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Abstract

This paper explores the integration of rule systems into data base management systems. One major
theme is a survey of the research activities in this area over the past decade. The focus is on prototype sys-
tems that have been completely specified and the implementation issues encountered. The second thrust is
to present a research agenda which should be addressed by the research community over the next few years.

1. INTRODUCTION

Historically rule management has been the domain of expert systems, and is included in such expert
system shells as OPSS [FORG81], Prolog [CLOC81], and KEE [INTE85]. As a result, rule systems were
contained in stand-alone programs with no interaction with DBMS systems.

Clearly, there are many instances where a knowledge base of rules is associated with a data base of
facts. For example, consider a personnel data base with a large number of instances of employees, contain-
ing their salary, department, amount of accrued vacation, etc. Every company has a collection of rules that
indicate who is allowed to be in the pension plan, how much vacation any employee is entitled to, who can
have a key to the executive washroom, etc. This rule base is usually called the company’s personnel policy,
and it can exist in several different forms. First, it can be written down in a booklet and distributed to all
employees. In this case, there is no guarantee that the facts in the data base correspond to the rules in the
knowledge base. Hence, the consistency of the data and the knowledge base is not guaranteed. A second
place where the rules can reside is in an application program which accesses the data base. In this case, at
least the rules are in computerized form. However, there is still no guarantee that the rules and the data are
consistent. For example, a data base update can occur which does not go through the application program.
In this case, the data base can be changed to be inconsistent with the knowledge base without the applica-
tion being aware of it. A second problem with encoding rules in an application program is that they are
often difficult to change, and it is usually difficult to bring the data base into conformity with the new rules.
As a result, storing rules in an application program (or an expert system shell) has inherent disadvantages.

To help with these problems, there has been considerable effort expended to couple expert system
shells to data base systems. The KEE connection [INTE87], Bermuda [IOAN87] and KBMS [CERI86] are
examples of this sort of activity. Such interfaces allow the expert system shell to interact with the data base
more easily. However, they do not solve the consistency problem inherent in an architecture where the data
is in one system and the rules are in another one.

The third place where a knowledge base can reside is inside the DBMS. In this case, the DBMS can

make an iron-clad guarantee that the rules and the data are consistent, because a single system is adminis-
tering both kinds of objects. Moreover, there are cases where much better performance will result from an
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integrated approach. Because of these potential advantages there has been dramatic effort in integrating
rules and data over the past decade. Essentially all of this activity has been performed by the data base
research community. Furthermore, the results of this research have already been transferred to commercial
DBMSs. For example, both INGRES and Sybase have fairly sophisticated rules systems integrated into
their relational DBMS engines.

In this paper, we briefly survey the research efforts that have been made in the past decade in inte-
grating rules and data. In Section 2 we indicate the major ideas that have been explored and then turn in
Section 3 to the implementation tactics that can be used. The paper next addresses the major difficulties
that remain to be solved. In my opinion, these are issues concerning the semantics of rules, higher level
abstractions for rules, and supporting the capability of querying a rule base. In the final three sections of
this paper, we discuss each of these topics.

2. CLASSIFICATION OF DBMS RULE SYSTEMS

The focus of research in integrating rules and data has been on supporting so-called production sys-
tems, i.e. rules of the form:

on event
do action

It is helpful to categorize such rules into four categories, based on the following:
The event can either be an update event or a retrieve event.
The action can either be an update or a retrieve.

The first category is rules which have an update event and an update action. For the traditional EMP table:
EMP (name, age, salary, dept, manager)
an example of this class of rule using the POSTGRES [STON90] rule system is

on replace to EMP.salary where EMP.name = "Joe”
then do replace EMP (salary = new.salary) where EMP.name = "Sam"

This rule instructs the DBMS engine to watch for an event which is an update to Joe’s salary. When this

event occurs, the engine should perform the corresponding action, which is to propagate Joe'’s new salary
on to Sam.

Of course, another rule could be defined which would propagate Sam’s salary on to a third employee,
Fred. In this case an update to Joe's salary would trigger the first rule which would update Sam’s salary. In
turn this update would trigger the second rule, and a forward chaining control flow would result. When
there are no more rules to activate, the chaining process stops.

Forward chaining rule systems with syntax similar to the notation above are operational in two proto-
type next-generation DBMSs, Starburst [WIDO90] and POSTGRES [STON90]. Furthermore, similar
notation is supported in commercial relational systems including INGRES [INGR90] and Sybase
[SYBA90]. Prototype efforts along the same lines have also been reported in ARIEL [HANSS89), HiPAC
(MCCA89] and RPL [DELC88]. All systems build on the pioneering work of [ESWA76].

A second class of rules are ones of the form:

on update
do retrieve
For example, consider the following POSTGRES rule:

on replace to EMP.salary where EMP.name = "Joe"
do retrieve (new.salary)

This rule acts as an alerter, i.e. whenever Joe gets a salary adjustment, the user defining the rule is sent his
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new salary. In this way the second user is alerted when an event of interest takes place. Alerters havebee.n
studies in [BUNE79]. Of the example rules systems noted above only POSTGRES and HiPAC support this
construct.

The third class of rules are ones of the form
on retrieve
do retrieve
Consider, for example, the following POSTGRES rule:

on retrieve to EMP.salary where EMP.name = "Sam"
do instead retrieve (EMP.salary) where EMP.name = “Joe"

The semantics of this rule is to look for an event that is a retrieve to Sam’'s salary. When the event occurs,
the action is to be performed instead of the event. Consequently, Joe’s salary is returned as a result of the
request for Sam’'s salary. In effect, the stored value of Sam'’s salary, if any, has no consequence because the
salary of Joe is substituted instead.

If Joe’s salary is derived according to a second rule of the same form, then a retrieve to Sam’s salary

would awaken the first rule, which in turn would awaken the second one. Therefore a backward chaining
control flow would result.

Another way of thinking about rules in this third class is that they allow portions on a data base to be
virtual or derived data items. Commercial relational DBMSs support views, which are virtual tables, typi-
cally using the algorithms in [STON75). As a result, backward chaining rules generalize the view concept
by allowing finer granularity for virtual objects.

Of course, one could use a Prolog-style syntax for rules in this class, e.g:

salary (Sam) = salary (Joe)
and there have been several systems that implement backward chaining syntax of this sort, including NAIL

[ULLMS85] and LDL [CHIM90]. The only system known to the author that supports both forward and
backward chaining is POSTGRES.

The thrust of research in backward chaining systems has been almost exclusively on processing
recursive rules. For example, consider another column of the traditional EMP table containing the second-
level manager of each employee. This column can be supported by the following backward chaining rule:

on retrieve to EMP.mgr-mgr
then do instead retrieve (E.mgr) where E.name = current.mgr

A generalization of this example might be to find all the the indirect managers of each employee in a field,
indr-mgr. In this case, the appropriate rule is:
on retrieve to EMP.indr-mgr
then do instead
retrieve (current.mgr)
retrieve (E.indr-mgr) where E.name = current.mgr

Here, the first part of the action identifies the direct manager of an employee while the second part finds all
the indirect managers of that person. When the same attribute appears in both the event and the action part
of a rule, a recursive execution can result.

This rule is perhaps clearer in a Prolog-style syntax:
indirect-mgr (X,Y) = indirect-mgr (X,Z) and manager (Z,Y)

The semantics of this rule is to assert that an employee, X, is the indirect manager of another employee, Y,
if there exists a third employee, Z, such that Z is the manager of Y and X is the indirect manager of Z.
Since the same clause, indirect-mgr, appears on both the left and the right-hand side of the rule, this again
signifies recursive execution will be required to solve for the indirect managers of any particular employee.
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The thrust of NAIL and LDL is to efficiently solve queries that require activating recursive rules,
such as the query to find all indirect managers of Joe, i.e:

indirect-mgr (X, Joe)

A survey on some of the techniques employed is given in [BANC86], and additional ones are being
explored all the time. It is even possible that the techniques being developed for recursive queries will be
g generally applicable [MUMI90). Since recursion is a large topic, this paper will not consider it fur-

The fourth class of rules are ones of the form:

on retrieve ...
do update ...
An example of such a rule is:

on retrieve to EMP.salary
then do append to AUDIT
(name = current.name, salary = current.salary, user = user())

Although few systems besides POSTGRES support this class of rules they provide a valuable function,
namely support for an audit trail. In the above example, every access to any employee’s salary results in
an audit record being added to the AUDIT table detailing the access.

In the next section we discus the implementation tactics that have been used to support rules of the
above four classes.

3. IMPLEMENTATION OF DBMS RULE SYSTEMS

The general problem which must be overcome to support rules in a DBMS is to activate the proper
rules at the required time. We begin with techniques appropriate to forward chaining rules, e.g. ones of the
form:

on replace to EMP.salary where EMP.name = "Joe"
then do replace EMP (salary = new.salary) where EMP.name = "Sam"

There are three basic techniques which can be applied: .

brute force

discrimination networks

marking

Brute force entails maintaining a list of all rules that affect each table in a data base. Then, each indi-

vidual update is matched against the condition part of each rule in the list to determine which must be
awakened. Clearly, this is a sequential search that will only provide good performance for a very small
number of rules per table. With a larger number of rules, this list must be organized for efficient access.
Discrimination networks, such as RETE [FORG81] and TREAT [MIRA87], have been widely used in
expert system shells to speed up this search. The last technique is to utilize a marking system to speed rule
activation. Here, instead of maintaining a list of rules per table or a discrimination network for this list, the
system uses record marking. In this case, each rule is processed against the data base and every record sat-
isfying the event qualification is identified. Each such record is marked with a flag identifying the rule to
be awakened. As a result, each record is marked with zero or more flags indicating the rules to awaken if
various events occur to this record. Of course, this potentially requires much more space than a list or dis-
crimination based approach, however, it offers dramatically better performance, because no searching must
be done at run time. Moreover, in the case that most rules have a small scope, i.¢ the event covers only a
few records, then the space penalty will not be severe. There are difficult problems with keeping the mark-
ings correct as updates are made to the data base; for further information on this issue consult [STON90].

At the current time all forward chaining implementations known to the author support brute force,
one system, ARIEL [HANS90], has specified a discrimination network, and one system, POSTGRES
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additionally supports marking. It is expected that discrimination networks will become a more popular
implementation technique for DBMS rule engines as rule sets become larger.

A fourth implementation technique is popular in backward chaining implementations, namely query
substituted into the user command to produce a modified command. Consider, for example the rule:

on retrieve to EMP.salary where EMP.name = "Sam"
do instead retrieve (EMP.salary) where EMP.name = "Joe"

and the command:

retrieve (EMP.salary) where EMP.name = "Sam"
In this case, the user command can be effectively modified to:

retrieve (E.salary) where E.name = EMP.name and EMP.name = "Sam"”
This can be simplified to:

retrieve (E.salary) where E.name = "Sam"

The algorithms to perform query rewrite are detailed in [STON90] and are generalizations of the query
modification techniques written down originally for views in [STON75]. All backward chaining DBMS
rules systems (POSTGRES, NAIL, LDL) use query rewrite as their implementation tactic. In addition,
[STON90] shows how to extend query rewrite to also support forward chaining implementations.

The choice of implementation tactics is obviously an efficiency issue. The performance of some of
the above techniques is analyzed using a simulation model in [STONS6].

4. RULE SYSTEM SEMANTICS

Rule systems have fundamentally complex semantics. In this section, we indicate 6 different dimen-
sions in which rule systems may make different semantic choices.

4.1. Time of Wake-up
Consider the following rule for the EMP class:

on replace to EMP.salary where EMP.name = "Jones"
then do replace EMP (salary = new.salary) where EMP.name = "Brown"

along with the user command:
replace EMP (salary = 1000) where EMP.dept = "shoe”
The rule can be activated at four different points in time, namely:

1) immediately

The rule can be awakened immediately upon the event occuring, i.e. at the moment when Jones receives a
salary adjustment. This is the approach currently taken in POSTGRES.

2) end of command

The rule can be delayed until the end of the command, i.e. until all shoe department employees have been
updated. Before the next command in the transaction is processed, the rule can be awakened.

3) end of transaction

Activation of the rule can be delayed until the end of the user transaction. This is the approach taken in
STARBURST [WIDO90].



4) after the end of the transaction

At.:tival:ion of the rule can be delayed until after the end of the transaction. This is one of the options in the
HiPAC proposal [MCCA89], and can only be allowed if the rule runs with a different transaction identifier
than that of the user command. This is discussed further in the next subsection.

In general, a different result will be observed depending on the time of wake-up. In fact, four differ-
ent data base states can occur for the four different cases above.

4.2, Transaction Context
Consider the rule:
on retrieve to EMP.salary
then do append to AUDIT
(name = current.name, salary = current.salary, user = user())

The above rule can be awakened in the same transaction as the user command or it can be activated
in a different transaction. If it is activated in the same transaction, then a user can retrieve a salary, and
then abort his transaction. If so, the auditing action will be undone by the abort, and the user’s retrieve will
not appear in the audit trail. To get the desired action, the rule must be activated in a different transaction.

In general, different results will be observed depending on which transaction context is chosen.

4.3. Backward Chaining versus Forward Chaining
Consider the example forward chaining rule noted above:

on replace to EMP.salary where EMP.name = "Jones”
then do replace EMP (salary = new.salary) where EMP.name = "Brown"

On the other hand, a similar effect could be obtained from the analogous backward chaining rule:
on retrieve to EMP.salary where EMP.name = "Brown”
then do instead retrieve (EMP.salary) where EMP.name = "Jones"

Unfortunately, the above two rules do not have the same semantics. For example, if Jones is deleted
from the data base, then Brown’s salary will become null in the backward chaining example but will have
Brown’s last salary in the forward chaining example. As a result there are two different semantics which
result from the choice of whether to employ forward or backward chaining.

4.4. Semantics of Backward Chaining
Consider again the rule:

on retrieve to EMP.salary where EMP.name = "Brown"

then do instead retrieve (EMP.salary) where EMP.name = "Jones"
Table 1 indicates the possible outcomes for the query:

retrieve (EMP.name, EMP:salary)

where EMP.name = "Brown"
depending on the number of Jones’s there are in the data base. Here, the first column shows the semantics
that would result if the user query were interpreted to be:

retrieve (EMP.name, E.salary)

where EMP.name = "Brown" and E.name = "Jones"



Union Error Random
Semantics Semantics Semantics
no Jones O instances | 1 instance with a null salary | 1 instance with a null salary
1 Jones 1 instance 1 instance 1 instance
NJoneses | ninstances | error 1 instance
Semantics of Brown’s salary
Table 1

Such semantics are the natural result of applying query rewrite [STON90] to the user’s query in order to
satisfy the rule.
The second column would result from interpreting the query and the rule as follows:

retrieve into TEMP (EMP.name, EMP.salary)
where EMP.name = "Brown"

replace TEMP (salary = EMP.salary)
where EMP.name = "Jones"
and TEMP.name = "Brown"

If there is more than one Jones, the above update is non-functional, i.e. it replaces Brown'’s salary with
more than one value. Non-functional updates are rejected by many DBMSs including INGRES [STON76).
Any DBMS with this interpretation of the rule and which rejects non-functional updates will generate col-
umn 2 of Table 1.

The third column would be generated by a slight modification of the above scenario. The interpreta-
tion of the rule is the same as above. However, the non-functional update is not rejected; instead the update
occurs and any one of the multiple values is assigned. Any DBMS which defines non-furictional updates to
have random semantics will generate the final column of Table 1.

If there are two or more employees named Jones, then the natural seamntics for the example rule
would be to issue an error, thereby choosing to enforce column 2 of Table 1. However, there appear to be
examples for which each column provides the correct interpretation. For example, suppose one wanted a
field in the EMP table which will record the people one is required to buy a gift for. In this case, one might
write the following rule:

on retrieve to EMP.buy-gift
then do instead retrieve (EMP.name) where EMP.manager = current.name

This rules suggests that each manager must buy gifts for all employees who work for him. The proper
interpretation of this rule is union semantics. In general, all three columns of Table 1 are plausible in appli-
cation-specific circumstances.

4.5. Ordering

Consider the case where two or more rules can be activated at one time. Specifically, consider the
following rules:

on replace to EMP.salary where EMP.name = "Jones"
then do replace EMP (salary = new.salary) where EMP.name = "Brown"



on replace to EMP.salary where EMP.dept = "shoe”
then do replace EMP (salary = 5000) where EMP.name = "Brown"

If Jones is employed in the shoe department, then both rules will determine Brown's new salary. If Brown
is not in the shoe department, then his salary will be determined by whichever rule fired last. In this case
the following options appear reasonable:

1) One rule is fired, and the other one is ignored

This will be the semantics supported by the exception mechanism in the POSTGRES rules system.
2) Both rules fire in random order

3) Both rules fire, but in a pre-determined order

This will be the semantics supported by the before and after syntax in STARBURST.

If two rules, A and B, can fire, then the possible options are:

activate only A

activate only B

activate B then A

activate A then B

activate both in random order

Obviously, different answers can be observed from all of these possibilities.

4.6. Number of Possibilities

As a result of the above discussion, there are a vast number of possible semantic outcomes for the
activation of two rules, A and B. In fact, it would be an interesting exercise to count the number of possible
outcomes, given a single user command which activated N rules.

My contention is that this environment is too complex for any data base administrator to understand.
Therefore, I feel that it is a crucial research issue to simplify the possible semantics. There are two possible
approaches to this task. First, one could reject certain combinations of the above cases as semantically
unreasonable. This would be a valuable research contribution. The second approach is to invent higher
level notations that hide this layer of complexity, much as a compiler for a programming language hides the
ultimate machine language for any given computer. Examples of this second approach are discussed in the
next section.

S. HIGHER LEVEL RULE NOTATIONS

One way to alleviate the semantic morass of the previous section is to view the rule specification lan-
guage discussed in the previous sections as "data base assembly language”, i.e. it is a complex low-level
notation that only a few compiler writers have to understand. These guru programmers will implement
higher level languages, which have much simpler semantics.

In this case the DBMS engine can concentrate on a very efficient implementation of the lower level
notation for rules. The code in this engine is then leveraged to perform a wide variety of useful functions.
The challenge for DBMS researchers is to invent a multitude of higher level notations. In this section we
give two examples of the approach in some detail. Then, we sketch more briefly several additional higher
level notations.



5.1. Views and Versions

In this section we discuss the implementation of POSTGRES views and versions. In both cases,
required functionality is supported by compiling user level syntax into one or more rules for subsequent
activation inside POSTGRES.

Views (or virtual classes) are an important DBMS concept because they allow previously imple-
mented classes to be supported even when the schema changes. For example, the view, TOY-EMP, can be
defined as follows:

define view TOY-EMP (EMP.all) where EMP.dept = "toy”
This view is compiled into the following POSTGRES rule:
on retrieve to TOY-EMP
then do instead retrieve (EMP.all) where EMP.dept = "toy”
Any query ranging over TOY-EMP will be processes correctly by the POSTGRES rules system.

However, a key problem is supporting updates on views [CODD74]. Current commercial relational
systems support only a subset of SQL update commands, namely those which can be unambiguously pro-
cessed against the underlying base tables. POSTGRES takes a much more general approach. If the appli-
cation designer specifies a default view, i.e:

define default view LOW-PAY (EMP.OID, EMP.name, EMP.age) where EMP.salary < 5000
then, a collection of default update rules will be compiled for the view. For example, the replace rule for
LOW-PAY is:

on replace to LOW-PAY.age

then replace EMP (age = new.age) where EMP.OID = current.OID
These default rules will give the correct view update semantics as long as there are no possible ambiguous
updates. In addition, the application designer is free to specify his own update semantics by indicating
other update rules. For example, he could define the following replace rule for TOY-EMP

on replace to TOY-EMP.dept
then delete EMP where EMP.name = current.name and new.dept != "toy"

Therefore, default views are available using compilation of view syntax into a collection of rules.
Other update semantics can be readily specified by user-written update rules.

A second area where compilation can support desired functionality is that of versions. The goal is to
create a hypothetical version of a class with the following properties:

1) Initially the hypothetical class has all instances of the base class.

2) The hypothetical class can then be freely updated to diverge from the base class.

3) Updates to the hypothetical class do not cause physical modifications to the base class.

4) Updates to the base class are visible in the hypothetical class, unless the instance updated has
been deleted or modified in the hypothetical class.

Of course, it is possible to support versions by making a complete copy of the class for the version and then
making subsequent updates in the copy. More efficient algorithms which make use of differential files are
presented in [KATZ82, WOODS83).

In POSTGRES any user can create a version of a class as follows:
create version my-EMP from EMP
This command is supported by creating two differential classes for EMP:
EMP-MINUS (deleted-OID)
EMP-PLUS (all-fields-in EMP, replaced-OID)
and installing a collection of rules. EMP-MINUS holds the OID for any instance in EMP which is to be
deleted from the version, and is the negative differential. On the other hand, EMP-PLUS holds any new



instances added to the version as well as the new record for any modification to an instance of EMP. In the
latter case, the OID of the record replaced in EMP is also recorded.

The retrieve rule installed at the time the version is created is:

on retrieve to my-EMP

then do instead

retrieve (EMP-PLUS all)

retrieve (EMP.all) where EMP.OID NOT-IN (EMP-PLUS .replaced-OID)

and EMP.OID NOT-IN {EMP-MINUS.deleted-OID}

The delete rule for the version is similarly:

on delete to my-EMP

then do instead

append to EMP-MINUS (deleted-OID = current.OID) where EMP.OID = current.OID

delete EMP-PLUS where EMP-PLUS.OID = current.OID
The interested reader can derive the replace and append rules or consult [ONG90] for a complete explana-
tion. Also, there is a performance comparison in [ONG90] which shows that a rule system implementation
of versions has comparable performance to an algorithmic implementation with hard-wired code deep in
the DBMS execution engine.

Both of the examples in this section have shown important DBMS function that can be supported
with very little code by compiling higher level syntax into a collection of rules.

5.2. Other Rule Compilers

In this section we more briefly sketch several other possible rule compilers. Referential integrity
[DATES1] is often stated as a requirement for current relational DBMSs. In most commercial systems, it is
hard-wired as special purpose code. However, it is straightforward to build a compiler for referential
integrity syntax. For example, for the traditional employee and department relations:

EMP (name, age, salary, dept, manager)
DEPT (dname, floor)

one often wishes to check on each insert that that the new employee is in a legal department. If not, one
wants to add the new department. This is one of the 9 cases of referential integrity stated in [DATE81], and
appropriate user-level syntax can be compiled into:

on append to EMP
then do append to DEPT (dname = new.dept) where new.dept NOTIN {DEPT.dname}

The other 8 cases are equally easily supported. As a result, referential integrity can be supported by code
which compiles special purpose syntax into DBMS rules.

A second application is general integrity constraints. One would like syntax such as:
integrity constraint on EMP is EMP.salary > 1000
This can be compiled into the rules:

on replace to EMP.salary
then abort where new.salary <= 1000

on append to EMP
then abort where new.salary <= 1000

A complete compiler for this sort of integrity rules is given in [CERI90].

A third example is support for fragments of relations [EPST78). In this case, one wishes a logical
relation, EMP, to be the union of two physical tables, EMP1 and EMP2, This is useful when EMP1 and
EMP?2 are stored in different storage managers or even on different sites in a distributed data base. Oftena
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distribution criteria is specified to indicate the conditions under which a physical record is allocated to a
particular fragment. For example, one might specify:
distribute EMP to EMP1 where EMP.salary < 1000
to EMP2 where EMP.salary >= 1000

This distribution criteria can be compiled into the following simple set of retrieve rules:

on retrieve to EMP where EMP.salary < 1000
then do instead retrieve (EMP1.all)

on retrieve to EMP where EMP.salary >= 1000
then do instead retrieve (EMP2.all)

If name in EMP is a unique key, then the delete rules are:

on delete to EMP where EMP.salary < 1000
then do instead delete EMP1 where EMP1.name = current.name

on delete to EMP where EMP.salary >= 1000
then do instead delete EMP2 where EMP2.name = current.name

Append and replace rules can be similarly expressed.
One last example will illustrate the power of rules. Consider supporting two copies of a table, EMP,

namely EMP1 and EMP2. Suppose there is a table which can (somehow) be guaranteed to be up that indi-
cates the status of each other table, e.g:

UP (table-name, status)

and consider a user defined function, DIVIDE, which partitions users into two classes and returns a boolean
to indicate which class any given user resides in. With these auxiliary definitions, the followmg retrieve
rules for EMP evenly partition reads over the two copies:

on retrieve to EMP where DIVIDE(user)
then do instead retrieve (EMP1.all)

on retrieve to EMP where not DIVIDE(user)
then do instead retrieve (EMP2.all)

To support retrieves to a table which is currently unavailable, the following extra rules are required.

on retrieve to EMP1 where UP.table-name = "EMP1" and UP.status = "down"
then do instead retrieve (EMP2.all)

on retrieve to EMP where UP.table-name = "EMP2" and UP.status = "down"
then do instead retrieve (EMP1.all)

Update rules can be similarly defined for copies that will implement a read-one-write-both processing strat-
egy [BERNS81]. For example, again assuming that name is a unique key for employees, the replace rule for
salaries is:
on replace to EMP.salary
do instead replace EMP1 (salary = new.salary) where EMP1.name = current.name
replace EMP2 (salary = new.salary) where EMP1.name = current.name

The above examples have sketched how referential integrity, general integrity rules, fragments and
copies can be supported by compilers that target rule language. It appears that several additional DBMS
services can be implemented the same way, including protection, extended transaction schemes [DAYA90],
materialized views [CERI91, STON90] and partially materialized views [STON90]. It is hoped that the
research community will find other higher level notions that can be leveraged from the rules system by the
use of compilation.
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6. QUERIES ON THE RULE BASE

The last research area which we think urgently needs exploration is support for queries against the
knowledge base. In a production system context, this entails being able to explain what has happened as a
" result of a user command. Basically, the user must be able to ascertain what rules are activated during the
execution of any command. The following syntax explores at least some of the desired capabilities, and the
examples will use the query language, POSTQUEL.

If a user executes a retrieval command, e.g:
retrieve (EMP.salary) where EMP.name = "Bob”

then he will be returned the salary of Bob, regardless of whether it is stored as data or derived by a back-
ward chaining rule. Consider the following variant:

describe (EMP.salary) where EMP.name = "Bob”
This command will return the salary of Bob only if it is stored as data; otherwise, it will return the rule by

which the value is derived. In this way a user gets some indication of why the data element has its indi-
cated value.

Often returning the rule which derives Bob’s salary is not adequate; the user would like to know the
entire derivation path. This can be satisfied by the following:

describe* (EMP.salary) where EMP.name = "Bob"

Here, Bob’s salary is to be described as above. If Bob’s salary is derived by a backward chaining rule, then
the action part of the rule (a retrieve command) is tumed into an describe* command and activated.
Describe* will thereby trace the entire derivation of a value, and processing will stop only when a data item
is encountered.

Often a user would like to execute a command and be made aware of the rules that gets activated on
his behalf. For example, he might issue:

replace EMP (salary = 1000) where EMP.name = "Jones"
and he would like to be notified of rule activations. The following syntax helps in this regard:
trace replace EMP (salary = 1000) where EMP.name = "Jones"

The keyword, trace, before any POSTGRES command would cause the comresponding command to be
executed and the user to be notified of any rules which are awakened. A similar command:

trace* replace EMP (salary = 1000) where EMP.name = "Jones"

would cause the above notification as well as activate any rules with trace* added to any command in their
action part. In this way the entire path would be traced, and not just a single level.

Lastly, suppose a user wishes to explore what would happen if an update were made; however, he
does not actually want to run the update. Hence, he wants to know the effect of a trace or trace* without
actually performing the update. The following syntax is intended to have the desired effect:

explain replace EMP (salary = 1000) where EMP.name = "Jones"
explain* replace EMP (salary = 1000) where EMP.name = "Jones"

Adding the keyword, explain, to any command would cause the comresponding command to "hypotheti-
cally” run so that rule activation can be traced. However, no changes are actually committed to the data
base. If rules are always run in the same transaction as the command that awakened them, then explain and
explain* can be supported by running the user’s command and then aborting his transaction to back every-
thing out. If different transaction contexts are allowed, then it appears that the easiest way to support the
explain command is by using the version system noted in the previous section. A version of each relation
that the user updates is constructed on the fly and his updates made to the version. Any awakened rule
makes its updates to a version of any table which is to be changed. When the chaining process ends, all the
versions can be discarded.
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This section has indicated some primitive retrieval capabilities that would facilitate querying a
knowledge base, either for debugging purposes or just to achieve an "explanation” of the effect of a com-
mand. It is hoped that more sophisticated capabilities will be forthcoming in this area.

7. CONCLUSIONS

In a matter of a few years, integrated rule systems have moved from conceptualization, to research
prototypes, and finally to commercial systems. It is clear that they will be the major implementation mech-
anism for a variety of data base services as noted in this paper. In addition, they will support the construc-
tion of expert systems that involve data in a data base because they are uniquely able to guarantee that the
data is consistent with the user’s rules. No rule system implemented in a front end expert system shell can
make this assertion. As a result, I expect a large number of expert systems to be written using this technol-
ogy, including ones for personnel management (as indicated in the introduction) and purchase order sup-
port. Additional ones that control space assignment in company facilities (e.g you must be a vice president
10 get a private office) and credit risks (e.g. don’t approve a disbursement transaction to anyone who owes
you more than $1000) seem straightforward.

Such rule systems are fairly mundane in character and will be termed simple rule systems. In con-
trast hard expert systems, such as automated physicians and geologists, require large sets of rules, often
with many exceptions, and usually require exploration of complex sets of alternatives. Such systems will
probably continue to be implemented using front-end expert system shells which offer more sophisticated
rule processing, such as control over the rule activation process and activation and deactivation of rule sets.

Therefore, I expect a large number of simple expert systems to be implemented using rules systems
integrated in data base systems, and a much smaller number of hard expert systems to use traditional expert
system shells. Of course, any hard expert system should use the DBMS-supported rule system whenever
possible, since it is closer to the data and more efficient on many rule-oriented tasks. A last problem for the
research community is to investigate how hard expert systems can be supported that are partly implemented
in front end expert system shells and partly in DBMS rules. In particular, there are two rule engines run-
ning on two different rule bases, and the two systems must somehow be co-ordinated. It remains to be
investigated how to accomplish this task.
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