

Copyright © 1993, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

SOFTWARE SYNTHESIS FOR SINGLE-PROCESSOR

DSP SYSTEMS USING PTOLEMY

by

Jose Luis Pino

Memorandum No. UCB/ERL M93/35

14 May 1993

SOFTWARE SYNTHESIS FOR SINGLE-PROCESSOR

DSP SYSTEMS USING PTOLEMY

by

Jose Luis Pino

Memorandum No. UCB/ERL M93/35

14 May 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

SOFTWARE SYNTHESIS FOR SINGLE-PROCESSOR

DSP SYSTEMS USING PTOLEMY

by

Jose Luis Pino

Memorandum No. UCB/ERL M93/35

14 May 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

May 14,1993

Software Synthesis for Single-Processor
DSP Systems Using Ptolemy

Master's Report
Department of Electrical Engineering

and Computer Science Jos6 Lllls Pino

University of California

Berkeley, California 94720

Abstract

Ptolemy is an environment for simulation, prototyping, and software synthesis for heterogeneous

systems. It uses modern object-oriented software technology (in C++) tomodel each subsystem in

a natural and efficient manner, and to integrate these subsystems intoa whole. The objectives of

Ptolemyencompass practically all aspects of designing signal processing and communications

systems, ranging from algorithms and communication strategies, through simulation, hardware

and software design, parallel computing, to generation ofreal-time prototypes. In this paper I will

describe the software synthesis aspects of thePtolemy system for single-processor architectures.

The environment presented here is both modular and extensible.

Acknowledgments

This paper isdedicated to mywife and children, with whose love and patience makes
pursing a graduate education possible.

The work that led to this paper would not have been possible without the assistance ofmy
advisor, Edward Lee, and the Ptolemy Team. In particular, Iwish to thank Joseph Buck, Soonhoi
Ha, Tom Parks, and Kennard White.

The author gratefully acknowledges the support of AT&T Bell Labs and Office of Naval

Research.

Software Synthesis for Single-Processor DSP Systems Using Ptolemy

Table of Contents

1.0 Introduction 5

1.1 Overview of Ptolemy 7

1.1.1 DDF 9

1.1.2 SDF 10

1.2 Code Generation Domains 10

2.0 Code Generationwith Ptolemy 12

2.1 General Framework 12

2.2 Targets 13

2.2.1 Code Streams 15

2.2.2 Target Code Generation Methods 16

2.2.3 Target Wormhole Methods 17

2.3 Stars 17

2.3.1 Generic Code Generation Macros 20

2.3.2 Assembly Code Generation Macros 24

2.4 Schedulers 24

2.5 Wormholes 26

3.0 Summary of Code Generation Procedure 28

4.0 An Application: AdaptivePCM Coding 30

5.0 Conclusions 33

6.0 Future Work 34

7.0 Appendix: Generated Code 35

7.1 S-56X WormholeGenerated Assembly Code 35

7.2 ADPCM Generated Assembly Code 37

7.3 ADPCM Generated Asychronous Input/Output (AIO) Code 46

8.0 References 46

Software Synthesis for Single-Processor DSP Systems Using Ptolemy

List of Figures

Figure 1. Block objects in code generation applications of Ptolemy synthesize code in some
target language. PortHoles and Geodesies provide methods for managing the
exchange of data between blocks. 7

Figure 2. A complete Ptolemy application (a Universe) consists of a network of Blocks.
Blocks may be Stars (atomic) orGalaxies (composite). The "XXX" prefix symbol
izes a particular domain (ormodel of computation). 8

Figure 3. A Domain (XXX) consists of a setof Stars, Targets and Schedulers thatsupport a
particular model of computation. A sub-Domain (YYY) may support a morespe
cialized model of computation. 11

Figure 4. Inheritance Tree for Single ProcessorTargets. 14

Figure 5. Inheritance Tree for Code Generation Stars. 19

Figure 6. Example of Shared Symbol Macro Usage 22

Figure 7. Examples of Host-to-DSP interactionusing wormholes. 26

Figure 8. SDF Universe containing a multirate S-56X Galaxy. 28

Figure 9. Multirate S-56X Wormhole. 28

Figure 10. Code Generation Procedure 29

Figure 11. A Simplified DPCM coder/decoder system. 31

Figure 12. A Feedback-around-quantizer coder. 31

Figure 13. ADPCM Coder 32

Figure 14. ADPCM Decoder 32

Figure 15. Run Time User Interface 33

Software Synthesis for Single-Processor DSP Systems Using Ptolemy

Introduction

1.0 Introduction

Practical signal processing systems today arerarelyimplemented without software or

firmware, even at the ASIC level. Programmable DSPs, in particular, form the heart of many

implementations. An aggressive new implementation technology is to use one or more "DSP

cores" together with custom circuitry. DSP cores are programmable architectures sold as silicon

macro blocks rather than as separate components. They are used as large macrocells in

application-specific ICs. Such ASICs arecustomized to contain precisely the memory and

peripherals required by an application, and can alsoinclude arbitrary custom logic, configurable

logic, or anilog circuitry.

The first major market for DSP coresis digital cellular telephony. DSP vendors have

developed specialized versions of their commodity DSPs that support both the GSM standard(for

Europe) and the IS-54 standard (for the U.S.). For example, the Ericsson HotLine GH197 is a

GSM hand-held telephone that uses an ADSP-2102 from Analog Devices. The Motorola

DSP56156 is a DSP with carefully chosen peripherals andmemory capacity to support the

European GSM standard. The Motorola DSP56166 is a variant capable of implementing the

VSELP speech coder in the U.S. and Japanese digital cellularstandards.

So far, however, the customized core-based ASICs for this application are being designed

by the DSPvendor, and not by the producer of the telephone equipment. This approach is viable

because the functionality of the ASIC is specified by an international standard, and the market is

expected to be very large. However, more proprietary designs cannot proceedin this manner. The

design process will more closely resemble that of board-level products using commodity DSPs.

Such designs, of course, are mixed hardware and software designs. Ourapproach to code

generation is carefully architected to supportsuch heterogeneous designs.

Any complete system design methodology, therefore, mustinclude software synthesis for

programmable devices. Mainstream design tool vendors for signal processing, such asthose

provided by Comdisco Systems, Mentor Graphics, and CADIS, have recognized this. They have

all recently added software synthesis for DSPs to their tools (see for example [1] and [2]).

Software Synthesis for Single-Processor DSPSystems Using Ptolemy

Introduction

Looking forward, future tools should also include high-level software synthesis for real-time

control as well as coupling tohigh-level hardware synthesis tools. Since the design styles for

these capabilities are likely to be radically different from one another, the ideal methodology must

cleanly support heterogeneity. This paper will concentrate on code generation for DSP, but will

describe a software architecture capable of adapting tosuch heterogeneous design problems.

A number ofdesign styles can be used to develop signal processing software. One option,

ofcourse, isto rely on traditional high-level languages, notably Cor Ada. Unfortunately, for

many intensive signal processing applications, compilers for these languages are still unable to

achieve the code efficiency demanded by designers. Twelve years after the appearance of

programmable DSPs, m^st designers still prefer to program them in assembly language. The

difficulty appears to be both in the languages themselves, which are not sufficiently specific to
signal processing and poorly matched to fixed point data types; and inthe processor architectures,

which include features that compilers cannot easily support such as esoteric addressing modes

(for example, bit reversed addressing for FFTs and hardware support for circular buffers).

Numeric C [3] offers an interesting alternative by modifying the syntax ofCto expose to the

compiler much ofthe information itneeds. Silage, an applicative language developed by Hilfinger
at U. C. Berkeley, provides another alternative. The simple declarative semantics ofthe language
and its fixed point data types make very efficient code generation possible [4]. The Mentor/EDC

DSPStation uses Silage for its underlying semantics.

We are pursuing athird alternative, embodied previously inthe Gabriel system [5], and

more recently implemented in the Ptolemy system [6]. In this methodology, hand written

assembly code segments define functional operators on data streams. Code generation consists of

two phases, scheduling and synthesis. In the scheduling phase, the functional operators are

possibly partitioned for parallel execution, and for each target processor, asequence ofoperator

invocation isdetermined. In the synthesis phase, the hand-written assembly code segments (or

alternatively, higher-level language code segments or amixture ofboth) are stitched together.

This methodology has recently been commercialized inthe Comdisco DPC system [1] and will be

commercialized in the CADIS Descartes [7] systems. The techniques we describe here are

complementary to those in DPC and Descartes, and could, in principle, beused in combination. In

Software Synthesis for Single-Processor DSPSystems Using Ptolemy

Introduction

particular, we focus on management of data passedbetween functional blocks when synchronous

dataflow (SDF) [8] and dynamic dataflow semantics areused. DPC, by contrast,does not use

dataflow semantics.

1.1 Overview of Ptolemy

Ptolemy relies heavily on the methodology of object-orientedprogramming (OOP) to

support heterogeneity. The basic unit ofmodularity in Ptolemy isthe Block1, illustrated in figure

1. A Block contains a module of code (the go() method) that is invoked at run-time, typically

examining data present at its input Portholes and generating dataon its output Portholes.

Depending on the model of computation, however, the functionality of the go () method can be

very different; it may spawn processes, forexample, or synthesize assembly code for a target

processor. In code generation applications, which arethe concern of this paper, the go () method

always synthesizes code in some target language. Its invocationis directed by a Scheduler

(another modular object). A Scheduler determines the operational semantics of a network of

Block

• initiaiizeO
• setupQ
• Qo0
• wrapupO
• cloneQ

initiaiizeO
receiveData()
sendDataQ

Geodesic

• initiaiizeO
• numlnit()
• setSourcePort()

setDestPortf)

Particle

• typeO
• printO
• operator «0
• cloneQ

Figure 1. Block objects in code generation applications of Ptolemy
synthesize code in some target language. PortHoles and
Geodesies provide methods for managing the exchange of data
between blocks.

1. When we capitalize amodular element, then it represents an object type. Inobject-oriented programming, objects encapsulate
both data, the state of the object, and functions operating on that state, called methods.

Software Synthesis for Single-Processor DSPSystems Using Ptolemy

Introduction

Blocks. A third type of object, a Target, describes the specific features of a target for code

generation. Blocks, Schedulers, and Targets can be designed by end users, lending generality

while encouraging modularity. The hope is that Blocks will be well documented and stored in

standard libraries; thus rendering them modular, reusable software components. The user-

interface view of the system is an interconnected block diagram.

A conventional way tomanage the complexity ofa large system is to introduce a hierarchy

in the description, as shown in figure 2. The lowest level (atomic) objects in Ptolemy are of type

Star, derived from Block. AStarthat generates code in some target language belongs toa domain,

as explained below. The Stars in domainnamed"XXX" are of type XXXStar, derivedfrom Star.

A Galaxy, also derived from Block, contains other Blocks internally. A Galaxy may contain

internally both Galaxies and Stars. A Galaxy may existonly as a descriptive tool, in that a

Scheduler may ignore the hierarchy, viewing the entire network of blocks as flat. All our dataflow

schedulers do this to maximize the visible concurrency. Alternatively, a Scheduler may make use

of the hierarchy to minimize scheduling complexity or to structure synthesized codein a readable

way. A third possibility we alsoexploit is for the scheduler to cluster the graph, creating a new

hierarchy that reflects the natural looping structure of the code [9]. A Universe, which contains a

XXXUniverse

Examples of Derived Classes
• class Star:: Block

• class XXXStar:: Star

• class Galaxy:: Block
• class Universe:: Galaxy, Runnable
• class XXXUniverse:: Universe

Figure 2. A complete Ptolemy application (a Universe) consists of a
network of Blocks. Blocks may be Stars (atomic) or Galaxies
(composite). The "XXX" prefix symbolizes a particular domain
(or model of computation).

Software Synthesis for Single-Processor DSP Systems Using Ptolemy 8

Introduction

complete Ptolemy application, is a type of Galaxy. It is multiply derived from both Galaxyand

class Runnable. The latterclass containsmethods forexecution of simulation or synthesis of

code.

In this paper, I will concentrate on one model of computation, synchronous dataflow. This

is the model of computation for whichwe havebestdeveloped the code synthesis technology. I

will first define these model of computation. Then I will introducethe modularelement in

Ptolemy,known as the domain, which encapsulates a singlemodel of computation. Afterwards, I

will introduce the code generation framework of Ptolemy, whichallows definition of target

architectures and the various interchangeable schedulers. After target architectures anddomains

aredefined, I can then describethe atomicunit of analgorithm in xtolemy, the Star, andthe use of

codeblocks (in the target language) for code generation. Next, the wormhole interface and how it

relates to code generation will be described. I will thensummarize thecodegeneration procedure.

Finally, I compare Ptolemy to other code generation environments.

Although this paper focuses on thecurrent Ptolemy code generation domains, Ptolemy

incorporates a rich set of simulation domains. Some of the domains currently defined are discrete

event (DE), communication processes (CP), multi-threaded data flow (MTDF) andThor (which

will be described below). The Domain and the mechanism for co-existence of Domains are the

primary abstractions thatdistinguish Ptolemy from otherwise comparable systems. For a

description of the Ptolemy platform refer to [6].

1.1.1 DDF

Dynamic dataflow (DDF) is adata-driven model of computation originally proposed by

Dennis [10]. Although frequently applied to the design of parallel architectures, it is alsosuitable

as a programming model [11], and is particularly well-suited to signal processing applications

with asynchronous operations. An equivalent model is embodied inthepredecessor system

Blosim [12,13]. InDDF, Stars are enabled bydata at their input PortHoles. That data may or may

notbe consumed by the Star whenit fires, and the Star mayormaynot produce data on its

outputs. More than oneStar may be fired atonetimeif theTarget supports this parallelism. We

Software Synthesis for Single-Processor DSPSystems Using Ptolemy

Introduction

have used this domain to experiment with static scheduling of programswith run-time dynamics

[14,15].

1.1.2 SDF

Synchronous dataflow (SDF) [8] is a sub-Domain of DDF. SDF Starsconsume and

generate a static andknown numberof data tokenson eachinvocation. Since this is clearly a

special caseof DDF, any StarorTarget thatworks under the SDFmodel will also work underthe

DDF model. However, an SDF Scheduler can take advantage of this static information to

construct a schedule that can be used repeatedly. Such a Scheduler will not always work with

DDF Stars. SDF is an appropriatemodel for multirate signal processing systems with rationally-

related sampling rates throughout [15], andis the model used exclusively in Ptolemy's

predecessor system Gabriel [5]. The advantages of SDFareease of programming, since the

availability of datatokens is static anddoes not need to be checked; a greater degree of setup-time

syntax checking, since sample-rate inconsistencies areeasily detected by the system; run-time

efficiency, since the orderingof Block invocation is staticallydetermined at setup-time rather

dynamically at run-time; and automatic parallel scheduling [16-18].

1.2 Code Generation Domains

A Domain in Ptolemy consists of a set of Blocks and Targets, and associated Schedulers

that conform to a common computational model. By "computational model" we mean the

operational semantics governing how Blocks interact with one another. Furthermore, all Blocks

and Targets of a code generation Domain target the same language; for example, Blocks that

generate code for the Motorola 56000usingthe SDFmodel of computation form theirown

domain1. A Scheduler will exploit knowledge of these semantics toorder the execution of the

1. This definition of a Domain is different from the previous definition used in Ptolemy. When Ptolemy was solely a simulation
environment, two distinct Domains would not share the same model of computation. Now, two distinct Domains can share the
same model of computation as long as they target two distinct languages.

Software Synthesis for Single-Processor DSPSystems Using Ptolemy 10

Introduction

Blocks. SDF and DDF are domains related to one another as illustrated in figure 3. Stars and

Targets are shown within each domain. The inner Domain (SDF) in figure 3 is anillustration ofa

sub-Domain, which implements a more specialized model of computation than the outerDomain

(DDF). Hence all its Stars and Targets can also be used with the outer Domain. Schedulers can be

associated with more than one Domain, but a Scheduler for a sub-Domain is not necessarily valid

within the outer Domain.

For code generation, Domains are further subdivided according to the language

synthesized. Hence, an SDF domain synthesizing C code is a domain that we call CGC (code

generation in C).AnSDFdomain synthesizing assembly code fortheMotorola DSP56000 family

is called the CG56 domain. We have also developed SDF domains that synthesize assembly code

for the Motorola DSP96000 family (CG96) and the Sproc multiprocessor DSP from Star

Semiconductor. Finally, a Silage code generation domain is being used to couple to hardware

synthesis tools developed at Berkeley [2].

As a simpleexample of how Blocks, Schedulers, and Targets can be mixed andmatched,

consider a set of Blocks that generate assembly language code for MotorolaDSP56000 family

processors. We might choose to use any ofseveral Targets; examples ofTargets that have been

Target

DDFSta

" DDFDomain|r }
Scheduler

M^^"~^~<i£.-.i~*>*~*~~<&;:i-;-::.;:: SDFDomain:;; |
| \^DFS^--:Qargel^

I <|D^r) (gg> (^Z^> *
Scheduler

Figure 3. A Domain (XXX) consists of a set of Stars, Targets and
Schedulers that support a particular model of computation. A
sub-Domain (YYY) may support a more specialized model of
computation.

SoftwareSynthesis for Single-Processor DSP Systems Using Ptolemy 11

Code Generation with Ptolemy

implemented include onethatruns the assembled code onasimulator ontheworkstation, onethat

describes an S-bus card with a single56000processor on a workstation, andone thatdescribes a

setof four interconnected processors onasingle card. It is also possible to define targets thathave

not been built. In these casesthe generated coderuns on functional simulations of the processors

in the Thor domain in Ptolemy [19]. Mosttargets haveparameters thatselectwhat scheduler is to

be used; we have several single- and multiple-processor Schedulers thatuse different algorithms

for determining partitioning and order of execution of stars. These schedulers haveno processor-

specific information; they "ask" the Target todetermine communication costs and "ask" the Block

to determine execution time, resources needed, etc.

2.0 Code Generation with Ptolemy

2.1 General Framework

To use Ptolemy to implementanalgorithm, the problem is represented asa hierarchical

dataflow graph. Two interfaces areprovided: a graphical interface based on VEM, the graphic

editor that is part of U.C. Berkeley's Octtools CAD system [20], and a text interface based on

Ousterhout's extensible interpreter languageTel [21]. The user builds graphshierarchically out of

existing blocks, and may also link in user-writtenblocks by using Ptolemy's incremental Unking

facility. A special preprocessor makes user-written atomic blocks (stars) easierto produce.

While this paper focuses on code generation facilities, a key feature of Ptolemy is its

ability to interface different models of computation. Forexample, code on a DSP board can

interact with a discrete-event or logic simulation ninning on a workstation. Similarly, a register-

transfer-level simulation of hardware (complete with programmableDSPs modeled functionally)

can execute generatedcode and process signals synthesized in anotherPtolemy domain. This

gives Ptolemy most of its powerwhen applied to hardware-software codesign. The interfacing

mechanism thatpermits one model of computation, ordomain, to interface cleanlywith another is

called a wormhole, after the theoretical cosmological phenomenonwidely used in science fiction

writing that may connect widely separated regions of space, or even different universes. This

Software Synthesis for Single-Processor DSP Systems Using Ptolemy 12

Code Generation with Ptolemy

mechanism is described in [6,19], and is explained in thecontextof codegeneration with a

simple example given in section 2.5.

All code generation domains are derived from the CG domain. Only thederivative

domains are of practical use for generating code. The stars inthe CG domain itselfcan bethought

of as "comment generators"; they are useful for testing and debugging schedulers and for little

else. The CG domain is intended as a model and a collection of base classes for derivative

domains. The code generation class hierarchy isdesigned tosave work and tomake the system

more maintainable. Most of thework required toallocate memory for buffers, constants, tables,

and togenerate symbols that are required incode iscompletely processor-independent; thus these

facilities areprovided in generic classes.

In the following sections, I will introduce Targets and Stars anddetail the methods and

data structures needed to write new ones. I will first define aPtolemy target, introducing the

concepts of code streams, code generation methods, and wormhole methods. Next, I will detail

what is required to write single-processor target. Afterwards I will define code generation stars

and their respective methods. Following that I will describe the various methods which will

generally use the addcode () method to piece together the codeblocksinto the code streams.

Finally I will document the various schedulers available in the code generation domains.

2.2 Targets

In Ptolemy, a Target classdefines those features of anarchitecture pertinent to code

generation. Each domain, which synthesizes a specific languagesuch as C or Motorola 56000

assembly, has a simple target that will generatecode and optionally compile or assemble the code.

More elaborateTarget definitions arederived from these. The more elaborate targets generateand

run code on specific hardware platforms or on simulated hardware. Some examples that have been

implemented are an S-56X1 target and the CM5 from Thinking Machines. The latter is an

example of a multiprocessor C language target. To define multiprocessor targets, the concept of

Parent-Child target relationships is used. For example, the CM5 target contains an arbitrary

1. The S-56X is an S-bus card designed by Berkeley Camera Engineering and marketed by Ariel. It contains a Motorola DSP
56000 and a Xilinx FPGA.

Software Synthesis forSingle-Processor DSP Systems Using Ptolemy 13

Code Generation with Ptolemy

procedures). With addProcedure() it becomes clear why unique names are necessary. Recall that

addProcedure () is used to declare outside of the main body of the code. For example, say we

wanted to write a function in C to multiply two numbers. The codeblock to do this couldread:

codeblock(sillyMultiply){
/* A silly function */
double $sharedSymbol(silly,mult)(double a, double b){

double m;
m = a*b;
return m;

}

}

Note that in this codeblock we used the $snaredSymboi macro described in the section

2.3.1 onpage 20. Toadd this code tothe procedures stream, in the initCode () method of thestar,

we can call one of the following:

addProcedure(sillyMultiply,"mult") ;
addCode(sillyMultiply,"procedures","mult") ;
getStream ("procedures")->put (sillyMultiply, "mult");

As with addCode (), addProcedure () returns a TRUE or FALSE indicating whether the

code was inserted into the code stream.Taking this into account,we could have added the code

line by line:

if(addProcedure("/* A silly function */\n","mult")){
addProcedure("double SsharedSymbol(silly,mult)(double a, double b)\n");
addProcedure("{\n");
addProcedure("\tdouble m; \n");
addProcedure("\tm = a*b;\n");
addProcedure("\treturn m;\n") ;
addProcedure("}\n");

}

2.2.2 Target Code Generation Methods

Once the program graphis scheduled, the targetgenerates the code in the virtual method

generateCode(). (Note: code streamsshould be imtialized before this method is called.) All the

methods called by generateCode () arevirtual, thus allowing for targetcustomization. The

generateCode () methodthencalls aiiocateMemory () whichallocates the target resources.

Afterresources are allocated, the initCode () method of the stars are called by codeGeninit ().

The next step is to form the main loop by calling the methodmainLoopCode (). The number of

iteration cycles are determined bythe argument of the "run" directive which auser specifies in

Software Synthesis for Single-Processor DSP Systems Using Ptolemy 16

Code Generation with Ptolemy

pigiorin ptcl. To completethe body of the mainloop, go() methods of stars are called in the

scheduled order. After forming the main loop, the wrapup () methods of starsarecalled.

Now, all of the code has been generated; however, the code can be in multiple target

streams. The f rameCode() method is then called to piece the code streams and place its resultant

into the myCode stream. Finally, the code is written to a file by the method writeCode (). The

default file name is "code.output", and that file will be located in the directory specified by a

target parameter, destDirectory.

Finally, since all of the codehasbeengenerated for a target, we are ready to compile,

load, and execute the code. Derived targets shouldredefine the virtual methods compiieCode (),

loadCode (), and runCode () to do these operations. At times it does not make sense to have

separate loadCode () and runCode () methods, and in thesecases, these operations shouldbe

collapsed into the runCode () method.

2.2.3 Target Wormhole Methods

CGTarget defines virtual methods necessary to support wormholes have to support

wormholes, a target should redefine the virtual methods, sendWormData(), receiveWormData (),

worminputcode (), and wormOutputcode (). The sendWormData () method sends data from the

Ptolemy host to the target architecture. The worminputcode () method is in chargeof defining the

code in the target language to read in the data from the Ptolemy host. The methods

receiveWormData () and wormOutputcode () are similar except that they correspond to data

moving in the opposite direction. Further wormhole discussion is deferred until section 2.5 on

page 26.

2.3 Stars

Ptolemy has two basic types of stars: simulation starsand code generation stars. For

purposes of this paper, discussion will be limited to code generation stars.

The derivation tree for all currently defined abstract star classes is shown in figure 5. By

an abstract starclass, we mean that the classes are never used to generate target language code

directly. Instead, these classes define macro function expansion and functional interfaces to target

Software Synthesis for Single-Processor DSP Systems Using Ptolemy 17

Code Generation with Ptolemy

specified code streams. The leaf nodes1 ofthe tree are used as parents for user definable code
generation stars. All methods that are common to all code generation stars reside in base code

generation star class (CGStar). Similarly, all code common to assembly code generation stars is

found in the assembly language star (AsmStar), and all code common to higher levellanguages is

defined in HLLStar.

Of special interestis the class AnyAsmStar. Stars derived from AnyAsmStar canbe

utilized in any assembly code generation domain. These stars do not producecode; their purpose

is to manipulate the input and/or outputbuffersconnected to these stars. Currently, thereare two

AnyAsmStars: BlackHole and Fork. A BlackHole star is a data sink thatdiscards its inputdata.

Othercode generation stars cancheck if any of their outputs are connected to a BlackHole, and

then conditionally generate code basedon this fact. Also, allinput buffers to BlackHolesare

mapped into one single memorylocation, soevenif stars do notcheckto seeif a BlackHole is

connectedto one of its outputs,minimal buffermemory is utihzed. The othertype of AnyAsmStar

that exists is the Fork star. A Fork starsplits the data pathinto two or more paths; however, all

data paths can share a single buffer. A series of connected Fork stars withinterspersed delays can

be collapsed and maintained at the output buffer where the first Fork wasconnected. As can be

seen, AnyAsmStars are defined whereno target language specific code needs to be generated.

Instead, wise buffer management can lead to a general solution applicable to all code generation

domains.

For each of the leaf nodes in figure 5, there exist predefined star libraries. However, for

most users' needs, these libraries will be insufficient. As a result, special attention has been given

to make starwritingin Ptolemy, like Gabriel, easy and systematic [22]. Unlike Gabriel andother

code generators previously mentioned, Ptolemyis objectoriented, thus allowingusers to easily

re-use code. Forexample, the C code generation domain has the family of stars fixed lattice filter,

adaptive lattice filter, and avocoder. Here thevocoder star wasderived (in the sense of C++

derived classes) from the adaptive lattice filter, in turn derived from the fixed lattice. Karjalainen

1. For example, in figure5, the leaf nodesare: Sproc,56000,96000,AnyAsm, Silage,andC.

Software Synthesis forSingle-Processor DSP Systems Using Ptolemy 18

Code Generation with Ptolemy

in [23] states that object oriented programming environments are well suited for DSP

programming methodology.

A typicaluser-defined code generation star will consist of portholes, states, codeblocks, a

setup () method, an initcode () method, a go () method, a wrapup () method, and an

execTime () method. Portholes, states and codeblocks are all data members of a star. Portholes

specify the inputs and outputs of the star and their types. States define user settable parameters or

internal memory statesrequired in the generated code. Codeblocks are a pseudocode

specification of the target language. By pseudo code, we mean that thecodeblock is made up of

the target language and star macro functions. These macro functions can bedefined atanylevelof

the inheritance tree. Macro functions include parameter value substitution, unique symbol

generation with multiple scopes, and statereference substitution.

Setup (), initcode (), go (), wrapup (), and execTime () make up the virtual methods of

a star. Users are free to write additional methods that are called from one of five methods listed.

The differentiating traitbetween setup(), initcode (), go(), andwrapup () methodsis when the

method is called. The setup() method is called before the schedule is generated and before any

memory is allocated. It is responsible for setting upinformation that will affect scheduling, and

memory allocation, such as the number of values thatare read from a particular porthole or the

size of an array state. The main use of the setup () method, as in SDF, is to tell the schedulerif

more than one sample is to be accessed from a porthole with the setSDFParams () call. The

initcode () method is called before the schedule is generated and after the memory is allocated;

code generated by initcode () appears before themainloop.

Figure 5. Inheritance Tree for Code Generation Stars.

Software Synthesis for Single-Processor DSP Systems Using Ptolemy 19

Code Generation with Ptolemy

The next method to be called is the go () method. This method is called directly from the

scheduler. Hence the code generated in the go () method makes up the main loop code. Finally,

the wrapup () method is called after the schedule has been completed, allowing the star to place

code after the main loop code. For example, a typical use of this method in assembly code

generation would be to define subroutines after the main loop code. The final virtual method that

star writers may overload is execTime (). This method returns a number that indicates the

approximate time to complete one firing of the star. This information is essential for the parallel

schedulers.The better the execTime () estimates are for each star, the more efficient the parallel

schedule becomes.

Stars are typically written not in C++ directly, but rather for a preprocessorcalled ptlang.

This preprocessor generates the "standard boilerplate" necessary to properly initialize states and

portholes, create codeblocks in a more naturalmanner, and to register the star with the system so

that instances of it may be created by specifying the class name. It also generates documentation

for the star.

2.3.1 Generic Code Generation Macros

In code generation stars, the inputs and outputs no longer hold values, but instead

correspond to targetresources where values will be stored (for example, memory locations/

registers in assembler generation, or global variables in c-code generation). A star writer can also

define States which can specify the need for global resources.

A code generation star, however, does not have knowledge of the available global

resources or the globalvariables/tables which have already been defined in the generated code.

For star writers, a set of macros to access the global resources is provided. The macros are

expanded in a language or target specific manner after the target has allocated the resources

properly. In this section, we discuss the macros defined in the CGStar class.

$ref (name): Returns a reference to a state or a port. If the argument,name, refers to a

port,it is functionally equivalent to the"name%o" operator in the sdf simulationstars. If a starhas

a multi-porthole, say input, the first real porthole is input#l. To access the first porthole, we use

Software Synthesis for Single-Processor DSP Systems Using Ptolemy 20

Code Generation with Ptolemy

$ref (inputfi) or $ref (input#internal_state) where internal_state is the name of a state

that has the current value, 1.

$ref (name, offset): Returns a reference to an array state or a port with an offset that is

not negative. For a port, it is functionally equivalent to name%offset in sdf simulation stars.

$vai (state-name): Returns the current value of the state. If the stateis an array state, the

macro will return a string of all the elements of the array spaced by the new line character. The

advantage of not using $ref macro in place of $vai is that no additionaltargetresources need to

be allocated.

$size (name): Returns the size of the state/port argument. The size of a non-array state is

one; the size of a array state is the total number of elements in the array. The size of a port is the

buffer size allocated to the port. The buffer size is usually larger than the number of tokens

consumed or produced through that port.

$starSymboi (name): Returns a unique label in the starinstance scope. The instance

scope is owned by a particular instance of that star in a graph. Furthermore, the scope is alive

across all firings of that particularstar. Forexample, two CG starswill have two distinct star

instance scopes. As an example, we show some parts of ptlang file of the CGCPrinter star.

initcode{

StringList s;
s « "FILE* $starSymbol(fp);";
addDeclaration(s);
addlnclude(u<stdio.h>");
addCode(openfile);

}

codeblock(openfile) {
if (! (SstarSymbol (fp)=fopen P$val (fileName) ",V))) {

fprintf(stderr,ERROR: cannot open output file for Printer star.\n");
exit (1);

}

}

The file pointer fp for a star instance should be uniqueglobally, and the $starSymboi

macro guarantees the uniqueness. Within the same starinstance, the macro returns the same label.

Software Synthesis for Single-Processor DSP Systems Using Ptolemy 21

Code Generation with Ptolemy

SsharedSymbol (list, name): Returns the symbol for name in the list scope. This macro

is provided so that various stars in the graphcan sharethe same data structures such as sin/cos

lookup tables and conversion tables from linear to mu-law PCM encoder. These global data

structures should be created and initialized once in the generated code. The macro

$sharedSymboi does not provide the method to generate the code, but does provide the method to

create a label for the code. To generate the code only once, refer to the discussion on code streams

in section 2.2.1. An example where a shared symbol is used is in CGCPCM star is shown in figure

6.

The above code creates a conversion table and a conversion function from linear to mu-

law PCM encoder. The conversion table is named offset, and belongs to the PCM class. The

conversion function is named mulaw, and belongs to the same PCM class. Other stars can access

that table or function by saying $sharedSymbol (PCM, offset) or $sharedSymbol (PCM, mulaw).

The initcode () method tries to put the sharedDeclarations codeblock into the global scope (by

codeblock (sharedDeclarations){
int $sharedSymbol(PCM,offset)[8];
/* Convert from linear to mu-law */
int $sharedSymbol(PCM,mulaw)(x)
double x;

{
double m;
m= (pow(256.0,fabs(x)) - 1.0) / 255.0;
return 4080.0 * m;

}

}

codeblock (sharedlnit){
/* Initialize PCM offset table. */

{
int i;
double x = 0.0;
double dx = 0.125;
for(i = 0; i < 8; i++, x += dx) {

SsharedSymbol(PCM,offset)[i] = $sharedSymbol(PCM,mulaw)(x);
}

}

}

initCode {

if (addGlobal(sharedDeclarations, "SsharedSymbol(PCM,PCM)"))
addCode(sharedlnit);

Figure 6. Example of Shared Symbol Macro Usage

Software Synthesis for Single-Processor DSP Systems Using Ptolemy 22

Code Generation with Ptolemy

addGiobai () method in the CGC domain). That codeblock is given a unique label by

SsharedSymbol (PCM, PCM). If the codeblock has not been previously defined, addGiobai ()

returns true, thus allowing addCode (sharedlnit). If there is more thanone instance of the PCM

star, only one instance will succeed in adding the code.

$label (name), $codeblockSymbol (name): Returns a unique symbol in the codeblock

scope. Both $label and $codebiockSymbol refer to the same macro expansion. The codeblock

scope only lives as long as a codeblock is having code generated from it. Thus if a staruses

addCode () more than once on a particular codeblock, all codeblock instances will have unique

symbols. A example of where this is used in the CG56HostOut star.

codeblock(cbSingleBlocking) {
$label(wait) jclr #m_htde,x:m_hsr,$label(wait)
jclr #0,x:m_pbddr,$label(wait)
movep $ref(input),x:m_htx

}

codeblock(cbMultiBlocking) {
move #$addr(input),r0
.LOOP #$val(samplesOutput)
$label(wait) jclr #m_htde,x:m_hsr,$label(wait)
jclr #0,x:m_pbddr,$label(wait)
movep x:(rO)+,x:m_htx
.ENDL

nop

}

The above two codeblocks use a label named wait. The $label macro will assign unique

strings for each codeblock.

To have "s" appear in the output code, put "$$" in the codeblock. For a domain where "$"

is a frequently used character in the target language, it is possible to use a different character

instead by redefining the virtual function substchar () (defined in CGStar) to return a different

character.

It is also possible to introduce processor-specific macros, by overriding the virtual

function processMacro () (rooted in CGStar) to process any macrosit recognizes anddefer

substitution on the rest by calling its parent's processMacro () method.

Software Synthesis for Single-Processor DSP Systems Using Ptolemy 23

Code Generation with Ptolemy

2.3.2 Assembly Code Generation Macros

Here we will present the additional and redefined macros available that have special

meaning in assembly language code generation:

$addr (name, <of f set>) This macro returns the numeric address in memory of the named

object, without anything like (for the 56000) an"x:" or "y:" prefix. If the given quantity is

allocated in a register (not yet supported) this function returns an error. It is also an errorif the

argument is undefined or is a state that is not assignedto memory (e.g. a parameter).

Note that this does not necessarilyreturn the address of the beginning of a porthole

buffer; it returns the "access point" to be used by this star invocation, and in cases where the star

is fired multiple times, this will typically be different from execution to execution.

If the optional argument offset is specified, the macroreturns an expression that

references the location at the specified offset — wrapping around to the beginning of the buffer if

thatis necessary. Note that this wrapping worksindependently of whetherthe buffer is circularly

aligned or not.

$ref (name, <of f set>) This macro is much like $addr (name), only the full expression

used to refer to this object is returned, e.g. "x: 23" for a 56000 if name is in x memory. If name is

assigned to a register, this expression will return the corresponding register. The error conditions

are the same as for $addr.

2.4 Schedulers

Given aUniverse of functional blocks to be scheduled and a Target describing the

topology and characteristics of the single- or multiple-processor system for which code is

generated, it is the responsibility of the Scheduler object to perform some orall of the following

functions:

• Determine which processor a given invocation of a given Block is executed on (for multipro

cessor systems);

• Determine the order in which actors areto be executed on a processor;

• Arrange the execution of actors into standard control structures, like nested loops.

Software Synthesis for Single-Processor DSP Systems Using Ptolemy 24

Code Generation with Ptolemy

Not all schedulers perform all these functions (for example, we permit manual

assignments of actors to processors if that is desired).

A key idea in Ptolemy is that thereis no single schedulerthat is expected to handle all

situations. Users can write schedulers andcanuse them in conjunction with schedulers we have

written. As with the rest of Ptolemy, schedulers are written following object-oriented design

principals. Thus a userwould neverhave to writea scheduler from ground up, andin factthe user

is free to derive the new scheduler from even ourmost advanced schedulers. We have designed a

suite of specialized schedulers that can be mixed andmatched for specific applications. After the

scheduling is performed, each processingelement is assigned a set of blocks to be executed in a

scheduler-determined order.

For targets consisting of a single processor, we provide two basic scheduling techniques.

In the first approach, we simulate the execution of the graph on a dynamic dataflow schedulerand

record the order in which the actors fire. To generate a periodic schedule, we first computethe

number of firing of each actor in one iteration of the execution, which determines the number of

appearances of the actor in the final scheduled list. An actor is called runnable whenall input

samples are available on its input arcs. If there is more than one actorrunnable at the same time,

the schedulerchooses one basedon a certain criterion. The simplest strategy is to choose one

randomly. There are many possible schedules for allbut the most trivial graphs; the schedule

chosentakes resource costs into account, such as the necessity of flushing registers and the

amount of buffering required, into account (see [8] for detailed discussion of SDF scheduling).

The Target thengenerates codeby executing theactors in the sequence defined by this schedule.

This is a quick and efficientapproach unless there are large sample rate changes, in whichcase it

corresponds to completely unrolling all loops. This scheduler is similarto one used in Gabriel [5].

The second approach we call"loop scheduling". In this approach, actors thathave the

same sample rate are merged (wherever this willnotcause deadlock) and loops are introduced to

match thesample rates. Theresult is ahierarchical clustering; within each cluster, thetechniques

described above can beused to generate aschedule. Thecode then contains nested loop constructs

together with sequences of code from the actors. The loop scheduling techniques used in Ptolemy

Software Synthesis for Single-Processor DSP Systems Using Ptolemy 25

Code Generation with Ptolemy

are described in [9]; generalization of loop scheduling to includedynamic actors is discussed in

[24].

2.5 Wormholes

A significant feature of Ptolemy is the capability of intermixing different domains or

targets by wormholes. Suppose a code-generation domain lies in the SDF domain, where partof

the applicationis to be run in simulation mode on the user's workstation and the remainder of the

applicationis to be downloaded to a DSP target system. When we schedule the actors that areto

run in the outside SDF-simulation domain at compile-time, we generate, download, and run the

code for the target architecture in the inside code-generation domain. Forthe purposes of this

section, we will say "SDF domain" to refer to actors that arerun in simulation mode, and "code

generation domain" for actors for which code is generated.

In the example of figure 7-(a), a DSP target system is coded to estimate a power spectrum

of a certain signal. At run-time, the estimated spectrum information is transferred to the host

computer to be displayed on the screen. Thus, the host computer momtors the DSP system. In the

next example in figure 7-(b), a DSP system performs a complicated filtering operationwith a

signal passed from the host computer, and sends the filtered result back to the host computer. In

this case, the DSP hardware serves as a hardware acceleratorfor number crunching. By the

wormhole mechanism in Ptolemy, as demonstrated in the above examples, we are able to make

the host computer interact with the DSP system. In Ptolemy, a wormhole is an entity that, from the

SDF wormhole display SDF wormhole

(a) (b)

Figure 7. Examples of Host-to-DSP interaction using wormholes.

Software Synthesis for Single-Processor DSP Systems Using Ptolemy 26

Code Generation with Ptolemy

outside, obeys the semantics of one domain (in this case, it works like an SDF simulation actor),

but on the inside, contains actors for another domain entirely.

Data communication between the host computer and the DSP target architecture is

achieved in the wormhole boundary. In the SDF domain, datais transferred to the input porthole

of the wormhole. The input porthole of a wormhole consists of two parts: one is visible from the

outside SDF domain and the other is visible in the inside code-generation domain. The latter part

of the porthole is designed in a target-specific manner, so that it sends the incoming data to the

target architecture. In the output porthole of the wormhole, the inner partcorresponding to the

inside code-generation domain receives the data from the DSP hardware, which is transferred to

the outer part visible from the outside SDF domain. In summary, for each target architecture, we

can optionally design target specific wormholes to communicate data with the Ptolemy simulation

environment; all that is needed to create this capability for a new Target is to write a pair of

routines for transferring data that use a standard interface.

The interface code is generated by virtual target methods(worminputCode (),

wormOutputcode ()), and the actual data transfer is also performed by other target methods

(sendWormData (), and receiveWormData ()). These methods were described in section 2.5.

Unlike the simulation domains, the EventHorizon classes for the CG domain are not involved in

the actual data communication, but perform other functions such as input data synchronization. A

code-generation wormhole is only fired when all inputs are available from the simulation domain.

An example of a universe that contains a SDF wormholeinterfacing to the DSP target is

shown in figure 8. The SDF universe is usedto hereto display the output from a application

runningon the S-56X. The algorithm running on the DSPcard is shownin figure 8. This is avery

simple application,where a tone is being generated; the original signal,a upsampled (x 2) version

and a downsampled (x 2) version is returned to the parent SDF universe. The code generated for

the application shown in figure 8 is listed in section 7.1.

Software Synthesis for Single-Processor DSP Systems Using Ptolemy 27

Summary of Code Generation Procedure

3.0 Summary of Code Generation Procedure

In this section we will review how the various modules of the Ptolemy platform interact to

generate code for atarget application. The code generation procedure is detailed in figure 10.

First, the setup () method is called for all blocks relevant to particular application. This allows

the schedulers, target modules, and stars toinitialize internal variables. Next, the schedule pass is

Figure 8. SDFUniverse containing a multirate S-56X Galaxy.

unBaQounBazopie

H-<K

TonP Fork

t.->npfiampl p>

Figure9. Multirate S-56XWormhole.

Software Synthesis for Single-Processor DSPSystems Using Ptolemy 28

Summary of Code Generation Procedure

mwmmmmfm

Generate Wormhole Output Code

V
mmmmummammpmrnmrn

End Main Loop

tgmemmtmmmmHf

Figure 10. Code Generation Procedure

Software Synthesis for Single-Processor DSP Systems Using Ptolemy 29

An Application: Adaptive PCMCoding

done. The scheduler returns a list thatdetails the firing order of the blocks in a particular

application. Based on this schedule, the resources can be allocated. In the case ofassembly code,
the memory is allocated as well. Note, the resource allocation stage must follow the scheduling

stage so that the buffer lengths are known. Now we are ready to generate the initialization code
for the given application. Atthis point, the initcode() method ofall the blocks are fired. Finally,

we are ready to generate the main loop code.

First we initialize themain loop. Notice that thecode generation algorithm forks intotwo

different paths, one signifying that the code currently being generated isintended for atarget on

theinside of awormhole, and theother for applications notrunning inside awormhole. If we are

inside of awormhole, we generate code toread the data from the Ptolemy Universal construct.

Then we generate the main loop code and finally generate code to write the data into the Ptolemy

construct. The wormhole code is written is awaywhich automatically synchronizes the DSP

system and the host workstation. Ifwe are not inside awormhole, we simply generate the main

loop code. Finally, we close the main loop and then fire the wrapup () methods ofall ofthe blocks

relevant to a particular application.

4.0 An Application: Adaptive PCM Coding

In this section, I will detail a simple application developed in the CG56 domain. An

adaptive DPCM speech coder/decoder system was implemented using the S56XTarget. This
target produces two files, one specifying the assembly code and the specifying the asychronous

input output user interface. For alisting ofeach ofthese files see sections 7.2 and 7.3. The code

generated runs inreal-time on aMotorola 56000 DSP card installed inthe SparcStation. This card

is connectedto an A/D andD/A thatrun at8 kHz producing/consuming 16bit samples. The coder

allows various levels of quantization that can be readily interchanged at run time. The ADPCM

coder is one implementation in the broad family ofadaptive predictive coders (APC). First, a

review of DPCM coders will be presented. For amore detailed derivation of ADPCM coders see

[25].

Software Synthesis for Single-Processor DSP Systems Using Ptolemy 30

An Application: Adaptive PCM Coding

A DPCM coder codes speech by quantizing a difference signal. Let x (n) denote the

original speech signal, then the difference signal is defined asd(n) = x(n) -x(n) where x (n)

is the prediction of x (n) . Using a DPCM coderresults in a coding gainknown as the predictive

gain, GP = c2/o2d> Asimplified DPCM coder is shown in figure 11. H(e^) is known as the
prediction filter.

In order to be able to quantize d (n), a feedback-around-quantizer structure (figure 12) is

used so both of the prediction filters have access to the same information. This structure allows

the use of anadaptive predictive filter whereboth filters adapt in unison, thusavoiding the needto

transmit the predictor coefficients. In thesystem implemented, least mean square (LMS) adaptive

filters are used for the preuiction filters. This adaptive algorithm uses the instantaneous mean

square error to adapt the filter coefficients.

x(n) d(n) x(n)

H{^w)
x(n)

w(Q L 1
$/n1 I*(»)

Figure 11. A Simplified DPCMcoder/decoder system.

x(n)

Figure 12. A Feedback-around-quantizer coder.

Software Synthesis for Single-Processor DSPSystems Using Ptolemy 31

An Application: Adaptive PCM Coding

The coder and decoder for the system are shown in figures 13 and 14. The quantizer

shown in figure 13is a galaxy in Ptolemy. Inside this galaxy, there is a system of 4 quantizers

feeding into a multiplexer. The multiplexer is controlledby the user interface shown in figure 15.

Other parameters controllablehere are an optionalone second delay on the processed speech and

a multiplicative constant applied to the quantizers to control their respective quantization and

threshold levels. This constant allows the user to dynamically change the quantization parameters

and instantly hear the results. A quantization range that is too largeor too small impairs system

performance. Thus with the slider, the user is able to fine tune the system.

The system produces intelligiblespeech atboth 1 (8 kbs) and2 (16 kbs) bit quantizations.

At 3 bit quantization (24 kbs), the qualify of the speech is very good. At 4 (32 kbs) bit

quantization or no quantization, the speech quality is excellent

Sub u
f

DPCMQuant. Fork

*L
T.M.Sl

Figure 13. ADPCM Coder

Figure 14. ADPCM Decoder

Software Synthesis for Single-Processor DSP Systems Using Ptolemy 32

Conclusions

5.0 Conclusions

In this paper, we have introduced the code generation aspects of Ptolemy. It has been

demonstrated that this platform provides an extensible signal processing code generation

environment. Given the object-oriented design, Ptolemy allows the user to easily define new

targets, stars, and schedulers. Once new blocks are defined they are easily incorporated into the

Ptolemy environment, promoting code reuse. The ptlang preprocessor makes target and star

waiting systematic, especially for those unfamiliar with C++ or the Ptolemy kernel.

Comparing Ptolemy to the other DSP code generation platforms such Comdisco DPC [1],

Mentor DSP Station, and Descartes [7], is difficult sin^e we have addressed somewhat orthogonal

issues. Some of these other code generators will do better in terms of efficiency for most sdf

assembly language dataflow graphs. The reason for this lies in the fact that we have not

implemented register allocation. We will be incorporating register allocation in the near future

(see section 6.0). We can, however, compare Ptolemy to the other code generators in terms of

features.

The major differences concern the handlingof multirate signal processing. Toimplement a

multirate graph, the Comdisco system uses "hold" signals on blocks. This introduces run-time

conditional branching whenever the hold pins are connected. Unfortunately, the conditional

branching is required even if the control flow is totally predictable at compile time. The Mentor

DSP Station is built on top of the Silage language, which has only a limited mechanism for

Universe Parameter Control

Quantiration Range prr.'.
|G-0 P

»jar.U.-at»fi

♦ Hone

vZ.btt

v3_btt

N 4_bft

'Delay

QU!

Figure 15. Run Time User Interface

Software Synthesis for Single-Processor DSPSystems Using Ptolemy 33

Future Work

expressing multirate systems. Silage contains upsampleanddownsample operators; however, it is

impossible to write a polyphase multirateFIR filter block. To efficiently implement a multirate

FIR filter (getting a polyphase implementation), Silage relies on dead-code elimination by the

compiler. It is not clearhow effective today's compilers would be in eliminating this dead-code.

In Ptolemy, a polyphase FIR filterwould simply be defined as a star, thus producing no dead-

code.

Significant features distinguishing Ptolemyarethe modularity gained from its object

oriented design andits support forheterogenous architectures. We already support many

scheduling algorithms. It is simple to test new scheduling heuristics and contrast those results

with the supported schedulers. Also, we are not constrained to one particular scheduler for a

signal processing application. Thus, a user is able to choose different schedulers for the various

child-targets or domains in a single DSP application. Forall other systems that we areaware of, a

single scheduler is an integral part of the system.

The parallel schedulers areof particular interest. Here we areable to split, under special

circumstances, the various invocations of a starinstance over multiple processors. To do this we

have defined Spread, Collect, Send and Receive stars. A greatdeal of support is provided for

heterogeneous targets. For example, when a heterogeneous target specification is designed,

previously defined targets can be used as the basic building blocks to more complex systems. The

building block targets, in turn, can be either single-processor or multiple-processor targets.

6.0 Future Work

Although code generation is beginning to mature in Ptolemy, it is by no means finished.

We have only begun to explore buffer management techniques to use memory more efficiently,

Currently,in the assembly languagedomains, all stars must communicate through memory, not

registers. Hence, the more fine-grained a staris, the more penalty it suffers. Forexample, a simple

add starmust firstread in its two inputs from memory and then write its output to memory. Even

though a simple operation like addmight takeone cycle on a DSP, the addcould potentially take

four or more cycles. Futureversions of Ptolemy will useregisters to exchange data, as done in [1].

Software Synthesis for Single-Processor DSPSystems Using Ptolemy 34

Appendix: Generated Code

Because there are no data-dependent decisions in the SDF domain, it is possible in principle to do

more efficient register allocation than can be done for more conventional high-level languages

(although since the problem of optimal register allocation, like so many others in this area, has

combinatorial complexity, heuristics still must be used).

Work is in progress to extend our code generation techniques to support more general

models of computation, such as the token flow model [24] and dynamic constructs [14]. We are

also looking into developing tools to evaluate performance, and facilitate hand tuning of the

generated code.

7.0 Appendix: Generated Code

7.1 S-56X Wormhole Generated Assembly Code
;User: pino
;Date: Mon Apr 19 11:13:06 1993
/Target: S-56XWH
;Universe: tonewh3

org p:

ori #03,mr /disable interrupts
include Vhome/ohml/users/messer/ptolemy/lib/cg56/intequlc.asm'
include Vhome/ohml/users/messer/ptolemy/lib/cg56/ioequlc.asm'
include Vhome/ohml/users/messer/ptolemy/lib/cg56/s5 6xwh.asm,

/initialization code from star wormHole3.tonewh31.tonewh3.Tonel (class CG56Tone)
/initialization for state wormHole3.tonewh31.tonewh3.Tonel.state1

org y:1
dc 0.0

/initialization for state wormHole3.tonewh31.tonewh3.Tonel.state2

org x:8
dc 0.0626666167821521

org p:

/initialization code from star wormHole3.tonewh31.tonewh3.DpSamplel (class CG56UpSample)
move #0,rl
move #0.0,a
rep #4
move a, x: (rl) +

/initializationcodefromstarwormHole3.tonewh31.tonewh3.DownSamplel (classCG56DownSample)
/initialization code from starwormHole3 .tonewh31.tonewh3.Fork.output=31 (classAnyAsmFork)

andi #$fc,mr /enable interrupts
LOOP_0
/code from star wormHole3.tonewh31.tonewh3.Tonel (class CG56Tone)

move x:8,xl

move y: 1, a
move #0.992114701314478,xO
mac -xl,x0,a xl,x:4
neg a

mac xl,x0,a xl,y:l
move a,x:8

/code from star wormHole3 .tonewh31.tonewh3.Fork.output=31 (class AnyAsmFork)
/code from star wormHole3.tonewh31.tonewh3.UpSamplel (class CG56UpSample)

Software Synthesis for Single-Processor DSP Systems Using Ptolemy 35

Appendix: Generated Code

move x:4,x0

move xO,x:0
/code from star wormHole3 .tonewb.31 .tonewh.3 .Tonel (class CG56Tone)

move x:8,xl
move y: 1, a
move #0.992114701314478,xO
mac -xl,xO,a xl,x:5

neg a

mac xl,xO,a xl,y:l
move a,x:8

/code from star wormHole3 .tonewh31 .tonewh3.Fork.output=31 (class AnyAsmFork)
/code from star wormHole3.tonewh31.tonewh3.DpSamplel (class CG56UpSample)

move x:5,x0

move x0,x:2
/code from star wormHole3.tonewh31.tonewh3.DownSample1 (class CG56DownSample)

move x:4,x0
move xO,x :9

/ Output worm code for output#2
initial_wait_l

move y:WordCnt,a/ get word count
tst a

jeq initial_wait_l
jclr #m_dma,x:m_hsr,initial_wait_l
move #4,r0;read starting location address
do a,WHL_2

wait_3jclr#m_htde,x:m_hsr,wait_3/wait for host port available
movep x:(rO)+,x:m_htx

WHL_2nop
move #0, a
move a,y:WordCnt
nop

/ Output worm code for output
initial_wait_4

move y:WordCnt,a/ get word count
tst a

jeq initial_wait_4
jclr #m_dma,x:m_hsr,initial_wait_4

wait_5jclr#m_htde,x:m_hsr,wait_5/wait for host port avail
movep x:9,x:m_htx
move #0,a
move a,y:WordCnt
nop

/ Output worm code for output
initial_wait_6

move y:WordCnt,a/ get word count
tst a

jeq initial_wait_6
jclr #m_dma,x:m_hsr,initial_wait_6
move #0,rO;read starting location address
do a,WHL_7

wait_8 jclr#m_htde, x:m_hsr,wait_8/wait for host port available
movep x: (rO)+, x:m_htx

WHL 7nop
move #0,a
move a, y:WordCnt
nop

3mp LOOP 0

jmp ERROR

Symmetric memory map:
x memory map:

Loc 0, length 4, port wormHole3.tonewh31.tonewh3.DpSamplel(output), type ANYTYPE
Loc 4, length 2, port wormHole3.tonewh31.tonewh3.Fork.output=31(input), type ANYTYPE
Loc 6, length 2, port wormHole3,tonewh31.tonewh3.Fork.output=31(output#2), type ANYTYPE
Loc 8, length 1, state wormHole3.tonewh31.tonewh3.Tonel(state2), type FIX

Software Synthesis for Single-Processor DSP Systems Using Ptolemy 36

Appendix: Generated Code

Loc 9, length 1, port wormHole3 .tonewh31 .tonewh3 .DownSamplel (output) , type ANYTYPE
y memory map:

Loc 1, length 1, state wormHole3.tonewh31.tonewh3.Tonel(statel), type FIX

7.2 ADPCM Generated Assembly Code
/User: pino
/Date: Wed Mar 17 17:19:46 1993
/Target: S-56X
/Universe: DPCM

org p:

ori #03,mr /disable interrupts
include */home/ohml/users/messer/ptolemy/lib/cg56/intequlc.asm'
include Vhome/ohml/users/messer/ptolemy/lib/cg56/ioequlc.asm'
include Vhome/ohml/users/messer/ptolemy/lib/cg56/s56x.asm'

/initialization code from star DPCM.monoADDAI.Fork.output=21 (class AnyAsmFork)
/initialization code from star DPCM.monoADDAI.SSI1 (class CG56SSI)
/initialization for state DPCM.monoADDAl.SSI1.missCnt

org y:15
dc 0

org p:

ssi_0_s averegequ68
ssi_0_buflenequ 8
ssi_0_bufferequ 0
ssi_0_recv_sptrequ74
ssi_0_recv_iptrequ76
ssi_0_xmit_sptrequ75
ssi_0_xmit_iptrequ77
ssi_0_dualbufequ0

/ Initialize all the pointers to the right place.
/ Note that recv&xmit bufs are at the same add but recv in x: and xmit in y:
org x:74
dc ssi_0_buffer
org x:76
dc ssi_0_buffer
org x:75
dc ssi_0_buffer
org x:77
dc ssi_0_buffer
org p:

move *ssi_0_buffer, rO
.LOOP #ssi_0_buflen

bset #0,x:(r0)/ empty recv buf by setting bit 0
bclr #0,y:(r0)+/ fill xmit buf by clearing bit 0

.ENDL

SAVEPC_3equ*
/ SSI receive data interrupt vector
org p:i_ssird
jsr ssi_0_intr

org p:SAVEPC_3
SAVEPC_4equ*
/ SSI receive data w/ exception interrupt vector
/ XXX: this is wrong!!!
org p:i_ssirde
jsr ssi_0_intr

org p:SAVEPC_4
movep #16640,x:m_cra
movep #14848,x:m_crb

/ Configure Port C pins 8-5 as SSI pins
bset #8,x:m_pcc/ STD
bset #7,x:m_pcc/ SRD

Software Synthesis for Single-Processor DSP Systems Using Ptolemy 37

Appendix: Generated Code

bset #6,x:m_pcc/ SCK (bit clock)
bset #5,x:m_pcc/ SC2 (frame clock)
/ Configure Port C pins 2-0 as raw data pins (normally SCI)
bclr #2,x:m_pcc
bclr #l,x:m_pcc
bclr #0,x:m_pcc
bset #2,x:m_pcddr/ as outputs
bset #l,x:m_pcddr
bset #0,x:m_pcddr
bset #m_ssl0,x:m_ipr/ set SSI IPL 2
bset #m_ssll,x:m_ipr
bset #m_srie,x:m_crb / enable SSI rx interupts
/initialization code from star DPCM.roonoADDAl.BlackHolel (class AnyAsmBlackHole)
/initialization code from star DPCM.DPCMTXl .DPCMQuantl.Fork.output=41 (class AnyAsmFork)
/initialization code from star DPCM.DPCMTXl.DPCMQuantl .QuantRangel (class CG56QuantRange)
/initialization for state DPCM.DPCMTXl.DPCMQuantl.QuantRangel.thresholds

org x:81
dc 0.0

/initialization for state DPCM.DPCMTXl.DPCMQuantl.QuantRangel.levels
org y:73
dc -0.5

dc 0.5

org p:

/initialization code from star DPCM.DPCMTXl .DPCMQuantl.QuantRange2 (class CG56QuantRange)
/initialization for state DPCM.DPCMTXl.DPCMQuantl.QuantRange2.thresholds

org x:71
dc -0.5

dc 0.5

/initialization for state DPCM.DPCMTXl.DPCMQuantl.QuantRange2.levels
org y:70
dc -1.0

dc 0.0

dc 0.99999988079071

org p:

/initialization code from star DPCM.DPCMTXl.DPCMQuantl .QuantRange3 (class CG56QuantRange)
/initialization for state DPCM.DPCMTXl.DPCMQuantl.QuantRange3.thresholds

org x:62

dc -0.7

dc -0.42

dc -0.14

dc 0.14

dc 0.42

dc 0.7

/initialization for state DPCM.DPCMTXl.DPCMQuantl.QuantRange3.levels
org y:63
dc -0.84

dc -0.56

dc -0.28

dc 0.0

dc 0.28

dc 0.56

dc 0.84

org p:

/initialization code from star DPCM.DPCMTXl.DPCMQuantl .HostSliderl (class CG56HostSlider)
/initialization for state DPCM.DPCMTXl.DPCMQuantl.HostSliderl.value

org x:82
dc 0.0

org p:

/initialization code from star DPCM.DPCMTXl .DPCMQuantl. switchSl .HostMButtonl (class
CG56HostMButton)

/initialization for state DPCM.DPCMTXl.DPCMQuantl.switch51.HostMButtonl.value
org x:83
dc 0.0

org p:

Software Synthesis for Single-Processor DSP Systems Using Ptolemy 38

Appendix: Generated Code

/initializationcodefromstarDPCM.DPCMTXl. DPCMQuantl. switchSl. Mux. input=51 (classCG56Mux)
org x: 8
dc 80

dc 85

dc 86

dc 87

dc 88

org y:8
dc 1-1

dc 1-1

dc 1-1

dc 1-1

dc 1-1

org p:

/initialization code from star DPCM.DPCMTXl.DPCMQuantl .QuantRange4 (class CG56QuantRange)
/initialization for state DPCM.DPCMTXl.DPCMQuantl.QuantRange4.thresholds

org x:48
dc -0.845

dc -0.715

dc -0.585

dc -0.455

dc -0.325

dc -0.195

dc -0.065

dc 0.065

dc 0.195

dc 0.325

dc 0.455

dc 0.585

dc 0.715

dc 0.845

/initialization for state DPCM.DPCMTXl.DPCMQuantl.QuantRange4.levels
org y:48
dc -0.91

dc -0.78

dc -0.65

dc -0.52

dc -0.39

dc -0.26

dc -0.13

dc 0.0

dc 0.13

dc 0.26

dc 0.39

dc 0.52

dc 0.65

dc 0.78

dc 0.91

org p:

/initialization code from star DPCM.DPCMTXl.DPCMQuantl.Fork.output=42 (class AnyAsmFork)
/initialization code from star DPCM.DPCMTXl.DPCMQuantl.auto-fork-60 (class AnyAsmFork)
/initialization code from star DPCM.DPCMTXl.Subl (class CG56Sub)
/initialization code from star DPCM.DPCMTXl.Add.input=21 (class CG56Add)
/initialization code from star DPCM.DPCMTXl.Fork.output=21 (class AnyAsmFork)
/initialization code from star DPCM.DPCMTXl .Fork.output=31 (class AnyAsmFork)
/initialization code from star DPCM.DPCMTXl .LMS1 (class CG56LMS)
/initialization for state DPCM.DPCMTXl.LMSl.coef

org x:16

dc 0.99999988079071

dc 0.0

dc 0.0

dc 0.0

dc 0.0

dc 0.0

Software Synthesis for Single-Processor DSPSystems Using Ptolemy 39

Appendix: Generated Code

dc 0.0

dc 0.0

dc 0.0

dc 0.0

dc 0.0

dc 0.0

dc 0.0

dc 0.0

dc 0.0

dc 0.0

org p:

/ delayLine memory
org y:16
bsc 16,0
org p:

/ pointer to delay line into memory
org y:75
dc 16

org p:

/initialization code from star DPCM.APCRxl.Add.input=22 (class CG56Add)
/initialization code from star DPCM.APCRxl.Fork.output=23 (class AnyAsmFork)
/initialization code from star DPCM.APCRxl .Fork.output=24 (class AnyAsmFork)
/initialization code from star DPCM.APCRxl.LMS2 (class CG56LMS)
/initialization for state DPCM.APCRxl.LMS2.coef

org x:32

dc 0.99999988079071

dc 0.0

dc 0.0

dc 0.0

dc 0.0

dc 0.0

dc 0.0

dc 0.0

dc 0.0

dc 0.0

dc 0.0

dc 0.0

dc 0.0

dc 0.0

dc 0.0

dc 0.0

org p:

/ delayLine memory
org y:32
bsc 16,0

org p:

/ pointer to delay line into memory
org y:7 6
dc 32

org p:

/initializationcodefromstarDPCM.SwitchDelayl. switchl.HostButton.buttonType=checkbuttonl
(class CG5 6HostButton)

org x:96

dc 0

org P:

/initialization code from star DPCM.SwitchDelayl.switchl.Mux.input=21 (class CG56Mux)
org x:13

dc 95

dc 98

org y:13
dc 1-1

dc 1-1

org p:

/initialization code from star DPCM.SwitchDelayl.Delay1 (class CG56Delay)

Software Synthesis for Single-Processor DSP Systems Using Ptolemy 40

Appendix: Generated Code

/ initialize delay star
/ pointer to internal buffer

org y:77
dc 8192

org p :

/initialization code from star DPCM.SwitchDelayl .Fork.output=25 (class AnyAsmFork)
andi #$fc,mr /enable interrupts

L00P_5
/code from star DPCM.DPCMTXl.LMS1 (class CG56LMS)

/ initialize address registers for coef and delayLine
move #16+16-1,r3

/ insert here
move y:75,r5 / delayLine
move #15,m5
/ first adapt coefficients.
/ multiply the error by the stepSize —> xO
move #0.0001,xl
move x:92,x0

mpyr x0,xl,a
move a,xO
move x:(r3),b y:(r5)+,y0
do #15,endloop_6
macr xO,yO,b
move b,x:(r3)-
move x:(r3),b y:(r5)+,y0

endloop_6
macr xO,yO,b
move b,x:(r3)
/ move current inputs into delayLine.
move #93,rO

move y:75,r5
move x:(rO)+,yl
move yl,y:(r5)+
/ update delayLine pointer.
move r5,y:75 /oldest sample pointer
/ now compute output.
lua (r5)-,r5
nop

clr a x:(r3)+,x0 y:(r5)-,y0
do #15,loopl_7
mac xO,yO,a x:(r3)+,x0 y:(r5)-,y0
loopl_7
macr xO,yO,a
move a,x:91

move m7,m5
/code from star DPCM.SwitchDelayl.switchl.HostButton.buttonType=checkbuttonl (class
CG56HostButton)

move x:96,x0 / move value to output
move x0,x:97

/code from star DPCM.APCRxl.LMS2 (class CG56LMS)
/ initialize address registers for coef and delayLine

move #32+16-1,r3
/ insert here

move y:76,r5 / delayLine
move #15,m5
/ first adapt coefficients.
/ multiply the error by the stepSize —> xO
move #0.0001,xl
move x:92,x0
mpyr xO,xl,a

move a,xO
move x:(r3),b y:(r5)+,y0
do #15,endloop_8
macr xO,yO,b

Software Synthesis for Single-Processor DSP Systems Using Rolemy 41

Appendix: Generated Code

move b,x:(r3)-
move x:(r3),b y:(r5)+,y0

endloop_8
macr xO,yO,b
move b,x:(r3)

/ move current inputs into delayLine.
move #95,rO

move y:76,r5
move x: (rO)+,yl
move yl,y:(r5)+
/ update delayLine pointer,
move r5,y:76 /oldest sample pointer
/ now compute output,
lua (r5)-,r5

nop

clr a x:(r3)+,x0 y:(r5)-,y0
do #15,loopl_9
mac x0,y0,a x:(r3)+,x0 y:(r5)-,y0
loopl_9
macr xO,yO,a
move a,x:9'

move m7,m5
/code from star DPCM.DPCMTXl.DPCMQuantl.switchSl.HostMButtonl (class CG56HostMButton)

move x:83,x0 / move value to output
move x0,x:84

/code from star DPCM.DPCMTXl.DPCMQuantl.HostSliderl (class CG56HostSlider)
move x:82,x0 / move value to output
move x0,x:89

/code from star DPCM.DPCMTXl.DPCMQuantl.Fork.output=42 (class AnyAsmFork)
/code from star DPCM.DPCMTXl.Fork.output=21 (class AnyAsmFork)
/code from star DPCM.DPCMTXl.Subl (class CG56Sub)
move x:90,a

move x:91,x0

sub xO,a
move a,x:80
/code from star DPCM.DPCMTXl.DPCMQuantl.Fork.output=41 (class AnyAsmFork)
/code from star DPCM.DPCMTXl.DPCMQuantl.auto-fork-60 (class AnyAsmFork)
/code from star DPCM.DPCMTXl.DPCMQuantl.QuantRangel (class CG56QuantRange)
move #<81,r0

move #>73,r4
move x:80,x0

move x:89,xl

move x:(rO),y0
move y:(r4)+,yl
mpy xl,yO,a
mpy xl,yl,b

cmpxO,a
jgeterm_10
move y:(r4),yl

mpy xl,yl,b
term_10
move b,x:85
/code from star DPCM.DPCMTXl.DPCMQuantl.QuantRange2 (class CG56QuantRange)
move #<71,r0

move #>70,r4

move x:80,x0

move x:89,xl
move x: (rO) +,y0

move y: (r4)+,yl
do #2-l,lab_ll

mpy xl,yO,a
mpy xl,yl,b

cmpxO,a
jltagain_12

Software Synthesis for Single-Processor DSP Systems Using Rolemy 42

Appendix: Generated Code

enddo

jmp term_13
again_12
move x:(rO)+,yO

move y:(r4)+,yl
lab_ll
cmpxO,a
jgeterm_13
move y:(r4),yl

mpy xl,yl,b
term_13
move b,x:86
/code from star DPCM.DPCMTXl.DPCMQuantl.QuantRange3 (class CG56QuantRange)
move #<62,r0
move #>63,r4
move x:80,x0

move x:89,xl

move x:(rO)+,yO
move y:(r4)+,yl

do #6-l,lab_14
mpy xl,yO,a
mpy xl,yl,b

cmpxO,a
jltagain_15
enddo

jmp term_16
again_15
move x:(rO)+,y0

move y:(r4)+,yl
lab_14
cmpxO,a
jgeterm_16
move y:(r4),yl

mpy xl,yl,b
term_16
move b,x:87

/code from star DPCM.DPCMTXl.DPCMQuantl.QuantRange4 (class CG56QuantRange)
move #<48,r0
move #>48,r4
move x:80,x0

move x:89,xl
move x:(rO)+,yO

move y:(r4)+,yl
do #14-l,lab_17

mpy xl,yO,a
mpy xl,yl,b

cmpxO,a
jltagain_18
enddo

jmp term_19
again_18
move x:(rO)+,y0

move y:(r4)+,yl
lab_17
cmpxO,a
jgeterm_19
move y:(r4),yl

mpy xl,yl,b
term_19
move b,x:88

/code from star DPCM.DPCMTXl .DPCMQuantl. switchSl .Mux.input=51 (class CG56Mux)
move #8,r0
move x:84,n0
nop

Software Synthesis for Single-Processor DSP SystemsUsing Rolemy 43

Appendix: Generated Code

move x:(r0+n0),r2
nop

move x:(r2),x0

move x0,x:92

/code from star DPCM.DPCMTXl.Fork.output=31 (class AnyAsmFork)
/code from star DPCM.APCRxl.Fork.output=24 (class AnyAsmFork)
/code from star DPCM.DPCMTXl.Add.input=21 (class CG56Add)

move x:92,x0 ; 1st input -> xO
move x:91,a ; 2nd input -> a
add xO,a

move a,x:93 / this move saturates
/code from star DPCM.APCRxl.Add.input=22 (class CG56Add)

move x:92,x0 / 1st input -> xO
move x:94,a / 2nd input -> a
add xO,a

move a,x:95 / this move saturates
/code from star DPCM.APCRxl.Fork.output=23 (class AnyAsmFork)
/code from star DPCM.SwitchDelayl.Fork.output=25 (class AnyAsmFork)
/code from star DPCM.SwitchDelayl.Delay1 (class CG56Delay)
move x:95,xl
move y:77,r0
move #8000-1,mO
move y: (rO),yO
move xl,y:(r0)+
move r0,y:77
move y0,x:98
move #-l,m0

/code from star DPCM.SwitchDelay1.switchl.Mux.input=21 (class CG56Mux)
move #13,rO
move x:97,n0

nop

move x:(r0+n0),r2

nop

move x:(r2),x0

move x0,x:73

/code from star DPCM.monoADDAl.Fork.output=21 (class AnyAsmFork)
/code from star DPCM.monoADDAl.SSI1 (class CG56SSI)

move #ssi_0_buflen-l,mO
move x:ssi_0_recv_sptr,rO
nop

jset #0,x:(r0),*/ Wait for slot to have data
move x: (r0),y0 / Get sample from buffer

IF 0

bset #0,x:(r0)+ / Mark slot as empty
ENDIF

move y0,x:90
IF 0

move y0,x:78
ENDIF

move x:73,y0
IF 0

jclr #0,y:(r0),*/ Wait for slot to be empty
ENDIF

move y0,y:(r0) / Put data there
IF 0

bclr #0,y:(r0)+ / Mark slot as full
ELSE

bset #0,x:(r0)+ / Mark slot as empty
ENDIF

jset #0,x:(r0),*/ Wait for slot to have data
move x:(r0),y0 / Get sample from buffer

IF 0

bset #0,x:(r0)+ / Mark slot as empty
ENDIF

Software Synthesis for Single-Processor DSP Systems Using Rolemy 44

Appendix: Generated Code

move y0,x:15
IF 0

move y0,x:79
ENDIF

move x:73,y0
IF 0

jclr #0,y:(rO),*/ Wait for slot to be empty
ENDIF

move yO,y:(rO) / Put data there
IF 0

bclr #0,y:(r0)+ / Mark slot as full
ELSE

bset #0,x:(r0)+ / Mark slot as empty
ENDIF

move r0, x:ssi_0_recv_sptr
move m7,m0

/code from star DPCM.monoADDAl.BlackHolel (class AnyAsmBlackHole)
jmp L00P_5
jmp ERROR

/Procedures Begin
/ Interrupt handler for DPCM.monoADDAl.SSI1
ssi_0_intr
move yO,x:ssi_0_savereg+0 / Save yO, rO, mO
move rO,x:ssi_0_savereg+l
move m0,x:ssi_0_savereg+2
move #ssi_0_buflen-l,mO
move x:ssi_0_recv_iptr, rO/ recv pointer
move x:m_rx,y0
jset #0,x: (rO) ,doRecv_l/ make sure recv slot empty

IF 1

move#S123064,yO / its full...abort
jmpERROR

ELSE

/ just drop recv sample in yO
move y:-(rO),yO / go back two (stereo): prev tx sample
move y:-(rO),yO
move y:15,r0
move y0,x:m_tx
move (r0) +

move r0,y:15
jmp done_2

ENDIF

doRecv_l
move y0,x:(rO)
move y:(rO),y0
bclr #0,x:(rO)+ / mark slot as used
move yO,x:m_tx
move rO,x:ssi_0_recv_iptr/ save updated pointer

done_2
move x:ssi_O_savereg+0,yO / Restore yO, rO, mO
move x:ssi_0_savereg+l,rO
move x:ssi_0_savereg+2, mO

rti

Procedures End

Symmetric memory map:
Loc 0, length 8, state DPCM.monoADDAl.SSI1(buffer), type FIXARRAY (circular)
Loc 8, lengths, stateDPCM.DPCMTXl .DPCMQuantl .switchSl .Mux.input=51(ptrvec), type INTARRAY
Loc 13, length 2, state DPCM.SwitchDelayl.switchl.Mux.input=21 (ptrvec), type INTARRAY

x memory map:

Loc 15, length 1, port DPCM.monoADDAl.BlackHolel(input), type ANYTYPE (circular)
Loc 16, length 16, state DPCM.DPCMTXl.LMS1(coef), type FIXARRAY
Loc 32, length 16, state DPCM.APCRxl.LMS2(coef), type FIXARRAY
Loc 48, length 14, state DPCM.DPCMTXl.DPCMQuantl.QuantRange4(thresholds), type FIXARRAY
Loc 62, length 6, state DPCM.DPCMTXl.DPCMQuantl.QuantRange3(thresholds), type FIXARRAY

Software Synthesis for Single-Processor DSP Systems Using Rolemy 45

References

Loc 68, length 3, state DPCM.monoADDAl.SSI1(saveReg) , type FIXARRAY
Loc 71, length 2, state DPCM.DPCMTX1.DPCMQuantl.QuantRange2(thresholds), type FIXARRAY
Loc 73, length 1, port DPCM.monoADDAl.Fork.output=21(input), type ANYTYPE
Loc 74, length 1, state DPCM.monoADDAl.SSI1(recvStarPtr), type INT
Loc 75, length 1, state DPCM.monoADDAl.SSI1(xmitStarPtr) , type INT

state DPCM.monoADDAl.SSI1(recvIntrPtr) , type INT
state DPCM.monoADDAl.SSI1(xmitIntrPtr), type INT
state DPCM.monoADDAl.SSI1(prevOutl) , type FIX
state DPCM.monoADDAl.SSI1(prev0ut2) , type FIX

Loc 80, length 1, port DPCM.DPCMTX1.DPCMQuantl.Fork.output=41(input), type ANYTYPE
Loc 81, length 1, state DPCM.DPCMTX1.DPCMQuantl.QuantRangel(thresholds), type FIXARRAY
Loc 82, length 1, state DPCM.DPCMTXl.DPCMQuantl.HostSliderl(value) , type FIX
Loc 83, length 1, state DPCM.DPCMTX1.DPCMQuantl.switch51.HostMButtonl(value), type FIX
Loc 84, length 1, port DPCM.DPCMTX1.DPCMQuantl.switch51.Mux.input=51(control), type INT
Loc85, length 1, port DPCM.DPCMTX1 .DPCMQuantl .switch51 .Mux.input=51 (input#2) ,type ANYTYPE
Loc 86, length 1,port DPCM. DPCMTX1 .DPCMQuantl. switch51 .Mux.input=51 (input#3) ,type ANYTYPE
Loc 87, length 1, port DPCM.DPCMTXl .DPCMQuantl.switch51.Mux.input=51 (input*4) ,type ANYTYPE
Loc88, length 1, port DPCM .DPCMTX1 .DPCMQuantl. switch51.Mux.input=51 (input#5) ,type ANYTYPE
Loc 89, length 1, port DPCM.DPCMTX1.DPCMQuantl.Fork.output=42(input), type ANYTYPE
Loc 90, length 1, port DPCM.DPCMTX1.Subl(pos) , type FIX
Loc 91, length 1, port DPCM.DPCMTX1.Fork.output=21(input) , type ANYTYPE
Loc 92, length 1, port DPCM.DPCMTXl.Fork.output=31(input) , type ANYTYPE
Loc 93, length 1, port DPCM.DPCMTX1.LMS1(input) , type FIX
Loc 94, length 1, port DPCM.APCRxl.Add.input=22(input#2) , type FIX
Loc 95, length 1, port DPCM.APCRxl.Fork.output=23(input), type ANYTYPE

Loc96, lengthl, stateDPCM.SwitchDelayl. switchl.HostButton.buttonType=checkbuttonl (value) ,
type FIX

Loc 97, length 1, port DPCM.SwitchDelayl.switchl.Mux.input=21(control) , type INT
Loc 98, length 1, port DPCM.SwitchDelayl.switchl.Mux.input=21(input#2), type ANYTYPE

y memory map:

Loc 15, length 1, state DPCM.monoADDAl.SSI1(missCnt) , type INT
Loc 16, length 16, state DPCM.DPCMTX1.LMS1(delayLine) , type INTARRAY (circular)
Loc 32, length 16, state DPCM.APCRxl.LMS2(delayLine) , type INTARRAY (circular)
Loc 48, length 15, state DPCM.DPCM7X1.DPCMQuantl.QuantRange4(levels) , type FIXARRAY
Loc 63, length 7, state DPCM.DPCMTXl.DPCMQuantl.QuantRange3(levels) , type FIXARRAY
Loc 70, length 3, state DPCM.DPCMTXl.DPCMQuantl.QuantRange2(levels) ,

length 2, state DPCM.DPCMTX1.DPCMQuantl.QuantRangel(levels) ,
length 1, state DPCM.DPCMTXl.LMS1(delayLineStart) , type INT
length 1, state DPCM.APCRxl.LMS2(delayLineStart) , type INT
length 1, state DPCM.SwitchDelayl.Delayl(delayBufStart), type INT

Loc 76, length 1,
Loc 77, length 1,
Loc 78, length 1,
Loc 79, length 1,

Loc 73,

Loc 75,

Loc 76,

Loc 77,

type FIXARRAY

type FIXARRAY

Loc 8192, length 8000, state DPCM.SwitchDelayl.Delayl(delayBuf), type FIXARRAY (circular)

7.3 ADPCM Generated Asychronous Input/Output (AIO) Code
aio_slider x :82 DPCM.DPCMTXl .DPCMQuantl .HostSliderl "Quantization Range" 0.01.00.00.01.0
"linear"

aio_multibuttonx :84DPCM .DPCMTX1 .DPCMQuantl .switch51 .HostMButtonl (Quantization) {"NoneO"
"l_bit 1" "2_bit 2" "3_bit 3" "4_bit 4")
aio_checkbuttonx :92DPCM.SwitchDelayl.switchl.HostButton.buttonType=checkbuttonl{Delay}01
0

aio_slider x:97 DPCM.adjustableGainl.HostSlider2 "Volume" 0.0 1.0 0.99999988079071 0.0
0.99999988079071 "linear"

aio checkbutton x:105 DPCM.switch2 .HostButton.buttonType=checkbuttonl {ADPCM} 0 10

8.0 References

[1] D.G. Powell, E. A.Lee, and W.C. Newman, "Direct Synthesis of Optimized DSP Assembly Code from Signal
Flow Block Diagrams,"International Conference onAcoustics, Speech andSignalProcessing, vol. 5, San Fran
cisco, IEEE, 1992, p. 553-556.

Software Synthesis for Single-Processor DSP Systems Using Ptolemy 46

Referenoes

2] J.M. Rabaey,C. Chu, P.Hoang, and M. Potkonjak, "Fastprototyping of datapath-intensive architectures," IEEE
Design & Test ofComputers, vol. 8, no. 2,1991, p. 40-51.

3] K.W. Leary and W.Waddington, "DSP/C:A StandardHighLevel Languagefor DSP and NumericProcessing,"
International Conference on Acoustics, Speech andSignalProcessing, vol. 2,1990, p. 1065-1068.

4] D. Genin, P.Hilfinger,J. Rabaey, C. Scheers,and H. De Man, "DSPspecification using the Silage language,"
International Conference on Acoustics,SpeechandSignalProcessing,vol. 2,1990, p. 1056-1060.

5] J.C. Bier, E.E. Goei, W.H. Ho, P.D. Lapsley, MP. O'Reilly,G.C. Sih, and E.A. Lee, "Gabriel: A design environ
ment for DSP," IEEE Micro, vol. 10,no. 5,1990, p. 28-45.

6] J. Buck, S. Ha, E.A. Lee, and D.G. Messerschmitt, "Ptolemy: A Platform for Heterogeneous Simulation and
Prototyping," European Simulation Conference, Copenhagen, Denmark, 1991.

7] S. Ritz, M. Pankert, and H. Meyr, "HighLevel SoftwareSythesisfor SignalProcessingSysfms," International
Conference onApplication Specific Array Processors, IEEE ComputerSocietyPress, 1992,p. 679-693.

8] E.A.Lee and D.G. Messerschmitt, "Synchronous dataflow," Proceedings of the IEEE, vol. 75, no. 9,1987, p.
1235-1245.

9] S.S. Bhattacharyya, "Scheduling synchronous dataflow graphs for efficient looping," to appear inJournal of
VLSI Signal Processing, 1993.

10] J.B. Dennis, "Data Flow Supercomputers,"IEEE Computer, vol. 13,no. 11,1980.

11] A.L. Davis and R.M. Keller, "Data Flow Program Graphs,"IEEE Computer, vol. 15,no. 2,1982.

12] D.G. Messerschmitt, "Structured Interconnection ofSignal Processing Programs," Globecom, Atlanta, Georgia,
1984.

13] D.G. Messerschmitt, "A Tool for Structured Functional Simulation,"IEEEJournalon SelectedAreasin Com
munications, vol. SAC-2, no. 1,1984.

14] S.Ha,Compile-time scheduling ofdataflow program graphs with dynamic constructs, Ph.D. Dissertation, U.C.
Berkeley, 1992.

15] J. Buck, S.Ha, E.A. Lee,and D.G. Messerschmitt, "Multirate signal processing inPtolemy," International Con
ference on Acoustics, Speech and Signal Processing, vol. 2,New York, NY, USA, IEEE, 1991, p. 1245-1248.

16] E.A. Leeand J.C. Bier, "Architectures forstatically scheduled dataflow," Journal ofParallel and Distributed
Computing, vol. 10, no. 4,1990, p. 333-348.

17] G.C. Sih and E.A. Lee, "Dynamic-level scheduling for heterogeneous processor networks," SecondIEEE Sym
posium onParallelandDistributed Processing, 1990, p. 42-49.

18] G.C. Sih and E.A. Lee, "Declustering: ANew Multiprocessor Scheduling Technique," IEEE Transactions on
Parallel andDistributedSystems, 1992.

Software Synthesis for Single-Processor DSP Systems Using Ptolemy 47

References

[19] A. Kalavade, "Hardware/Software Codesign using Ptolemy —ACase Study," International Workshop on Hard-
warelSoftware Codesign, Grassau, Germany, 1992.

[20] D.S. Harrison, P. Moore, R. Spickelmier, and A.R. Newton, "Data Management and Graphics Editing in the
Berkeley Design Environment," IEEE Internation Conference on Computer-AidedDesign, 1986.

[21] J.K. Ousterhout, "Tel: An Embeddable Command Language," Winter USENIX Conference, 1990, p. 133-146.

[22] J.C. Bier and E.A. Lee, "Frigg: ASimulation Environment For Multiple-Processor DSP System Development,"
International Conference on Computer Design: VLSI in Computers and Processors, Washington, DC, USA, '
IEEEComputer Society Press, 1989, p. 280-283.

[23] M. Karjalainen, "DSP software integration by object-oriented programming: acase study ofQuickSig" IEEE
ASSP Magazine, vol. 7, no. 2,1990,p. 21-31.

[24] J. Buck and E.A. Lee, "The Token Row Model," Data Flow Workshop, Hamilton Island, Australia, 1992.

[25] N.S. Jayant and P. Noll, Digital Coding ofWaveforms, New Jersey: Prentice-Hall, 1984.

Software Synthesis for Single-Processor DSP Systems Using Ptolemy 48

	Copyright notice 1993
	ERL-93-35(1 of 3)
	ERL-93-35(2 of 3)
	ERL-93-35(3 of 3)

