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Abstract

This paperexplores the integration of rule systems into database management systems. One major
theme is a survey of the researchactivities in this areaover the past decade. The focus is on prototype sys
tems that have been completely specified and the implementation issues encountered. The second thrust is
to presenta research agendawhich shouldbe addressed by the research community over the next few years.

1. INTRODUCTION

Historically rule managementhas been the domainof expert systems, and is included in such expert
system shellsas OPSS [FORG81], Prolog [CLOC81], and KEE [INTE85]. As a result, rule systems were
contained in stand-alone programs with no interaction with DBMS systems.

Clearly, there are many instanceswhere a knowledge base of rules is associated with a database of
facts. Forexample, consider a personnel data basewitha large numberof instances ofemployees,contain
ing theirsalary, department, amountof accrued vacation, etc. Every companyhas a collectionof rules that
indicate who is allowedto be in the pension plan, how much vacation any employee is entitledto, who can
havea key to the executivewashroom, etc. This rulebaseis usually called the company'spersonnel policy,
and it can exist in several different forms. First, it can be written down in a booklet and distributed to all
employees. In this case, there is no guarantee that the facts in the data base correspond to the rules in the
knowledgebase. Hence, the consistency of the data andthe knowledge base is not guaranteed. A second
placewhere the rulescan reside is in an application program which accesses the database. In this case,at
leastthe rules arein computerized form. However, thereis still no guarantee that the rulesand the dataare
consistent For example, a data baseupdate can occur which does not go through the application program.
In this case, the data basecanbe changed to be inconsistent with the knowledge basewithoutthe applica
tionbeing aware of it A second problem with encoding rules in an application program is that they are
oftendifficult to change, andit is usually difficult tobring thedata base intoconformity with thenewrules.
As aresult, storing rules in anapplication program (oranexpert system shell) hasinherent disadvantages.

To help with these problems, there has been considerable effort expended to couple expert system
shellsto databasesystems. The KEE connection [INTE87], Bermuda [10AN87] and KBMS [CERI86] are
examplesof this sortofactivity. Such interfaces allowthe expertsystem shell to interact with the data base
moreeasily. However, they do not solve theconsistency problem inherent in an architecture wherethe data
is in one system and the rules are in another one.

The third place where a knowledge base can reside is inside the DBMS. In this case, the DBMS can
make an iron-clad guarantee that the rulesand the data are consistent, because a singlesystem is adminis
tering bothkinds of objects. Moreover, there arecases where muchbetterperformance will result from an
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integrated approach. Because of these potential advantages there has been dramatic effort in integrating
rules and data over the past decade. Essentially all of this activity has been performed by the data base
research community. Furthermore, theresults of this research have already been transferred to commercial
DBMSs. For example, both INGRES and Sybase have fairly sophisticated rules systems integrated into
theirrelational DBMS engines.

In this paper, we briefly survey the research efforts thathavebeen made in the past decade in inte
grating rules and data. In Section 2 we indicate the major ideas thathavebeen explored and then turn in
Section 3 to the implementation tactics thatcan be used. The paper next addresses the majordifficulties
that remain to be solved. In my opinion, theseare issues concerning the semantics of rules, higher level
abstractions for rules, and supporting the capability of querying a rule base. In the final three sectionsof
this paper, we discuss eachof these topics.

2. CLASSIFICATION OF DBMS RULE SYSTEMS

The focus of research in integrating rules and data has been on supporting so-called production sys
tems, ie. rules of the form:

on event

do action

It is helpful to categorizesuch rules into four categories, basedon the following:

The event can either be an update event or a retrieveevent

The action can either be an update or a retrieve.

The first category is rules which have an updateevent and an updateaction. For the traditionalEMP table:

EMP (name, age, salary, dept, manager)

an example of this class of rule using the POSTGRES [STON90]rule system is

on replace to EMP.salarywhere EMRname = "Joe"
then do replace EMP (salary= new.salary)where EMRname = "Sam"

This rule instructs the DBMS engine to watch for an event which is an update to Joe's salary. When this
event occurs, the engine should perform the corresponding action, which is to propagate Joe's new salary
on to Sam.

Of course, anotherrule could be defined which would propagate Sam's salaryon to a third employee,
Fred. In this case an update to Joe*s salary would trigger the first rulewhich would update Sam's salary. In
turn this update would trigger the second rule, and a forward chaining control flow would result When
there are no more rules to activate, the chaining process stops.

Forward chainingrule systems with syntax similarto the notation aboveareoperational in two proto
type next-generation DBMSs, Starburst [WIDO90] and POSTGRES [STON90]. Furthermore, similar
notation is supported in commercial relational systems including INGRES [INGR90] and Sybase
[SYBA90]. Prototype efforts along the same lines have alsobeen reported in ARTEL [HANS89], HiPAC
[MCCA89] and RPL [DELC88]. All systems build on the pioneeringwork of [ESWA76].

A second class ofrules are ones of the form:

on update
do retrieve

Forexample, consider the following POSTGRES rule:

on replace to EMP.salary where EMRname = "Joe"
do retrieve (new.salary)

This rule acts as an alerter, i.e. whenever Joe gets a salaryadjustment, the user defining the rule is sent his



newsalary. In miswaythe second user is alertedwhen aneventof interest takes place. Alerters have been
studies in [BUNE79]. Of theexample rules systems noted above only POSTGRES and HiPAC support this
construct

The third class of rules are ones of the form

on retrieve

do retrieve

Consider, for example, the following POSTGRES rule:

on retrieve to EMRsalary where EMRname = "Sam"
do instead retrieve (EMRsalary) where EMRname = "Joe"

The semantics of this rule is to look for an event that is a retrieve to Sam's salary. When the event occurs,
the action is to be performed instead of the event Consequently, Joe's salary is returnedas a result of the
request for Sam's salary. In effect, the stored valueof Sam's salary, if any, has no consequence because the
salary ofJoe is substituted instead.

If Joe's salary is derived according to a second rule of the same form, then a retrieve to Sam's salary
would awaken the first rule, which in turn would awaken the second one. Therefore a backward chaining
control flow would result

Another way of thinking about rules in this third class is that they allow portions on a data base to be
virtual or derived data items. Commercial relational DBMSs supportviews, which are virtual tables, typi
cally using the algorithms in [STON75]. As a result backward chaining rules generalize the view concept
by allowing finer granularity for virtual objects.

Of course, one could use a Prolog-style syntax forrules in this class, e.g:

salary (Sam) = salary (Joe)

and there have been several systems that implement backward chaining syntax of this sort, including NAIL
[ULLM85] and LDL [CfflM90]. The only system known to the author that supports both forward and
backward chaining is POSTGRES.

The thrust of research in backward chaining systems has been almost exclusively on processing
recursive rules. Forexample, consideranother columnof the traditional EMP table containingthe second-
level manager of eachemployee. This columncanbe supported by the following backward chaining rule:

on retrieve to EMRmgr-mgr
then do instead retrieve (E.mgr) whereE.name =currentmgr

A generalization of thisexample mightbe to find all the the indirect managers of each employee in a field,
indr-mgr. In this case, the appropriate rule is:

on retrieve to EMRindr-mgr
then do instead

retrieve(currentmgr)
retrieve (E.indr-mgr) whereE.name=currentmgr

Here, the first part of theaction identifies thedirect manager of an employee whilethe second part finds all
theindirect managers of that person. Whenthesame attribute appears inboththeeventand theaction part
ofa rule, a recursive execution can result

This ruleis perhaps clearer in a Prolog-style syntax:

indirect-mgr (X,Y) =indirect-mgr (X.Z) andmanager (Z,Y)

The semantics of thisruleis to assert thatanemployee, X, is the indirect manager of another employee, Y,
if there exists a third employee, Z, such thatZ is the manager of Y and X is the indirect manager of Z.
Since the same clause, indirect-mgr, appears on both theleft and theright-hand sideof therule, thisagain
signifies recursive execution will be required to solve for theindirect managers of anyparticular employee.



The thrust of NAIL and LDL is to efficiently solve queries that require activating recursive rules,
suchas thequeryto find all indirect managers of Joe, i.e:

indirect-mgr (X, Joe)

A survey on some of the techniques employed is given in [BANC86], and additional ones are being
explored all the time. It is evenpossible that thetechniques being developed for recursive queries will be
moregenerally applicable [MUMI90]. Since recursion is a large topic, this paper will not consider it fur
ther.

The fourth class ofrules are ones of the form:

on retrieve...

do update...

An example of such a rule is:

on retrieve to EMRsalary
then do append to AUDIT

(name = currentname, salary= currentsalary, user=userO)

Although few systems besides POSTGRES support this class of rules they provide a valuable function,
namely support for an audit traiL In the aboveexample,every access to any employee's salary results in
an auditrecordbeing added to the AUDIT tabledetailing the access.

In the next section we discus the implementation tactics that have been used to supportrules of the
above four classes.

3. IMPLEMENTATION OF DBMS RULE SYSTEMS

The general problem which must be overcome to supportrules in a DBMS is to activatethe proper
rulesat the requiredtime. We begin with techniques appropriate to forward chainingrules, e.g. ones of the
form:

on replace to EMRsalary where EMRname = "Joe"
then do replaceEMP (salary = new.salary) whereEMRname = "Sam"

There are three basic techniques which can be applied:

brute force

discrimination networks

marking

Brute force entails maintaining a list ofall rules thataffecteach table in a data base. Then, eachindi
vidual update is matched against the condition part of each rule in the list to determine which must be
awakened. Clearly, this is a sequential search that will only provide good performance for a very small
number of rules per table. With a larger numberof rules, this list must be organized for efficient access.
Discrimination networks, such as RETE [FORG81] and TREAT [MIRA87], have been widely used in
expert system shells to speed up this search. The last technique is to utilize a marking system to speedrule
activation. Here, instead of maintaininga list of rules per tableor a discrimination network for this list the
system uses recordmarking. In this case, eachrule is processed against the database and every recordsat
isfying the event qualification is identified. Each such record is marked with a flag identifying the rule to
be awakened. As a result each record is marked with zero or more flags indicating the rules to awaken if
various events occur to this record. Of course, this potentiallyrequires much more space than a list or dis
crimination based approach, however,it offers dramatically betterperformance, becauseno searching must
be done at run time. Moreover, in the case that most rules have a small scope, i.e the event covers only a
few records, then the spacepenaltywill not be severe. Therearedifficultproblems with keeping the mark
ings correctas updatesaremade to the database; for further information on this issue consult [STON90].

At the current time all forward chaining implementations known to the author support brute force,
one system, ARIEL [HANS90], has specified a discrimination network, and one system, POSTGRES



additionally supports marking. It is expected that discrimination networks will become a more popular
implementation technique forDBMS rule engines asrule sets become larger.

Afourth implementation technique ispopular inbackward chaining implementations, namely query
substituted intotheuser command toproduce a modified command. Consider, forexample therule:

on retrieve to EMRsalary where EMRname = "Sam"
do insteadretrieve(EMRsalary)whereEMRname= "Joe"

and the command:

retrieve (EMRsalary) where EMRname = "Sam"

In this case, the user command can be effectively modified to:

retrieve(E^alary) whereE.name= EMRname andEMRname = "Sam"

This can be simplified to:

retrieve (E^alary) where E.name = "Sam"

The algorithms to perform query rewriteare detailed in [STON90] and are generalizations of the query
modification techniques written down originally for views in [STON75]. All backward chaining DBMS
rules systems (POSTGRES, NAIL, LDL) use query rewrite as their implementation tactic. In addition,
[STON90] showshow to extend query rewrite to also supportforwardchainingimplementations.

The choice of implementation tactics is obviously an efficiency issue. The performance of some of
the above techniques is analyzed using a simulation model in [STON86].

4. RULE SYSTEM SEMANTICS

Rule systemshave fundamentally complex semantics. In this section,we indicate6 differentdimen
sions in which rule systems may make different semantic choices.

4.1. Time ofWake-up
Consider the following rule for the EMP class:

on replace to EMRsalary where EMRname = "Jones"
then do replace EMP (salary = new.salary)where EMRname = "Brown"

along with the user command:

replace EMP (salary = 1000) where EMRdept = "shoe"

The rule can be activatedat four differentpoints in time, namely:

1) immediately

The rule can be awakened immediately upon the eventoccuring, i.e. at the momentwhen Jones receivesa
salary adjustment This is the approach currently taken in POSTGRES.

2) end ofcommand

Ihe rule can be delayeduntil the end of the command, i.e. until all shoe departmentemployeeshave been
updated. Before the next command in the transactionis processed,the rule can be awakened.

3) end of transaction

Activation of the rule can be delayed until the end of the user transaction. This is die approach taken in
STARBTJRST [WIDO90].



4) after the end of the transaction

Activation of therulecanbe delayed until after the endof the transaction. This is oneof theoptions in the
HiPAC proposal [MCCA89], and can only be allowed if the rule runs with a different transaction identifier
than that of the user command. This is discussed further in the next subsection.

In general, a different resultwillbe observed depending on the timeof wake-up. In fact fourdiffer
ent data base states can occur for the four different cases above.

4.2. Transaction Context

Consider the rule:

on retrieve to EMRsalary
then do append to AUDIT

(name = currentname, salary = currentsalary, user = userO)

The above rule can be awakened in the same transaction as the user command or it can be activated
in a different transaction. If it is activated in the same transaction, then a user can retrieve a salary, and
then abort his transaction. If so, the auditingaction will be undoneby the abort, and the user's retrieve will
not appear in the audit trail To get the desired action, the rule must be activated in a different transaction.

In general, different results will be observed depending on which transaction context is chosen.

4.3. Backward Chaining versus Forward Chaining
Consider the example forward chaining rule noted above:

on replace to EMRsalary where EMRname = "Jones"
then do replace EMP (salary = new.salary) where EMRname = "Brown"

On the other hand, a similar effect could be obtained from the analogous backward chaining rule:

on retrieve to EMRsalary where EMRname = "Brown"
then do instead retrieve (EMRsalary) where EMRname = "Jones"

Unfortunately, theabove tworulesdo not have thesame semantics. Forexample, if Jonesis deleted
from the database, then Brown's salary willbecome nullin thebackward chaining example but willhave
Brown's last salary in the forward chaining example. As a result there are twodifferent semantics which
result from the choice of whether to employ forwardor backwardchaining.

4.4. Semantics of Backward Chaining

Consider again the rule:

on retrieve to EMRsalary where EMRname = "Brown"
then do instead retrieve(EMRsalary)whereEMRname= "Jones"

Table 1 indicates the possible outcomes for the query:

retrieve (EMRname, EMRsalary)
where EMRname = "Brown"

depending on thenumber of Jones's there are in thedatabase. Here, thefirst column shows thesemantics
that would result if the user query were interpreted to be:

retrieve (EMRname, E.salary)
where EMRname = "Brown" and E.name = "Jones"



Union

Semantics

Error

Semantics

Random

Semantics

no Jones

IJones

N Joneses

0 instances

1 instance

n instances

1 instance with a null salary
1 instance

error

1 instance with a null salary
1 instance

1 instance

Semantics of Brown's salary
Table 1

Such semantics are the natural result of applying query rewrite [STON90] to the user's query in order to
satisfy the rule.

The second column would result from interpreting the query and the rule as follows:

retrieve into TEMP (EMRname, EMRsalary)
where EMRname = "Brown"

replace TEMP (salary = EMRsalary)
where EMRname = "Jones"

and TEMRname = "Brown"

If there is more than one Jones, the above update is non-functional, i.e. it replaces Brown's salary with
more than one value. Non-functional updates are rejected by many DBMSs including INGRES [STON76].
Any DBMS with this interpretation of the rule and which rejects non-functional updates will generate col
umn 2 ofTable 1.

The third column would be generatedby a slight modification of the above scenario. The interpreta
tionof therule is thesameas above. However, thenon-functional update is notrejected; instead theupdate
occursand any one of the multiple values is assigned. AnyDBMS which defines non-functional updates to
haverandom semanticswill generate the final columnof Table1.

If there are two or more employees named Jones, then the natural seamntics for the example rule
would be to issue an error, thereby choosing to enforce column 2 of Table 1. However, there appear to be
examples for which eachcolumn provides the correct interpretation. For example, suppose one wanted a
field in theEMPtable which will record thepeople oneis required tobuy a giftfor. In thiscase, onemight
write the following rule:

on retrieve to EMRbuy-gift
mendo insteadretrieve(EMRname) whereEMRmanager = currentname

This rules suggests that each manager must buy gifts for all employees who work for him. The proper
interpretation of this rule isunion semantics. Ingeneral, all three columns ofTable 1areplausible inappli
cation-specific circumstances.

4.5. Ordering

Consider the case where twoor more rules can be activated at one time. Specifically, consider the
followingrules:

on replace to EMRsalary where EMRname = "Jones"
then do replace EMP (salary= new.salary) whereEMRname« "Brown"



on replaceto EMRsalarywhereEMRdept = "shoe"
then do replaceEMP (salary = 5000) whereEMRname= "Brown"

If Jones is employed in theshoe department then both rules will determine Brown's new salary. If Brown
is not in the shoe department, then his salary willbe determined by whichever rule fired last In this case
the following options appear reasonable:

1)Oneruleis fired, andthe otheroneis ignored

Thiswillbe the semantics supported by theexception mechanism in thePOSTGRES rules system.

2) Both rules fire in random order

3) Both rules fire,but in a pre-determined order

This will be the semantics supported by the before andafter syntax in STARBTJRST.

If two rules,A and B, can fire, men the possibleoptionsare:

activate only A
activate only B
activate B then A

activate A then B

activate both in random order

Obviously,different answerscanbe observed fromall of these possibilities.

4.6. Number of Possibilities

As a result of the above discussion, there are a vast number of possible semantic outcomes for the
activation of two rules, A and B. In fact it would be an interestingexercise to count die number of possible
outcomes, given a single user command which activatedN rules.

My contentionis that this environmentis too complex forany data baseadministrator to understand.
Therefore, I feel thatit is a crucial research issueto simplifythe possible semantics. Therearetwo possible
approaches to this task. First one could reject certain combinations of the above cases as semantically
unreasonable. This would be a valuable research contribution. The second approach is to invent higher
levelnotations thathide this layerofcomplexity, muchasa compiler for a programming language hidesthe
ultimate machine language forany givencomputer. Examples of this second approach arediscussed in the
next section.

5. HIGHER LEVEL RULE NOTATIONS

One way to alleviate the semantic morass of the previous section is to view therulespecification lan
guage discussed in the previous sections as "data base assembly language", Le. it is a complex low-level
notation that only a few compiler writers have to understand. These guru programmers will implement
higher level languages, which have much simpler semantics.

In this case the DBMS enginecanconcentrate on a very efficient implementation of the lower level
notation forrules. The code in this engineis then leveraged to perform a wide variety of useful functions.
The challenge for DBMS researchers is to inventa multitude of higher level notations. In this section we
givetwo examples of the approach in somedetail. Then, we sketch more briefly several additional higher
level notations.
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5.1. Views and Versions

In this section we discuss the implementation of POSTGRES views and versions. In both cases,
required functionality is supported by compiling user level syntax into one or more rules for subsequent
activation inside POSTGRES.

Views (or virtual classes) are an important DBMS concept because they allow previously imple
mented classes to be supportedeven when the schemachanges. Forexample, the view, TOY-EMP,can be
defined as follows:

define view TOY-EMP (EMRall) where EMRdept = "toy"

This view is compiled into the following POSTGRES rule:

on retrieve to TOY-EMP

then do instead retrieve (EMRall) where EMRdept = "toy"

Any query ranging over TOY-EMP will be processescorrectlyby the POSTGRES rules system.

However, a key problem is supporting updates on views [CODD74]. Current commercial relational
systems support only a subset of SQL updatecommands, namely those which can be unambiguously pro
cessed against the underlyingbase tables. POSTGRES takes a much more general approach. If the appli
cation designer specifies a default view, i.e:

define default view LOW-PAY (EMROID, EMRname, EMRage) where EMRsalary < 5000

then, a collection of default update rules will be compiled for the view. Forexample, the replacerule for
LOW-PAY is:

on replace to LOW-PAYage
then replace EMP (age = new.age) where EMROID = currentOID

These default rules will give the correctview update semantics as long as there are no possible ambiguous
updates. In addition, the application designer is free to specify his own update semantics by indicating
other update rules. Forexample, he could define the followingreplacerule forTOY-EMP

on replace to TOY-EMRdept
then delete EMP where EMRname = currentname and new.dept !="toy"

Therefore, default views are available using compilation of view syntax into a collection of rules.
Other update semantics can be readily specified by user-writtenupdate rules.

A secondarea wherecompilation can support desired functionality is thatof versions. The goal is to
createa hypothetical version of a class with the following properties:

1) Initially the hypothetical class has all instances of the base class.
2) The hypothetical class can then be freely updated to diverge from the base class.
3) Updates to the hypothetical class do not cause physical modifications to the base class.
4) Updates to the base class arevisible in the hypotheticalclass, unless the instance updatedhas
been deleted or modified in the hypothetical class.

Of course, it is possible to support versions by making a complete copy of the class for die version and then
making subsequentupdatesin the copy. More efficient algorithms which make use of differential files are
presented in [KATZ82, WOOD83].

In POSTGRES any user can createa version ofa class as follows:

create version my-EMP from EMP

This command is supported by creating two differential classes for EMP:

EMP-MINUS (deleted-OID)
EMP-PLUS (all-fields-in EMP,replaced-OID)

and installing a collection of rules. EMP-MINUS holds the OID for any instance in EMP which is to be
deleted from the version, and is the negative differential On the other hand, EMP-PLUS holds any new



instancesadded to the versionas well as the new record for any modification to an instance of EMP. In the
latter case, the OID of the record replaced in EMP is also recorded.

The retrieve rule installed at the time the version is created is:

on retrieve to my-EMP
then do instead

retrieve (EMP-PLUS.all)
retrieve (EMRall) where EMROID NOT-IN {EMP-PLUSjepIaced-OID}

and EMROID NOT-IN {EMP-MINUS.deleted-OID}

The delete rule for the version is similarly:

on delete to my-EMP
then do instead

append to EMP-MINUS (deleted-OID- currentOID) whereEMROID = currentOID
delete EMP-PLUS where EMP-PLUS.OID = currentOID

The interested reader can derive the replace and append rules or consult [ONG90] for a complete explana
tion. Also, there is a performance comparison in [ONG90] which showsthat a rule systemimplementation
of versions has comparable performance to an algorithmic implementation with hard-wired code deep in
the DBMS execution engine.

Bom of the examples in this section have shown important DBMS function that can be supported
with very little code by compiling higher level syntax into a collection of rules.

5.2. Other Rule Compilers

In this section we more briefly sketch several other possible rule compilers. Referential integrity
[DATE81] is often statedas a requirement for currentrelational DBMSs. In mostcommercial systems,it is
hard-wired as special purpose code. However, it is straightforward to build a compiler for referential
integrity syntax. For example, for the traditionalemployeeand departmentrelations:

EMP (name, age, salary, dept manager)
DEPT (dname, floor)

one often wishes to check on each insert that that the new employeeis in a legal department If not one
wants to add the new department This is one of the 9 cases of referential integritystated in [DATE81], and
appropriate user-level syntax can be compiled into:

on append to EMP
then do append to DEPT (dname= new.dept) where new.dept NOTTN {DEPT.dname}

The other 8 cases are equally easily supported. As a result referential integrity can be supported by code
which compiles special purpose syntax into DBMS rules.

A second application is general integrityconstraints. One would like syntax such as:

integrity constraint on EMP is EMRsalary > 1000

This can be compiled into the rules:

on replace to EMRsalary
then abort where new^alary <= 1000

on append to EMP
then abort where new^alary <= 1000

A complete compiler for this sort of integrity rules is given in [CERI90].

A third example is support for fragments of relations [EPST78]. In this case, one wishes a logical
relation, EMP, to be the union of two physical tables, EMP1 and EMP2. This is useful when EMP1 and
EMP2 are stored in different storage managers or even on different sites in a distributed data base. Often a
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distribution criteria is specified to indicate the conditions under which a physical record is allocated to a
particular fragment For example, one might specify:

distribute EMP to EMP1 where EMRsalary < 1000
to EMP2 where EMRsalary >=1000

This distribution criteria can be compiled into the following simple set ofretrieve rules:

on retrieve to EMP where EMRsalary < 1000
then do instead retrieve (EMP1.all)

on retrieve to EMP where EMRsalary >= 1000
then do instead retrieve (EMP2.all)

If name in EMP is a unique key, then the delete rules are:

on delete to EMP where EMRsalary < 1000
then do instead delete EMP1 where EMP1.name = currentname

on delete to EMP where EMRsalary >= 1000
then do instead delete EMP2 where EMP2jiame = currentname

Append and replace rules can be similarly expressed.

One last example will illustrate the power of rules. Consider supporting two copies of a table, EMP,
namely EMP1 and EMP2. Suppose there is a table which can (somehow) be guaranteedto be up that indi
cates the status ofeach other table, e.g:

UP (table-name, status)

and considera user defined function, DIVIDE, which partitions users into two classes and returnsa boolean
to indicate which class any given user resides in. With these auxiliary definitions, the following retrieve
rules for EMP evenly partition reads over the two copies:

on retrieve to EMP where DIVIDE(user)
then do instead retrieve (EMP1.all)

on retrieve to EMP where not DIVIDE(iiser)
men do instead retrieve (EMP2.all)

To supportretrieves to a tablewhich is currently unavailable, the following extrarules arerequired.

on retrieve to EMP1 where URtable-name = "EMP1" and URstatus = "down"

then do instead retrieve (EMP2.ali)

on retrieve to EMP where URtable-name = "EMP2" and URstatus = "down"

then do instead retrieve (EMPl^ll)

Update rulescanbe similarlydefined forcopies thatwill implementa read-one-write-both processing strat
egy [BERN81]. Forexample, againassumingthat nameis a uniquekey for employees, the replacerule for
salaries is:

on replace to EMRsalary
do instead replace EMP1 (salary = new.salary) where EMPl.name = currentname

replace EMP2 (salary= new.salary) where EMPl.name = currentname

The above examples have sketched how referential integrity, general integrity rules, fragments and
copies can be supported by compilers that targetrule language. It appears that several additional DBMS
servicescan be implemented the same way, includingprotection, extended transaction schemes [DAYA90],
materialized views [CERI91, STON90] and partially materialized views [STON90]. It is hoped that the
research community will find other higherlevel notions thatcan be leveraged from the rules system by the
use ofcompilation.
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6. QUERIES ON THE RULE BASE

The last research area which we think urgently needs exploration is support for queries against the
knowledge base. In a production system context this entails being able to explain what has happened as a
result of a user command. Basically, the user must be able to ascertain what rules are activated during the
execution of any command. The following syntax explores at least some of the desired capabilities, and the
examples will use the query language,POSTQUEL.

If a user executes a retrieval command, e.g:

retrieve (EMRsalary) where EMRname = "Bob"

then he will be returned the salaryof Bob, regardless of whether it is stored as data or derived by a back
wardchainingrule. Consider the following variant

describe (EMRsalary) where EMRname = "Bob"

This command will return the salaryof Bob only if it is storedas data; otherwise, it will return the rule by
which the value is derived. In this way a user gets some indicationof why the data element has its indi
cated value.

Often returning the rule which derives Bob's salaryis not adequate; the user would like to know the
entire derivation path. This can be satisfied by the following:

describe* (EMRsalary) where EMRname = "Bob"

Here, Bob's salaryis to be described as above. If Bob's salaryis derived by a backward chaining rule, then
the action part of the rule (a retrieve command) is turned into an describe4' command and activated.
Describe4' will thereby tracethe entirederivation of a value,and processing will stop only when a dataitem
is encountered.

Often a user would like to execute a command and be made aware of the rules that gets activated on
his behalf. For example, he might issue:

replace EMP (salary = 1000) where EMRname = "Jones"

and he would like to be notified ofrule activations. The following syntax helps in this regard:

trace replace EMP (salary = 1000) where EMRname = "Jones"

The keyword, trace, before any POSTGRES command would cause the corresponding command to be
executed and the user to be notified of any rules which areawakened. A similarcommand:

trace4' replace EMP (salary = 1000) where EMRname = "Jones"

would cause the above notificationas well as activateany rules with trace4' added to any command in their
actionpart In this way the entire pathwould be traced, andnot just a single level.

Lastly, suppose a user wishes to explore what would happen if an update were made; however, he
does not actually want to run the update. Hence, he wants to know the effect of a trace or trace41 without
actuallyperformingthe update. The followingsyntax is intendedto havethe desiredeffect

explain replaceEMP (salary= 1000)whereEMRname ="Jones"
explain41 replaceEMP (salary = 1000)whereEMRname = "Jones"

Adding the keyword, explain, to any command would cause the corresponding command to "hypotheti-
cally" run so that rule activation can be traced. However, no changes are actually committed to the data
base. If rules are always run in the same transactionas the command that awakened them, then explain and
explain4' can be supportedby running the user's commandand then aborting his transaction to back every
thing out If different transaction contexts are allowed,then it appears that the easiest way to support the
explaincommand is by using the version system noted in the previous section. A versionof eachrelation
that the user updates is constructed on the fly and his updates made to the version. Any awakened rule
makesits updates to a version ofany tablewhichis to be changed. When the chaining process ends,all the
versions can be discarded.
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This section has indicated some primitive retrieval capabilities that would facilitate querying a
knowledge base, eitherfor debugging purposes or just to achieve an "explanation" of the effectof a com
mand. It is hopedthatmoresophisticated capabilities willbe forthcoming in thisarea.

7. CONCLUSIONS

In a matter of a few years, integrated rule systems have moved from conceptualization, to research
prototypes, andfinally to commercial systems. It is clearthatthey willbe themajor implementation mech
anism for a variety of database services as notedin thispaper. In addition, they will supportthe construc
tionof expert systems thatinvolve data in a databasebecause they are uniquelyable to guarantee that the
data is consistent with the user's rules. No rule system implemented in a frontend expertsystemshellcan
make thisassertion. As a result I expecta largenumber of expert systems to be written usingthis technol
ogy, including ones for personnel management (as indicated in the introduction) and purchaseorder sup
port Additional ones that controlspaceassignment in company facilities (e.g youmustbe a vice president
to get a privateoffice) and credit risks (e.g. don't approve a disbursement transaction to anyone who owes
you more than $1000) seem straightforward.

Such rule systems are fairly mundane in characterand will be termedsimple rule systems. In con
trast hard expert systems, such as automated physicians and geologists, require large sets of rules, often
withmanyexceptions, and usually requireexploration of complex sets of alternatives. Such systemswill
probablycontinue to be implemented using front-end expertsystemshells which offer more sophisticated
rule processing,such as control over the rule activation processand activation and deactivationof rule sets.

Therefore, I expect a large number of simple expert systems to be implementedusing rules systems
integratedin data base systems,and a much smallernumberof hard expert systems to use traditional expert
system shells. Of course, any hard expert system should use the DBMS-supported rule system whenever
possible,since it is closer to the data and more efficienton manyrule-oriented tasks. A last problem for the
researchcommunityis to investigatehow hard expert systemscan be supportedthat are partly implemented
in front end expert system shells and partly in DBMS rules. In particular, there are two rule engines run
ning on two different rule bases, and the two systems must somehow be co-ordinated. It remains to be
investigated how to accomplish this task.
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