs.

The other subalgorithms, XqC, A^g, and AgP, are successively applied to decompose an SDF

graph, and the process is repeated until all tightly interdependent components are found. In the

worst case, each decomposition step isolates a single node from the current n-node subgraph, and

the decomposition must be recursively applied to the remaining (n - 1) - node subgraph. Thus, if

the original program has n nodes, n decomposition steps are required in the worst case.Tarjan [23]

first showed that the strongly connected components of a graph can be found in 0(m) time, where

m = tf2ax(number of nodes, number of arcs). Hence XqC can be chosen to be linear, and since at

most n <. m decomposition steps are required, the total time that such a XqC accounts for in X is

0(m2). In section 3 we presented a simple linear-time algorithm that constructs a single appear
ance schedule for an acyclic SDF graph. Thus X& can be chosen such that its total time is also

0(m2).

The following theorem presents a simple topological condition for loose interdependence

that leads toa linear subindependence partitioning algorithm XqP.

1. In the worst case, every arc corresponds to acluster, and each clusterization step requires areachability-matrix update that is
linear in the number of nodes.

19 of 33



Computational Efficiency

Theorem 3: Suppose that G is a nontrivial strongly connected SDF graph. From G, remove all

arcs a for which delay{a) £ c(a) XqG(sink(a))t and call the resulting SDF graph G\ Then G is

tightly interdependent if and only if Gf is stronglyconnected.

For example, suppose that Gis the strongly connected SDF graph in figure 6(a). The repe

titions vector for G is qG(A, B,C, D) = (1,2, 2,4). This graph is loosely interdependent if dt £ 2,

which corresponds to {C, D} IG {A, B}, orifd2£4, which corresponds to {A, B} IG {C, D}. The

corresponding G"s are depicted atthe bottom offigure 6: Figure 6(b) shows G when di £ 2and d2

< 4, and figure 6(c) shows G* when d2 £ 4 anddi < 2. Observe that in both of thesecases,G' is not

strongly connected.

Proof. We prove both directions by contraposition.

=> Suppose that G' is not strongly connected. Then W(G') can be partitioned into Zi and Z2

such that there is no arc directed from a member of Z2 to a member of Zi in G\ Since no nodes

were removed in constructing G', Zi and Z2partitionN(G). Also, none of the arcs directed from

Z2 to Zi in G occur in G\ Thus, by the construction of G\ for each arc a in G directed from a

Fig. 6. An illustrationof theorem 3.
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member of Z2 to a member of Z1? we have delay(a) ^ c(cc) x qG(sink(a)). It follows that Zi IG Z2,

so G is loosely interdependent.

<= Suppose that G is loosely interdependent. Then N(G) can be partitioned into Z^ and Z2

such that Zi |G Z2. By construction of G', there are no arcs in G' directed from a member of Z2 to

a member of Zi, so G' is not strongly connected. QED.

Thus, Agp can be constructed as follows: (1) Determine C|q(N) for each node N; (2)

Remove each arc a whose delay is at least c(ct) x qG(sink(a))', (3) Determine the strongly con

nected components of the resulting graph; (4) If the entire graph is the only strongly connected

component, then G is tightly interdependent; Otherwise (5) cluster the strongly connected compo

nents — the resulting graph is acyclic and has at least two nodes. Any root node of this graph is

subindependent of the rest of the graph. The appendix presents an algorithm that performs (1) in

time 0{m); it is obvious that (2) is O(m); Tarjan's algorithm allows 0(m) for (3); and the checks in

(4) and (5) are clearly O(m) as well. Thus, we have a linear A<.p, and the total time thatXspends in

Agp is 0(m2).

We have specified AsP, AsC, Aas, and Ats such that each accounts for 0(m2) time, where mis

/7zax(number of nodes, number of arcs). The resulting loose interdependence algorithm is thus of

quadratic worst-case complexity. Note that our worst case estimate is conservative — in practice

only a few decomposition steps are required to fully schedule a strongly connected subgraph,

while our estimate assumes n steps, where n is the number of nodes in the input graph. For most

applications, therunning time of the algorithm will scale linearly with thesize of the input graph.

6 Clustering to Make Data Transfers More Efficient

In this section, we present a useful clustering technique for increasing the frequency of

data transfers that occur through machine registers rather than memory, and we prove that this

technique does not interfere with the code compactness potential of aloose interdependence algo
rithm —this clustering preserves the properties ofloose interdependence algorithms discussed in
section 4.
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Figure 7 illustrates two waysin whicharbitrary clustering decisions canconflict with code

compactness objectives. Observe that figure 7(a) is an acyclic graph so it must have a single

appearance schedule. Figure 7(b) is the hierarchical SDF graph that results from clustering A and

Bin figure 7(a). Itiseasy to verify that this isatightly interdependent graph. In fact, the only min

imal periodic schedule for figure 7(a) that we can derive from this clustering is CQC => CABC.

Thus the clustering of A and B in figure 7(a) cancels the existence of asingle appearance sched
ule.

In figure 7(c), {A, B} forms a tightly interdependent component and C is not contained in

any tightly interdependent subgraph. From theorem 2, we know that any loose interdependence

algorithm will schedule figure 7(c) in such awaythat C appears only once. Now observe that the

graph that results from clustering A and C, shown in figure 7(d), is tightly interdependent. It can

be verified that the most compact minimal periodic schedule for this graph is (5 Q)B(5 Q), which

leads to the schedule (5 AC)B(5 AC) for figure 7(c). By increasing the "extent" of the tightly
interdependent component {A, B} to subsume C, this clustering decision increases the minimum

number of appearances of C in the final schedule.

Thus we see that a clustering decision can conflict with optimal code compactness if it

introduces anew tightly interdependent component or extends an existing tightly interdependent

component. In this section we present aclustering technique of great practical use and prove that

it neither extends nor introduces tight interdependence. Our clustering technique and itscompati

bility with loose interdependence algorithms is summarized by the following claim: Clustering

two adjacent nodes A and B in an SDF graph does not introduce or extend a tightly interdepen

dent component if (a) Neither A norB is contained in a tightly interdependent component; (b) At

2 D 1

O
(a) (b)

Fig.7. Examples of how clustering can conflictwith the goal of code compactness.
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least one arc directedfrom A to B has zero delay; (c) A and B are invoked the same number of

times in aperiodic schedule; and (d) B has no predecessors other than A or B. The remainder of

this section is devoted to proving this claim and explaining the corresponding clustering tech

nique.

We motivate our clustering technique with the example shown in figure 8. One possible

single appearanceschedule for figure 8(a) is (10X)(10 Y)ZV(IOW). This is the minimum activa

tion schedule preferred by Ritz et al. [21]; however, it is inefficient with respect to buffering. Due

to the loop that specifies ten successive invocations of X, the data transfers between X and Y can

not take place in machine registers and 10 words of data-memory are required to implement the

arc connecting X and Y. However, observe that conditions (a)-(d) of our above claim all hold for

the adjacent pairs {X, Y} and {Z, V}. Thus, we can cluster these pairs without cancelling the

existence of a single appearance schedule. The hierarchical graph that results from this clustering

is shown in figure 8(d); this graph leads to the single appearance schedule (10 Q2)&i(10 W) =>

(10 XY)ZV(10 W). In this second schedule, each sample produced by X is consumed by Y in the

same loop iteration, so all of the transfers between X and Y can occur through a single machine

register. Thus, the clustering of X and Y saves 10 words of buffer space for the data transfers

between X and Y,and it allows these transfers to be performed through registers rather than mem

ory, which will usually result in faster code.

V ) •[«/] HX) *-
10

•® wm& -(y> -0

(a)

(S^ *® 10D -©
"t

(b)

Fig. 8. An example of clustering to increase the frequency of data transfers that occur
through registers rather than memory.
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We will usethefollowing additional notation in the development of this section.

Notation: LetG beanSDF graph and suppose that we cluster a subset Wofnodes in G. We will

referto theresulting hierarchical graph asG\ and we will refer tothenode in G'intowhich Whas

been clustered as Q. For each arc a inG that is not contained insubgraph(W), we denote the cor

responding arc in G' by a'. Finally, ifX£ N(G), we refer to the "corresponding" subset ofA^G*)
as X'. That is, X' consists ofall members ofXthat are not in W; and ifXcontains amember ofW,
then X1 also contains CI

For example, ifGis the SDF graph in figure 7(a), W={A, B}, and a and Prespectively
denote the arc directed from Ato Cand the arc directed from Cto B, then we denote the graph in
figure 7(b) by G\ and inG' we denote the arc directed from Q, toCby a' and the arc denoted from
C to Q. by p. Also, If X = {A, C}, thenX' = {Q, C}.

Lemma 4: Suppose that Gisastrongly connected SDF graph and X,, X2 partitionN(G) such that
X, \G X2. Also suppose that A, Bare nodes inGsuch that A, BGX^ or A, Be X2. Ifwe cluster
W={A, B} then the resulting SDF graph G' is loosely interdependent.1

Proof. Let O denote the setofarcs directed from a node in X2 to a node inX1? and letO' denote

the setof arcs directed from a node in X2' toa node inX^. Since subgraph {A, B} does not con

tain any arcs in O, it follows that O'= {a' Ia € O}. From fact 5,it caneasily beverified that for all

a', total_consumed(a\ G*) = total_consumed{a, G). Now since XA IG X2, we have V a € O,

delay{a) £ total_consumed(a, G). It follows that Va' € <*>', delay(a!) £ total_consumed(a\ G').

We conclude that X/ is subindependent of X2' in G\ QED.

Definition 4: We say that two SDF graphs G^ and G2 are isomorphic if there exist bijective map

pings f,: N(G,) -» N(G2) and f2: A(G,) -> A(Gz) such that for each a GA(G^), source(f2(a)) =

fi(source(a)), ji^f^a)) = f^m^a)), delay(f2(a)) = delay(a), p(f2(a)) =p(a), and c(f2(a)) =

c(a). Intuitively, two SDFgraphs areisomorphic if they differ only by a relabeling of the nodes.

Forexample, the SDFgraph in figure 7(d)is isomorphic tosubgraph({A, B})in figure 7(c).

1. However, G' may be deadlocked even if G is not This will not be a problem in our applicationof lemma 4.
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We will use the following obvious fact about isomorphic SDF graphs.

Fact 8: If Gi and G2 are two isomorphic SDF graphs and G^ is loosely interdependent then G2is

loosely interdependent.

Lemma 5: Suppose that G is an SDF graph, M QN(G), A^e M, and A2is an SDF node that is

contained in N(G) but not in M such that

(1) A2is not adjacent to any member of (M - {A^}), and

(2) for some positive integer k,q(A2) = kq(A^).

Then if we cluster W = {A-,, A2} in G, then subgraph(M - {A^} + {Q}, G') is isomorphic to

subgraphQA, G).

As a simple illustration, consider again the clustering example of figure 7(c)-(d). Let G

and G' respectively denote the graphs of figures 7(c) and (d), and in figure 7(c), let M = {A, B}, AA

= A, and A2= C. Then (M-{A-|}+Q) = {B,Q}, and clearly, subgraph({B,Q), Gf) is isomorphic

to subgraph({A, B}, G).

Proof of lemma 5. Let C = subgraph(M - {A^} + Q, G'), let O denote the set of arcs in

subgraphQA, G), and let O' denote the set of arcs in C. From (1), every arc in C has a correspond

ing arc in subgraphQA, G) and vice-versa, and thus O' = {a11 a G O}. Now from the definition of

clustering a subgraph, we know thatp(a') =p(a) for any arc a G 4> such that source(a) *• AA. If

source(a) = A1? then a is replaced by a1 with source(oC) = Q and p(a') =p(a)q(A1) / gcd(q(A^),

q(A2)). But gcd(q(Ai\ q(A2)) = ^(q(Ai), kq(A,)) = q(Ai), sop(a') =p(a). Thus p(a') =p(a)

for all a G O. Similarly, we can show thatc(ot') = c(ct) for all a G 4>. Thus, the mappings fy M ->

N(C) and f2: 4> -» O' defined by

f1(N)=NifN^A1,f1(A1) = Q;andf2(a) = a,

demonstrates that subgraph(M, G) is isomorphic to C. QED.

Lemma 6: Suppose that Gisastrongly connected SDF graph, and Zisastrongly connected sub

set ofnodes inGsuch that qG(Z) = 1. Suppose Z, and Z2 are disjoint subsets ofZsuch that Zj is
subindependent ofZ2 in subgraph^). Then Zj is subindependent ofZ2 in G.
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Proof. For each arc a directed from a member of7% to amember of7^, we have delay(a) £ total -

consumed(a, subgraph^). From fact 3, qmbgr^m^) =qQ(N) for all NGZ. Thus, for all arcs a
in subgraph(Z), total_consumed{a, subgraph(Z)) = total_consumed(a, G), and we conclude that
Zi is subindependent of Z2 in G. QED.

Lemma 7: Suppose Gisastrongly connected SDF graph, Aand Bare distinct nodes inG, and W

= {A, B} forms a proper subset ofN(G). Suppose also that the following conditions all hold:

(1) Neither Anor Bis contained ina tightly interdependent subgraph ofG.

(2) There is at least one arc directed from Ato B that has nodelay.

(3) B has no predecessors other than A or B.

(4) qG(B) = *qG(C) for some C GN(G),C * B.

Then the SDF graph G' that results from clustering Wisloosely interdependent.

Proof. From (1) Gmust be loosely interdependent, so there exist subsets X1s X2 ofN(G) such that

Xi IG X2. IfA, BGXi or A, BGX2, then from lemma 4, we are done. Now condition (2) pre
cludes the scenario (BeX1sAe X^, so the only remaining possibility is (A GX1s BGX2).
There are two cases to consider here:

(i) Bis not the only member ofX2. Then from (3), (Xi + {B}) IG (X2 - {B}). But A, BG

(Xi + {B}), solemma 4 again guarantees that G' is loosely interdependent.

(ii) Ais not the only member ofXi and X2 ={B}. Thus we have Xi IG {B}, so

Va GA(G), (source(a) =B) => delay(a) Ztotal_consumed(a, G). (EQ1)

Also, since CG Xi we have from (4) that qG(Xi) =$a/({qG(N) INGXi}) =go/({qG(N) I

NG Xi} u {kqG(C)}) =gcd({qG(N) ING Xi) u {qG(B)}) =^({qG(N) ING N(G)}) = 1. That

is,

qG(Xi) = l. (EQ2)

Now if Xi is not strongly connected, then it has a proper subset Z such that there are no

arcs directed from a memberof (Xi - Z) to a member of Z. Furthermore, from condition (3), A £

Z. Thisis true because if Z contained A, then no member of (Xi - Z) would havea directed path
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to B, and thus G would not be strongly connected. Thus AG (Xi -Z), and there are no arcs

directed from (Xi - Z) to Z. So all arcs directed from (Xi - Z + {B}) to Z have node B as their

source. From EQ 1 it follows that Z IG (Xi - Z + {B}). Now A, B G (Xi - Z + {B}), so applying

lemma 4 we conclude that G' is loosely interdependent.

If Xi is strongly connected, we know from condition (1) that there exist Yi, Y2 such that

Yi \subgraph(Xi) Y2. From EQ 2 and lemma 6, Yi is subindependent of Y2in G. Now if A G Yi,

then from condition (3), B is subindependent of Y2 in G, so from fact 6(a), (Yi u {B}) IG Y2.

Applying lemma 4, we see that G' is loosely interdependent. On the other hand, suppose that AG

Y2. From EQ 1, we know that Yi is subindependentof {B} in G. From fact 6(b), it follows that Yi

is subindependent of (Y2 u {B}), so again we can apply lemma 4 to conclude that G' is loosely

interdependent. QED.

Theorem 4: Suppose G is a connected SDF graph, A and B are distinct nodes in G such that B is

a successor of A, and W = {A, B} is a proper subset of N(G). If we cluster W in G then the tightly

interdependent components of G' are the same as the tightly interdependent components of G if

the following conditions all hold:

(1) Neither A nor B is contained in a tightly interdependent component of G.

(2) At least one arc directed from A to B has zero delay.

(3) qG(B) = kqG(A) for some positive integer k.

(4) B has no predecessors other than A and B.

Proof. It suffices to show that all strongly connected subgraphs in G' that contain CI are loosely

interdependent. So we suppose that Z is a strongly connected subset of Af(G') that contains Q, and

we let Z denote the"corresponding" subset in G; that is, Z = 71 - {CI} + {A, B}. Now in Z\ sup

pose that thereis a directed circuit(C -> CI -> D-» C)containing thenode CI From condition (4),

this implies that there is a directed circuit inGcontaining A, C,D, and possibly B. The two possi

ble ways in which a directed circuit in G introduces a directed circuit involving CI in G' are illus

trated in figure 9(a) and (b); thesituation in (c) cannot arise because ofcondition (4).

Now in 71, if one or more of the circuits involving CI corresponds to figure 9(a), then Z

must be strongly connected. Otherwise, all ofthe circuits involving CI correspond to figure 9(b),
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so (Z - {B}) isstrongly connected, and from condition (4), no member of(Z - {A, B}) is adjacent
to B. In the former case, lemma 7 yields the loose interdependence of 71.

In the latter case, lemma 5 guarantees that (Z - {B}) is isomorphic to 71. Since A G(Z -

{B}), and since from condition (1), A is not contained in any tightly interdependent subgraph of
G, it follows that 71 is loosely interdependent QED.

If we assume that the input SDF graph has a single appearance schedule then we can

ignore condition (1). From our observations, this is avalid assumption for the vast majority of
practical SDF graphs. Also, condition (3) can be verified by examining any single arc directed

from A to B; if a is directed from A to B then condition (3) is equivalent top(cc) =kc(a). In our

current implementation, we consider only the case k=1for condition (3) because inpractice, this
corresponds tomostof theopportunities for efficiently using registers.

We see that the clustering process defined by theorem 4 — under the assumption that the

original graph has asingle appearance schedule —requires only local dataflow information, and

thus it can be implemented very efficiently. If our assumption that asingle appearance schedule
exists is wrong, then we can always undo our clustering decisions. Since the assumption is fre
quently valid, and since it leads to a very efficient algorithm, this is the form in which we have

implemented theorem 4. Finally, in addition to making data transfers more efficient, our clustering
process provides a fast way to reduce the size of the graph without canceling the existence the

Fig.9. An illustration of how a directed circuitinvolving Q. originates in G' for theorem 4.
The two possible scenarios are shown in (a) and (b); (c) wilfnot occur due to condition
(4). SDF parameters on the arcs have notbeen assigned because they are irrelevant
to the introductionof directed cycles.
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Conclusion

existence of a single appearance schedule. When used as a preprocessing technique, this can

sharply reduce the execution time of a loose interdependence algorithm.

7 Conclusion

This paper has presented fundamental topological relationships between iteration and

looping in SDF graphs, and we have shown how to exploit these relationships to synthesize the

most compact looping structures for a large class of applications. Furthermore, we have extended

the developments of [4] by showing how to isolate the minimal subgraphs that require explicit

deadlock detection schemes, such as the reachability matrix, when organizing hierarchy.

This paper also defines a framework for evaluating different scheduling schemes having

different objectives, with regard to their effect on schedule compactness. The developments of

this paper apply to any scheduling algorithm that imposes hierarchy on the SDF graph. For exam

ple, by successively repeating the same block of code, we can reduce "context-switch" overhead

[21]. We can identify subgraphsthat use as much of the available hardware resources as possible,

and these can be clustered, as the computations to be repeatedly invoked. However, the hierarchy

imposed by such a scheme must be evaluated against its impact on program compactness. For

example, if a cluster introduces tight interdependence, then it may be impossible to fit the result

ing program on chip, even though the original graph had a sufficiently compact schedule.

The techniques developed in this paper have been successfully incorporated into a block-

diagram software synthesis environment for DSP [17]. We are currently investigating howto sys

tematically incorporate these techniques into other scheduling objectives — for example, howto

balance parallelization objectives with program compactness constraints. Another important

trade-offto further examine is that involving buffering costs.
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Appendix

This appendix presents an efficient algorithm for computing the repetitions vector qG for
an SDF graph. The time complexity of this algorithm is linear in the number of arcs in the input
SDF graph. Our specification of the algorithm will use the following notation.

Notation: For arational number %, we denote the numerator and denominator of %as numerix)
and denom(x) respectively, and we denote by reducedJorm(x) that rational number whose

numerator is numerix) Igcdinumerix), denomix)) and whose denominator is denomix) Igcdinu-
merix), denomix)). Finally, we denote the least common multiple of a set of positive integers z1?
z2, ..., zk by LCMfa, z2, ...,z^). For example numeri6/9) =6, denom(6/9) =9, reducedJorm(6J9)
= 2/3,andLCM(6,9) = 18.

Algorithm to compute the repetitions vector in linear time:

Input: a connected SDF graph G.
Output: the repetitions vector qG for G.

Define an array of rational numbers Q with one entry correspond
ing to each node in G. For each N£iV(G), initialize Q(N) to be
zero.

for each arc a in G

if (Q {source (a) ) * 0) and (Q (sink (a)) * 0) )
then

** check for sample-rate consistency **
if Q (source (a))Xp(a) *Q (sink(a))xc(a)
then

ERROR:G has inconsistent sample rates.
exit

end-if

else ifQ (source (a) ) =0
then

Set Q (source (a) ) = reducedJorm (Q (sink (a) ) x c (a) /p (a) ) .
Set multiplier =LCM (multiplier, denom (Q (source (a) ) ) ) .

else if Q (sink (a) ) = 0
then

Set Q (sink (a) ) = reducedJorm (Q (source (a) ) xp (a) /c (a) ) .
Set multiplier =LCM (multiplier, denom (Q (sink (a) ))) .

end-if
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end-for

** multiplier contains LCM ({denom (Q (N) ) | NEN(G)}). **

for each node N in G

Set Q (N) = reducedJorm (multiplier XQ (N) ) .
end-for

Output Q(N) as qG(N) for each node Nin G.

Glossary

Zi IG Z2 If G is an SDF graph and Zi and Z2form a partition of the nodes in G such that Z^
is subindependent of Z2 in G, then we write Z^ IG Z2.

A(G) The set of arcs in the SDF graph G.

appearances^, S) The number of times that actor N appears in the looped schedule S.

admissable schedule A schedule Si S2 ... Sk such that each Sj has sufficient input data to fire
immediately after its antecedents Si S2 ... Sj_-j have fired.

c(cc) The numberof samples consumed from SDFarc a by one invocation of sink(a).

delay(a) The number of delays on SDF arc a.

gcd Greatest common divisor.

looped schedule A schedule that has zero ormore parenthesized terms of the form in XP1 *P2
... ^k), where n is a nonnegative integer, and each % represents either an
SDF node or another parenthesized term, (n ^ *¥2 ... ¥[<) represents the
successive repetition n times of the firing sequence ¥-, ¥2 •••¥k.

7V(G) The set of nodes in the SDF graph G.

PASS A periodic admissable sequential schedule.

pia) The number of samples produced onto SDF arc a by one invocation ofsourceia).
periodic schedule A schedule that invokes each node at least once and produces no net

change in the number of samples buffered on any arc.

predecessor Given two nodes A and B in an SDF graph, A is apredecessor of B if there is at
least one arc directed from A to B.

qG The repetitions vector qG of the SDF graph G is a vector that is indexed by the
nodes in G. qG has the property thatevery PASS for G invokes each nodeN a mul
tiple of qG(N) times.

single appearance schedule Aschedule that contains only one appearance of each actor
in the associated SDFgraph.
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sinkia) The actor at the sink of SDF arc a.

sourceia) The actor at the source of SDF arc a.

subgraph A subgraph of an SDFgraph G is the graph formed by any subset Z of nodes in G
together with all arcs a in G for which sourceia), sinkia) G Z. We denote the sub
graph corresponding to the subset of nodes Z by subgraphiZ, G), or simply by
subgraphiZ) if G is understood from context.

subindependent Given an SDF graph G, and two disjoint subsets Z^, Zg of nodes in G, we
say that TL\ is subindependent of Z2 in G if for every arc a in G with sour-
ce(a) € Z2 and sinkia) G Z15 we have delayia) ^ total_consumedia, G).
We say that 7^ is subindependent in G if Z^ is subindependent of (N(G) -
ZOinG.

successor Given two nodes A and B in an SDF graph, A is a successor of B if there is at least
one arc directed from B to A.

total_consumedia, G) The total number of samples consumed from arc a in a minimal
schedule period of the SDF graph G; that is, total_consumedia, G)
= qGisinkia))cia).

valid schedule A schedule that is a PASS.
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