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Arnold Diffusion in Many Dimensions

B. P. Wood,* A. J. Lichtenberg, and M. A. Lieberman

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, CA 94720

Abstract

When several standard maps are coupled together, KAM surfaces cannot isolate

stochastic regions, and particles diffuse along stochastic layers by the process of

Arnold diffusion. For the case of two coupled standard maps the rate of Arnold

diffusion haspreviously been calculated both locally around a particular KAM curve

and globally across many cells of the 2tt periodic mapping. When more than two

standard maps are coupled, the Arnold diffusion rate increases, depending on the

totalnumber of maps, N, and the number of phases in each coupling term, m, where

2<m<N. As N is increased, the diffusion rate increases as JV1/2, the length of the

diagonal in the action space. As m is increased, the diffusion rate increases because

the phase of the coupling term for a particular mapbecomes less correlated with the

phase of the map itself. In the limit of large m, the coupling termis randomized with

each iteration. When the effect of N is removed by dividing the diffusion distance

Airms by N1/2, aglobal diffusion A7rms versus mis found which is determined bythe

effect of m on the local rate of Arnold diffusion and the relative volume occupied

by the various stocliastically accessible regions in the coupled phase space. For

* Currently at Los Alamos National Laboratory MS-E526, Los Alamos, NM 87545
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local Arnold diffusion, the increase in AJrm8 for a particular m depends strongly

on the stochasticity parameter K. An analytic calculation of this K dependence

for the cases of two and three coupled maps and an analytic calculation for the m

dependence at fixed K are presented, which are in good agreement with numerical

results.

Dedication

We dedicate this paper on Arnold diffusion to our former colleague and friend,

Jeff Tennyson. It is very fitting that the paper is about Arnold diffusion, as we

first worked on the subject with Jeff when he was a graduate student in our group.

Jeff was looking for a mechanism to explain the very puzzling phenomenon of beam

blow-up of intersecting beams in storage rings and came up with Arnold diffusion

as a possible mechanism. Taking a simple model for study his work led to the first

calculation and numerical comparison of the diffusion in mappings. The work has

stimulated our continued interest in this very fascinating universal instability of

nonlinear Hamiltonian systems.

Jeff went on to look at beam blow-up in more detail, and concluded that dissi-

pative mechanisms were a more likely cause of the phenomenon. However,his initial

inclination to use a simple mapping model to study a complex process, illustrates

an important characteristic of Jeff's approach to science. He was always searching

for the most fundamental methods to describe physical phenomena. We shall all

miss his stimulating questioning of our understanding. We shall also miss his kind

nature and his friendship.
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1 Introduction

In non-integrable Hamiltonian systems of more than two degrees of freedom,

KAM curves cannot isolate the stochastic layers that lie along the separatricies of

system resonances. Stochastic layers lie along an inter-connected web of resonances

such that initial conditions in any part of the web can ultimately diffuse to all parts

of it. The process, first proved to exist by Arnold [1] and now known as Arnold

diffusion, has been studied in a variety of problems.

If three resonances can be locally isolated to be of dominant importance, then

a method exists for calculating the rate of diffusion along a local resonance layer,

known as the three resonance model [2] or the stochastic pump model [3]. The

model has been used to analytically calculate the local diffusion rate for coupled

maps [2, 3, 4], and for two coupled standard maps, in particular [5, 6], with good

agreement obtained with numerical results. The three resonance model predicts

D = (AJ)2/t oc e_j4/£ where c is the perturbation parameter and Atal.

If many resonance layers overlap then the three resonance model is not adequate

to describe the diffusion, which can be much larger than that calculated using a

three resonance model. An upper bound on the diffusion rate has been obtained

by Nekhoroshev [7] of the form D oc e~Af'y(A as 1) where for the number of degrees

of freedom Ny 7 = (f(N- l)lV + 2)~ . By allowing a somewhat more restrictive

Hamiltonian, but still encompassing most physical problems, this upper bound can

be improved such that [8, 9]
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D(xe~A/e\ f&N'1. (1)

Nevertheless, if N is large it is clear that such an exponentially small diffusion could

only hold for very small c, otherwise the exponential factor would be essentially

unity. It should also be pointed out that an upper bound must be related to

the fastest local diffusion. This may be much more rapid than an average global

diffusion, which would be controlled by the portions of the phase space where the

diffusion is slowest.

In a model problem in which many resonances overlap, for ~N = 3, Chirikov et

al. [10] numerically investigated the scaling of the diffusion with c, finding that it

agreed with (1) for c small, while it followed the three resonance model y = 1/2 for

larger e. However, the important IV-dependence was not investigated.

To investigate global diffusion it is useful to employ a system that has uniform

properties in a coarse-grained sense. The standard map, described by the equations

In+i =/n + Ksin6nt

(2)
0n+l = On + In+1, mod 27T,

where J is the action and 6 is the phase, has this important property as it is 27r

periodic in both angle and action. This latter property has been used for the study

of diffusion in a single map [11, 4]. As can be seen in Figure 1, generated by

iterating a number of initial conditions with stochasticity parameter K = 0.8, the

phase space consists of regions of stochasticity (area filling trajectories) surrounding

island chains of rational frequency. The regions of stochasticity are separated by
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regular motion on phase-spanning KAM curves. The largest region of stochasticity

(thick dark region), we refer to as the "primary stochastic region," and the thinner

regions around smaller islands are "secondary stochastic regions." The KAM curves

consist of two types, librational motion about fixed points (closed curves on the

phase plane) and rotational motion (open curves spanning 27r in the phase 6). For

K > 0.9716... the final rotational KAM curve is destroyed, such that global diffusion

in a coupled set of mappings is across resonances rather than Arnold diffusion along

resources. Konishi and Kaneko [12] studied global diffusion in a set of coupled

standard mappings of the form

Pi(t + 1) = Pi{t) + — {sm[2w(xi+1(t) - Xi(t))) - sin[27r(x,(<) - *<-i(0)]},

Xi(t + 1) = Xi(t) +Pi(i + 1), mod 1, 2= 1,2,.. .N.

This form of nearest neighbor coupling is analogous to the FPU oscillator chain that

has been used to study the closely related problem of the approach to equilibrium

in many degree of freedom systems [13, 14, 15]. Konishi and Kaneko investigated

the diffusion for 0.2 < K < 1, over a range of N values, and found for N > 3 that

the diffusion coefficient D fitted an exponential with the power of c = K given by

7 ~ 0.45 and independent of N. This is quite different from the estimates obtained

from the rigorous upper bounds, and is, in fact, close to 7 = 0.5 predicted from

a three-resonance model. However, the form of the mapping studied by Konishi

and Kaneko does not distinguish how many resonances are driving the diffusion.

A non-nearest neighbor coupling was also investigated, and the diffusion coefficient

was fitted to a power law £7 finding 7 « 5.
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We have adopted an alternate procedure of linking simple standard maps to

gether through a coupling term:

fi+i = %+ Klsin^ + /*ain(*A + ... + O

#i+i = 0n + Jj+ii mod 2?r,

i (3)

tf+i = # + KNsinO»+tism(ea + . .. + C"1),

Ci = tf + 4i. mod27r,

where a total of TV maps (the TV is an index, not an exponent) are coupled together

in groups of m, with 2 < m < N. In other words, each map is coupled to itself

and the next m - 1 maps in cyclical order. Note that this system has TV = N +1

degrees of freedom. In this form we leave the structure of the individual maps

nearly unchanged by making the coupling strength /i small, and control the number

of interacting resonances through the number of coupling phases. The nonlinearity

parameters K\ 1 < i < TV, can also be varied independently of the coupling.

Using this formalism we have investigated the diffusion for two coupled maps

[5]. For two coupled maps the action space can be exhibited by plotting (in action)

the crossings of a surface of section in the phases. Taking the surface at 6\ = 62 = ?r,

for parameters Kl = K2 = 0.8 and fi = 0.01, in Figure 2 the positions of 103 particles

are shown after 2 x 106 mapping iterations for each particle. The widths of the

primary stochastic regions are shown in gray, and positions of a few other secondary

stochastic regions are noted by lines, but their widths are not resolved. Although
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not completely obvious from the figure, the positions of the particles are all in the

connected web of stochasticity, some being in the thinner secondary layers (not

shown). The region labeled A is a primary librational region in both maps, and

the two regions labeled B are in a librational region of the period 2 island chain

in one map and in a primary librational region in the other map. The regions on

combinations of librational and rotational KAM curves in both maps are on KAM

tori in the coupled map and hence are inaccessible from the stochastic web.

From the structure of a phase space divided between regular and chaotic motion

it is evident that the fraction of the phase space volume on regular curves decreases

with an increase in the number of degrees of freedom. We would expect, provided

fx is small enough that the coupling does not greatly perturb the phase space of

a single map, that the fraction of the volume of the coupled system occupied by

KAM curves would scale as fN, were / is the fraction of regular phase space in a

single map. This would affect the diffusion rate if the initial conditions are placed

randomly in the phase space, but not if the initial conditions are all placed within

the stochastic web. If li is not sufficiently small, then the coupling, itself, can be the

primary determinant of the thickness of the secondary stochastic layers, as found

in a previous study [5]. We will return to these questions in Section 2.

For N = m = 2, the local rms diffusion distance across rotational KAM curves

has been previously derived to be [5]:
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2ttlx n^2Q0 e*Q°/2

k)ia fln^ + ^-4.27
i

«4/xn1/2Qoe_,rQo/2 (4)

where the particle is on the KAM curve with action I in the driven map and in the

primary stochastic region of the driving map, which has a stochasticity parameter

Kj. Q0 is the ratio of the unperturbed rotational frequency u>,- of the driven map

(a>i = Ii) to the linearized librational frequency wj = K^2 about the fixed point of

the driving map,

uj Ky2

where the subscript i and j refer to the driven and driving maps, respectively, and

n is the number of iterations. The value of AJrms from (4) is plotted versus Kj in

Fig. 3 (solid line), showing good agreement with the numerical values for Kj < 0.9.

Each numerical value was determined for 218 iterations of 256 particles started on

a rotational KAM curve in the driven map, for ix = 10~4. Note that for Kj > 1.0

the numerical values fall approximately on a line determined by choosing a random

phase in the coupling term of the driven map (dashed line). This suggests a way to

look at the local diffusion. Although the motion in the primary stochastic region

is chaotic, there is a correlation between its phase and the phase of the driven

map. This correlation is strongest for small Kj, in which the stochastic region

is exponentially thin. At Kj » 1.0 the correlation time becomes comparable to a

single iteration of the mapping, and the phase of the coupling term is effectively

V2 sinh(TrQo)
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randomized on every iteration. This interpretation suggests further that anything

which randomizes the phase of the coupling term, such as coupling to additional

maps, will increase the diffusion toward the random phase value. As we will shortly

see, this is indeed the case.

The remainder of this paper is organized as follows. In Section 2 we consider the

effect on the local diffusion of increasing the number of maps coupled together, and

derive a value for the increase in diffusion in going from one to two driving maps. We

use the result to develop a formalism for an arbitrary number of coupling phases.

Then in Section 3 we examine the effect of coupling many maps on the global

diffusion across the entire coupled phase space.

2 Local Arnold Diffusion in Many Coupled Maps

To explore the effect of the number of driving terms on the local diffusion, the

driven map is coupled to all the driving maps, but the driving maps are not coupled

to any other maps, as described by the equations

£+i = 'n + Ki sin e\ + /isin(*i + ... + C),

0n+l = On + 4+1»

%+i = I2n + Kjsinel

dn+l =0n + 4+1 >

i (6)

am __ nm • jtn
on+i — un + 4+1 •
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This allows us to isolate the effect of adding additional phases into the coupling term

while not permitting the driving maps to drive each other out of their respective

primary stochastic regions. For a fixed TV, increasing the number m - 1 of driving

maps increases the rate of Arnold diffusion, as shown in Fig. 4, where we have

plotted the local diffusion distance A7rm8 versus the number of driving maps for

three values of Kj, the stochasticity parameter of the driving maps. In each curve

of Fig. 4, the same value of Kj is used for all the driving maps. A very small value

of Ki = 0.1 is used for the driven map to reduce the effect of nearby island chains.

The value A/rms is that across the single driven map, determined for 218 iterations

of 256 particles with tx = 10~4 and /,• = 2.35.

The asymptotic part of the curves, i.e., the approach to the random phase value

(dashed line) has been explored by plotting the normalized distance (R - AIrms)/R

between A/rm8 and the random walk distance R= (^ •218) , versus m- 1, as

given in Fig. 5. The asymptotic results fit reasonably well to a single empirical

function of m - 1 and Kt the straight lines being determined by the relation

AL =JR(l-ae-^3(m-1)), (7)

with a « 1.1 and /? « 1.5. The fit breaks down for small m —1 where an asymp

totic value is inappropriate, and also for large m - 1 where the variability of the

numerically calculated diffusion does not allow R - A/rms to be determined.

Of fundamental importance for understanding the effect of an increased number

of coupling terms is the calculation of the increase in local diffusion when we go from

one to two driving maps. Consider a model in which each driving map individually
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delivers kicks to the driven map. We see that the doubly driven map effectively

receives kicks at twice the rate of the singly driven map. Since the two driving maps

are not correlated (they are not coupled together) the mean square local diffusion

rate doubles. Occasionally by chance, the two driving maps are approximately in

phase, and deliver a single large kick to the driven map. These two effects are added

to give the total increase in the diffusion rate.

We combine these two effects in the following calculation. The mean square

size of the kick per half revolution along the separatrix of the primary stochastic

region of a single driving map is proportional to the square of a Melnikov-Arnold

integral [4]:
/oo

cos[Q0s + 4>{s)]ds, (8)
•oo

where s = utjt is a non-dimensional time, Q0 is the ratio of rotational driven fre

quency to driving frequency, as defined in (5), and

<f>{s) = 4 atan (e*)-7r (9)

is the evolution of the angle along the separatrix. For two driving maps, we alter

(9) to

<j>(s) =4[atan (e'+^2) +atan (es"^2)] (10)

Where 0is the phase difference between the two driving maps. Using (10) in (8), and

integrating the result numerically gives the result plotted in Fig. 6 as a function

of 9 for Q0 = 3.71, corresponding to Kj = 0.4. The large value of (8) when the

two driving maps are in phase is evident. The oscillation of (8) away from 0 as 0
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represents the effect of the two individual out-of-phase driving maps. We determine

the range of 0 to include in the calculation as follows: in (9), 4>{s) represents motion

on the separatrix of the primary stochastic region, so <j>{s) —• ±tt as s —• ±oo. In

reality, the particle in the primary stochastic region is not exactly on the separatrix,

and so ^(s) oscillates irregularly between ±ir. The average period of this oscillation

in s —ujt will be ujT, where T is the average period (in mapping iterations) within

the separatrix layer of the primary stochastic region [4]

32e

with u>j « I<]12 and with

r=Aln
Uij W\

(11)

".=8*(^)3e-"'*'"° <«>
the normalized thickness of the stochastic layer. Equations (11) and (12) combine

to give

2tt2 32e/<?/2 , v

The second term is negative, relatively small and slowly varying. For small values

of Kj we can appropriate ujT « 2ir2KJ112. The procedure is then to take the ratio

of the root mean square value of the entire curve in Fig. 6, taken over values of 0

corresponding to one average period ujT of the oscillation in the stochastic layer,

to the single phase Melnikov-Arnold integral. For the case of Kj = 0.4 (QQ = 3.71)

shown in Fig. 6, using (13), the ratio of the mean square values is taken over

approximately 0 = s = ±37r. Doing this yields a result for the diffusion enhancement

factor which is plotted versus Kj as the solid line in Fig. 7. The values determined
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by iterating the mapping are denoted by diamonds, showing reasonable agreement

with the analytical result.

Consider now the procedure for going to more driving maps. We must sum the

probabilities of the various kinds of interactions when one or more of the driving

terms coincide to give one large kick. We develop a probabilistic formula and then

analytically calculate the terms in the resulting sum. Taking the most general

case of p driving phases, d = r + s rotation and secondary stochastic phases, and

£ libration phases (m = p + d+ £), the local diffusion coefficient along any of the d

actions I = (Ji,... Id) can be written in the form of a modified binomial expansion

i-l

x - r cos2*"-'') 0' dO'A2MA(p +1-0, (14)

where T is obtained from (13), T« 2ir2/Kj, and Qd = Ud/K]12, with wd = h + J2 +

•••+ Id mod 2tt for 0 < wd < tt and u>d = 2* - [{h + h + 1- Id) mod 2rr] otherwise.

Ama(Ic) is the peak value of the M-A integral for k = p+ 1- i stochastic drives.

For 0 = 0 in (10) we see that this coincides with the usual set of M-A integrals as

defined in Refs. 2 and 4

where A2k is determined by the recursion relation for MA integrals

At =jQ2-At-i-Ai-2, (15)
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where Ai = 27re,rQo/2/sinhirQo and A2 = 2QqA\. For large Q0 this can be expressed

in the closed form

At =̂ ^-M. (16)
The binomial coefficients in (14) give the number of coincidences of the phases,

that lead to the coincidence enhancement of the MA integrals. Specifically, the

factor (At/T)m-2 (i = 1) is the probability of all p- 1 enhancement peaks of width

At occuring simultaneously within the interval T, and the integrals represent the

sharpening of the peaks with increasing number of coincidences. The last (i = p)

term in (14) is due to the incoherent summing of the kicks of the p driving phases,

and is a factor of two lower than the coherent sum of the two driving phases shown

in the wings of Fig. 6, because of the incoherent summing of squared quantites. In

(14), the effect of the £ libration phases on DPd is neglected, which is valid in the

limit of small Kj. The ratio of the peak of the MA integral with two driving phases,

to the value of the single drive MA integral, for K = 0.4 [Qd = 3.7,>1ma(1) = 0.278)

is, from Fig. 6,

Ama(2)/AMa{1) « 8.

Using (15), we obtain Ama(2)/Ama(1) = 7.8, which is in agreement with this nu

merically determined ratio. This good agreement holds for all values of K. We

also find that the width of the central maximum in the MA integral, A0 = UjAt, is

proportional to I<j/2, with the actual width found numerically as in Fig. 6. The

average total phase in the separatrix layer varies according to (13). The ratio At/T

as a function of K is given in Fig. 8. The integrals in (14) heuristically account
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for the sharpening of the peak by additional coincidences and can be evaluated in

closed form

3

Using these relations we plot in Fig. 9 the enhancement factor for Kj = 0.2

and m - 1 between 1 and 5, corresponding to the numerical values found in Fig. 4.

For comparison, we repeat the numerical results in Fig. 9. The theoretical curve

(solid line) is in good agreement with the numerical values, indicating the essential

correctness of the method. The enhancement of AJ,™ with increasing m follows

closely the numerically determined enhancement.

3 Global Arnold Diffusion in Many Coupled Maps

We now examine the global diffusion in action across the higher dimensional

phase space over long times. The N maps are coupled together in groups of m.

As a special case, we choose the same value of K for every map. The distinction

between driven and driving maps is lost, because a single map may be both driven

and driving at different times in the diffusion process. For this reason, and because

the diffusion rate varies greatly with the region of phase space a particle occupies, it

should be noted that determining the global diffusion is a more complicated problem

than determining the local diffusion.

We formulate an intuitive model of how the global diffusion proceeds. Assume

a particle starts in the primary stochastic regions of all the maps (the intersections

of the thickest shaded regions in Fig. 2). The particle will explore this multiple

stochastic region, each map delivering kicks to the other maps, until it is kicked
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out onto a nearby KAM curve in one or more of the maps (the thick shaded re

gions between intersections). The stochasticity in the remaining maps will then

drive Arnold diffusion across these KAM curves (along the thick shaded regions).

Eventually, the particle will encounter another stochastic region in one of the driven

maps (one of the thinner shaded lines). The particle will then explore this stochastic

region (the intersections of shaded lines), until it is again kicked out onto a nearby

KAM curve to continue its Arnold diffusion (along one of the shaded lines). Occa

sionally the opposite happens and the kicks from a thin stochastic region will kick

the particle out of a larger stochastic region in another map. It is by this process

that the stochastic portion of the phase space will become populated. This process

is elucidated with additional detail for two coupled maps in reference [5].

The dependence of the global rms Arnold diffusion distance AI^s on N and

m is shown in Fig. 10, for K = 0.8, ix = 0.01, and 221 iterations of 256 particles.

For each curve with a particular TV, the diffusion distance approaches an asymptotic

value with increasing m, as wasthe casefor local diffusion. Larger values of N result

in longer diffusion distances, because the phase space is larger. We can remove the

effect of N by dividing each of the curves in Fig. 10 by \/N, which is the length

of the diagonal in the action space. The diffusion is then normalized to a single

diffusing direction. The result, shown in Fig. 11, is that all that curves in Fig.

9 lie approximately on a universal curve, which is dependent only on m, with the

exception of the points representing fully coupled sets of maps (m = N). These

points lie along a lower curve, shown as the dotted line in Fig. 11, to which we have

added the fully coupled cases for N = 3, 5, 6, and 7. We do not have an explanation
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for why these points lie below the universal curve, although we speculate that

additional correlation due to the symmetry is introduced when the coupling term

has the same value for all maps, which is the case for a fully coupled system.

We now calculate a global diffusion for N > 2. We use the local diffusion

coefficient (14) and phase space considerations. Our fundamental assumption is the

ergodic assumption; that is, in the steady-state all accessible phase space is equally

populated. To apply the assumption to a non-steady-state global diffusion problem

weuse the approximation that the more accessible portion of the phase space, which

fills on the time scale required to calculate the diffusion, is sufficiently close to the

total accessible phase space that a reasonably accurate calculation can be made. The

hypothesis of asymptotic ergodicity has been checked for a simpler 2-D mapping

[16]. Following the reasoning in reference [5], we assume that in a coupled map the

primary stochastic region (which we will denote P) can drive Arnold diffusion across

rotational orbits (R) and across the stochastic regions associated with the secondary

resonances (5). It can also drive diffusion across a librational region (£»), but this

does not contribute to global diffusion because the motion averages to the location

in action of the fixed point of a librational region. We determine the probabilities

of a particle being in the various accessible regions of phase space, and the effect of

the diffusion in each region.

Before considering the probabilities of the different types of phase space in

which diffusion is taking place, we must first define appropriate averages over the

diffusing (driven) direction. If there is only one regular phase in the coupling term,

d = r + s = 1, which must then be the phase along the diffusing direction, then
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the average diffusion coefficient ~DP\ for the diffusing action, say J, is obtained by

averaging the reciprocal of Dpi(I) over /

J__l fw dl
Dpi ~ t7o DpiW

Dp for stochastic orbits is large and librational orbits only store particles. Therefore

we perform the average only over rotational orbits, yielding

— - - f dI
DPi ~ irJRDpliR(I)' ( ]

The form of Dpi,jt for the rotation orbits was given in reference [5]. Since the R

and S regions are closely intermingled in action while DpifR varies slowly over these

regions, we can approximate (18) by

J- =-?-i / dI (19)Dpi R+ Stt Jr+s Dpit(R+S){I)

If there is more than one regular or secondary stochastic phase in the coupling term,

d > 2, then these phases add to give a combined sum of actions Id = w<f, as described

previously. Since all values of action for the phases other than the diffusing phase

are possible, an average must first be performed over these other actions. In this

case

Dp2(I) =JDp2(I)dL'/ Jdl' (20)
where I' is an integration over all of the i"s except the diffusingone, and the subscript

p2 indicates that d = r + s>2in the coupling term. As discussed earlier, we

assume that only actions in the R and 5 regions contribute, while the L actions

are considered to oscillate about zero. To evaluate Dp2i we note that two or more
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regular phases appear as a sum in the coupling term; hence, they can be considered

as a single regular phase in evaluating the MA integral. This has been confirmed

numerically. Performing the integral in (20) over the allowed ranges of all actions

I' yields the result that Dp2(I) = const, independent of the diffusing (driven) action

J. Performing the final average of D~2l as in (19) to yield Dp2 is then trivial.

In terms of Dp\ and Dp2, we can now express the global diffusion rate for m

phases in the coupling and all mappings and couplings having the same form, as

m-l

d°{n> m)=*i-S+V £ fa1 ("7 0pp [{R+s+L)m'l~p• Lm~l~p]
+:Dpi(m~1)p*i/'1-1-'} (21)

where, as previously (R+S) is the fractional volume of the diffusing phase space, N

is the number of maps in which diffusion can independently occur, P is the fractional

volume of the phase space of the primary drive, and 1- (R+ L)N is the fractional

volume of the accessible phase space. For N large, Dg a N, and thus AT,™ oc JV1'2,

as found numerically.

We illustrate the method with a particular example, that of K = 0.8 for all

maps and lx = 0.01. This case has already been used to calculate the diffusion for

two coupled maps, in reference [5]. The fractions of phase space in these various

regions were found to be P « 0.19 primary stochastic, 5 w 0.30 secondary stochastic,

Rfa 0.11 rotational, and L « 0.40 librational. To calculate the diffusion for two and

three coupling phases we use the example of N = 4, so as to avoid the complications

of a fully coupled system. (The subdivision of phase space is shown in Fig. 12 for
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two coupled maps and one driving phase; N = 2, m = 2.) Using (21), the global

diffusion is

^•^"T^lw15" (22)
where the first subscript 1 indicates that p= 1. Since d= 1 (one regular phase), the

first type of average (19) over the reciprocal of Du is to be taken. Calculating Dn

from (19), numerically,

Dn = 3.5 •10"5. (23)

Then, using (22) to calculate Dg, with the values of P, R, 5, and L for K = 0.8, we

have

D,(4,2) = 1.17-10"8. (24)

To compare this theoretical result with the numerical value, we use

A/rms = (Dgn/N)1'2, (n = 221, N = 4)

to find AJrm8 = 2.5 somewhat smaller than the numerical result in Fig. 11, as

expected, because the numerics have not yet reached their asymptotic values [5].

We compare this with the result for three phases in the coupling. The global

rate of diffusion for N = 4, m = 3 is given by the sum of the diffusion rates times

their respective phase space volumes, each divided by the accessible volume. Using

(21), we obtain

DM, 3) =1A}**+l)A [P2D2i +2P(R+S)D12 +2PLDn] . (25)
The evaluation of Dn was given above. The evaluations of ~D\2 and ~D2\ are, in

general, quite complicated. For the purposes of this comparison we will make some
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simplifying assumptions. Weassume that almost all frequencies (actions) associated

with the second (non-diffusing) driving phase exist at each frequency (action) of

the diffusing (driven) phase. Since the frequency in the MA integral is the sum

of all the regular (rotational) frequencies, all actions of the driven phase have the

same average and consequently the same average MA integral. This is obtained by

averaging the MA integral over the driven phase. Explicitly, using A2 as defined

from (15), we can write

Ama = Z / 4ffQ<> - u n irfJ» (26)it JQ sinh(TrQo)

where Q0 = I/K1'2. The integral has been evaluated numerically for K = 0.8 to

give Ama = 3.1. Using this average value of the MA integral, it is then trivial to

evaluate (19) to calculate an approximate value of xDi2 as follows. Substituting ]4ma

into (14) we only have a single term giving

and from (19), we obtain

giving

Dl2 =2^r^A=11710~5

1 _ R 1 r dl
D12 ~ R+SttJq Dl2y

D12 = 3.6-KT5. (27)

To find ~D2i we perform the average of l/£>2i as in (19), with the local D21

obtained directly from (14),

°k(i) =4t ~^A(2)+2(l-^)^A(l)
2 T

(28)
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Numerically integrating (19), using (28), with the AMa integrals obtained from (15)

(note Q0 = I/K1'2), we obtain

£>2i = 1.5-10-4. (29)

Substituting (23), (27) and (29) in (25), with values of P, R+S, and L obtained

for K = 0.8, we have

Dg(4,3) =14^°04q7(004)1.5 •lO"4 +(0.16)3.6 •10"5 +(0.16)3.5 •10"5 =2.9 •10"5. (30)

Dividing by Dg(4> 2) as given in (24) and taking the square root, we find the global

enhancement factor

ff-iro =S -1.6 (31)A7rm8(m = 2) v '

which is in reasonable agreement with the numerical enhancement factor of 1.9

obtained from Fig. 11.

4 Conclusions and Discussion

We have shown that the local Arnold diffusion in a system of coupled standard

maps is enhanced as the number p of maps driving the diffusion is increased. For

sufficiently large p the rms diffusion distance saturates at a value consistent with

a random walk produced by randomizing the phase of the coupling term on every

iteration. The number p of driving phases in the coupling term introduces two ef

fects, a simple increase in the number of kicks by the number of stochastic driving

terms, and an occasional large kick when two or more stochastic phases coincide.

The latter effect dominates at small values of the stochasticity parameter K. We

have calculated the diffusion enhancement factor as a function of the stochasticity
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parameter K when the number of driving maps is increased from one to two, by

generalizing the Melnikov-Arnold integral to include two driving phases. This ap

proach was generalized to more driving phases, without performing the numerical

integration, by assuming an analytic form of the MA integral that gives results in

agreement with the numerical integration for two driving phases.

When the system diffuses globally, we have shown that the diffusion distance

increases as the square root of the number of maps in the system. The global

diffusion also saturates with increasing m for large m, which can be associated with

the value at which the phase in the coupling term is randomized. A calculation of

the global diffusion enhancement based on local diffusion enhancement and phase

space volume considerations produces a result which is in reasonable agreement

with numerical calculations. However, assumptions were made in the calculation

that have not been checked in detail. Further work is necessary to confirm the

relations as a function of the driving nonlinearity parameter K.

The scaling of K and p found in the local diffusion can be compared to the for

mulas bounding the diffusion from above. Because of the limit to the diffusion rate

at the value at which the coupling phase is randomized on every mapping period,

K must be kept sufficiently small with respect to m to see the proportionalities. We

use (1), with €= 1/Q§> 7 = 1/2N, and A= §, to match the exponent to the MA inte

gral for N = 2 (N = ~N-1). We set the constant of proportionality to match A/rms at

JV = 2(m-l = l)in Fig. 8, and plot the fully coupled (m = N) scaling as a dashed

line. The result lies everywhere above the calculated curve, as expected. However,

we caution that we have not applied the "upper bound" formula for the sufficiently
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small K to which it rigorously applies. This is quite difficult to do numerically, but

is accessible from (14) and (15).

In a recent calculation Chirikov and Vecheslavov [17] have estimated that the

rate of global diffusion for TV sufficiently large and c not too small behaves as a

power law in f, i) a c', ij « 6.5, and to be independent of ~N. Since from (21),

Dg(N, m) saturates with increasing m, for a given K-value, the possibility is open

of obtaining a power law variation of D with K. It is clear from the numerical

results of Fig. 4 that the range over which such a formula could hold is limited, and

not fully accessible with the numerical data. Equations (14), (15) and (21) can be

used to extend the work into this power law regime, as described in the previous

paragraph. We leave these comparisons for future work.
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Figure Captions

Figure 1. The standard map for K = 0.8 and a numberof initial particle positions.

Figure 2. Arnold diffusion in the 2* periodic (Ji, I2) phase plane for a surface
of section at 0X = 02 = n, with K1 = K2 = 0.8 and ix = 0.01. 1000 particles were
started in the primary stochastic region of both maps, and run for two million iter
ations. The particles are superimposed upon a grid showing the primary stochastic
region and the stochastic regions around the period 2, 3, and 4 island chains in the
uncoupled map.

Figure 3. Local rms Arnold diffusion distance AJrm8 versus Kj for two coupled
maps. The solid line is the theoretical value. The dashed line represents the ran
dom walk value obtained by randomizing the phase of the coupling term on every
iteration. The circles are the numerical calculations. (// = 10~4, n = 218)

Figure 4. Local rms Arnold diffusion distance AJrms versus m - 1 for three dif
ferent values of Kj. The dashed line represents the random walk value obtained by
randomizing the phase of the coupling term on every iteration.

Figure 5. Normalized difference between the local rms Arnold diffusion distance
of Figure 4 and the random walk diffusion distance. The straight lines are an
empirical fit.

Figure 6. The value of the Melnikov-Arnold integral versus the phase difference
0 between two driving maps, for Kj =0.4.

Figure 7. The local Arnold diffusion enhancement factor versus Kj. The points
are determined from iterating the mapping, and the solid line is the theoretical
value.

Figure 8. The ratio of At, the peak of the two-driving-phase Melnikov-Arnold
integral, to the average period T of the separatrix layer, as a function of K.

Figure 9. Local rmsArnold diffusion distance versus m-1 for Kj —0.2, compared
to the theoretical prediction. The dashed line is a global "upper bound."

Figure 10. The global Arnold diffusion distance versus m for several values of N,
the total number of maps (K = 0.8, ix = 0.01, n = 221).

Figure 11. Same data as in Figure 10, but each curve has been normalized by
dividing by N1/2. The solid line is the universal curve. The dotted line is drawn
through the data points representing fully coupled maps (K = 0.8, ix = 0.01).
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Figure 12. Phase space areas of the various regions of twoweakly coupled maps;
K = 0.8.
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