

Copyright © 1993, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

PERFORMANCE OF A SOFTWARE MPEG

VIDEO DECODER

by

Ketan Patel, Brian C. Smith, and Lawrence A. Rowe

Memorandum No. UCB/ERL M93/2

7 January 1993

PERFORMANCE OF A SOFTWARE MPEG

VIDEO DECODER

by

Ketan Patel, Brian C. Smith, and Lawrence A. Rowe

Memorandum No. UCB/ERL M93/2

7 January 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

PERFORMANCE OF A SOFTWARE MPEG

VIDEO DECODER

by

Ketan Patel, Brian C. Smith, and Lawrence A. Rowe

Memorandum No. UCB/ERL M93/2

7 January 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Performance of a Software MPEG Video Decoder*

Ketan Patel, Brian C. Smith, and Lawrence A. Rowe
Computer Science Division-EECS

University of California
Berkeley, CA 94720

Abstract

The design and implementation of a software decoder for MPEG video bitstreams is described. The
software hasbeen ported to numerous platformsincluding PC's, workstations, and mainframe com
puters.Performance comparisonsaregiven for several different bitstreamsand platforms including
a unique metric devised to compare price/performanceacross different platforms (percentage of
requiredbit rate per dollar). We also show thatmemory bandwidth is the primary limitation in per
formance of the decoder, not the computationalcomplexity of the inverse discrete cosine transform
as is commonly thought

1. Introduction

The CCITT MPEG group was formed in 1988 to de
velop a standard for storing video and associated audio
on digital media. Their goal was to define a standardthat
required bit rates less than l.S Mbits/sec, a bandwidth
achievable by computing networks and digital storage
mediaavailable today. A draftproposal wasagreed upon
in September, 1990. Since then, minor changes have
been made and released. The work described in this pa
per is based on the December 1991 committee draft [5].

Many research and commercial groups have devel
oped MPEG decoders. Because of the high stakes in
volved in commercializing MPEG technology (e.g.,
videoconferencing, HDTV, and multimedia computing),
these groups have been reluctant to release their coders,
decoders,and bitstreams.The absence of public domain
MPEGutilities hashinderedresearch on MPEG applica
tions.

We implemented an MPEG video decoder for three
reasons. First, we wanted to determine whether MPEG
video could be decoded in real-time using a software-
only implementationon currentgeneration desktopcom
puter. Second, we needed to develop a portable software
decoderforinclusionin the ContinuousMediaPlayer be
ing developed at U.C. Berkeley [1]. And third, we
wanted to contribute public domain source code to the
research community.

This paperdescribes the design and implementation
of the decoder. A novel feature of our decoder is the use
of a ditheringalgorithm in YCrCb-space. We alsoreport

This research was supported by grants from the National Sci
ence Foundation (GrantMIP-90-14940) and Fujitsu Network
Transmissions Systems, Inc.,andHewlett-Packard Company.

the performance of playing six anonymous bitstreams
that we have acquired on a variety of platforms. Rather
than saying "we can play bitstream A on platform P at N
frames/second," we have devised a metric that compares
the relative price/performance of different platforms. In
our analysis, we have found that memory bandwidth is
the primary limitation in performance of the decoder, not
the computational complexity of the inverse discrete co
sine transform (DXT) as is commonly thought

The remainder of this paper is organized as follows.
Section 2 present a brief introduction to the MPEG video
coding standard.Section 3 describes the implementation
of our decoder and presents a time/space performance
analysis. Section 4 describes optimizations to improve
decoder performance. Section 5 describes the bitstreams
used in the dithering and cross-platform analyses present
in sections 6 and 7, respectively. Lastly, we describe the
experience of publishing this software on the Internet

2. The MPEG Video Coding Model

This section briefly describes the MPEG video cod
ing model. More complete descriptions are given in an
introductory paper [4] and the ISO standard [5].

Video data can be represented as a set of images,l\,
I2,..., In, that are displayed sequentially. Each image is
representedas a two dimensional array of RGB triplets,
wherean RGB triplet is a set of three values that give the
red, green and blue levels of a pixel in the image.

MPEG video coding uses three techniques to com
press video data. The first technique, called transform
coding, is similar to JPEG image compression [7].Trans
form coding exploits two facts: 1) the human eye is rela
tively insensitive to high frequency visual information
and 2) certain mathematical transforms concentrate the
energy of an image, which allows the image to be repre-

Figure 1: Sample sequence.

sented by fewer values. The discrete cosine transform
(DCT) is one such transform. The DCT also decomposes
the image into frequencies, making it straightforward to
take advantage of (1).

In MPEG transform coding, each RGB triplet in an
image is transformed into a YCrCb triplet. The Y value
represents the luminance (black and white) level and Cr/
Cb values represent chrominance (color information).
Since the human eye is less sensitive to chrominance
than luminance, the Cr and Cb planesare subsampled. In
other words, the widthand heightof theCr and Cbplanes
are halved.

Processing continues by dividing the image intomac-
roblocks. Each macroblock corresponds to a 16 by 16
pixel area of the original image. A macroblock is com
posed of a set of six 8 by 8 pixel blocks,four from the Y
plane and one from each of the (subsampled) Cr and Cb
planes. Each of these blocks is processed in the same
manner as JPEG: the blocks are transformed using the
DCT and the resulting coefficients quantized, run length
encoded to remove zeros, and entropy coded. The details
can be found in [5], but the importantfacts for thispaper
are that: 1) the frame is structured as a set of macrob-
locks,2) each block in the macroblockis processedusing
the DCT, and 3) each block, after quantization, contains
many zeros.

The second technique MPEG uses to compress video,
called motion compensation, exploits the fact that a
frame lx is likely to be similar to its predecessorIx_j, and
so can be nearly constructed from it. For example, con
sider the sequence of frames in Figure 1, which might be
taken by a camera in a car driving on a country road.
Many of the macroblocks in frame l2 can be approxi
mated by pieces of Ij, which is called the reference
frame. By pieces we mean any 16 by 16pixel area in the
reference frame. Similarly, many macroblocks in l3 can

be approximated by pieces of either I2 or Ij. The vector
indicating the appropriate piece of the reference frame
requires fewer bits to encode than the original pixels.
This coding results in significant data compression.

Note, however, that the right edge of I2 (and I3) can
not be obtained from a preceding frame. Nor can the por
tionof the background blocked by the tree in Ij; these ar
eas contain new information not present in the reference
frame. When such macroblocks are found, they are en
coded without motion compensation, using transform
coding.

Further compression can be obtained if, at the time I2
is coded, both Ij and I3 are available as reference
frames1.12 can then be built using both I| and I3. When
a larger pool of reference frames is available, motion
compensation can be used to construct more of the frame
being encoded, reducing the number of bits required to
encode the frame. A frame built from a earlier frame is

called aP (forward or predicted) frame, and a frame built
from both a preceding frame and a subsequent frame, is
called a B (bidirectional) frame. A frame coded without
motion compensation, that is, using only transform cod
ing, is called an / (intracoded) frame.

Motion compensation in P and B frames is done for
each macroblock in the frame. When a macroblock in a

P or B frame is encoded, the best matching" macroblock
in the available reference frames is found, and the
amount of x and y translation, called the motion vector
for the macroblock, is encoded. The motion vector is in

units of integral or half integral pixels. When the motion
vector is on a half pixel boundary, the nearest pixels are

This will, of course, require additional buffering and intro
duce delay in both encoding and decoding.

"The criteria for "best matching" is determined by the encoder.

Input image

I frame: £h

Transform coded
macroblocks

Encoderoutput

••01101100...

-•YUV L
a^ :t© Macroblock

yvy\
Entropy
Coding

conversion

Reference frame(s)

Transform Coding

P/B frame:

conversion

Transform Transform coded
errorterms Coding of macroblocks

Error Termsi i

•^W^s^
Motion
compensation 71*

«• \t
motion vectors

110...
Entropy
Coding

Figure 2: MPEG video coding procedure.

averaged. The match between the predicted and actual
macroblocks is often not exact, so the difference between
the macroblocks, called an error term, is encoded using
transform coding.

The final technique MPEG uses to compress video
data is entry coding. After motion compensation and
transform coding,a final passis madeoverthedata using
Huffman coding. Figure 2 summarizes the MPEG video
coding process.

To rebuild the YCrCb frame, the following opera
tions are needed:

(1) the entropy coding must be inverted,
(2) for P and B frames, the motion vectors must

be reconstructed and the appropriate parts of
the reference framecopied, and

(3) theerror termsmustbe decodedandincorpo
rated (which includes an application of the
IDCT).

Once the YCrCb frame has been built, the frame is con
verted to a representation appropriate for display. This
last step is called dithering, and is discussed further in
section 6.

In summary, MPEG uses three techniques to com
press video data: motion compensation, transform cod
ing, and entropy coding. MPEG defines three types of
frames, called I, P and B frames. These frames use zero,
one, and two reference frames for motion compensation,
respectively. Frames arerepresented as an array of mac
roblocks, and both motion compensation and transform
coding operate on macroblocks.

3. Implementation

The decoder is structured to process a small, imple
mentation dependent quantum of macroblocks at a time
so it can be suspended between any quantum of macrob
locks. We envision using the decoder as a partofa larger
system (the CM Player [1]) for delivering video data
over local networks. This architecture is requiredby the
player for timesharing CPU resources and servicing
other tasks required in a multimedia system (e.g., han
dling user input or playing other media).

The decoder was implemented in C using the X Win
dowing System. It is composed of 12K lines ofcode. Our
intent was to create a program that would be portable
acrossa variety ofUNIX platforms. To date, the decoder
has been ported to over 10 platforms.

Preliminary analysisof the run-time performance in
dicated that dithering accounted for 60% to 80% of the
time, depending on the architecture. Consequently, we
focussed our attention on speeding up this part of the
code. We also optimized other decoding procedures us
ing standard optimization methods: 1) in-line procedure
expansion, 2) caching frequently accessed values, and 3)
custom coding frequent bit twiddling operations. Alto
gether, these changes to the decoder reduced the time by
50% from our initial implementation. The specific opti
mizations are discussed in the next section. More signif
icant improvements (over a factor of IS) were made by
improving the dither algorithm. Dithering is discussed in
detail in section 5.

The fastest color dithering algorithm with reasonable
quality is an ordereddither that maps a 24-bit YCrCb im
age to a 7-bit color space(i.e., 128colors) usinga fixed
color map. We analyzed the performance of the decoder
using this technique. The following table shows the re
sults:

Function %Time

Parsing 17.4%

IDCT 14.2%

Reconstruction 31.5%

Dithering 24.3%

Misc. Arithmetic 9.9%

Misc. 2.7%

Parsing includesall functions involved in bitstream pars
ing,entropy andmotionvectordecoding, andcoefficient
reconstruction. The IDCT code, which is calledup to six
times per macroblock, is a slightly modified version of
the fastestpublic domain IDCT available [2]. The algo
rithm applies a 1dimensional IDCT to each row and then
to each column. Zero coefficients are detected and used

to avoidunnecessary calculation. Functions thatperform
predictive pixel reconstruction, including copying and
averaging relevant pixels from reference frames, are
groupedunder the categoryreconstruction. Finally, dith
ering converts thereconstructed YCrCbimage intoarep
resentation appropriate fordisplay.

The tableshows thatover half the time is spent in re
construction and dithering. Parsing and IDCT each re
quire about 15% of the time. The reason reconstruction
anddithering are so expensive is that they are memory
intensive operation. On general purpose computers with
RISC processors, memory references take significantly
longer than arithmetic operations, since the arithmetic
operations areperformed onregisters. Eventhough steps
suchas parsing andIDCTareCPUintensive,theiroper
ands stay in registers, and are therefore faster than the
memory intensive operations of reconstructionand dith
ering. While improving the IDCT is important, ourde
codercould be sped up most significantly by finding a
scheme to reduce memory traffic in reconstruction and
dithering.

4. Optimizations

This section describes some of the low-level optimi
zations used to improve the basic decoder. Three kinds of
improvements are discussed: general coding techniques,
IDCT optimizations, andaverage cheating.

Numerous coding optimizations were applied
throughout the code. One strategy was to use local copies
of variables to avoid memory references. For example,
since the addition of the error term to a pixel value often
causes underflow or overflow (i.e., values less than 0 or
greater than 255), bounds checking was required. This
implementation results in three operations: the addition
of the errorterm to the pixel, an underflow check, and an
overflow check. Instead of accessing the pixel in mem
ory three times, a local copy is made, the three operations
are performed, and the result is stored back into memory.
Since the compiler allocates the local copy to a register,
we found the operations themselves to be about four
times faster.

We also applied this technique to the bit parsing op
erationsby keeping a copy of the next 32 bits in a global
variable. The actual input bitstream is only accessed
when the number ofbits required is greaterthan the num
ber of bits left in the copy. In critical segments of the
code, particularly macroblock parsing,the globalcopy is
againcopied into a local register.These optimizations re
sulted in 10-15% increases in performance.

Other optimizations applied included: 1) loop unroll
ing, 2) math optimizations (i.e., replacing multiplications
and divisions with left and right shifts), and 3) in-line ex
pansion of bit parsing and Huffman decoding functions.

The IDCT code was also heavily optimized. The in
put array to the IDCT is typically sparse. Analysis
showed that 30%-40% of the blocks contained less than

five coefficients in our sample data, and frequently only
one coefficient exists. These special cases are detected
during macroblock parsingand passed to the IDCT code
which is optimized for them.

Finally, we found a way to cheat on computation of
pixel averaging in interframes (i.e., P- and B-frames).
The MPEG standard specifies that predictive pixel val
ues for interframes areconstructed from copying areasin
past or future frames based on a transmitted set ofmotion
vectors. These motion vectors can be in half-pixel incre
ments which means pixel values must be averaged.

The worst case occurs when both the horizontal and

vertical vectors lie on half-pixel boundaries. Here, each
result pixel is an average of four pixels. The increased
precision achieved by doing the pixel averaging is lost,
however, in the dithering process. We optimize these
functions in three ways. First, if both horizontal and ver
tical vectors lie on whole pixel boundaries, no averaging
is required and the reconstruction is implemented as a
memory copy.

Second, ifonly one motion vector lies on a half-pixel
boundary, the average is done correctly. And finally, if
both vectors lie on half-pixel boundaries, the average is
computed with only 2 of the 4 values. We average the

value in the upper left quadrant with the value in the
lower right quadrant, rather than averagingall four val
ues. Although this method produces pixels that are not
exactly correct, dithering hides the error.

5. Sample Bitstreams

This sectiondescribesthe bitstreamsused forthe per
formance comparisons presented in the next two sec
tions.

Public domain MPEG data is scarce. We selected six

bitstreamsavailableto us that we believe gives a reason
ableapproximation ofarandomsample.Table 1presents
the characteristics of the bitstreams. Four distinct coders
were used to generate the data. Bitstreams A and B and
bitstreams D and E were generatedby the same coders.
The video sequencesarecompletely differentexcept the
sequences encoded in bitstreams B and C which use dif
ferent sequences from the sameraw footage.

The variation in frame rates, frame size, and com
pressionratiosmakes analysis with these bitstreamsdif
ficult to compare. We believethebest metricto judgethe
performance of the decoder is to measure the percentage
of the requiredbit rate achieved by the decoder. Forex
ample, ifa bitstream must be decoded at a rateof 1 Mbit/
sec to play it at the appropriate frame rate,a decoder that
plays at a rate of 0.5 Mbit/sec is able to achieve 50% of
the required bit rate. Given a set of bitstreams, two de
coders running onthesameplatform canbecompared by
calculating the percentage of bitstreams each decoder
can play in real-time (i.e., at the requiredbit rate).

6. Dithering Performance

This section describes the performance improve
ments made to the dithering algorithm(s) used in the de
coder. In this context, dithering is the process of
converting a 24 bit YCrCb image into a representation

appropriate for display. In principle, the YCrCb image is
first converted to an RGB representation and the dither
ing algorithm is applied. Virtually all dithering algo
rithms, however, can be applied directly to the YCrCb
image. This approach avoids the memory traffic and
arithmetic computation associated with RGB conver
sion, and further reduces memory accesses since the Cr
and Cb planes are subsampled.

The decoder supports monochrome, full (24 bit)
color,gray scale and color mapped display devices. Dith
ering to full color devices simply requires RGB conver
sion. Dithering to gray scale devices is done by using
only the luminanceplaneofthe image.Forcolormapped
devices, two dithering techniques are used: errordiffu
sion (sometime called Floyd-Steinberg) and ordered
dither. Both are discussed in [3].

In error diffusion dithering, each image pixel is
mapped to the closest pixel in a fixed-size color map. In
our decoder, the color map has 128 entries, with 3 bits al
located for luminance, and 2 bits for each chrominance
channel. The difference, expressed as a YCrCb triplet,
between the image pbceland the colormap pixel is called
the error. This erroris distributed to neighboringpixels.
Forexample, half the errormight be added to the pixel
below and half to the pixel to the right of the current
pixel. The next (possibly modified) pixel is then pro
cessed. Processing is often done in a serpentine scan or
der:odd number rows are processed left to right and even
number rows are processed right to left

Ordered dithering is a form of thresholddithering. In
threshold dithering, any pixel below a certain threshold
of luminance is mapped to black, and all other values are
mapped to white. Ordereddithering uses the pixel's (x,y)
coordinatein the image to determine the threshold value.
An N by N dithering matrix D determines the threshold:
D(x mod N, y mod N) is the threshold at position (x,y).
A four by four dithering matrix is used in our decoder.
The matrix is chosen so that,over any N by N regionof
the image with the same pixel value, the mean of the

Stream

Stream

Size

Frame

Size

Avg. Size
I frame

Avg. Size
P Frame

Avg. Size
B Frame

Frames/

second

Bits/

pixel
Bits/

second I:P:B

A 690 K 320x240 18.9K 10.6K 0.8K 30 .488 (50:1) 1.12M 10:40:98

B 1102 K 352x240 11.2K 8.8K 6.3K 30 .701 (34:1) 1.78M 11:40:98

C 736 K 352x288 23.2K 8.8K 25K 25 .469 (51:1) 1.19M 11:31:82

D 559 K 352x240 8.1K 5.5K 4.1K 6 .445 (54:1) 0.23M 6:25:88

E 884 K 352x240 12.4K 9.1K 6.5K 6 .698 (34:1) 0.35M 6:25:89

F 315 K 160x128 2.8K N/A N/A 30 1.09 (20:1) 0.67M 113:0:0

Table 1: Sample bitstreams.

dithered pixelsin theregion is equal to theoriginal pixel
value.This scheme canbe easilyextended to dithercolor
images. For further details, the interested reader is re
ferred to [3] and [6].

When implementing the decoder, we started with a
straightforward implementation of the errordiffusion al
gorithm with propagation of 4 error values (FS4). The
first improvement we tried wasto implement aerror dif
fusion algorithm with only 2 propagated error values
(FS2). This change improved run-time performance at a
small,and insignificant, reduction in quality.

The secondimprovementwe implementedwasto use
anordered dither. We mapdirectly from YCrCbspace to
an seven bit colormap valueby using the pixel position,
three bits of luminance, and two bits each of Cr and Cb
chrominance as a key to a lookup table of pixel values.
We call this dither ORDERED.

Table2 shows the relative performance of thesedith
ersalongwith a grayscale {GRAY) and24-bit colordither
(24BIT). The table also shows theperformance of thede
coder without dithering. These tests were run on an HP
750 which is the fastest machine currently available to
us. The results areexpressed as percentages of required
bit rates to factor out the differences in bitstreams.

Several observations can be made. First, notice that
only 3 bitstreams (D, E, andF) were playable at the re
quired bitrate (i.e., thepercentage was over100%) using
the fast ORDERED dither. These bitstreams have low re
quired bit rates because streams D and E were coded at 6
frames persecond (fps), andstream F is only 160x128
pixels.

The remaining bitstreams can be played at approxi
mately 35% of the required bit rate which implies that
current generation workstations canplay8-10 fps.

Second, notice that even without dithering, which is
shown in the column labeled NONE, our decoder can
achieveonly 50% of the required bit rate.

Notwithstanding this pessimistic result,privatecom
munications with othergroups workingon decoders op
timized for particular platformssay that their decoders
operate 2-7 times faster than our portable implementa
tion.3 The implication is that we are close to being able
to decode and play reasonable-sized videos. Indeed, vid
eoswith smallimagesandlow frame rates canbe played
on PC's (e.g., Macintosh QuickTime).

7. Cross-Platform Performance

In evaluatingthe decoderon different platforms, we
cannot use the percentage of required bit rate metric to
rate the platform because price/performance is impor
tant. For example, running a decoder on two platforms
where one platform is 4 times more expensive does not
really tell you much. A better metric would factor in the
cost of the hardware.

The metric we propose is the percentage of required
bit rate per second per thousanddollars. We will call this
metric PBSD. For example, suppose two machines Ml
andM2 thatcost $15K and$12K respectivelyplaya bit-
stream at 100% and 50% of the required bit rate. The
PBSD metrics for the two machines are 6.7 and 4.2.
Higher numberscorrespond to better priceperformance,
so machine Ml is better than M2.

On theotherhand,supposethatMl playedonly 60%
of the required bit rate. The PBSD metrics would be 4.0
and4.2, which implies that M2 has better price perfor
mance.Finally, suppose both machines can play the bit-
stream at 100% of the required bit rate. Here, M2 is
clearly better since it is less expensive, and the metrics
confirm this comparisonbecause they are6.7 and 8.3.

For example, machines with parallel processors can pipeline
the decoding process, andbit parsing can be optimizedusing
specialprocessorinstructions.

Stream FS4 FS2 ORDERED GRAY 24BIT NONE

A 12.1% 24.6% 39.1% 43.2% 30.2% 52.7%

B 10.6% 20.9% 31.8% 35.2% 25.1% 41.2%

C 11.1% 23.0% 37.0% 42.0% 27.9% 49.6%

D 54.5% 109.6% 174.0% 196.4% 131.6% 230.6%

E 52.1% 104.7% 161.3% 180.2% 124.2% 204.1%

F 41.1% 76.9% 110.8% 121.5% 88.8% 139.5%

Table 2:Relative performance of different dithering algorithms.

The following table shows the PBSB metric for play
ing the sample bitstreams using ordered dithering on
three workstations available to our research group. The
tests were run with image display accomplished using
shared memory to copy to the frame buffer.

Stream HP 750

SUN

Sparc 1+
DECstation

5000/125

Cost $43 K $7K $10 K

A 0.91 1.4 1.2

B 0.74 1.1 1.0

C 0.86 1.3 1.1

D 4.0 6.1 5.1

E 3.7 5.6 4.8

F 2.6 4.0 3.4

From the table we conclude that the HP is roughly a
factor of threemore efficient on a price/performance ba
sis. This result is expected, since the Sparc 1+ and DEC
station 5000 are previous generation workstations
compared to the HP 750. If we extrapolate from these
two data points, we can expect the next generation of
workstations to be able to supportvideo at the qualityof
streams A, B and C (i.e., 320 by 240 pixel video at 30
frames per second) using a software-only solution.

Many factors will influence this comparison, includ
ing whether the X shared memory option is availableto
reduce copies between the decoder and the X server,
whether the X server is local or across a network, and
whether the file containing the compressed data is local
or NSF mounted. All these changes can significantly af
fect the results.

8. Internet Distribution

This section describes our experiences distributing
the decoder. We were amazed at the response when we
distributed this code on the Internet.4 Within 6 weeks of
announcing the availability of a portable software de
coder for MPEG video on severalnewsgroups(e.g., alt.-
graphics.pixutils and comp.compression), over 500
people had FTP'd the software. They have reported nu
merousbugs and suggestions for improvement, and they
have contributedcode to add features, fix bugs, and sup
port new platforms.

We also received our first video mail when a user sent

us an MPEG bitstream inamessage.5 We played the mail

4The software isavailable via anonymous FTP from toe.cs.ber-
keley.edu [128.32.149.117] in the directory pub/multimedia/
mpeg.

message with our decoder. It would be easy to add defi
nitions for playing MPEG components to an extensible
mail system like MIME [8] using our decoder.

9. Conclusions

Several conclusions can be drawn from this work.

First, while IDCT performance is important, it is not the
most critical process in a software decoder. Data struc
ture organization and bit-level manipulations arecritical.

Second, memory bandwidth is critical on RISC pro
cessors. We suspect hardware implementations of
MPEG will use fast static RAM and pipeline key opera
tions (i.e., parsing, IDCT, reconstruction, etc.) to avoid
this memory bandwidth problem.

Lastly, current generation workstations, like the HP
750, can decode 320 by 240 video sequences at 10-15
frames per seconds, which means they are roughly a fac
tor of two away from real-time performance. We cannot
wait to try the new generation workstations that will soon
be available.

Acknowledgments

We want to thank the numerous people who ported
the decoder to new platforms, supplied ideas and code to
improve performance of the software, and provided bug
fixes and extensions. While we do not have room to name

all the people who have helped, important contributions
were made by Todd Brunhoff of North Valley Research,
Reid Judd of Sun Microsystems, Toshihiko Kawai of
Sony, and Tom Lane of the Independent JPEG Group.

References

[1] L.A. Rowe and B.C. Smith, "A Continuous Me
dia Player,"Proc. 3rd Int'IWorkshop on Network
and Operating System Support for Digital Audio
and Video, San Diego, CA (Nov. 1992).

[2] T. Lane, "JPEG Software," Independent JPEG
Group (Dec. 1992).

[3] R. Ulichney, Digital Halftoning MIT Press,Cam
bridge, Mass. 1987.

The message was uuencode'dwhich converts a binary file to
ASCII. Uudecode is a companion program that converts the
ASCII back to binary. It works well with saved mail messages
because it ignores message headers.

[4] D. Legall, "MPEG - A Video CompressionStan
dard For Multimedia Applications," Communica
tions of the ACM, April 1991,Vol 34, Num 4, pp
46-58.

[5] "Coded Representation of Picture, Audio and
Multimedia/Hypermedia Information", Commit
tee Draft of Standard ISO/EEC 11172, December
6,1991.

[6] J.D.Foley et.al.,Computer Graphics: Principles
and Practice, 2nd edition. Addison-Wesley,
Reading, Mass., 1990.

[7] "Digital Compression andCoding ofContinuous-
Tone Still Images", ISO/IEC Draft International
Standard 10918-1,January 10,1992.

[8] K. Knack, "MIME silences multimedia critics."
LANComputing, Vol 3, Num 5, May, 1992: pp 3.

	Copyright notice 1993
	ERL-93-2

