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Abstract

We study the bifurcations of attractors of a one-dimensional 2-
segment piecewise linear map. We prove that the parameter regions
of existence of stable point cycles 7 are separated by regions of
existence of stable interval cycles T containing chaotic trajectories.
Moreover, we show that the period-doubling phenomenon for stable
interval cycles is characterized by two universal constants a and 6,
whose values are calculated from explicit formulas.
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Introduction.
In this work we consider the endomorphisms of the interval I = [0,1]:

where //iP denotes a 2-segment piecewise-linear function with one extremum and having
slopes /, p as parameters. These maps arise in the consideration of the time-delayed Chua's
circuits modeled by a difference equations with a continuous argument

Since the dynamics of this difference equation is governed by the dynamics of the trajectories
of the 1-D map //tP, we will consider only the 1-D map //,p : / »-»• / in this paper.

There are many publications dealing with one-dimensional piecewise-linear maps. In
particular the kneading theory is developed in [Misiurewicz &Visinescu, 1988] and [Marcuard
&Visinescu, 1989]. The paper [Sharkovsky et al., 1993] considered an ideal modelof Chua's
circuits containing a time delay and proved the existence of stable point cycles 7n of all periods
n. Moreover, the conditions for the existence of stable intervalcycles T and some results for
a two-dimensional generalization of this one-dimensional model are given in [Maistrenko et
al., 1992].

The order of the bifurcation sequence in piecewise-linear maps fitP is different from that
of smooth maps. In the case of our piecewise-linear maps, when a period-n point cycle 7„
loses its stability, a "rigid" period-doubling bifurcation occurs which leads to the emergence
of not point cycles but interval cycles rnj2n of double period having chaotic trajectories.
This is followed by an inverse period-doubling bifurcation; i.e., interval cycles rni2n of period
2n are merged pairwise, giving birth to a period-n interval cycle r„,n. Finally, in the next
bifurcation all intervals of interval cycles r„,n will merge into an interval cycle Tn,i = /. In
this case, there are no subintervals of / which recur periodically under the map /.

The bifurcation of a period-2 point cycle (n = 2) is different from the above scenario
and is therefore somewhat special. When a period-2 point cycle 72 loses its stability, an
interval cycle T2^k of period-2* occurs, where k is any integer, depending on the values of
the parameters 7, p. In this case, the next bifurcation consists of a pairwise merging of
period-2* interval cycles, giving birth to an interval cycle r2,2*-i of period 2fc_1.

At the point (Z,p) = (1,-1) two universal constants associated with period-doubling
interval cycles (6 = 2 and a = 00) are obtained which are analogous to the "point cycle"
period-doubling Feigenbaum's universal constants.

Therefore, for general one-dimensional piecewise-linear maps with one extremum, the
following ordering of attractor bifurcations must occur:

7l -> 72 =*• (r2,2* => r2,2*-i =»•••=* r2,2 =• /) =• 73 =» (r3,6 =* r3,3 =» /) =*• 74 =*
=• (r4,8 =» r4,4 =•/)=*•••=* 7* =» (rn,2n =* rn,n =•/)=» 7b+1 =•....

This result is similar to the well-known "period-adding" phenomenon [Pei et al., 1986],
[Kennedy & Chua, 1986], [Chua, 1986], observed in non-autonomous circuits where the
period increases consecutively: i.e., by "addition" of the unit integer, i.e.,

l=^2=*3=>---=^n=S>n + l =»•••,

and not by multiplication, as in the period-doubling route to chaos. Here, every two consec
utive stable periodic orbits are separated by a chaotic region.
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1 Stable point cycles 7n in natural ordering

In this paper, we will consider a continuous, 2-parameter piecewise-linear map / : [0,1]
[0,1] with one extremum (maximum) point defined by:

f = fitP:x^ f (v\- J Mx) d=lx +a, x€[0,6], m
( h\x) = px-p> x e (o,lJ.

We assume that the parameters /, p belong to the region

i7 ={(/,p): 0</<^-, pe (-oo,-l)}. (2)
P+l

Since //>p in (1) is assumed to be continuous, the constants a and 6 are defined by the formulas

a=l-7(l +i), 6=1 +-. (3)
P P

It should be noted, that any continuous piecewise-linear 1-D map with one breakpoint,
having a nontrivial invariant interval, can be reduced to the map (1) by a linear transforma
tion of the real line (see Appendix).

The graphs of the map //,p and its next two iterations are shown at Fig. 1(a)-1(c).
Let 7„ = {xi,..., £„}, n = 2,3,... denote a period-n cycle, i.e,

Xi<xi+U f{xi) = xi+u t = l,...,n-l, f(xn) = xi. (4)

Let us denote by

We need later on the following basic theorem which was proved in [Sharkovsky et al., 1993].
Theorem 1 A point cycle *yn of the 1-D map //tP in (1)

exists if, and only if

and is attracting if and only if

P>~jk- (6)
It follows from Theorem 1 that for each "n", the existence and stability region of the

point cycles 7n in the (/, p)-parameter space is defined by

n. =Ul,p):-jzz<p <-!$£}, n-2,3,... (7)
To avoid clutter, the regions 77n are plotted in the (/,p*)-parameter plane in Fig. 2,

where p* = log2(—p).
Each region IIn is bounded from below by an "existence curve", denoted by [£,n], and

from above by a "stability curve", denoted by [5,n], as shown in Fig. 2. These two curves



intersect at a point On = (ImPn), n = 2,3,..., which defines the end point (apex) of the
stability region IIn, where the first coordinate / = Zn is the root of the algebraic equation

/Ln_2 = l, (Zn-2Z + 1 = 0) (8)

in the interval (1/2,1), The second coordinate of the point On is located at pn = —/~*n~1J.
The apex points 0n, n = 2,3,..., are situated on a branch of the hyperbola

1 1 I

P 2 4(/-1/2) 1-2J*
The coordinate pn has the asymptotic property

(9)

pn~-2n-1 + l, n-*oo. (10)

The formula (10) is derived from the properties that the curve [£, n] passes through the point
(1/2,1 - 2n_1) and the curve [5,n] passes through the point (1/2, -2n"1)). In particular, it
follows from (9) and (10) that

lim ln = -, lim pn = -oo
n-t-oo 2 n-+oo *

Therefore, if we fix some parameter value / € (0,1/2) and vary the parameter p from -1
to -oo then the stable point cycles (separated by chaotic regions) of all integer periods will
be observed for the map //)P:

2=>3=>4=$>5=*...=*>n=»n-fl=*... (11)

These cycles arise as the parameter (/,p) passes through the regions n2, II3,..., IIn, IIn+i,
This phenomenon is known in electronic circuits as the "period adding" phenomenon, which
consists of the appearance of periodic oscillations whose period increases consecutively
through all integers as a system parameter is tuned continuously. Observe that the pe
riod increases according to a natural ordering. In particular, as p —*• —00 and / € (0,1/2),
the period of the cycle must tend to infinity.

On the other hand if we fix some parameter valuep G (—00, —1] and increase the param
eter I from 0 to 1 , then the period-adding phenomenon will also be observed, however, in
this case, the period will increase only up to the some finite integer, depending on the value

°ip' ,„ „ 2It should be noted, that the Schwarzian derivative Sf =*y —§\jfr) is equal to zero
everywhere exceptat extremumpoint in which case it is not defined. This is onereason which
leads to the period-adding bifurcation (11). It is known, that if the Schwarzian derivative of
a one-dimensional map is not equal to zero, then a period-doubling point cycle bifurcation
must occur as a parameter changes.

2 Stable interval cycles rn)2m rn,n for n > 3

The map /j,p does not have attracting point cycle for (Z,p) € II \ U£L2 nn. However, in this
case, it has attracting cycles of intervals with chaotic dynamics, i.e. an invariant measureex
ists; it is concentrated on intervals and is absolutely continuous with respect to the Lebesgue
measure.



/
~* -. .. _ .

We will show that the stability regions of intervalcyclesof periods 2n and n, respectively,
exist in the parameter space II for all n > 2 (see fig. 3). These regions are denoted by IIn,2
and IInii respectively. The bifurcation curve which separates the regions nn>2 and nn,i is
denoted by [i),n]. The curve which bounds the region IIn,i from above is denoted by [C, n].
The equations of the curves [D, n] and [C, n] will be obtained in the proof of the following
theorem.

Theorem 2. Let n > 3.

1) If (Z,p) G J7„,i; then the map //tP in the form of (1) will have a stable interval cycle
rn,n of period n.

2) If (Z,p) G IInt2, then the map //>p in the form of (1) will have a stable interval cycle
Tn,2n of period In.

3) If (l,p) G II \ (Unti2(^nU^n,i U-Z7n,2)); then the map fttP will have a stable interval
cycle rn,i = [0,1] of period 1.

Proof Consider a parameter point (l,p) G II. Let this point cross the curve [E,n] and
enter the region IIn. It is easy to see that at the moment (critical bifurcation parameter)
where one crosses the curve [£,n], two period-n cycles "fn = {xi,...,xn} and % =
{xi,...., xn] emerged.

These cycles satisfy the following condition:

Xi < Xi, t' = l,...,n —1, xn < xn. (12)

At the above critical bifurcation point, these two cycles coincide with each other, and then
split off into two distinct cycles (see fig.4). The cycle % is always unstable, but the cycle
7n is stable for (Z,p) G IIn. Consider next the case where the parameter point (Z,p) leave
the region IIn and cross the stability curve [5, n] . It is easy to see that an interval cycle of
double period, i.e., 2n, is born at this bifurcation point.

Indeed, let us consider the rightmost upper angle of the graph of the function fn shown
in Fig.4 and expanded in Fig.5 over the subinterval [xn, 1] at the moment when the point
(Z,p) crossed the curve [S,n]. The slope of the right segment of the function /n, denoted
by Z', is slightly less than —1, and the slope of the left segment is equal to Z'|. Obviously,
/2n(l) > xn in some neighborhood of the curve [5,n]. Therefore the map fn has an interval
cycle of period 2:

r„,2n^{ [/"(i),/3n(i)], [/2n(i),i] }•
This interval cycle is attracting as soon as it is born, but at the precise bifurcation point
(Z,p) G [S,n] it coincides with the pointcycle 7 = {/n(l), 1} of period 2. The intervalcycle
rn,2n of period 2n is obtained by iterating the interval [/2n(l), 1] under the action of the map
/.

If we continue to vary the parameter values so that the slopes of /n increases then at
some bifurcation parameter, the intervals [/n(l),/3n(l)] and [/2n(l), 1] of cycle rn>2n touched
each other and merged into one, as shown in Fig. 6. This bifurcation parameter defines the
bifurcation curve [D, n] and the onset of an inverse period-doubling bifurcation of interval
cycles: r„,2n =*• r„,„. The period-n interval cycle rntn is obtained by iterating the interval
[/n(l), 1] under the action of /.

It is easy to see that the bifurcation phenomenon rn,2n =^ rn,n occurs when the 2n-th
iteration of the point x = 1 maps into the point xn of the cycle 7n. Figures 6 and 7 illustrate
this situation for / in the case of n = 4. The analytical expression defining this condition,



shown in Fig. 7, is

where f\ and /2 denote the linear parts of the map //,p (see Fig. 1). Here we used the
property /2(1) = 0.

We will derive formula (13) in term of the parameters Zand p later, but for now let us
continue to vary the values of the parameters Z,p further. As the magnitude of the slope Z
and the magnitude of the slope p increases (in general, this involves a decrease of the value
of a and an increase of the value of b as shown in Fig. 1(a)), we come to a situation when
/'l(l) = xn (see Fig.8).

At this moment the bifurcation phenomenon rn,n =£• r„,i = [0,1] occurs (curve [C,n]).
The stable interval cycle of period n bifurcates into a stable interval cycle of period 1. It is
easy to see that the condition for this bifurcation is

r_1(0) = 5n- (14)

Figure 9 shows this situation for a cycle of period 4.
To derive conditions (13) and (14) in terms of the parameters (l,p), we must first derive

the formulas for the points xn and xn belonging to the cycles *yn and %. The point xn is
defined by the equation

JTlM*) = *; (is)

The point xn is defined by the equation

AfT'M*) = x. (16)

Since these equations are linear, we can solve them for xn and xn as follow:

p (r lp— l)p

*» =*+;+ (/.-apa _1)p- (18)
Substituting (17) into (13) and using the expression for f\ and /2 (see (1)), we obtain

the following relation between Zand p, which defines the bifurcation rn,2n => rn,n:

/3n-y + /2(«-l)Ln_2p3 _ jn-2p2 + (/n-l _ ^^+ ^^ = Q (ig)

It should be noted that the bifurcation curve [E, n] satisfies the relation (19) (the relation
(13) is satisfied upon the birth of the cycles 7„ and %). Therefore, if we eliminate the factor
Zn"2 + Ln_2, we will obtain

/2(n-iy_p + / = 0 po)

Equation (20) defines the bifurcation curve [D,n]. As an example, for n = 2 we obtain
the curve [D, 2]

ZV-p + Z= 0, (21)
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which can be solved explicitly for Z:

-l-y/l+4p4

2P3

The equation for the curve [D, 3] is given by

Z4p3-p + Z= 0. (22)

Substituting (18) into (14), we obtain a relation between Zand p, which defines the
bifurcation phenomenon rn>n =$• rn,i :

j*-y + r-2L„_,P2 + (in_2 - r-l)P - /i„_2 = o. (23)

The curve [2£, n] satisfies the relations (23) and (19). Therefore, if we divide the left side
of the relation by ln~2p + Ln_2 we will obtain

/"-y+p_/ = 0. (24)

Equation (24) defines the bifurcation curve [C,n]. In particular, we have the curve [C,2]

P_

P'

for n = 2, and the curve [C, 3]

Z2p2+p-Z = 0 (26)

Zp2+p-Z =0, (^y^-,) (25)

for n = 3.

Therefore, the map //|P has a stable interval cycleofperiod 2n in the regions IIn>2, bounded
by the curves [5,n], [£?,n], [£,n], and a period-n stable interval cycle for the region IIU|i,
bounded by the curves [Z),n], [£,n], [C,n], for all n = 2,3,....

This completes our proof of theorem 2.
Remark: Although theorem 2 was formulated for n > 2, it is also true for n = 2

except for some neighborhood of the point

(Z,p) = (1,-1). (27)

The curves [£?,n], [5,n] [£,n], [C,n] for the first 3 values of n (n = 2,3,4) and the
regions IIn, IIn,2, IIn,i are shown in the Fig. 10.

3 Period-doubling bifurcation of interval cycles (n = 2)

In this section we consider in detail the case n = 2. We willstudy the bifurcations phenomena
which are observed when a period-2 point cycle 72 loses its stability. We will show that this
case is different from the cases n > 2, which were described by theorem 2. The difference
is in the appearance of an attracting interval cycle of period 2m for all integers m. This
bifurcation sequence occurs when the point (lyp) passes through the curve [5,2]. Moreover,
if the curve [5,2] is crossed by varying the parameter (Z,p) though the point (Z,p) = (1, -1),



then an interval cycle of period 2°° appears. Subsequent parameter variations lead to an
inverse period-doubling bifurcation of interval cycles.

In section 2 we have given the formulas for the bifurcation curves [D,n] and [C,n],
n = 2,3, As Fig. 10 shows, the curve [Z),n] separates regions of stable interval cycles
r„,2n and r„,n of periods 2n and n, respectively. Analogously, the curve [C,n] separates
regions of stable interval cycles rn,„ and r„,i of periods n and 1, respectively.

Let us consider in detail a parameter point on the curve [5, n] where a period-n cycle
7n loses its stability. Figure 5 shows a part of the graph of the map fn at this parameter
point; namely, the "tent-like" map from the extreme right position in Fig. 4. Let us examine
the f2n graph (see Fig. 11) at once after crossing this parameter bifurcation point. Here
{xn,i,xnf2} is a pointcycle of period 2 for the map fn. Does there exist a stable intervalcycle
of period 2 for the map /2n? It follows from the arguments in the preceding section that this
interval cycle exists if, and only if, the value of the second iteration of the point x = 1 under
the action of f2n is greater than xn>2; i.e., /4n(l) > zn,2. This inequality must be fulfilled
at the bifurcation point (Z,p) £ [5,n], when the slope of the extreme right segment of the
graph, shown in Fig. 12, is equal to p/Z, but the slope of the second rightmost segment is
equal to 1.

Let us consider an auxiliary map g in the form of (1) with slopes 1 and p' = pjl (Fig.
12), respectively. If the map g has an interval cycle of period 2, then the original map / will
have an intervalcycle of period 4n as (l^p) crosses the curve [5, n]. It follows from (25) that
the condition for the existence of an interval cycle of period 2 is (p')2 + p' —1 < 0, i.e.

(f)2+̂ -l<0, (28)
or:

P> 2— ( '

Therefore, if at the parameter point where the cycle 7„ loses its stability (i.e. for (Z,p) £
[5, n]) the condition (29) is violated, then, the intervalcycle rn,4n of period 4n will not occur.
Instead, we will have an interval cycle rnt2n of period 2n. It is easy to see (Fig. 10) that in
region II the straight line

p = -—Z (30)

is situated above the regions II3, II4, Therefore the loss of stability of the cycle 7n leads
to the birth of a stable interval cycle r„,2n of period 2n, for any n = 3,4,

Let us consider the cycle of period 2. The straight line (30) passes through the curve
(5,2) at the point

Consequently, if Z< y2/(l + -v/5), when this cycle loses its stability at (Z,p) £ [5,2], then a
period-doubling bifurcation of the interval cycle T2,4 will occur. Otherwise, a stable interval
cycle of some periods 23,24,... will occur.



Let us consider the map / and its iterated maps /2m,m = 1,2,.... The slope of the
rightmost segment of the graph f2™ is equal to

p(2") = P»p«m+(-ir| m = o, 1,..., (32)

where am is a solution of the difference equation

am+1 = am + 2am_i, m = l,2,..., (33)

with initial conditions cto = 0, and ct\ = 1. This solution is equal to

am =i(2" +(-ir+1), m=0,l,.... (34)

The slope of the second rightmost segment of the graph /2"* is equal to

;(2") = /2«m-i^(«m-,+(-i)«)i m = o, 1,.... (35)

As an example, the slopes for m = 1,2,..., 6 are given below :

m /(2m) p(2m)
0 z p

1 Z2 /p
2 zy y
3 zy iy
4 zy° zy1
5 /10p22 Znp21
6 i2Y2 Z21p43

In order that the original map //,p has an interval cycle of period 2m+1, it is necessary and
sufficient that f2™ has an interval cycle of period 2. Granting this and using formulas (32),
(35) and (25) we obtain the following equation of the curve for the bifurcation phenomenon
l2i2m >• l2t2m+l :

^m+l/*m + (_1)m^_/J = 0 m = 0,l,..., (36)

where £m, m = 0,1,..., is the solution of the inhomogeneous difference equation

6m+l =2Sm +^(1 +(-l)m), m=1,2,..., (37)

with initial condition So = 1.
The bifurcation curves defined by equations (36) are denoted by [D,2,2m], for any m =

0,1,.... It should be noted that [jD,2,2°] = [0,2], [D,2,2l] = [D,2]. The regions bounded
by the curves [D,2,2m-1], [D,2,2m], [5,2] and [£,2], are denoted by II2,2m.

It follows that the following theorem is true for any m = 1,2, —
Theorem 3 Let (Z,p) € i72,2m. Then the map fitP has a stable interval cycle of period

2m.



Figure 13 shows the bifurcation curves [D,2,2m] converge to the point (Z,p) = (1,-1).
As an example, the equations of these curves for m = 0,1,2,..., 6 are as follow:

p2l + p-
p3l2-p +
pel3-rp-

pul6-p +
p22Zn+p-

p43Z22-p +
p86l43 + p-

Theorems 1-3 allow us to conclude that

linear map with one extremum, the follow

= 0, [Z),2,l]j
= 0, [A 2,2];
= 0, [C,2,22];
= 0, [D,2,23]; (38)
= 0, [Z>,2,24];
= 0, [Z>,2,25];
= 0, [D,2,26].

n the generalcaseof a one-dimensional piecewise-
ng ordering of attractor bifurcations must occur:

7i => 72 => (r2,2fc =* r2i2*-. =>•••=> r2>2 =^ /) => 73

=* (r3,6 =* r3t3 => i) => 74 =* (r4,8 =* r4,4 =* /)
=> •' • =• 7n =• (rn,2„ =• rn,n =>/)=* 7n+l ^ . . . .

4 Universal constants of period-doubling bifurcation
of interval cycles

Since the period-doubling bifurcation curves have been found in explicit forms (see (36),
(37)), we can derive two universal constants 8 and a for period-doubling bifurcations of
interval cycles, just like the Feigenbaum's constants, for period-doubling point cycles. To
define the constants 8 and a we consider in the (Z,p) parameter space any straight line
p= k(l-1) +1, which passes through the point (Z,p) = (1, -1). Let (7<m>,p<m>), m = 0,1,...,
be the intersection point of this straight line with the bifurcation curve in the form of (37)
for some given fixed m. The distance between the points (l(m\pW) and (Z(m+1),p(m+1)) is
denoted by dm for any m = 0,1,.... Then the constant 8 is defined as

8= lim dm
m—*oo d ,,

(39)

Analogously the constant a is defined as

a = lim
1 — x.

m-*oo 1 _ Xm+1 ' (40)

where xm = xm(Z(m),p(m)) and xm+l = xm+i(Z(m+1\p(m+1)) are point cycles of periods 2"1
and 2m+1, defined by formulas (32) and (35), respectively. These points are calculated with
the following bifurcation conditions: xm at (Z,p) = (l(m\p(m)) and xm+i at (Z,p) = (Z<m+1),
,(™+i) )•

We will say that the family of maps //lP at the point (Z,p) = (1,-1) is characterized by
an universal behavior with constant 8 and a, if the limits in (39) and (40) exist and do
not depend on choice of the straight line through the point (Z,p) = (1,-1).



Theorem 4 The family ofmaps //|P is characterized by an universal behavior at the point
(Z,p) = (1, —1) with universal constants 8 = 2 and a = oo.

Proof Let us first prove the existence of the universal constant 8 = 2. The proof will be
carried out for the case Z= 1, i.e. when the slope of the straight line is equal to oo (see fig.
13).

The intersection point of the straight line Z= 1 and the bifurcation curve [D, 2 •2m_1] is
denoted by pm for all m = 1,2,.... This bifurcation curve is the curve of the interval cycle
of period 2m. Then

8= lim !*»-*-»»J.
m->°° |Pm-Pm+l|

We will prove, that this limit exists and is equal to 2.
Let us consider the family of functions yn(x) = xn —l,x > l,n = 1,2,.... Let xn be the

root of the equation xn = xJJ —1, which is nearest to x = 1 with xn > 1. Graphically, xn is
the abscissa of the intersection point of the graph y = yn(x) and the bisectrix y = x (Fig.
14).

Lemma 1. The sequence xn, n = 1,2,..., has the property

. lim }X2n ~Xn\ =2.

Proof Let us estimate the distance between the points xn and \/2. Using the boundary
condition yn( \/2) = 1, we find the derivative

/ n-i i ni»-i 2n

Then theequation of the tangent at the point (\/2, 1) has the form y = (2n/ (\/2))x —2n+1.
The tangent crosses the bisectrix at the point x = xn, where

x; =(2n -1)/(|| - 1).
Assuming xn > xn, then

xm - y/2 = </2 ^~l =f e

Let us prove that en is a higher-degree infinitesimal than \/2 —7\/2. Indeed we have

lim v^-1) = Hm (^2-1X^+1) =
"-«> (2n - $2)( ^2 - V2) ^°° (2n - v/2)( v^ - 1)

Moreover, it is easy to see that en ~ 1/n, as n —* oo. Then

r |Sn ~ x2n\ . ,. y/2- 2V/2 +(£n +£2n) 0
lim t 7 < hm -T-fn —=— '•— = 2.
n-°° \x2n - X4n\ " n-oo ^ _ ^ - (e2n + £4n)

77iis completes our proof of lemma 1.
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Our calculations give the following results for p*, i = 1,2,..., 10:

P! = -1.618022, p2 = -1.324698,
pa = -1.134732, p4 = -1.068296,
p5 = -1.032771, ps = -1.016444,
p7 = -1.008140, ps = -1.004074,
p9 = -1.002032, pio = -1.001017.

Using these numbers, we obtain the following approximations for 8:

8i = 1.544, 82 = 2.860,
£3 = 1.87, 84 = 2.18,
ft = 1.97, ft = 2.04,
ft =1.99, 88 = 2.02.

To obtain the universal constant a we consider point cycles x2m of period 2m on the
bifurcation curves [Z?,2,2Tn~1]. Then

3J2m-l — JE2m
a = lim

m—HX> £2m — a;2m+i

The constant a was obtained by using x2m in the following algorithm. Let x2m be a root
of the linear equation amx -f bm = x, where (am, fcm) is the result obtained after m iterations
of the map

Gn l X l P
Dm+1a2 \

-a&-l) + l>Tbj • Vp(_1)n+1(^
where n = 1,2,... ,m. The map Gn is employed at the point (a, 6) = (p, —p —1/p) for the
value p = pn, on the bifurcation curve [Z),2 •2m_1]. That is

\bm) m 2 V-Pm-l/Pm/'
Then we find x2m = —bm/(am —1) for all m = 1,2,.... It should be noted that the initial
condition (pm, —pm —l/pm) varies with m.

Using this algorithm the following results are obtained

aj = 2.820, a2 = 14.058, a3 = 17.777,
a4 = 50.462, a5 = 84.501, a6 = 190.896,

a7 = 358.839, a8 = 672.111.

It follows from the above result that

a = oo,

where

an ~ a0 •2n, n —• oo, ao ^ -\/2.

T/iis completes our proof of theorem 4-
Four one-dimensional bifurcation diagrams for Z = 1 in successively enlarged scale are

shown in the Fig. 15(a-d).
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6 Appendix

There are two cases where a continuous piecewise linear ID-map g with one breakpoint has
a nontrivial invariant interval. Both are for the slopes Zand p such as:

In the first case

where A and B satisfy

In the second case

where A and B satisfy

C,p)en ={0</<4-, p<-i).
p-r 1

, , / Ix-rA,

A> 5.
l-p

— i-p '

X > B~Ax ^ l-p »

g:x>-+ gi>p(x)
_ ( px
~\lx

B-A+ £, *<^,
+ A, *>^,

A<- £.
l-p

It is easy to see that in both cases the map g can be reduced by the linear transformation

(l-2p)(/-p) IB-pA
<7 : x \-+ a(x) = 1 + X —

[A(i-p) + B(z-i)]pL i-p

to obtain a map / in the form (1) with an invariant interval [0,1]:

/ = a o g o a~l.
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7 Figure captions

Fig. 1(a). Graph of piecewise-linear function fi,p(x), with two slopes Z, and p.

Fig. 1(b),(c). Graphs of iterations ffp = f(f(x)) and ffp = f(f(f(x))) of the piecewise-
linear map / : x *-> fl{p.

Fig. 2. The existence and stability regions nn of the point cycles 7„ in the parameter
space (pm,l), where p* = Zo<72(—p). Each region IIn is bounded from below by an existence
curve [E, n] and from above by a stability curve [S,n].

Fig. 3. The stability regions IIn of the pointcycle 7n and IInj2, nn,i of the interval cycles
rn,2n and Tn.tt of periods 2n and n respectively, in the parameter space (p*,l) for all n > 2.
The regions nn,2 and IIn,i are separated by the bifurcation curve [Z),n]. The curve [C,n]
bounds the region IIn,i from above.

Fig. 4. The graph of the function /"p when the point (l,p) crosses the curve [E,n] and
enters the region nn. The points of the period-n stable cycle are given by 7„ = {x\,..., xn}.
Those for a period-n unstable cycle are given by 7„ = {x\,... ,xn}.

Fig. 5 The rightmost upper angle of the graph of the function /"p, from Fig. 4 at the
moment when the point (l,p) crosses the curve [S, n] and enters the region IIni2. At this
moment each point xn of a stable period-n cycle 7n = {x\,..., xn} creates the interval cycle
?n,2n of period 2n.

Fig. 6. The rightmost upper angle of the graph of the function /£p from Fig. 4 at the
moment when interval cycle rnt„ of period-n is born.

Fig. 7. The graph of the function //tP (n = 4) when the point (l^p) crosses the curve
[D, n] and an interval cycle rn,n of period-n was born. At this moment each pair of inter
vals [/n(l),/3n(l)] and [/2n(l), 1] of the cycle rn,2n touched each other and merged into one
interval.

Fig. 8. The rightmost upper angle of the graph of the function /"p from Fig. 4 at the
moment when interval cycle rn,i = [0,1] is born.

Fig. 9. The graph of the function //>p (n = 4) when the point (l,p) crosses the curve
[C,n] and all intervals of the interval cycle rn>n merged into one interval [0,1].

Fig. 10. The stability region Iln of the point cycles 7n and the stability regions n„,2
and IIn,i of the interval cycles r„>2n, rn>n of periods 2n and n, respectively in the parameter
space (pm, I) for n = 2,3,4. The regions nn,2 and nn,i are separated by the bifurcation curve
[D,n]. The curve [C,n] bounds the region nn,i from above.

Fig. 11. The graph of the function /2p at the moment when the point (l,p) crossed the
curve [S,n] and the cycle 7n lost its stability. Here {xn,i,xn>2} is a period-2 cycle of fn.
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Fig. 12. The rightmost upper angle of the graph of the function /2p from Fig. 11.

Fig. 13. The stability regions II2 of the point cycles 72 and IIn>2m of the interval cy
cles T2t2m in the parameter space (p*, Z) for m = 0,1,... The regions IIn,2m and IInt2m+i are
bounded by the bifurcation curves [Z),2,2m].

Fig. 14. The graph of the functions yn(x) = xn —1. The point xn is the abscissa of the
intersection point of the graph y = yn(x) and the bisectrix y = x.

Fig. 15(a-d). Four parameter bifurcation diagrams in successively enlarged scale, which
illustrate the cascade of period-doubling bifurcations of interval cycles for Z= 1. The bifur
cation points p^ = log2(—pm)y^ = 1,2,3... belong to the curves [D,2,2TO].
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o.o Pb p; p p; p*=log[-p) p; 0.8

Fig. 15(a)
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o.o p? p: Pa P =log[p) .42

Fig. 15(b)
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0.0 Pb p p: p =log[-p] p*0.2

Fig. 15(c)
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0.0 P* Pi p =iogC-p) p; .1

Fig. 15(d)
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