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Abstract

In this paper a comparative study of the Lorenz equation and Chua’s equation is pre-
sented.

1 Introduction

Within the last 20 years, the study of experimental, computational, and theoretical aspects of
chaos in nonlinear dynamical systems has influenced tremendously the foundations of applied
sciences and engineering so that it has become possible to understand better many complex
nonlinear phenomena. Two dynamical systems have played a crucial role in this scientific
development: Lorenz model ! and Chua’s circuit 2. In this paper we shall present a comparative
study of these two systems.

1.1 Lorenz Model

Lorenz's purpose was to analyze the unpredictable behavior of the weather. He first expanded -
a set of nonlinear partial differential equations ( Navier - Stokes equation and the thermal equa-
tion ) by Fourier transformations and then truncated them by retaining only three modes. The
resulting equations, generally called the Lorenz equation, consists of an autonomous nonlinear
system of 3 ordinary differential equations:

& = o(y-=z)
) = rz—y-zz (1)
z = zy-—bz

There are two nonlinearities in the Lorenz equations; both are functions of two variables,
namely. rz and zy, and there are three control parameters; namely, o, r and b. Roughly
speaking. the variable z measures the rate of convective overturning, the variable y measures
the horizontal temperature variation, and the variable z measures the vertical temperature
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varjation. The parameters o and r are proportional to the Prandtl and the Rayleigh number,
respectively. A typical Lorenz attractor is shown on Figure 1, where 0 = 10,5 = 8/3,and r =
28.

The relationship between the complicated turbulent behavior in systems having an infinite
number of degrees of freedom ( partial differential equations ) and the chaotic behavior in
finite-dimensional systems is a deep and yet unresolved problem. Lorenz himself admits that
(1) is not a realistic model if 7 is far from 1 ( as in the case of the Lorenz attractor). However,
many authors have derived (1) from other physical systems. Haken 3 has used the Lorenz
equation to model the irregular spiking phenomena in lasers. Malkus ¢ and Yorke and Yorke
5 have used (1) to study the problem of convection in a toroidal region, while Knobloch ¢ has
derived (1) from a disc dynamo. Pedlosky and Frenzen 7 have derived (1) from a study of the
dynamics of a weakly unstable, finite amplitude, baroclinic wave ( two-layer model ). Lorenz
equation has also been used to describe the dynamics of the simplest laser model ( e.g., the
Shimizu - Morioka System 8 ).

1.2 Chua’s circuit

Chua's purpose was to synthesize the simplest autonomous electronic circuit generator of
chaotic signals. The history on the conception of the circuit, shown in Figure 2(a), is symma-
rized in Ref.9. The state equations are:

C]%-i" = G('vz - 1)]) - g(vl)

Colz = G(v —v2)+13 (2)
L%"tl = -V

where v;,v5 and 73 denote the voltage across the capacitor Cy, the voltage across the capacitor
(5 and the current through the inductor L, respectively, and g(v;), shown in Figure 2(b), is the
voltage versus current characteristic of the nonlinear element, generally referred to as Chua’s
diode in the literature.

In contrast to the Lorenz equation which has two nonlinearities, each one being a scalar
function of two variables, Chua’s circuit has only one nonlinearity; namely, a scalar function of
only one variable. The relevant nonlinear function in the original Chua’s circuit is described
by an odd-symmetric piecewise-linear function made of three straight-line segments, and which
has the following ezplicit represention:

1
g(v1) = Gy + §(G° = Gy)(|v1 + By| — |v1 — By|) (3)

It is easy to realize (2) by a physical circuit. All of the linear elements ( capacitor, resistor,
and inductor) are readily available. Several practical implementions of the nonlinear element
( Chua’s diode ) can be chosen. All of them made use of only off-the-shelf components, e.g.,
diodes 1, transistors !°, operational amplifiers !!, and operational transconductance amplifiers
12 One attractive feature of Chua’s circuit is that it is easy to build, easy to measure, and
easy to model. Because of its simplicity, robustness and low cost, Chua’s circuit has become a
favorite tool for analytical, numerical and experimental study of chaotic phenonena.
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1.3 Physical systems versus analog computers

We would like to stress at the outset that Chua’s circuit is not an analog computer, as is
often mistakenly identified by those who had been exposed to analog computers made from
operational amplifiers. In other words, while electronic analog computers are made from op
amps, only a small subset of op-amp circuits are analog computers. The building blocks
of Chua’s circuit are ordinary circuit elements; namely, resistors, inductors and capacitors.
They are not op amp integrators, the building blocks of electronic analog computers. The
only nonlinear element in Chua’s circuit can be realized by a variety of methods, including a
thumb-nail sized integrated circuit chip with only 2 external terminals which gives the nonlinear
voltage-current characteristics, and two other terminals for the battery 2. In the dynamics
of the circuit, both the current and the voltage of each circuit element play a crucial role.
On the other hand, the variables in an analog computer are merely the node voltages of the
capacitor - integrator building block modules where the current is completely irrelevant in the
circuit’s dynamic operation and is in fact forced to a near-zero value in order to avoid loading
effects which would otherwise affect the analog relationships being simulated. In the language
of system theory, an analog computer is only an electronic implementation of a signal flow
graph where the notion of power flow and energy has no meaning. In contrast, Chua’s circuit
is a physical system obeying electrical (Kirchhoff’s) laws, just like a mechanical spring-mass-
dashpot systm obeying mechanical (Newton’s) laws. If we simulate the equations of motion of
the mechanical system by a system of op-amp integrators, then the resulting electronic system
is an analog computer. But the mechanical system itself is a physical system.

2 Lorenz and Chua’s equations

Introducing the dimensionless variables,

N A N
X = %‘; y= —Eﬁ 7 = —g‘;
T éaé% af- %& b& %‘i
ac e C
a =g B=1&
Equation (3) can be transformed into the following dimensionless form:
£ = aly-z-f(2))
d .
T = z-y+tz (4)
£ = -y

where

f(z) £ g(z;1,b,0)

bz+a-b z>1

az jz] <1
bx—a+4+bdb z<-1

and a, B, a and b are real parameters,a > 0,8 > 0,a < 0 and b < 0.



Figure 3 shows a typical double-scroll Chua’s attractor observed by solving (4) with a =
9,=14%,a=-§,b=-5.
We will now compare the dynamics of the Lorenz equation (1) and Chua’s equation (4).
2.1 Simple properties
2.1.1 Lorenz equation
Equation (1) is invariant under the transformation
(%%,2) = (x,-y,-2)

The origin is an equilibrium point for all parameter values. For r>1 there are two other
equilibrium points :

P* = (y/b(r=1),/b(r - 1),r = 1)
P™ = (=/b(r=1),=/b(r=1),r - 1)
The linearized flow near the origin has eigenvalues:

ALA = %{—a— 1+4/(0—-1)?+4or}
-b

Az =

The eigenvalues of the flow linearized near P* and P~ are the roots of the equation
S+s¥o+b+ 1)+s§(a+ r)+20b(r-1) = 0
The equilibrium points are stable iff:
c+b+1>0, b(o+r)>0, ob(r—1)>0, and (c+b+1)b(c+7)> ob(r—1)

For the values of parameters in the neighborhood of ¢ = 10, b = 8/3, r = 28, all equilibrium
points are hyperbolic, i.e., the flow linearized around the origin has two negative, and one
positive, real eigenvalues; the flow linearized around P+ (P~) has one negative real eigenvalue
and a complex-conjugate pair of eigenvalues with a positive real part, as shown in Fig. 4(a).
A typical trajectory in a small neighborhood of each equilibrium point is shown in Fig. 4(b).

2.1.2 Chua’s equation
Equation (4) is invariant under the transformation

(x,y,z)—>(-x,-y,-z)

The origin is an equilibrium point. Fora # b, b # -1, and (a +1)(b+ 1) < 0, there are two
other equilibrium points:

o= (e i)
o= (e 5)



The eigenvalues of the flow linearized near each equilibrium point are the roots of the
equation:

S +s%(acta+1)+s(ec+B)+Palc+1) = 0

where ¢ is equal to a if the equilibrium point is at the origin, and c is equal to b if the
equilibrium point is at P* (or P~ ). The equilibrium points are stable iff:

ac+a+1>0, ac+>0, alc+1)>0, and (ac+a+1)(ac+ ) > a(c+1)

For the values of parameters in a neighborhood of @ = 9, 8 = 142, 2 = -§, b = -3, all
equilibrium points are hyperbolic; the flow linearized around the origin has one positive real
eigenvalue, and a complex conjugate pair of eigenvalues with negative real part. The flow
linearized around P* (P~) has one negative real eigenvalue, and a complex-conjugate pair
of eigenvalues with positive real part, as shown in Fig. 5(a). A typical trajectory in a small
neighborhood of each equilibrium point is shown in Fig. 5(b).

In what follows we shall asume that

oc=10,b=8/3 for Lorenz equation
and

a=-8/7,b=-5/7 for Chua’s equation.

2.2 Homoclinic and heteroclinic orbits

A homoclinic orbit of an equilibrium point is a trajectory which tends to the equilibrium point
in both forward and reverse time. Figure 6 shows a schematic “number 8” homoclinic orbit of
the origin for Lorenz equation when r = 13.926. Figure 7 shows a schematic “double scroll”
homoclinic orbit of the origin for Chua’s equation when o = 11.0917459, 8 = 14.3,.

A heteroclinic orbit between the two equilibrium points P* and Q* is a trajectory which
tends towards P* in reverse time and towards Q* in forward time. Many heteroclinic orbits
for the Lorenz and the Chua’s equation can be found in Ref.13 and Ref.14, respectively.

2.3 Period doubling

Over various ranges of parameter values both equations (1) and (4) display a period - doubling
bifurcation phenomenon. Here we present an example of such a bifurcation sequence, in Figure
8 for Lorenz equation and in Figure 9 for Chua’s equation.

2.4 Intermittent chaos

By intermittency we mean the occurrence of a signal which alternates randomly between long
regular (laminar) phases and relatively short irregular bursts.

This phenomenon is observed in the Lorenz equation for » = 166.3, as shown in Figure 10,
and in Chua’s equation for a = 4.295, 8 = 5, as shown in Figure 11.
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2.5 Meta-stable chaos

A phenomenon is called “preturbulence” or “meta-stable chaos” when a typical dynamical
system trajectory wanders chaotically near a strange set before it is attracted into a non-
chaotic attractor ( usually a fixed point or a periodic orbit).

Figure 12 shows this phenomenon in Lorenz equatin for r= 22.4, while Figure 13 shows
this phenomenon in Chua’s equation for the parameters: a = 8.986, 8 = 142. The steady
state is a fized point for Lorenz equation, and a periodic orbit for Chua’s circuit.

2.6 Semi-periodicity

Suppose that for some suitable Poincare plane of a three-dimensional flow we can locate “n”
non-overlapping connected component regions on the plane such that all trajectories eventually
pass through these regions in a cyclic order. Then we say that the system is semi-periodic with
period n.

Figure 14(a) shows the semi-periodicity in Lorenz equation for r = 212, while Figure 15(a)
shows this phenomenon in Chua’s equation for the parameters: a = 8.99, 8 = 14%. The
Poincare cross section at = 20 shown in Fig. 14(b) depicts only one isolated component
(n = 1). The corresponding cross section at z = 1 shown in Fig. 15(b) depicts two isolated
components (n = 2). Both figures show that the behaviour of the corresponding equation
looks almost like stable periodic behaviour, though it can be shown that the periodic orbit in
question lost its stability in a period-doubling bifurcation. In fact, the attractor is constrained
within a tube that surrounds a hyperbolic periodic orbit of period n. The tubes are very thin
and they intersect some appropriately chosen return plane in n non-overlapping regions.

2.7 Co-existing attractors

Figure 16 shows two co-existing chaotic attractors in the Lorenz equations for r = 212, and
Figure 17 shows three co-existing chaotic attractors in the Chua’s equations for a = 15.6 and
B = 28.58.

2.8 The Lorenz attractor and the Double-Scroll Chua’s attractor
2.8.1 Lorenz equation

The Afraimovich-Bykov-Shil’nikov geometric model 15

Let us consider the domain U, in the space of vector fields with C'-topology on R3 (
we restrict ourselves for simplicity to R3; more general case is considered in Reference 13 )s
such that every vector field X € U has an equilibrium state 0 of the saddle type. Here, the
eigenvalues of X at the point 0 are real and satisfy A; < A <0 < A3 with A;+A3 > 0. Denote by
W#(z) the stable two-dimensional manifold of 0 and by W*(z) the unstable manifold consisting
of 0 and of two trajectories I'y and T's, emanating from 0, in forward and in backward time,
respectively. We assume that the system X, € U satisfies T; € W*(zo) i = 1,2, that is I; is
doubly asymptotic to 0.

Let us assume that for every system X € U there exists an element of area D with the
following properties :



1. Euclidean coordinates (z,y) can be introduced on D, where
D={(z,9)l IzI<1, yl<2}

2. The equation y = 0 describes the line of discontinuity, that is the intersection W*nD

3. Mappings T1:Dy— D and Ty:D; —D are defined along the trajectories of the system,
where

Dy = {(x,y)| |z] <1, 0<y <1}
Dy = {(xy)| |z| 1,1 <y <0}

and T; can be expressed as

81

= fi(z,y)

37 = gi(wa y)

¢ = 1,2. In addition the functions f and g must satisfy some conditions ( Equation (1.1)
in Ref.13).

The Afraimovich-Bykov-Shil’nikov model is defined by the two-dimensional map T (see
Fig.18):

TET,|D; onD;, i=12

This mapping gives rise to a Lorenz-like attractor; in particular it has been proved that the
map T has a strange attractor.

The Birman-Williams mode] 16

By a template in a three-dimensional manifold M is meant a branched two-manifold B CM
together with a semi-flow y;: B — B, t > 0 such that B has an atlas consisting of 2 types of
charts. a joint chart and a spliting chart.

The Birman-Williams model represents the inverse limit of a semi-flow on a branched two-
dimensioned manifold. The Lorenz template is shown in Figure 19.

2.8.2 Chua’s equation

The Belyhkh-Chua Geometric model 17

Consider the class of three-dimensional, piecewise-linear system satisfying the following
conditions:



1. Inside the cylinder
G={lzl<h ¥+2<7%)

the system is defined by the following linear system:

= 7z
= —0Y-—wpz
zZ = wy-oz

In other words, the origin is a hyperbolic equilibrium point with one real eigenvalue v>
0, and a pair of complex-conjugate eigenvalues -0 +iwp, o > 0.

Let us define

Dy = {y¥¥’+2=r2:0<z<h)}

D; = {$*+22=r2:-h<z<0)}

di! = {y*+22<r?:z2=h)

di? = {*+22=r2:z2=-h)

D = DiuDu{y*+2*=r*:2=0}

2. Outside the cylinder G, the system generates an odd-symmetric linear Poincare map such
that

Slgr = 51 tdp! = D
S'd;,"’ =8 :d2>D
The Belykh-Chua model is represented by the following map f:

6 = -2+ (5+alz["cos (d+p-wlin|z|))sgnz z#0,z€D

81

= psgnz-alz]” sin(d+¢—-wlin|z|)sgnz z#0,z€D

where 7 and w are “local” parameters, while p, a, and ¢ are “global” parameters. The
parameter u controls the return points Py and P»; the case y = 0 is drawn on Figure 20,
in this case the separatrices I'y and T'; are doubly asymptotic to the origin. If 4 > 0,
then Py (P,) is translated upward (downward) by an amount equal to u. The parameter
a is usually called the separatrix value and ¢ is called the phase shift.

This type of mapping gives rise to a double-scroll Chua’s attractor. In particular, it has
been proved that the map (5) has a strange attractor.

Induced template 18

Let o:M — M be a flow on M. The flow ¢, is compatible with the induced template, if
all periodic orbits embedded in the chaotic attractor are associated with the periodic orbits of
the template in such a way that the braid structure is preserved. The induced template of the
double-scroll Chua’s attractor is shown in Figure 21.
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3 Additional Features of Chua’s Circuit

In this section we shall briefly discuss some additional features of Chua’s circuit

3.1 Theoretical features

Equation (4) is a piecewise-linear dynamical system, and as a consequence, analytical expres-
sion for two-dimensional Poincare map has been derived !°. It has been used for in-depth _
analysis of various nonlinear properties of (4), including chaotic dynamics, birth and death of
the double-scroll Chua’s attractor, etc. A one-dimensional approximation of the Poincare map
is introduced in Reference 19. This 1-D map predicted all of the qualitative behavior that we
have so far observed by computer simulation and by rigorous analysis. Recently, Kuznetsov
et.al. 2% have shown the existence of a variety of types of critical points which are characterized
by a universal self-similar topography using the one-dimensional map.

Figures 22 and 23 show qualitatively distinct chaotic attractors so far observed from the
Lorenz and the Chua’s equation, respectively. By adding a linear resistor in series with the
inductor in Chua’s circuit, we obtain an unfolded Chua’s circuit, called the Chua’s oscillator
21 The state equation of this circuit is topologically conjugate to a 21-parameter family of
continuous odd-symmetric piece-wise linear equations in R3. Thus, the qualitative dynamics
of every autonomous 3rd-order symmetric 3-segment piecewise-linear function can be mapped
into this circuit. More than 50 distinct non-periodic attractors have been found so far from this
circuit. Moreover, virtually every known 3rd order chaotic autonomous system, not necessarily
piecewise-linear, can be modeled by a Chua’s oscillator having the same qualitative behavior.

3.2 Numerical features

Since (4) is a piecewise-linear system, in each linear region of the non-linear resistor, the dif-
ferential equation representing Chua’s circuit is linear. It is possible to develop a computer
program to find the trajectory of (4) using explicit equations 22. Recently, using the concept
of confinors, Lozi and Ushiki 23 have devised a very accurate numerical method for the compu-
tation of the half-Poincare map, and as a consequence, for the analysis of the precise structure
of chaotic attractors and bifurcation dynamics in Chua’s equation.

3.3 Experimental features

The main advantage of Chua’s circuit (and the unfolded Chua’s circuit ) over other dynamical
systems, from our point of view, is that it can be used as an experimental tool as well as building
block for many real-world applications. Chaotic synchronization has already been exploited
in the design of secure communition systems 24, and in transmission of digital signals 25.
Several methods have been developed for controlling chaos in Chua’s circuit 26-3!, Moreover,
experimental evidence showing the existence of signal amplification via perturbation of periodic
and chaotic orbits have been presented in Chua’s circuit 32. This result has exciting potentials
for low-noise amplification and high-sensitivity detector applications.

Moreover, an integrated circuit version of Chua’s diode 1? as well as Chua’s circuit 3 has
already been built. While there are many dynamical systems known to produce chaos, few has
a simple and robust circuit realization. The Lorenz equations, for example, has a dynamical
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range much larger than what is easily executable in a circuit 43. Individual variables in these
equations vary over at least three orders of magnitude. Since the largest value possible in a
typical power supply voltage is 15 volts, this would cause the smallest values of the variable
signals to be in the order of hundredths or thousandths of a volt, which is below the noise
levels typical in circuits. Circuits for the Lorenz equations have been built often as an analog
computer with several multipliers. However, they are often problematic due to the limited
dynamic range of practical multipliers.

4 Concluding remarks

Lorenz model and Chua’s circuit have been generalized in many directions. We shall mention
here some of them. In the case of Lorenz system one direction is to define a generalized
Lorenz system by considering different truncations of the convection equation. Many systems
obtained in such a way have been studied: including a fourteen-dimensional system 34, a five-
dimensional system 3*36 and a seven-dimensional system 37. Another direction investigates
a complex generalization of the Lorenz equation ( the variables z and y are allowed to be
complex, as are some parameters 38). This equation can describe the dynamic behaviors in
baroclinic instability and nonlinear optics adequately.

In the case of Chua’s circuit one direction investigates higher - and infinite - dimensional
systems. For example, Reference 39 uses a CNN array of Chua’s circuits, Reference 40 uses a
finite number of discrete lossy transmission line sections as the resonator, while References 41
and 42 use a terminated coaxial cable and a delay line as the resonator, respectively. Another
direction focuses on the investigation of the unfolded Chua’s circuit 2!. The significance of this
circuit is that the qualitative dynamics of every autonomous 3rd-order circuit ( and dynamical
system ) containing one odd-symmetric 3-segment piecewise-linear function can be mapped into
this circuit. On the other hand, experimental observations of various nonlinear phenomena can
be made by building the unfolded Chua’s circuit with corresponding parameters. The negative
parameters can be realized with the help of a negative impedance converter having a large
enough linear dynamic range.

Both systems, Lorenz and Chua’s equations have generated worldwide interests among
scientists. One advantage of Chua’s circuit and Chua’s oscillator ( unfolded Chua’s circuit )
over other systems is that it is the only known physical system whose mathematical model
is capable of duplicating almost all experimentally observed phenomena, and which has been
proved to be chaotic in a rigorous mathemaiical sense 1°. In contrast, no one has succeeded
yet in proving the Lorenz equation is chaotic: only its approximated 2-D map, not the original
ODE, has so far been proved to be chaotic.
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Figure Captions

Fig.1.

Fig.2.

Fig.3.

Fig 4.

Fig.5.

Fig.6.
Fig.7.
Fig.8.

Fig.9.

Fig.10.
Fig.11.
Fig.12.
Fig.13.
Fig.14.
Fig.15.
Fig.16.

Fig.17.
Fig.18.

Lorenz attractor

(a) 3-D phase portrait

(b) Projection of the attractor onto the ( z,z ) plane

(c) Waveform of z(%)

Chua’s circuit consisting of 4 linear elements and a nonlinear resistor Ng
(a) Chua’s circuit

(b) The v — ¢ characteristic of the nonlinear resistor ( Chua’s diode )
Double-scroll Chua’s attractor

(a) 3-D phase portrait

(b) Projection of the attractor onto the ( z,z ) plane

(c) Waveform of z(t)

(2) Equilibrium points in Lorenz equation and their associated eigenvalue
configurations.

(b) A schematic view of the flow near equilibrium points.

(2) Equilibrium points in Chua’s equation and their associated eigenvalue
configurations.

(b) A schmatic view of the flow near equilibrium points.

Homoclinic orbit of the origin in Lorenz equation

Homoclinic orbit of the origin in Chua’s equation

Period-doubling phenomenon in Lorenz equation

(a) period-3 orbit (r = 100.5)

(b) period-6 orbit (r = 99.96)

(c) period-12 orbit (r = 99.6)

(d) chaotic attractor (r = 99.4)

Period-doubling phenomenon in Chua’s equation

(a) period-1 orbit (a = 8.8, 8 = 16)

(b) period-2 orbit (a = 8.86, 8 = 16)

(c) period-4 orbit (a = 9.12, 8 = 16)

(d) chaotic attractor (a = 9.4, 8 = 16)

Intermittent chaos in Lorenz equation

Intermittent chaos in Chua’s equation

Meta-stable chaos in Lorenz equation. A typical trajectory wanders chaotically near a
strange set before it is attracted to a fixed point.

Meta-stable chaos in Chua’s equation. A typical tractory wanders chaotically near a
strange set before it is attracted to a stable periodic orbit.

(a) Semi-periodicity in Lorenz equation

(b) The Poincare cross section at z = 20.

(a) Semi-periodicity in Chua’s equation

(b) The Poincare cross section at z = 1.

Two co-existing chaotic attractors (a) and (b) in the Lorenz equation
Three co-existing chaotic attractors (a), (b) and (c) in the Chua’s equation
Afraimovich-Bykov-Shil’mkov geometric model

(a) A box around the origin and two tubes surrounding the two branches of the unstable

14



Fig.19.
Fig.20.

Fig.21.
Fig.22.

Fig.23.

manifold of the origin

(b) The two-dimensional map T. The maps in A, B and C correspond to the orientable,
semiorientable and nonorientable cases, respectively.

Template for the Lorenz attractor

Belykh-Chua geometric model

(a) A cylinder G around the origin and two tubes surrounding the unstable
manifold of the origin. The return points P; and P, are drawn for the case p = 0.

(b) The two-dimensional map f. The image of the upper or lower half portion of the
disks d; and d; gives rise to Shil’nikov snakes: d;; = f;(D; N d;), 4,5 = 1,2,
where f; = f|p..

Induced template for the double-scroll Chua’s attractor

Two distinct chaotic attractors from the Lorenz equation

(a) o =10,b = 2.667,y = 28

(b) o =10, 5 = 0.25, 7 = 490

Six distinct non-periodic attractors from the Chua’s equation

(a) o = 9.4, 8 = 16, a = -1.1428, b = -0.7143

(b) a = 1800, 8 = 10000, a = -1.026, b = -0.982

(c)a=9,8 =14.2857, a = -1.1428, b = -0.7143

(d) a = 8.342, 8 = 11.925,a = -0.7048, b = -1.146

(e) a = -4.925, 8 = -3.649, a = -2.497, b = -0.9301

(f) & = -4.087, 8 = -2.0, a = -1.1429, b = -0.7142
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