

Copyright © 1993, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

FILE SYSTEM PERFORMANCE AND

TRANSACTION SUPPORT

by

Margo Hene Seltzer

Memorandum No. UCB/ERL M93/1

7 January 1993

FILE SYSTEM PERFORMANCE AND

TRANSACTION SUPPORT

by

Margo Ilene Seltzer

Memorandum No. UCB/ERL M93/1

7 January 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

FILE SYSTEM PERFORMANCE AND

TRANSACTION SUPPORT

by

Margo Ilene Seltzer

Memorandum No. UCB/ERL M93/1

7 January 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

File System Performance and Transaction Support

by

Margo Ilene Seltzer

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Michael Stonebraker, Chair

This thesis considers two related issues: the impact of disk layout on file system throughput
and the integration of transaction support in file systems.

Historic file system designs have optimized for reading, as read throughput was the I/O per
formance bottleneck. Since increasing main-memory cache sizes effectively reduce disk read
traffic [BAKER91], disk write performance has become the I/O performance bottleneck
[OUST89]. This thesis presents both simulation and implementation analysis of the performance
of read-optimized and write-optimized file systems.

An example of a file system with a disk layout optimized for writing is a log-structured file
system, where writes are bundled and written sequentially. Empirical evidence in [ROSE90],
[ROSE91], and [ROSE92] indicates that alog-structured file system provides superior write per
formance and equivalent read performance to traditional file systems. This thesis analyzes and
evaluates the log-structured file system presented in [ROSE91], isolating some of the critical
issues in its desiga Additionally, a modified design addressing these issues is presented and
evaluated.

Log-structured file systems also offer the potential for superior integration of transaction pro
cessing into the system. Because log-structured file systems use logging techniques to store files,
incorporating transaction mechanisms into the file system is a natural extension. This thesis
presents the design, implementation, and analysis of both user-level transaction management on
read and write optimized file systems and embedded transaction management in awrite optim
ized file system.

This thesis shows that both log-structured file systems and simple, read-optimized file systems
can attain nearly 100% ofthe disk bandwidth when VOs are large or sequential. The improved
write performance of LFS discussed in [ROSE92] is only attainable when garbage collection
overhead is small, and in nearly all ofthe workloads examined, performance ofLFS is compar
able to that ofaread-optimized file system. On transaction processing workloads where asteady
stream of small, random VOs are issued, garbage collection reduces LFS throughput bv 35% to
40%.

Dedication

To Nathan Goodman
for believing inme when I doubted myself andfor
helpingmejind large mountains and move them.

•••

111

IV

Table of Contents

1. Introduction 1

2. Related Work 3

2.1. File Systems 3

2.1.1. Read-Optimized File Systems 3
2.1.1.1. IBM's Extent Based File System 3

2.1.1.2. The UNIX1 V7 Fde System 4
2.1.1.3. The UNIX FastFde System 4
2.1.1.4. Extent-like Performance on the Fast File System 4
2.1.1.5.The Dartmouth Time Sharing System 4
2.1.1.6. Restricted Buddy Allocation 5

2.1.2.Write-OptimizedFile Systems 5
2.1.2.1. DECorum 5
2.1.2.2. The Database Cache 6
2.1.2.3. Clio's Log Files 6
2.1.2.4. The Log-structured File System 6

2.2. Transaction Processing Systems 8
2.2.1.User-Level Transaction Support 8

2.2.1.1. Commercial Database Management Systems 9
2.2.1.2.Tuxedo 9
2.2.1.3. Camelot 9

2.2.2. Embedded Transaction Support 9
2.2.2.1. Tandem's ENCOMPASS 10
2.2.2.2. Stratus' Transaction Processing Facility 10
2.2.2.3. Hewlett-Packard's MPE System 10
2.2.2.4. LOCUS 11
2.2.2.5. Quicksilver 11

2.3.Transaction System Evaluations 11
2.3.1. Comparison of XDFS and CFS 11
2.3.2. Operating System Support for Databases 12
2.3.3. Virtual Memory Management for Database Systems 12
2.3.4. Operating System Transactions forDatabases 12
2.3.5. User-Level Data Managers v.s. Embedded Transaction Support 13

2.4. Conclusions 13
3. Read-Optimized File Systems 14

3.1.The SimulationModel 14
3.1.1.The Disk System 15
3.1.2. Workload Characterization 15

3.2. Evaluation Criteria 17
3.3.The AllocationPolicies 17

V

3.3.1. Binary Buddy Allocation 18
3.3.2. Restricted Buddy System 20

3.3.2.1. Maintaining Contiguous Free Space 20
3.3.2.2. File System Parameterization 20
3.3.2.3. Allocation and Deallocation 21

3.3.2.4. Exploiting the Underlying DiskSystem 22
3.3.3. Extent-Based Systems 26
3.3.4. Fixed-Block Allocation 27

3.4. Comparison of Allocation Policies 29
3.5. Conclusions 30

4. Transaction Performance andFileSystem Disk Allocation 31
4.1. A Log-Structured File System 31
4.2. Simulation Overview 33

4.3. The Simulation Model 33

4.4. Transaction Processing Models 36
4.4.1. The Data Manager Model 37

4.4.2. The Operating System Model 37

4.4.3. The Log-Structured File System Models 38
4.4.4. Model Summary 39

4.5. Simulation Results 40

4.5.1. CPU Boundedness 40

4.5.2. Disk Boundedness 42

4.5.3. Lock Contention 44

4.6. Conclusions 50

5. Transaction Support in a Log-Structured File System 52
5.1. A User-Level Transaction System 52

5.1.1. Crash Recovery 52

5.1.2. Concurrency Control 53
5.1.3. Management ofShared Data 53

5.1.4. Module Architecture 54

5.1.4.1. The Log Manager 54

5.1.4.2. The Buffer Manager 55

5.1.4.3. The Lock Manager 55
5.1.4.4. The Process Manager 55

5.1.4.5. The Transaction Manager 55

5.1.4.6. The Record Manager 56

5.2. The Embedded Implementation 56

5.2.1. Data Structures and Modifications 58

5.2.1.1. The Lock Table 58

5.2.1.2. The Transaction State 59

5.2.1.3. The Inode 59

5.2.1.4. The File System State 59

5.2.1.5. The Process State 60

5.2.2. Modifications to the Buffer Cache 60

VI

5.2.3. The Kernel Transaction Module 60

5.2.4. Group Commit 60

5.2.5. Implementation Restrictions 61

5.2.5.1. Support for Long-Running Transactions 62
5.2.5.2. Support forSubpageLocking 62
5.2.5.3. Support forNested Transactions and Transaction Sharing 63
5.2.5.4. Support forRecovery from Media Failure 63

5.3. Performance 64

5.3.1. Transaction Performance 64

5.3.2. Non-Transaction Performance 66

5.3.3. Sequential Read Performance 66
5.4. Conclusions „ 69

6. Redesigning LFS 70
6.1. A Detailed Description of LFS 70

6.1.1. Disk Layout 70
6.1.2. File System Recovery 72

6.2. Design Issues 74
6.2.1. MemoryConsumption 76
6.2.2. Block Accounting 77
6.2.3. SegmentStructure and Validation 77
6.2.4. File SystemVerification 78
6.2.5. The Cleaner 79

6.3. Implementing LFSin a BSDSystem 82
6.3.1. Integration withFFS 82

6.3.1.1. BlockSizes 84
6.3.1.2. The BufferCache 84

6.3.2. The IFBLE 86
6.3.3. Directory Operations 87
6.3.4. Synchronization 89
6.3.5. Minor Modifications 89

6.4. Conclusions 39
7.Performance Evaluation 91

7.1. Extent-like Performance Using the Fast File System 91
7.2. The Test Environment 92
7.3. Raw File System Performance 93

7.3.1. Raw Write Performance 94
7.3.2. Raw Read Performance 96

7.4. Small File Performance 97
7.5. Software Development Workload 98

7.5.1. Single-User Andrew Performance 98
7.5.2. Multi-User Andrew Performance 99

7.6. OOl --The Object Oriented Benchmark 101
7.7. TheWisconsin Benchmark 103
7.8. Transaction Processing Performance 106

Vll

7.9. Super-Computer Benchmark . 107
7.10. Conclusions 108

8. Conclusions HO
8.1. ChapterSummaries 110
8.1. FutureResearch Directions 112
8.2. Summary 112

List of Figures
vm

2-1: Clio Log Fde Structure 7

2-2: Log-Structured File System Disk Allocation 7

3-1: Allocation for the Binary Buddy Policy 19
3-2:Fragmentation for the Restricted Buddy Policy 23
3-3: Application and Sequential Performance for theRestricted BuddyPolicy 24
3-4: Interaction ofContiguous Allocation and Grow Factors 26
3-5: Application and Sequential Performance for theExtent-based System 28
3-6: Sequential Performance of the Different Allocation Policies 29
3-7: Application Performance of the Different Allocation Policies 29
4-1: A Log-StructuredFile System 32
4-2: Simulation Overview 34

4-3: Additions and Deletions in B-Trees 38
4-4: CPUBoundingUnderLow Contention 41
4-5: Effect ofthe Cost ofSystem Calls 42
4-6: Disk Bounding Under Low Contention 43
4-7: Effectof CPU Speed onTransaction Throughput 44
4-8: Effect of Skewed Access Distribution 45
4-9: Effect of AccessSkewingonNumber of Aborted Transactions 46
4-10: Effect of Access Skewing with Subpage Locking 46
4-11: Distribution of Locked Subpages 47
4-12: Effectof Access Skewing withVariable Page Sizes 48
4-13: Effect of Access Skewing with Modified Subpage Locking 49
4-14: Effectof Modified Subpage Locking ontheNumber of Aborts 50
5-1: Library ModuleInterfaces 54
5-2: User-Level System Architectures 57
5-3: Embedded Transaction SystemArchitecture 57
5-4: The Operating System LockTable 58
5-5: File Index Structure (inode) 59
5-6: Transaction Performance Summary 65
5-7: Performance Impact of Kernel Transaction Support 67
5-8: Sequential Performance after Random I/O 68
5-9: Elapsed Time for Combined Benchmark 68
6-1: Physical DiskLayout of theFast File System 72
6-2: Physical DiskLayout of aLog-Structured Fde System 73
6-3: Partial Segment Structure Comparison Between Sprite-LFS and BSD-LFS 78
6-4: BSD-LFS Checksum Computation 78
6-5: BLOCKJNFOStructure used by theCleaner , 80
6-6: Segment Layout forBadCleaner Behavior 81
6-7: Segment LayoutAfter Cleaning 81

IX

6-8: Block-numbering in BSD-LFS 86
6-9: Detail Description ofthe IFILE 87
6-10: Synchronization Relationships in BSD-LFS 90
7-1:Maximum File System Write Bandwidth 94
7-2: Effects of LFS Write Accumulation 95
7-3: Impact ofRotational Delayon FFS Performance 96
7-4: Maximum File System Read Bandwidth 96
7-5: Small File Performance 97
7-6: Multi-User Andrew Performance 100

7-7: Multi-User Andrew Performance (Blow-Up) 100

List of Tables

3-4: Fragmentation andPerformance Results forBuddy Allocation 19
3-5:AllocationRegion Selection Algorithm 22
3-6: Extent Ranges forExtent-Based FileSystem Simulation. 26
3-7: AverageNumberofExtents perFile 29
4-1: CPUPer-Operation Costs 35
4-2: Simulation Parameters 36
4-3:Comparison ofFiveTransaction Models 39
6-3: Design Changes Between Sprite-LFS and BSD-LFS 75
6-4: The System Call Interface forthe Cleaner 80
6-5: Description ofExisting BSD yfs operations 82
6-6: Description of existing BSDvnode operations 83
6-7: Summary of File system Specific vnode Operations 85
6-8: New Vnode and Vfs Operations 85
7-1: Hardware Specifications 92
7-2: Summary of Benchmarks Analyzed 93
7-3: Single-User Andrew Benchmark Results 98
7-4: Database Sizing for the001 Benchmark 101
7-5:001 Performance Results 102
7-6: Relation Attributes for the Wisconsin Benchmark 102
7-7: Wisconsin Benchmark Queries 104
7-8: Elapsed Time for the Queries of the Wisconsin Benchmark 105
7-9: TPC-B Performance Results 106
7-10: Supercomputer Applications I/O Characteristics 107
7-11: Performance of theSupercomputer Benchmark '. 109

Acknowledgements
XI

I have been fortunate tohave had many brilliant and helpful influences atBerkeley. My advi
sor, Michael Stonebraker, has been patient and supportive throughout my stay at Berkeley. He
challenged my far-fetched ideas, encouraged me to pursue whatever caught my fancy, and gave
me the freedom to make my own discoveries and mistakes. John Ousteihout was a member of
my thesis and qualifying exam committees. His insight into software systems has been particu
larly educating for me and hishigh standards of excellence have been asource of inspiration. His
thorough reading of thisdissertation improved itsquality immensely. ArieSegev was also onmy
qualifying exam and thesis committees and offered sound advice and criticism.

The interactions with Professors Dave Patterson and Randy Katz rounded out my experience
at Berkeley. They have discovered how to make computer science into "big science'' and to
create enthusiasm in all their endeavors. I hope I can do them justice by carrying this trend for
ward to other environments.

I have also been blessed with a set of terrific colleagues. Among them are my co-authors:
PeterChen, Ozan Yigit, Michael Olson, Mary Baker, Etienne Deprit, Satoshi Asami, Keith Bos-
tic, Kirk McKusick, and Carl Staelin. The Computer Science Research Group provided me with
expert guidance, criticism, and advice, contributing immensely to my technical maturation. I
owe a specialthanks to Kirk McKusick who gave up many hoursofhis time andhis test machine
to make BSD-LFS a reality. Thanks also go to the the Sprite group of Mary Baker, John Hart-
man, Mendel Rosenblum, Ken Shirriff, MSke Kupfer, and Bob Bruce who managedto develop
and support an operating system while doing their own research as well! They were a constant
source of information and assistance.

Terry Lessard-Smith and Bob Miller saved the day on many an occasion. It seemed that no
matter what I needed, they were always there, willing to help out Kathryn Crabtree has also
been a savior on many an occasion. It has always seemed to me that her job is to be able to
answer all questions, and I don't think she ever let me down. Th transition to graduate school
would have been impossible without her help andreassuring words. Those who claim that gradu
ate school is cold and impersonal didn't spendenough time with peoplelike Kathryn, Bob, and
Terry.

There are many otherpeople who have offeredme guidance and support over the pastseveral
years andthey deservemy unreserved thanks. My officemates, the inhabitants of Sin City: Anant
Jhingran, Sunita Sarawagi, and especially Mark Sullivan, have been constant sources of brain
power, entertainment, and support. Mike Olson, another Sin City inhabitant, saved the day on
many papers and my dissertation by making troff sing. Mary Baker, of the Sprite project, has
been a valued colleague, devoted friend, expert parry planner, chef extraordinairre, and excep
tionally rigorous co-author. If I canhold myself to the high standards Mary sets forherself, I am
assured a successful career.

Then there are the people who make life just a little more pleasant Lisa Yamonaco has
known me longer than nearly anyone else and continues to put up with me and offer uncondi
tional love and support. She has always been there to share in my successes and failures, offer
words of encouragement, provide a vote of confidence, or just to make me smile. I am grateful
forher continued friendship.

Ann Almgren, my weekly lunch companion, shared many ofmy trials and tribulations both in
work and in play. Eric Allman was always there when I needed him to answer a troff question,
fix my sendmail config files, provide a shoulder, or invite me to dinner. His presence made
Berkeley a much more pleasant experience. Sam Lefflerwas quick to supply me with access to

Xll

Silicon Graphics' equipment and source code when I needed it, although I've yet to finish"me
research we both intended for me to do! He has also been a devoted soccer fan and and a good
source of diversions from work. My friends and colleagues at Quantum Consulting were always
a source of fun and support

Life at Berkeley would have been dramatically different without the greatest soccer team in
the world, the Berkeley Bruisers, particularly Cathy Corvello, Kerstin Pfann, Brenda Baker,
RobinPackel, Yvonne Gindt, and co-founder Nancy Geimer. They've kept my body asactive as
my mindand helped me maintain perspective during this crazy graduate school endeavor. A spe
cial thanks goes to Jim Broshar for over four years of expert coaching. More than teaching soccer
skills, he helped us craft a vision and discover who we were and who we wanted to become.

Even with all my support in Berkeley, I could never have survived the last several years
without my electronic support network, the readership of Misinformation. Theoccasional pieces
of email and reminders that there was life outside of graduate school helped to keep me sane. I
look forward to theircontinued presence viamy electronic mailbox.

And finally, I would like to thank Keith Bostic, my most demanding critic and my strongest
ally. His technical expertise improved the quality of my research, and his love and support
improved the quality ofmy life.

This research has been funded by the National Science Foundation grants NSF-87-15235 and
IRI-9107455, the National Aeronautics and Space Administration grant NAG-2-530, theDefense
Advanced Research Projects Agency grants DAALO3-87-K-0083 and DABT63-92-C-0007, and
the California State Micro Program.

Chapter 1

Introduction

As CPU speeds haveincreased dramatically overthe past decade, I/O performance is becom
ingmore and more of a system bottleneck [PATT88]. Therefore, improving system throughput
has become the taskof the designers of I/O subsystems and file systems. While I/O subsystem
designers improve the hardware with disk arrays, faster busses, and larger caches, software
designers cantry to use the existing systems more efficiently. This thesis addresses how file sys
tems canbe modifiedto use existingI/O systemsmoreefficiently.

Maximum disk performance can be achieved by reading and writing the disk sequentially,
avoiding costly disk seeks. The traditional wisdom has been that data is read far more often than
it is written, andtherefore, files should be allocated sequentially on disk so that they canbe read
sequentially. However, today's large main memory caches effectively reduce disk read traffic,
but do little to reduce write traffic [OUST89]. Anticipating the growing importance of write per
formance on I/O performance and overall system performance, a great deal of file system
research is focused on improving write performance.

Evidence suggests that as systems become faster and disks and memories become larger, the
need to write data quickly will also increase. The file system trace data in [BAKER91] demon
strates that in the past decade, files have become larger. At the same time, CPUs have become
dramatically faster and high-speed networks have enabled applications to move large quantities
of data very rapidly. These factors make it increasingly important that file systems be able to
move data to and from the disk quickly.

File system performance is normally tied to the intended application workload. In the works
tation and time-sharing markets, where files are read and written in their entirety, the Berkeley
Fast File System (FFS) [MCKU84], with its rotation optimization andlogical clustering, hasbeen
relatively satisfactory. In the database and super-computing worlds, the tendency has been to
choose file systems mat favor the contiguous disk layoutofferedby extent-based systems. How
ever, when the workloadis diverse, includingboth of these application types, neither file system
is entirely satisfactory. In some cases, demanding applications such as database management
systems manage their own disk allocation. This results in static partitioning of the available disk
space and maintaining two or more separate sets of utilities to copy, rename, or remove files. If
the initial allocation of disk space is incorrect, the result is poor performance, wasted space or
both. A file system that offers improved performance across a wide variety of workloads would
simplify system administration andservethe needsof the usercommunity better.

This thesis examines existing file systems, searching for one that provides good performance
across a wide range of workloads. The file system design space can be divided into read-
optimized and write-optimized systems. Read-optimized systems allocate disk space contigu
ously to optimize for sequential accesses. Write-optimized systemsuse loggingto optimize writ
ing large quantities of data. One goal of this research is to characterize how these different stra
tegies respond to different workloads anduse this characterization to designbetterperforming file
systems.

This thesis also examines using the logging of a write-optimized file system to integrate tran
saction support with the file system. This embeddedsupport is compared to traditional user-level

transaction support A second goal of this research is to analyze the benefit of integrating transac
tion support in the file system.

Chapter 2 presents previous work related to this dissertation. It begins with a discussion of
how file systems have used disk allocation policies to improve performance. Next, several alter
native transaction processing implementations are presented. The chapter concludes with a sum
mary of some evaluations of file systems and transaction processing systems.

Chapter 3 presents a simulation study of several read-optimized file system designs. The
simulation uses three stochastically generated workloads that model time-sharing, transaction
processing, and super-computing workloads to measure read-optimized file systems mat use mul
tiple block sizes. The file systems are evaluated based on effective disk utilization (how much of
the total disk bandwidth the file systems can use), internal fragmentation (the amount of allocated
but unused space), and external fragmentation (the amount ofunallocated,but usable spaceon the
disk).

Chapter4 focuses on the transaction processing workload. It presents a simulation study that
compares read-optimized and write-optimized file systems for supporting transaction processing.
It also contrasts the performance of user-level transaction management with operating system
transaction management The specific write-optimized file system analyzed is the log-structured
file system first suggested in [OUST89]. This chapter shows that alog-structured file system has
somecharacteristics thatmake it particularly attractive for transaction processing.

Chapter 5 presents anempirical study of animplementation of transaction support embedded
in a log-structured file system. This implementation is compared to a conventional user-level
transaction implementation. This chapter identifies several important issues in the design of log-
structured file systems.

Chapter 6 presents anewlog-structured file system design based ontheresults of Chapter 5.
Chapter 7 presents the performance evaluation of the log-structured file system design in

Chapter 6. The file system is compared to atheFast File System and an extent-based file system
on a wide range of benchmarks. The benchmarks are based upon database, software develop
ment, and super-computer workloads.

Chapter 8 summarizes the conclusions of this work.

Chapter 2

Related Work

This chapter discusses several classes of research, related to this dissertation. As this thesis
presents an evaluation of file system allocation policies andtransaction processing support, there
arethreemaincategories of related work: file systems, transaction systems, andevaluations. The
file system sections discuss a number of different allocation policies and how the state of the art
has evolved overtime. Thetransaction processing section presents several alternative implemen
tation strategies for providing transaction support to the user. Some of these different strategies
will be analyzed in Chapters 4 and 5 of this dissertation. The evaluation section summarizes five
studies that analyze transaction processingperformance.

2.1. File Systems

The file systemsare sub-divided into two classes: read-optimized and write-optimized filesys
tems. Read-optimized systems assume that data is read more often than it is written and that per
formance is maximized when files are allocated contiguously on disk. Write-optimized file sys
tems focuson improving writeperformance, sometimes at the expense of readperformance. This
divisionof allocationpolicies will be used throughout this work to describedifferent file systems.
The examples presented here provide an historical background to the evolution of file system
allocation strategies.

2.1.1. Read-Optimized File Systems

Read-optimized systems focus on sequential disk layout and allocation, attempting to place
files contiguously on disk to minimize the time required to read a file sequentially. Simple sys
tems that allocate fixed-sized blockscan lead to files becoming fragmented, requiring reposition
ing the disk head for each block read, leading to poor performance when blocks are small.
Attempting to allocate files contiguously on disk reduces the head movement and improves per
formance, but requires more sophisticated bookkeeping andfreespacemanagement The six sys
tems described present a range of alternatives.

2.1.1.1. IBM's Extent Based File System

IBM's MVS system provides extent-based allocation. An extent is a unit of contiguous on-
disk storage, and files are composed of some number of extents. When a user creates a new file,
she specifies a primary extent size and a secondary extent size. The primaryextent size defines
how much disk space is initially allocated for the file while the secondary extent size defines the
size of additional allocations [IBM]. If users know how large their files will become, they can
select appropriate extent sizes, and most files can be stored in a few large contiguous extents. In
suchcases, these files can be read and written sequentially and there is little wasted spaceon the
disk. However, if the user does not know how large the file will grow, then it is extremely
difficult to select extent sizes. If the extents are too small, then performance will suffer, and if
they are too large, there will be a great deal of wasted space. In addition, managing free space
and finding extents of suitable size becomes increasingly complex as free space becomes more
and more fragmented. Frequently, background disk rearrangers must be run during off-peak
hours to coalesce free blocks.

2.1.12. The UNIX1 V7 File System
Systems with a single block size (fixed-block systems), such as theoriginal UNIX V7 file sys

tem [THOM78] solve the problems of keeping allocation simple and fragmentation to a
minimum, but they dosoat die expense ofefficient read and write performance. In this file sys
tem, files are composed of some number of 512-byte blocks. An unsorted list of free blocks is
maintained and new blocks are allocated from this list. Unfortunately, over time, as many files
are created, rewritten, and deleted, logically sequential blocks within a file are scattered across
the entire disk, and the file system requires a disk seek to retrieveeach block. Since each block is
only 512 bytes, the costof the seek is not amortized over a large transfer. Increasing the block
size reduces theper-byte cost, butit does soat theexpense of internal fragmentation, theamount
'of space that is allocated butunused. As most files are small [OUST85], they fit ina single, small
block. The unused, but allocated space in a larger block is wasted. Sorting the free list allows
small blocks to be accessed more efficiently by allocating mem in such a way as to avoid a disk
seek between each access. However, this necessitates traversing half of the free list, onaverage,
for every deallocation.

2.1.1J. The UNIX Fast File System

The BSD Fast File System (FFS) [MCKU84] isanevolutionary step forward from the simple
fixed-block system. Files are composed ofanumber offixed-sized blocks and a few smalleryrag-
ments. Small fragments alleviate the problem ofinternal fragmentation described in the previous
system. The largerblocks, on the orderof 8 or 16kilobytes, provide formoreefficient diskutili
zation asmore data is transferred per seek. Additionally, the free listis maintained as a bitmap
so that blocks may beallocated in a rotationally optimal fashion without spending a great deal of
time traversing a free list The rotational optimization makes it possible to retrieve successive
blocks of the same file during a single rotation, thus reducing the diskaccess time. File alloca
tion is clustered so that logically related files, those created in the same directory, are placed on
the same ora nearby cylinder tominimize seeks when they are accessed together.

2.1.1.4. Extent-like Performance on the Fast File System

McVoy suggests improvements to the FastFde System in [MCV091]. He usesblockcluster
ing to achieve performance close to that of an extent-based system. The FFS block allocator
remains unchanged, but the maxcontig parameter, which defines how many blocks can be placed
contiguously on disk, is setequal to 64 kilobytes divided by the block size. The 64 kilobytes,
called the cluster size, was chosen not toexceed the maximum transfer allowed onany controller.

When the file system translates logical block numbers into physical disk requests, it deter
mines how many logically sequential blocks are contiguous ondisk. Using this number, the file
system can readmore thanone logical blockin a single I/O operation. In orderto write clusters,
blocks that have been modified (dirty blocks) are cached inmemory and then written ina single
I/O. By clustering these relatively small blocks into 64 kilobyte clusters, the file system achieves
performance nearly identical to that of an extent-based system, without performing complicated
allocation or suffering severeinternalfragmentatioa

2.1.1.5. The Dartmouth Time Sharing System

In an attempt to merge the fixed-block and extent-based policies, the DTSS system described
in [KOCH87] is a file system that uses binary buddy allocation [KNUT69]. Pales are composed
of extents, eachof whose sizeis a power of two (measured in sectors). Filesdouble in sizewhen
evertheirsizeexceeds theircurrent allocation. Periodically (once every day in DTSS), a reallo
cation algorithm runs. This reallocator changes allocations to reduce both the internaland exter
nal fragmentation. After reallocation, most files are allocated in 3 extents and average under 4%

internal fragmentation. While this system provides good performance, the reallocator necessi
tates quiescing the systemeacheveningwhichis impractical in manyenvironments.

2.1.1.6. Restricted Buddy Allocation

The restricted buddy system is a file system withmultiple block sizes, initially described and
simulated in [SELT91], that does not require a reallocator. Instead of doubling allocations and
fixing them lateras in DTSS, a file's block size increases gradually as the file grows. Small files
are allocated from small blocks, and therefore do not suffer excessive internal fragmentation.
Large files aremostiy composed of larger blocks, and therefore offer adequate sequential perfor
mance. Simulation results discussed in [SELT91] and Chapter 3, show that these systems offer
performance comparable to extent-based systems and small internal fragmentation comparable to
fixed-block systems. Restricted buddy allocation systems donot require reorganization, avoiding
the down time that DTSS requires.

2.1.2. Write-Optimized File Systems

Write-optimized systems focus on improving the performance of writes to the file system.
Because large, main-memory file caches more effectively reduce the numberof disk reads than
disk writes, disk write performance is becoming the system bottleneck [OUST89]. The trace
driven analysis in [BAKER91] shows that client workstation caches reduce application read
traffic by 60%, but only reduce write traffic by 10%. As write performance begins to dominate
I/Operformance, write-optimized systems willbecome more important

The following systems focus on providing better write performance rather than improving
disk allocation policies. The first two systems describedin this section, DECorum and The Data
base Cache, have disk layouts similar to those described in the read-optimized systems. They
improve write performance bylogging operations before they arewritten to theactual file system.
The second two systems, LogFdes andTheLog-structured File System, change the on-disk lay
outdramatically, so thatdatacanbe written directly to the file system efficiendy.

2.1.2.1. DECorum

The DECorum file system [KAZ90] is an enhancement to the Fast File System. When FFS
creates a file or allocates a new block, several different on-disk data structures are updated (block
bit maps, inode bit maps, and the inode). In order to keep all these structures consistent and
expedite recovery, FFS performs may operations (file creation, deletion, rename, etc) synchro
nously. These synchronous writes penalize the system in two ways. First, they increase latency
as operations wait for the writes to complete. Secondly, they result in additional I/Os since data
that is frequency accessed may be repeatedly written. For example, each time a file is created or
deleted, the directory containing that file is synchronously written to disk. If many files in the
same directory are created/deleted, many additional VOs are issued. These additional I/Os can
take up a large fraction of the disk bandwidth.

The DECorum file system uses a write-ahead logging technique to improve the performance
of operations that are synchronous in the Fast File System. Ratherthan performing synchronous
operations, DECorum maintains a log of the modifications that would be synchronous in FFS.
Since FFS semantics allow the system to lose up to 30 seconds worthof updates [MCKU84], and
DECorum is supporting the same semantics, the log need only be flushed to disk every 30
seconds. As a result, DECorum avoids many VOs entirely, by not repeatedly writing indirect
blocks as new blocksare appended to the file andby neverwriting files whichare deleted within
the 30 secondwindow. In addition, all writes, including thosefor inodesand indirectblocks, are
asynchronous. Write performance, particularly appending to the end of a file, improves. Read
performance remains largely unchanged, but since the file system is performing fewer total VO's,

UNIX is a trademarkofUnix System Laboratories.

overall disk utilization should decrease leading to betterread response time. In addition, the log
ging improves recovery time, because the file system can be restored to a logically consistent
stateby reading the log and aborting or undoing anypartially completed operations.

2.1.2.2. The Database Cache

The database cache, described in [ELKH84], extends the idea in DECorum one step further.
Instead of loggingonly meta-data operations in memory, the database cache technique improves
write performance by logging dirty pages sequentially to a large cache, typically on disk. The
dirtypages arethen written backto the conventional file system asynchronously to makeroom in
the cachefor new pages. On a lightly loaded system, this will improve VO performance because
most writes will occur at sequential speeds and blocks accumulate in the cache slowly enough
that they may be sorted andwritten to the actual file system efficiently. However, in someappli
cations suchas those found in an online transaction processing environment this writing from the
cache to the database can still limitperformance. At best, the database cache technique will sort
VO's before issuing writes from the cache to the disk, but simulation results show that even
well-ordered writes are unlikely to achieve utilization beyond 40% of the disk bandwidth
[SELT90].

2.1.2.3. Clio's Log Files

The V system's [CHER88] Clio logging service extends the use of logging to replace the file
system entirely [FIN87]. Rather than keep a separate operation log or database cache, this file
system is designed for write-once media andis represented as a readable, append-only log. Files
are logically represented as a sequence of records in this log, called a sublog. The physical
implementation gathers a number of log records from one or more files to form a block. In order
to access a file, indexinformation, called an entry map, is stored in the log. EveryN blocks, a
level 1 entry map is written. The level 1 entrymap contains a bit map for each file found in the
preceding N blocks, indicating in which blocks the file haslog records. In orderto find particular
records within ablock, the block isscanned sequentially. Every N2 blocks alevel 2 entry map is
written. Level 2 entry maps contain per-file bit maps indicating in which level 1 entry map the
files appear. In general, level i entry maps are written every Nl blocks and indicate in which
level i-1 entry maps a particular file can be found. Figure 2-1 depicts this structure, where
N=4.

Entry maps cangrow to bequite large. In theworst case, where every file is composed of one
record, entrymaps require an entryfor everyfile represented. If recordsof the same file are scat
tered across many blocks, then many blocks are sequentially scanned to find the file's records.
As a result, while theClio system provides good write performance aswell aslogging and history
capabilities, the read performance is hindered bythehierarchical entry maps and sequential scan
ning within each map and block.

2.1.2.4. The Log-structured File System

The Log-Structured File System, asoriginally proposed by Ousteihout in [OUST89], provides
another example of a write-optimized file system. As in Clio, a log-structured file system (LFS)
uses a log as the onlyon-disk representation of the file system. Filesare represented by an inode
that contains the disk addresses of data blocks and indirect blocks. Indirect blocks contain disk
addresses of other blocks providing an index tree structure to access the blocks of a file. In order
to locate a file's inode, a log-structured file system keeps an inode map which contains the disk
address of everyfile's inode. This structure is shown in Figure2-2.

Both LFS and Clio can accumulate a large amount of data and write it to disk sequentially,
providing good write performance. However, the LFS indexing structure is much moreefficient
than Clio's entry maps. Files arecomposed of blocks so there is no sequential scanning within
blocks to find records. Furthermore, once a file's inode is located, at most three disk accesses are

)ata blocks Level 2 Entry Map

File 1:1110

Fib 2:1100

Fib 3:1000

F3o4:1100

Fao5:0011

File 6:0001

DDD DJi. D D D D.M.p D D • .*. D E D E.M.M*

File 1:1101

Fib 2:1001

File 3:0010

File 4:0011

Fib 1:0001

Fib 2:1000

Fib 4:0110

Fib 1:1111

Fib 5:0011

Level 1 Entry Maps

File 2:1100

Fib5:1111

Fib 6:0111

Figure 2-1: Clio Log File Structure. This diagram depicts a log file structure with N=4. Each data block
contains a sequence of log records. Theentrymapsindicate which blocks contains records for whichfiles. Forexam
ple, thelevel 2 entry map indicates thatfile 1hasblocks in thefirst three level 1entry maps, butfile 3 hasblocks only
inthefirst level 1entry map. Since thebitmap forfile 1 inthefirst level 1entry map contains thevalue' '1101'\ file 1
has records located in thefirst, second, andfourth blocks described bythatentry map. It also hasrecords in thefourth
block described bythesecond level 1entry mapandalltheblocks described bythethird level 1entry map.

100

108

116

124

100 124 132 133 229 237

\ ^

Disk Addresses'
O Data Blocks

H Indirect Blocks

• Inode Blocks

B Inode Map

133

Ml

221

229

269

•
261 .'269 \ 277 /27S'.

237 132

245 277

2S3

291

Figure 2-2: Log-Structured File System Disk Allocation. This diagram depicts the on-disk representa
tionof filesin a log-structured filesystem. In this diagram, twoinodeblocks are shown. The firstcontains blocks that
reside at disk addresses 100,108, 116, and 124. Thesecond contains many direct blocks, allocated sequentially from
disk address 133 through 268, and an indirect block, located at address 269. While the inode contains references to the
data blocks from disk address 133 through236, the indirectblockreferencesthe remainderof the data blocks. The last
blockshown is part of the inode map and contains the disk addressof each of the two inodes.

8

required to find any particular item in the file, regardless of the file system size. In contrast, the
number of disk accesses required in Clio grows as the number of allocated blocks increases.
While Clio keeps all records to provide historical retrieval, LFS uses a garbage collector to
reclaim space from files that have been modified or deleted. Therefore an LFS file system is usu
ally more compact (as space is reclaimed), but the cleaner competes with normal file system
activity for the disk arm.

2.2. Transaction Processing Systems

The next set of related work discusses transaction systems. Althoughthe goal of this thesis is
to find a file system design which performs well on a variety of workloads, the transaction pro
cessing workload is examined most closely. In particular, two fundamentally different transac
tion architectures are discussed. In the first, user-level, transaction semantics are provided
entirely as user-level services, while in the second, embedded, transaction services are provided
by the operating system.

The advantage of user-level systems is that they usually require no special operating system
support and may be run on different platforms. Although not a requirement of the user-level
architecture, these systems are typically offered only as services of a database managementsys
tem (DBMS). As a result, only those applications that use the DBMS can use transactions. This
is a disadvantage in terms of flexibility, but can be exploited to provideperformance advantages.
When the data manager is the only user of transaction services, the transaction system can use
semantic information provided by database applications. For example, locking and logging
operations may be performed at a logical, rather than physical, granularity. This usually means
that less data is logged and a higher degreeof concurrency is sustained.

There are three main disadvantages of user-level systems. First, as discussed above, they are
often only available to applications of the DBMS and are therefore, somewhat inflexible.
Second, they usually compete with the operating system for resources. For example, both the
transaction managerand the operating system bufferrecently-used pages. As a result, they often
both cache the same pages, using twice as muchmemory. Third, since transaction systems must
be ableto recover to a consistent state aftera crash, user-level systems mustimplement theirown
recovery paradigm. The operating system mustalso recover its file systems, so it too implements
a recovery paradigm. This means that there are multiple recovery paradigms. Unfortunately,
recovery code is notoriously complex and is often the subsystem responsible for the largest
number of system failures [SULL91]. Supporting two separate recovery paradigms is likely to
reduce system availability.

The advantages of embedded systems are that they provide a single system recovery para
digm, andthey typically offera general purpose mechanism available to all applications, notjust
the clients of the DBMS. There are two main disadvantages of these systems. First, since they
are embedded in the operating system, they usually haveless detailed knowledge of the data and
cannotperform logicallocking andlogging. This can resultin performance penalties. Second, if
the transaction system interferes with non-transaction applications, overall system performance
suffers.

The next two sections introduce each architecture in more detail and discuss systems
representing the architecture.

2.2.1. User-Level Transaction Support

This section considers several alternatives for providing transaction supportat user-level. The
most common example of these systems are the commercial database management systems dis
cussed in the next section. Since commercial database vendors sell systems on a variety of dif
ferent platforms andcannotmodify the operating systems on which they run, theyimplement all
transaction processing support in user-level processes. Only DBMS applications, such as data
base servers, interactive query processors and programs linked with the vendor's application

libraries, can take advantage of transaction support Some research systems, such as ARGUS
[LISK83] andEden [PU86], provide transactions through programming language support, but in
this section, onlythe moregeneral mechanisms thatdonot require newor modified languages are
considered.

22.1.1. Commercial DatabaseManagement Systems

Oracleand Sybaserepresent two of the majorplayers in the commercial DBMSmarket. Both
companies market theirsoftware to end-users on a wide range ofplatforms, andtheybothprovide
a user-level solution for data management and transaction processing. In orderto provide good
performance, Sybase takes exclusive control of some partof a physical device, which it thenuses
forextent-based allocation of database files [SYB90]. The Sybase SQL Server provides hierarch
ical locking for concurrency control andlogical logging for recovery. Oracle has a similararchi
tecture. It can either take controlof a physical device or allocate files in the file system. Oracle
also takes advantage of the knowledge that only database applications will be using the con
currencycontrol and recoverymechanisms, so it performs locking and logging on logical units as
well [ORA89]. This is the architecture usedforuser-level transaction management in this thesis.

2.2.1.2. Tuxedo

The Tuxedo system from AT&T is a transaction manager whichcoordinates distributed tran
saction commit across heterogeneous local transaction managers. While it provides support for
distributed two-phase commit, it does not actually include its own native transaction mechanism.
Instead, it couldbe used in conjunction with any of eitherthe user-level or embedded transaction
systems described here or in [ANDR89].

2.2.1.3. Camelot

Camelot's distributed transaction processing system [SPE88A] provides a set of Mach
[ACCE86] processes which provide support fornested transaction management, locking, recover
able storage allocation, and system configuratioa In this way, mostof the mechanisms required
to support transaction semantics are implemented at user-level, but the resulting system can be
used by any application, not just clients of a data manager.

Applications can make guarantees of atomicity by using Camelot's recoverable storage, but
requests to read and write such storage are not implicitly locked. Therefore, applications must
make requests of the disk manager to provide concurrency control [SPE88B]. The advantage of
this approach is that any application canuse transactions, but the disadvantage is that suchappli
cationsmust make explicit lock requeststo do so.

2.2.2. Embedded Transaction Support

The systems described in the next section provide examples of the ways in which transactions
have been incorporated into operating systems. Computer manufacturers like IBM, Tandem,
Stratus, and Hewlett-Packard include transaction support directly in the operating system. The
systems described present a range of alternatives. The first three systems, Tandem's ENCOM
PASS, StratusTPF, and Hewlett-Packard's MPE,provide general purposeoperatingsystemtran
saction mechanisms, available to any applications. In these systems, specific files are identified
as beingtransaction protected and whenever theyare accessed, appropriate lockingandloggingis
performed. These systems aremostsimilar to those discussed in Chapters 3 and4.

The next system, LOCUS, uses atomic files to make the distributed systemrecoverable. This
is similarto Camelot'srecoverable storage, but is usedas the system-wide data recovery mechan
ism. The last system, Quicksilver, takes a broader perspective, using transactions as the single
recovery paradigm for the entire system.

10

2.2.2.1. Tandem's ENCOMPASS

Tandem Computers manufactures a lineof fault tolerant computers called NonStop Systems2,
designed expressly for online transaction processing [BART81]. Guardian 90 is their message-
based, distributed operating system which provides services required forhighperformance online
transaction processing [BORR90]. Although this is anembedded system, it was designed to pro
vide all the flexibility that user-level systems provide. Locking is performed by processes that
manage the disks (diskservers) andallows forhierarchical locking on records, keys, or fragments
(parts of a file) with varying degrees of consistency (browse, stable reads, and repeatable reads).
Inorder to provide recoverability in thepresence of fine-grain locking, Guardian performs logical
UNDO logging and physical REDO logging. This means thata logical description of the opera
tion (e.g. field one's value of 10wasoverwritten) is recorded to facilitate aborting a transaction,
and the complete physical image of the modified page is recorded to facilitate recovery after a
crash. Application designers usetheTransaction Monitoring Facility (TMF) application interface
to build client/server applications which take advantage of theconcurrency control and recovery
present in the Guardian operating system [HELL89].

2.2.2.2. Stratus' Transaction ProcessingFacility

Stratus Computer offers both embedded and user-level transaction support [STRA89]. They
support a number of commercial database packages which use user-level transaction manage
ment, butalso provide an operating system based transaction management facility to protect files
not managed by any DBMS. This is a very generalpurpose mechanism that allows a file to be
transaction-protected by issuing the setjransactionJUe command. Once a file has been desig
nated as transaction protected, it canonly be accessed within thecontext of a transaction. It may
be opened or closed outside a transaction, but attempts to read andwrite the file when there is no
active transaction in progress will result in an error.

Locking may be performed at the key, record, or file granularities. Each file has an implicit
locking granularity which is the size of theobject that will be locked by theoperating system in
the absence ofexplicit lock requests bythe application. Forexample, if a file has animplicit key
locking granularity, then every key accessed will be locked by the operating system, unless the
application has already issued larger granularity locks. In addition, a special end-of-file locking
modeis provided to allowconcurrent transactions to append to files.

Transactions may span machines. Adaemon process, theTPOverseer, implements two-phase
commit across distributed machines. Ateach site, the local TPOverseer uses both a logand sha
dow paging technique [ASTR76]. During phase 1commit processing (the preparation phase), the
application waits while the log is written to disk When a site completes phase 1, it has
guaranteed that it is ableto commit the transaction. During phase 2 (theactual commit), the sha
dow pages are incorporated into the actual files.

This model is similar to the operating system model simulated in Chapter 4 and implemented
inChapter 5. However, when this architecture is implemented ina log-structured file system, the
logging and shadow paging are part of normal file system operation as opposed to being addi
tional independent mechanisms.

2223. Hewlett-Packard's MPE System

Hewlett-Packard integrates operating system transactions with theirmemory management and
physical I/O system. Transaction semantics are provided bymeans of a memory-mapped write-
ahead log. Those files which require transaction protection are marked as such and may then be
accessed in oneof two ways. First, applications canopenthem for mapped access, in which case
the file is mapped into memory and the application is returned a pointer to the beginning of the

3NonStop and TMF are trademarks ofTandem Computers.

11

file. Hardware pageprotection is usedto trigger lockacquisition andlogging on a per-page basis.
Alternatively, protected files can be accessed via the datamanager. In this case,the datamanager
maps the files and performs logicallocking andlogging basedon the data requested [KOND92].
This system demonstrates the tightest integration between the operating system, hardware, and
transaction management The advantage of this integration is very high performance at the
expense of transaction management mechanisms permeating nearly every part of the MPE sys
tem.

2.2.2.4. LOCUS

The LOCUS distributed operating system [WALK83] provides nested, embedded transactions
[MUEL83]. There are two levels to the implementation. The basic LOCUS operating system
uses a shadow page technique to support atomic file updates on all files. On top of this atomic
file facility, LOCUS implements distributed transactions which usea two-phase commit protocol
across sites. Locks areobtained bothexplicitly, by system calls, andimplicitly by accessing data.
While applications may explicitly issue unlock requests, the transaction system retains anylocks
that must be held to preserve transaction semantics. The basic atomic file semantics of LOCUS
aresimilar to theLFS embedded transaction manager thatwill be discussed in Chapter 5, except
that in LOCUS, the atomic guarantees are enforced on all files rather than on those optionally
designated. If LFS enforced atomicity on all its files, it could also be used as the basis for a distri
buted transaction environment.

2.2.2.5. Quicksilver

Quicksilver is a distributed system which uses transactions as its intrinsic recovery mechan
ism [HASK88]. Rather than providing transactions as a service to the user, Quicksilver, itself,
uses transactions as its single system-wide architecture for recovery. In addition to providing
recoverability of data, transaction protection is applied to processes, window management, net
work interaction, etc. Every interprocess communication in the system is identified with a tran
saction identifier. Applications canmake useof Quicksilver's built-in services by adding transac
tion identifiers to any IPCmessage to associate die message and the data accessed by thatmes
sage with a particular transaction. The Quicksilver Log Manager provides a low-level, general
purpose interface that makes it suitable for different servers or applications to implement their
own recovery paradigms [SCHM91]. This is the most pervasive of the transaction mechanisms
discussed. While it is attractive to use a single recovery paradigm (e.g. transactions) this thesis
will focus on isolating transaction support to thefile system.

23. Transaction System Evaluations

This section summarizes several evaluation studies that include file system transaction sup
port, operating system transaction systems, and operating system support for database manage
ment systems. The first study compares two transactional file systems. The functionality pro
vided by these systems is similar to the functionality provided by the file system transaction
manager described in Chapter 5. The second, third, and fourth evaluations discuss the difficulties
in providing operating system mechanisms for transaction processing anddatamanagement The
last evaluation presents a simulation studythatcompares user-level transaction support to operat
ingsystem transaction support. This study is very similar to theonepresented in Chapter 4.

23.1. Comparison of XDFS and CFS

The study in [MITC82] compares the Xerox Distributed File System (XDFS) and the Cam
bridge File System (CFS), bothof which provide transaction support as partof the file system.
CFS provides atomic objects, allowing atomic operations on the basic file system types such as
files andindices. XDFS provides more general purpose transactions, using stable storage to make
guarantees of atomicity. The analysis concludes that XDFS was a simplersystem, but provided

12

slower performance than CFS, and that CFS' single object transaction semantics were too res
trictive. This thesis will explore an embedded transaction implementation with the potential for
providing the simplicity of XDFS withthe performance of CFS.

23.2. Operating System Support for Databases

In [STON81], Stonebraker discusses the inadequate support for databases found intheoperat
ingsystems of the day. His complaints fall into three categories: a costly process structure, slow
and suboptimal buffer management, and small, inefficient file system allocation, Fortunately,
much has changed since 1981 and many of these problems have been addressed. Operating sys
tem threads [ANDE91] and lightweight processes [ARAL89] address theprocess structure issue.
Buffer management may be addressed by having a data base system manage a pool ofmemory-
mapped pages sothatthedata manager can control replacement policies, perform read-ahead, and
access pages as quickly as it canaccess main memory while still sharing memory equitably with
the operating system. This thesis will consider file system allocation policies which improve
allocation efficiency.

233. Virtual Memory Management for Database Systems

Since the days ofMultics [BEN69], memory mapping offiles has been suggested as a way to
reduce thecomplexity ofmanaging files. Even so, database management systems tend toprovide
their own buffer management In [TRA82], Traiger looks at two database systems, System R
[ASTR76] and IMS [IBM80] and shows that memory mapped files do not obviate the need for
database buffermanagement Although System R and IMSuse different mechanisms for transac
tion support (shadow-paging and write-ahead logging respectively), neither is particularly well
suitedto the use of memory mapped files.

Traiger assumes that a mapped file's blocks are written to paging store when they are evicted
from memory. However, today's systems, such as those designs in [ACCE86] and [MCKU86],
treat mapped files as memory objects which are backed by files. Thus, when unmodified pages
areevicted from memory, they need notbe written to disk, because they canlaterbe reread from
their backing file. Additionally, modified pages can bewritten directly to thebacking file, rather
than to paging store.

There are still difficulties in usingmemory-mapped files for databases and transactions. Con
sider the write-ahead logging protocol of IMS. If the virtual memory system is responsible for
writing back pages, the transaction system needs some mechanism to guarantee that log records
are written to disk before their associated data pages. Similar problems are encountered in
shadow-paging. The page manager must beable to change memory-mappings to remap shadow
pages. The 1982 study correctly concludes thatmemory-mapped files donotobviate theneed for
additional database or transaction buffer management

23.4. Operating System Transactions for Databases

The criticisms of operating system transactions continue with [STON85] which reports on
experiences in trying to port the INGRES database management system [RTI83] on top of
Prime's Recovery Oriented Access Method (ROAM) [DUB082]. ROAM is designed toprovide
atomic updates to files with all locking, logging, and recovery hidden from the user. However,
when INGRES was ported to this mechanism, several problems were encountered. First, a single
record update in INGRES modifies two sets of bytes on a page, the line table andthe record itself.
In order for ROAM to properly handle this, it either had to log entire pages or perform two
separate log operations, both costly alternatives. Secondly, since ROAM did page level locking,
updates to system catalogs had extremely detrimental effects on the level of concurrency, as a
single modification to a catalog would lock out all other users. One approach to improving the
concurrency on the system catalogs is to allow short term locking. However, short term locking
makes recoverability more complicated since concurrent transactions may access the data

13

modified by an uncommitted transaction. Stonebraker concludes by suggesting the following
alternatives: allowing user processes to log events, designing database systems so that only phy
sical events need to be rolled back, and leaving everything at user-level as traditional data
managers do today. The next study discusses the performance ramifications of the second alter
native.

23J. User-Level Data Managers v.s. Embedded Transaction Support

Kumar concludes that an operating system embedded transaction manager provides substan
tially worse performance than the traditional user-level data manager [KUM87]. He cites the ina
bility to perform logical locking and logging, the system call locking overhead, and the size of
the log as primary causes for a 30% difference in performance between the two systems, hi
[KUM89], by introducing hardware-assisted locking and better locking protocols, he demon
strates that the difference in performance may be reduced to 7-10%. However, Kumar's simula
tion failed to account for the required write when evicting dirty buffers from the cache. Since
these are random I/O's, his results under-report the total I/O time. Specifically, in disk-bound
configurations, performance is dominated by the cost of random I/O's. Since both the data
manager and embedded systems perform the same number of these random reads and writes, per
formance should be virtually the same in both models, not dependent upon the log writes which
happen at sequential disk speeds.

2.4. Conclusions

The work in this dissertation will touch upon all the different areas discussed in this section.
Chapter 3 focuses on the read-optimized allocation policies. Chapter 4 presents a study similar to
Kumar's, adding the simulation of a log-structured file system. Chapter 5 analyzes the tradeoffs
between user-level and embedded transaction systems with an implementation study. Chapter 6
presents a new design for a log-structured file system, and Chapter 7 analyzes the differences in
application performance of read-optimized and write-optimized file systems.

14

Chapter 3

Read-Optimized File Systems

This chaptercompares several read-optimized file system allocation policies. These file sys
tems are designed to provide high bandwidth between disks and main memory by taking advan
tageof parallelism in an underlying diskarray andcatering to largeunits of transfer. In thisway,
when files are written in their entirety as they are in most UNIX environments [OUST85]
[BAKER91], these file systems may be competitive withwrite-optimized file systems. The goal
of these read-optimized designs is to utilizeas muchof the I/O bandwidth as possiblewhenread
ing sequentially, without sacrificing small-file efficiency in terms of disk capacity. Typically,
smallblocksare preferred to minimize fragmentation for small files, and large blocksor contigu
ous allocation is preferred to maximize throughputfor large files.

In this chapter, the read-optimized file systems are divided into two categories: fixed-block
systems andextent-based systems. Fixed-block systems allocate files as collections of identically
sizedblocks while extent-based systems allocate files as collections of a fewlarge extents whose
sizes may vary from file to file. Traditionally, systems oriented towards general-purpose
timesharing (e.g. UNIX) have used fixed-block systems, while systems oriented towards transac
tion processing (e.g. MVS) have chosen extent-based systems. Fixed-block file systems have
received much criticism from the database community. Themost frequently citedcriticisms are
discontiguous allocation and excessive amounts of meta-data [STON81]. On the other hand,
extent-based file systems are often criticized for being too brittle with regard to fragmentation
and too complicated in terms of allocation.

In Chapter 2, many styles of read-optimized file systems were discussed. The simulation
presented here focuses on three of the extentor multiple-block-sized systemsand one fixed-block
system. The multiple-block-sized systems analyzed are an extent-based systemsimilarto IBM's
MVS system, a binary buddy system similar to DTSS [KOCH87], and a restricted buddy system.
Thefourth system is a fixed-block system similar to FFS,but without fragments.

The goal of this chapter is to analyze how well different allocation policies perform without
theuse of anexternal reallocation process. The file systems are compared in terms of fragmenta
tion and disk system throughput. The rest of this chapter is organized as follows. Section 3.1
presents the simulation model and Section 3.2establishes the evaluation criteria used throughout
the restof the chapter. Section 3.3 introduces the different allocation policies and the simulation
resultsthat characterize each,and Section3.4compares the policiesagainstone another.

3.1. The Simulation Model

The four allocation policies are analyzed by means of an event driven, stochastic workload
simulator. There are three primary components to the simulation model: the disk system, the
workload characterization, and the allocation policies. The disk system and workload characteri
zation are described in Sections 3.1.1 and 3.1.2, while the allocation policies are described in
detail in Section 3.3.

15

3.1.1. The Disk System

The disk system is an array of disks, viewed as a single logical disk Although many such
systems use additional parity drives to improve system availability, for simplicity, the simulated
array does not contain parity. Blocks are numbered so that data written in large, contiguous units
to the logical disk will be striped across the physical disks. When data is striped across disks,
there are two parameters which characterize the layout ofdisk blocks, the stripe unitand the disk
unit. The stripe unit is the number of bytes allocated on a disk before allocation is performed on
the next disk. This unit must be greater than or equal to the sector sizes of all the disks. The disk
unit is the minimum unit of transfer between a disk and memory. This is the smaller of the smal
lest block size supported by the file system and the stripe unit. Disk blocks are addressed in
terms of disk units.

Each disk is described in terms of its physical layout (track size, number of cylinders, number
of platters) and its performance characteristics (rotational speed and seek parameters). The seek
performance is described by two parameters, the one track seek time and the incremental seek
time for each additional track If ST is the single track seek time and SI is the incremental seek
time, then an N track seek takes ST +N*SI ms. Table 3-1 contains a listing of the parameters
which describe one common disk and its default values for these simulations.

3.1.2. Workload Characterization

The workload is characterized in terms of file types and their reference patterns, similar to the
synthetic trace generator described in [WRI91]. A simulation configuration consists of any
number of file types, defined by their size characteristics, access patterns, and growth characteris
tics. Table 3-2 summarizes those parameters which definea file type.

For each file type, initialization consists of two phases. In the first phase, nusersevents are
created, and each is assigned a start time uniformly distributed in the range [0, (nusers * hfreq)],
where hfreq is the average time between requests from differentusers. The events are maintained
sorted in scheduled time order. During the second initialization phase, the files are created. The
initial file sizes are selected from a normal distribution with mean i_size and deviation i_dev.
Allocation requests are issued for each file until the file has reached its initial size.

Disk Parameters

For the CDC 5 W Wren IV Drives (94171-344)

actual simulated

N Disks NA 8
Total Capacity 2.8 G 2.8 G

Max Throughput 10.8 M/sec 10.8 M/sec
N Platters 9 9

N Cylinders 1549 1600

Bytes/Track 24 K 24K

1 Track Seek Time 5.5 ms 5.5 ms

Inc. Seek Time 0.0320 ms 0.0320 ms

Rotational Latency 16.67 ms 16.67

Table 3-1: Disk Parameters and Default Values

File Parameters

nfiles Number of files created
nusers Number ofparallel events
ptime Millisecondsbetweenrequests from a single user
hfreq Milliseconds between requests from different users
rw_size Mean size ofeach read/writeoperation
rw_dev Standard deviation in read/write size
a_size For extent-based systems, mean extent size
t_size Mean size ofdeallocate requests
i_size Mean initial file size
i_dev Deviation in the mean file size.
rjratio Percent read operations.
w_ratio Percent write operations.
e_ratio Percent extend operations.
d_ratio Percent deallocates which are file deletes.
t_ratio Percent deallocates which are truncates.

Table 3-2: FileParametersand Description

16

The simulation runs by selecting the next scheduled event, determining the type of event
(allocation, deallocation, read or write), processing that event, and scheduling a new request.
Events correspond to file types. For each file type, the read ratio (rratio), write ratio (wj-atio),
truncate ratio (t_ratio), extend ratio (e_ratio), and delete ratio (d_ratio) indicate what percent of
the requests are of the particular type. The size of an allocation, read, or write operation is
selected from a normal distribution with mean rw_size and deviation rw_dev. The size of a trun
cation operation is also drawn from a normal distribution, butwith a mean of t_size. After the
operation is completed, an exponentially distributed value withmean equal to ptime is added to
the time at which the operation completed, and an event is scheduled at thatnewly calculated
time. If an allocation request cannot be satisfied, a disk full condition is logged, and the current
event is rescheduled (exponentially distributed with memptime).

There are two types of simulations: allocation tests andthroughput tests. Allocation tests are
used to determine thefragmentation in the file system and throughput tests report bandwidth utili
zation. The two metrics are measured separately since allocation tests require filling thedisk to
capacity while throughput tests need to rununtil the throughput has stabilized, anddisk full con
ditions would distort the measured throughput Allocation tests are terminated the first time that
an allocation request fails. Throughput tests are terminated by one of two conditions, either a
specified number ofmilliseconds have been simulated orthe throughput ofthesystem has stabil
ized. The system is assumed to stabilize when two conditions have been met: three successive
short-term measurements (throughput for a ten-second period) are the same and the short-term
measurement is equal to the long-term measurement (throughput for the entire simulation dura
tion). Typically, the simulations stabilized within 24 simulated hours.

Three workloads are used to simulate a time-sharing or software development environment
(TS), a large transaction processing environment (TP), and a super-computer or complex query
processing environment (SQ.

The time-sharing workload is based loosely on the trace driven analyses in [OUST85] and
[BAKER91] and is characterized by an abundance of small files (mean size 8 kilobytes) which

17

are created, read, and deleted. If a file is deleted, the next request to read that file will first create
it Therefore, the workload which creates, reads, and deletes files is composed of 50% reads and
50% deletes with the creates caused implicitly. Five-sixths of all requests are to these small files,
while the remaining one-sixth are to larger files (mean size 96 kilobyte). The large files are usu
ally read (60% of the time) and occasionally extended, written or truncated (15% writes, 15%
extends, 5% deletes and 5% truncates).

The transaction processing workload is based loosely on the TP/1 [ANON85] and TPC-B
benchmarks [TPCB90]. It is characterizedby eight large files (210 megabytes each) representing
data files or relations, five small application logs (5 megabytes each), and one transaction log (10
megabytes). The relations are read and written randomly (60% reads, 30% writes), and infre
quently extended and truncated (7% extends, 3% truncates). It is assumed that log files are never
deleted and that the abort rate is relatively low, so that log files are rarely read. The system log
receives a slightly higher read percentageto simulate transactionaborts.

The super-computer workload is based on the trace study presented in [MILL91]. The
environment is characterized by 1 large file (500 megabytes), 15 medium sized files (100 mega
bytes each), and 10 small files (10 megabytes each). The large file and seven of the medium files
are all read and written in large, contiguous bursts (.5 megabyte) with a predominance of reads
(60% reads, 30% writes, 8% extends, and 2% truncates). The rest of the medium files and the
small files are read and written in 8 kilobyte bursts, but are periodically deleted and recreated
(60% reads, 30% writes, 5% extends, 5% deletes). Table 3-3 summarizes the different work
loads.

32. Evaluation Criteria

The two evaluation criteria for each policy are disk utilization and throughput. The metrics
for measuring disk utilization are the externalfragmentation (amount of space available when a
request cannot be satisfied) and internalfragmentation (the fraction of allocated space that does
not contain data). The allocation tests are run by performing only the extend, truncate, delete,
and create operations in the proportion expressed by the file type parameters. As soon as the first
allocationrequest fails, the external and internal fragmentation arecomputed.

The metrics for throughput are expressed as a percent of the sustained sequential performance
of the disk system. For example, the configuration shown in Table 3-1 is capable of providing a
sustained throughput of 10.8 megabytes/sec. Therefore, a throughput of 1.1 megabytes/sec is
expressed as 10% of the maximum available capacity.

Throughput is calculated for two sets of tests, the application performance test and the sequen
tial performance test For the application performance test, the application workloads described
in the previous section are applied. For die sequential test, files are read and written in their
entirety. Thus, the sequential test gives an upper bound on the performanceprovided by the disk
system for a particularallocation policy.

33. The Allocation Policies

This section describes the four file systems simulated, including a discussion of the selection
of the relevant parameters for each model. The first file system is a binary buddy system similar
to that described in [KOCH87]. Files are composed of a fixed number of extents, each of whose
size is a power of two (measured in sectors). Files double in size when they exceed their current
allocation. The next file system is a restricted buddy system which supports only a few different
block sizes. The third is the extent-based policy described in [STON89]. The fourth system is a
simple, fixed-block system. It uses rotational positioning and clustering like the FFS, but uses
only a single block size (i.e. it does not support fragments).

18

Workload Characteristic FileTvoel FileTvDe2 HleTvoe3 File Tvoe 4

Time type small medium
Sharing access pattern whole file whole file

% requests 87.0 13.0

num files 25000 12000
mean size 8KB 96 KB

% reads 50.0 60.0
% writes 0.0 15.0

% truncates 0.0 5.0
% extends 0.0 15.0

% deletes 50.0 5.0

Transaction type data file application transaction
Processing log log

access pattern random append append
run length (4KB) (256 bytes) (128 bytes)
% requests 62.5 12.5 25.0

num files 8 5 1

mean size 210 MB 5MB 10 MB

% reads 60.0 2.0 5.0

% writes 30.0 0.0 0.0

% truncates 3.0 5.0 1.0

% extends 7.0 93.0 94.0

% deletes 0.0 0.0 0.0

Super type large medium medium small
Computer access pattern sequential sequential random random

run length (.5 MB) (.5 MB) (8KB) (8KB)
% requests 4.0 30.0 33.0 33.0

num files 1 7 8 10

mean size 500 MB 100 MB 100 MB 10 MB
% reads 60.0 60.0 60.0 60.0
% writes 30.0 30.0 30.0 30.0
% truncates 2.0 2.0 2.0 0.0
% extends 8.0 8.0 8.0 5.0
% deletes 0.0 0.0 0.0 5.0

Table 3-3: Workload Characterizations

33.1. Binary Buddy Allocation

The binary buddy allocation policy described in [KOCH87] includes both an allocation pro
cess and a background reallocation processthat runs during off-peakhours. This simulationcon
siders only the allocation and deallocation algorithm (i.e. not the background reallocation). This
will not impact performance, as the performance benefit is derived from the large extents, and
reallocation only runs whenthe file system is not being used. However, the resulting fragmenta
tion numbers will be exaggerated relative to what they would be after relocation.

19

In the buddy allocation system, a file is composed of some number of extents. The size of
eachextentis a powerof two multiple of the sectorsize. Each time a new extent is required, the
extent size is chosen to double the currentsize of the file. Figure3-1 depicts this allocation pol
icy.

As previous worksuggests [KNOW65] [KNUT69], suchpolicies are prone to severe internal
fragmentation, and the simulation results, in Table 3-4, confirm this. However, since there are a
small number of extents, very high throughput is observed when large files are present The
throughput results in Table 3-4 show that when large files are present, as in the super-computer
and transaction processing workloads, sequential access uses over 93% of the total bandwidth.
Since most of the accesses are quite large in the super-computer workload, eventhe application
tests are able to utilize 88% of the available throughput When files are small, as in the time
sharing environment, or when manyaccesses are random (asin transaction processing) the result
ing throughput is muchlower. Therefore, thispolicy works extremely well for workloads which
demand large, sequential accesses, butdoes littleto improve random or small file performance.

A File's Extents

Sectors

Figure 3-1: Allocation for the Binary Buddy Policy. Files are allocated by doubling their extent size
whenever thefile exceeds diecurrent allocation. Thediskcaninitially be thought of asonelarge block. When anallo
cation ofsizeN is required, andnosuch free block currently exists, thesmallest block of sizegreater than orequal toN
isdivided into two equal blocks. Theprocess repeats until a block of theappropriate sizeiscreated.

Workload

SC

TP

TS

Disk Usage

Internal

Fragmentation
(% allocated space)

43.1%

15.2%

18.4%

External

Fragmentation
(% total space)

13.4%

9.0%

2.3%

Throughput
Application
Performance

(% max throughput)

88.0%

27.7%

8.4%

Sequential
Performance

(% max throughput)

94.4%

93.9%

12.0%

Table 3-4: Fragmentation and Performance Results for Buddy Allocation.

20

33.2. Restricted Buddy System

As in the binarybuddy system, the restricted buddysystemuses the principlethat a file's unit
of allocation should grow as the file's size grows. Additionally, logically sequential allocations
within a file are placed contiguously whenever possible. Therefore, when successiveallocations
are placed contiguously on disk, multiple allocation units can be transferred in a single I/O. To
improve small file performance by reducing both the number and length of seeks, the disk is
divided into regions to allow clustering of blocks within a file when they cannot be allocated
sequentially.

The potential difficulties of such a system are threefold. Supporting multiple allocation sizes
makes maintaining free spaceandallocating diskspace complex andcould increase external frag
mentation. Growing blocksizesmay increase internal fragmentation for files using only part of a
large block. It may be difficult to provide good performance for small files since the cost of a
seek between two logically sequential blocks will be amortized across very little data, and will
therefore make small-file performance poor.

Each of these problems can be addressed by limiting the complexity of the design. External
fragmentation is addressed by restricting the numberof allocationsizes, allocatingdisk blocks in
a manner that favors keeping large contiguous regions unused, and selecting block sizes which
are multiples of each other. Minimizing internal fragmentation is addressed by carefully select
ing the point at which the blocksizegrows. Efficient access for small files is provided by taking
advantage of the underlying disk structure. In a single disksystem, that meansplacingblocksin
rotationally optimal positions on the same cylinderso that multiple blocks may be retrieved in a
single rotation. On a multi-disk system, thismeans numbering blocks so that requests to sequen
tial blocks can be servicedby multipledisksin parallel.

3.3.2.1. Maintaining Contiguous Free Space

Keeping track of free space can become complex when maintaining blocks of various sizes.
The two major questions to be answered are at what granularity free space should be recorded
(the largest blocks or thesmallest blocks), and what data structure should beused. If free space is
maintained only in terms of maximum-sized blocks then a separate mechanism is required to
allocate small blocks within thelargerblocks. If free space is maintained by bit maps in terms of
minimum sized blocks, then it becomes difficult to find larger sized blocks. One would have to
search the bit map for a potentially large number of contiguous free blocks. Furthermore, it is
difficult to maintain large contiguous free areas when servicing small allocations. These issues
have led to the adoptionof a hierarchical free spacestrategy.

The disksystem is divided into regions called bookkeeping regions. A bookkeeping region is
roughly analogous to the Fast File System's cylinder groups and is described by a bookkeeper.
Each bookkeeping regionhas its own free space structures. It maintains a bit map that describes
the entire region in terms of maximum-sized blocks. When a smaller block is required, a large
block is allocated, its bit it toggled, and it is brokenup into blocksof the next smallersize. Free
block information for these smallerblocks is maintained in a sorted, doubly-linked list Within
each of these lists, the bookkeeper points to the next block to be allocated. Each disk unit of the
region is represented in the bit map (in terms of its associated maximum-sized block) and also in
one freelist if it is unallocated. In this way, blocks of various sizescan be found quickly.

3.3.2.2. File System Parameterization

A restricted buddy file system may be parameterized to suit a particular environment. The
three main sets of parameters are: the blocksizes, the bookkeeping unit size, and the growpol
icy.

The size of a bookkeepingregion is the unit of clusteringwithin the file system. It must be at
least as large as twice the largest block size and is usuallymuch larger. If files are expected to

21

grow to be quite large, larger bookkeeping regions are desirable so that a large number of
maximum-sized blocks are available. However, if most files are not expected to require
maximum-sized blocks, smaller bookkeeping regions will realize more benefits of tight cluster
ing. Since allocation becomes more difficult as the disk fills, at the time of file system creation,
one may specify how much of the file system space should be left free.

The grow policy determines when the size of the allocationunit is increased and is expressed
in termsof a multiplier. If g is the growpolicy multiplier andthe blocksizesare at, then the unit
of allocation increases from at to ai+l whenthe sum of the sizesof all blocksof size at is equal
to g * ai+l. For example, a systemwithblocksizesof 1 kilobyte and 8 kilobytes and a growpol
icy multiplier (grow factor) of 1 will allocate eight 1-kilobyte blocks before allocating any 8-
kilobyte blocks. If the next larger block size were 64 kilobytes, then eight 8-kilobyte blocks
would be allocatedbefore growingthe block size to 64 kilobytes. Intuitively, one expects that a
smaller grow factor will cause worse internal fragmentation (since bigger blocks are used in
smaller files), but might offer better performance(since fewer small block transfers are required).
However, if the small blocks are allocated contiguously, then the performance shouldbe compar
able, and the larger grow factor is desirable.

3323. Allocation and Deallocation

When the allocation manager receives an allocation request, it attempts to satisfy that request
from the optimal bookkeeping region. The goal in selecting regions and blocks is similar to that
of the FFS, in that it attempts to select a block that is conveniently close to associated blocks.
Additionally, it must try to maintain large contiguous regionsof unallocated space for large block
allocation requests. The definition of the optimal region depends on the type of request. If the
request is for a block of a file, the optimal region is that region that contains the most recently
allocated block for that file. If no blockshave been allocated, the optimal region is that region in
which the file's index structure (inode) was allocated. If the allocation request is for an inode, the
optimal region is the region containingthe mode's parent directory. Finally, if the request is for
an inode, but that inode represents a directory (duringdirectory creation), the inode is allocated to
that region containing the lowestfree split ratio. The free split ratio is the ratio of the amount of
free space that cannot be used for maximum-sized blocks divided by the amount of free space
represented in contiguous maximum-sized blocks. If two regions have the same free split ratio,
the region with the greater amount offree space is selected. This balances three conflictinggoals:
clustering related data, spreading new directories, and maintaining maximum-sized blocks.

If a request is made to a specific region, and there is adequate contiguous space, but no block
of the appropriate size, then a larger block is split. The larger block is removed from its free list
or bit map. A block of the desired size is allocated, and the remaining space is linked into the
free lists for the smaller blocks. If the request fails in the desired region, it is passed up to the
free split block algorithm which looks for a region with a free block of the appropriate size. If no
blocks of the appropriate size are found in any region, only then is a larger block split Once a
split becomes necessary, die region with the best free split ratio is selected, unless the desired
allocation is for the largest sized block, in which case, the block with the lowest free split ratio is
selected. Table 3-5 summarizes the total allocation strategy.

When a block is deallocated, it is reattached onto the appropriate free list of the appropriate
bookkeeping region. Entries on free lists are maintained in sorted order so that coalescing may
be performed at deallocation time. Any block which is not of the smallest block size in the file
system is called a parent block, and is composed of N child blocks (blocks of the next smaller
allocation size). When block B is deallocated, if B's remaining sibling blocks are unallocated and
present in the free list, then all N child blocks (B and its siblings) are coalesced and removed
from their free list, and the parent of B is added to its free list. In this way, blocks on the free list
will always be of the greatest possible size. Using this coalescing algorithm, the number of
entries in these free lists is expected to be quite low, as observed in the DTSS binary block

Select Optimal Region
• same as last

• same as inode

• same as directory
• max free split ratio

Select region with a free block of the correct size and the greatest free split ratio
Select the region with the greatest free split ratio
Select region with the most free space

Table 3-5: Allocation Region Selection Algorithm.

22

system [KOCH87]. In practice, the average list length was under 4 (3.63).

33.2.4. Exploiting the Underlying Disk System

In order to provide good performance in the presence of many small files, the file system
needs to use the underlying disk system efficiently, avoiding extraneous seeks on a single disk
system and exploiting parallelism on a multiple disk system. The Fast File System (ITS) and the
Log-structured File System (LFS) both provide effective mechanisms for optimizing the single
disk case, so this section will consider how to best exploit the parallelism in a multi-disk
configuration by spreading data across multiple disks. Simply speaking, to optimize for large
files, large blocks are automatically striped across the disks, and to optimize for small files, dif
ferent files are explicitly scattered across the disks.

The disk system is addressed as a linear address space of disk units. Each block size is an
integral multiple of the disk unit and of all the smaller block sizes. In order to keep allocation
simple, a blockof size N always starts at an address which is an integral multiple of N. If a sys
tem supports block sizes of 1 kilobyte and 8 kilobytes, the 1-kilobyte blocks located at addresses
0 through 7 areconsidered buddies, together forming a block of size8 kilobytes. Whenever pos
sible, buddies are allocated sequentiallyto the same file and are coalesced at deallocation.

The parametersthat definea file systemin the restricted buddy policy are the number of block
sizes, the specific sizes, whento increase the blocksize (the growpolicy), and whether or not to
attempt to cluster allocations for the same file. Four different sets of block sizes, two different
algorithms for choosing when to increase the block size, andbothclustered andunclustered poli
cies are considered. The four block size configurations are:

Number of Block Sizes Block Sizes

2 IK, 8K
3 IK, 8K, 64K
4 IK, 8K, 64K, 1M
5 IK, 8K, 64K, 1M, 16M

In order to group allocations within a file physically close to one another, the allocator
attempts to placed allocations of the same file in the same bookkeeping region. For each set of
block sizes, both a clustered configuration, with 32 megabyte bookkeeping regions, and an
unclustered configuration were considered.

The allocation and throughput tests were run on all the workloads described in Section 3.1.2.
Figure 3-2 shows the fragmentation results. The most striking result is that the attempt to

5%

4%

3%

2%

1%

5%

4%

3%

2%

1%

5%

4%

3%

2%

1%

Supercomputer Workload

External Fragmentation InternalFragmentation

JM mall vEmL
1K/8K 1K/8K/64K 1K/8K/64K 1K/8K/64K

1M 1M/16M

Block Sizes

1K/SK 1K/8K/64K 1K/SK/64K
1M

Block Sizes

Transaction Processing Workload

External Fragmentation Internal Fragmentation

Jl

5%

3%

2%

nHlfl

23

1K/8K/64K
1M/16M

"•

1K/8K 1K/8K/64K 1K/8K/MK 1K/8K/64K
1M 1M/16M

Block Sizes

1K/8K 1K/8K/64K

Block Sizes

1K/8K/64K 1K/8K/64K
1M 1M/16M

Time Sharing Workload

External Fragmentation InternalFragmentation

g.

f•
1K/8K 1K/8K/64K 1K/8K/64K 1K/8K/64K

«. . „. 1M 1M/16M
Block Sizes

grow factor = 1, clustered

grow factor = 1, unclustered

I1
J «h

1K/8K 1K/8K/64K 1K/8K/64K 1K/8K/64K
_,. . 0. 1M 1M/16M
Block Sizes

grow factor = 2, clustered

grow factor = 2, unclustered

Figure 3-2: Fragmentation for the Restricted Buddy Policy. Each pair ofgraphs shows the internal
and external fragmentation for the indicated workload. Noneof the policies produce either internal or external frag
mentation in excess of 6%.

100%

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

0%

Supercomputer Workload

ApplicationPerformance SequentialPerformance

1

100% •

80% •

60% •

40% •

20% V

0%

1

1

i

24

1K/8K 1K/8K 1K/8K 1K/8K
64K 64K/1M 64K/1M/16M

1K/8K 1K/8K 1K/8K 1K/8K
64K 64K/1M 64K/1M/16M

Transaction Processing Workload

ApplicationPerformance Sequential Performance

h«b emh eimh imm®

1K/8K 1K/8K 1K/8K 1K/8K
64K 64K/1M 64K/1M/16M

100% «••

80% •

60% ' -

40% •-

20% f
0% I

1

J1
1K/8K 1K/8K 1K/8K 1K/8K

64K 64K/1M 64K/1M/16M

Time Sharing Workload

Application Performance Sequential Performance
100%

80%

fiMra emh iniii aiiw

1K/8K 1K/8K 1K/8K 1K/8K
64K 64K/1M 64K/1MA6M

grow factor = 1, clustered

grow factor = 1, unclustered

60%

40%

20% i

0% 1M !••• !•! Hi!
1K/8K 1K/8K 1K/8K 1K/8K

64K 64K/1M 64K/1M/16M

grow factor = 2, clustered

grow factor = 2, unclustered

Figure3-3: Applicationand Sequential Performance for the Restricted Buddy Policy.

25

coalesce free space and maintain large regions for contiguous allocation is successful. None of
thepolices produce either internal orexternal fragmentation greater than 6%. Part of the explana
tion for this lies in the static file population in the simulation. Since the ratio of large to small
files remains constant, small files continue tobeallocated from small blocks, and the large blocks
remain available for large files. Still, the time-sharing workload, which has the blend of large and
small files, exhibits the greatest fragmentation, and fragmentation increases as the number of
blocks sizes and theblock sizes themselves increase. Increasing thegrow factor from one to two
reduces the internal fragmentation by approximately one-third (the difference between each pair
of adjacent bars in the upper right-hand graph). External fragmentation increases slightly in an
unclustered configuration since a larger selection of blocks is eligible for splitting (all blocks in
the disk system instead of justthose in aspecific region).

Figure 3-3 shows the results of the application and sequential tests for the three workloads
under each configuration of the restricted buddy policy. As expected, the configurations which
support the larger block sizes provide the best throughput, particularly where large files are
present (the top four graphs in Figure 3-3). The super-computer application in the first two
graphs shows up to 25% improvement for configurations withlarge blocks, while the transaction
processing environment shows an improvement of 20%. These same workloads are relatively
insensitive to either the grow policy or clustering. For the five-block-size configuration (the
rightmost on each graph), most show slightly better performance with an unclustered
configuration. The explanation of this phenomena lies inthe movement of files between regions.
In a clustered configuration, when a change of region is forced, the location of the next block is
random with regard tothe previous allocation. Inan unclustered configuration, there are typically
only small seeks between subsequent allocations and the performance is slightly better.

The time-sharing workload reflects the greatest sensitivity to the clustering and grow policy.
Uniformly, clustering tends to aid performance, by as much as 20% in the sequential case (in the
lower right-hand graph of Figure 3-3, the first two bars of each set represent the clustered
configuration and the third and fourth bars represent the unclustered configuration). Since this
environment is characterized by agreater number of smaller files, data is being read from disk in
fairly small blocks even with the larger block sizes. As a result, the seek time has a greater
impact on performance, and the clustering policy which reduces seek time provides better
throughput

The graph onthebottom right indicates that the higher grow faaor provides better throughput
(the second and fourth bars in each set represent a grow factor of two, while the first and third
bars represent a grow factor of one). This is counter-intuitive since a higher grow factor means
that more small blocks are allocated. To understand this phenomena, one needs to analyze how
the attempt to allocate blocks sequentially interacts with the grow policy. Figure 3-4 shows a 1-
megabyte block that is subdivided into sixteen 64-kilobyte blocks, each of which is subdivided
into eight 8-kilobyte blocks. When the grow factor is one, any file over 72 kilobytes requires a
64-kilobyte block. However, when it is time to acquire a64-kilobyte block, the next sequential
64-kilobyte block is notcontiguous to the blocks already allocated. In contrast, when the grow
factor is two, the 64-kilobyte block isn't required until the file is already 144 kilobytes. Since
most files in the timesharing workload are smaller than this, they never pay the penalty of per
forming the seek to retrieve the 64-kilobyte block. Thus our grow policy and our attempts to lay
outblocks contiguously are in conflict withone another, and the grow policy should be modified
to allow contiguity between different sized blocks.

Using theresults of this section, aconfiguration for comparison withthe other allocation poli
cies was selected. Since the larger blocks sizes did not increase fragmentation significantly, the
five-block-size configuration (1 kilobyte, 8 kilobytes, 64 kilobytes, 1 megabyte, 16 megabytes),
which is the rightmost group on each graph, is chosen. Clustering had little effectonthe large
file environments and improved performance in the time-sharing environment, so the clustered
configuration was selected. In four of the six cases, the grow faaor of one provided better

| IK Allocations

i 8K Allocations

164K Allocations

-1M

26

Figure 3-4: Interaction of Contiguous Allocation and Grow Factors. Because the total file length is
not amultiple of thenewblocksize,a seekis required whentheblocksizegrows.

throughput than the grow factorof two, so the policywith the growfactorof one is selected, with
the understanding that it willpenalize sequential performance for the time-sharing workload. This
configuration is represented by the leftmost bar in the rightmost groupof eachgraph.

33.3. Extent-Based Systems

In the extent-based models, every file has a single extent size associated with it. Each time a
file grows beyond its currentallocation, additional disk storage is allocated in units of this extent
size. As in the restricted buddy policy, thedisk system is viewed as a linearaddress space. How
ever, in this model, an extent may begin at any disk offset When an extent is freed, it is
coalesced with any adjoining free extents.

Workload Number

of Ranges
Range Means

TS 1 4K

2 1K.8K
3 IK, 8K, 1M
4 1K,4K,8K, 1M
5 1K,4K,8K, 16K,1M

TP/SC 1 512K

2 512K, 16M
3 512K, 1M, 16M
4 512K, 1M, 10M, 16M
5 10K,512K,1M,10,16M

Table 3-6: Extent Ranges for Extent-Based File System Simulation.

27

The parameters which define a file system in the extent-based model are the allocation policy
and thevariation in the sizes of theextents. Theallocation policy indicates howto select thenext
extent forallocation. Both a first-fit and best-fitalgorithm are simulated.

In order to simulate the variation in the size of extents, extent ranges are used. In extent-
based systems, such as MVS [IBM] , users specify extent sizes when they create files. In the
simulations, when a file is created, its extent size is chosen from a distribution called an extent
range. An extent size range is a normal distribution with a standard deviation of 10% of the
mean. For example, an extent range around 1megabyte with 1kilobyte diskunits would produce
a normal distribution of extent sizes with mean 1 megabyte and standard deviation of 102 kilo
bytes. To assess the impact of the variation in extent-sizes, the simulation is run with varying
numbers of the extent ranges. Table 3-6 shows theextent ranges simulated.

As the number of extent ranges increases, one expects to see increased fragmentation since a
more diverse set of extent sizes are being allocated, but the results do not support this. Instead,
across all extent ranges, both internal and external fragmentation is below 4%, independent of the
number of extent ranges. One likely explanation is that the ratio of large files to small files is
constant in these simulations. As a result, once large extents are allocated they do not become
fragmented later, because requests for small extents may be satisfied by already fragmented
blocks. This also explains whybest fit consistently result inless fragmentation.

One might expea throughput to be insensitive to the selection of best fit or first fit since, in
both cases, files are read in the same size unit. Figure 3-5 shows the application and sequential
performance results for the extent-based polices and confirms this intuition. In general, first fit
demonstrates better performance due to the clustering that results from thetendency to allocate
blockstoward the' 'fjeginning'' of thedisk system.

The key to the small changes in performance isthe average number of extents per file for the
different workloads and extent ranges. These numbers are summarized in Table 3-7. Since the
workload with the minimum average number of extents requires the fewest seeks, one would
expea to see the best performance for that workload. The super-computer and transaction pro
cessing workloads behave as expected (the first two graphs in the right-hand side of Figure 3-5),
but the time-sharing workload does not Further inspection indicates that the ratio of small to
large files alters this result Since most of the files in the time-sharing environment are small,
they can beallocated inone ortwo 4 kilobyte extents. The larger files require 24 extents (96 kilo
byte files with 4 kilobyte extents). However, the larger files consume more disk space and take
longer to read and write. As aresult, the time spent processing large files is greater than the time
spent processing small files. Therefore, in the configurations where the large files have fewer
extents (12 extents in the systems that use 8-kilobyte extents for these files), the overall
throughput is higher.

In selecting the configuration to compare in Section 3.5, first fit allocation is chosen since it
consistently provides better performance than best fit For the transaction processing and super
computer workloads simulated, the three range size configuration results inthehighest sequential
performance. Although this configuration does not offer the best performance for the timesharing
workload, it is within 10% of the best performance. This configuration is represented by the
right-hand bar in themiddle group of each graph.

33.4. Fixed-Block Allocation

The last of the allocation policies is a simple fixed-block algorithm used as acontrol to estab
lish how much of an improvement may be derived from the multiple-block systems described.
When small files are the predominant part of the workload (as in the time-sharing workload), a
small block size of 4 kilobytes is used. Where an abundance of large files are present as in the
super-computing and transaction processing workloads, alarger, 16 kilobyte block size is used.

100% •

80% ••

60%

40%

20%

0%

Supercomputer Workload

Application Performance

I

r
*—I

i II

Sequential Performance

100%

80% ' -H*

60% •

40% ' -If

20% • - «i •

=1
:

I-
...

L

:

1--
t:
i

28

}f

i

12 3 4 5
Number ofExtent Ranges

0%

12 3 4 5
Number ofExtent Ranges

Transaction Processing Workload

Sequential Performance

ioo% r-

Application Performance

40%-

20% • -Hiir

80% " -

60% - -4«l-

40%'

20%'

0%

:i I I:
»

I

1
0%

100% ••

80% '

60% •

40%"

20%-

0% •

fI

12 3 4 5
Number ofExtent Ranges

I I
12 3 4 5

Number ofExtent Ranges

Time Sharing Workload

Application Performance Sequential Performance

12 3 4 5
Number of Extent Ranges

Best Fit

100% •

80% -

40%'-

20% • -

0%

12 3 4 5
Number of Extent Ranges

Fust Fit

Figure 3-5: Applicationand Sequential Performance for the Extent-basedSystem.

Average Number ofExtents Per File

Numberof ExtentRanges SC TP TS

1 162 267 5
2 124 13 9

3 97 12 9

4 151 14 7

5 162 108 6

Table 3-7: Average Number ofExtents per File.

29

3.4. Comparison of Allocation Policies

As we've seen in the preceding sections, all the allocation policies except for the buddysys
tem yield satisfactory fragmentation. As a result, this section focuses on the application and
sequential performance.

Figure 3-6 shows the sequential performance of the four allocation policies discussed in Sec
tion 3.3. As expected, all of the multiblock policies perform betterthan the fixed-block policy
due to the ability to read and write large, contiguous blocks. On the large file applications (SC
and TP) all the large-block policies achieve close to the maximum throughput. In the time
sharing environment, none of the policies succeed in pushing the system above 20% utilization
due to the presence of many small files. However, the extent-based policy can respond to this
burden most effectively since each file is limited to a small number ofextents.

100%

40%

20% •

m ran
100%

. MS an , i&i • iti

SC TP TS

60%

40% •

20% •

SC

• Buddy Allocation • Fixed Block (16K)

• Restricted Buddy • Fixed Block (4K)

II Extent Based

TP TS

Figure 3-6: Sequential Performance of
the Different Allocation Policies.

Figure 3-7: Application Performance of
the Different Allocation Policies..

30

In the application performance (Figure 3-7), the results are similar. However, there are two
points to note. First, in the super-computer environment, the buddy system performs substan
tially better since, for large files (over 100 megabytes), it is using substantially larger block sizes
(64 megabytes). Inthe transaction processing environment, allthe policies are limited by the ran
dom readsand writes to the large data files.

3.5. Conclusions

File systems with variable block sizes can substantially improve performance by allowing
transfers to and from the disk in large, contiguous units. In the large file environments such as
super-computer applications, these large-block policies provide up to 250% better throughout
than a simple fixed-block policy. Even for workloads like the transaction processing environ
ment, which are dominated by small reads and writes to large files, there is a small (10%)
improvement While the large blocks do not benefit the small file environment greatly, they do
not binder it either in terms of performance or fragmentation. Therefore systems with both
extremely large and extremely small files are likely to be able to derive this improved perfor
mance without handicappingthe efficiency of small files' retrieval.

This result suggests that time-sharing environments could benefit significantly from these
allocation techniques. Such systems could theneffectively compete with systems designed with
database or super-computer applications in mind, without hindering the small file performance.
Empirical evidence in [ROSE91] and [ROSE92] shows that log-structured file systems also pro
vide these benefits in a time-sharing environment. Since LFScan guarantee sequential layout for
large files read and written in theirentirety, onemightexpea thatit will also perform well on the
super-computer workload. However, it is not clear how well LFS cansupport the transaction pro
cessing workloads. Chapter 4 will explore the comparison of LFS and read-optimized file sys
tems in the case of transaction processingworkloads.

31

Chapter 4

Transaction Performance and
File System Disk Allocation

This chapter considers the use of a write-optimized file system, specifically a log-structured
file system, in a transaction processing environment The goals of this chapter are twofold: to
understand the tradeoffs between using a conventional read-optimized file system and a write-
optimized file system for transaction processing, and to characterize the performance of embed
ding a transaction manager in the operating system. As discussed in Chapter 2, [KUM87] and
[KUM89] show that embedded support is inferior to traditional, user-level support, but [SELT90]
shows that embedded support can be as good as user-level support This chapter will explain this
result by analyzing five models of transaction processing, isolating the critical resources, and
stressing each model in each dimension, enabling a characterization of the performance of each
model across a wide range of configurations.

The rest of this chapter is organized as follows. First, the write-optimized (log-structured) file
system is described. Then the overview of the simulation is presented. Next, the simulation
model and the different models of transaction management are discussed. Finally, the simulation
results are presented.

4.1. A Log-Structured File System

A log-structured file system is a hybrid between a simple, sequential database log, and the
traditional UNIX file system. Like a database log, it performs all writes sequentially. Like a UNIX
file system, it has index structures to support efficient random retrieval. The index structure con
tains the disk addresses of some number of direct, indirect, and doubly indirect blocks. Direct
blocks contain data, while indirect blocks contain the disk addresses of direct blocks, and doubly
indirect blocks contain disk addresses of indirect blocks. For the purposes of this chapter, the
index structures and both single and double indirect blocks are referred to as meta-data.

While conventional UNIX file systems allocate disk space to optimize for sequential access to a
single file, an LFS allocates disk space dynamically, optimizing write performance. In a conven
tional file system, the blocks within a file are assigned disk addresses, and each time a block is
modified, the same disk block is overwritten. As a result, writes to different files often cause a
seek, and writes to different blocks of a file may also cause a seek. In an LFS, a large number of
modified data pages, the meta-data describing them, and a segment summary block are written
sequentially in a single unit, called a segment [ROSE90]. Note that while the index structures in
a UNIX file system occupy fixed places on disk, the index structures are appended to the log with
their data in an LFS. In order to locate these index structures later, the address of each file's
index structure is recorded in a data structure called the inode map. Figure 4-1 shows the alloca
tion of three files in a log-structured file system.

When a file is written, the new data blocks are appended to the log, and the index structure
and indirea blocks are modified (in memory) to contain the new disk address of the newly

32

filel file2

.dirty data blocks. .free blocks.

SEGMENT SEGMENT

filel file2
more of

.dirty data blocks ~ | ...data blocks.-

SEGMENT SEGMENT

Data Block Meta Data [jH] Summary Block I ;;| Inode Map

Figure 4-1: A Log-Structured File System. In figure (a), two files have been written, filel and file2. The
meta-data blockfollowing eachfilecontains thatfile's index structure. Li figure (b), themiddleblockof file2 has been
modified. A newversion of it is added to thelog,aswellas a newversion of itsmeta-data. Thenfile3 is created, caus
ing its blocks and meta-data to be appended to the log. Next, filel has twomoreblocks appended to it These two
blocks and a new version offilel's meta-data are appended to the log. Finally, the mode map, which contains pointers
to the meta-data blocks, is written.

written block. Periodically, the file system writes all the dirty meta-data (index structures and
indirect blocks) to disk andupdates the inode map to reflect the new location of modified index
structures. This checkpointing provides a stable starting point from whichthe file system canbe
recovered in case of system failure. The location of the latest checkpoint is redundantly written
in fixed places on the disk to facilitate recovery.

Recovering alog-structured file system is similar to standard database recovery [HAER83]. It
consists of two parts: initializing all the file system structures from the most recent checkpoint
and then rolling forward to incorporate any modifications that occurred after thelast checkpoint.
The roll forward phase consists of reading each subsequent segment summary block and updating
the file system state to reflect thecontents of thesegment Each segment summary block includes
a pointer to the next segment written, a timestamp, and a file identification number and logical
block number for each blockin the segment The forward pointers facilitate reading from thelast
checkpoint to theendof thelog and thetimestamps are used to identify the segments written after
thecheckpoint The file identification numbers are used to index into the inode map, and thelog
ical block numbers areused to update the file's meta-data so that the file index structureincludes
theblocks in thesegment. As is thecase for database recovery, the recovery time is directly pro
portional to the intervalbetween file system checkpoints.

Since the structure described is an append-only log, the disk system will eventually become
full, requiring a mechanism to reclaim space. If there are files which have been deleted or
modified, some blocks in the log will be "dead" (those that belongto deleted files or thathave
been superceded by later versions). A cleaning process reclaims segments from the log by read
ing a segment, discarding "dead" blocks, and appending any "live" blocks to the log. In this
manner, space is continually reclaimed [ROSE91].

33

There are two characteristics of a log-structured file systemthat make it desirable for transac
tionprocessing. First, a large number of dirty pages arewritten contiguously. Since onlya single
seekis performed to writeout thesedirtyblocks, the "per write" overhead is muchcloserto that
of a sequential disk access than to that of a random disk access. Taking advantage of this for
transaction processing is somewhat similar to the database cache discussed briefly in Section
2.1.2.2 and in more detail in [ELKH84]. While the database cache technique writes pages
sequentially to a cache, typically on disk, blocks in the log still need to get written back to the
"real" database. In anLFSenvironment, these blocks arestillwritten sequentially as theyare in
a log, but they also become data blocks in the "real" database.

The secondcharacteristic of a log-structured file system that makes it desirable for transaction
processing is that the file system is updated in a "no-overwrite" fashion. Since data is not
overwritten as part of the update process, before-images of updated pagesexist in the file system
until they are reclaimed by the cleaner. This feature makes it possible to avoid writing separate
log records during transactionprocessing.

42. Simulation Overview

The goal of this studyis to answerthree questions. First, how does the performance of a log-
structured file system compareto that of a conventional file system on a transaction processing
workload? Second, howdoesthe performance of operating system transaction management com
pare to that of user-level transaction management? Third, does the answer to the last question
changedepending on the file system? In order to answer thesequestions, four systems are simu
lated - one with user-level transaction processing and a read-optimized file system(USER-RO),
one with user-level transaction processing and a write-optimized, log-structured file system
(USER-LFS), one with operating system transaction processing and a read-optimized file system
(OS-RO), andone withoperating system transaction processing and a write-optimized file system
(OS-LFS). A fifth model (LFS-NOLOG) that exploits the logging nature of log-structured file
systems is also simulated.

In order to understand the salient features of each model, they are analyzed in CPU-bound,
disk-bound, and lock-bound environments. By focusing on one component of the performance
(CPU, disk, or locking) in each simulation, we can identify the critical performance issues. Fig
ure 4-2 depictsthe three dimensions of the simulation study.

As discussed in Chapter 2, user-level transaction systems typically offer better performance
than operating system transaction systems, but operating system transactions are available to a
widerclassof applications. The difference in performance is dueto threefactors: the system call
overhead, the operating system's inability to perform special-purpose lockingfor structures such
as B-Trees, and the operatingsystem's need to log data at a physicallevel. The system call over
head is a factor because processes must make system calls to request transaction service in an
embedded model while in user-level models, they can communicate via shared memory. The
lack of special-purpose lockingis a disadvantage in highcontention environments, and the physi
cal log requires more disk space. If operating system transaction management could overcome
someof these performance barriers and still offer a more flexible alternative than user-level sys
tems, it would be an attractive alternative.

43. The Simulation Model

The simulations use a workloadcharacterized by short-running transactions and are driven by
a stochastically generated workload. The database consists of a single data file with a variable
numberof B-Treeindices. Its size and fillfactor (the fraction of each page containing valid data)
are simulation parameters.

The workload consists of M concurrent processes issuing a potentially infinite stream of
parameterized transactions. At initialization, M transactions are created, and each time a

User

Level

Operating
System

Read-Optimized Write-Optimized
File System File System

USER-RO USER-LFS

OS-RO OS-LFS

CPU-Bound

Disk-Bound

Lock-Bound

34

Figure 4-2: Simulation Overview. The simulation study compares iead-optimized and write-optimized file
systems with both user-level and operating system transaction management Each of the four resulting models are
analyzed under CPU-bound, disk-bound, and lock-bound conditions.

transaction commits or aborts, a new transaction is created. A transaction is defined to be a
sequence of retrieve, update, insert, and delete operations. Each retrieve and update operation
affects a single data page and a search path through a single index. A search path consists of an
access to one page in eachlevel of the B-Tree, culminating with a leaf page. An insertor delete
operation affects a single data page and a search path through each index, since it is presumed
that a key must be inserted/deleted into/out of each index.

A number of operations, O, uniformly distributed over [/ - 0.25/, / +0.25/], where / is the
average transaction length, is generated. A second parameter, f/, determines what percent of the
O operations modify the database, the rest being read-only operations. Finally, a third parameter
/ identifies what percentage of the modify operations are inserts or deletes (as opposed to
updates). Inserts and deletes can be treated identically as they both require modifying the data
and all indices. A transaction may then be defined as:

O total operations composed of:

(1-11)0 retrieves
fUO inserts/deletes
(l-f)UO updates

Each operation of a transaction is processed in the following manner. A data page is selected
from a distribution described by two parameters d and a. The parameter d indicates what

35

percent of the database gets a percent of the accesses. Forexample, d=20 and a=80means that
80% of the accesses are distributed uniformly across 20% of the database. Once a data page is
selected, it is locked, read from the disk or the buffer pool, andleft locked until transaction com
mit time. To simulate index traversal, using the same distribution as was used for the data file,
one page is selected from each level of the B-Tree. These pages arelocked, read, and unlocked
eitherat completion of the operation (fordata manager models)or at transaction commit time (for
embedded models). As soon asoneoperation completes, thenext operation begins. When allthe
operations have completed, a synchronous write forces the log to disk.

The total database size is derived from the dbsize, pagesize, and fillfactor parameters. Dbsize
defines the size (in megabytes) of the data file. The number of records in the database is deter
mined by using thefillfactor parameter, which defines how much data is on each page. Then,
using the number of records, the fillfactor, the pagesize, and the size of a key (16 bytes), the
number of index pages is determined, using the formulas below.

T R* K A T L^*KL= . ,, and L.=————

where:

L is the number of leaf pages
Li is the number ofB-Tree pages at level i
R is the number of records in the data file
K is the key size
F is the fillfactor
P is the pagesize

Oncethe size of each indexhas been calculated by summing L,, the numberof indices is multi
plied and data file size is added to yield the total databasesize.

The bufferpool size is defined to be 10% of this totaldatabase size. The bufferpool uses an
LRU replacement algorithm and flushes dirty blocks to disk asynchronously. In both [KUM87]
and [KUM89], the bufferpool is sizedin terms of a number of pages. Thispenalizes simulations
with a smaller page size by providing them less main memory. Keeping the amount of main
memoryconstant and reducingthe page size can improveperformance by more than 25% in high
contention environments.

Table 4-1 summarizes the number of instructions required to perform each operation. The
instruction count for locking includes both the lock and unlock actions. In the embedded models,
it is assumedthat a system call is requiredto obtain a lock, so the actual cost of a lock is a func
tion of the number of instructions for both a systemcall and a lock. It is assumedthat all unlock
ing may be performed by a single system call at transaction commit time. Therefore, the CPU-
boundedness of a configuration may be adjusted by setting onlythe available CPU parameter.

operation number of instructions

lock 1000
syscall 500
retrieve 7000
update 12000

insert/delete 18000

Table 4-1: CPU Per-Operation Costs.

36

The last set of parameters controls deadlock detection and recovery. The deadlock detector
runs every deadlock seconds, aborting transactions which have been waiting longer than the
timeout interval. In orderto limit recovery timeandallow log reclamation, checkpoints are taken
every chkpt seconds. At checkpoint time, all dirty pages are forced to disk and creation of new
transactions is inhibited until all active transactions have committed. Table 4-2 summarizes the
simulation parameters and their default values.

4.4. Transaction Processing Models

This analysisconsiders five models of transaction processing. The first is a conventional data
manageron a traditional, read-optimized file system. The second is the same data manageron a
write-optimized file system. The third embeds transaction support in the read-optimized file sys
tem. The fourth and fifth both embed transactions in a write-optimized file system. The fourth
uses traditional write-ahead logging in the operating system whilethe fifth takes advantage of the
log-structured file system's"no-overwrite" policy to obviate the needfora separate log.

parameter

runlen

nruns

parameter

O

u

f

d/a
I

dbsize

bufsize

fillfactor

recsize

parameter

cpu_speed
disks

users

pagesize
spagesize
deadlock

chkpt

Statistical Parameters

description

Transactions per run
Runs per data point

Workload Characteristics

description

Avg ops per transaction
% update operations
% insert/delete
Request distribution
Number of indices

Mbytes in the data file
Buffer pool size
Valid fraction of page
Length of data records

System Parameters
description

Processor speed (in MIPS)
Number of disks

Degree multiprogramming
Page size (in bytes)
Subpage size
Deadlock detector interval

Checkpoint interval

default

10000

5

default

16

.25

.50

50/50
5

1024 (1G)
10% ofdb

.70

100 bytes

default

10

10

20

4096

128 bytes
5 sec

5min

Table 4-2: Simulation Parameters.

37

4.4.1. The Data Manager Model

In the data manager model, detailed knowledge of the structure of the database is assumed.
For example, logging is performedat a logical, ratherthan a physical level, allowinglog records
to contain only the modified data instead of the whole containing page. Using special con
currency controlprotocols, facilitating highdegrees of parallelism [BAYER77], the datamanager
only needs to hold index locks duringthe physical manipulation of the indexpage (on the order
of a few thousand instructions), providing superior performance in environments withhigh lock
contention.

The sequence of events for accessing a random record in the database is as follows. First, a
keyed lookup is performed. This requires traversing thenon-leaf pages of a B-Tree by obtaining
a read-lock on each page, finding the next page to access, and releasing the read-lock. When a
leaf page is reached, the data page is locked and accessed. In the case of an update (updates
change the record and one index, while creates and deletesupdate all the indices) a write-lockis
obtained on the leaf page of the B-Tree. Then, the update is logged,by recording both a before-
and after-image of the record, the index page and data page are modified, and the index locks are
released.

A transaction can be decomposed into operations whose cost may be expressed as a combina
tion of logging, I/O, andlocking costs, hi the datamanager models, groupcommitcan be usedto
accumulate enough data to fill a track so that the logging cost is proportional to the record size.
Since the access pattern is random, in a read-optimized file system the I/O cost for both reading
and writing is proportional to the random access time of the disks (approximately 28.3 mil
liseconds)3. On a write-optimized file system, the reads are also performed randomly, but the
writes are all performed sequentially (Section 4.1 explained how this is achieved). Finally, since
the data managerhas its own lock manager, the locking cost is strictly a function of the number
of locks and is independent of any system call overhead.

4.4.2. The Operating System Model

As the operating system knows nothing about the internal structure of files, it cannot distin
guishbetween data and indexupdates. In orderto guarantee serializability it must perform strict
two-phase locking [GRAY76] on physical entities (pages). If there are few conflicts in the index,
then page locking will be the least expensive locking granularity. However, as contention
increases, page locking in the index will limit performance, so the simulation model allows for
subpage locking as well.

Assume that there are S subpages per page. To traverse a B-Tree, log25 subpages, selected
uniformly from the filled subpages withinthe page, are locked. This models searching for a key
within the page.4 To modify a leaf page, one ofthe selected subpages is write-locked. Ifakey is
beingdeleted, the data that follows is copiedto reclaim the space. If the key is beinginserted, the
data following it is shifted to make room for the new key. Figure4-3 shows these operations. As
a result, all the subpages after the selected subpage must also be write-locked. This requires the
operating system to obtain multiple write-locks (on average half the number of filled subpages
per page) for each B-Tree page modified as comparedto the data manager's one lock.

Since all the transaction support is provided in the operating system, each lock request
requires a system call. In simulating the embedded models, the time required to perform a sys
tem call is added to each lock request while in the data manager models, no system call overhead
is added. This puts an artificially high penalty on the embedded models since, in practice, the
data manager will incur system call overhead each time a page that is not resident in the buffer
pool is requested.

3Alldisk times are based ontheperformance specification oftheFujitsu Eagle M2361A [FUJI84].
4Thelog2assumes abinary search isused to locate thecorrect subpage.

38

Subpage 1 Subpage 2 Subpage 1 Subpage 2

Subpage 3 Subage 4 Subpage 3 Subage 4

Subpage 1 Subpage 2 Subpage 1 Subpage 2

wm. £^PP?^^^# %#,.

B
5/ 6

-/ sffffrmwmfms,

Wk
Subpage 3 Subage 4 Subpage 3 Subage4

Unmodified Records Deleted Record • Added Record

Figure 4-3: Additions and Deletions in B-Trees. In Figure A, record 8is being deleted. Records 9and 10
are copied to reclaim space onthe page. Both pages 2 and 3must be locked. InFigure B, anew record is being insert
edbetween records 3 and 4. Records 4-10 are copied to make room for the new record, requiring locks on subpages 1,
2, and 3.

The final difference between the data manager and the operating system embedded model is
the amount oflogging information. Since the operating system cannot perform logical logging, it
must resort to physical logging and save both before- and after-images of each subpage that is
modified. In the case ofinserts and deletes, this number may become quite large since multiple
subpages per index page are modified.

As before, the transaction costis decomposed into logging, I/O, and locking costs. This time,
the logging cost is proportional to the size of a subpage, the I/O costs areproportional to the ran
dom disk access time, and the locking cost is a function of the number of locks, the number of
subpages per page, and the system call overhead.

4.4.3. The Log-Structured File System Models

There are three log-structured file system models. The first is a user-level system, identical to
the user-level datamanager model, except the imderlying file system is an LFS. The second is an

39

embedded model identical to the operatingsystemmodel, except that its underlyingfile systemis
an LFS. Both of these have locking and logging costs identicalto the data manager and operating
system models respectively, but the I/O component of the transaction cost is proportional to the
random disk access time for reading and the sequential disk access time for writing. Neither
model includes any cost for the cleaner.

The third model takes advantage of both the sequential nature of writes and the "no-
overwrite" policyof the log-structured file system. Instead of logging before- and after-images
of the subpages being modified, all dirty pages are forced to diskat commit time. Since a single
page is composed of multiple subpages, the page may contain subpages modified by more than
one transaction. When one of those transactions commits, the page is written, and subpages for
uncommitted transactions may also be writtento disk. A small log which records the location of
the previous and current versions of all dirty, uncommitted subpages is necessary to guarantee
that these uncommitted transactions can be aborted. This logginginformation must be forcedto
disk before the dirty pages themselves. The difference between these last two embedded models
is that the latter has very small log records (16 bytes) and the logging overhead is proportional
only to the numberof subpages modified ratherthanto both the numberand size of the subpages.
This model also ignores cleaner overhead.

4.4.4. Model Summary

In the discussion that follows, USER-RO refers to the data manageron a read-optimized file
system, and USER-LFS refers to the data manager on a log-structuredfile system. OS-RO refers
to transaction support embedded in a read-optimized file system, OS-LFS refers to embedded
supportin a log-structured file system usinga full log, andLFS-NOLOG refersto embedded sup
port in a log-structured file system, using the file system in place of a traditional log. For each
component of transaction cost (logging, I/O, and locking), Table 4-3 indicates the parameters

Description

User-Level Transaction Manager
Read-Optimized File System

User-Level Transaction Manager
Write-Optimized File System
Embedded Transaction Manager
Read-Optimized File System

Embedded Transaction Manager
Write-Optimized File System

Embedded Transaction Manager
Write-Optimized File System

Label

USER-RO

USER-LFS

OS-RO

OS-LFS

LFS-NOLOG

Logging
function of

updates
record size

updates
record size

updates
subpage size

updates
subpage size

updates

I/O
(read) (write)

random random

random seq

random random

random seq

random seq

Locking
function of

locks

locks

syscall cost

locks

syscall cost
subpages/page

locks

syscall cost
subpages/page
locks

syscall cost
subpages/page

Table 4-3: Comparison of Five Transaction Models. The transaction cost is decomposed into its log
ging, I/O, andlocking components andeachcolumn indicates uponwhich parameters thiscostdepends. Forexample,
the logging cost is dependent upon thenumber of updates in all the models, but upon therecordsizeonly in theuser-
level models and the subpage size only in OS-RO and OS-LFSmodels.

40

upon which the component is dependent for each model.

45. Simulation Results

The three potential performance bottlenecks are the CPU, the disk system, and lock conten
tion. By isolating each of these resources, all five systems can be stressed in each dimension,
resulting in a characterization of the performance of each model across a wide range of
configurations. For all the simulations reported, the configuration consists of a onegigabyte data
file with 1.2 gigabytes of index information (five indices). This data is striped across ten small,
inexpensive disks to achieveparallelism in the I/O subsystem. For both data and indices, block /
is assumed to reside on disk i % 10. Varying the CPU speed and the locality of accesses pro
duces CPU-bound, disk-bound, and lock-bound configurations.

To verify the simulation results, the upper and lower limits for each configuration were com
puted analytically. Then, the simulation results wereplotted,checkingthat the limits approached
those from the analytic model. Each of the data points represents five ruris of 10000 transactions
each. The variance across the five runs is approximately 1% of the average and yields 95%
confidenceintervals of approximately 2%.

45.1. CPU Boundedness

To create a CPU-bound environment, the available CPU is set low, to 1 MIPS. The available
CPU means the amount of processing power dedicated to the operations being analyzed
(obtaining/releasing locks, issuing a system call, searching a page, and modifying data), ignoring
overhead for queryprocessing, communication, setting up I/O, scheduling, etc. These otherover
heads areignored, so that the simulations canisolate those aspects of the system fhat differ (lock
ing cost,logging cost,CPUutilization), focusing on howeachimpacts performance.

In order to guarantee that the configuration is CPU limited and not contention limited, the
access pattern is uniform. This yields a probability of conflict of approximately 5%, so there is
no need to set the locking granularity (or subpage size) any smaller than the page size for the
embedded models. This differs from the simulations in [KUM87] that model the 801 hardware
locking [CHAN88], which always performs subpage locking on 128 bytesubpages.

Figure 4-4 shows the results of varying the degree of multiprogramming until the CPU
becomes saturated. In this configuration the two data manager models provide better perfor
mance than any of the embedded systems. Whereas Kumar found this difference to be 30% or
more in a CPU-bound configuration, these results show that at saturation the difference in
throughput between the user-level models and the embedded models is approximately 17%

1TJSER—RO ~^ OS—KO
(-), and the difference between USER-LFS and either OS-LFS or LFS-

J USER-RO
l TJSER—LFS —•* O^—LF1!

NOLOG is 20% (). These results are different from Kumar's because our
1 USER-LFS

model requires only one lock per B-Tree level while Kumar's required four. Therefore, the
difference in performance between the user-level and embedded models is due only to the
numberand cost of the systemcalls required by the embedded models.

Using the cost components detailed in Table 4-3, the CPU costs for the data manager and
embedded models canbe expressed ds:Tos=N(L+S) + C and Tmer =LN +C and throughput
is proportional to —, so the relative performance, in terms of throughput, maybe expressed as:

T =* as
ZJV+C

N(L+S) + C
\,

where

N is the number of locks required,

*user U" *user~ U-NS
LN+C

T±os

Throughput
in transactions/sec

5«|

4-

3'

2-

USER-LFS

USER-RO
LFS-NOLOG

? OS-LFS
* OS-RO

41

0 5 10 15 20

Degree of Mtdtiprogranmiing

Figure 4-4: CPU Bounding Under LowContention. The degree ofmulthwograinming is varied in alow
contention configuration. Since the embedded models incur a system call per lock, the user-level models (USER-RO
and USER-LFS) outperform the embedded models (OS-RO, OS-LFS, LFS-NOLOG). What is unexpected is that
although the configuration isCPU-bound, the file system still impacts the resulting performance as isevidenced by the
difference between the RO lines and the LFS lines.

L is the CPU overhead foracquiring alock,
C is the CPU overhead for searching and modifying data pages.
S is the costof a system call (inmilliseconds).

For the workload simulated, 7^ is l.2T„ or (1+AS)T„. Itisapparent that the cost of asystem
call has atremendous impact onthe performance. Figure 4-5 graphically depicts this difference in
performance as the cost of a system call is varied. In the preceding simulation a .5 millisecond
overhead for system calls was used, yielding a 17-20% difference in performance between the
user-level and embedded models. At .25millisecond (250 instructions), the difference between
the data manager and embedded models drops to 12%.

Surprisingly, although this configuration is nearly CPU-bound, the log-structured file system
models provide better performance than the read-optimized file system models. Comparing the
USER-LFS performance with the USER-RO performance, there is a gap of nearly 12% (4.1 tps
v.s. 3.6 tps), and comparing LFS-NOLOG with OS-RO, there is agap of 10% (3.3 tps vs.3.0 tps).
In each of these situations, the CPU cost for both configurations is the same. Since the
configuration is notdisk-bound, thebetter performance of the log-structured file system is unex
pected. Upon closer inspection, the read-optimized file systems are achieving only 87% CPU
utilization but 50% disk utilization while the write-optimized models are achieving 99% CPU
utilization and 33% disk utilization.

Throughput
in transactions/sec

0.00 025 030 0.75 1.00 125

Cost of a System Call (in ms)

* USER-LFS

f USER-RO

LFS-NOLOG

^ OS-LFS
I OS-RO

42

Figure 4-5: Effect of the Cost OfSystem Calls. As system calls become more costly (in terms ofCPU cy
cles), the differencein performancebetweenthe data managerand the embeddedmodels widens.

Examination of what happens as dirty blocks are flushed to disk explains how the disk utiliza
tion affects throughput. In the read-optimized models, flushing a dirty block busies the disk for
the time of a random access. When dirty data blocks are written, an incoming read request may
be delayed forup to 28.3milliseconds. Even if thesewrites are attempted during idle disk cycles,
subsequent read requests may still queueup behind the writesandbe delayed. On the otherhand,
when the log-structured file system models flush dirtyblocks, they write a large numberofblocks
at sequential speed (1.99 milliseconds per 4-kilobyte block). Therefore, the potential delay
incurred perblock flushed is much less. Additionally, each time that the log is forced to disk (or
the dirty file blocks in the embedded model), any other dirty buffers that happen to be in the
cache are also written forlittlecost As a result, the LFS-based models rarely waitto evict pages
from the buffer pool. Looking at this another way, in the read-optimized models, the CPU utili
zation peaks at approximately 87%, because queueing at the disks causes a convoy affect,
preventing the CPU from being used efficiently. In contrast, the CPU utilization for the log-
structured file system models approaches 100%. So, even when the disks are not the critical
resource, the difference in write performance of the disk systems impacts the resulting
throughput

4.5.2. Disk Boundedness

By increasing the available processing power, the configuration becomes disk-bound. Once
again, the degree of multiprogramming is varied to determine a saturation point. These results
are shown in Figure 4-6. As expected, the log-structured models provide the best performance,
by approximately 23% (9.4 tps for USER-LFS and 7.2 tps for USER-RO). Furthermore,
although the configuration is disk-bound, the size of the log doesnot have a significant impacton

43

performance. Both the user-level and embedded models exhibit nearly identical performance,
even though the operating system maintains a much largerlog. As in the CPU-bound case, these
results differ dramatically from [KUM87]. He found that in disk-bound configurations the data
manager out-performed the operating system embedded model and attributed this difference to
the size of the log. Although the OS systems keep amuch larger log thanthe USER systems, their
performance is nearly identical as shown by the overlapping lines in Figure 4-6. Similarly,
USER-LFS, OS-LFS and LFS-NOLOG exhibit nearly identical performance although these
models have different sized logs as well. To understand this phenomenon, considerhow the total
transaction time is apportioned to different operations. Logging occurs at sequential speed and
makes up only a small fraction (less than 1.2%) of the total I/O time, so the total transaction time
is dominated by the random read time (more than 73% of total I/O time). Since Kumar ignored
the time required to randomly write dirty blocks back from the cache, his overall I/O time was
much smaller, thereby making the log write time much more important.

Having analyzed the extremes of disk-boundedness and CPU-boundedness, the region in
between is analyzed. Varying the available CPU yields the results shown in Figure 4-7. Between
any two models, there are two factors that contribute to the performance differential: the file sys
tem and the location of transaction support (user-level or operating system). At 1 MIPS, the
CPU-bound configuration, the file system componentaccounts for a 10-12% difference in perfor
mance (the difference between USER-LFS and USER-RO or OS-LFS and OS-RO) and the loca
tion of transaction support accounts for a 19-20% difference (the difference between OS-RO and

Throughput
in transactions/sec

USER-LFS
LFS-NOLOG
OS-LFS

USER-RO
OS-RO

0 20 40 60 80 100

Degree of Mtdtiprograrmning

Figure 4-6: Disk Bounding Under Low Contention. Since there is sufficient CPU power tosupport the
more expensiveembedded systems, the file system determines performance, and the write-optimized file system pro
vides superior performance to the read-optimized one. Surprisingly, the number of bytes logged doesnot affect the
performance as the USER-LFS, OS-LFS, andLFS-NOLOG allexhibitthesameperformance.

10n

Throughput
in transactions/sec

USER-LFS

a--a LFS-NOLOG

OS-LFS

"» * USER-RO
G---0 OS-RO

44

2 3 4 5

CPU Speed (in MIPS)

Figure 4-7: Effect of CPU Speed on Transaction Throughput Increasing CPU speed moves the
configuration from a state of CPU-boundedness to disk-boundedness. Even before the systems become completely
disk-bound (at3 MIPS), themajor factor contributing to the performance differential is the file system as opposed to
whether transaction support if provided in the operating systemor atuser-level.

USER-RO or OS-LFS and USER-LFS). By 2 MIPS, that emphasis has shifted so that the file
system component is 19-21% and the location component is 15-17% Finally, by the disk-bound
point, 3 MIPS, the location component is 0 (the USER-RO and OS-RO lines overlap, as do the
USER-LFS, OS-LFS, and LFS-NOLOG) and the file system accounts for a 22% difference in
performance. However, at any point along the curves, the best performance is provided by sup
porting transactions in the data manager on top of alog-structured file system.

As was observed in the disk-bound configuration, the size of the log does not contribute
significantly to the performance of the systems. The difference in I/O costs between USER-LFS
andOS-LFS is that USER-LFS is able to perform logical logging(proportional to the record size)
while OS-LFS performs physical logging (proportional to page size). The logging difference
between OS-LFS and LFS-NOLOG is that the LFS-NOLOG model requires a log even smaller
thanUSER-LFS (16 bytes permodification rather than 2 records). Since logging is always per
formed at sequential speeds, the total time required to log a transaction is still a small part of the
total I/O time (under 1%),andthe resulting performance is the same for all three systems. There
fore, the primary benefitof the log-structured file systemimplementation is its superior writeper
formance, not its *'no-overwrite'' policy.

4.5.3. Lock Contention

All the preceding tests were run with a uniform access pattern over the one gigabyte data file.
The next issue to investigate is the effect of lock contention on these results. To induce conten
tion, the database access pattern is skewed. The saturation point configuration for the disk-bound

45

simulations has a multiprogramming level of 100,10 disks, and 10 MIPS of available CPU. The
distribution is varied from uniform (50/50; 50% of the accesses to 50% of the database) to
extremely contention-bound (99/1; 99% of the accesses to 1%of the database). Figure 4-8 shows
these results.

There are two factors at work here. First, since the configuration is initially disk-bound, the
skewing of the access patterns results in a higher buffer cache hit ratio and therefore improved
performance. Secondly, the skewingof the access patterns induces hot spots in the database, and
the contention for locks degrades performance. At the 70/30 skew point, the USER-RO and
OS-RO lines diverge as do the USER-LFS and OS-LFS/LFS-NOLOG lines. Since the user-level
models use high concurrency locking on the indices, the user-level models continue to take
advantage of the improvedbuffer cache hit ratio and their performance climbs steadily. The OS-
RO model alsoexhibits improved performance, but not asmuch asthe user-levelsystems since it
is starting to suffer from contention on the indices, because index locks are held until transaction
commit time in the embeddedmodels. At the 80/20point, the OS-LFS andLFStNOLOG models
actually suffer performance degradation as a resultof the increased skewing andresulting conten
tion. By the 90/10 point,the USER-LFS system haspeaked andby the 95/5 point,all the models
except the USER-RO have degraded dramatically.

Figure 4-9, which shows the number of aborts for each of the models as a function of this
skewing, indicates that the embeddedmodels exhibit higherabort rates thanthe user-levelmodels
from the 70/30 point until the 95/5 point. Since many more transactions are aborting, the result
ing throughput is lower, therefore, in a contention-bound environment the coarsegrainpagelock
ing employed by the embedded models is unsatisfactory.

Throughput

in transactions/sec

50:50 60:40 70:30 8020 90:10

Access Skew

% Accesses: % Database

. USER-LFS
USER-RO

LOG

100.-0

Figure 4-8: Effect Of Skewed Access Distribution. Contention begins to impact performance when the
skew reaches greater than70/30. The embeddedmodelsdiverge fromtheirdata manager counterparts at this point.

100,000

10,000

Number of Aborts 1000

per 10000

committed transactions 100 •

70 80
Access Skew

os-us

LFS-NOLOG

OS-RO

USER-RO

USER-LFS

46

Figure 4-9: Effect of Access Skewing on Number of Aborted Transactions. The abort rate begins
climbing ata70/30skew forthe embedded systems, butatan80/20 skew for thedata manager.

Throughput

in transactions/see

•—* USER-LFS
--o LFS-NOLOG
*—« OS-LFS
♦—♦ USER-RO
•—• OS-RO

Access Skew

% Accesses: % Database

Figure 4-10: Effect of Access Skewing with Subpage Locking. By reducing the locking granularity,
the embedded models can regain some of the performancelost to contention.

The next sections describe three techniques used to reduce the effect of lock contention in the
embedded models. First, subpage locking, as described in section4.4.2 was used. Next, the page
size was reduced and locking was performed on full pages. Finally, a modified subpage locking
technique similar to that described in [KUM89] was used.

47

Subpage locking reduces the locking granularity, and as a result, the degree of contention, but
not as much as expected. Figure 4-10 shows the same contention-bound environment, shown in
Figure 4-8, but uses subpage locking for the embedded models. In the region between 70/30 and
95/5 the embedded models come much closer to equaling their user-level counterparts. In the
case of the read-optimized file systems (USER-RO and OS-RO), the difference is at most 6% (at
the 90/10 point). For the log-structured file system, the largest gap is under 12% (also at 90/10).
At the most contention-bound point the cause of contention moves from the indices to the data
file and even the user-level models exhibit extreme contention. The reason that the embedded
models exhibit better performance at the 99/1 point is because the user-level models continued to
perform page locking on the data file. Obviously, the user-level models could use subpage lock
ing in which case both user-level and embeddedmodelswould saturate at the same point.

Although subpage locking improved the throughput under high contention, the change was
not as large as one might expect. Since updates to a B-Tree page require shuffling around the
entries on a page, multiple subpages get locked for each update. The distribution of the addi
tional pages which must be locked is skewed to favor subpages at the end of the page. This is
shown in Figure 4-11. In addition, the CPU cost per level of the B-Tree is higher since multiple
subpage locks are required to find the correct subpage. Therefore, if a high-contention environ
ment is CPU-bound, changing the locking granularity will not improve performance. If the CPU
is not the bottleneck, some of the performance lost to contentionmay be regained.

The next technique to reduce contention is to decrease the page size and lock full pages.
While decreasing the page size reduces contention, it may also increase the depth of the B-Tree.
Increasing the depth of the B-Tree may add extra I/O to each operation as well as adding an addi
tional lock request to each traversal. As a result, reducing the page size is beneficial only if it
does not increase the depth of the B-Tree. For the simulated database, reducing the page size

Subpages

0 12 3

Locked Subpage

Subpage containing key
(Locked)

Unlocked Subpage

Figure 4-11: Distribution of Locked Subpages. Although subpage locking reduces the locking granulari
ty, it doesnotdramatically reduce theprobability of conflicts. Notice thatsubpage 3 is always locked if anykeyon the
entirepage is modified whilesubpage 1gets lockedonly if it contains themodified key.

48

from 4 kilobytes to 2 kilobytes does not increase the depth of the B-Tree. The results in Figure
4-12 show the same contention-bound environment using page-locking and selecting theoptimal
page size for each model The optimal page sizes were selected by simulating all page sizes
between 128 bytes and 4 kilobytes and selecting the best one for each level of contention. The
results in figure 4-12 used 4-kilobyte pages for skews of 50, 60, 70; 128 byte pages for 80, and
512byte pages for 90, 95, and 99. Comparing these results to those shown in Figure 4-10 indi
cates that using page sizeto reduce contention is lesseffective than using subpage locking for the
read-optimized file system. On the other hand, the embedded models on LFS perform much
better withvariable page sizes than with subpages. Furthermore, the write-optimized embedded
models surpass the write-optimized user-level model at 95/5 rather than at 99/1 as before.
Depending on the file system, varying either the subpage size or the page size is an effective
mechanism for handling lock contention.

The last technique is the modified subpage locking. It is similar to the subpage locking
described earlier, but it avoids the overhead of multiple locks per level of the B-Tree and the
skewed distribution of the locked subpages. This is similar to the proposal in [KUM89], but has
lower CPU costs. Inboth Kumar's algorithm and the one presented here, each subpage is treated
as an independent bucket of entries. In Kumar's method, the smallest key for each subpage is
stored on a page's first subpage. To locate akey, the first subpage is read-locked, theappropriate
subpage is determined, and thenthat subpage is locked. Withineach subpage, entries are chained
in a linked list, requiringlinear searchtime.

Throughput

in transactions/sec

50:50 60:40 70:30 80:20 90:10

Access Skew

% Accesses: % Database

100:0

OS-LFS
LFS-NOLOG
USER-LFS
USER-RO
OS-RO

Figure 4-12: Effect of AccessSkewingwith Variable Page Sizes. In these tests, the embedded models
perform comparably with the user-level models indicating that varying the page size compensates for some of the con
tentionpenalty in the embeddedsystems.

49

In the simulated algorithm, entries within a subpage arekeptsorted maintaining the O(log n)
searchtime of a normal B-Tree whose page size is equal to the subpage size in our algorithm.
Thenewalgorithm avoids duplicating thekey information on the first subpage and bottlenecking
on that subpage by performing a non-locking binary search across subpages to locate the correct
page. That pageis thenlocked. To avoid conflicts between modifications to the low key on the
pageand the non-locking read, modifications to the lowkeyon the pageforce a pagereorganiza
tion. A pagereorganization locks all the subpages and repartitions the keys across them. There
fore, when the non-locking read chooses a subpage, it will attempt to lock the subpage and fail.
When the subpage lock becomes available, the waiter repeats the search and tries again. Page
reorganization also occurs whena subpagefills.

While page reorganization may appear costly, the results in Figure4-13 show this not to be
the case. This simulation usedmodified subpage locking witha subpage sizeof 512 bytes and a
page size of4 kilobytes, yielding22 keys per subpage on average.

Duringpage reorganization, it is expected that half the entries on a page must be moved, so
the reorganization is no more costly than a normal page-oriented delete. Whereas Kumar
assumes that reorganization is required every 600 updates, this algorithm assumes reorganization
is required once in every 10 updates since reorganization is required (andfull page locking) both
whensubpages fill as well as whenthe firstkey on a pageis modified.

Sincethis locking protocol offers the smaller locking granularity of subpage locking without
the extra CPU overhead of multiple locks per update, its performance is even better than the data
manager's performance, when the data file becomes the point of contention (since the data

Throughput

in transactions/second

50:50 60:40 70:30 80:20 90:10 100:0

Access Skew

% Accesses: % Database

"—« OS-LFS
••-• LFS-NOLOG
•—• OS-RO

* * USER-LFS
< • USER-RO

Figure 4-13: Effect of Access Skewing with Modified Subpage Locking. By reducing the locking
granularity, the embedded systemsare able to surpass thedata manager in anenvironment with extremely highconten
tion.

50

manager is still using page locking on the data file). Examining the number of aborts for the
embedded models shown in Figure 4-14, the lock contention is virtually eliminated until the
90/10 point, and, beyond that point, the number of aborts in the embedded models is an order of
magnitude smaller thanfor thedatamanagers. Again, having thedatamanager usesubpage lock
ingon the data file in suchhighcontention environments is clearlythe rightdecision.

4.6. Conclusions

Independent of whether transaction support is embedded in the file system or implemented at
user-level, the log-structured file system offers better performance than the traditional read-
optimized file system. Its major benefit is its improved write performance, not its "no-
overwrite" policy. In fact, as seen from the results in disk-bound configurations, the numberof
bytes logged has very little impact on the resulting performance. This is explained by the fact
that loggingalways occursat sequential speeds and is a verysmall fraction of the total I/O time.

Sincelogging is not an important factor embedded transaction supportperforms as well as the
user-level support in disk-bound configurations. Whether a read-optimized or write-optimized
file system is used, theuser-level and embedded models offer nearly identical performance. Asa
result, supporting transactions within the file system is a feasible solution, when the system is
disk-bound.

As Kumar concluded, when the CPU is the bottleneck, there is a penalty in embedding tran
saction support in a file system. However, when lock contention is not a factor, there is no need to
perform subpage locking, andthe difference in performance is directly proportional to the costof

i(v\ nnn «j1UU.WU

10,000 •

/
' A A

USER-RO
USER-LFS

OS-RO

Number of Aborts 1000 •

per 10000 // D- — C

OS-LFS
LFS-NOLOG

committed transactions 10Q .

/
10- 4.....-n /J

:

I 1 B- - - B- -\P^X^

50:50 60:40 70:30 80:20 90:10 100:0

Access Skew

% Accesses: % Database

Figure 4-14: Effect of Modified Subpage Locking on the Number of Aborts. The new locking
mechanism reduces the number of aborts by a factor of 10, thus allowing the high throughput rates observed in Figure
4-13.

51

a system call and is usually under 20%. Therefore, the feasibility of an embedded transaction
manager is strictly dependent on the system call overhead.

Finally, as lock contention becomes a factor in limiting performance, all models experience
some degradation, but the user-level system suffers the least due to its use of semantic informa
tion for B-Tree locking. The embedded models may recoup most of this performance loss
through variable subpageand page sizes. In some cases,where the CPU is not a criticalresource,
embedded systems with modified subpage locking not only recoup this loss, but provide better
throughput thanthemore traditional user-level architectures which perform page level locking on
the data file. Obviously, the user-level models could use subpage locking aswell,with the expec
tationthatboth models would perform comparably.

Except in the most CPU-bound environments, there is virtually no penalty incurred in embed
ding transaction support in the operating system. It does, however, require careful anddefensive
design to avoid indexcontention aswell asoperating system flexibility to varythe page and sub-
page sizes as needed.

There are several areas which warrant further investigation. These simulations did not take
into account the cost of cleaning (garbage collection) in the log-structured file system. This will
reduce the benefitof the log-structured file systemand will be examined by meansof implemen
tation in the following chapter. However, the use of RAID devices [PATT88] will penalize the
small writes that occur in a read-optimized file system and make the log-structured file system
appear more desirable.

52

Chapter 5

Transaction Support in a
Log-Structured File System

The simulation studydescribed in Chapter 4 compared the performance of a transaction appli
cation in both user-level and embedded implementations using both a log-structured and a read-
optimized file system. According to that simulation the log-structured file system offeredbetter
performance than the read-optimized file system for a short-transaction workload, and the embed
ded transaction manager performed as well as a user-level transaction manager exceptin highly
contentious environments. In this chapter, empirical results will be presented. These results will
accountfor overhead introduced by the cleanerand highlight some inaccuracies or exaggerations
in the simulation results.

The performance analysis here focuses on two points. First the transaction managerembed
ded in LFS is compared to a moreconventional transaction architecture (i.e. one implemented as
a user-level process). Then the user-level transaction system on LFS is compared to the same
user-level system on a more conventional file system.

5.1. A User-Level Transaction System

For the experiments described in this chapter, a traditional transaction system using write-
aheadlogging(WAL) and two-phase locking [GRAY76} was implemented. The implementation
platform was a DECstation 5000 running the Sprite operating system [OUST88]. The Sprite
application programming interface is largely UNIX compatible. This user-level system is usedas
a basis for comparison to LFS-embedded support. The next sections discuss the designtradeoffs
and module architecture of the user-level implementation.

5.1.1. Crash Recovery

The recovery protocol is responsible for providing transaction semantics. There are a wide
range of recovery protocols available [HAER83], but theycan roughly be divided intotwomajor
categories. The first category records all modifications to the database in a separate log file, and
uses the log to back out or reapply modifications if a transaction aborts or the system crashes.
The second category avoids the use of a log by carefully controlling when data are written to
disk. Theformer canbecalled the logging protocols anddielatterthe non-loggingprotocols.

Non-loggingprotocols retaindirty buffersin mainmemoryor temporaryfilesuntil transaction
commit, forcing these pages to disk at that time. During a long-running transaction, temporary
files can be usedto holddirtypagesthatmayneedto be evicted from memory beforecommit, but
in the Sprite environment, the only user-level mechanism to force pages from the buffer cache to
disk is the fsync(2) system call. Unfortunately, fsync(2) is an expensive system call in that it
forces all the pages of a file to disk, and the application must issueone of thesesystem callsper
file.

53

In addition, fsyncQ) provides no way to control the order in which dirty pages are written to
disk. Since non-logging protocols must sometimes order writes carefully [SULL92], they are
difficult to implement on UNIX systems. As a result, a logging protocol waschosen.

Logging protocols can be categorized based on howinformation is logged(physically or logi
cally) and how much is logged (before-images, after-images or both). In physical logging,
images of complete physical units (pages or buffers) are recorded, while in logical logging a
description of the operation is recorded. Therefore, while entire pages are recorded in a physical
log, only the records being modified are recorded in a logical log. In fact, physical logging can
be thought of as a special case of logical logging, since the "records" that arelogged in logical
logging might be physical pages. Since logical logging is both more space-efficient and more
general, it was selected.

In before-image logging, a copy of the original data is logged, while in after-image logging,
the new data is logged. If only before-images are logged, then there is sufficient information in
the log to allow transaction undo (go back to the state represented by the before-image). How
ever, if the system crashes and a committed transaction's changes have not reached the disk,
there is insufficient information to redo the transaction (reapply the updates). Therefore, logging
onlybefore-images necessitates forcing dirtypages at commit time. Asmentioned above, forcing
pages at commit is quite costly.

If only after-images are logged, then thereis sufficient information in the log to allowtransac
tion redo (go forward to the state represented by the after-image), but there is not enough infor
mation required to undo transactions that aborted afterdirty pageswere written to disk. There
fore, logging onlyafter-images necessitates holding all dirty buffers in main memory until com
mit or writing them to a temporary file.

Sinceneitherconstraint (forcing pages on commit or buffering pages until commit) wasfeasi
ble, both before- and after-images were logged. To ensure that log records are available for any
data pages that need to be redone or undone, write-ahead logging (WAL) is used. In WAL, the
log is written to disk before any of the data it describes are written to disk. This means that the
only file that ever needs to be forced to disk is the log. Since the log is append-only, modified
pages always appear at the end and may be written to disk efficiently in any file system that
favors sequential ordering (e.g., the fast file system, a log-structured file system, or an extent-
based system).

5.1.2. Concurrency Control

The concurrency control protocol is responsible formaintaining consistency in the presence of
concurrent accesses. There are several alternative solutions such as locking, optimistic con
currency control [KUNG81], and timestamp ordering [BERN80]. Since optimistic methods and
timestamp ordering are generally more complex and restrict concurrency without eliminating
starvation or deadlocks, two-phase locking (2PL) was used. In strict 2PL all locking occurs in
two phases. In the first phase, locksare acquired for all accessed data. In the secondphase, locks
may be released. Oncephasetwo has begun, no further locksmaybe requested, so most systems
perform phase two at transaction commit. Strict 2PL is suboptimal for certain data structures,
(e.g. B-Trees) because it can limit concurrency, so a special locking protocol based on one
described in [LEHM81] is used.

5.13. Management of Shared Data

In order to provide concurrent data access and enforce write-ahead loggingdescribed in Sec
tion 5.1.1 a shared-memory buffer manager is included. Not only does this provide the guaran
tees requiredfor WAL,but a user-levelbuffermanageris frequently faster than using the filesys
tem buffercache [STON81]. Readsor writes involving the file system buffercacheoften require
copying data betweenuser and kernel space whilea user-level buffermanagercan retum pointers

54

to data pages directly. When multiple processes require the same page, all processes access the
same page in a shared-memory bufferpool whileusing the operating system buffer cache usually
requires each process to make a local copy.

5.1.4. Module Architecture

The preceding sections described a set of algorithms for managing the transactionlog, locks,
and a cache of shared buffers. Figure 5-1 shows the main interfaces and architecture of the user-
level implementation. An applicationis constructedby linking in a library containing each of the
modules depicted in Figure 5-1 and explained in detail below.

5.1.4.1. The Log Manager

The Log Manager enforces write-ahead logging. Its primitive operations are log, log_commit,
logjread, logroll, and logjtnroll. The log call performs a buffered write of the specified log
record and returns a unique log sequence number (LSN). The LSN can be used to retrieve a
record from the log using the logjread call. The log interface knows very little about the internal
format of the log records it receives. Rather, all log records are referenced by a header structure,
a log record type, and a character buffercontaining the data to be logged. The log record type is
used to call the appropriate redo and undo routines during abort and commitprocessing. While
the Log Manager is used to provide before- and after-image logging, it may also be used to
implement any of the logging algorithms described earlier.

The log_commit operation behaves exactly like the log operation but guarantees that the log
has been forced to disk-before returning. Group commit [DEWI84] is used to reduce the per-
transaction commitcost The pointat which commit processing actually occurs is determined by
three thresholds. The first is the group threshold and defines the minimum number of transac
tions that must be active in the system before group commit happens. The second is the wait

Txn Manager Record Manager

unlock_all

Lock

Manager

wake
sleep_on

lock
unitock log

logjcommit
logjunro

Log

Manager buf_get
bufjunpin

wake
sleep_on

Process Manager

buf_get
buf_pin
buf_unpin

Buffer

Manager

wake
sleep_on

Figure 5-1: Library Module Interfaces.

55

threshold, expressed as the percentage of active transactionswaiting to be committed. The last is
the logdelay threshold that indicates how many dirty log pages should be allowed to accumulate
before a waiting transaction's commit record is flushed.

Logunroll reads log records from the log, following backward transaction pointers and cal
ling the appropriate undo routines to implement transaction abort. In a similar manner, logjoll
reads log records sequentially forward, calling the appropriate redo routines to recover committed
transactions after a system crash. It is called from the recoveryprogram.

5.1.4.2. The Buffer Manager

The Buffer Manager uses a pool of shared memory to provide a least-recently-used (LRU)
page cache. Transactions request pages from the buffer manager and keep them pinned to ensure
that they are not written to disk while they are in a logically inconsistent state. When page
replacement is necessary, the Buffer Manager finds an unpinned page and then checks with the
Log Manager to ensure that write-ahead logging is enforced.

5.1.4J. The Lock Manager

The Lock Manager supports general purpose locking (single writer, multiple readers), which
is currentlyused to provide two-phase locking and high concurrency B-Tree locking. However,
the general purpose nature of the lock manager provides the ability to support a variety of locking
protocols. Currently, all locks are issued at the granularity of a page (the size of a buffer in the
buffer pool), which is identified by two 4-byte integers (a file id and page number). This provides
the necessary information to extend the Lock Manager to perform hierarchical locking
[GRAY76].

If an incoming lock request cannot be granted, the requesting process is queued for the lock
and descheduled. When a lock is released, the wait queue is traversed and any newly available
locks are granted. Locks are located via a hash table and are chained by both object and transac
tion. The transactionchains facilitate rapid traversal of the lock table during transactioncommit
and abort.

The primary interfaces to the lock manager are lock, unlock, and lock_unlock_all. Lock
obtains a new lock for a specific object There are also two variants of the lock request,
lockupgrade and bck_downgrade that allowthe caller to atomically trade a lock of one type for
a lock of another. Unlock releasesa specific mode of lock on a specific object. Lock_unlock_all
releases all the locks associated with a specific transaction.

If multiple transactions are active concurrently, deadlocks can occur and must be detected and
resolved. A user-level process, the deadlock detector, monitors the lock table checking for
deadlocks. When a deadlock is found, the deadlock detector randomly selects one of the
deadlocked transactions and aborts it

5.1.4.4. The Process Manager

The Process Manager acts as a user-level scheduler to make processes wait on unavailable
locks and pending buffer cache I/O. For each process, a semaphore is maintained upon which
that process waits when it needs to be descheduled. When a process needs to be run, its sema
phore is cleared, and the operating system reschedules it No sophisticated scheduling algorithm
is applied; if the lock for which a process was waiting becomes available, the process is made
runnable.

5.1.4.5. The Transaction Manager

The Transaction Manager provides the standard interface of txn_begin, txn_commit, and
txnjzbort. It keeps track of all active transactions, assigns unique transaction identifiers, and
directs the abort and commit processing. When a txn_begin is issued, the TransactionManager

56

assigns the next available transaction identifier, allocates a per-process transaction structure in
shared memory, increments the count of active transactions, and returns the new transaction
identifier to the calling process. The in-memory transaction structure contains a pointer into the
lock table for locks held by this transaction, the last log sequence number, a transaction state
(idle, running, aborting, or committing), anerrorcode, anda semaphore identifier.

At commit, the Transaction Manager calls log_commit to recordthe end of the transaction and
to flush the log. It then directs the Lock Manager to release all locks associated with the given
transaction. If a transaction aborts, the Transaction Manager calls logjmroll to read the
transaction's log records and undo any modifications to the database. As in the commit case, it
then calls lock_unlock_all to release the transaction's locks.

5.1.4.6. The Record Manager

The Record Manager supports the abstraction of reading and writing records to a database.
The database access routines dbopen(3) [BSD91] have been modified to call the log, lock, and
buffer managers. In order to provide functionality to perform undo and redo, the Record
Managerdefines a collection of log record types and the associated undo and redo routines. The
Log Manager performs a table lookup on the record type to call the appropriate routines. For
example, the B-Tree access method requires two log record types: insert and delete. A replace
operation is implemented as a delete followed by an insertandis logged accordingly.

5.2. The Embedded Implementation

In the embedded model, transaction support is implemented within the file system. As sug
gested in [MTTC82], transaction-protection canbe assigned to files selectively. A simple utility
provides theuserwith the ability to turn transaction protection on andoffona per-file basis. The
interface to transaction-protected files is identical to the interface to unprotected files (open,
close, read, and write). Four new system calls, txnjbegin, txnjtbort, txnjcommit, and txnjdetect,
complete the interface.

The system calls perform similar functionality to their user-level counterparts. When
txn_begin is called, a transaction identifier is assigned to the requesting process anda datastruc
ture that describes the state of the transaction is initialized. Txnjtbort discards all modified
pages associated with the transaction, releases all locks held by the transaction, and marks the
transaction state as aborted. Txnjcommit forces modified buffers for the transaction to disk,
releases the transaction's locks and marks the transaction state as committed. The last system
call, txnjietect, performs deadlock detection, detecting cycles of processes waiting oneach other
for locks and aborting one of the deadlocked transactions.

When transactions are embedded in the file system, the need for many of the modules
presented in the user-level implementation disappears. The operating system's buffer cache
replaces theuser-level buffer cache and thekernel scheduler obviates theneed for any user-level
process management. No explicit logging is performed, but the *'no-overwrite" policy observed
byLFS guarantees the existence of before-images, and requiring that all dirty transaction pages
be written to diskat commit (theFORCE commit policy of [HAER83]) guarantees theexistence of
after-images in the file system. Therefore, the only functionality that needs to be added to the
kernel is lock and transactionmanagement Figures 5-2 and 5-3 show the two architectures. The
embedded system in 5-3 eliminates much of the redundancy present in Figure 5-2, producing a
simpler architecture. In this architecture, multiple datamanagement facilities coulduse the same
kemel mechanisms rather than implementing their own. In terms of lines of code, the embedded
implementation added approximately 1200 lines of code to the operating system but removed
10,000lines of code fromthe user-level datamanager.

Application

Txn Manager RecordManager

Lock

Manager
Log

Manager

Buffer

Manager

Process Manager

Buffer

Cade

System Call Interface

I OS Scheduler

Operating System

Los
StroctuxDa

F2c
System

57

Figure 5-2: User-Level System Architectures. The user-level library duplicates much ofthe functionality
already present in theoperating system, including logging, buffer management, andscheduling.

Application Record Manager

System Call Interface

TransactionManager

Buffer

Cache

Lock Manager
Log

Structured
File

System

OS Scheduler

Operating System

Figure 5-3: Embedded Transaction System Architecture. The user-level buffer manager has been re
placed by theoperating system's buffer cache. Thelogmanager is replaced by LFS, andtheuser-level process module
hasbeenreplaced by theoperating system'sscheduler. Thelockmanagement module andthe transaction module have
been moved into the operating system.

58

5.2.1. Data Structures and Modifications

The operating system required twonewdatastructures andmodification to threeexisting data
structures in order to support embedded transactions. The new structures are the lock table and
the transaction state. The structures requiring modification are the inode, file system state, and
the process state. Each is described below.

5.2.1.1. The Lock Table

Thelock tablemaintains a hashtableof currently locked objects, identified by file andlogical
block number. It is very similar to the user-level lock manager data structuresdescribed in Sec
tion 5.1.4.3. The lock table is an operating system global data structure. Locks are chained by
bothobject andtransaction, facilitating rapid traversal of the locktableduring transaction commit
and abort. Figure 5-4 depicts the organization ofthe lock table.

* Transaction State 1 «—* Transaction State 2

objLinks

Figure 5-4: The Operating System Lock Table. This picture shows two transactions labeled 1 and 2.
Transaction 1 holds2 locks, a writelockon objectA anda readlockon ObjectB. Transaction 2 holds2 locks, a read
lockon objectB anda writelockon C. It is alsowaiting for a readlockonObjectA.

59

5.2.1.2. The Transaction State

The transaction state is a per-transaction structure, similar to the user-level one discussed in
Section 5.1.4.5. It contains the status of the transaction (idle, running, aborting, committing), a
pointer to the chain of locks the transaction holds, a transaction identifier, and links to other tran
saction states. This structure is linkedto the process stateandis depicted in Figure5-4.

5.2.1.3. The Inode

The inode structure is the in-memory and on-disk structure that describes the disk layout of
the file. It contains the physical representation of the index structure described in Section 4.1.
The inode and indirectblockstructures are depicted in Figure5-5. In additionto the block infor
mation, the inode contains file attribute information like size, time of last access, time of last
modification, ownership, permissions, etc. The in-memory representation of the inode addition
ally includes lists of buffers and links to other inodes. The transaction implementation extends
the on-diskinodeto include information that indicates if the file is transaction-protected. The in-
memory inode is extended to have a list of transaction-protected buffers in addition to its clean
and dirty buffer lists.

5.2.1.4. The File System State

The file system state is an in-memory data structure that describes the current state of the file
system. It is extended to contain a pointer to the transaction lock table so that all transaction locks
for a file system are accessible from a single point (as opposed to from each process with an

Inode

D Data (direct) Blocks

• Single Indirect Blocks

ffl Double IndirectBlocks

Figure 5-5: File Index Structure (inode).

60

active transaction).

5.2.1.5. The Process State

The process state maintains information about all currently active processes. It contains links
to run and sleep queuesand to otheractiveprocesses. In addition, it records the processpermis
sions, resourcelimits and usage, the processidentifier, and a list of open files for the process. It is
extended to include a pointer to the transaction state.

5.2.2. Modifications to the Buffer Cache

The readand write calls behave nearly identicallyto those in the original operating system. A
read request is specified by a byte offset and length. This request is translated into one or more
page requests serviced through the operating system's buffer cache. If the blocks belong to a
transaction-protected file, a read lock is requested for each page before the page request is issued
(eitherfrom the buffer cache or by readingit from disk). If the lock can be granted, the read con
tinues normally. If it cannot be granted, the process is descheduled and left sleeping until the
lock is released. Writes are implemented similarly, except that a write lock is requested instead
of a read lock.

5.2.3. The Kernel Transaction Module

Where the user-level model provides a subroutine interface, the embedded model supports a
system call interface for transaction begin, commit, and abort processing. At txnjbegin, a new
transaction structure is created if the process has never had a transaction, or it is initialized if the
process has an existing transaction structure. The next available transaction identifier maintained
by the operating system is assigned, and the transaction's lock list is initialized.

When a process issues a txnjtbort, the kemel locates the lock chain for the transaction
through thetransaction state. It thentraverses the lockchain, releasing locksandinvalidating any
dirty buffers associated with those locks. Transactions may also be aborted by the deadlock
detector. The deadlock detector runs periodically, and when it finds a deadlock, oneof the parti
cipating transactions is aborted. The aborted transaction's state is modified to reflect that it was
aborted by the deadlock detector. Since any transaction involved in a deadlock was, by
definition, waiting on a lock, it waseitherperforming a reador writeto the file system. The read
or write of the aborted transaction will return an errorvalue andset the errornumber to a special
value, indicating an aborted transaction.

At txn_commit, the kernel traverses the transaction's lock chain, and flushes dirty buffers,
referenced by the locks, to disk. Once all the dirty buffershave been flushed, the kemel releases
locks. In the case where onlypart of a pageis modified, the entire page is still written to disk at
commit. This compares badly with logging schemes where only the updated bytes need be writ
ten. While it might be expected that the increased amount of data flushed at commit results in a
heavy performance penalty, the simulation results in Chapter 4 indicate that this is not true.
Rather, the overall transaction time is so dominated by random reads to databases too large to
cache in mainmemory that the additional sequential bytes written during commit haveno impact
on the resulting performance. Furthermore, forcing dirty blocks at commit obviates the need to
write these blocks later when their buffers need to be reclaimed.

5.2.4. Group Commit

Since the kernel implementation uses a force policy, every transaction causes one or more
disk writes at commit In the same way that database systems use group commit to amortize the
cost of flushing the log [DEWI84], LFS uses group commit to amortize the cost of flushing
blocks. Rather than flushing a transaction's blocks when it issues a txncommit, the process
sleeps until a timeout interval has elapsed or until sufficiently more transactions have committed

61

to justify the write. If the embedded implementation uses the same group commit policy as a
user-level implementation, it should produce the same performance improvement

5.2.5. Implementation Restrictions

Section 5.2.2 makes no mention of protecting a file's meta-data. Indirect blocks do notpose a
special problem in that they areupdated onlywhen datapages arewritten to disk, which happens
only at commit Therefore, only the addresses of committed pages are reflected in indirect
blocks. On the other hand, inodes must be handled differently since inodes are updated fre
quently, and a singleinodedescribes an entirefile, so locking the inodewould, in effect, lock the
entire file. During a read, the access time is updated, while during a writeboth the access time
and modification time are updated. In addition, if a write extends a file, the size of the file may
change. There are two ways in which a file's length may change: the file may add bytes to or
deletebytes fromthe end of an existingblockor it may allocate or deallocate a block.

In the firstcase, the changes are localized to a singleblock and the write lock on that block is
sufficient to prevent any data corruption. However, if transactions are allowed to read the size
field from the inode, inconsistentresultsare possible:

Time Transaction 1 Transaction 2

1 lock last block

2 append bytes
3 update size
4 read size
5 abort

In this example, transaction 2 read the size of the file after transaction 1 had changed it Then
transaction 1 aborted,making the value read by transaction 2 invalid. Even if the modification of
thesizefield is delayed, there is thepotential forviolation of serializability.

Time Transaction 1 Transaction 2

1

2

3

4

5

6

update A
lock last block

append bytes

update size
commit

read size

7 use size and A

In this example, the serializability violation is manifested by transaction 2's value of A being the
value after transaction 1 committed, but its value of size being the value before transaction 1
committed.

The casein which a blockis allocated or deallocated is evenmoretroublesome than the previ
ous examples. Consider two transactions each trying to extend the file. If transaction 1 extends
the file and locks and writes block N, then transaction 2 can lock and write block N+l. Now,
whathappensif transaction 1 aborts? The possibilities are:

• Leave unallocated blocks in the file (i.e. do not undo appends).

• Do not allow multiple appenders.

Since the benchmarks presented here use formatted files (B-Trees and fixed-length record
database files), leaving unallocated blocks (holes) in files is an adequate solution, and that is the
strategy implemented. When an extend operation occurs, the block is immediately added to the
file. If the transaction aborts, the allocated page becomes a hole in the file. A more versatile
solution is desired and systems like Quicksilver [HASK88] discuss various ways of handling

62

similar situations.

The next four sections address the other areas where the current implementation is deficient,
namely:

• All dirty buffers must be held in memory until commit ([HAER83] NO-STEAL semantics).

• Locking is strictly two-phase and is performed at the granularity of a page.

• Transactions may not span processes.

• Processes have only one transaction active at any point in time.

• It is not obvious how to do media recovery.

For the benchmark described in Section 5.3.1 (a modified TPC-B), the NO-steal policy is
sufficient since transactions are small and short-lived. With regard to page locking, the simula
tion study in Chapter 4 indicated that locking at granularitiessmaller than a page is required only
for highly contentious environments.

5.2.5.1. Support for Long-Running Transactions

In the implementation described, buffers belonging to uncommitted transactions cannot be
evicted from the buffer cache. To support STEAL semantics (allowing uncommitted pages to be
evicted from the buffer pool), the algorithm that writes dirty buffers to disk must be modified to
call a special txnjlush routine that evicts these pages.

The protocolfor writingthese pages is similarto the shadow page protocolused in System R
[ASTR76]. A shadow file must be assigned to each transaction file with uncommitted pages that
are written to disk. The shadow file's identifier is recorded in the inode of the transaction file and
the dirty buffers are written to the shadow file. In this way, both the old copies (before the tran
saction) and the new copies (during the transaction) simultaneously exist At txnj:ommit, when
buffers would normally be scheduled for writing, the transaction file's meta-data is updated to
containthe block in the shadow file and the shadow file's meta-datais updated to no longer con
tain the block. Rather than having to flush all the dirty buffers at commit, only the remaining
dirty buffers and the two inodes need be flushed. If the system crashes, all shadow files can be
removed since it is known that their pages belong to uncommitted transactions. Shadow paging
is sometimes found objectionable because it destroys clustering within a file [CHAM81]. Since
LFSis writing the shadow pagesto the sameplaceas it would normally writethe file pages,these
objections are not applicable.

The cleaneralso needs to be modified to handle shadow files correctly. Duringtypicalopera
tion, the cleaner reads a segmentand uses the information in the segmentsummary to determine
if each block is still "live". For each block, the cleaner looks at its inode and finds the disk
address corresponding to the block in questioa If the disk address is the same as that being
cleaned, then the block is active, otherwise it is "dead" and can be cleaned. However, in the
current cleaner, if the block formerly belonged to a shadow file and has since been committed and
moved to the transaction file, the check will fail and the cleaner will consider the block "dead".
Instead, shadow files must be recognizable to the cleaner, and the cleanermust compare block
addresses against both the shadow andthe original file. The blockis "dead" only if it belongs to
neither file.

5.2.5.2. Support for Subpage Locking

The challenge in subpage locking is to permit one transaction to modify and commit a sub-
page while another transaction is modifying another subpage on the same page. To accomplish
this, the functionality of shadow files must be extendedto incorporateshadow pages. Unlike the

63

implementation described in thelast section, shadow files must bekept pertransaction.5 When a
page is read into the cache, it is assigned a version number, initialized to 0. When a transaction
modifies a subpage, a shadow copy of the page is created with the version number of the original
page, the subpage of the shadow page is modified, and the shadow page is entered into the
transaction's shadow file. At commit, the shadowpage is reconciled (made consistent) with the
original page, the original page's version number is incremented, and the original page is flushed
to disk. Then the shadow pages and files are freed.

Page reconciliationis the action of makingoriginalpagesconsistentwith committingshadow
pages. First, when a transaction createsa shadow page, it always copies the originalpage in the
buffer cache, not a shadow. At commit, the committing transaction compares its shadow page
version number to the version number of the current original. If no other transactions with
modifications on this page have committed, the version numbers will be the same, and the com
mitting transaction's shadow is flushed to disk,becomes the original, and has its versionnumber
incremented, and the old original is freed. If theversion numbers do not agree, then the subpages
modifiedby the committing transaction are copied to the currentoriginal, which is then flushedto
disk. The currentoriginal's versionnumberis incremented, and the shadow page is freed. This
is the algorithm simulatedin Chapter4.

5.2.5.3. Support for Nested Transactions and Transaction Sharing

The embeddedmodel implemented and analyzed in this chapterwas designedto avoid chang
ing the existingkernel interface. If transaction identifiers are added to the readand write system
calls, then nested transactions, concurrent active transactions within the same process, and tran
sactions spanning multiple processes (i.e. transaction sharing) could be implemented. Transac
tion sharing is particularly useful if system utilities (such as compilers, assemblers, and source
code control systems) want to transaction-protect sets of operations.

Transaction sharing can be accomplished by adding two system calls, txnjransfer and
txnjcontinue. The txnjransfercall allowsa processwith an active transaction to pass control for
the transaction to another process. The kernel moves the transaction structure from the transfer
ring process to the target process. The target process takes controlof the transaction by issuing
the txnjcontinue call that checks for a transferred processand waits if one does not yet exist If
no txnjcontinue is made for the transferred transaction, the transaction is either aborted or
returned to the transferring process. There are a myriad of possibilities for orchestrating the
transfer of transactions. Some examples are:

• The transferring process waits until the transactionhas been accepted.

• The transferringprocess is signaled if the transactionis not accepted in a definedinterval.

The continuingprocess signalsanotherprocess to requesta transfer.•

5.2.5.4. Support for Recovery from Media Failure

Since there is no separate log in this implementation, it is not obvious how to support
recovery from media failures. Using mirrored disks or RAID techniques [PATT881 to improve
reliability is one option, but this still does not address catastrophic failures (earthquakes, fires,
etc.). Distributed disk arrays offer a solution for this problem [SCHL90]. In a conventional log
ging system, the protection against catastrophic failure involves sending log records to a remote
site. The distributed RAID technique creates a physical log record of the bit differences in a
modified block. As in a conventional system, these log records are dispatched to a remote site.
However, rather than merely storing the log at the remotesite, the log record is used to compute

5A performance optimization allows multiple transactions to share shadow files until updates bydifferent transactions request
subpagesthat are partof the same page.

64

parity across a distributed array. In thecase of a sitefailure, theremaining sites in the array have
enough information to reconstruct the database at the failed site.

53. Performance

The performance measurements reported here are from a DECstation 5000/2006 running the
Sprite operating system. The system has 32 megabytes of memory and a 300 megabyte RZ55
SCSI disk drive. The database resideson the 300megabytedisk while binaries were servedfrom
remote machines, accessed via the Spritedistributed file system. Reported times are the meansof
five tests andhave standard deviations within twopercentof the mean.

The performance analysis is divided into three sections: transaction performance, non-
transaction performance, and sequential read performance. The transaction benchmark compares
the LFS embedded system with the conventional, user-level system on both the log-structured
and read-optimized file systems. The non-transaction benchmark is used to show that kernel tran
saction supportdoes not impactnon-transaction applications. The sequential read test measures
the impact of LFS' write-optimized policy on the sequential readperformance.

53.1. Transaction Performance

To evaluate transaction performance, a modified version of the industry standard TPC-B tran
saction processing benchmark [TPCB90] was used. The TPC-B benchmark simulates a with
drawal performed by a hypothetical teller at a hypothetical bank. The database consists of rela
tions (files) for accounts, branches, tellers, and history. For each transaction, the account, teller,
and branch balances mustbeupdated to reflect the withdrawal, and a history record is written that
contains the account id, branch id, teller id, and the amount of the withdrawal. The account
branch, and teller relations were all implemented as primary B-Tree indices (the data resides in
the B-Tree file) while thehistory relation was implemented as a fixed-length record file, provid
ing access sequentially andby record number. Thetestdatabase wasconfigured for a 10transac
tionper second (TPS) system according to theTPC-B scaling rules:

1 branch/TPS
10 tellers/TPS
100,000 accounts / TPS

The implementation of the benchmark differs from the specification in three aspects. First,
the specification requires that the database keep redundant logs on different devices, but only a
single log was used. Second, all tests were run on a single, centralized system, so there was no
notion of remote accesses. Third, thetests were run single-user (multiprogramming level ofone),
providing a worst-case analysis. The configuration measured is sodisk-bound that increasing the
multi-programming level increases throughput onlymarginally. See [SELT92] for a detailed dis
cussion of the performance impact in a multi-user environment.

In this test, three systems were evaluated: a user-level transaction manager on a traditional
operating system, a user-level transaction manager on a log-structured file system, anda transac
tion manager embedded in a log-structured file system. The two interesting comparisons are
comparing the user-level transaction manager on a log-structured file system to a user-level tran
saction manager on a traditional file system and comparing theuser-level transaction manager on
LFS to the kernel level transactionmanager in LFS.

Figure 5-6 shows the results of this test Asexpected, theLFS system outperformed the con
ventional file system, but by a disappointing 10%. The fact that there was a difference at all is
because LFS flushes dirty pages from the buffer pool more efficientiy. When the userprocess
flushes a page, the page is cached in the kernel's buffer pool, and eventually flushed to disk. In
the LFS case, this write occurs as part of a segment write and takes place at near-sequential

Transactions
per second

20

15

10

Read LFS LFS
Optimized

user-level kernel

65

Figure 5-6: Transaction Performance Summary. The leftmost two bars compare performance ofauser-
level transaction manager on theoriginal Sprite file system (read-optimized) and on LFS. Therightmost two bars com
paretheperformance of theuser-level transaction manager on LFS to theLFS embedded transaction manager.

speed. In the read-optimized case, this write occurs within 30 seconds of when it entered the
buffer cache and is sorted in the disk queue with all other I/O to the same device (the random
reads). Thus, theoverhead is greater than theoverhead of thesequential write in LFS.

The 10% performance improvement discussed above (12.3 TPS v.s. 13.6 TPS) is disappoint
ing when compared to the disk-bound simulation in Chapter 4, which predicted a 27% perfor
mance improvement. The difference between theimplementation and thesimulation is explained
by two things. First, a log-structured file system requires thepresence of a cleaner, a garbage col
lectionprocess that reclaims space in the file system resulting from deleted or overwritten blocks.
While the simulation did not takeinto account any cleaner overhead, in practice, thecleaner sub
stantially disrupts processing.

When the cleaner runs, it locks out all accesses to the particular files being cleaned. In this
benchmark there are only four data files being accessed, so these files are also the ones being
cleaned. Therefore, when the cleaner locks these files, no other processing can occur. As a
result, there is a noticeable "hiccup" in performance. The benchmark prints out a message each
time it processes 100transactions and the cleaner prints out a message whenit begins and finishes
cleaning. The benchmark prints out its messages at a steady rate until the cleaner prints out its
begin message. There are no messages from the benchmark for the 30-60 seconds before the
cleaner prints out its finish message. Once the cleaner completes, the benchmark resumes at its
original rate. In a commercial environment, this disturbance in performance is obviously unac
ceptable.

1DEC is a trademark of Digital Equipment Corporation.

66

The second reason for the difference between the simulation and the implementation is that
the simulation ignores much of the system overhead, focusing on the transaction processing
operations. For example, the simulation does not accountfor query processingoverhead,context
switch times, system calls other than those required for locking, or process scheduling. As a
result, the total transaction time is much greater and the difference in performance is a smaller
percentage of the total transaction time.

The next comparisoncontrasts the performance of the user-level and kernel implementations
on LPS. Once again, the simulation results in Chapter 4, predicting no difference between user-
level and kemel models,differ from implementation results. A fundamental assumption made in
the simulation was that synchronization would be much faster in the user-level model than in the
kemel model. The argument was that user-level processes could synchronize in sharedmemory
without involving the kernel while synchronization in the kemel model required a system call.
Unfortunately, the test platform, the DECstation 5000, does not have a hardware test-and-set
instruction. As a result, the user-level modelusedsystem calls to obtain and releasesemaphores,
doublingthe synchronization overheadof the kernel implementation that requireda single system
call. This synchronization overhead exactly accounts for the difference between the user and ker
nel implementations [SELT921. Techniques described in [BERS92] describe how to implement
user synchronization quickly on a system without hardware test-and-set eliminating the perfor
mance gap shown in Figure 5-6.

53.2. Non-Transaction Performance

This test was designed to run programs that do not use the embedded transaction managerto
determine if its existence in the kernel affects the performance of applications that do not use it.
This test used three applications. The first is the user-level transaction system since it does not
take advantage of any of the new kernel mechanisms. The second, Andrew [HOWA88], is an
engineering workstationfile system test It consistsof copying a collection of small files, creat
ing a directory structure, traversing the directory hierarchy, and performing a series of compiles.
The third, "Bigfile", was designed to measure throughput of large file transfers. It creates,
copies, and removes a set of 10-20 relatively large files (1 megabyte, 5 megabytes, and 10mega
bytes on a 300 megabyte file system).

The goal of this test was to demonstrate that adding transactions to the operating system did
not impact the performance of applications thatdidnot takeadvantage of the embedded support
All three benchmarks were run on the unmodified operating system and on the one with embed
ded transaction support. Since the transaction code is isolated from the rest of the system, no
difference in performance wasexpected. The results aresummarized in Figure 5-7andshow that
there is virtually no impact for any of the tests. In all tests, thedifference between the two sys
tems was within 1-2% of the total elapsed time and within the standard deviations of the test runs.
This is the expected result, as non-transaction applications pay only a few instructions in buffer
access detennining that transaction locks are unnecessary.

533. Sequential Read Performance

The improved write performance of LFS is not without its costs. The log-stmctured file sys
tem optimizes random writes at the expenseof futuresequential reads. To construct a worse case
test for LFS, begin with a sequentially written file, randomlyupdate the entire file, and then read
the file sequentially. The SCAN test consists of the final sequential readphase andwasdesigned
to quantify the penalty paid by sequentially reading a file after it has been randomly updated.
After creating a new account file, 100,000 TPC-B transactions are executed. The account file is
approximately 160 megabytes or 40,000 4-kilobyte pages, and the 100,000 transactions should
touch a large fraction of these pages, leaving the databaserandomlystrewn about the disk. Then
the file is sequentially read in key order.

Elapsed Time
lifseconds

200

150

100

50

ANDREW BIGFTLE

[1:11 Normal kernel

67

USER-TP

Transaction kernel

Figure 5-7: Performance Impact of Kernel Transaction Support None ofthe three benchmarks
used thekemel transaction support As is shown by the similarity in elapsed times for allbenchmarks, the embedded
support didnot decrease dieoverall systemperformance.

Figure 5-8 shows the elapsed timefor theSCAN test Asexpected, the traditional file system
(read-optimized) significantly outperforms LFS. The conventional file system paid disk seek
penalties during transaction processing to favor sequential layout As a result, it demonstrates
33% better performance than LFS during the sequential test7

There are two ways to interpret this result The first, naive approach says that youget a small
(10%) improvement in thetransaction workload, butyou paya large(50%) penalty in the sequen
tial workload. However, a more complete interpretation considers the two workloads (transac
tional and sequential) together. The time gained by write-optimization during the transaction
workload canbe directly traded off against the timelostduring the sequential read. This tradeoff
can be quantified by calculating how many transactions must be executed between sequential
readsso that the total elapsedtime for both file systems is the same.

In Figure 5-9, the total elapsed time for both the transaction run and the sequential run is
given as a function of the number of transactions executed before the sequential processing. This
is actually a pessimistic result for LFS. The degradation in sequential performance observed by
LFS is a function of the number of transactions that have beenexecuted prior to the sequential
scan. For example, if only a single transaction is run before initiating the sequential scan, the
structure of the database will be largelyunchanged andthe sequential read time for LFS wouldbe
nearly identical to that for the read-optimized system. However, the data in the graph shows the
total elapsed time for transactions and sequential scan assuming that the sequential scan always
takes as long as it did after 100,000 transactions. Evenso, the point at whichthe two lines inter
sect is approximately 134,300 transactions and represents howmanytransactions need to be exe
cuted, per scan, to realize a benefit from the log-structured file system. From the perspective of
time, at 13.6 TPS, the system would have to run for approximately 2 hours40 minutes to reach
the crossover point That is, if the transaction workload runs at peak throughout for less than 2

7This test does not correspond exactly toreading the raw file sequentially since the file isread inkey order.

68

Elapsed Time
in seconds

3000

Elapsed Time
(in seconds)

2000

1000

Read-Optimized LFS

Figure 5-8: Sequential Performance after Random

I/O. This graph shows the elapsed time to scan the
entire account file after 100,000 TPC-B transactions

were executed. The file system that favors sequential
layout (read-optimized) was approximately 50% faster
than LFS. Note that since the metric was elapsed
time, higher numbers indicate worse performance.

20000

15000

10000

5000

0 5 10 15 20
Transactions (in 10000's)

Figure 5-9: Elapsed Time for Combined Bench

mark. The results here show the total elapsed time
for both the transaction processing workload and the

sequential batch run. Applications that require
sequential processing after some period of transaction

processing will observe better overall performance
from the read-optimized system when the number of

transactions executed is less than 134,300 and from

LFS when more than that number are executed.

hours 40 minutes before a sequential pass is made, the read-optimized system is providing better
overall performance, but if the transaction workload runs for longer than that, LFS provides the
better overall performance. The ratio of transactions to sequential runs will be extremely work
load dependent. In an automatic teller environment, short transactions are executed nearly 24
hours per day, while sequential scans occur very infrequently. However, in data-mining applica
tions, the majority of the processing is more likely to be complex query processing with infre
quent transactional updates.

This is not an entirely satisfying result. In practice, LFS needs to address the issue of sequen
tial read access after random write access. Since LFS already has a mechanism for rearranging
the file system (the cleaner), this mechanism might well be used to coalesce files that become
fragmented. This goal, in part, drove the redesign of LFS discussed in Chapter 6.

69

5.4. Conclusions

In this chapter, it hasbeen shownthat a log-structured file systemhas the potential to improve
the performance of transaction processing applications. Currently, LFS provides a 10% perfor
mance improvement over a conventional file system on a modifiedTPC-B workload. Although
one can construct workloads where an embedded model doesn't perform as well as user-level
models, the embedded system doeslook viable, providing performance comparable to thatof the
user-level system. Such an implementation enables applications to easily incorporate
transaction-protection with only minor modification. Products such as source code control sys
tems, softwaredevelopment environments (e.g. combinedassemblers, compilers, debuggers), and
system utilities (user registration, backups, "undelete", etc.), as well as database systems could
take advantage of this additional file system functionality. However, sequential read performance
afterrandom write performance still poses a problem forLFS. The next chapter will address this
issue.

70

Chapter 6

Redesigning LFS

The previous chapterhighlighted someshortcomings in the originalLFS design. Specifically,
the disruption in service due to cleaning and the poor sequential read performance are issues of
grave concern. Although this chapter will discuss many modifications to LFS, the modification
that addresses the problems raisedin Chapter 5 is moving the cleanerinto user-space andprovid
ing it withfoursystem callsto communicate withthekemel. This accomplishes two goals.

First, it becomes easy to prevent the cleaner from locking out other applications while it is
running. Synchronization between the cleaner and the kerneloccursduring a system call where
cleaned blocks are checked against recently modified blocks to make sure that newer blocks are
not overwrittea This alleviates, the disruption in processing observed during the TPC-B bench
mark.

Secondly, moving the cleaner into user-space makes it simple to experiment with different
cleaning policies andimplement multiple cleaners withdifferent policies. By allowing a variety
of cleaning policies, the sequential read performance penalty that occurs after random updates
can potentially be reduced or eliminated. This chapter presents a new design of LFS which
addresses these issues.

The rest of this chapteris organized as follows. Section 6.1 describes the detailed designof a
log-structured file system, contrasting its disk layout andrecovery to thatof the FastFile System.
Section 6.2 discusses the major issues that drove the redesign, contrasting the decisions made
with those found in the original LFS. Section 6.3 highlights someof the implementation issues
unique to the new implementation and integration withthe fast file system, and Section 6.4 con
cludes thechapter. Throughout the remainder of thischapter, theoriginal LFSimplementation is
referred to as Sprite-LFS while thenew implementation is referred to as BSD-LFS, as it is partof
the 4.4BSD release from the Computer Systems Research Group at the University of California,
Berkeley.

6.1. A Detailed Description of LFS

There aretwofundamental differences between anLFS anda traditional UNIX file system, as
represented by the Fast Fde System (FFS) [MCKU84]: the on-disk layout of the data structures
and the recovery model. While Section 4.1 presented a very high-level description of a log-
structured file system, this section describes the key structural elements of an LPS, contrasting
the datastructures andrecovery to FFS. Thecomplete design and implementation of Sprite-LFS
can be found in [ROSE92]. Table 6-1 compareskey differencesbetween FFS and LFS. The rea
sonsfor thesedifferences will be described in detailin the following sections.

6.1.1. Disk Layout

In both FFS and LFS, a file's physical disk layout is described by an index structure (inode)
thai contains the disk addresses of some direct, indirect, doubly indirect, and triply indirect
blocks. Direct blocks contain data, while indirect blocks contain disk addresses of direct blocks,
doubly indirectblockscontain disk addresses of indirect blocks, and triply indirect blockscontain
disk addresses of doubly indirect blocks. For the remainder of this chapter, inodes and indirect

Task FFS LFS

Assign disk addresses block creation segment write
Allocate inodes fixed locations appended to log
Maximum number of inodes statically determined grows dynamically

Map inode numbers to disk addresses static address lookup in inode map
Maintain free space bitmaps cleaner

segment usage table

Make file system state consistent fsck roll-forward

Verify directory structure fsck background checker

Table 6-1 Comparison of File System Characteristics of FFS and LFS

71

blocks are referred to as meta-data.

The FFS is described by a superblockthat contains file system parameters (block size, frag
ment size, and file system size) and disk parameters (rotationaldelay, number of sectors per track,
and number of cylinders). The superblock is replicated throughout the file system to allow
recovery from crashes that corrupt the primary copy of the superblock. The disk is statically par
titioned into cylinder groups, typically between 16 and 32 cylinders to a group. Each group con
tains a fixed number of inodes (usually one inode for every two kilobytes in the group) and bit
maps to record inodes and data blocks available for allocation. The inodes in a cylinder group
reside at fixed disk addresses, so that disk addressesmay be computed from inode numbers. New
blocks are allocated to optimize for sequential file access. Ideally, logically sequential blocks of
a file are allocated so that no seek is required between two consecutive accesses. Because data
blocks for a file are typically accessed together, the FFS policy routines try to place data blocks
for a file in the same cylinder group, preferably at rotationally optimal positions in the same
cylinder. Figure 6-1 depicts the physical layout ofFFS.

LFS is a hybrid between a sequential database log and FFS. It performs all writes sequen
tially, like a database log, but incorporates the FFS index structures into this log to support
efficient random retrieval. In an LFS, the disk is statically partitioned into fixed-size segments,
typically one-half megabyte. The logical ordering of these segments creates a single, continuous
log.

An LFS is described by a superblock similar to the one used by FFS. When writing, LFS
gathers many dirty pages and prepares to write them to disk sequentially in the next available
segment. At that time, LFS sorts the blocks by logical block number, assigns them disk
addresses, and updates the meta-data to reflect their addresses. The updated meta-data blocks are
gathered with the data blocks, and all are written to a segment. As a result, the inodes are no
longer in fixed locations, so, LFS requires an additional data structure, called the inode map
[ROSE90], that maps inode numbers to disk addresses.

Since LFS writes dirty data blocks into the next available segment, modified blocks are writ
ten to the disk in different locations than the original blocks. This space reallocation is called a
"no-overwrite" policy, and it necessitates a mechanism to reclaim space resulting from deleted
or overwritten blocks. The cleaner is a garbage collection process that reclaims space from the
file system by reading a segment, discarding "dead" blocks (blocks that belong to deleted files or
that have been superseded by newer blocks), and appending any "live" blocks. In order for the
cleaner to determine which blocks in a segment are "live," it must be able to identify each block

Cylinder jCsusps

MOM •MMMNO *UKXTOTAL!

CtUKBMM umuam •nmoacfaanoN

NWCIUHM UUTH4XXIOSTOM WOMMAP

IMIlOTItlXD LASTINUUIKIBUUN lUflBMHB

NUMDATAHOOU NUMnuatAVAO. •taaciMr

72

Figure 6-1: Physical Disk Layout of the Fast File System. The disk is statically partitioned into
cylinder groups, each of which is described by a cylinder group block, analogous to a file system superblock. Each
cylinder group contains a copy of the superblock and allocation information for the inodes and blocks within that
group.

in a segment This determination is done by including a summary block in each segment that
identifies the inode and logical block numberof every block in the segment In addition, the ker
nel maintains a segment usagetable that showsthe numberof "live" bytes and the last modified
time of each segment. The cleaner uses this table to determine which segments to clean
[ROSE90]. Figure 6-2 showsthe physicallayout of LFS.

While FFS flushes individual blocks and files on demand, LFS must gather data into seg
ments. Usually, there will not be enough dirty blocks to fill a complete segment [BAKER92], in
whichcase LFS writes partial segments. A physical segment contains one or more partial seg
ments. For the remainder of this thesis, segment willbe used to refer to the physical partitioning
of the disk, andpartial segment willbe usedto referto a unit of writing. Smallpartialsegments
most commonly result from NFS operations orfsyncQ.) requests, while writes resulting from the
sync(2) system call or system memory shortages typically form largerpartials, ideally taking up
an entire segment Duringa sync, the inodemapand segment usagetable are also writtento disk,
creating a checkpoint that provides a stable point from which the file system can be recovered in
case of system failure.

6.1.2. File System Recovery

There are two aspects to file system recovery: bringing the file system to a physically con
sistent state and verifying the logical structure of the file system. When FFS or LFS add a block
to a file, there are several different pieces of information that may be modified: the block itself,
the inode, the free block map, indirect blocks, and the location of the last allocation. If the

SUPSRBLOCKS

SEGMENT

SUMMARY
DATA1 ... MODES ... DATAN

SUMMARY CHBtXSUM

DATACHBCXSUM

NEXT SEGMENT POINTER

W

VERSION NUMBER

INODE NUMBER

LOGICAL BLOCK 1

DTODBDBKADDRBSS N
LOGICAL BLOCK N

INODB DISKADDRBSS 1

73

Figure 6-2: Physical Disk Layout of a Log-Structured File System. Afile system iscomposed of
segments asshown in Figure (a). Eachsegmentconsistsof a summary block followed by datablocks andinodeblocks
(b). The segment summary contains checksums to validate both the segmentsummary and the data blocks, a times
tamp, a pointer to thenext segment, andinformation thatdescribes each file andinodethatappears in the segment (c).
Files are described by FINFO structures thatidentifythe inode number andversion of the file (aswell aseachblock of
that file) locatedin die segment (d).

system crashes during the addition, the file system is likely be left in a physically inconsistent
state. There is currently no way for FFS to localize inconsistencies. As a result, FFS must
rebuild the entire file systemstate, including cylindergroupbit maps andmeta-data. At the same
time, FFS verifies the directory structure and all blockpointers withinthe file system. Tradition
ally,/scA(8) is the agent that performs both of these functions.

In contrast to FFS, LFS writes only to the end of the log and is able to locate potential incon
sistencies and recoverto a consistent physical statequickly. This part of recovery in LFS is more
similarto standard database recovery [HAER83] thantofsck. It consists of two parts: initializing
all the file system structures from the most recent checkpoint and then "rolling forward" to
incorporate any modifications that occurred subsequently. The roll forward phase consists of
reading each segment after the checkpoint in time order and updating the file system state to
reflect the contents of the segment. The next segmentpointers in the segment summary facilitate
reading from the last checkpoint to the end of the log, the checksums are used to identify valid
segments, and the timestamps are used to distinguish the partial segments written after the check
point and those written before which have been reclaimed. The file and block numbers in the
FINFOstructures are used to update the inodemap, segment usage table, and inodes,makingthe
blocks in the partial segment extant As is the case for database recovery, the recovery time is
proportional to the interval between file system checkpoints.

Phase I Traverse inodes

Validate all block pointers.
Record inode state (allocated or unallocated)and file type for each inode.
Record inode numbers and block addresses of all directories.

Phase II Sort directories by disk addressorder.
Traverse directories in disk address order.
Validate4*.".

Record '*..".

Validate directories' contents, type, and link counts.
Recursively verify "..".

Phase m Attach any unresolved ".." trees to lost+found.
Mark all inodes in those trees as "found".

Phase IV Put any inodes that are not "found" in lost+found.
Verify link counts for every file.

Phase V Update bit maps in cylinder groups.

Table 6-2: Five Phases offsck.

74

While standard LFS recovery quickly brings the file system to a physicallyconsistent state, it
does not provide the same guarantees made by fsck. When fsck completes, not only is the file
systemin a consistent state, but the directory structure hasbeenverified aswell. The five passes
offsck are summarized in Table 6-2. For LFS to provide the same level of robustness as FFS,
LFSmust periodically makemanyof the same checks. WhileLFShasno bit maps to rebuild, the
verification of block pointers and directory structure and contents is crucial for the system to
recoverfrom media failure. This recovery will be discussed in more detailin Section 6.2.4.

62. Design Issues

The Sprite implementation of LFS succeeded in its goal of dramatically improving write per
formance, however it had several deficiencies that made it unsuitable for a production environ
ment The majorconcerns with Sprite-LFS thatthis redesign addresses are as follows:

1. Sprite-LFS consumes excessive amounts ofmemory.

2. Write requests are successful even if there is insufficient disk space.

3. Recovery does nothing to verifytheconsistency of the file system directory structure.
4. Segment validation is hardware dependent

5. All file systemsuse a single cleaner and a single cleaning policy.

6. There areno performance numbers that measure the cleaner overhead.

The description of LFS in Section 6.1 focused on the overall strategy of log-structured file
systems. The following sections discuss how BSD-LFS addresses the first five problems listed
above. Section 6.3 addresses the implementation issues specific to integration in a BSD frame
work. The last issue is addressed in Chapter 7.

In most ways, the logical framework of Sprite-LFS is unchanged. The segmented log struc
ture and the major support structures associated with the log, namely the inode map, segment
usage table, and cleaner remain. However, to address the problems described above and to
integrate LFS into a BSD system, neariy all of the details of implementation, including a few

75

fundamental design decisions have been altered. Table 6-3 summarizes the design differences
between Sprite-LFS and BSD-LFS indicating the reason for the change. The following sections
describe the major design issues in more detail.

Design Point Smite-UPS BSD-LFS Reason

Memory Consumption Reserves large quantity Makes no memory Tying down multiple mega
of physical memory reservations bytes of physical memory

was unacceptable in a pro
duction environment

Block Accounting Block accounting is per Block accountingis per The file system cannot accept
formed when blocks are formed when blocks are writes into the cache if it does

written to disk. written into the cache. not have the physical disk
space to which to write die
data.

Segment Validation Presence of summary Checksum (of data) in The file system cannot as
block validates segment. summary block validates sume that disks write data in

segment. the order presented.
File System Verification Assumes file system is Verifies directory struc Media corruption or faulty

consistent after LFS ture in the background hardware can result in corr

roll-forward. after roll-forward. uption of the disk in places
other man the location of the

last write.

The Cleaner Runs askemel process. Runs as auser process. Placing the cleaner in user-
space allows for multiple
cleaners and experimentation
with different cleaning poli
cies, and prevents the cleaner
from locking out writers.

Inode Map and Segment Maintained as special Maintained in regular Making these structures part
Usage Table kernel data structures. file(ifile). of a regular file allows the

cleaner to easily read them
and reduces the amount of

special purpose code in the
kemel.

DirectoryOperations Maintains on-disk log. Provides atomic updates Since the file system is a log,
across segments. it seemed wrong to have an

additional log inside it
File Access Times Stored in inode map. Stored in inode. The access time is 8 bytes

and would have increased the

size of the inode map by
67%. Since the inode map
should be cached to achieve

best performance, this
seemed like a bad tradeoff.

Inode Allocation Inodes are allocated Free inodes are chained The sparse nature of the
sparsely with clustering in a free list. inode map makes it larger
by directory. than desirable and if direc

tories get large, many entries
must be traversed to find a

free inode.

Superblock Single superblock. Superblock replicated If the superblock is corrupt
throughout the file sys ed, it is nearly impossible to
tem. reconstruct the file system.

Table 6-3: Design Changes Between Sprite-LFS and BSD-LFS.

76

6.2.1. Memory Consumption

Sprite-LFS assumes that the system has a large physical memory and reserves substantial por
tions ofit The following storage is reserved:

Two 64-kilobyte or 128-kiIobyte staging buffers
Since not all devices support scatter/gather I/O, data is written in buffers large enough to
allow the maximum transfer size supportedby the disk controller, typically 64 kilobytes or
128 kilobytes. These buffers are allocated per file system from kemel memory.

One cleaning segment
One segment's worth of buffer cache blocks per file system are reserved for cleaning.

Two read-only segments
Two segments' worth of buffer cache blocks per file system are marked read-only so that
they may be reclaimed by Sprite-LFS without requiring an I/O.

Buffers reserved for the cleaner

Each file system also reserves some buffers for the cleaner. The number of buffers is
specified in the superblock and is set during file system creation. It specifies the minimum
number of unmodified buffers that must be present in the cache at any point in time. On the
Sprite cluster, the total amount of buffer space reserved for the cleaner on 10 commonly
used file systems was 37 megabytes.

One segment
This segment (typically one-half megabyte) is allocated from kernel memory for use by the
cleaner. Since this one segment is allocated per system, only one file system per system
may be cleaned at a time.

The reserved memory described above makes Sprite-LFS a very "bad neighbor" as kemel
subsystems compete for memory. While memory continues to become cheaper, a typical laptop
system has only three to eight megabytes of memory, and might very reasonably expect to have
three or more file systems.

BSD-LFS greatly reduces the memory consumption of LFS. First, BSD-LFS does not use
separate buffers for writing large transfers to disk, instead it uses the regular buffer cache blocks.
For disk controllers that do not coalesce contiguous operations, 64-kilobyte staging buffers
(briefly allocated from the kernel memory pool) are used for the transfers. The size of the staging
buffer was set to the minimum of the maximum transfer sizes for currently supported disks.
However, simulation results in [CAR92] show that for current disks, the write size that minimizes
the read response time is typically about two tracks; two tracks is close to 64 kilobytes for the
disks on our systems.

Secondly, moving the cleaner into user-space avoids the need to reserve a large amount of
main memory in the kernel. Instead, the user-level process competes for virtual memory space
with the other processes.

Third, rather than reserving two read-only segments per file system, BSD-LFS keeps track of
how many dirty buffers it has accumulated and begins a segment write before memory becomes a
critical resource. When the number of buffers dirtied by LFS exceeds the start write threshold, a
segment write, which should generate more clean buffers, is initiated. In the meantime, if the
number of dirty buffers exceeds the stop access threshold, any LFS read and write requests for
buffers not currently in the cache will wait The difference between the total number of buffers
headers in the system and the stop access threshold is analagous to Sprite-LFS's read-only
buffers. However, in BSD-LFS, while these buffers are not available to LPS, they are available
to the virtual memory system and other file systems (such as the memory-based file system
[MCKU90]).

77

6.2.2. Block Accounting

Sprite-LFS maintains a count of the numberof disk blocks available for writing (i.e. the real
number of disk blocks that do not contain useful data). This count is decremented when blocks
are actually written to disk. This approach implies that blocks can be successfully written to the
cache butcanfail to be written to diskif thediskbecomes fullbefore the blocks are actually writ
ten. Even if the disk is not full, all available blocks may reside in uncleaned segments and new
data cannot be written To prevent the system from deadlocking or losing data in these cases,
BSD-LFS uses two forms of accounting.

The first form of block accounting is similar to that maintained by Sprite-LFS. BSD-LFS
maintains a count of the number of disk blocks that do not contain useful data. It is decremented
whenever a newblockis created in the cache. Since many files die in the cache[BAKER91], this
numberis incremented wheneverblocks are deleted, even if they werenever writtento disk.

The second form of accounting keeps track of howmany blocks are available in clean seg
ments and have not been allocated for dirty bufferspresent in the cache. This space is allocated
as soon as a dirty block enters the cache, but is not reclaimed until segments are cleaned. This
count is used to initiate cleaning. If an application attempts to write data and there is no space
currently available for writing, the write will sleep until space is available. These two forms of
accounting guarantee that if the operating system accepts a write request from the user, barring a
crash, the data will be written.

Accounting for the actual disk space available is difficult because inodes are not written into
dirty buffers and segment summaries aren't created until the segment is written. Every time a
clean inode is updated in the inode cache, a count of inodes to be written is incremented. When
blocks are dirtied, the number of available disk blocks is decremented. To decide if there is
enough disk space to allow another write into the cache, the number of segment summaries
necessary to write what is in the cache is computed, addedto the number of inode blocks neces
sary to write the dirty inodes and compared to the amount of space available on the disk. To
createmore available disk space,either the cleanermust run or dirty blocks in the cachemust be
deleted.

6.2.3. Segment Structure and Validation

Sprite-LFS places segment summary blocks at the endof partial segments trusting that if the
write containing the segment summary is issued after all other writes in a partial segment, the
presence of the segment summary validates the partial segment This approach requires two
assumptions: the disk controller will not reorderthe write requests and the disk writes the con
tents of a buffer in the order presented. Since controllers often reorder writes and reduce rota
tional latency by beginning track writes anywhere on the track, BSD-LFS can not make these
assumptions. Therefore, segments are built from front to back, placing the segment summary at
the beginning of each segment as shown in Figure 6-3. A checksum is computed across four
bytes of eachblock in thepartial segment, stored in thesegment summary, andused to verify that
a partial segment is valid. Figure 6-4 shows how this is done. This approach avoids write-
ordering constraints and allows us to write multiple partial segments without an intervening seek
or rotation. Currently, there is no data to indicate that this checksum is insufficient, however,
methods existforguaranteeing that anymissing sector canbe detected during roll-forward.

The most commonly used technique for verifying multi-sector disk writes usespatch tables.
Thepatchtable is a collection of bits that is stored for each multi-sector unit, or segment, in the
case of LFS. Each time a segment is rewritten, the first bit in each sector is overwritten with
either a 0 or 1 (alternatingon each segmentwrite). The real values for those bits are then stored
bothin the segment usagetableandthe segment summary block. During normal operation, when
a block is read from disk, the realvalues for the first bit in eachsector areread from the segment
summary table and placed into the data blocks. During recovery, a segment is valid only if the

Sprite Segment Structure

^ l

n poxticipuuiil poiuter

LMm §
mua!mmTTmybtockpociioCT

BSD Segment Structure
next lognwnt pointci

-X t
Segment Summary Blocks

Figure 6-3: Partial Segment Structure Comparison Between Sprite-LFS and BSD-LFS. The
numbers ineach partial segment show the order inwhich the partial segments are created. Sprite-LFS builds segments
back to front, chaining segment summaries. BSD-LFS builds segments front toback. After reading a segment sum
mary block, thelocation ofthenextsegment summary block canbeeasily computed.

78

I

Checksum computed across four bytes from each block.

Figure 6-4: BSD-LFS Checksum Computation. Achecksum is calculated on four bytes from every block
inthe segment toverify that the segment described by asummary block has been successfully written todisk. Liorder
for the checksum to fail, the system must crash during a write, and the segment summary must have been successfully
written, but for eachunwritten data block, theold blockon diskat thenew block's location musthavecontained four
bytes that checksum to the same value.

first bit on every sector is identical. Therefore, a segment's validity can be guaranteed at the
expense of2 bits per sector, or .04% overheard.

6.2.4. File System Verification

Fast recovery from system failure is desirable, but reliable recovery from media failure is
necessary. Consequently, the BSD-LFS system provides two recovery strategies. The first
quickly rolls forward from the last checkpoint, examining data written betweenthe last check
point and the failure. The second does acomplete consistency check of the file system to recover
lost orcorrupted data, due to the corruption of bits onthe disk orerrant software writing bad data
tothe disk. This check is similar to the functionality offsck, the file system checker and recovery
agent forFFS, and tikefsck, it takes a long time to run.

79

In orderforLFS to be viable in a production environment, it must make reliability guarantees
comparable to FFS, which is an extremely robust file system. In the standard 4BSD implementa
tion, it is possible to clearthe root inode and recover the file system automatically vnihfsck($).
Interms of recovery, the advantage ofLFS is that writes are localized, so the file system may be
recovered to a physically consistent stateveryquickly.

The BSD-LFS implementation permits LFS to recover quickly and applications to start run
ning as soon as the roll-forward has been completed, while basic sanity checking of the file sys
tem is done in the background. It may be more desirable to run the background file system
checker periodically during normal operation, rather than waiting for a system crash or reboot
However, if the system crashed due a file system corruption, the verification will undoubtedly
have toberun before any other processing can occur. Ofcourse, the root file system must always
becompletely checked after every reboot, incase a system failure corrupted it.

There is theobvious problem of what todo if thesanity check fails. It is expected thatthe file
system will forcibly be made read-only, fixed, and then write enabled. These events should have
a limited effect on users as it is unlikely to ever occur and is even more unlikely to discover an
error in a file currently being written by a user, since the opening of that file would most likely
have alreadycauseda processor systemfailure.

6.2.5. The Cleaner

In Sprite-LFS thecleaner is partof thekemel and implements a single cleaning policy. There
are three problems with this, in addition to the memory issues discussed in Section 6.2.1. First,
thereis no reason to believe that a single cleaning algorithm willwork wellon all workloads. In
fact, the transaction processing benchmark in Chapter 6 suggests that coalescing randomly
updated files would improve sequential read performance. Second, placing the cleaner in kernel-
space makes it difficult to experiment with alternate cleaning policies. Third, implementing the
cleaner in the kernel forces the kemel to make policy decisions (the cleaning algorithm) rather
than simply providing a mechanism. Tohandle theses problems, theBSD-LFS cleaner is imple
mented as a user process.

TheBSD-LFS cleaner communicates with thekernel via system calls and the read-only ifile.
Those functions that are already handled in thekernel (e.g. translating logical block numbers to
disk addresses via bmap) are made accessible to the cleaner via system calls. If necessary func
tionality did notalready exist inthekemel (e.g. reading and parsing segment summary blocks), it
was relegated to user space.

There may be multiple cleaners, each implementing a different cleaning policy, running in
parallel on a single file system. Regardless of theparticular policy, the basic cleaning algorithm
works as follows:

1. Choose one or more target segments and read them.
2. Decide which blocks are still "live".
3. Write' 'live'' blocks back to the filesystem.
4. Mark the segments) clean.

The ifile and four new system calls, summarized in Table 6-4, provide the cleaner withenough
information to implement this algorithm. The cleaner reads a regular file maintained by theker
nel, called the ifile, to find out the status of segments in thefile system. Using the information in
the ifile, it selects segments to clean. Once a segment is selected, the cleaner reads the segment
from the rawpartition and uses the first segment summary to find out whatblocks reside in that
partial segment. It constructs an array of BLOCKJNFO structures (shown in Figure 6-5) and
continues scanning partial segments, adding theirblocks to thearray. When all thesegment sum
mary block have been read, and all the BLOCKJNFOs constructed, the cleaner calls Ifsjbmapv
which returns the current physical disk address for each BLOCKJNFO. If the disk address is the
same as the location of the block in the segment being examined by the cleaner, the block is

lfs_bmapv Take an array of inode number/logical block numberpairs and re
turn the disk address for each block. Used to determine if blocks in
a segment are "live".

lfs_markv Take an array of inode number/logical block number pairs and ap
pend them into the log. This operation is a special purpose write
call that rewrites the blocksand inodes withoutupdating the inode's
access or modification times. The user process has already read the
data from disk, so the kernel can copy the blocks from the user in-

__ stead of re-reading them from disk.
lfs_segwait Causes the cleanerto sleepuntil a giventimeouthas elapsed or until

another segment is written. This operation is used to let the cleaner
pause until there may be more segments available for cleaning.

lfs_segclean Mark a segment clean. After the cleaner has rewritten all the
"live" blocks from a segment, the segment is marked clean for
reuse.

Table 6-4: The System Call Interface for the Cleaner.

80

"live". Live blocks must to bewritten back into the file system without changing theiraccess or
modify times, so the cleaner issues an Ifsjnarkv call, which is a special write causing these
blocksto be appended into the log without updating their inodetimes.

Before rewriting the blocks, the kemel verifies that none of the blocks have "died" since the
cleaner called lfs_bmapv. Once Ifsjnarkv begins, only cleaned blocks are written into the log,
until lfs_markv completes. Therefore, if cleaned blocks die after Ifsjnarkv verifies matthey are
alive, partial segments written after the lfs_markv partial segments will reflea the fact that the
blocks have died.

When Ifsjnarkv returns, the cleaner calls Ifsjegclean to mark the segment clean. Finally,
when the cleaner has cleaned enough segments, it calls lfs_segwait, sleeping until the specified

INODE NUMBER

LOGICAL BLOCK NUMBER

CURRENT DISK ADDRESS

SEGMENT CREATION TIME

BUFFER POINTER

Figure6-5: BLOCK_INFO Structure used by the Cleaner. The cleaner calculates the current disk ad
dress foreach block from the disk address of the segment The kemel specifies which have been superceded bymore
recent versions.

81

timeout elapses or a new segment is written into an LFS.

Since the cleaner is responsible for producing free space, the blocksit writes must get prefer
enceoverotherdirty blocks to be writtento avoid running out of free space. However, it is possi
ble for the cleaner to consume moredisk space than it frees during cleaning. Although this can
not happen over the long-term, during the short-term it can. Consider the simple three segment
file system shownbelow in Figure 6-6. Segment 1contains one free block (the first block marked
"Deleted Data"). However, cleaning segment 1 requires rewriting the indirect block for file 1.
Therefore, after segment 1 is cleaned, segment 3 will be full, segment 1 will be clean, and one
block in segment 2 will be "dead" (Figure 6-7). While the total number of live blocks on the
system has not increased, it hasnot decreased either, and the actof cleaning the segment hasnot
created any additional space. It is possible to construct acase where cleaning asegment actually
decreases the amount of available space (consider a segment that contains N blocks from N dif
ferent files, each of which is accessed via an indirect block and the indirect block resides in a dif
ferent segment). Therefore two segments are reserved for the cleaner. One guarantees that the
cleaner can run, and the second ensures that small overflows can be accommodated until more
space is reclaimed.

The cleaning simulation results in [ROSE91] show that selection of segments to clean is an
important design parameter in minimizing cleaning overhead, and that the cost-benefit policy
defined there does extremely well for the simulated workloads. Briefly, each segment is assigned
a cleaning costandbenefit The cost to clean asegment is equal to:

1 + utilization

where utilization is the fraction of "live" data in the segment The benefit of cleaning a segment
is equal to:

Deleted Dm ...-DatiBlocks (file !)-... bodeBlock

....• LtaDtts -... buds Block

Clean Segment

Figure 6-6: Segment Layout for Bad Cleaner
Behavior. Segments 1 and 2 contain data. The
cleaner will attempt to free up the one disk block of
deleted data from segment 1. However, to rewrite
the data in segment 1, it will dirty the meta-data
block currently in segment 2. As a result, the cleaner
will not generate any additionalclean blocks.

Clean Segment

Deleted Dats. >Live Dm •—... Irak Block

Iivllicct Block
.-Data Blocks (file 1)..., (filo 1)Inodo Block

Figure 6-7: Segment Layout After Cleaning. The
cleaner cleaned segment 1. In doing so, it rewrote
the indirect block that previously resided in segment
2. Now mat block has been deleted and the cleaner

will be able to reclaim a disk block by cleaning seg
ment 2.

82

free bytes generated * age of segment

where free bytes generated is thefraction of "dead** blocks in thesegment (1- utilization) and
age of segment is the time since the most recent modification to a block in that segment The
age is incorporated into the benefit computation to avoid cleaning segments that are rapidly
becoming empty. Forexample, consider thata segment contains a single, large file. If the file is
being deleted, at some point before the entire file is deleted, the number of "live**blocks in that
segment will fall below the minimum of all other segments. However, since the remaining
blocks will soon be deleted, it is beneficial to wait for some period of time until the rest are
deleted. Factoring age into the benefit computation serves this purpose. When the file system
needs to reclaim space, the cleaner selects the segment with the largest benefit to cost ratio.
BSD-LFS uses this as the defaultcleaningalgorithm.

Currently the cost-benefit cleaner is the only cleaner running, but two additional policies are
under consideration. The first would run during idleperiods and selectsegments to cleanbased
oncoalescing and clustering files. The second would flush blocks in thecache to disk during nor
malprocessing even if theywere notdirty, if it would improve thelocality fora given file. These
policies will be analyzed in future work.

6.3. Implementing LFS in a BSD System

While thelastsection focused onthose design issues that addressed problems in the design of
Sprite-LFS, this section presents additional design issues either inherent toLFS orresulting from
the integration of an LFS into 4BSD.

63.1. Integration with FFS

The on-disk data structures used by BSD-LFS are nearly identical to the ones used by FFS.
This decision was made for two reasons. The first one was that many applications have been
written over the years to interpret and analyze raw FFS structures. It was desirable that these
tools could continue to function as before, with minor modifications to read the structures from a
new location. The second and more important reason was mat it was easy and increased the

Operation Description

mount Mount a raw disk partition as a file system of the appropriate type.
start Make a file system operational.
unmount Remove a file system from the file system tree.
root Return the root of a given file system.
quotactl Perform quota operations.
statfs Return file system statistics.
sync Forceall dirtyin-memory buffers associated with this file system to

disk.

flitovp Convert a file handle to a vnode.
vptofli Convert a vnode to a filehandle.
init Initialize inodehashtablefor a file system.

Table 6-5: Descriptionof Existing BSD vfs operations.

Operation Description

lookup Find the vnode for the specified named file.
Create a new file.create

mknod Make a new file node in the specifiedfile system.
Open a file.open

close Qose a file, freeing any of its allocated resources.
access Checkthe permissions of the specified file.
getattr Return a file's attributes.

setattr Set a file's attributes.

read Perform a read of the specified file.
write

ioctl

Write to the specified file.

Change the I/O characteristics of the specified file.
select Check if the file is ready for reading or writing or have an excep-

tional condition pending.

mmap Map the specified file into the virtual address space of the current
process.

fsync Force a file's blocks to disk.

seek Move the file pointer forthe specified file to the specified byteoffset
in the file.

remove Delete one reference to a file (if it is the last reference, the file is
deleted).

link Create a link from a specified file to a new name.
rename Change the name of a file.

mkdir Create a directory.
rmdir Remove a directory.

symlink Create a symbolic link between the specified file and the specified
name.

readdir Return the next directoryentry in the specified directory.
readlink Return the destination of a symbolic link.
abortop Abort a create or delete operation in progress.
inactive Remove the last reference to a vnode.

reclaim Free an inode in the inode hash table so it may be re-used.
lock Lock a vnode.

unlock Unlock a vnode.

strategy Schedule I/O operations for the specified file.
print Print out the contents of an inode.

islocked Return true if the specified vnode is locked.
advlock Lock/unlock advisory record locks.

Table 6-6: Description of existingBSD vnode operations.

83

maintainability of the system. A basic LFS implementation, without cleaner or reconstruction
tools, but with dumpfs{\) and newfs(l) tools, was reading and writing fromAo the buffer cache in

84

under two weeks, and reading and writing from/to the disk in under a month. This implementa
tion was done by copying the FFS source code and replacing about 40% ofit with new code. The
FFS and LFS implementations have since been merged to share common code.

In BSD and similar systems (e.g. SunOS, OSF/1), a file system is defined by two sets of inter
face functions, yfs operations and vnode operations [KLEI86]. Vfs operations affect entire file
systems (e.g. mount, unmount, etc.) while vnode operations affect files (open, close, read, write,
etc.). The original set of operations for each of these interfaces is described in Tables 6-5 and 6-
6.

File systemscould share code at the level of a vfs or vnode subroutinecall, but they couldnot
share the UNIX naming while implementing their own diskstorage algorithms. To allow sharing
of the UNIX naming, the code common to both FFS and BSD-LFS was extracted from the FFS
code and put in a new, generic file system module (UFS). This code contains all the directory
traversal operations, almost all vnode operations, the inode hash table manipulation, quotas, and
locking. The common code is used notonly by the FFS and BSD-LFS, but by thememory file
system[MCKU90] as well. The FFS andBSD-LFS implementations remainresponsible for disk
allocation and actual I/O. Table 6-7 shows which ofthe vnode operations are file system specific.
Any not included in Table 6-7 and those included only forLFS (the directory operations) are all
in the common UFS code. LFS does some pre- and post- processing ofdirectory operations and
then calls the UFS routines.

Inmoving code from the FFS implementation into the generic UFS area, it was necessary to
add seven new vnode and vfs operations. Table 6-8 lists theoperations thatwere added to facili
tate this integration and explains why they are different forthetwo file systems.

6.3.1.1. Block Sizes

One FFS feature that is not implemented in BSD-LFS is fragments. The original reason for
fragments was that, given a large block size (necessary toobtain contiguous reads and writes, and
tolower the data tometa-data ratio), fragments were required tominimize internal fragmentation
(allocated space that does not contain useful data). LFS does not require large blocks to obtain
contiguous reads and writes as it sorts blocks in a file by logical block number, writing them
sequentially. Still, large blocks are desirable to keep the meta-data to data ratio low. Unfor
tunately, large blocks can lead to wasted space ifmany small files are present. Since managing
fragments complicates the file system, BSD-LFS will allocate progressively larger blocks instead
of using a block/fragment combination. This improvement has not yet been implemented but is
similar to therestricted buddy policy simulated in Chapter 3.

63.1.2. The Buffer Cache

Prior to the integration ofBSD-LFS into 4BSD, the buffer cache had been considered file sys
tem independent code. However, the buffer cache contains assumptions about how and when
blocks are written to disk. First, itassumes that asingle block can be flushed to disk, at any time,
toreclaim its memory. There are two problems with this: flushing blocks a single block ata time
would destroy any possible performance advantage of LFS, and, because of the modified meta
data and partial segment summary blocks, LFS may require additional memory to write. There
fore, BSD-LFS needs to guarantee that it canobtain any additional buffers it needs when it writes
a segment

To prevent thebuffer cache from trying to flush a single BSD-LFS page, BSD-LFS does not
put its buffers on the normal LRU queue, but puts them onthe kemel LOCKED queue, sothat the
buffer cache cannot reclaim them. The number of buffers on the locked queue is compared
against two variables, the start write threshold and stop access threshold, to prevent BSD-LFS
from using upall the available buffers. When the number ofLFS buffers onthe LOCKED queue
exceeds the start write threshold, the segment writer is invoked, and dirty buffers on the locked

File Svstem Operation

LFS read, write, fsync, symlink, mknod, create, mkdir, remove, rmdir,
link, rename

FFS read, write, fsync

Table 6-7: Summary ofFile system Specificvnode Operations.

Vnode Operations

blkatoff Read the block at the given offset, from a file. The two file systems
calculate block sizes and block offsets differently, because BSD-
LFSdoesnot implement fragments.

valloc Allocate a new inode. FFS must consult and update bit maps to al
locate inodes while BSD-LFS removes the inode from the head of
the free inode list in the ifile.

vfree Free an inode. FFS must update bit maps while BSD-LFS inserts
the inode onto a free list.

truncate Truncate a file from the given offset FFS marks bit maps to show
that blocks are no longer in use, while BSD-LFS updates the seg-
ment usage table.

update Update the inode for the given file. FFS pushes individual inodes
synchronously, while BSD-LFS accumulates them and writes them
in a partialsegment

bwrite Write a block into the buffer cache. FFS performs synchronous
writes while BSD-LFS just marks the block dirty and puts it in the
cache.

Vfs Operations

vget Get a vnode. FFS computes the disk address of the inode while
BSD-LFS looks it up in the ifile.

85

Table 6-8: New Vnode and Vfs Operations. These routines allowed us toshare 60% of the original FFS
code with BSD-LFS.

queue will be written, marked no longer dirty, and removed from the locked queue. If the
number of LFS buffers on the LOCKED queue exceeds the stop access threshold, then any
requests, from LFS to obtain more buffers, are denied until the number of LFS buffers on the
locked queue falls below the threshold. This problem can be much more reasonablyhandled by
systems with better integration ofthe buffer cache and virtual memory.

Second, BSD maintains a logical block cache, hashed by vnode and logical block number. In
FFS, since indirect blocks do not have logical block numbers, they arehashed by the vnode of the
device (the file that represents the disk partition) and the disk block number. Since LFS does not

86

assign disk addresses until blocks are written to disk, indirect blocks have no valid addresses on
which to hash. To solve this problem, the block name space had to incorporatemeta-data block
numbering. This numbering is done by making block addresses be signed integerswith negative
numbers referencing indirectblocks, while zeroandpositive numbers reference data blocks. Fig
ure 6-8 shows how the blocks are numbered. Singly indirect blocks take on the negative of the
first data block to which they point Doubly and triply indirectblocks take the next lower nega
tive number of the singly or doubly indirect block to which they point This approach makes it
simple to traverse the indirect block chains in either direction, facilitating reading a block or
creating indirect blocks. Sprite-LFSpartitions the t4block name space** in a similar fashion.

Althoughit is not possible for BSD-LFS to use FFS meta-data numbering, the reverse is not
true, hi 4.4BSD, FFS uses the BSD-LFSnumbering and the bmap code has been moved into the
UFS area.

6.3.2. The IFILE

Sprite-LFS maintainedthe inode map and segmentusage table as kemel data structureswhich
are written to disk at file system checkpoints. BSD-LFS places both of these data structures in a
read-onlyregular file,visible in the filesystem,called the ifile. There are three advantages to this
approach. First, while Sprite-LFS andFFS limit the numberof inodesin a file system, BSD-LFS
has no such limitation, growing the ifile via the standard file mechanisms. Second, it can be
treated identically to other files, in mostcases, minimizing the special case codein the operating
system. Finally, it provides a convenient mechanism for communication between the operating
system and the cleaner. A detailed view of the ifileis shown in Figure 6-9.

Data Blocks

Indirect Blocks 11

12

-12

1035

Double Indirect Blocks

Figure 6-8: Block-numbering in BSD-LFS. InBSD-LFS, data blocks are assigned positive block numbers
beginning with 0. Indirectblocks are numberedwith the negativeof the first data block that they address. Double and
tripleindirectblocksarenumbered withone lessthanthe firstindirect or doubleindirectblockthat they address.

IFILE

NUM CLEAN SEGMENTS

NUM DIRTY SEGMENTS

CLEANER INFO

SEGMENT
SEGUSB1 NUM LIVE BYTES

USAGE ... LAST MOD TIMB

TABLE
SBGUSBN FLAGS

x*''' IFILB1

DfODEMAP ... VERSION NUMBER

**•„ IFILE N DISK ADDRESS

FREE LIST POINTER

87

Figure 6-9: Detail Description of the IFILE. The ifile is maintained as aregular file with read-only permis
sion. It facilitates communication between thefilesystem andthecleaner.

Both Sprite-LFS and BSD-LFS maintain disk addresses and inode version numbers in the
inode map. Theversion numbers allow thecleaner to easily identify groups of blocks belonging
to files that have been truncated or deleted. Sprite-LFS also keeps the last access time in the
inode map so that when files are read, the inode does notgetrewritten and moved faraway from
thefile data. However, since the access time is eight bytes in 4.4BSD, maintaining it in theinode
mapwould cause the ifile to growby 67%, soBSD-LFS keeps the access timein the inode.

Sprite-LFS clusters inodes in the inode map, and allocates new inodes by picking a starting
point and scanningforwardsequentially until it finds a free inode. To create a new file, the inode
map is searched from theinode entry of thecontaining directory. If a directory is being created, a
random location is chosen. When a directory contains many files this scan is costly. On six
Sprite file systems, the average number of entries searched perdirectory or file creation ranged
from 26to 192, with anaverage across all thefile systems of94entries perallocation. BSD-LFS
avoids thisscanbymaintaining a free list of inodes in the inode map.

The segment usage table contains the number of live bytes in and the last modified time of
each segment and is largely unchanged from Sprite-LFS. In order to support multiple and user
mode cleaning processes, it also contains a set of flags indicating whether the segment is clean,
contains a superblock, is currently being written to, or is eligible forcleaning.

63.3. Directory Operations

Directory operations8 pose aspecial problem for LFS. Since the basic premise ofLFS is that
operations canbe postponed andcoalesced to provide large L/Os, it is counterproductive to retain
the synchronous behaviorof directoryoperations. At the same time, if a file is created, filled with
data and/synced, then both the file's data and the directory entry for the file must be on disk.
Additionally, the UNIX semantics of directory operations are defined to preserve ordering (i.e. if
the creation of file a precedes the creation of file b, then any post-recovery state of a file system
that includes file bmust include file a). It is believed that this semantic is used in UNIX systems
to providemutual exclusionand other lockingprotocols.

8Directory operations include those system calls that affect more than one inode (typically adirectory and afile) and include:
create, link, mkdir,mknod, remove, rename, rmdir, andsymlink.

88

Sprite-LFS preserves the ordering of directory operations by maintaining adirectory operation
log inside the file system log. Before any directory updates are writtento disk, a log entry that
describes the directory operation is written. The log information always appears in anearlier seg
ment, or the same segment, as the actual directory updates. At recoverytime, this log is read and
any directory operations that were not fully completed are rolled forward. Since this approach
requires an additional, on-disk data structure, and since LFS is itself a log, a different solution
was chosen,namely segmentbatching.

Since directory operations affectmultiple inodes (e.g. anew file and its containing directory),
BSD-LFSmust guarantee thateitherbothof the inodes andassociated changes get writtento disk
or neither does. BSD-LFS has a unit of atomicity, the partial segment, but it does not have a
mechanism that guarantees that all inodes involved in the same directory operation will fit into a
single partial segment. Therefore, amechanism thatallows operations to span partial segments is
introduced. At recovery, a partial segment is never rolled forward if it has anunfinished directory
operation andthe partial segment that completesthe directory operation did not make it to disk.

The requirements for segment batching aredefined as follows:

1. If any directory operation has occurred since the last partial segment was written, the next
segment write will append all dirty blocks from the ifile (that is, it will be a checkpoint,
except that the superblock need not be updated).

2. During recovery, any writes that were part of a directory operation write will be ignored
unless the entire writecompleted. A completed write canbe identified if all dirtyblocksof
the ifile and its inode were successfully written to disk.

This definition is essentially a transaction where the writing of the ifile inode to disk is the
commitoperation. In this way, there is a coherent snapshot of the file system atsome point after
each directory operation. The penalty is that checkpoints are written more frequently in contrast
to Sprite-LFS's approach that wroteadditional logginginformationto disk.

The BSD-LFS implementation requires synchronizing directory operations and segment writ
ing. Each time a directory operation is performed, the affected vnodes are marked and the
memory-resident superblock is updated to reflect that a directory operation is in progress or has
occurred. For example, thecreation of file/in directory d can be decomposed into five steps:

1.File system statevariable diropJnj>rogress is set
2. Vnode d is marked.

3. Vnode/is created and marked.
4. Vnode d is updated.
5. File system state variabledirop is set.
6. File system state variable dirop_inj>rogress is unset.

The segment writer uses thetwo state variables and the vnode markings to control its writing.
When the segment writer builds a partial segment, it collects vnodes in two passes. In the first
pass, all unmarked vnodes (those not participating in directory operations) are collected, and dur
ing the second pass those vnodes that are marked are collected. The segment writer will not
begin pass two while the state variable dirop_in_progress is set, and directory operations are
prohibited from beginning while the segment writer is in pass two. If any vnodes are found dur
ing the second pass, there are directory operations present in the current partial segment, and the
segment summary block flags are set, identifyingthe partial segment as the beginning of a direc
tory operation. The last partial segment containing marked vnodesis identified ascompleting the
directory operation (in most cases, the beginning and ending identification will be in the same
partial segment).

When recovery is run, the file system can be in one of three possible states with regard to
directory operations:

89

1. The system shut down cleanly so that the file system may be mounted as is.

2. There are valid segments following the last checkpoint and the last one was a completed
directory-operation write. Therefore, all that is required before mounting is to rewrite the
superblock to reflect the address ofthe ifileinode andthe currentend ofthe log.

3. There are valid segments following the last checkpoint or directory operation write. As in
the previous case, the system recovers to the last completed directory operation write and
then rolls forward the segments from thereto either the end of the log or the first partial seg
ment beginning a directory operation that is never finished. Then the recovery process
writes a checkpoint and updates the superblock.

While rolling forward, two flags are used in the segment summaries: SS.DIROP and
SS_CONT. SS_DIROP specifies that a directory operation appears in the partial segment.
SS_CONT specifies that the directory operation spans multiple partial segments. If the recovery
agent finds a partial segment with both SS.DIROP and SS_CONT set, it ignores all such partial
segments until it finds a later partial segment with SS_DIROP set and SS_CONT unset (i.e. the
end of the directory operation write). If no such partial segment is ever found, then all the partial
segments from the initial directory operation on are discarded. Since partial segments are small
[BAKER92] this should rarely, if ever, happen.

6.3.4. Synchronization

To maintain the delicate balance between buffer management, free space accounting and the
cleaner,synchronization between the components of the system must be carefully managed. Fig
ure 6-10 depicts the synchronization relationships.

The cleaneris given precedenceover all other processingin the system to guarantee that clean
segments are available if the file system has space. It has its own event variable on which it waits
for new work (tfsjrtlcleanjvakeup). The segment writer and user processes will defer to the
cleanerif the disk system does not have enough clean space. A user processdetects this condi
tion when it attempts to write a block but the block accounting indicates that there is no space
available. The segment writer detects this condition when it attempts to begin writing to a new
segment and the number of clean segments has reachedtwo.

In addition to cleaner synchronization, the segment writer and user processes synchronize on
the the availability of buffer headers. When the number of LFS buffer header on the LOCKED
queue exceeds the start write threshold a segment write is initiated. If a write request would
make the number of LFS buffers on the LOCKED queue exceed the stop access threshold, the
writing process waits until a segment write completes, making more buffer headers available.
Finally, there is directoryoperationsynchronization. User processes wait on the Ifsjiirop condi
tion andthe segmentwriterwaits on Ifsjvriter condition.

63.5. Minor Modifications

There are a few additional changes to Sprite-LFS. To provide more robust recovery the super-
block is replicated up to ten times throughout the file system, as in FFS. Since the file system
meta-data is stored in the ifile, there is no need for separate checkpoint regions, and the disk
address of the ifile inode is stored in the superblock. Note that it is not necessary to keep a dupli
cate ifile since it can be reconstructed from segment summary information, ifnecessary.

6.4. Conclusions

The implementation of BSD-LFS higilighted some subtleties in the overall LFS strategy.
While allocation in LFS is simpler than in extent-based file systems or file systems like FFS, the
management of memory is much more complicated. The Sprite implementation addressed this
problem by reserving large amounts of memory. Since this was not feasible in our environment,
a more complex mechanism to manage buffer and memory requirements was needed.

90

work (lfs_allcleanj Gocked_queue_count)

dirops)

work (lfs_allclean_wakeup)

a >B
Reason (address)

A waits for B on "address" due to "Reason"

Figure 6-10: Synchronization Relationships in BSD-LFS. The cleaner has precedence over all com
ponents in the system. It waits on the lfsjdlclean_wakeup condition and wakes the segment writer or userprocesses
using the IfsjtvaU. condition. The segment writer and user processes maintain directory operation synchronization
through the IfsJLirop and Ifsjvriter conditions. User processes doing writes wait onthelocked_queue_count when the
numberof dirty buffersheld by BSD-LFS exceedsa systemlimit

LFS operates best when it can write out large numbers of dirty buffers at once. However,
holding dirty data in memory until a large amount has accumulated requires consuming more
memory than might be desirable. In addition, the actof writing a segment requires allocation of
additional memory (for segmentsummaries and on-disk inodes), so segmentwritingneeds to be
initiated before memory becomes acritical resource, in order to avoid memory thrashing.

The delayed allocation ofLFS makesaccounting of available free space morecomplex than in
a pre-allocated system like FFS. In Sprite-LFS, the space available to a file system is the sum of
the disk space and the buffer pool. As a result, files are allocated in the buffer pool for which
there might not be free space available on disk. Since the applications that writethese files may
haveexited beforethe files actually go to disk, there is no effective way to report the "out ofdisk
space" condition. In order to avoid this phenomenon, available space accounting must be per
formed asdirtyblocks enterthe cache instead ofwhen they are written from cacheto disk.

This chapter has discussed the new design of LFS. The prior studies, both simulated and
empirical have guided this redesign, and the re-implementation highlighted some difficult issues
in building log-structured file systems. This new design attempts to avoid the disruption in ser
vice due to the cleaner andprovides a mechanism by whichthe sequential file performance after
random updates described in Chapter 5 can be improved. In addition, the new design has
improved robustness and flexibility. The next chapter presents the performance evaluation of this
new system.

91

Chapter 7

Performance Evaluation

This chaptercompares the performance of the redesigned log-structured file system to more
traditional, read-optimized file systems on a varietyof benchmarks that attempt to emulate real
workloads. The new log-structured file system was written in November of 1991, left largely
untouched until late spring 1992,and is a completely untuned implementation.

The file systems against which LFS is compared are the regular fast file system (FFS), and an
enhanced version of FFS introduced in [MCV091] and described in the next section. The
enhanced FFS file system is referred to as EFS for the remainder of this thesis.

7.1. Extent-like Performance Using the Fast File System

Chapter 3 showed that read-optimized policies that favor contiguous layoutperform similarly,
so in this chaptera variantof FFS that favors contiguous allocation was selected. The fundamen
tal idea proposed in [MCV091] is that the FFS block allocator can be used to allocate blocks
contiguously on disk and that doing so allows the file system to read a large number of blocks,
called a cluster, in a single I/O. hi this way, EFS provides extent-based file system behavior
without changing the underlying structures ofFFS.

FFS is parameterized by a variable, maxcontig, whichindicates howmanylogicallysequential
disk blocks should be allocated contiguously on disk. By setting maxcontig large (equal to a
track or more), the FFS can be made to perform what is essentially track allocation. Logically
sequential dirty buffers are accumulated in the cache, and when an extent's worth(i.e.maxcontig
blocks) have been collected, they are bundled together into a cluster. This provides extent-based
writing.

In order to provide extent-based reading, the interactionbetweenthe buffer cache and the disk
was modified. Typically, before a block is read from disk, the bmap routine is called to translate
logical block addresses to physical disk block addresses. The block is then read from disk and
the next block is requested. Since I/O interrupts are not handled instantaneously, the disk is usu
ally unable to respond to two contiguous requests on the same rotation, so sequentially allocated
blocks incur the cost of an entirerotation. In EFS,bmap is extended to returnnot only the physi
cal disk address but the number of contiguous blocks that follow the requested block. Then,
ratherthan reading one block at a time and requesting the next block asynchronously, the file sys
tem reads a large number of the contiguous blocksin a singlerequest This providesextent-based
reading.

This same mechanism is used by LFS to read its contiguously allocated disk blocks. How
ever, because LFS potentially allocates more blocks contiguously than it can access in a single
transfer(e.g. more than the maximum supported by the controller, typically 64 kilobytes), it may
miss a rotation between reading collections of blocks. Disks with track buffers can often hide
this rotational delay. SinceEFS uses the FFS blockallocator, it automatically leaves a rotational
delay between clusters of blocks, and does not miss the rotation even in the cases where no track
buffer is present or track-buffering fails.

92

12. The Test Environment

The hardware configuration consists of a Hewlett-Packard series9000/380 computer witha 25
Mhz MC68040 processor. It has 16 megabytes of main memory, and a 1.3 gigabyte SCSI
SD97560 disk. The hardware configurationis summarized in Table 7-1.

The system is running the 4.4BSD-Alpha operating system. The three file systems being
evaluated all use four-kilobyte blocks, withEFSandFFSusing one-kilobyte fragments. Theyall
runin the same operating system kernel and share mostof their source code. There are approxi
mately 6000 lines of shared C code, 4000 lines of LFS-specific code, and 3500 lines of FFS-
specific code. EFS uses the same source code as FFS plus an additional 500 lines of clustering
code, of which 300are also used by LFS (forreads). Allmeasurements were taken with thesys
tem running single-user, with no network connections.

Five types of statistics were collected to analyze performance. First, there is a metric for each
benchmark that quantifies the performance of each file system. The metrics are either elapsed
time or throughput, measured in megabytes per second, files per second, or transactions per
second.

Next there are counters in the kernel to measure disk activity. All the tests are run on the
SCSIdisk described in Table 7-1, and that disk is unused except for the benchmark, so the disk
activity summarizes all the I/O performed by the benchmarks. The kernel maintains the number
of reads and writes, the number of synchronous reads and writes, the total number of sectors read
and written, and the microsecondsthat the disk is busy and idle. It also maintains a list of the last
1000 I/O begin and completion times from which individual I/O response times canbe computed.

Disk (SCSI S D97560) Comment

Average seek
Single rotation
Track size

Track buffer

Disk bandwidth

Bus bandwidth

Controller overhead
Track skew

Cylinder skew
Cylinder size
Disk size

13.0 ms

15.0 ms

36 KB

128KB

2.2 MB/sec
1.6 MB/sec

1.0 ms

8 sectors

10 sectors

19 tracks

1962 cvlinders

non-volatile; read-buffering only

total skew = track skew + cylinder skew
684 KB

1.3 eieabvtes

CPU (Motorola 68040)
Memory Bandwidth
CPU

MIPS

12.0 MB/sec
25 Mhz

10-12

with 5000 byte transfers

Table 7-1: Hardware Specifications. Although thedisk cansupport 2.2megabytes per second
transfer bandwidth, theSCSI interface is limited to 1.6megabytes per second. SCSI supports two
transfer modes, synchronous and asynchronous [ADAP85]. Synchronous mode is optional under
SCSI-1 andis not supported by thediskdriver. Therefore, all transfers areperformed using asyn
chronous mode and are limited to 1.6 MB/sec.

93

Thekemel also maintains counters tomonitor LFS activity. It counts the number of segments
used, the number of checkpoints, the number of writes issued, the number of partial segments
written, the number of partial segments from the cleaner, and what percentage of writes are syn
chronous. It also keeps track of the total number of blocks written and how many of those were
due to the cleaner. Finally it keeps track of how many times the start write threshold and stop
access threshold are reached.

Since the LFS cleaner runs as a user-process, it maintains its own set ofcounters, specifically
the number of blocks read during cleaning, the number of block writes passed to thekemel, the
number ofsegments that were empty and could bereclaimed without cleaning, and the number of
segments cleaned.

The kemel also maintains a count of thenumber ofblocks written bythecleaner, and its count
can beused toverify the cleaner's count The cleaner may submit blocks to the kemel for writing
that have become invalid and therefore will not be written, so the cleaner's number of blocks
writtenshouldbe greaterthan or equal to the kernel's number of blockswritten.

Finally, there are measurements derived from running the benchmark on a profiling kernel
Kernel profiling requires that a special monitoring routine iscalled onentry and exit toevery sub
routine. The kemel keeps track of the number of times each routine is called and these statistics
can be reset and displayed upon request As the act of profiling can be disruptive to system
behavior (it incursapproximately a 12% overhead on the CPU), all other measurements, includ
ing the benchmark metrics, are reported fora non-profiling kemel. Profiling was used only when
noneof the othermeasurements could explain thesystem behavior.

Each of the next sections describes a benchmark and presents the performance analysis for
each file system. With the exception of the first two benchmarks (raw file system performance
and small file performance), the benchmarks attempt to model specific workloads described in
Table 7-2.

13. Raw File System Performance

The goal of this test is to measure the maximum throughput that canbe expected from the
given disk and system configuration foreach of the file systems. Forthis test, the three file sys
tems are compared against the maximum speed at which the operating system can write directly
to thedisk. The benchmark consists of creating a file of size S and then either reading or writing

Benchmark Section Workload/Purpose
Raw 7.3 Measure the maximum throughput that the file system

can achieve.

Small File 7.4 Measure the LFS benefits in processing a large number
of small files.

Andrew 7.5 Software development workload.
001 7.6 Object oriented database workload.
Wisconsin 7.7 Complex query processing workload.
TPC/B 7.8 Transaction processing workload.
Super 7.9 Super computer workload.

Table 7-2: Summary ofBenchmarks Analyzed.

94

the entire file 50 times. The measurements recorded are averages acrossthe 50 runs. For the read
tests, the cacheis flushed beforeeachtest byunmounting and remounting the file system.

73.1. Raw Write Performance

The graph in Figure 7-1 showsthe bandwidth attained for writing, as a function of S, the size
of the I/O. Giventhe sequential layoutof bothLFS andEFS, the expectation is that both should
perform comparably to the speed of the raw disk and that FFS, with its rotational positioning,
should achieve approximately 50% ofthe disk bandwidth. However, there are several anomalies.

First, as the I/O size increases, EFS actually provides more bandwidth thanthe rawdiskparti
tion. The explanation for this can be found by looking at the numberof synchronous I/O's and
the begin time for each operation. When accessing the raw partition, all I/Os are synchronous.
Therefore, thereis no overlap between thetimerequired to copythe data from user-space into the
kernel andthe timerequired to perform theI/Os. Asa result, there is a gapof approximately five
milliseconds between the completion of each I/O and the initiation of the next I/O. In contrast,
EFS has an aggressive bufferingpolicy,allowing it to perform asynchronous writesin units of 64
kilobytes. Therefore, the I/Osarequeued, andsuccessive I/Os arebegun almost immediately.

The next anomaly lies in the fact that LFS performs noticeably worse than eitherEFS or the
RAW partition. This is an artifactof this benchmark as opposed to a fundamental difference in
the attainable write bandwidth of thetwo file systems. The problem is thatthe benchmark per
forms the write and then callsfsync to ensure that the blocks have been written to disk.

Throughput (m megabytes/sec)

2.0-

L5-

f f

N...............M......

0.5-

0.0

EFS

- RAW

LFS

FFS

1024 2048 3072
I/O Size (in kilobytes)

4096

Figure 7-1: Maximum File System Write Bandwidth. This graph shows the write bandwidth ofeach
file system as a function of the transfer size. EFS attains the best performance, as it performs nearly all itswrites asyn
chronously in maximal-sized buffers. Writes to the RAW partition also occur in maximal-sized units, but are per
formed synchronously. In LFS, since alarge amount of data are gathered in thecache before being written to thedisk,
there is less overlap between CPU processing and disk activity, leading to the gap shown above. Therotational delay
of FFSprohibitsit from achievingmore than25% of the available disk bandwidth.

95

LFS achieves its write performance by buffering a large number of dirty buffers before initiat
ing I/O. As a result, LFS does not begin writing any data to disk until requested to do so by the
application fsync or until the start write threshold has been reached. On this system, the start
write threshold results in approximately 800 kilobytes of data being buffered before a write is ini
tiated. As a result, for all the tests where the transfer size was smaller than one megabyte, the
benchmark had two phases, the first in which data was written into the cache, and the second dur
ing which time the data was being written to disk.

To verify this, timings were taken after all the writes had been issued, but before the call to
fsync and then again after the call to fsync. In the tests where the total transfer size was less than
800K, LFS' elapsed time for the fsync was nearly identical to the time required for EFS to write
all its buffers. Figure 7-2 depicts this behavior. In the tests where the transfer size was greater
than 800K, LFS' elapsed time for thefsync was the time reported for the synchronous LFS write
that flushed the data remaining in the cache at the time of thefsync.

These write tests were repeated for LFS with the cleaner running, but the results were indistin
guishable from the results without the cleaner. Since the same data is overwritten for each itera
tion of the test, there are always empty segments available for reclamation by the cleaner. As a
result, the cleaner reported that it always cleaned empty segments, and the overhead was
unmeasurable.

The last anomaly is that FFS did not achieve the 50% bandwidth expected, but achieved
closer to 31% of the transfer bandwidth (0.5 megabytes per second of the possible 1.6 megabytes
per second). The explanation of this is in the FFS rot_delay parameter. This parameter is used
by FFS to express the length of time, from the disk's perspective, that it takes the CPU to ack
nowledge thecompletion of and I/O and toissue another one.9

For the system under test, the rot_delay that provided the best performance was experimen
tally determined to be 4 milliseconds. This value was determined by building file systems with
successively larger rot_delays and selecting the value that led to the best performance. However,
with a rotational latency of 15 milliseconds, 36 kilobyte tracks, 4-kilobyte blocks, and a 4 mil
lisecond rot_delay, only one in four blocks is allocated to the same file, as shown in Figure 7-3.
The maximum transfer bandwidth of the disk is 2.2 megabytes per second and one-quarter of this

CPU Time

I/O Time

CPU Time . w
LFS

I/O Time

Figure 7-2: Effects of LFS Write Accumulation. Thebars represent elapsed time foreachphase of the
benchmark on a one-half megabyte write. EFS effectively overlaps I/O and CPU processing while LFS waits until all

the data is accumulated before initiating the write. As a result, the bandwidth measured by this test appears much lower
for LFS.

This is based on the assumption that queueing is performed by the host and not the disk.

96

1 track/9 4K blocks

15 ms (1.67 ms / block)

allocated blocks

Figure 7-3: Impact of Rotational Delay on FFS Performance. Since rotjelay for this disk is 4mil
liseconds, FFS will allocate onlyone in every four blocks. Therefore, at most3 blocks (2.25 on average) can be ac
cessedon eachdisk rotation. Therefore, FFSwill attainat most one-quarter of the maximumbandwidthof the disk.

Throughput (in megabytes/sec)

2.0

1024 2048 3072
I/O Size Cm kilobytes)

4096

Figure 7-4: Maximum File System ReadBandwidth. The graph shows the maximum xead throughput attained by each file system as a
function of thetransfer size. As EFS and LFS allocate blocks contiguously and usetheexaasame read-ahead algorithm, theexpectation is that both

will perform comparably to theraw partition. Once again, FFS is limited to approximately 25% of thetotal disk bandwidth due to rotational delays
between allocated blocks.

is 0.55megabytes per second, whichis closeto the observed perfonnance of FFS.

13.2. Raw Read Performance

The results of the raw read tests, shown in Figure 7-4, are much closerto what is expected.
FFSdemonstrates readperformance nearly identical to its write performance since it is limited by
the number of blocks transferred during a single rotation. BothLFS and EFS perform compar
ably to the raw disk with very small (3%) differencesin performance.

97

This benchmark demonstrates that both EFS and LFS can utilize close to 100% of the avail

able I/O bandwidth on large I/Os. When individual write response time is an issue, LFS incurs a
performance penalty due to its delayed write policy.

7.4. Small File Performance

This test evaluates the performance ofLFS for small file processing. The benchmark consists
of creating 10,000 files, of one kilobyte each, reading the 10,000files, and then deleting them. In
order to avoid spending the entire benchmark performing directory lookup, the files are created in
100 different directories, each containing 100 files. After the creation phase, the file system is
unmounted to ensure that all the files have been written to disk. The read test begins with an
empty cache (guaranteed by mounting the unmounted file system) and reads the files in the order
in which they were created. The delete test also begins with an empty cache and deletes each file,
unmounting the file system to ensure that all the required updates are on disk. Each test is run 10
times (10,000 files on each test) and the results shown in Figure 7-5 are the averages across the 10
runs. The standard deviations were within 0.1% to 0.2% of the elapsed time.

As expected, the asynchronous file creation and deletion of LFS makes it the clear winner in
the create and delete phases. However, its poorer performance in the read test is surprising given
that the files are created and read in the same order. The difference in read performance is a
result of the fact that BSD-LFS does not currently support fragments. With four-kilobyte blocks,
LFS transfers four times the amount of data that EFS or FFS transfer and its performance is
approximately half that of EFS and FFS. In order to compensate for this, LFS used a block size
of one kilobyte for these tests. However, LFS uses the block size as the unit of allocation for

Files per Second

300 t

200 •

100 •

0

Create

H FFS

Read Delete

EFS LFS

Figure 7-5: Small File Performance. This graph uses the metric "files persecond" todepict thecreate, read,
and delete times for the three file systems. As expected, the asynchronouscreation and deletion of LFS make it the ob
vious winner in these tests. However, the lack of fragments in LFS makes the read performanceapproximately 30%
worse than the other file systems.

98

inodes as well. Therefore, while EFS and FFS read 32inodes perI/O(inodes are 128 bytes), LFS
reads only 8 inodes per I/O and performs four times the number of reads on inode blocks. This
number accounts for the difference in the number of reads reported for the twotests and explains
the reduced read performance.

This test shows that LFS excels on small file performance and that the lack of fragments
incurs not only a penalty in terms of fragmentation, but also in terms of performance whenfiles
are very small.

75. Software Development Workload

The next tests evaluate the file systems in a typical software development environment. The
Andrew benchmark [HOWA88] is often used for this type of measurement. It contains five
phases.

1. Create a directory hierarchy.
2. Make one copy of the data.
3. Recursively examinethe statusof every filein the test set.
4. Examine every byte ofevery file in the test set.
5. Compile several of the files in the test set

Unfortunately, thetestsetfortheAndrew benchmark is small, and main-memory file caching can
make the results uninteresting. In order to exercise the file systems, this benchmark is run both
single-user and multi-user (where several invocations of the benchmark arerunconcurrently).

75.1. Single-User Andrew Perfonnance

Table 7-3 shows the performance of the standard Andrew benchmark. Theentire five-phase
test was run ten times for eachof FFS, EFS, andLFS, withthe directory hierarchy deleted after
eachpass. For the LFS test with the cleaner running (LFSC), the test was repeated 100times to
ensure that the file system was completely overwritten at least twice. In order to understand the
differences in performance, the kemel counters for the disk and for LFS were initialized before,
and sampled after, each phase.

Phase 1

Create

Directories

Phase 2

Copy Files
Phase 3

Stat

Touch Inodes

Phase 4

Grep
Touch Bvtes

Phase 5

Compile
Total

FFS 2.10(0.30) 7.90(0.30) 6.30(0.46) 9.00(0.00) 44.80(0.40) 70.1
EFS 2.10(0.30) 7.90(0.30) 6.70(1.19) 9.10(0.30) 44.40(0.49) 70.2

LFS 0.33 (0.47) 5.00(0.00) 6.50(0.81) 9.07 (0.25) 42.90(1.40) 63.8
LFSC 0.43 (0.49) 5.09(0.28) 6.37(0.48) 9.07 (0.26) 42.61 (0.49) 63.6

Table 7-3: Single-User Andrew Benchmark Results. This table shows the elapsed time for each phase
of thebenchmark on each file system. Reported timesare theaverage across ten iterations with the standard deviation
in parentheses. LFSC indicates that the benchmark was run onthe log-structured file system with the cleaner running,
butthesimilarity inresults for mostphases indicates that die cleaner had virtually no impact on performance. Overall,
LFS demonstrates approximately a9% difference in performance which can be attributed to asynchronous file creation
and write-clustering.

99

Overall, LFS demonstrates a 9% improvement over EFS and FFS, which perform comparably.
The difference is isolated tophases one, two, and five. It isnotsurprising that LFS would outper
form the other systems in phase one, the create phase, asLFS performs all itsdirectory creations
asynchronously, performing no writes, while EFS and FFS issue 100 synchronous writes each.
As phase two is thewrite-intensive phase, it is also expected that LFS will perform better, and it
does so, demonstrating 37% better performance than the other two systems. Again, EFS and FFS
areperforming a great deal of I/O (263 requests forabout 750kilobytes), over halfof which are
synchronous (asa result ofclosing files). LFS performs nowrites during this phase asallthe data
is written to the cache.

Phase five, which is moderately CPU-intensive (utilizations forLFS are approximately 59%
and utilizations for EFS are approximately 49%), surprisingly demonstrates a small (3-5%)
advantage forLFS. Once again, the disk kernel counters reveal that EFS and FFS are synchro
nously writing theoutput object files todisk (45 of48 writes) while LFS is buffering thedata and
performing nearly one-third the number of writes.

The more striking difference is in the number of reads issued bythetwo file systems in phase
five. LFS issues only a single read while FFS issues 46 of them. The explanation for this also
lies in file allocation. When FFS creates a file, it allocates aninode from theappropriate cylinder
group andthen reads the contents of the inode from disk.10 In LFS, since inodes do not reside in
anypermanent location on disk,newinodes arecreated in memory, not readfrom the disk.

These single-user results differ slightly from those presented in [ROSE92]. First, thecompila
tion phase in [ROSE92] is much longer than in this test because different compilers were used.
Secondly, the results in [ROSE92] show LFS providing a 40% performance improvement on
phase three (the phase that examines every inode) and a 29% performance improvement onphase
four (the phase that examines every byte), while the results here show virtually no difference.
Phases three and four perform noI/O onany ofthe file systems, soperformance is limited strictly
by the file system code that reads data from the cache, traverses directories, and reads inodes
from the in-memory inode cache. Since the three file systems share the same code for performing
these functions, the expectation is that the systems should behave identically. Since the system
measured in [ROSE92] is unavailable for instrumentation, it is unclear why results on phases
three and four differ.

7.5.2. Multi-User Andrew Performance

The multi-user version of Andrew shows the file system performance as a function of the
degree of multiprogramming. The test is perfonned by running N concurrent invocations of the
benchmark, with each invocation creating, traversing, and removing its own directory hierarchy.
The reported results are the averagesof the results of each of ten runs for each invocatioa The
resulting averages are divided by the multiprogramming level to produce the metric "elapsed
seconds per invocatioa''

The goal of the multi-user test is to examine two aspects of the file systems* behavior under
the software development workload. First, as the multiprogramming level increases, the entire
data setno longer fits in the cache, somore I/O is performed. Secondly, with separate directory
hierarchies, the different forms of locality used byLFS (temporal locality - files created at about
the same time reside close together) and FFS (logical locality —files in the same directory are
placedclosetogether) can be compared.

Themulti-user performance is the result of two competing factors. Asconcurrent invocations
of the benchmark compete for resources, the utilization of boththe CPUandthe disk increases, as
does performance. However, after themultiprogramming level exceeds two, the total working set
becomes too large to fit in the cache and the total I/O time increases. Towards the left-hand side

This isan artifact ofthe file system architecture and could be avoided bymodifying the interface tothe v/iroutine vfs vget.

ElapsedTime (in seconds)

100

2 m 4
DegreeMultiprogramming

Figure 7-6: Multi-User Andrew Performance.

This graphshows theelapsed timefor all five phases
of theAndrew benchmark under increasing multipro
gramming. Overall, the impactof multiprogramming
is less significant than might have been expected,
yielding at mosta 9%perfonnance improvement.

ElapsedTime (in seconds)

75

2 4
DegreeMultiprogramming

100

Figure 7-7: Multi-User Andrew Performance

(Blow-Up). This graph emphasizes the small perfor
mance differences in the multi-user Andrew bench

mark. There are two effects at work in mis test. For

EFS and FFS which perform many synchronous
operations, multi-programming allows the overlap
ping of CPU and disk (evidenced by higher utiliza
tion for both resources) and reduced per-invocation
time. LFS also benefits from this overlap, but not as
significantly as the other systems. The second effect
is that the total data set size begins to exceed the
cache capacity and read performance becomes more
important

of the graph, the predominant factor is the overlap between CPU and disk. As LFS is already
performing most of its I/O asynchronously, it has less room for improvement than EFS and FFS.
So, the CPU utilization for LFS increases from 60% to 80% while the CPU utilization for EFS
goes from 50% to 89%, explaining the steeper decline in elapsed time for EFS than for LFS.

As the multiprogramming level exceeds four, the data setsno longer fit in the cacheand forall
the systems the read performance becomes the dominant factor. Kemel I/O statistics reveal that
on average, LFS is performing more seeks than EFS, explaining the small difference in perfor
mance observed as the multiprogramminglevel increases.

This benchmark indicates that LFS and EFS perform comparably on this particular software
development workload. To generalize, LFS demonstrates superior file creation performance, but
logical locality appears better than temporal locality when the working set is toolarge to fit in the
cache.

101

7.6. 001-The Object Oriented Benchmark

The nextsetof tests come from database environments. The first is the object oriented data
base benchmark, 001, described in [CATT91]. The database models a set of electronics com
ponents with connections among them. One table stores parts and another stores connections.
There are three connections originating at any given part. Ninety percent ofthese connections are
tonearby parts (those with nearby ids) to model the spatial locality often exhibited inCAD appli
cations. Ten percent of the connections are randomly distributed among all other parts in the
database. Every part appears exactly three times in thefrom field of a connection record, and
zero or more times in the to field. Parts have x and y locations set randomly in an appropriate
range.

The intent of 001 is tomeasure the overall cost ofa query mix characteristic ofengineering
database applications. There are three tests:

• Lookup generates 1,000 random part ids, fetches thecorresponding parts from the database,
and calls a null procedure in the host programming language with the parts' x and y posi
tions.

• Traverse retrieves a random part from the databaseand follows connections from it to other
parts. Eachof those parts is retrieved, and allconnections from it followed. This procedure
is repeated depth-first for seven hops from the original part, for a total of3280 parts. Back
ward traversal also exists, and follows allconnections toagiven part back to their origins.

• Insertadds 100 new parts and their connections.

The benchmark is single-user, butmulti-user access controls (locking and transaction protec
tion) must beenforced. It isdesigned toberun onadatabase with either 20,000 parts orone with
200,000 parts. These measurements here are for the 20,000 part database which results in the
database of 14.5 megabytes detailed in Table 7-4. The transaction package described in
[SELT92] was used tocreate B-tree and fixed-length record files.

The test specification calls for running from both cold and warm caches, however, since the
performance ofthefile and disk system isofinterest, only the cold cache tests arerun. While it is
possible to ensure that there are no pages in the database cache by stopping and restarting the
application, making the same guarantees for the operating system cache is accomplished by
recopying the database from scratch and reading several unrelated files through thecache. Table

Relation Format Entry Size N Entries Total Size

Part

Connect Forward
Connect Backward
Connector

B-tree records

B-Tree

B-Tree

Fixed-length Record

63

43

43

96

20000

60000

60000

60000

2.5 MB

3.7 MB

2.5 MB

5.8 MB
Total 14.5 MB

Table 7-4: Database Sizing for the 001 Benchmark. This table shows how the database sizes reflect
the number of entries ineach relation. The column "entry size" reflects the number ofvalid data bytes plus the entry
overhead (28 bytes for each B-tree entry, 4 bytes for each fixed-length record). B-Trees that are created in-order (Con
nect Forward and Part) result inall but one page being half-empty, because when pages split, the page containing the
smaller keys neverhasanymorekeys appended to it.

Lookup Insert Traverse

Forward Backward

FFS 16.30(0.46) 4.40(0.49) 28.10(0.54) 28.60(0.49)
EFS 16.40 (0.49) 4.20(0.40) 28.40(0.49) 28.80(0.60)
LFS 16.30(0.64) 4.30(0.46) 28.30(0.46) 29.00(0.45)

102

Table 7-5: 001 Performance Results. This table shows the elapsed time for each part ofthe OOl bench
mark. For each test, the reported results are the average over ten tests with the standard deviations inparentheses. As
theaccess pattern isnon-sequential, allsystems offer virtually identical performance.

7-5 showsthe results for the three file systems on the 001 benchmark.

All the file systems perform comparably onthis benchmark. Since there is nosequentiality to
the access patterns, thecontiguous layout ofEFS and LFS provide no benefit While we might
expect LFS to demonstrate superior perfonnance ontheinsert test, there is virtually nodifference
from EFSandFFSbecause nearly all thewrites (97%) areasynchronous.

The cleaner was running during nine out of ten iterations of the benchmark, but introduced
virtually no overhead. The reason is that most of the cleaning was the result of removing and
recreating the database on each iteration. Therefore most segments to be cleaned were empty
(88%) andthose that contained livedataaveraged 20% utilization.

Field Name

unique1
unique2
two

four

ten

twenty
hundred

thousand

twothous

fivethous

tenthous

oddlOO

evenlOO

stringul
stringu2
string4

Description
integer; unique keys, nonclustered
integer,uniquekeys,clustered (PRIMARY KEY)
integer; 2 unique values
integer, 4 unique values
integer, 10 unique values
integer, 20 unique values
integer; 100unique values, usedfornonunique, nonclustered index
integer; 1000 uniquevalues
integer, 2000 uniquevalues
integer, 5000 unique values
integer; 10000 unique values
integer; odd values 1-99
integer, even values 2-100
char(52); unique keys, nonclustered
char(52); uniquekeys,clustered (ALTERNATE PRIMARY KEY)
char(52); four unique values

Table 7-6: Relation Attributes for the Wisconsin Benchmark.

103

7.7. The Wisconsin Benchmark

The next database benchmark is the Wisconsin Benchmark described in [BnT83] and
[DEWI91]. The goalof this test is to consider the file systems in terms of theirability to support
complex query processing workloads. The test database consists of four relations: ONEKTUP, a
relation with 1000 tuples, TENKTUP1 and TENKTUP2, each with 10,000 tuples, and BPrime
which is 10% of TENKTUP2. Eachrelation contains 13integer attributes andthree52-character
attributes. Thesame database package used in Section 7.6isused here and yields a total database
size (including indices) of 8.5 MB. The attributes are summarized in Table 7-6.

Thebenchmark consists of issuing thesetof queries, described inTable 7-7, against this data
base. The elapsed time is measured individually for each query. The results reported in Table 7-8
aretheaverages and standard deviations of 10measurements foreach query.

For many of the queries, the performance is similar across all the file systems as the bench
mark is dominated by non-sequential reads. In fact, formostqueries, reads account for over95%
of the number of I/Os issued and over90% of the bytes transferred. The following discussion
focuses onthose queries for which there are noticeable differences between the file systems* per
formance.

On query 1,LFS demonstrates approximately 25% worse performance than eitherof EFS or
FFS. It also exhibits fairly substantial variation in performance (thestandard deviation across the
runs is nearly 25% of the elapsed time). Examination of the kernel counters that monitor disk
traffic shows that the creation of the temporary relation occasionally causes a segment write to
takeplace, delaying completion of thequery.

However, this same phenomenon, thebundling of writes, also explains why LFS outperforms
EFS and FFS onseveral queries, notably, queries 3,15,16 and 17. Each ofthese queries is build
inga temporary relation. The relation is a B-Tree, and each time a page is evicted from thedata
manager's buffer pool, one or more pages are written into the kernel's cache.

The kemel disk counters indicate that EFS and FFS are performing nearly four times the
number of writes as LFS. The explanation lies in the write policy for EFS and FFS. As full
pages are written into thecache, they arewritten asynchronously in FFS and potentially clustered
inEFS. Since the access pattern is non-sequential, EFS performs little, if any clustering. As the
data manager's cache is very small (64 kilobytes perB-Tree), the same pages are being over
written in the kernel's cache and are being written todisk repeatedly. Incontrast, LFS keeps the
entire temporary relation (200 kilobytes) in thecache and writes it only once.

Queries 30, 31, and 32 also show LFS r^rforming from one-sixth to one-third faster. All
these queries are updates that require writing one ormore pages to multiple (3) files. Bylooking
at the kernel disk counters, it is apparent that inallthree queries, LFS is performing one-third the
number of writes as are the other systems. Both EFS and FFS write one or more blocks to each
of three files while LFS bundles all those writes together and performs a single, asynchronous
VO. These additional writes byEFS and FFS account forthe performance difference.

Thisbenchmark also highlighted some subtleties in the implementation of read-ahead forboth
EFS and LFS. The obvious read-ahead algorithm on a file system with contiguous layout is to
issue maximal-sized asynchronous reads as soon as sequential access is detected. Unfortunately,
theB-Trees forthis testwere built with 8-kilobyte pages and are running on a file system with 4-
kilobyte pages. Therefore, every page access to theB-Tree appears to begin a sequential access
(i.e. the access pattern is: 0, 1, 2, 22, 23, 41, 42, ...). If the maximal-sized read-ahead is per
formed, many pages areread into thecache unnecessarily.

Both EFS and LFS were initially implemented with the maximal read-ahead algorithm and
the resulting performance for the queries that included a sequential scan of a B-Tree resulted in
devastating performance - an order of magnitude slower than FFS with its single-block read-
ahead.

Query* Tvoe Selectivity Indexing
1 Selection 1% No index
2 Selection 10% No index
3 Selection 1% Clustered index
4 Selection 10% Clustered index
5 Selection 1% Non-clustered index
6 Selection 10% Non-clustered index
7 Selection .01% Clustered index
8 Selection 1% Clustered

9 Join-2 10% No index
10 Join-2 .01% No index
11 Join-3 10% No index
12 Join-2 10% Clustered index
13 Join-2 .01% Clustered index
14 Join-3 10% Clustered index
15 Join-2 10% Non-clustered index
16 Join-2 .01% Non-clustered index
17 Join-3 10% Non-clustered index

18 Projection 1% No index
19 Projection 100% No index

Query Type Group Size Indexing
20 Aggregation-min 10000 No index
21 Aggregation-min 100 No index
22 Aggregation-sum 100
23 Aggregation-min 10000 Clustered index
24 Aggregation-min 100 Clustered index
25 Aggregation-sum 100 Clustered index

Query Type N elements Indexing
26 Insert No index
27 Delete No index
28 Update-key No index
29 Insert Clustered index
30 Delete-indexed, key Clustered index
31 Update-key Clustered index
32 Update-indexed, nonkey Clustered index |

104

Table 7-7: Wisconsin Benchmark Queries. This table summarizes the queries ofthe Wisconsin bench
mark. The selectivity indicates what percentage ofthe database will beinthe final result query. The number after the
Join query type indicates the number ofrelations involved in the join. For aggregation queries, the Group Size indi
cates over how many elements the aggregation will be performed. The identifiers "min" and "sum" indicate the
aggregation operator. For all updates, a singlerecordis affected.

105

Query
Tvoe

Query* Elapsed Time and Standard Deviation
FFS EFS LFS

Selection 1 11.82 (0.81) 11.28 (0.08) 1434 (437)
2 11.12 (0.24) 10.98 (0.03) 11.72 (0.41)
3 039 (0.00) 039 (0.00) 0.28 (0.01)
4 1.65 (0.05) 1.61 (0.00) 1.60 (0.04)
5 2.68 (0.00) 2.68 (0.02) 2.57 (0.10)
6 2.73 (0.03) 2.71 (0.00) 2.54 (0.02)
7 0.63 (0.13) 0.77 (0.04) 0.80 (0.00)
8 0.39 (0.03) 0.37 (0.00) 0.39 (0.00)

Join 9 637.53 (9.52) 631.92 (0.50) 641.09 (23.78)
10 578.84 (45.45) 548.55 (13.11) 545.33 (25.08)
11 658.63 (11.58) 649.23 (0.29) 647.49 (14.77)
12 13.61 (0.16) 13.64 (0.06) 13.00 (0.22)
13 12.34 (0.56) 12.71 (0.07) 11.27 (0.09)
14 343.48 (4.37) 346.93 (0.79) 346.89 (6.43)
15 48.69 (0.27) 48.83 (035) 3830 (0.08)
16 17.24 (0.28) 1735 (0.U) 8.80 (0.15)
17 48.91 (0.52) 49.28 (0.04) 38.68 (0.19)

Projection 18 26.30 (0.09) 26.24 (0.03) 26.33 (0.26)
19 1.67 (0.05) 1.61 (0.03) 1.52 (0.01)

Aggregation 20 10.84 (0.68) 10.27 (0.02) 10.13 (0.15)
21 10.70 (0.37) 10.29 (0.04) 10.14 (0.14)
22 10.53 (0.29) 10.31 (0.03) 11.03 (0.10)
23 0.12 (0.00) 0.12 (0.00) 0.76 (0.04)

Update 24 221.94 (5.54) 216.35 (0.17) 218.67 (2.59)
25 221.90 (5.73) 216.49 (0.26) 219.21 (2.79)
26 0.15 (0.03) 0.15 (0.03) 0.12 (0.01)
27 10.67 (0.46) 10.57 (0.00) 10.70 (0.14)
28 1.92 (0.02) 1.92 (0.02) 1.79 (0.05)
29 0.40 (0.01) 0.40 (0.00) 0.33 (0.01)
30 0.39 (0.02) 038 (0.00) 022 (0.00)
31 0.48 (0.02) 0.49 (0.02) 035 (0.02)
32 030 (0.02) 032 (0.00) 022 (0.01)

Table 7-8: Elapsed Time for the Queries of the Wisconsin Benchmark. This table shows the aver
age elapsed time andthe standard deviation for theteniterations of each query. Theentries thatareemboldened are
queries where there were significant performance differences between the file systems. For the most part, the asynchro
nous write behavior ofLFS and its ability tocluster writes from unrelated files explains its superior performance.

In order to address this problem, the read-ahead algorithm was modified to use a read-ahead
window size that grows when sequential accesses are detected and shrinks when non-sequential
accesses are detected. The read-ahead window sizeis initialized to 1. When sequential access is
determined, the minimum of the number of contiguous blocks on disk and the window size are
read asynchronously. Then theread-ahead window size is setequal to twice thelength of thelast
read-ahead, bounded by the maximum transfer size of the device. When non-sequential access is
detected, the window size is halved.

106

This benchmark shows LFS' superior handling of temporary files and ofprocessing writes to
multiple files. The first issue, writing temporary files efficiently, is usually relegated to the
memory-based file systems [MCKU90] in BSD systems. However, when the temporary files
exceed the size ofmemory, LFS is a good alternative. The second case, writing blocks tomulti
ple files efficiently, has no obvious solution in either EFS or FFS.

7.8. Transaction Processing Performance

The industry standard TPC-B is used as the last of the database-oriented tests. This is the
same benchmark used and described in Chapter 5. It is a modified version of the TPC-B bench
mark, configured for a 10 transaction persecond system. The data manager is that described in
[SELT92] and the tests here are run single-user without a redundant log. Each measurement in
Table 7-9 represents ten runs of 1000 transactions. The counting of transactions is not begun
until the buffer pool has filled, so the measurements do not exhibit any artifacts of an empty
cache. Transaction run lengths of greater than 1000 were measured, but there wasno noticeable
change in performance after the first 1000 transactions.

When the cleaner is not running, LFS provides a 15% performance improvement over EFS.
However, the impact ofthe cleaner is far worse than was anticipated. TPC-B randomly updates
blocks in the 237 megabyte account relation, leaving most segments fairly full. During the
course of the benchmark, the cleaner cleaned approximately one segment for every 50 transac
tions executed. On average, the cleaned segments were 71% utilized and cleaner writes
accounted for between 60%and 80% of the totalblocks written and 31%of all blockstransferred.

In an attempt to reduce cleaner overhead, a second set oftests were run with a smaller seg
ment size (256 kilobytes). The performance before cleaning isthe same as for the one-megabyte
case, but the after-cleaning performance is only slightly better (about 6%). As in the one-
megabyte case, the majority of the writes performed are on behalf of the cleaner (60-70%).
While the smaller segment size reduces the variation in response time as evidenced through the
smaller standard deviation, it does not significantiy improve performance as most of the write
activity is due to the cleaner.

The cleaner impact in Chapter 5 was much less dramatic because the file system had more
free space, and the cleaner didn't run as frequently. For the tests presented here, the disk was

FFS

EFS

LFS (no cleaner)
LFS (cleaner, 1M)
LFS (cleaner, 256 K)

Transactions
per second

14.2

16.8

19.3
11.6

12.4

Elapsed Time
1000 transactions

70.23 (1.0%)

59.51 (2.1%)

51.75 (0.6%)
85.86(5.3%)
80.72 (1.8%)

Table 7-9: TPC-B Performance Results. The TPC-B database was scaled for a10 transaction-per-second
system (1,000,000 accounts, 100 tellers, and 10 branches). The elapsed time and standard deviation, as apercentofthe
elapsed time, is reported for runs of 1000 transactions. The LFS results show performance before the cleaner begins to
run and after the cleaner begins to run. The after-cleaner performance is shown both for a file system with one-
megabyte segments andonewith256kilobyte segments.

107

running at 80% utilization as opposed to the 70% utilization in Chapter 5. This indicates that
log-structured file systems are particularly sensitive to the disk capacity. Although a user-level
cleaner avoids synchronization costsbetween userprocesses andthe kemel, it cannotavoid con
tention on the disk arm.

7.9. Super-Computer Benchmark

To evaluate the file systems' performance on super-computing applications, this benchmark
simulates the I/O behavior traced in [MILL91]. The tracing study analyzed seven scientific appli
cations. Table 7-10 summarizes the data provided for four representative applications. As the
tracing data did not provide detailed information onhow the I/O accesses corresponded to files or
on the sizes of the individual I/Os, this benchmark derives and uses the average read and write
sizesto simulatea supercomputer workload.

Foreach application, the average read and write sizes are derived by solving the following set
ofequations:

RNr
(1) RW = -=•r

WAL

and

(2) RNr + WNW = (Nr +NW)A

Where:

RW is the read to write ratio in bytes,
/Ms the average read size,
W is the average write size,
Nr is the number of reads,
Nw is the number of writes, and
A is the average I/O size.

SolvingforR in equation(1) yields:

- RW(WNW)
R =

Application Total Data

Size

Average I/O
Size (in kilobytes)

Number

of reads

Number

of writes

Data Read/Write
Ratio

bvi 171.0 16.1 913 185 2.31
ccm 11.6 31.9 135 128 1.07
les 224.0 324.0 74 81 0.95
venus 55.2 456.0 60 32 1.80

Table 7-10: Supercomputer Applications I/O Characteristics. These characteristics were obtained
from real super-computer workload traces and are used here tosimulate asuper-computer I/O workload. Column 6in
dicates theread-write ratio in terms of thetotal number ofbytes accessed. The read-write ratio in terms ofnumber of
operations can be derived from columns 4 and 5.

108

Substituting R in equation (2) yields:

WNw(l+RW)

(Nw+Nr)
=A

-A(NW+Nr)

NW(1+RW)

Once the average read and write sizes have been established, a single file is created. The file is
partitioned into average-write-sized units and these units are then written in a random order to
create the file. The benchmark consists of opening the file and r^rforming 1000 file read and
write requests_distributed according to the ratios in Table 7-10. All reads and writes are the same
size (R and W respectively),but the location within the file of each read or write is selected ran
domly.

Table 7-11 shows the resultsof rarining each of the four simulatedworkloads on the three file
systems. The average I/O size is smallest for the application at the top of the table and increases
down the table to VENUS with the largest average access. Similarly, the resulting throughput
improves for all three systems.

Both EFS and LFS demonstrate the ability to perform large, sequential I/O well, achieving
nearly the same performance they achieved for the raw file system performance benchmark in
Section 7.3. As expected, LFS offers the best write performance across all but one of the pro
grams, with performance ranging from 35% to 100% better than thatof the other systems.

The improvement due to LFS is largestwhenthe I/Os are small and the ratio of read to write
requests low. In the BVI benchmark, the I/Os are small butthe read towrite ratio isnearly 5 to 1.
Therefore, LFS offers a substantial improvement (nearly 50%) butnot nearly asimpressive as the
improvement for CCM where the read to write ratio is nearly 1 to 1. The higher read to write
ratio means that LFS is more likely tohave toperform a seek before each write request and there
fore doesn't derive themaximum benefit from itssequential writing.

Since LFS and EFS are using the same read-ahead policy, the read performance is a function
ofhow successful the systems are atcontiguous allocation and how much LFS cleaning overrides
the contiguous allocatioa There are two ways in which blocks become eligible for reclamation
in this test First, the writes issued overwrite existing data leaving partially filled segments.
Second, the data file isdeleted between each test resulting ina large number ofempty segments.
The statistics from the cleaner reveal that 78% of the segments cleaned are empty and of those
non-empty, their average utilization is29%. As a result, the cleaner impact is minimal. Only 2%
of allblocks written arefrom thecleaner andonly 1% of all I/Os arefrom thecleaner.

In theBVI, CCM, and VENUS benchmarks, LFS read performance is very close to EFS read
performance (5% worse for BVI, 8% and 9% better for CCM and VENUS). The only substantial
difference in read performance is in the LES benchmark (LFS is 23% slower than EFS). Qoser
inspection of the cleaning statistics reveals that most cleaning occurs during this benchmark,
because there are more writes than reads and the writes are very large. In fact, of the 150 seg
ments cleaned, 148 take place during this benchmark.

This benchmark demonstrates that both LFS and EFS can deliver a large fraction of theavail
able I/O bandwidth to applications if the I/Os are large. When they are small, LFS performs
moderately better as long as the cleaning required is not substantial.

7.10. Conclusions

This chapter haspresented a variety of benchmark programs. Asexpected, LFS demonstrates
superior write performance in most environments. One unexpected result is that cleaning can
have dramatic effects on LFS performance, particularly when the application is overwriting a
small steady stream of data, as in TPC-B. A second surprising result is the detrimental effectof

109

Average

I/O size

FFS EFS LFS

BVI Read 13.8 KB Average time per I/O

Throughput (KB/sec)
0.07 (0.02)

206.02

0.06 (0.02)

227.60

0.06 (0.02)

214.13

BVI Write 29.6 KB Average time per I/O

Throughput (KB/sec)
0.13 (0.09)

215.56

0.12 (0.09)

242.40

0.06 (0.05)

474.40

CCM Read 32.9 KB Average time per I/O
Throughput (KB/sec)

0.10 (0.02)

33259

0.08 (0.02)

39255

0.08 (0.02)

425.98

CCM Write 32.4KB Average time per I/O
Throughput (KB/sec)

0.11 (0.02)

28949

0.11 (0.03)

299.68

0.05 (0.01)

601.89

LES Read 338.6 KB Average time perI/O
Throughput (KB/sec)

0.75 (0.15)
440.72

037 (0.06)

90054

0.48 (0.24)

691.11

LES Write 325.6 KB Average time per I/O
Throughput (KB/sec)

1.15 (0.07)

27648

039 (0.04)

81133

0.40 (0.09)

792.19

VENUS Read 460.2 KB Average time per I/O
Throughput (KB/sec)

0.98 (0.23)

45839

0.43 (0.09)

104657

039 (0.06)

1152.99

VENUS Write 479.4 KB Average time per I/O
Throughput (KB/sec)

1.48 (0.12)

316.69

0.79 (0.02)

593.56

059 (0.03)

798.61

Table 7-11: Performance of the Supercomputer Benchmark. The average vo size, shown in the
second column, increases down thetable asdoes theresulting performance. The average times perI/Oare reported to
show thevariations in response time exhibited by thedifferent systems. LFS offers superior write performance on
three of the four programs and superior read performance on two of them. For the applications with thelargest 170s
(LES and VENUS), bomread and write performance approaches that of thebenchmarks in Section 73.

aggressive read-ahead policies on workloads that appear sequential, but are not, as wasdiscussed
in the Wisconsin benchmark in Section 7.7.

110

Chapter 8

Conclusions

This thesis makes three main research contributions. It offers a fundamental understanding of
how file system allocation affects the performance of real applications. Second, it highlights
many key design issues involved in building log-structured file systems and offers a design that
canfunction in constrained environments. Finally, it demonstrates that adding transactions to a
file system does not have to impact performance and can offer an attractive alternative to user-
level transaction management

Several different allocation policies have been described and evaluated by simulation and
implementation. As expected, the file system perfonnance was extremely workload dependent
Micro benchmarks, such as the raw performance tests of Section 7.3, do not capture the real
behavior of file systems, and single-user macro benchmarks often do not provide insight into
multi-user performance. However, file systems which favor contiguous disk allocation (the log-
structured system and the extent-based system) unifonnly provide the best performance, although
LFS is penalized in performance dueto thepresence of the cleaner.

8.1. Chapter Summaries

Chapter 3 examined the use of variable sized disk blocks to improve a disk system's
bandwidth, and concluded that policies which use large allocations to improve sequential perfor
mancecan do so withouthinderingthe performance of small file accesses.

Chapter 4 focused on an online transaction processing workload which did not benefit from
contiguous allocation. This simulation concluded that log-structured file systems offer the poten
tial for improved performance in these environments. It also showed that in many cases an
embedded transaction manager provides comparable performance to user-level data managers.

Chapter 5 usedan implementation study to corroborate the conclusions from the simulation of
Chapter 4. However, the realities of implementation, particularly perturbations in performance
due to the cleaner, dispute the simulation results. Rather than corroborating the simulation
results, it indicated areas ofimprovement inthe implementation oflog-structured file systems.

In Chapter 6, a new design of LFS waspresented that addressed most of the issues raised in
Chapter 5, as well as many others. The new implementation has the cleaner rurining in user-
space, doesnot reserve large amounts of kemelmemory, andsharesmostof its code withtheFast
File System.

Chapter 7 compared a range of allocation policies across diverse workloads. These results
confirmed the simulation results ofChapter 3, interms ofthe performance ofread-optimized file
systems. Once again, transaction processing workloads performed substantially worse than
predicted in Chapter 3. Furthermore, the cleaning overhead ofLFS can impact performance sub
stantially when empty segments are not available for reclamation.

Although the workloads in Chapter 7 came from vastly different environments (software
development, query processing, online transaction processing, and super-computing), the extent-
based file system offered the best ornearly the best performance onevery test. However, all the
tests, except for the multi-user Andrew benchmark, were single-user tests. As a result, LFS was

Ill

unable to obtain the maximum benefitfrom its write-optimization.

While LFS does offer superior write performance under appropriate workloads, the cleaning
penalty can be quite high. The measurements in [ROSE92] indicate that LFS achieves 70% write
performance, however this was a statically computed write cost averaged over the lifetime of the
file system, and does not reflect the performance perturbations when the cleaner runs or the
response time observed by applications. If the disk systemis utilizing a large fraction of its disk
bandwidth for the cleaner, as was the case in Section 7.8,the impact is unacceptable. When LFS
is performing best, that is, bundling manywrites into a single, contiguous write, the disk system
is either becoming full or existing data is being overwritten. In the latter case, the cleaner is
required to run andthe impact on applications running at that time canbe severe.

A second observation is the impact of segment size on the application response time. Using
large segments in the transaction processing environment resulted in a performance penalty of
40% when the cleaner ran. Reducing the segment sizeonlyreduced the penalty to 35%. In this
workload, the file system does not obtain much benefit from batching a large number of writes
because the test is running single-user and each transaction is issuing a small number of writes.
Therefore, although LFS can perform better on this workload when the segment size is small,
both FFS and EFS do much better in this environment because they aren't competing with the
cleaner for the disk arm.

Managing read-ahead in bothEFSand LFS is tricky. The pitfalls became apparent on the ini
tial measurements for the Wisconsin benchmark results discussed in Section 7.7. When the file
system performed read-ahead in maximum-sized units, access patterns which appeared sequen
tial, but were not, resulted in cache thrashing and some queries showed an order of magnitude
slow down as a result

While using a read-ahead window size fixed the problem for this benchmark, there are
undoubtedly workloads for which that solution is still unsatisfactory. The better solution is to
place read-ahead blocks toward the least-recently-used endof the LRU queue. Currently, when
blocks return from I/O successfully, they are either placed at the most-recently-used end of the
LRU queue or the AGE queue. Buffers on the AGEqueue are immediately eligible for reclama
tion, so placing read-ahead blocks there doesn't work. Instead, they should be placed far enough
away from the least-recently-used end of the the LRU queue so that if the access pattern is
genuinely sequential, they will stillbe in the cache whenrequested.

LFS does provide some compelling benefits overthe other systems. Addingtransactions to a
log-structured file system is easy and provides a mechanism not offered by the other systems.
The "no-overwrite" policy in LFS makes restoring deleted files simple. Versioning and histori
calarchiving are obvious extensions to this functionality. The fast recovery ofLFS also makesit
a desirable alternative, asdoes the potential for on-line backups. Since the cleaner already reads
segments to reclaim them, it could also write the segments to a backup device. Requiring the
cleaner to touch every segment during a backup would result in a complete snapshot of the sys
tem.

Another domain where LFS is extremely attractive is in the high-speed networking arena.
With gigabit networks just around the comer, file systems needthe ability to sink large quantities
ofdata quickly.

LFS also seems attractive for RAID [PATT88] where small writes are penalized due to parity
calculation. However, empirical evidence in [BAKER92] shows that most segments are still
small, so this benefit may be unattainable. Additionally, simple, extent-based systems like EFS
canalso take advantage oflarge writes to avoid the overhead of parity update.

112

8.1. Future Research Directions

This thesis raises at leastasmany new questions as it answers. The studies in Chapters 3 and
4 indicate thattransactions embedded in anLFS provide some benefits. It would beinteresting to
add transaction support to the new BSD-LFS and exercise it thoroughly. The segment batching
mechanism already presentmakes this an evensimpler implementation than the one described in
Chapter 4. Thepresence of segment batching raises the possibility of potentially replacing spe
cial purpose kernel mechanisms forordering and atomicity with this general-purpose mechanism.
Also, it will be interesting to consider what existing applications might benefit from native tran
saction support, and what newapplications will become possible.

Another interesting question that arises is the application of transaction semantics to a file sys
tem. Incorporating transaction semantics into a UNIX file system is complex. Since regular UNIX
utilities must continue to function normally, how should accesses to a transaction-protected file
outside the context of a transaction be handled? Also, long-running transactions that write data
have the potential to fill the disk system. This is discussed in the context of Quicksilver in
[SCHM91], and the conclusion is that such long running transactions should bedecomposed into
more transactions of shorter duration.

A related question is whether LFS is viable for supporting database applications. While a
conventional UNIX file system imposes a layer of address indirection above and beyond that
created by a data manager, LFS adds another level of indirection byvirtue of the inode map, and
also provides analternate representation in the segment summaries. Does this change the way a
database interacts with the file system? The segment summary blocks provide an alternate
method of reading for large files that need to be read in their entirety, but not sequentially, A
reader begins at one edge of thedisk, reads the segment summary block and returns any "live"
blocks in the segment from the requested file. This could prove more efficient than reading the
file in its logical block order.

Chapter 5 suggests implementing a variety of cleaning algorithms in a log-structured file sys
tem. The current cleaner's only function is to reclaim disk space. It would be easy to envision a
more intelligent cleaner thatcoalesced large files or placed frequently access files in thecenter of
thedisk. However, as thecleaner already impacts performance substantially, such policies would
have to make an effort to avoid unnecessary I/O.

A second approach to improving locality for large files would require investigating the seg
ment writer's policy. Currently, only dirty data is written to disk during segment writing. How
ever, if there are clean blocks in the cache that would restore a file's contiguous layout, it might
be beneficial to write the clean blocks as well.

8.2. Summary

LFS is an exciting vehicle forextending thefunctionality of the file system. It is an excellent
framework in which to provide embedded transaction support, versioning, and archival. How
ever, its performance in certain applications, particularly transaction processing, is severely lim
ited byits ability to perform garbage collection. As a result, formost workloads analyzed in this
thesis, conventional file systems that provide contiguous on-disk layout are the more attractive
alternative.

113

References

[ACCE86] Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevanian, A., Young, M.,
"MACH: A New Kemel Foundation for UNIX Development," Proceedings ofthe 1986 Summer
Usenix, Atlanta, GA, June 1986,93-113.

[ADAP85] SCSI UserGuide, Adaptive Data Systems Inc., Pomona, CA, 1985.

[ANDE91] Anderson, T., Bershad, B., Lazowska, E., Levy, H., "Scheduler Activations: Effec
tive Kernel Support for User Level Management of Parallelism," Proceedings ofthe Thirteenth
Symposium onOperating System Principles, Monterey, CA, October 1991,95-109. Published as
Operating System Review 25,5 (October 1991).

[ANDR89] Andrade, J., Carges, M, Kovach, K., "Building an On-Line Transaction Processing
System OnUNIX System V," CommUNIXations, November/December 1989.

[ANON85] Anon et al., "A Measure of Transaction Processing Power," Datamation, April
1985.

[ARAL89] Aral, Z., Gertner, I., Langerman, A., Schaffer, G., Bloom, J., Doeppner, T., "Variable
Weight Processes with Flexible Shared Resources," Proceedings ofthe 1989 Winter Usenix, San
Diego, CA, February 1989,405-412.

[ASTR76] Astrahan, M., Blasgen, M., Chamberlain, K., Eswaran, K., Gray, J., Griffiths, P., King,
W., Traiger, I., Wade, B., Watson, V., "System R: Relational Approach to Database Manage
ment," ACMTransactions onDatabase Systems 1,2 (1976), 97-137.

[BAKER91] Baker, M., Hartman., J., Kupfer., M, Shirriff, L., Ousterhout, J., "Measurements of
aDistributed File System," Proceedings ofthe 13th Symposium on Operating System Principles,
Monterey, CA, October 1991, 198-212. Published as Operating Systems Review 25, 5 (October
1991).

[BAKER92] Baker, M., Asami, S., Deprit, E., Ousterhout, S., Seltzer, M., "Non-Volatile
Memory for Fast, Reliable File Systems," to appear in Proceedings of the Fifth Conference on
Architectural Support for Programming Languages and Operating Systems, Boston, MA,
October 1992.

[BAYER77] Bayer, R., Scholnick, M., "Concurrency Operations onB-Trees,'' Acta Informatica,
1911.

[BART81] Bartlett, J., "A NonStop Kemel," Tandem Computers, Technical Report 81.4,
PN87603, June 1981.

[BEN691 Bensoussan, A.,dingen, C, Daley, R., "TheMultics virtual memory,'*Proceedings of
the Second Symposium on Operating Systems Principles, Princeton University, October 1969,
30-42. Published as Operating Systems Review 13,5 (October 1987).

114

[BERN80] Bernstein, P., Goodman, N., "Timestamp Based Algorithms for Concurrency Control
in Distributed Database Systems," Proceedings 6th International Conference on Very Large
Data Bases, October 1980.

[BERS92] Bershad, B., Redell, D., Ellis, J., "Fast Mutual Exclusion for Uniprocessors," to
appearin Proceedings ofASPLOS-V, Boston, MA, October 1992.

[BITT831 Bitton, D.,DeWitt, D., Turbyfill, C, "Benchmarking database systems: A systematic
approach," Proceedings of the Ninth Conference on Very Large Data Bases, 1983,

[BORR90] Borr, A., "Guardian 90: A Distributed Operating System Optimized Simultaneously
for High-Performance OLTP, Parallelized Batch/Query, and Mixed Workloads," Tandem Com
puters,Technical Report 90.8,49788, July 1990.

[BSD91] DB(3), 4.4BSD Unix Programmer's Manual Reference Guide, University of California,
Berkeley, 1991.

[CAR92] Carson, S., Setia, S., "Optimal Write Batch Size in Log-structured File Systems,"
Proceedings of 1992 Usenix Workshop onFile Systems, Ann Arbor, MI, May21-22 1992,79-91.

[CATT91] Cattell, R.G.G., "An Engineering Database Benchmark," The Benchmark Handbook
for Database and Transaction Processing Systems, J. Gray, editor, Morgan Kaufman, 1991,247-
280.

[CHAM81] Chamberlain, D., et al., "A History and Evaluation of System R," Communications
oftheACM24,10 (October 1981), 632-646.

[CHAN88] Chang, A., Mergen, M., "801 Storage Architecture and Programming," ACM Tran
sactionson Computer Systems 6,1 (February 1988), 28-50.

[CHER88] Cheriton, D., "The V Distributed System," Communications of the ACM 31, 3
(March 1988), 314-333.

[DEWI84] DeWitt, D., Katz, R., Olken, F., Shapiro, L., Stonebraker, M., Wood, D., "Implemen
tation Techniques for Main Memory Database Systems," Proceedings ofSIGMOD, June 1984,
1-8.

[DEWI91] DeWitt, D., "The Wisconsin Benchmark: Past, Present, and Future," The Benchmark
Handbook for Database andTransaction Processing Systems, J. Gray, editor, Morgan Kaufman,
1991,119-166.

[DUB082] DuBourdieux, D., "Implementation of Distributed Transactions," Proceedings of the
Sixth Berkeley Workshop on Distributed Data Bases and Computer Networks, Asilomar, CA,
February 1982.

[ELKH84] Elkhardt, K., Bayer, R.,4'A Database Cache for High Performance and Fast Restart in
Database Systems,'' ACM Transactions onDatabase Systems 9,4 (December 1984), 503-525.

[FIN87] Fmlayson, R., Cheriton, D., "Log Files: An Extended File Service Exploiting Write-
Once Storage," Proceedings of the Eleventh Symposium on Operating Systems Principles, Aus
tin, TX, November 1987, 139-148. Published as Operating Systems Review 21, 5 (November
1987).

115

[FUJI84] M2361A Mini-Disk Drive Engineering Specifications, Fujitsu Limited, 1984.

[GRAY76] Gray, J., Lorie, R.,Putzolu, F., and Traiger, I., "Granularity of locks and degrees of
consistency in alarge shared data base," Modeling in Data Base Management Systems, Elsevier
North Holland, New York, 365-394.

[HAER83] Haerder, T. Reuter, A. "Principles of Transaction-Oriented Database Recovery,"
Computing Surveys15,4 (1983), 237-318.

[HASK88] Haskin, R., Malachi, Y., Sawdon, W., Chan, G., "Recovery Management in Quick
silver," ACM Transactions on Computer Systems 6,1 (February 1988), 82-108.

[HELL89] Helland, P., "The TMF Application Programming Interface," Tandem Computers,
Technical Report89.3,21680,February 1989.

[HOWA88] Howard, J., Kazar, Menees, S., Nichols, D., Satyanarayanan, M., Sidebotham, N.,
West, M., "Scale and Performance in a Distributed File System," ACM Transaction on Com
puterSystems 6,1 (February 1988), 51-81.

[IBM] MVSIXA JCL User's Guide, International Business Machines Corporation, chapter 15,15-

[IBM80] IMS/VS Version 1 General Information Manual, GH20-1260, IBM Corporation, White
Plains,NY, September 1980.

[KAZ90] Kazar, M., Leverett, B., Anderson, O., Vasilis, A., Bottos, B., Chutani, S., Everhart, C,
Mason, A.,Tu, S., Zayas, E., "DECorum File System Architectural Overview," Proceedings of
the1990Summer Usenix Anaheim, CA, June 1990,151-164.

[KLEI86] S. R. Kleiman, "Vnodes: An Architecture for Multiple File System Types in Sun
UNIX," Usenix Conference Proceedings, June 1986,238-247.

[KOCH87] Philip D. L. Koch, "Disk File Allocation Based on the Buddy System," ACM Tran
sactions onComputer Systems, 5,4 (November 1987), 352-370.

[KOND92] Kondoff, A., Hewlett-Packard Company, Private Conversation, March 1992.

[KNOW65] Knowlton, K.D., "A Fast Storage Allocator," Communications of the ACM 8, 10
(October 1965), 623-625.

[KNUT69] Knuth, D., The Art of Computer Programming,V6l 1, Fundamental Algorithms,
Addison-Wesley, Reading, MA, 1969,442-445.

[KUM87] Kumar, A., Stonebraker, M., "Performance Evaluation of an Operating System Tran
saction Manager," Proceedings ofthe 13th International Conference on Very Large Data Bases,
Brighton, England, 473-481.

[KUM89] Kumar, A., Stonebraker, M, "Performance Considerations for an Operating System
Transaction Manager,'' IEEE Transactions on Software Engineering 15,6 (June 1989), 705-714.

[KUNG811 Kung, H. T., Richardson, J., "On Optimistic Methods for Concurrency Control,"
ACM Transactions onDatabase Systems 6 2 (June 1981), 213-226.

116

[LEHM81] Lehman, P., Yao, S., "Efficient Locking for Concurrent Operations on B-trees,"
ACMTransactions onDatabase Systems 6,4 (December 1981).

[LISK83] Liskov, B., Scheifler, R., "Guardians and actions: Linguistic support for robust, distri
buted programs," ACM Transactions on Programming Language Systems 5 3 (July, 1983), 381-
404.

[MCKU84] McKusick, M., Joy, W., Leffier, S., Fabry, R., "A Fast
Transactions onComputer Systems 2,3 (August 1984), 181-197.

File System for UNIX,"

[MCKU86] McKusick, M., Karels, M., "A New Virtual Memory Implementation for Berkeley
UNIX," Computer Systems Research Group, University of California, Berkeley, CA, 1986.

[MCKU90] McKusick, M., Karels, M., Bostic, K., "A Pageable Memory Based Filesystem,"
Proceedingsofthe 1990 Summer Usenix, Anaheim, CA, June 1990,137-144.

[MCV091] McVoy, L, Kleiman, S., "Extent-like Performance from a UNIX File System,"
Proceedings of the 1991 WinterUsenix, Dallas, TX, January 1991,33-44.

[MILL91] Miller, E., "Input/Output Behavior of Supercomputing Applications," Technical
Report CSD-91-616, Dept of Computer Science, Univ of California, Berkeley, December 1991.

[MITC82] Mitchell, J., Dion, J., "A Comparison of Two Network-Based File Servers," Com
munications oftheACM,25 4 (April 1982),233-245.

[MUEL83] Mueller, E. etc al., "A Nested Transaction Mechanism for LOCUS," Proceedings
Ninth Symposium on Operating System Principles, October 1983,71-89. Published as Operating
Systems Review 17,5 (October 1983).

[ORA89] Oracle Database Administratofs Guide, Oracle Corporation, 3601-V6.0, April 1989.

[OUST85] Ousterhout, J., Costa, H., Harrison, D., Kunze, J., Kupfer, M., Thompson, J., "A
Trace-Driven Analysis of the UNIX 4.2BSD File System," Proceedings ofthe Tenth Symposium
on Operating System Principles, December 1985,15-24. Published as Operating Systems Review
19,5 (December 1985).

[OUST88] Ousterhout, J., Cherenson, A., Douglis, F., Nelson, M., Welch, B., "The Sprite Net
workOperating System," IEEE Computer 21,2 (February 1988), 23-36.

[OUST891 Ousterhout, J., Doughs, F., "Beating the I/O Bottleneck: A Case for Log-structured
File Systems," Operating Systems Review 23, 1, January 1989, 11-27. Also published as UCB.
technical reportUCB/CSD 88/467.

[PATT88] Patterson, D., Gibson, G., Katz, R., "A Case for Redundant Arrays of Inexpensive
Disks (RAID)," Proceedings ofSIGMOD, Chicago, IL, June 1988,109-116.

[PU86] Pu, C, Noe, J., "Design of Nested Transactions in Eden," Technical Report 85-12-03,
Dept ofComputer Science, Univ ofWashington, Seatfle, WA, 1986.

[ROSE90] Rosenblum, M., Ousterhout, J., 'TheLFS Storage Manager," Proceedings of the 1990
SummerUsenix, Anaheim, CA, June 1990,315-324.

117

[R0SE911 Rosenblum, M., Ousterhout, J. K., "The Design and Implementation of a Log-
Structured File System," Proceedings of the Symposium on Operating System Principles, Mon
terey, CA, October 1991, 1-15. Published as Operating Systems Review 25, 5 (October 1991).
Alsoavailable in Transactions onComputer Systems 10,1 (February 1992), 26-52.

[ROSE92] Rosenblum, M., "The Design and Implementation of aLog-stractured File System,"
PhD Thesis, University of California, Berkeley, June 1992. Also avaUable as Technical Report
UCB/CSD 92/696.

[RTI83] Relational Technology, Inc., INGRES Reference Manual, 1983.

[SCHL90] Schloss, G., Stonebraker, M., "Distributed RAID - A New Multiple Copy Algo
rithm," Proceedings 6th Annual International Conference on Data Engineering, April 1990.

[SCHM91] Schmuck, F., Wyllie, J., "Experience with Transactions in Quicksilver," Proceed
ings of the Thirteenth ACM Symposium on Operating System Principles, Monterey, CA, Oaober
1991,239-253. Published asOperating Systems Review 25,5 (October 1991).

[SELT90] Seltzer, M., Chen, P., Ousterhout, J., "DiskScheduling Revisited," Proceedings ofthe
1990 Winter Usenix, Washington, D.C., January 1990,313-324.

[SELT91] Seltzer, M., Stonebraker, M., "Read Optimized File Systems: A Performance Evalua
tion," Proceedings 7th Annual International Conference on Data Engineering, Kobe, Japan,
April 1991,602-611.

[SELT92] Seltzer, M., Olson, M., "LIBTP: Portable, Modular Transactions for UNIX,"
Proceedings ofthe 1992 Winter Usenix, San Francisco, CA, January 1992,9-25.

[SPE88A] Spector, Rausch, Bruell, "Camelot: A Flexible, Distributed Transaction Processing
System,'' Proceedings ofSpring COMPCON1988, February 1988,432-437.

[SPE88B] Spector, A, Swedlow, K., Guide to the Camelot Distributed Transaction Facility,
Computer Science Department, Carnegie-Mellon University, Release 1, edition 0.98(51), May
1988.

[STON81] Stonebraker, M., "Operating System Support for Database Management," Communi
cationsoftheACM 241 (July 1981),412-418.

[STON85] Stonebraker, M., "Problems in Supporting Data Base Transactions in an Operating
System Transaction Manager," Operating System Review 19 1(January 1985), 6-14.

[STON89] Stonebraker, M., Aoki, P., Seltzer, M., "Parallelism in XPRS," Hectronics Research
Laboratory, University of California, Berkeley, CA,Report M89/16, February 1989.

[STRA89] VOS Transaction Processing Facility Guide, Stratus Computer, Inc., R215-00, VOS
Release 9.0, November 1989,1:1-1:14,4:1-4:30.

[SULL92] Sullivan, M., Olson, M., " AnIndex Implementation Supporting Fast Recovery for the
POSTGRES Storage System," Proceedings 8th Annual International Conference on Data
Engineering, Tempe, Arizona, February 1992.

[SULL91] Sullivan, M., Chillarege, R., "Software Defects and Their Impact on System

118

Availability - A Study of Field Failures in Operating Systems," Digest 21st International Sym
posiumonFaultTolerantComputing, June 1991.

[SYB90] Sybase Administration Guide, Sybase Corporation, 3250-4.2-Rev. 3 May 1990.

[TPCB90] Transaction Processing Performance Council, "TPC Benchmark B Standard
Specification," Waterside Associates, Fremont, CA., August1990.

[THOM781 Thompson, K., "Unix Implementation," Bell Systems Technical Journal, 57(6), part
2, July-August 1978,1931-1946.

[TRA82] Traiger, I., "Virtual Memory Management for Data Base Systems," Operating System
Review 16 4 (October 1982), 26-48.

[WALK831 Walker, Popek, English, Kline, Thie, "The LOCUS Distributed Operating System,"
Proceedings 9thSymposium onOperating System Principles, October 1983,49-70. Published as
Operating Systems Review17,5 (October 1983).

[WRI91] Wright, R., "Automatic Generation of Synthetic Disk Traces," Hewlett-Packard
Laboratories, HPL-CSP-91-16, July 1991.

	Copyright notice 1993
	ERL-93-1 (1 of 3)
	ERL-93-1 (2 of 3)
	ERL-93-1 (3 of 3)

