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Transition in dynamical regime by driving: a
method of control and synchronization of chaos
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Department of Electrical Engineering and Computer Sciences
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April 27, 1993

Abstract: We propose a simple method for the synchronization and the control of
chaos. A general qualitative description of the method is presented.



The study ofchaos in the last 20 years had a tremendous impact on the foundations
of the sciences and on engineering. Synchronization [Afraimovich, Verichev & Rabi-
novich, 1986; Pecora k Carroll, 1990] and control [Ott, Grebogy &Yorke, 1990] of chaos
have recently aroused a great deal of interests in light of their potential applications in
engineering. In this letter, we consider the following dynamical system:

x = f(x) + K(y-x)
y = g(y) (1)

where x, y € 9ftn and K is an n by n diagonal matrix, y is referred to as the goal.
Without loss of generality, we will assume that f(0) = g(0) = 0.

The dynamical system (1) describes a simple method to entrain x(t) to a goal y(t).
By considering this system with a specified goal y, the desired dynamical regime can be
obtained. Thus, if the goal is a chaotic or a periodic signal, synchronization or control
of chaos is achieved. Moreover, (1) is a simple alternative to Hubler and Jackson's
non-feedback method of entrainment and migration [Jackson, 1991].

Equation (1) also describes a transition or a transformation from one chaotic attractor,x(/)
to a second, y(t) as A'n- is varied. When A',-,- = 0, for i = l,2...,n, two uncoupled and in
dependent chaoticattractors coexist. When A',-,- —> oo Vi, chaos synchronization between
them occurs. But what happens when 0 < Ka < oo ?
Case f=g
Theorem 1: If f = g and \x(t = 0) - y(t = 0)| is sufficiently small then there exists
finite values of A'„, k{ with i = 1,2, ...,?i such that for Ka > &,-, x(t) approaches the goal
y(t).
Proof: First note that the inequalities

hil > EStfkyl (2)

where j = 1,2,..., n, are sufficient for the stability of a matrix with a negative diagonal
A = (o,-j). Now, denote u=x-y, so that from (1) we have

u = {

/ -A'n 0 0\

0 -Kn .. 0

... ... .. 0

1 0 0 . -Knn J

+ Di U=o}u + 0(x, y) = Au + 0(x, y) (3)

where Di is the Jacobian matrix of f and 0(x,y) represents the higher-order terms.
It is obvious that one can find Ka such that (2) is satisfied and such that the matrix
A has negative diagonal elements. Therefore, u = 0 is asymptotically stable and x(t)
approaches y(t) as t —* oo •

A few remarks are in order. First, Theorem 1 states that the signal x(t) and y(t)
can be synchronized. If they are chaotic, the phenomenon is referred to as chaos syn
chronization. We note that in Pecora and Carroll's approach stable commonly driven
subsystems can be synchronized if their Lyapunov exponents are all negative. Instead of
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searching for a stable subsystem, the present method provides a way to synchronize any
chaotic system. The variation of the driving strength Ka allow us to turn the Lyapunov
exponents of the linearized system u negative. The negativity of the Lyapunov expo
nents ensures that the null solution of the linear equation in u is asymptotically stable.
Furthermore a bidirectional coupling leads to mutual synchronization [Anishenko, Vadi-
vasova, Postnov k Safanova, 1992; Kowalski,Albert k Gross, 1990]. This can be proved
in a similar fashion to theorem 1.

Secondly, Theorem 1 provides a method to stabilized unstable periodic orbits em
bedded in a chaotic attractor of x = f (x). Chaotic attractors are closures of a dense set
of unstable periodic orbits [Eckmann k Ruelle, 1985; Auerbach, Cvitanovic, Eckmann
k Gunaratne,1987;Cvitonovic, 1988]. By supplying external oscillators, y(t) that mimic
an unstable periodic orbit of the chaotic attractor of x = f(x), we can synchronize
x(t) to the external oscillators [Pyrogas,1992], thus stabilize an unstable periodic orbit.
Therefore (1) is a useful method of control especially when the parameters of the system
to be controlled are not accessible or cannot be altered.

Finally, the current method is also suitable for migration control [Jackson, 1991].
Many systems described by x = f(x) possess multiple basins of attraction. The dynam
ical regime in each of them may be very different. By setting the goal attractor in a
different basin from the current attractor's, (1) can be used to switch between attractors
in a multiple attractors system. We can also achieve migration by choosing the goal to
be a point in the desired basin and release the control (set A'tt = 0) when this basin is
reached.

Case f 7^ g
For simplicity, we will assume that Ka = k, for all i = 1,2, ...,n. In this case (1) is

rewritten as
x = f(x) + * (y-x) m
y = g(y) [ }

where k is a real nonnegative parameter.
Theorem 2: For sufficiently small \x(t = 0)| + |y(/ = 0)| and e = &-1, there exists /0
such that x(t) converges uniformity to y(/) as e —» 0+ on all closed subsets of t0 < * < oo.
Proof: (1) can be rewritten as

ex = -(x - y) + ef(x)
y = g(y) {0}

To examine (5) for small positive e it is convenient to make use of two systems which
are associated with (5). The first system called the degenerate system is obtained by
formally setting e = 0 in (5). This gives

X = y (R\
y = g(y) (6)

The second system is obtained by making the 'streching' transformation of independent
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variable r = t/t in (5) and then setting e = 0. This yields

dx

~aW
dx

x = -(x-y) (•)

and,
dy n

Since the only solution of (8) is y = C = constant, (7) can be written as

.- = -(x-C) (9)

The system (9) is called a boundary-layer system. Since it is an asymptotically stable
system, the proof of the theorem follows from the theorem of Tihonov [Tihonov, 1952]
and its generalization [Hoppensteadt,1966] E

Let us assume that the system x = f(x) has a chaotic attractor Aj and system
y = s(y) a chaotic attractor Ag. For typical dynamical system (4), a chaotic, attractor
denoted by Ak exists for every k > 0. This can be proved for k —> 0 and k —»• oo (this
latter case actually follows from Theorem 2). By denoting the projection of Ak on the
subspace x, U(Ak), by Ak, it is clear from (6) that Aco = Ag. Thus when k varies from
0 to oo, Ak is transformed from Aq = A/ to Aoo = Ag.

We now present a qualitative description of this transformation. Let us consider the
corresponding undriven system of (4)

x = f(x)-fc x (10)

A typical vector field (10) undergoes various bifurcations from chaos to a fixed point as
k increases from 0 to oo. On the other hand the driven system (4) also bifurcates but for
typical vector fields, the dynamical regime remains chaotic, as k is increased. In fact, we
have found that a typical system (4) bifurcates from chaos to hyperchaos and vice versa.
If the origin of (10) is asymptotically stable then Ak becomes more and more similar or
equivalent (see the definition below) to Ag as k is increased.1 To illustrate this concept
we choose the vector field f to be that of Chua's circuit [Chua, Komuro k Matsumoto,
1986] and g to be that of the Lorenz system [Sparrow, 1982]. In Fig.(l) we show the
projection of (4) onto the subspace x, II(,4fc) for k = 0, k = 10 and k = 100. The latter
two correspond to a stable origin for (10). From Fig.(lc), one can see that the chaotic
attractor is similar to the Lorenz attractor in Fig.(ld). To characterize this transition
or transformation, we have calculated the mutual information [Fraser k Swinney,1986]
between a component of x and y (see Fig.(2)). We notice a monotonic rise of the mutual
information as k is increased indicating stronger correlation between x(t) and y(t).

We will adopt the following definition of equivalence between two chaotic, attractors
[Afraimovich, Verichev k Rabinovich, 1986].

'This phenomenon has also bee observed recently by [Mayer-Kress, 1993]



Definition: A attractor Ak is equivalent to Ag if
(1) there exists a homeomorphism hi : 3ftn —> 3£" such that hi(Ak) = Ag.
(2) there exists a diffeomorphism h2 : A- -> A such that for any trajectory ^t(x,y) C
Ak, h2(Tl(ipt(x,y))) = C«+a(«)(y) with limt-oo ^^ = 1where <pt and C* are the flow of
(4) and y = g(y), respectively.

The first condition in this definition ensures topological equivalence of the chaotic
attractors. Whereas the second condition ensures the equality of the Lyapunov expo
nents and dimensions of Ak and Ag. Numerically, we found that the attractors shown in
Fig.(lc) and (Id) are equivalent in the sense of the definition given above. We have cal
culated the templates for these attractors using the approach of Mindlin et al [Mindlin,
Hou, Solari, Gilmore k Tufillaro,1990] and found that they are the same. Moreover,
their Lyapunov exponents and their correlation dimension are also the same. Fig. (3)
shows the synchronization for k = 100. As expected, the synchronization is not perfect.
But the equivalence between Ak and Ag can be shown rigorously for Eq.(4) if e = AT1
is sufficiently small. The details of this proof will be presented elsewhere.

Only when e = k~l —0 or f = g with k > k > k{ Vi does perfect synchronization
occur. These cases are ideal and never encountered experimentally. A special case of
f ^ g (discussed in theprevious paragraph) has been investigated experimentally [Halle,
Wu, Itohk Chua, 1993]. Namely, the case when both vector fields f and g are in the same
mathematical form but with a mismatch in their parameters. In that experiment, the
synchronization is not perfect but the chaotic attractor is similar to the goal attractor.
Thus we conjecture that they are equivalent in the sense of the above definition. Perfect
synchronization is in reality not necessary when we can get an equivalence between the
chaotic attractor x(t) and the goal y(t). Our method provides an easy way to achieve
this equivalence.

In conclusion, a simple method for synchronization and control of chaotic systems
has been presented. A general qualitative description of the behavior of (1) has been
given for the cases f = g and f ^ g. The method we introduce is a useful method for
synchronization of any chaotic systems. Moreover, the method is particularly useful
for the control and the synchronization of chaotic systems whose parameters cannot be
changed easily.
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Figure Captions
Figure 1.
(a): Double scroll attractor in the Chua's circuit [4] with a = 10.0; (3 = 19.42722;
m0 = -0.76483; m, = -1.41372.
(b): Chua's circuit driven by a Lorenz attractor [15]; k = 10.
(c): Chua's circuit driven by a Lorenz attractor; k = 100.
(d): Lorenz attractor with a = 10, 6 = 8/3 and r = 28.
Figure 2. Mutual information (between x2 and y2) versus coupling coefficient k.
Figure 3. yi versus X\
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