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A complex fine structure in the topography of regions of different dynamical

behavior near the onset of chaos is investigated in a parameter plane of the 1-D

Chua's map, which describes approximately the dynamics of Chua's circuit Besides

piecewise-smooth Feigenbaum critical lines, the boundary of chaos contains an

infinite set of codimension-two critical points, which may be coded by itineraries

on a binary tree. Renormalization group analysis is applied which is a

generalization of Feigenbaum's theory for codimension-two critical points.

Multicolor high-resolution maps of the parameter plane show that in regions nearby

critical points having periodic codes, the infinitely intricate topography of the

parameter plane reveals a property of self-similarity.



1. Introduction

In the usual scenarios of transition to chaos, one has in mind a sequence of

bifurcations which is observed as one tunes a control parameter of a nonlinear

system from a regime of regular dynamics to a chaotic one. However, in physics,

engineering and other fields we often deal with systems controlled not by one but

two or more essential parameters. In such cases instead of looking for a "scenario"

we must pose a broader question concerning the global geometry of the parameter-

space topography near the onset of chaos. Empirical data tell us that this

topography can be extremely complicated and has a fractal-like structure. In Fig. 1

we show how it looks in a two-dimensional parameter space of Chua's circuit [Chua et

al., 1986, Komuro et al., 1991]. This picture was made from the approximate 1-D

Chua's map [Chua et al., 1986, Genot, 1993], and appears to give a remarkably good

correspondence with that obtained from an exact description via the differential

equations.

In Fig. 1 (a) different colors designate regions of periodic behavior with

different periods while the black color corresponds to chaos, or periodic orbits

having very high periods. There exist many cusps near the onset of chaos, and each

cusp gives rise to a pair of emanating fold lines which coincide with the lines of

tangent bifurcations. The presence of cusps and folds leads to the appearance of

muitistability: in the parameter region between each pair of folds the system

exhibits at least two attractors having different basins of attraction in the state

space. Narrow bands of periodicity are located along the fold lines and penetrate

far into the area occupied by chaos. Also one can see lines of period-doubling

bifurcations in the parameter plane. They converge to critical lines, which are just

the piecewise-smooth parts of the boundary of chaos. To avoid clutter, Fig.l (b)

identifies the important boundary lines which will be referred to in this paper.
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Suppose we draw an arbitrary one-parameter curve in the parameter plane of

Fig.l which starts from a region of regularity to a region of chaos. In a typical

case it will cross transversely a critical line and, of course, the period-doubling

lines which accumulate to it This means that if we tune only one parameter in

Chua's circuit and observe a transition to chaos we will see typically a classic

period-doubling cascade. It is well known that this cascade exhibits a remarkable

property of quantitative universality discovered by Feigenbaum and explained by him

using a renormalization group (RG) analysis [Feigenbaum, 1978, 1979]. In particular,

the bifurcation diagram near the critical lines exhibits a property of self-

similarity or scaling. Namely, an interval encompassing regions of different

dynamical regimes reproduces itself under a change in scale by the universal

Feigenbaum's factor 6=4.6692.... along any direction transversal to the critical

line. Note, that this property is true in an -asymptotic sense: it gives an

increasingly higher precision as one explores a decreasingly narrower vicinity of

the critical line.

If we turn to a two-parameter study, we can no longer restrict ourselves to the

Feigenbaum scenario, which is a codimension-one bifurcation phenomenon, but must

attempt to understand the nature of the entire boundary of chaos in Fig. 1. In this

connection, it is crucial to note that the 1-D Chua's map happens to be bimodal in

the parameter region under investigation. This means that the 1-D Chua's map has

both a maximum and a minimum on an interval which is mapped onto itself. This is

precisely the condition which is responsible for the complicated structure of the

boundary of chaos. We shall show that beside the Feigenbaum critical lines, the

boundary of chaos in the 1-D Chua's map (as well as in other bimodal maps, see Shell

et al.[1983], MacKay & Tresser [1987,1988], Gambaudo et al. [1987], MacKay & van

Zeijts [1988]) contains an infinite number of codimension-two critical points. In



Fig. 1(c) we show only a few of these points in the parameter plane. Hence, to

uncover the nature of the entire boundary of chaos we must investigate the dynamics

near these points.

We shall see that all possible types of codimension-two critical points are

defined by a set of infinite binary codes. Among them the subset of codes having

periodic tails is of particular importance. The topography of the parameter plane

near the corresponding critical points reveals a property of two-parameter self-

similarity or vector scaling: a two-dimensional structure of regions of different

behavior is reproduced under a scale change along appropriate axes in the parameter

plane. These self-similar two-dimensional patterns of the parameter space topography

are universal for all bimodal maps (up to a linear parameter change) and depend only

on the code of the associated critical point.

This paper is organized as follows. In Sec. 2 we recall the differential

equations which modeled Chua's circuit and the basis for its reduction to a one-

dimensional map. We also describe and explain how the shape of this map is changed

as we vary two control parameters. The elegant construction of a binary tree of

superstable orbits due to Shell et al. [1983] is reproduced for the 1-D Chua's map

in Sec. 3. This construction allows us to find the location of codimension-two

critical points which appear as end points of the tree branches in the limit of

infinite branchings. Natural codes for the itineraries on the binary tree are

introduced, which give also a coding rule for the critical points. In Sec. 4 we

consider the solutions of Feigenbaum's RG equation corresponding to codimension-two

critical points and apply them to analyze the dynamics of the 1-D Chua's map exactly

at these points. We discuss the Cantor-like structure of critical attractors and

their dimensions, the /(a)-spectra and the Fourier spectra of corresponding

dynamical regimes. Section 5 is devoted to the consideration of small perturbations
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of the RG equation solutions which allows us to understand the universality and

scaling properties of the parameter plane topography near the critical points. We

present multi-color high-resolution computer graphics of two-dimensional pattems of

the universal topography. Section 6 contains the conclusion and a brief discussion.

2. Chua's circuit and 1-D Chua's map

Chua's circuit is an electronic system modeled by the following set of differential

equations

x = a(y-h(x))y y = x-y+z, z = -py, (1)

where jc, y, z are the dynamical variables, a and P are parameters, and h(x) is a

piecewise-linear function which is chosen in accordance with Chua et al. [1986] as

follows

h(x) =(2x-3)/7, jc>1

=-jc/7, UI<1

=(2x+3)/7, jc<-1 (2)

Using the Poincare section technique, the exact description of the system (1) may be

reduced to a two-dimensional map which, in turn, may be approximated by a one-

dimensional map

n*: X => tc*(X),

generally called the Chua's map in the literature. The procedure for constructing

this map is described in detail by Chua et al. [1986] and Genot [1993].

Equations (2) and, consequently, the Chua's map depend on two parameters a and

p. However, in order to obtain clearer color graphics in a narrow region crammed

with a very diverse structure, we have used the transformed parameters oc'=a - 0.68p

and p in Fig. 1, and in the following consideration.

Unfortunately, Chua's map does not have a simple explicit analytical

representation. To compensate for this, we present in Fig. 2 a set of plots showing

the shape of the map for a range of parameter values which cover the region of the
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parameter plane depicted in Fig. 1. Observe that in some pictures the map is

bimodal, i.e. it has both a maximum and a minimum point in the region of interest

We shall see that this leads to the appearance of complicated structures near the

borderline of chaos.

3. Binary tree of superstable orbits

In our following consideration, the double superstable period-2D cycles will be of

particular significance. They are defined as cycles which exist at some exceptional

points of the parameter plane and which contain both extrema of the 1-D map in their

orbits. The double superstable cycle will henceforth be referred to as a (p, q)-type

cycle if the point of maximum is mapped into the point of minimum after p iterations

and the minimum is mapped into the maximum after q iterations. The period of such a

cycle is therefore equal to p + q.

Figure 3a (left most inset) shows an iteration diagram for Chua's map at the

point of the parameter plane where a (l,l)-type double-superstable cycle of period 2

is realized. Starting from this point in the parameter plane let us move along a

curve, at which any point satisfies the condition that the maximum is mapped into

the minimum after one iteration. We will denote this curve by t/(l). Moving along the

U(\) curve from the (l,l)-cycle we can find a point, where the minimum is mapped

into the maximum again, but after three iterations. Hence, a period-4 double

superstable cycle of type (1,3) exists here (see the inset in Fig. 3b).

Alternatively, we can move from the initial (l,l)-cycle along another curve,

denoting by Z)(l), where the rninimum is map'ped into the maximum after one iteration.

Along the D(l) curve, we can find a point where a period-4 double-superstable cycle

exists which has the type (3,1) (see the inset in Fig. 3c). Note that our choice or

the symbols nU" and "D" stands for "up" and "down", respectively.

In a similar manner we can start from any (p, <7)-type double superstable cycle



of period p + q = 2n. Then two curves, U(p) and D(q) emanate from the corresponding

point in the parameter plane. The U(p) curve is defined by the condition that the

maximum is mapped into the minimum after p iterations, and the D{q) curve is defined

by the condition that the minimum is mapped into the maximum after q iterations.

Moving along the U(p) (or D(q)) curve we come to a point where a (p, p+2#)-type (or

(2p+#, tf)-type) period-2n+1 double superstable cycle exists. We can depict the

infinite family of U and D curves by drawing a binary tree as shown schematically in

Fig.4. Note that the branching points correspond to double superstable cycles.

We shall restrict our following considerations to the upper half of the full

binary tree. On this part of the tree the orbits of the Chua's map visit only two of

the three piecewise-linear regions of the vector field (1). In Table 1 we give the

coordinates of all branching points (i.e the location of double superstable cycles)

up to period 64. Figure 5 shows the actually calculated configuration of the binary

tree in the parameter plane of the Chua's map. In this picture we see how the

branches of the tree enter into the complicated topological structure of Fig. 1.

Using the above notations, we can code each double superstable cycle naturally

by a finite string of symbols U and D. Such a code designates a unique sequence of U

and D curves in the parameter plane leading to this cycle from the initial point

which corresponds to the (1, l)-type cycle. Moving along the branches of the binary

tree according to any given UD-codt and tracing the corresponding attractor of the

system we see a period-doubling cascade. At each branching point the attractor

becomes a double superstable cycle of some period 2n. An infinite string of symbols

U and D we can associate with an infinite period-doubling cascade observing when we

move along the corresponding branches on the binary tree. Henceforth, the limit

point of this cascade will be referred to as a codimension-two critical point

associated with the given infinite UD-code, or simply a critical point. Note that



the period-doubling cascade under consideration here does not obey Feigenbaum's law;

its convergence rate differs from Feigenbaum's and depends on the structure of the

UD-codt. In Table 2 we present the coordinates of some particular critical points

generated by simple periodic UD-codes (see also Fig. 1 c). They are calculated with

high precision using the method described in the Appendix A.

If we consider all possible combinations of infinite UD-codes, we would obtain

an infinite number of critical points. The rough schematic sketch of the binary tree

in Fig.4 shows their relative locations in the parameter plane. In fact, the set of

codimension-two critical points forms a Cantor-like set of the points at the

boundary of chaos. The remaining part of the boundary is formed by Feigenbaum's

critical lines and does not require a special investigation.

4. Dynamics of Chua's map at codimension-two critical points

In this section we will present a two-parameter generalization of Feigenbaum's

theory for describing the dynamics of Chua's map at codimension-two critical points

(see also Kuznetsov et al [1993]). As much as possible, we explain the main ideas

of the RG analysis via a more popular and intuitive approach. For a rigorous

formulation we refer the reader to a number of works devoted to the development of

theory of bimodal 1-D map from mathematical point of view (see MacKay & Tresser

[1987,1988], Gambaudo et al. [1987], MacKay & van Zeijts [1988]).

4.1. Renormalization group analysis

Let us take the point X = X* at which the Chua's map has a maximum as our reference

point and consider further the translated map flx)=ft*(x+X*)-X* (see Fig.6 a, b). Let

us apply this mapping twice (Fig. 6 c) and rescale the dynamical variable to

normalize the resulting map / at the origin, namely, /j(0)=l. Then we obtain a new

function /1(x)=a]/(/(jc/ai)), ai= l/fifiP)) (Fig. 6 d). A multiple repetition of this
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procedure leads to a recurrent functional equation

where a =lff (f (0)). This is just the RG equation considered at first by Feigenbaum
n n n

[1978, 1979].

The above construction may seem rather abstract, but it really makes a lot of

sense. A function / obtained by an /t-fold iteration of Eq.(3) becomes a function

which expresses the value of x after 2n-fold iterations of the Chua's map except for

a change of scale in the variable x. This scale change is desirable because the

interval of jc which is essential for our consideration is expanded to cover the unit

interval. In particular, it gives . us the possibility to compare recursively the

functions / with different n over the same unit interval. It follows from Eq.(3),

that the functions / may be calculated via the rule

ffi) =/ 2\xf 2"(0))// 2"(0), (4)
2nwhere / (x) designates the 2n-fold functional composition of the map fix).

Thus, roughly speaking, the RG approach involves the construction and

consideration of a sequence of maps (or evolution operators) which describe the

dynamics over an exponentially increasing "time". (Here, we abused our terminology

in using "time" to mean "number of iterations of the original map fix)".) In fact,

the "time" intervals are doubled after each step of the RG transformation (3). This

explains the efficiency of the RG approach near the onset of chaos. Indeed, it is

here where the long-period behavior of the system is of particular importance.

Let us take now a critical point of Chua's map corresponding to a specific UD-

code and make calculations according to Eq.(4) to obtain a sequence of / functions.

Here we will observe a simple correlation. If the code has a ^-periodic tail (i.e. a

combination of k symbols begins to repeat after some position in the £/D-code), then

the sequence / also becomes it-periodic for a sufficiently large n (see the examples
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in Fig. 7 a-c). Hence, the solution of the RG equation at this critical ' point

converges to a period-/: cycle, which we called an RG-cycle. In particular, for k = 1

the period is equal to unity and we have a fixed point of the RG equation. If the

code is given by a random f/D-sequence, then the sequence of / functions will appear

to be chaotic (see the example in Fig. 7 d). In this case we say that an RG-chaos is

realized.

Let us consider in detail the case of periodic solutions, i. e. fixed points

and RG-cycles. To find an element of a period-/: RG-cycle means to find a function

g(x) such that it is a fixed point of the Mold iterated version of Eq.(3):

2k-l

fj*> - aixk(*,ay (5>n+k n n n

Here cc(k)= l/fi (0> = TT a , and /2 denotes the 2k-fold functional composition of
i=0

the / map. In other words, g(x) must be a solution of the functional equation

g(x) =ag2 fo/a), (6)
where a = Vg(g(0)) is the value of the scaling factor a(k) at the fixed point of

the RG equation. We remark that for a period-/: /?G-cycle, Eq.(5) will have k fixed

points, each obeying Eq.(6). However, it is sufficient to find only one of them

because the remaining k - 1 functions corresponding to elements of the RG-cycle can

be obtained by 1, 2, ..., k-\ direct iterations of the first fixed point function

using Eq.(3).

Note that the solutions of Eq.(6) can be found without any reference to the

nature of the initial map fix). This justifies our calling such solutions as

universal functions. To find these functions with any prescribed precision it is

convenient to use a polynomial approximation. Then Eq.(6) is reduced to a finite set

of nonlinear algebraic equations involving the unknown polynomial coefficients. We

solved this set of equations numerically by Newton's method. As our initial
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approximation, the functions / were obtained from Eq.(4) by iterations of the

Chua's map. The result of our calculations, i.e. the scaling constants a and the

coefficients of the polynomial expansions, are presented in Tables 3 and 4 for three

simple critical points described by codes of period 1, 2 and 3, respectively. We

show the plots of the universal functions in Fig. 8. Observe that they are in

excellent agreement with the corresponding / functions from Fig. 7.

The period-1 codes UUUUUU... and DDDDDD... relate to the so-called tricritical

points. Such points were introduced by Chang at al. [1981] while studying the two-

parameter quartic map *n+1 = 1 + Ax\ + Bx% . For the code UUUUUU... the fixed point

solution of the RG equation (Table 4) is the universal function g (x) evaluated by

Chang et al. For the code DDDDD... a different solution g*(x) will be obtained.

However it is connected with gT(x) via a change of variable; namely,

8*T(x)=[gT(xin)]2. The function gT(x) may also be obtained in this case, but the
origin must be taken at the minimum point of the n*(X) map rather than at the

maximum. Consequently, we need not distinguish these two cases of critical behavior.

Observe that there is an infinite number of tricritical points in the parameter

plane of Chua's map because the corresponding codes may have an initial segment of

arbitrary length and structure, followed by a tail of a repeating symbol £/, or D,

symbols. Some tricritical points are identified by circles in Figs. 1(c) and 4. Note

that the locations of the tricritical points is quite specific: they all lie near

the edges of the complicated parts of the boundary of chaos, and at the ends of the

Feigenbaum's critical lines [Chang et al., 1981]. These properties justify the

choice of the term "tricritical" because in the phase transition theory a point is

called tricritical if an arbitrarily small neighborhood of this point contains phase

transition lines of both the first and the second order. In our case the second-

order phase transitions are associated with Feigenbaum's critical lines, while the
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first-order phase transitions are associated with jumps observed at the fold lines.

Indeed, both of them are present near each tricritical point

When we discussed tricritical points, we have made the observation that the

solution of the RG equation remains invariant under an interchange of the symbols U

and D in the coding sequence, while simultaneously taking the other extremum as the

origin. This kind of symmetry is valid for all codes. It follows from the

observation that the maximum and the minimum play an identical role in the dynamics

of the bimodal map. In particular, this symmetry leads to the appearance of an

interesting property in the case of codes which reproduce themselves under a "shift"

operation after interchanging the U and D symbols. For example, the period-2 code

UDUDUD... and the period-4 code UUDDUUDD... have such a property. For these codes

similar dynamical behaviors are observed not only after k steps of the RG

transformation, but after kfl steps. We can say that the "period of the scaling-

cycle" (i.e. the number of period doublings needed to reproduce the dynamics) is

twice less than the period of the /?G-cycle for this class of codes (for other codes

they coincide).

We can take into account the observed symmetry by changing the coding rule.

Namely, for each UD-sequence we construct an SC-sequence in the following manner:

beginning from the second symbol of the UD-codt, we write an "5" if the preceding

symbol is the same, and a "C" if it is changed. For example, given the code

UUDUDUUDDDUDUD, we obtain the transformed code SCCCCSCSSCCCC... The period of

such an SC-sequence always coincides with the period of the "scaling-cycle". In the

work by MacKay & van Zeijts [1988] a theory of bimodal 1-D maps based on the last

coding rule is developed. However, their study involves two-component RG equations.

So, this approach appears to be more complicated than the familiar Feigenbaum's

analysis which we have adopted in this paper.
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4.2. Properties of critical dynamics

Here we consider the dynamics of the Chua's map at codimension-two critical points

with simple codes of period 1, 2 and 3. For comparison, we also present analogous

results for the Feigenbaum's case by taking a representative point on a Feigenbaum's

critical line in the parameter plane.

In Fig. 9 iteration diagrams are presented for the attractors of Chua's map

corresponding to different critical points. In each picture four fragments having

increasing levels of magnification are shown. Note that the magnification

coefficient is chosen to be equal to the corresponding scaling factor a obtained

from the RG analysis (see Table 3). Reproduction of the same visible structure at

different levels of resolution clearly demonstrates the local self-similarity of the

attractors near an extremum of Chua's map. We see that on the boundary of chaos

(including Feigenbaum's critical lines and codimension-two critical points) an

attractor of the bimodal map appears to be a fractal set resembling the Cantor set

but with a more complicated construction rule. In Appendix B we describe a procedure

of approximating these sets by unions of an increasing number of intervals. In Fig.

10 we show several levels of this algorithm which is analogous to the well-known the

Cantor set construction procedure.

To characterize quantitatively the global fractal structure of the critical

attractors we appeal to a multi-fractal or thermodynamic formalism [Halsey et al.,

1986, Vul at al., 1984].

To find the Hausdorff dimension of an attractor corresponding to a critical

point having a ^-periodic f/D-code, we calculate the sums

2n-l

S = I /D , (7)
. n i=l'

where /. denotes the length of the /-th interval in the n-th level of the attractor
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approximation (Fig. 10). Then we take two levels, n and n + k, and choose D to make

both sums S^ and S equal. The number D gives an approximate value for the

Hausdorff dimension. It converges rather fast as n increases (see Table 5). The

calculated Hausdorff dimension is a fraction and depends on the type of the critical

point

To obtain the fia)-spectra and the spectra of generalized dimensions D(q), let us

define the so-called partition functions T which depend on two parameters, q and x,
n

n-1

r (<?, x) = s pVi], (8)
i = 1

where p = 2"n is a probabilistic measure attributed to each of the intervals lt at

the n-th level of the approximating attractor. Further, for any given x we choose q

to make T and T equal to each other, thereby giving us a q(z) dependence. Using
n n+k

this q(z) function we can calculate

a = (dq/dz)'\ f = aq - x, D(q) = x/(l - q). (9)

Now choosing ^ as a parameter we obtain the fia) and D(q) functions, which give us

the /(a)-spectrum and the generalized dimension spectrum at the w-th level. Then we

increase n until the desired precision is attained. Figures 11 and 12 give the fia)

spectra and D(q) spectra corresponding to four different critical points. Note that

the maximum values of the fia) functions are equal to the Hausdorff dimensions of

the attractors, that is D(0). Moreover, the values of D(l) and Z>(2) are equal to the

information dimensions and the correlation dimensions, respectively.

Figure 13 gives the Fourier spectra for the time series generated by Chua's map

from different critical points. Qualitatively, all of these spectra have the same

structure as the familiar Feigenbaum's spectrum (see Fig. 13 a). They all exhibit an

infinite number of subharmonics with frequencies co <* 2"n and have a hierarchical

organization: each n-th subharmonic level has less amplitude than the previous one.
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However, the quantitative relations between the levels are different for each type

of criticality.

5. Investigation of the parameter plane structure near

critical points

Consider any critical point (a, (3) and make a small displacement in the parameter

plane; namely, a =* a + Aa, p => P + Ap. Clearly, the function fix) which describes

Chua's map will undergo a corresponding small perturbation. Thus, to investigate the

dynamics in the neighborhood of critical points we have to deal with the perturbed

solutions of the RG equation (3).

5.1. Linearized renormalization group equation

Here we shall study only perturbations of periodic solutions of the RG equation (3)

because it will lead to a discovery of self-similar patterns in the parameter plane.

However, if we have a period-/: solution, it will be more convenient to use Eq.(5).

Here we shall introduce a little trick which does not change the final results but

will simplify our calculations considerably. Let us redefine the RG transformation

using the scaling factor a corresponding to the critical point, instead of the

factors cr which depend on n. Let us therefore search for the perturbed solutions

of the equation

fjp) =«ff(x/a), (10)
rather than Eq.(5). Let us substitute f(x) = g(x) + eh (jc), e « 1, and obtain the

n n

linear approximation

hnJx) =<WV* +f '̂Cc^^Wte)) +hn(g"\x/a))l (ID
m=l

where
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Equation (11) has the structure /*n+1to = M h, where M is a linear operator.

If the perturbation hQ(x) contains a contribution from some eigenvector with

eigenvalue 8, then after p-fold iterations of (11) this contribution will be

multiplied by the factor 6P. Hence, only those contributions that come from the

eigenvectors having eigenvalues with modulus exceeding unity will survive under

multiple RG transformations. For any UD-code there are two such essential

eigenvectors which we denote by h (x) and h(x). After several iterations of the RG

transformation we obtain

*.*« =cfl*,« +C?A<* (12>
where only the coefficients C and C depend on the initial perturbation h (x).

The last relation leads us to the following important conclusions.

We see that the form of the evolution operator over long periods depends only

on the two parameters C and C, which are the coefficients at the relevant

eigenvectors. Hence, only these two parameters will determine the type of the

dynamical behavior which result from a small initial perturbation of the map. We can

use the values of C, and C2 as new coordinates in a parameter plane. Because we

consider only small perturbations, the values of C and C are related to the

perturbations Aa and Ap of the physical parameters by a linear transformation.

Hence, if we choose appropriate coordinates, namely, (C, C2), we will see the same

pattern of topography in the neighborhood of a codimension-two critical point with a

particular UD-code for any bimodal one-dimensional map. This is universality.

Moreover, if we rescale C] => Cy5*, C2 => CJb^, and increase «=>« +/: then we
see from Eq. (12) that the evolution operator remains invariant. This means that the

pattern of topography reproduces itself under the above change in scale when

accompanied by an increase in the iteration number of the original map by a factor

of 2k Thus, this pattern is reproduced ad infinitum in smaller and smaller
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neighborhoods of the critical point This is precisely the property of

self-similarity or scaling. Henceforth, we will call (C, C2) the scaling

coordinates.

Recall that to obtain the above formulations we have used Eq. (12) which was

based on the assumption that only two terms survive. This assumption is strictly

valid only in an asymptotic sense, i.e. as n => ©o. In other words, the universality

and scaling properties hold, rigorously speaking, only in a sufficiently small

neighborhood of a critical point However, we shall see that in practice, this

restriction is not very strong.

We have to make a particular remark concerning the symmetrical codes mentioned

at the end of subsection 4.1. If the code reproduces itself after a shift and a

change of symbols U <=> D, then the pattern of topography is reproduced not only after

a change in scale by factors 8 and &, but also by the square roots of 8 and 8.

In this case the characteristic time of the dynamical regimes is multiplied by 2k/2

instead of 2k.

To find the relevant eigenvectors h (x) and the eigenvalues 8 we again use

polynomial approximation to obtain a finite set of algebraic equations instead of

the RG equation in function space. Hence, we have reduced the infinite-dimensional

eigenproblem for the linear operator (11) to a finite-dimensional eigenproblem. The

eigenvalues for several types of critical points calculated by this method are given

in Table 3.

5.2. Self-similarity and topography of parameter space near

codimension-two critical points

To demonstrate the above properties of the parameter plane near codimension-two

critical points we need, at first, to find a connection between the .physical

parameters a and p of Chua's map, and the scaling coordinates C and C . A special
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procedure for this purpose has been developed (see Appendix C). As a result we

obtain the following relations for three critical-point representatives:

1) Tricritical point UUUUUU..., a= 3.4264643, Pc= 4.1192463,

a - a =0.54 C+ 0.67 C2 , p - Pc= 0.83 C+ 1.00 C^ (13)

2) Period-2 point UDUDUD..., a= 3.3905335, pc= 4.0549327,

a - a = -0.45 C+ 0.57 C2 , p - Pc= -0.71 C+ 0.86 C^. (14)

3) Period-3 point UUDUUD..., a= 3.47250666, pc= 4.18643549,

a - a = -0.51 C+ 0.65 C2 , p - pc= -0.80 C+ 0.98 C2. (15)

Figure 14 shows again a general view of the (a', p) parameter plane of Chua's

map. Chosen for detailed consideration are neighborhoods of the three critical

points which are depicted as parallelograms formed by lines parallel to the C and

C axes, respectively. In Figs. 15 - 17 the pictures inside these parallelograms are

presented in terms of the scaling coordinates C and C. In each of these figures, a

critical point is located exactly at the center of the picture. A small box is

marked and shown on the right side after magnification. The magnification factors

are chosen equal to the 8 and 8 - eigenvalues of the linearized RG operator

corresponding to the critical point Different colors denote periodic behavior with

different periods; chaos or very high periodic orbits are denoted in black. To see

more explicitly the similarity of the pictures we have redefined the colors in the

majgnified pictures. The legend is given in the figure captions.

Observe the remarkable reproduction of the topography inside the small

rectangles, even through the initial neighborhoods of the critical points which we

have chosen are not very small. Moreover, the topography of the neighborhood of the

period-2 point UDUDUD... is also reproduced when we use the magnification

factors (81/2) and b^J2, in view of the symmetry of the code.
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6. Conclusion

In this paper we have discussed some peculiarities of the boundary of chaos in a

parameter plane of Chua's circuit using the approximate 1-D Chua's map. We have

emphasized the universality and scaling properties of two-dimensional patterns in

the parameter plane topography. We have presented examples of such patterns for

neighborhoods of several special points on the boundary of chaos. Our analysis

represents a two-parameter analog of the familiar Feigenbaum's theory, which is

valid only for typical one-parameter period-doubling cascades. Such generalizations

have recently attracted much attention among theorists (see Chang et aL [1981],

Shell et al. [.1983], Fraser & Kapral [1984], Gambaudo et al. [1987], MacKay &

Tresser [1987, 1988], MacKay & van Zeijts [1988], Carcasses et al. [1991]). However,

in contrast to Feigenbaum's universality which has been observed in a large number

of real systems, there has not been any physical experiments which confirmed the

two-parameter universal phenomena near the onset of chaos. Although our work is also

theoretical, our equations come from a concrete physical system; namely, Chua's

circuit, which has many advantages from an experimental point of view. First of

all, this system is easily built as a real electronic device. Secondly, the

electronic nature of this system makes it easy to process and analyze generated

signals, in sharp contrast to the severe difficulties encountered in experiments on

hydrodynamics. Finally, this system admits a very accurate description by an

approximate 1-D map, and this circumstance gives us the possibility for a detailed

comparison between experiment and theory. We hope therefore that this paper will

stimulate much experimental investigations in the direction we have suggested.
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Appendix

A. High precision calculation of codimension-two critical points

When a period-doubling bifurcation occurs a new stable cycle of twice the period

arises; the original cycle do not disappear but merely becomes unstable. Thus,

corresponding to the accumulation points of the period-doubling cascades (including

points of Feigenbaum's lines and codimension-two critical points) a bimodal map has

a complete set of period-2n cycles, where n can be arbitrarily large. All these

cycles are unstable. If we pick an element x of such a cycle, make a small

perturbation Ax and look at how it changes after one period of the cycle, we see a

corresponding change |liAjc, where ||i| > 1. The value \i is called the multiplier of the

cycle. If x , ..., xT are elements of a period-N cycle of the 1-D map fix), then its
IN

multiplier is obtained by the chain rule

N

\i =|J/(X). (A.1)
i=l

The multipliers of period-2n cycles corresponding to critical points possess

the following property of universality:

Consider a point having a UD-code with a period-k tail. Then for a sufficiently

large n, the multipliers of period-2n cycles exhibit a period-k dependence on n;

they assume a definite set of k values \il*\ \if\..., \if\ These values are
universal numbers intrinsic to the given ^-periodic i/D-sequence. (Note that the

values of [iil) for different i are not necessarily distinct: for symmetrical codes
c

mentioned in subsections 4.1 and 5.2 the multipliers are repeated with a smaller

period equal to k/2.)

The universal multipliers for a given critical point may be obtained via the

corresponding solution of the RG equation (6) which we have denoted by g(x). Indeed,

as we have explained in Sec.4, this solution defines an evolution operator for large
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n's which is universal up to a change in scale. However, the scale change does not

influence multipliers. Hence, if we calculate the multipliers of the period-1, 2,

..., 2k cycles of the map g(x), then we would obtain the |i(l) values. In Table 3 we

give these values among other universal quantifiers for critical points with simple

codes.

To find codimension-two critical points in the parameter plane we initially

obtain a rather rough estimate of their positions as limit points of the

corresponding itineraries on the binary tree. Then, choosing some number n we try to

find such a and p values to make both the multipliers of period-2n and 2n+k cycles

equal to appropriate universal values. Then we increase n and repeat the procedure

until a desired precision is attained. The results converge quickly with

increasing n.

B. Constructing Cantor-like attractors at

critical points

The Cantor-like algorithm for constructing subsequent approximating sets of

intervals is well known for the Feigenbaum's attractor. For example, for p = 10 we

find the Feigenbaum's critical point (i.e. the accumulation point of the period-

doubling cascade) in the Chua's map at a = a= 6.5408510..., and the maximum is
c

located at the point X*= 1.1942673... Taking X= X* we obtain X= %\XJ = 1.4353,
X= %(XJ = 1.0677, X= %*(XJ = 1.3830, X= k(XJ = 1.2388, X= n(XJ = 1.4271,
X= rc*(Xo) = 1.1005, X= k&J =1.4054, Xg= %\XJ = 1.1756...
Then the attractor is approximated

by the interval [X, X^ at the 1-st level of the construction,

by the union of two intervals [X , X] and [X, XJ at the 2-nd level,

by the union of four intervals [X. XK], [X, XI, [X. XI, and [X. XI at

the 3-d level.
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At the w-th level, the attractor is approximated by a set A made up of the

union of 2nA intervals [X^ X^J, [X2, X^J, ... [X^, X2J; namely,
2

\ = U [xe xw>] • (A-2)
Figure 10 (a) shows the first few levels of this construction.

To generalize the above rule let us recall our notation (p, q) for double

superstable cycles (Sec.3). Consider a specific UD-code which gives the itinerary on

the binary tree leading to a desired critical point. Following this itinerary, we

obtain a sequence of integer pairs (p, q), where p + q = 2°. The integers n = 1, 2,

3, ... will define again the level number. From the bimodal map we can calculate two

sequences of iterations: y. and z. , i, j = 1,2,3,..., starting from the maximum and

the minimum, respectively. To obtain the end points of the set of intervals for

approximating the attractor at the w-th level, we find a pair (p, q), and take p

terms from the first sequence, and q terms from the second sequence. Namely, we

define

x. = y. , 1 £ / £ p, (A.3)
ii

z. , p < i < p+ q.
i-p

Substituting these x. into Eq. (A.2) we obtain a set made of union of intervals

which gives an n-th level approximation of the attractor.

Let us consider an example and choose* a critical point with the period-2 code

UDUDUD... having coordinates cc= 3.390533..., P= 4.054932...(see Table 2). For
c c

these parameters the maximum and the minimum of the Chua's map are located at the

points X*= 1.2177503... and YQ= X**= 1.4418532..., respectively. Taking Y= X* and
Z = X , we obtain two sequences:

Y= Tt'og =1.4503, F2= %VJ =1.1192, Y= Tt(YQ) =1.4147, F=%\YQ) =1.1658,
y5= K'cg =1.4396, 7= nffj =1.0921, 7?= ntfj =1.3950, Fg= %(YQ) =1.2321, ...
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and

Z=%{ZJ =1.0909, Z2= iC{ZJ =1.3940, Z3= 7t*(Z0) =1.2351, Z= %*<ZJ =1.4489,
Z5= tc^Z^ =1.1094, Z6= k(Z^ =1.4080, Z?= n(ZQ) =1.1892, Zg= ic*(Zo) =1.4469,...

From Fig. 4 we see that the sequence of (p, q) pairs for the above critical

point is given by (1,1), (1,3), (5,3), (5,11), (21, 11), ... Hence, to obtain the

sequence of values X. which give the ends of the intervals approximating the

attractor we must take

1 term from the first sequence and 1 from the second at the 1-st level;

1 term from the first sequence and 3 from the second at the 2-nd level;

5 terms from the first sequence and 3 from the second at the 3-d level;

5 term from the first sequence and 11 from the second at the 4-th level;

and so on.

For example, for the level number n=3 we obtain:

X =1.4503, X =1.1192, X =1.4146, X =1.1658, X =1.4396, X =1.0909, X =1.3940,
1 2 3 4 5 6 7

X=1.2351, and the approximated attractor set is defined by the union of the
o

intervals [Xf XJ, [X2, Xfi], [X3, X?], and [X4, Xg].

Figure 10 b, c, and d shows several levels of the attractor for some critical

points of codimension two.

C. Connection between physical and scaling coordinates in

the parameter plane

Consider a critical point (a, p) which has a UD-code with a period-/: tail. Let us

take two left finite strings of UD-code containing n and n + k symbols. We can find

the points (a, B ) and (a, p) in the parameter plane, where the two corresponding

double-superstable cycles exist; henceforth they are identified as similar.

It follows from the RG analysis that the coordinates of these points must be
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related by some linear transformation

"a r\ \\ri
(A.4)R

A B
CD

Act
AP

where Aau= a^ - ctc, AP^= p - Pc and where the elements A, B, C, D are fixed

for the critical point (a, P). If the scaling property holds with infinite

precision, then the matrix A B
CD

would have eigenvalues 8 and 8 equal to those

predicted from the RG analysis. It follows that

A + D = ^ + 82 and AD - BC =85. (A.5)

Hence, if we know the a and p coordinates of the points corresponding to the two

similar double-superstable cycles, we could find the four elements of the matrix

from the four equations defined by (A.4) and (A.5).

However, in practice, this simple method does not yield a satisfactory

precision because the scaling holds only approximately for a sufficiently large

values of n. To improve this approach, we take coordinates not of one, but of two

pairs of similar double-superstable cycles. The second pair is defined by the same

two n- and w+£-symbol strings except for the last symbol. Their coordinates must

obey Eq. (A.4) too. Hence, we obtain from (A.4) and (A.5) eight equations involving

four unknown matrix elements. They can be evaluated by a least square method.

Finally, we calculate eigenvectors of the matrices via the usual techniques. We have

found this approach to give satisfactory precision. The numerical results for three

critical points with simple codes are presented in Sec.5.
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Table1.Coordinatesofpointscorrespondingto
double-superstablecyclesinthe(a,p)parameter

planeofChua'smap

PeriodCodeTypeap

2
4

8

16

32

U
UU
UD
UUU
UUD
UDU
UDD
UUUU
UUUD
UUDU
UUDD
UDUU
UDUD
UDDU
UDDD

(U)
(1,3)
(1.7)
(5,3)
(1.15)
(9,7)
(5.11)
(13,3)
(1.31)
(17,15)
(9,23)
(25,7)
(507)
(21,11)
(13,19)
(29,3)

2.4286313942.668405542
3.1812201213.745645702
3.3855705464.056225192
3.3041726523.924564694
3.4205238394.110073977
3.4512027054.154022937
3.3716074214.026497755
3.3220867563.950706806
3.4256354894.117966453
3.4463410764.148658902
3.4680807654.179722569
3.4606293304.168074575
3.3813219254.041250484
3.3848831514.046391549
3.3474524373.988976155
3.3245721143.954335126

Period

64

Code

UUUUU
UUUUD
UUUDU
UUUDD
UUDUU
UUDUD
UUDDU
UUDDD
UDUUU
UDUUD
UDUDU
UDUDD
UDDUU
UDDUD
UDDDU
UDDDD

Type

(1.63)
(33,31)
(17,47)
(49,15)
(9,15)
(9,55)
(41,23)
(57,7)
(5,59)
(37,27)
(21,43)
(53,11)
(13,51)
(45,19)
(29,35)
(61,3)

a

3.426349800
3.435019191

3.450729549
3.450159213

3.470473747
3.472615955
3.466915690

3.461930279
3.382650546

3.386207858
3.389159747

3.386774450
3.351382924

3.351198826

3.333371880

3.324913299

P
4.119069717

4.131995516
4.155286007

4.154362375

4.183372220
4.186547036
4.177636557

4.170013929
4.043269477
4.048583042

4.052862761

4.049225161
3.994918392

3.994606699

3.967599998
3.954833242



Table 2. Some critical points of the Chua's map

Type Codes a, p

Feigenbaum 6.54085103 10.00000000

Tricritical UUUUUUUUU...
UUDDDDDDD...
UDUUUUUUU...
UDDDDDDDD...

3.42646411
3.46213786
3.38286211
3.32496761

4.11924628
4.17032337
4.04359100
3.95491253

Period-2 RG cycle UDUDUDUDU... 3.39053348 4.05493270

Period-3 RG cycle UUDUUDUUD...
UDDUDDUDD...

3.47250666
3.35238709

4.18643549
3.99639697

Table 3. Universal numbers for several types of critical points

Feigenbaum Tricritical RG cycle 2 RG cycle 3

Codes ...UUUUUU... ...UDUDUD... ...UUDUUD...

Scaling factor a -2.502907876 -1.690302971 -4.862645091 8.030267587

Parameter scaling
factors 5, 8

4.66920161 7.28468622
2.85712414

35.9286114
14.5957450

244.7687073
46.2910330

Critical
multipliers \i

-1.60119133 -2.05094049 -2.27516954
-2.27516954

-2.14347576
-2.25392276
-2.27787495



Table 4. Coefficients of polynomial approximation for

RG equation solutions g(x) = Z c^k

Tricritical

V ...UUUUU...

0 1

4 -1.834107907
8 0.012962226
12 0.311901739
16 -0.062014652

20 -0.037539287
24 0.017647313

28 0.001938265
32 -0.002820471

36 0.000115457

40 0.000399471
44 -0.000024793

48 -0.000121641

52 0.000070434

56 -0.000017980
60 0.000001909

Period-2

V ...UDUDUD...

0 1

2 -2.659451025
4 -0.457073109
6 2.998999170

8 -0.776220408
10 -1.414948457

12 1.370177562

14 -0.068984505

16 -0.580666023

18 0.174967752

20 0.400482740
22 -0.536278594

24 0.338283919
26 -0.126059065
28 0.026941179

30 -0.002582550

Period-3
V ...UUDUUD...

0 1

2 -2.325802068
4 -0.431810277
6 1.769729434
8 0.021283412

10 -0.743118612

12 0.209345906
14 -0.012063820

16 0.679983089
18 -1.504391919

20 1.918087529
22 -1.799808881
24 1.244301917

26 -0.586942935
28 0.166339351

30 -0.021240090

Table 5. Evaluation of Hausdorff dimension for attractors
of Chua's map in different critical points

Feigenbaum Tricritical Period-2 Period-3

RG-cycle RG-cycle

Level D Level D Level D Level D

2-3 0.536914 2-3 0.65432 2-4 0.60252 2-5 0.60262

3-4 0.538250 3-4 0.65327 3-5 0.62194 3-6 0.61440

4-5 0.538009 4-5 0.64744 4-6 0.61599 4-7 0.61631

5-6 0.538053 5-6 0.64535 5-7 0.61260 5-8 0.61497

6-7 0.538044 6-7 0.64382 6-8 0.61484 6-9 0.61664

7-8 0.538045 7-8 0.64327 7-9 0.61409 7-10 0.61585

8-9 0.538045 8-9 0.64310 8-10 0.61427



FIGURE CAPTIONS

Fig. 1. (a) Topography of the dynamical behavior of the 1-D Chua's map near the
onset of chaos in the (a', P) parameter plane, a'= a - 0.68P. At each of the 300x300

pixels a number of iterations were made and the presence of periodicity was checked.
Different periods are coded by colors (1 - green, 2 - yellow, 4 - violet, 8r red, 3

- pink, 6 - light blue). Black corresponds to chaos or unrecognized long-period
regimes.

(b) Sketch of the parameter plane identifying some important areas, lines and

points: Dl, D2, and D3 are the lines of the first, second and third period-doubling

bifurcations, respectively, F denotes a Feigenbaum's critical line. Two (of an

infinite number) cusps (Q and their associated pairs of fold lines are marked.

(c) Sketch of the parameter plane where the location of several codimension-two

critical points is shown: tricritical points are marked by circles; the square and

triangle denote critical points corresponding to RG cycles of period 2 and 3,

respectively.

Fig. 2. Plots of the Chua's map X => X\ X*= n(X) for a set of parameter values a'
and p. A diagonal line X = X* is also shown in each plot The parameter region
chosen corresponds approximately to the area near the boundary of chaos. Bimodality

of Chua's map may be seen in some of the pictures.

Fig. 3. An illustration of the construction of a superstable orbit binary tree. The

itineraries are coded by a sequence of symbols U (up) and D (down). The double

superstable cycles from Chua's 1-D map correspond to the branching points of the

binary tree, (a) oc=2.42863139, P=2.66840554; (b) oc=3.18121220, p=3.74564570; (c)

oc=3.00564702, p=3.41905639; (d) cc=3.38557055, P=4.05622519;

(e) a=3.30417265, p=3.92456469.

Fig. 4. Rough schematic sketch of the binary tree in the parameter plane. The

branching points correspond to double superstable cycles; their (p, <?)-types are

shown. A codimension-two critical point is located at the end of every path through

an infinite number of branching points. Since there are infinitely many distinct

paths, it follows that there are infinitely many critical points. Each critical

point is coded by an infinite sequence of symbols U and D according to the itinerary

leading to these point along the branches labeled by U and D. Some of the



tricritical points are identified by solid circles (for the case when the tail of

the code is ...UUUUU...) and by open ones (for the case when the tail of the code

is ..DDDD...). The critical points corresponding to a period-2 (code UDUDUD...) and

a period-3 (code UUDUUD...) cycle of the RG equation are identified by a small

square and a small triangle and labeled RG2 and RG3, respectively. Pieces of

Feigenbaum's critical lines (shown dotted) are labeled by F.

Fig. 5. Location of the binary tree in the (a', P) parameter plane of Chua's map

superimposed upon the background of the topography reproduced from Fig.l.

Fig.6. Plots of some maps which appear during the RG analysis of the Chua's map. For

a specific example, the tricritical point a=3.42646406, P=4.11924620 is chosen.

(a) The original map n (jc) at the critical point,

(b) the translated map fix) = n(x+X)-X,

(c) the double iterated map fifix)),

(d) the renormalized double iterated map f(x).

Fig. 7. Graphs of functions from the sequence fjx) which were generated by

iterating Eq.(3). Values of n are given for each function. The Chua's 1-D map was

taken as the initial function /0, the origin being chosen at the point of its

maximum (see Fig.l), for the following parameter values:

(a) a=3.42646406, p=4.11924620, code UUUUUU... This correspond to a fixed point

of the RG equation.

(b) a=3.39053347, P=4.05493268, code UDUDUD... This correspond to a period-2 cycle

of the RG equation.

(c) ct=3.47250666, P=4.18643549, code UUDUUD... This correspond to a period-3 cycle

of the RG equation.

(d) a=3.46837499, p=4.17984652, code UUDDUDU...This correspond to renormalization

chaos.

Fig. 8. Universal functions obtained via numerical solution of the RG equation at

different critical points: (a) Feigenbaum's point, (b) tricritical point coded

UUUUUU..., (c) period-2 critical point coded UDUDUD..., (d) period-3 critical point

coded UUDUUD... For the cases (c) and (d) two and three functions are shown

corresponding to all elements of the RG cycles.



Fig. 9. Iteration diagrams of Chua's map X => x\ X*= tl*(X) for different critical
points (see the a and P coordinates in Table 2): (a) Feigenbaum's point, (b)

tricritical point corresponding to the code UUUUUU..., (c) the period-2 critical

point (UDUDUD...), (d) the period-3 critical point corresponding to the code

UUDUUD... In each picture a fragment is selected and shown separately after several

magnification steps. The respective factors of magnification a are found from the RG

analysis (see Table 3).

Fig. 10. Several subsequent steps in the construction of the Cantor-like attractors

of the Chua's map at different critical points: (a) Feigenbaum's point, (b)

tricritical point (UUUUUU...), (c) period-2 critical point (UDUDUD...), (d) period-3

critical point (UUDUUD...).

Fig. 11. fia) spectra for critical attractors of the Chua's map: (a) Feigenbaum's

point, (b) tricritical point (UUUUUU...), (c) period-2 critical point (UDUDUD...),

(d) period-3 critical point (UUDUUD...).

Fig. 12. Spectra of generalized dimensions for critical attractors of the Chua's

map: (a) Feigenbaum's point, (b) tricritical point (UUUUUU...), (c) period-2

critical point (UDUDUD...), (d) period-3 critical point (UUDUUD...).

Fig. 13. Fourier spectra for time series generated by Chua's map at the critical

points: (a) Feigenbaum's point, (b) tricritical point (UUUUUU...), (c) period-2

critical point (UDUDUD...), (d) period-3 critical point (UUDUUD...).

Fig. 14. Portions of the. topography from Fig.l selected for detailed consideration .

Neighborhoods of the critical points are shown by parallelograms. A critical point

is located in the center of each parallelogram: (1) tricritical point coded by

UUUUUU..., (2) the critical point coded by UDUDUD..., (3) the critical point coded

by UUDUUD....

Fig. 15. The universal two-dimensional pattern of the parameter plane topography

near the tricritical point UUUUUU... which is located in the center of the pictures.

The picture on the left shows the interior of the parallelogram labeled "1" in Fig.

14. Scaling coordinates (C, C) are used here (see Eq.(13)). The picture on the

right shows a small fragment after magnification by 8 and 8 along the vertical and



the horizontal axes, respectively. The following color codes are used. For the left

picture: 2 - green, 4 - yellow, 8 - violet, 16- red, 6 - pink, 12 - light blue; for

the right picture the same colors correspond to the doubled periods: 4 - green, 8 -

yellow, 16 - violet, 32- red, 12 - pink, 24 - light blue.

Fig. 16. The universal two-dimensional pattern of the parameter plane topography

near a critical point with the period-2 code UDUDUD... The critical point is located

in the center of the pictures. The picture on the left shows the interior of the

parallelogram labeled "2" in Fig. 14. Scaling coordinates (C, C ) are used here

(see Eq.(14)). The picture on the right shows a small fragment after magnification

by 8 and 8 along the horizontal and the vertical axes, respectively. The following

color codes are used. For the left picture: 2 - green, 4 - yellow, 8 - violet, 16-

red, 6 - pink, 12 - light blue; for the right picture the same colors correspond to

the quadrupled periods: 8 - green, 16 - yellow, 32 - violet, 64- red, 24 - pink, 48

- light blue.

Fig. 17. The universal two-dimensional pattern of the parameter plane topography

near a critical point with the period-3 code UUDUUD... The critical point is located

in the center of the pictures. The left picture shows the interior of the

parallelogram labeled "3" in Fig. 14. Scaling coordinates (C, C) are used here

(see Eq.(15)). The right picture shows a small fragment after magnification by 8

and 8 along the horizontal and the vertical axes, respectively. The following

color codes are used. For the left picture: 2 - green, 4 - yellow, 8 - violet, 16-

red, 6 - pink, 12 - light blue; for the right picture the same colors correspond to

the periods multiplied by 8: 16 - green, 32 - yellow, 64 - blue, 128- red, 48 -

pink, 96 - light blue.
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