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In this paper we investigate the features of the transition to chaos in a one-

dimensional Chua's map which describes approximately the Chua's circuit. These

features arise from the nonunimodality of this map. We show that there exists a

variety of types of critical points, which are characterized by a universal self-
similar topography in a neighborhood of each critical point in the parameter plane.

Such universalities are associated with various cycles of the Feigenbaum's
renormalization group equation.



On the cover of the first issue of the "International Journal of Bifurcation

and Chaos" a beautiful color picture is presented, showing the topography of the

dynamical behavior in the plane of two control parameters of the Chua's 1-D map

which describes approximately the dynamics of the Chua's circuit.1 From this

picture, one can see that the borderline of chaos in the parameter plane of Chua's

circuit possesses a complex fine structure. Its piecewise-smooth boundary curves are

the critical lines, representing the loci of the accumulation points of 'period-

doubling bifurcations.2"5 Many cusps are located near the border of chaos, with two

fold lines emanating from each cusp. Very narrow bands corresponding to regular

(non-chaotic) regimes stretch far into regions representing chaotic regimes.

Transition to chaos via period-doubling cascades is a typically observed

scenario while probing along an arbitrarily chosen path in the parameter plane from

a region of regular motion to a chaotic regime. This scenario is characterized by

the well known Feigenbaum's universality and scaling properties. ' In particular,

the period-doubling convergence to a critical line obeys a geometrical law with a

universal exponent equal to 4.6692. It is natural to ask, whether there exists a

generalization of such universality for the two-parameter situation? Such a

generalization would allow us to uncover the fractal properties of the borderline of

chaos in the parameter plane.

We shall show in this paper that the border of chaos in the Chua's 1-D map

defined in references 6,7 contains an infinite set of critical points of

codimension two. The vicinities of some of these points exhibit the property of

self-similarity; namely, a universal two-parameter scaling property. These points

may be found and classified with the help of an elegant procedure of constructing

the binary tree of superstable orbits, first introduced in the analysis of circle

maps by Shell et al.8 The scaling properties observed in the vicinity of these



points are determined by codes of itineraries on the binary tree.

Chua's circuit is an electronic system modeled by the following set of

differential equations

x = a(y-h(x)), y = x-y+z, z = -fty, (1)

where x> y, z are the dynamical variables, a and (3 are parameters, and h(x) is a

piecewise-linear function which is chosen in accordance with Chua et al. as follows

h(x) =(2*-3)/7, x>\

=-*/7, U|<1

=(2x+3)/7, *<-l (2)

Using the Poincare section technique, the exact description of the system may be

reduced to a two-dimensional map which, in turn, may be approximated by a one-

dimensional map, henceforth called the Chua's 1-D map. The procedure for

construction of this map

tC: X => n*(X)

• 6 7

is described in detail by Chua et al. * Unfortunately, it does not have a simple

explicit representation.

It appears that the n* map may have at least two extrema (a maximum and a

minimum) and, thus, is bimodal in the region of states essential for the dynamics.

This is precisely the circumstance responsible for the complex structure on the

border of chaos in the (a, P) parameter plane.

In our following consideration, the double superstable period-2n cycles will be

of great significance. They are defined as cycles having two extremal points as

their elements. In Fig. 1 the graph of the n* map is shown corresponding to various

points in the (a, p) parameter plane, where double superstable period-2n cycles are

realized. Taking the parameters of the period-2 superstable cycle as the initial

point (see Fig. la), one can construct a binary tree of superstable orbits via the

following procedure.



Suppose that a point (a, p) is found at which a period-2n double superstable

cycle is realized, the maximum being mapped into the minimum after p iterations, and

the minimum being mapped to the maximum after q = 2n- p iterations. This cycle will

henceforth be referred as (p, <7)-type cycle. It's location in the parameter plane

may be found at the intersection point of two curves U(p) and D(q): the U(p) curve

is defined by the condition that the maximum is mapped to the minimum after p

iterations, and the D(q) curve is defined by the condition that the minimum is

mapped into the maximum after q iterations. Moving along the U(p) curve and tracing

the attractive cycle we come across the period-doubling bifurcation point and then

find the point at which the period-2n+1 cycle becomes double superstable.

Apparently, its type is (p, p+2q). In a similar way the double superstable cycle of

the (2p+<y, #)-type may be found while moving along the D(q) curve.

In Fig. 1 the initial steps of this process are shown. We shall restrict our

following considerations to the upper half of the full binary tree, where the

corresponding orbits visit only two of the three piecewise-linear regions of the

vector field (1). Also a qualitative picture of the tree is sketched in Fig. 2.

We shall now code the itineraries on the tree using the symbols U and D to

designate the path along the U and D curves after each branching, respectively.

While moving along the tree in accordance to an arbitrary code UUDDUDVr..., one may

observe a period-doubling bifurcation cascade. The accumulation point (critical

point) of this cascade belongs to the borderline of chaos, and the properties of

universality and scaling in the neighborhood of this point are defined by the

structure of the code.

To uncover these properties we turn now to renormalization group (RG) analysis,

which is a generalization of that suggested by Feigenbaum.' Taking the point at

which the n* map has a maximum as our reference point X, we consider further the



translated map f(x)=K*(x+X)-X. Let us apply this mapping twice and rescale the

dynamical variable to normalize the resulting map at the origin, namely, /(0)=1.

Multiple repetition of this procedure leads to a recurrent functional equation

/-iW = a/B(fnWog), (3)

where o^ltf^O)).

Let us now consider a critical point corresponding to some definite coding

sequence of the symbols U and D and apply the above procedure to the Chua's 1-D map

at this point. The functions /n(jc) may be calculated via the chain rule

M =/2V/2"(0))//2n(0), (4)
2nwhere / (x) designates the 2n-fold functional composition of the map fix). Such

calculations for different integer n reveal a simple correlation between the

structure of the itinerary code and the behavior of the iterations of the functional

map (3).

If the code contains an infinite number of repetitions of the same symbol U as

its tail, then the sequence fn converges to a limit function corresponding to a

fixed point of the functional map (3) (Fig. 3a). This limit function is a universal

function describing the dynamics of one-dimensional maps at the so called

tricritical point. Tricritical points are the terminal points of the Feigenbaum's

critical lines in the parameter plane. They were introduced by Chang et al. while

studying the two-parameter quartic map 10

*n+i = 1 + *4 + B< • (5)

These authors have also found the conesponding scaling factor a (see the Table) and

the polynomial approximation for the universal function g (x) = 1 - 1.8341.x4 +

0.0130*8 + 0.3119;c16+... It may be verified that it coincides for large n with the

functions fn shown in Fig. 3a.

Codes with trailing symbols D also correspond to a tricritical behavior. In



this case the fn sequence appears to converge to the function which is conjugate to

»T(x) via the variable change: g*(.v)=[£T(the g (x) via the variable change: g*Jx)=[g(xm)]2. It is a conjugate tricritical

point in accordance with the terminology introduced by Chang et al.10 The function

gT(x) may be obtained in this case also, but the origin must be taken at the minimum

point of the n*(X) map rather than at the maximum.

If an itinerary is ^-periodic beginning from some step, then the functional

sequence produced by Eq.(3) at the corresponding critical point becomes ^-periodic

too for large n. In Figs. 3b,c a period-two and a period-three examples are

presented. Thus, the cycles of period k of the RG equation are responsible for the

dynamics at the critical point in the case of period-^ itineraries. To find the

universal functions corresponding to the elements of these cycles is equivalent to

finding the fixed points of the A-fold iterated RG equation

g(x) =ag2 (x/a\ (6)

where the scaling factor a is a product of factors ocn over all the k elements of the

corresponding cycle. We have obtained the numerical solutions of Eq.(6) for k-2 and

3. The values of the scaling factors are presented in the Table. We have verified

that the polynomial approximations calculated numerically are in agreement with the

functions /n obtained by iterating the Chua's 1-D map directly using Eq.(4)) at the

corresponding critical points (Figs. 3b,c) for sufficiently large n.

Finally, if we choose a random sequence of symbols U and D as our itinerary,

find the corresponding critical point in the (a, p) parameter plane, and choose the

map at this point as the initial function for Eq.(3), then the resulting functional

sequence / will be random too (Fig. 3d). In this case we must deal with chaotic

dynamics of the RG map or, in other words, with renormalization chaos. The

possibility of such phenomenon in the bimodal maps was discussed earlier by Gambaudo

et al."



The next step in our RG analysis consists of studying the behavior of the

orbits of Eq.(3) in the vicinity of the solutions considered above. We shall limit

our considerations to the case of periodic codes. This assumption gives us a

possibility to reveal universal self-similar structures in the parameter plane near

the borderline of chaos.

It was already mentioned that period-/: cycles of Eq.(3) correspond to the fixed

points of Eq.(6). Let us take a small perturbation of the fixed point, f(x) = g(x) +

2kh(x), and demand that after the RG transformation fix) => af" (x/a), this

perturbation would preserve its form to within a constant multiplier. (Here a is a

scaling factor found by solving the fixed point of Eq.(6).) As a result, we obtain

the following eigenproblem:

&A(x) =aV^'WQc/a) +j Fl\x)h(gm(x/a)) +h(gm(x/a))l (7)

where

F>) =I^<BH^W N=2', k=l,2t3,...
For each of the cycles of the RG equation two related eigenvalues 6V 6*2 may be

found, which exceed unity in modulus and are not connected to the infinitesimal

change in variables. These eigenvalues are the factors which determine the scaling

properties of the parameter plane topography in the vicinity of the corresponding

critical points. Namely, if the coordinate axes in the parameter plane are chosen in

a proper way (scaling variables), then the topography in a small vicinity of the

critical point is reproduced after rescaling along these axes by the factors bx and

82. It corresponds to a change of the temporal periods by a factor of 2k. It should

be noted that in small enough scales this topography is universal for all critical

points having itineraries with different initial symbols but identical periodic



tails. It is also universal for all other bimodal two-parameter 1-D maps.

As an example, Fig. 4a shows the universal parameter plane topography in the

vicinity of the critical point related to the period-2 cycle of the RG equation. For

the Chua's 1-D map the corresponding critical point has the coordinates

ac=3.3905335, Pc =4.0549327. The scaling variables £ and T\ used in Fig. 3 are

connected to the parameters of the initial map via the relation

£=0.86(a-ac)-0.57(p-pc), Ti=0.41(a-ac)-0.26(p-pc). (8)

To illustrate the property of self-similarity, a fragment inside the small

rectangle shown in Fig. 4a is reproduced in Fig. 4b after magnification. The scale

change along the coordinate axes is given by the factors of 8j and 52 which have

been found for this critical situation. Observe that Fig. 4a is well reproduced by

Fig. 4b.

In conclusion we note that the problems discussed in this paper which are

related to the renormalization group approach for explaining the complex fine

structure on the border of chaos have recently attracted much attention among many

theorists (see references 8"14). Chua's circuit represents an ideal object for this

research direction because it allows both a simple theoretical analysis and an

electronic experimental investigation.
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FIGURE CAPTIONS

Fig. 1. An illustration of the superstable orbit binary tree construction procedure.

The itineraries are coded by a sequence of symbols U (up) and D (down). The double

superstable cycles for the Chua's 1-D map corresponding to the branching points of

the binary tree are presented, (a) a=2.42863139, P=2.66840554; (b) a=3.18121999,

p=3.74564551; (c) a=3.00564702, P=3.41905639; (d) a=3.38557045, P=4.05622505;
(e) a=3.30417266, P=3.92456471.

Fig. 2. Rough sketch of a binary tree location in the parameter plane of a bimodal

ID-map. The branching points correspond to double superstable cycles, their (p, q)-

types are shown. Pieces of Feigenbaum's critical lines (shown dotted) are labeled by

F. A codimension-two critical point is located at the end of each branch in the

limit of infinite branchings, so there is an infinite number of such points. Some

tricritical points are shown by "solid" circles, and conjugate tricritical points

are shown by "open" circles. Also the critical points corresponding to period-2

(code UDUDUD...) and period-3 (code UUDUUD...) cycles of the RG equation are shown

by a small square and a small triangle and labeled RG2 and RG3, respectively.

Fig. 3. Graphs of functions from the sequence fn(x) which were produced by iterating

Eq.(3). Values of n are shown by numbers. The Chua's 1-D map was taken as the

initial function /0, the origin being chosen at the point of its maximum (see

Fig.l), for the following parameter values:

(a) a=3.42646401, P=4.11924613, code UUUUUU... This correspond to a fixed point

of the RG equation.

(b) a=3.39053349, p=4.05493271, code UDUDUD... This correspond to a period-2 cycle

of the RG equation.

(c) a=3.47246137, P=4.18636722, code UUDUUD... This correspond to a period-3 cycle

of the RG equation.

(d) a=3.46837499, P=4.17984652, code UUDDUDU...This correspond to renormalization

chaos.

Fig. 4. Universal topography of the dynamical behavior in the parameter plane in the

vicinity of the critical point corresponding to a period-2 cycle of the RG equation.

The critical point is located exactly at the center of the picture; numbers

designate the cycle periods. The coordinate axes correspond to the scaling variables

defined by (8). To demonstrate the self-similarity phenomenon, a small fragment of

the picture in (a) is reproduced with magnification along the vertical and

horizontal axes by a factor equal to 14.5957 and 35.9286, respectively.
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Table 1. Universal scaling constants for the critical behavior types associated

with the period-1, -2 and -3 solutions of the RG equation

Type of
criticality

Code Phase space
scaling factor a

Parameter space
scaling factors Sl2

Tricritical fixed point
of the RG equation

...UUUUUU... -1.69030297 7.28468622
2.85712414

Period-2 cycle of
the RG equation

...UDUDUD... -4.86264509 14.5957450
35.9286114

Period-3 cycle of
the RG equation

...UUDUUD... 8.03026759 46.2910330
244.768707
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