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1. Introduction

Recently, a significant increase in the number of publications on synchronization of

Chua's circuit and arrays of Chua's circuits have appeared1"6. Because of its simplicity,

robustness and low cost, the Chua's circuit7 has become a tool for analytical, numerical and

experimental study of nonlinear phenomena. In this paper we present a rigorous analysis of

synchronization in a one-dimensional array of Chua's circuits.

2. Main result

The basic cell of our one-dimensional array is a three-dimensional dynamical system

described by the following dimensionless equations:

x = -fix) + axy + a2z

y = *w + bi2z + bix I (i)
z = b21y + bZ2z + b2x

x, y, z € IR

where alf a2, b^, b^, b^, b^, ^ and b^ are parameters, and fix) is a nonlinear

function. The set of equations representing the array are, in its dimensionless form, :

*k = -ftxk) + aiyk ♦ a2zk + D< *k-i ' 2xk + xk+1)

^k = bnyk +bi22k +bi*k I (2)
2k = ^Zl^k + b22Zk + b2*k

xk* Vk» 2k € R k= 1, 2, .... N,

where D > 0 represents the diffusion coefficient of the variable x. In addition to (2), we

impose the following zero-flux boundary conditions:

dx^D/ds = 0, dxHit)/ds = 0

where s is the direction of the diffusion. This is equivalent to assuming that:

x0(t) = x,(t), xN+1(t) = xN(t), for all t i 0 (3)
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Note that if As -» 0, then a continuous model is obtained, where the "diffusion" term of the

first equation in (2) represents the Laplacian of x, d2x/ds2.

Example 1. Eqs.(l) represent Chua's circuit, if:

a1 = a, a2= 0, bn = -1, b12 = 1 = b„ b21= -0, b22 = b2 = 0, fix) = a h(x)

where hix) describes a continuous three-segment piecewise-linear curve of Chua's diode8,9.

In this case, Eqs.(2) represent an array of Chua's circuit. Recently, traveling wave fronts

are investigated in an array of Chua's circuit5'6. For diffusion coefficient less than some

nonzero critical value it has been observed numerically that the traveling front fail to

propagate. A continuous model, the so called time-delayed Chua's circuit, is considered in

Ref.10. It has been proven rigorously that the time-delayed Chua's circuit exhibits the

period-adding phenomenon.

Example 2. Eqs.(2) represent an array of the unfolded canonical Chua's circuit11"14, if:

a1 = a, a2= 0, bn = -1, b12 = 1 = bv b21= -0, b22 = -y, b2 = 0, fix) = a hix).

Theorem 1. Assume that the following conditions are satisfied:

(i) There exists a positive definite Lyapunov function

Vix, y, z) = - x2 + - ( A y2 + 2B yz + C z2 )
2 2

A
such that the trajectory derivative of Vix, y, z), Vix, y, z) = -Qix, y, z), with respect to

the linear system:

is negative definite.

x = -ax + ajy + a2z

y = bny + bl2z + bxx

z = b21y + b22z + b2x

(4)



(ii) There exists a real number

A A0 " a + 2D
v =

2D
(5)

A
such that 0 < v < 1, where A0 = min /'(£).

Then there exists an integer NQ = Int ( w/arccos v ), defined to be the integer part of

the argument, such that in the phase space of the array, described by Eqs. (2), of N cells,

N s Nq, the manifold:
A

M - i ixv yv z,,... xN, yN, zN): *k= *k+1, yR= yk+p zk= 2fc+li k = 1§ .., lsj_i>

is asymptotically stable.

Proof. See Appendix.

Remarks:

1. If the manifold Af is asymptotically stable, then all cells in our one-dimensional

array are synchronized, i.e. each coupled subsystem has identical behavior, when t -> <x>:

*k^)= *k+i(t), yk(t)= yk+i(t), zk(t)= zk+1(t), k = i, .., N-i

2. The condition y= 0 determines the critical value of the diffusion coefficient:

-A0 + a
D = inf

a 2

Because v < 1, it follows that a >\q, and consequently D*a 0. If D is close to D* ( D > D*),

then N0 = 2, while when D -> «, then N0 -> w, as well. Let v = cos — , t = 2, 3 then
1 i

D*
from (5) we get D = . Hence, for fixed a and A (note that a and A depend only on

( 1 - v ) ° o

the parameters of the system (1)), we have the following interpretation of the theorem 1: if

Di < D ~ Di+r i = 2, 3 then the array with " i " cells is synchronized.

3. Suppose a can be chosen such that it is arbitrarily close to A, i.e. a = A + e
o o '

where e is a small positive number. Then, D*= 0. In a similar way, D = 0 for all i. Hence,



if D > 0, the array with an arbitrary number of cells is synchronized.

4. The above theorem gives only sufficient conditions for asymptotic stability of the

manifold M. As a consequence, this theorem does not give the minimal value of the critical

diffusion coefficient, except in the case which is considered in the Remark 3.

5. Let the basic cell of our one-dimensional array be an n-dimensional dynamical system

described by the following dimensionless equations:

x = -fix) + dT y

y = D y + e x

x 6 R, y € Rn_1

where d, e, y are (n-l)-dimensional vectors and D is an (n-l)x(n-l) matrix. An example of

such a system is the n-dimensional canonical Chua's circuit15. The generalization of the

given theorem in this case is straightforward.

3. Application to Chua's circuit

Chua's circuit

The state equations of Chua's circuit are:

x = a( y - hix) )

y = x - y + z

z = -0y

where hix) = m^ + (m0 - nijjt |x+l| - |x-l| ]/2. The system is described by four parameters

{ a, 0, m0, m1 }, with the double scroll chaotic attractor occurring in a neighborhood of {

9, 14(2/7), -1/7, 2/7 }. In what follows we assume that a > 0, 0 > 0 and we fix the values

of m0 and mx to -1/7 and 2/7, respectively. Consider the Lyapunov function defined by:

Vix, y, z) = - x2 + - ( A y2 + 2B yz + C z2 )
2 2



a e A - B
where A = a, B = , C = , and e > 0 is a small parameter. It is easy to show

0 c + 1 0

that its trajectory derivative with respect to the linear system (4) is negative definite,

if

a > (e + 1) a + — (6)
4 0 (c + 1)

On the other hand, since A = m , the inequality v < 1 is satisfied if
oo

a > m
o

The critical value of the diffusion coefficient is obtained when e -> 0 in Eq.(6). Hence, it

is given by:

D*= (7)
2

Thus, if D > D , the array of N Chua's circuit, N s N , is synchronized. For the double

scroll chaotic attractor, the critical value is:

9+1/7

D*= = 4.5714.
2

The first four values of the diffusion coefficient D are:
i

D2 = D*. D3 = 9.1428, D^ =15.6077 and D = 23.9362.

So, if D < D s D , i = 2, 3 then N = t, and the array with N s N cells is
ll+l o o

synchronized. Figure 1 shows the number of cells N in the array of Chua's circuits as a

function of the diffusion coefficient D. We stress that the above analysis with the same

critical coefficient D* given by (7) is still valid for all m < m and m < a.
0 1 o

Since the theorem 1. gives only sufficient conditions for asymptotic stability of the

manifold M, the above values of D* and D, i = 2, 3 are not the minimal values the

diffusion coefficient. Numerically we found that D* is less than 3.5. Figure 2 shows a

double scroll chaotic attractor associated with the first and the last cell in a linear



array of Chua's circuits with five cells and D = 20. As shown in Fig.3 the array is

synchronized, i.e. each coupled subsystem has identical behavior, when t -» oo. If we add just

one more cell to the array while retaining the value of D (D = 20), we found that the array

is no longer synchronized. In fact, all trajectories become unbounded and no attractor is

found numerically. This example demonstrates that our sufficient condition for

synchronization is quite sharp.

Canonical Chua's circuit

The state equations of the canonical Chua's circuit are:

x = a i y - hix) )

y = x - y + z

z = -0 y - r z

where hix) = n^x + (m0 - nijjE \x+l\ - \x-l\ ]/2. The system (8) is described by five

parameters { a, 0, z, m0, m1 }. Let us consider the Lyapunov function:

Vix, y, z) = - x2 + - ( A y2 + 2B yz + C z2 )
2 2

(8)

where A > 0, AC - B > 0. Assume that one can find the constants A, B, and C such that all

of the main determinants of the matrix:

2a -(a + A) -B

-(a + A) 2(A +B0) -A + B(y + 1) + C0
-B -A + B(y + 1) + C0 2(Cy - B)

are positive. On the other hand, v < 1 implies A < a, where A = min { m , m >. Now, we can

apply the above theorem. Of course, for fixed values of the parameters { a, 0, y, m0, mx },
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it is not always easy or possible to find such constants A, B and C. Here, we shall give

some examples.

Example 3. If a > 0, 0 > 0, r > 0, then using:

A = a, B = 0, C = a/0

we obtain that the corresponding array is synchronized if a > max{ a, A } and the critical
o

value of the diffusion coefficient is given by:

.» max{ 0, a, min{ m0, m,} } - min{ m0, m,}
D = 1 ° L_ (9)

2

For the case of the double scroll chaotic attractor occurring in a neighborhood of a = 9, 0

= 14(2/7), m0 = -1/7, ml = 2/7 and small y (y > 0), (9) becomes (7).

Example 4. If a < 0, 0 > 0, y > 0, then using:

A = -a, B = 0, C = -a/0

the array is synchronized if a > max { 0, Aq >, and the critical value of the diffusion

coefficient is again given by (9). Let us consider in more detail the following case: 0 < m

< m . Then, both conditions of the theorem 1, are satisfied if a > A = m . Thus, a can be
1 oo

chosen arbitrarily close to Aq: Eq.(9) gives D*= 0, and for D > 0, the array of canonical

Chua's circuits with an arbitrary number of cells is synchronized.

4. CONCLUSIONS

In this paper we have analyzed rigorously the synchronization in a one-dimensional

array of Chua's circuits. We have proved that under some conditions given in theorem 1,

there exists an integer Nq = Int ( n/arccos v ), where v is given by (5), such that all

cells in the one-dimensional array of N cells, N s N , are synchronized, i.e. each coupled

subsystem has identical behavior, when t -> ».

8



We close this paper with the following questions for further study:

(i) generalize theorem 1 to two- and three-dimensional arrays of Chua's circuit;

(ii) find the conditions such that in an array of N-cells, the first " i " cells , i <

N, are synchronized, while the remaining (N - i) cells are not synchronized.
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APPENDIX. Proof of Theorem 1.

Using the notation :

we obtain:

X = X - X , y=y-y , Z=Z-Z
k k k+l k "'k ''k+l k k k+1

Xk = -A(xk, xk+1)Xk + a,Vk + a2Zk + D( Xk_, - 2Xk + Xk+1)

bnyk + b12Zk + blXkyk =

Zk = b21Yk + b22Zk + b2Xk
k= 1, 2, ..., N - 1,

with boundary conditions

where

X0 = XN = 0.

A k + l k
A(x , X ) =

k k+l
X - X

k+l k

(A.1)

Applying the Mean-value theorem, we can write A(x , x ) - /'(£)» £ € ix , x ), and hence
k k+l k k+l

Xix , X ) > A0
k k+l u

Consider the Lyapunov function

N-l

w = I vix. y z)
k=i k k k

and its trajectory derivative with respect to (A.l):

N-l

W= £ { -(A +2D -a)X2 + 2DX X + 2DX X - QiX , Y , Z ) }
, , k k k+l k k-1 k k k
k = l

W is negative definite if the quadratic form:

A N_1 1 2p = I * (* + 2D - a)X - 2DX X - 2DX X >
, , 0 k k k+l k k-1
k=l

k k k+l

is positive definite. This is true if all main determinants Ak, k = 1, .... N of the matrix:
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Zv -1 0 0 0

-1 Zv -1 0 0

0 -1 Zv 0 0

0 0 0 Zv -1

0 0 0 -1 Zv

are positive, where v is given by (5). One can easily verify that the following recurrent

equation is valid:

A = ZvL - A , A = 1, A = 0, k = 1, ..., N-l.
k k-1 k-2 0-1

If v < 1, then the last equation has a solution:

sin (k+l)0
A = , k = 1 N-l

k sin 0

where <p = arccos v. For v > 0 and N £ N , N = Int ( n/arccos v ), all A , k = 1, ..., N-l
0 0 k

are positive. Hence, the origin of the system (A.l) is asymptotically stable, and

consequently, the manifold M is asymptotically stable as well. •
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Figure captions:

Fig.l The number of cells N in a linear array of Chua's circuits as a function of the

diffusion coefficient: if D < D £ D . i = 2, 3, .... then N = i, and the array with N £
i i+i o J

N cells is synchronized.

Fig.2 Double scroll chaotic attractor observed from (a) the first cell and (b) the

fifth cell of the array of Chua's circuit with five cells.

Fig.3 Synchronization in a linear array of Chua's circuits with five cells:

(a) x vs. x , (b) y vs. y , and (c) z vs. z .
15 15 15
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