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Abstract

The asymptotic probabiUty of buffer overflow for a queueingsystem with a Markov

fluid input and deterministic service rate is derived by way of large deviation theory.

Theequations characterizing the deviant behavior are presented andexamples are given

for which closed form solutions may be obtained. An independence result extends the

analysis to cases where the input is an aggregate of independent Markovfluids.
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1 Introduction

We will investigate the probability ofa buffer overflow for systems in which theinput traffic

ismodeled asa Markov fluid with an underlying chain ofthe birthdeath type. This problem

has received much attention in the literature, and many approaches have been developed

to characterize, not only the statistics of the queue length, but also the manner in which

overflows occur Anick et al. [1]. Our results are obtained by way of large deviation theory,

and thus are closelyrelated to the work of Weiss [7]. However our approach is different and

motivated by the recent work of Kesidis [4]. Our goal is to fully explore this framework for

the specific case of the birth death processes.

We consider a buffering system of size B with a deterministic service rate c, and an

N-rate Markov fluid source. Let Xt denote the free buffer process, in the sense that it is

not constrained to be positive or below B. The evolution of Xt is given by

-^ =r(y()-c (1)

where Yt is a continuous-time birth death process with states 0,..., N - 1 and rate matrix

P\i+i = A,-, i = 0,...,iV-2;

P°i,i-i = IH, *= !,...,#-1.

A deterministic traffic rate r(Yt) is associated with each state of the Markov chain. Note

that the traffic rate will be Markov if r(«) is one-to-one, however the queue length process

is not.
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The goal is to compute the asymptotic probabilityof a buffer overflowin a busy cycle

as B —*• co. If the system is stable this becomes a large deviation, and that theory becomes

directly applicable. We refer the interested reader to Bucklew [2], Kesidis [4], and references

therein and only provide a heuristic introduction to the results that we will use.

Our starting point is an expression for the relative entropy between two continuous-time

Markov chains. Let P and P° be the rate matrices of two N state continuous-time Markov

chains and denote by xp the stationary distribution of P. Following Kesidis we have [5]

H(P || P°) =£ irp(t) [£ Pitj log $L+P\5 - Pi A.
,=i \#i r».; /

This notion permits us to explore the probability that the Markov chain P° behaves as

another chain P for an extended period of time. Additionally, one can obtain the action

functional for the empirical distributions by considering

Jpo(7r) = inf H(P || P°)

from which we extract the exponent for the likelihood of observing a distribution tt. We

wish to compute P(Xt > B) during a busy cycle. For large B, our heuristic, justifiable by

convexity arguments, is that overflows are not due to fluctuations but to a steady buildup in

the queue, i.e., "the path to an overflow is a straight line." Thus we evaluate the probability

that P° behaves like an alternate Markov chain P, which offers a mean traffic rate M + c

exceeding the buffer service rate, for a prolonged period of time. This is obtained, once

again, by considering a functional of the excess rate M :

H*(M) = inf H{P || P°).

Finally, a bound on the probability of an overflow in a busy cycle of the form P(Xt >
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B) < exp(-BE) is obtained by considering the most likely path, or slope, leading up to

this event :

E = inf —^--A (2)

The remainder of this paper is organized as follows. In Section 2 we discuss some prop

erties of the relative entropy when two independent processes are involved. The required

minimizations are investigated in Section 3. We establish necessary and sufficient opti

mally conditions and the uniqueness of the minimum for the constrained relative entropy

problem. In addition we discuss the problem of obtaining the overflow exponent directly.

This provides some insight into the nature of the solution. Section 4 includes two examples

which have analytical solutions. In Section 5, numerical procedures for obtaining the pa

rameters of the deviant Markov chain, as well as the exponent and the effective bandwidth

are presented. We conclude with some remarks in Section 6.

2 A preliminary decoupling result

Theorem 1 Consider the relative entropy H(Q \\ P) between two rate matrices, Q and P,

where P corresponds to the product of two independent Markov chains, P = P1 x P2, on

two spaces X\ and X2. Consider the product-form Markov chain Q1 x Q2 obtained by taking

the marginal transition rates of the first (respectively the second) component. Then :

H(Q || P1 x P2) >HiQ1 || P1) +H(Q2 || P2) = HiQ1 x Q2 || P1 x P2). (3)



Proof: By definition

Qx,y*(Q II p) =E -«(*) E ««* los £*+ft* - «.*.

where a: = (xux2) and 2/ = (2/1,2/2). Using the fact that P is a product of two Markov

chains we can rewrite the entropy as

H(Q || P1 x P2) =

+E *Q(«i,*a) E g(x,,x2),(x„m)l°g<3(li;f(l"") +i* „, -<?(*„*,)•(*.,»)•

Using the relationship

rTQ(xux2) = Tg(«i)TQ(a;2 I«i),

we can rewrite the terms on the right hand side to obtain

H(Q || P1 x P2) =

E E *q(«oe*q(»2 1̂ Wfa^fa^) ^g q<^fa^> +Pji<yi - Q(gl,g2),(yit
xi yi^xi a?2

+ the symmetrical term.

pi "» •fa?ii«i V(*l»*2)i(yii*2)
*i yi^xi ^2 *i»vi

Now define QJ^ = E^fo I*i)Q(«i,»a),(Wt»2) and Q22iV2 similarly. Q1 corresponds to

a rate matrix with the average transition rates of Q on the first component. With this

definition in mind and using Jensen's inequality on the convex function arlogs we obtain

H(Q || p1 xr») > E*e(*i) E <£.» los^2- +PLn - Ql,m
xt yj^xj xi.yi

+ the symmetrical term.



Finally, note that in fact

QluVl = E ^to I3l)G(*,f*8)1(i,1,y2)>
X2.J/2

so it follows that xq(xi) is the invariant distribution for Q1. Thus,

E*o(*i) E «i„v, ksS^ +l,, - 0x„w =-ffCO1 II i31),
xi yj ^xi xi >yi

and a similar expression is found for the symmetrical term. We have established

H(Q || P1 x P2) > H{Ql || P1) + tf(Q2 || P2) = H{Ql x £2 || P1 x P2).

Corollary 1 Consider the relative entropy H(Q \\ P) between two rate matrices, Q and

P, where P corresponds to the product of two independent Markov chains, P = P1 x P2,

on two spaces X\ and X2. Suppose that the traffic rate corresponding to each product state

r(xi,x2) is additive i.e., there exist functions ri and r2 such that

V(xi,x2),r(xux2) = rifa) + r2(x2). (4)

Then the minimizer Q* of H(Q \\ P) subject to a mean traffic constraint

M = E^Qr{XuX2) = E^Qn(X!) + E„Qr2{X2) = Mt+M2 (5)

is of product-form.

Proof; Suppose Qx%y is a minimizer satisfying the constraint. Then by the previous

theorem, there is a corresponding product-form Markov chain Q1 x Q2 with the same

marginal distributions, whence still satisfying the constraints, but with a lesser or equal

relative entropy. •
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Corollary 2 Under the assumptions of Corollary 1

inf H(Q || P1 x P2) =

inf \ inf iT(g1||P1)+ inf H(Q2 II P2) I. (6)

These results obviously hold in general for N independent Markov fluid sources with

additive rates. Intuitively the decoupling result implies that the most likely way for inde

pendent Markov chains to deviate from their typical behavior is independently.

This constitutes a justification of the additive property of relative entropy for indepen

dent Markov chains assumed in Kesidis [4], leading to the notion of effective bandwidth.

3 Solving the optimization problems

In this section, necessary and sufficient optimality equations are derived for the following

minimization problems

{P\E„pr{-)=M+c}

N-l

where i?ffpr(-) = E viUy and
i=0

E-= inf mnp.. (8)
iP\E„pr(.)>c} Enpr(') -c KJ

In computing these infima, we only considerrate matrices P which have the same graph

as the initial Markov Chain P°, i.e., the set of BD processes with rates A,-,^-. We in fact

restrain ourselves to structure-preserving parametric changes of measure.



The stationary distribution of such a P is given by Neuts [6] :

with

AnAi ... Ai_i . „ vTTi = TTo-2^ —, i > 1, (9)

xo=fi+EAoAl,"A,"1>) '• (10)
The expression for the relative entropy between P and P° is now

N-i

with

*(P\\P°) = E**fAilog^+A?-A1- +/il-lflg^ +rf-w) (11)
i=0 \ A»' /*t /

= E ff« (& +^f),
t=0

4>i = A,-log ^+A?-A,,

1>i = A*.* log ^ +A*?-/*••.
Pi

and the convention that Ajv_i = po —0.

3.1 Minimization of the relative entropy under constraints

We first solve problem (7).

This is done by forming the Lagrangian :

I(P, P°) = H(P || P°)+ K(E*pr(.) - (M + c)), (12)

where K is a Lagrange multiplier.

The following two lemmas enable us to derive simple forms for the first orderoptimality

conditions.



JV-1

Lemma 1 Define Sk = E vi' Then
3=k

Lemma 2 Define

#A* = At^1^"1-^ ~Sk+1^ (13)

(15)

N-l

<**= E 'fW. + ifc + *>,-). (16)

TVien tf/ie first-order optimality equations for problem (7) are

A*-5fc+i(iT*(M) +^(Ar +c)) + afc+i +ir*AfclogTJ = 0, (17)
Ak

Sk+1(H*(M) +K(M +c))-ak+1 +Trk+lfik+1\og!^ = 0, (18)
Pk+1

fork = 0y...,N-2.

The derivation of these equations as well as thealgebra required to establish the following

set of optimality conditions have been placed in the appendix.

Proposition 1 The first-order optimality equations for problem (7) are the following :

Ajb^+i = AJa*2+i. &= 0,...,JV-2; (19)

Xk + fik = -H*(M) + K(rk-(M + c))+ \°k + t4, fc = 0,...,J\r-l; (20)
JV-1

E **r* = M+ c; (21)
*=o

Jf(if) = E (*<(*?-*<) +7TI+1(^+1 -/1,+a)). (22)



The last equation defining H*(M) is in fact redundant, since it can be obtained by adding

the second set of equations weighted by coefficients 71-*.

Moreover, we have the following proposition.

Proposition 2 Define {irk} as the set (7r0,.. .,7r^_i) and {fik} similarly. Consider H(P \\

P°) as a function of{irk} and {fik}. Then H(P || P°) is convex in{/j/J and, furthermore,

the function H*({irk}) defined as H*({irk}) = min//(P || P°) is convex in {*"*}, so that the
{Mfc}

optimality equations above actually define a unique minimum.

The proof is given in the appendix.

This proposition is related to a standard result in information theory regarding the

convexity of the relative entropy D(p \\ q) in the pair of probability distributions (p, q) over

p(ar)log~—f Cover [3]. It
x Q(x)

implies that the infimum of problem (7) exists and is unique over the class of birth death

processes we have considered. This fact shows that among the set of all trajectories with

rate M + c over a period T generated by parametric changes of measure, there exists one

specific trajectory for P° that is asymptotically striclymore likely than the others, assuming

that a large deviation principle holds for such a set Bucklew [2]. By Laplace's argument,

the probability of P° to fire at a mean rate M + c over a period T is then asymptotically

equal to the probability of this most likely trajectory when T is large.
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3.2 Direct computation of the exponent

Suppose now that we wish to directly compute the exponent, i.e., to solve problem (8) :

£= inf |£J!£l. (28)
{P|£?ffpr(.»c}^pr(.)-C V '

We will prove successively that this infimum may be characterized by a set of equations

similar to those derived before and the minimum is unique.

Proposition 3 A necessary and sufficient set of optimality equations for problem (8) is

Xk/xk+1 = X°k/i°k+1, fc = 0,...,JV-2 (24)
N-l

B*(c-rk) + (X0k-Xk + fi0k-fj,k)(Y^^iri-c) = 0, k= 0,...,i\T- 1 (25)
tssO

N-l

E *iri > C (26)
t=0

A* > 0, fc = 0,...,iV-2, (27)

N-2

with, as before, H* = E (7r*(A? ~xi) +Tf+i(A*?+i ~/*t'+i)).
*=o

The proof is similar to that of Proposition 1 with a simplification due to the fact that

the Lagrange multiplier is 0 at the optimum because the inequality constraint will not be

saturated.

These optimality equations are necessary and sufficient from the existence and unique

ness argument in the previous problem. Indeed, the minimum will be attained in a point

P* such that Eitpmr(') = c + € for some stricly positive e and, moreover,

S(P' || P°) = inf J(P||J*),
{P\EKpr(')=c+t}
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which is unique by Proposition 2.

An algorithm is suggested at the end of this paper to compute the solution to these

equations.

4 Examples

4.1 Sum of on-ofF Markov fluid sources

We first consider the case where the input traffic to the buffer is an aggregate of N —1

two-state Markov chains. Each of these will contribute a traffic rate of ao when off and a\

when on. A source turns on with intensity A0 and offwith with intensity fi°. The aggregate

Markov fluid, corresponds to a birth death process with the following parameters :

A? = (JV-1-*)A°;

and with rk linear in ky i.e. rk = ak + /?, where a = ax - a0 and /? = (N - l)a0.

Proposition 4 characterizes the solution to the constrained minimization of the relative

entropy.

Proposition 4 Define a = a(N - 1). In the on-off case, the optimal solution is :

Xi = (JV-l-i)A;
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with

x = rxoo(a-(M +c)^)^
\ p M + c-0 J '

M= (xy m+c~p )\
M V M(a-(M +c) +/?)/

T/ie entropy is given by :

H'(M) =(*-!) (ji-tpP _„) +_£_(Ao _A)) . (28)

H*(M) is a sum of JV —1 equal terms corresponding to each of the N —1 two-state Markov

fluids that constitute the input traffic. Note that this result could have been obtained

directly using Theorem 1.

The exponent is given in the following proposition.

Proposition 5 Denote the mean offered traffic rate by 7 = ^0* 0q + /?. Suppose 7 < c,

i.e. the system is stable. Then :

E~(N ~1} (c-fiHa +0-c) • (29)

This result can be compared to both Weiss [7] and Anick et al. [1]. In the first case

let {3 = 0, and consider a limit as the number of sources increases, N —• 00, such that the

mean offered traffic rate is constantand equal to jott < c < 1. This corresponds to letting

a = 1, so a = 1/iV, and the exponent becomes

£ =(JV-1Xir7-T)- (30)

This is identical to the result obtained by Weiss, in the case of large buffers, and a large

number of sources, from a conceptually different point of view [7].
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We obtain the asymptotics established by Anick et al. by rewriting our exponent as

follows. Note that /? = T^, a + f3 = Tmax, are respectively the minimum and maximum

traffic the aggregate source canoffer. One canthen rewrite the exponent, in their intuitively

pleasing form :

r-(J, !) (A° +P°)(c-7) . (31)
(.£ AminX-l max ~" c)

4.2 M/M/oo Markov Fluid Source

In our second example, we consider an aggregate source in which sources arrive at rate A0

and contribute a traffic rate a. They turn off after an exponential period with mean \.

The corresponding a birth death process has the following parameters :

A? = A°;

rf = iA

and with rk linear in fc, i.e., rk = ak.

Proposition 6 In this case, the optimal solution is :

Xi = A;

Pi = ip,

with

A=(A<y*±£)*.
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The entropy is given by :

H' =(A0 - A) +V - „). (32)
P

Once again for this case the large deviation exponent can be found and is given by the

relatively simple form that follows.

Proposition 7 Suppose p°a < c, i.e. the system is stable. Then

u° X°
E=Z . (33)

a c y

This result is only true when N = oo but of course will hold for systems, processing a

large number of calls N.

5 Numerical solution

We present herein an algorithm to compute the exponent and the effective bandwidth for

the general case. Returning to equations (24), denote qk = Ag^/zj! for k = 1,.. ., JV - 1,

and rewrite an equivalent set of equations :

N-i

jr(c-ro) +(A8-Ao)(E'TO-<0 = 0; (34)
»=o

(AJ - A») +m? - JJ- = (|5^)(Ag-Ao),* =0,...,JV- 1.(35)

The last series of equations may be rewritten as :

A* +^£_ =\o +fl _ fiZlh.) (Ag - Ao) =A*(A0), k=0,...,N-l.
Ak-i \c — roS
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By setting Xk = $l for k = 0,..., N - 2, we obtain
Vfc

Uk Vk-i
ir + qK,— = &k(x0),
Vk Ujfe-1

which can be written in a matrix form as

/ \ /
uk

/ \
uk-\

( \
uk-i

\ Vk~1 )

Aa(Ao) -qk

1 0

= Ak(X0)
vk

V Uk J

where i4fc(A°) is 2 x 2 dimensional.

Then, by induction

= Ait(\0)Ak-i(\o)...Ai(\0)

( \
wo

(36)

(37)

For a given choice of Ao, Ai,..., Aa^_2 may be computed recursively, and /*i,..., fiN-i

can be obtained by way of equations (24). However a boundary condition must be satisfied.

In particular, we require that Xn-i = 0, to be consistent with our set-up. Thus, the

unknown Ao must be a root of the equation

un-1 = 0,

or

such that

'^
1 o )AN-i(Xo)AN-2(Xo)...A1(X0)

v1/

A* > 0, fc = 0,...,i\T-l;

N-l

E *&% > C.
t=0

16
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This equation is in fact a polynomial of order N in A0, so that the algorithm reduces

to the computation of the roots of this polynomial. Since we have established the existence

and uniqueness of the solution, there can be only one root satisfying these conditions. Let

Aq be this root. The exponent is then obtained from equation (34) :

E =
H* Ag-Ag

AT-1

E 7r«T» ~ C
t'=0

C- r0
(39)

We turn now to the computation of the effective bandwidth. This is defined [4] as the

function a(6) such that:

= 6. (40)
N-l

E *w - <*(£)
t=0

a(6) can be interpreted as the service rate required to guarantee that the given source will

have an asymptotic probability of overflow less than or equal to e~BS.

From equations (34), we obtain

or

6 =
Ap —Aq

a(6) - r0

A5 = *(a(*)-r0) + Ag.

Then, a similar calculation to the above gives :

/ w \

\Vkj

\° + rt + 6(a(S)-rk) -qk

1 0

( \
u*-i

= Ak(S,a(S))

V %-j /
and the equation determining a(6) as a function of 6 becomes

(••) AN.1(S1a(6))AN.2(6ia(6))...A1(6ya{6))

17
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6(a(6)-r0) + X%

1

. (41)

= 0, (42)



with the constraints

A* > 0,fc=0,...,JV-l;

N-l

E TfTi > C.
t=0

6 Conclusions

The problem of computing the asymptotic probability of buffer overflow for a queueing

system fed by N independent Markov fluids has been addressed. It has been shown that

when an overflow occurs as a large deviation, independent sources actually deviate in an

independent fashion, resulting in the notion of effective bandwidth discussed in [4]. Thus

it suffices to analyze the single source case. Necessary and sufficient optimality conditions

have been derived characterizing the deviant behavior, when the underlying Markov chain

is of the birth death type. Closed-form solutions have been found, when the input is the

aggregate of on/off sources, and when it corresponds to a system in which sources arrive

as a Poisson process, and leave independently after an exponential period. In the former

case, similar results have been obtained by different approaches. Numerical algorithms are

suggested for computing the actual deviant behavior for the general case. These may be of

interest for quick simulation. Further work is required on this topic.
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Appendix

Proof of Lemma 1 : Define :

We note that

p _ AqAi ... At_i

dPi _ Pi,
dx~k ~ Tk^-^
dPi _ Pi,

c. Pi PiSince m = jj-;— = -,

E^i
i=o

dXk P2

_ Pi piNf} Pi
- JT^-1^ " p £Q pxT1^-1^
= ]^(1{*-i>fc} - ^fc+i)-

Derivatives with respect to /j,k follow in a similar fashion. D

Proof of Lemma 2 : We first compute the derivatives of the Lagrangian with respect to

A*,fc = 0,...,iV-2 :

0jr N-l . JV-1

e.., /N-l N-l \ ( N-l \ ,

In the same vein, for k = 1,..., JV - 1

^=|(^(M)+/,(M+c))-^+,t^(f).
20



So that wefinally get the following system for k = 0,..., N - 2 stated in lemma 2 :

-^±l(^(M)+/aM +c))+^±i +̂ log(^) = 0;
^±l(^(M) +/r(M-fc))-^±l+^+1log(^±l) = 0.
Pk+1 Pk+1 Pk+1

Proof of Proposition 1 : By multiplying the first and second type of equation obtained

in Lemma 1 by A* and fik+i respectively, and adding them together, we obtain

Since

we have

In other words :

•ff + frfc+lflH-llog^j^-
{k Pk+i

wkXk log -^ +*k+iPk+i log ^p1 =0.

Xk
TJk+l = *V

Pk+1

^ + l°g-o—
{k Pk+i

log^+log9±l=0.

Afc/ijfc+i = A2m2+i ,* = 0,..., N - 2. (43)

We now look for another set of characteristic equations. There are obtained by sub

tracting two consecutive first equations (7) with indices k and k+ 1, to first get

(Sk - SM)(E*(M) +K(M +c)) +(ak+1 - ak) +*kXk log h - v^X^ log ^J=l =0.
AJt AJb-i

Equations (43) yield

loSTo—= lo6TcT-—=-!<>g^
A/fc-i Afc-iM* /*fc

and on the other hand

Afc-i

Pk

21



So that the subtraction above reads

irk(H*(M) +K(M +c)) - *k(4>k +̂ +Krk) +nk (xk log^+fik log^\ =0.

Then, after substitution of <j>k and ipk by their expressions, we get

A* + fik = —J5T*(Af) + A'(r* -(M + c)) + X°k + iil k = 0,..., N - 1, (44)

with the usual convention X%_t = A^_i = /ijj = p,0 = 0.

Returning to the definition of H*(M), we obtain

H'(M) = £><(A,]og^+A?-A,+Wkg^ +tf-w)
i=0 \ A* /*i /

= E^(Aitog^ +A,- A?)) +f>,-+1 fw«log*&• +̂h -w+x)
*=0 \ A« / ,=o \ ^i+l /
N-2

= E (^(A° - *.') +»i+i(A4n " Pi+i)) •
»=0

Proofof Proposition 2 : the existence and uniqueness of a single minimum :

Consider again the initial constrained minimization problem :

' H*(M)= inf H(P\\P°). (45)
iP\EPr(.)=M+c) v " ; v °>

To prove that the optimality equations derived above actually define a minimum that is

moreover unique, change variables is required since there is no direct convexity result on H

as a function of the set of parameters (A,-, fij). Define first pi = -*»-, for i = 0,..., N - 2.

We see that, since

22



with

On the other hand

Then

XpXt... At_i
1~ °~^~7, T- = 7roA>oPi...pi-i, *>1

PlP2---Pi

ro=fi+i;lAoAl'"A'"0 *V £J PlP2^-Pi J

Pt=—, i=0,...,JV-2.
7T;

A; = /W+i, i = 0,...,N - 2.

(46)

(47)

*«*«}, {Pi+i}) =E *i fe*H log^ii+A? - 2tL^ +̂ fog ^ +rf _At
t=o \ ** At *t /*; /

the constraints being as follows :

N-i

E Wi = M+ c;
t=0

AT-1

t=0

TT,- > 0,i=0,...,7V-l,

defining a constraint set Cm-

The unconstrained minimization over the variables /it+i is performed withoutconstraint

and we have seen that, for a given set of{7r,}, the optimum is given by

Pi+i =
fAfo4

A, -V
A&4»

wi'H
p, i = o,...,i\r-2.
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We know furthermore that this is the unique minimum in //,+i since the functions

*i™~* A? +\-—Pf+i
Pi+i

are convex.

ifi+iba+i) = Pi+iiogt$r- + p'i+i-Pi+i
Pi+l

We replace the m+i by their optimal values and turn to a constrained problem in w,-

N-2 , . ,- v2

N-2 , . v

= E (v^- V'wfci)
»=0

under the same constraints as before.

Thenextstepis to prove that this function isstrictly convex in the variables {7rt} on the

set Cm- But in fact, H is a function of TV variables that can be written a sum of functions

of2 variables. Eachone of these functions is strictlyconvex in its twovariables, so the sum

is strictly convex in all the variables. H*({Ki}) is then strictly convex, and the constraint

set Cm is convex. H* then admits a unique local minimum that is at the same time the

global minimum. And then the optimality equations (19) define a single minimum. •

Proofof Proposition 4 : For simplicity we consider the case /? = 0. One can verify that

the proposed solution :

At- = (jV-l-i)A;

Pi = *>,

with

=(ao/**-^-"))*,
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" = (^m^rnf-
satisfies the optimality equations (19). Then, noting that the mean TTTof such a birth death

process is equal to

m=(N-l)- A
A+ ^'

we find that:

N-2

H*(M) = E^(A?-A*) + ^+i(M?+i-^+i)
t=0

N-2

= E *< (N -1 - 0(*° - a)+iri+i (i+1)(//?+1 - m+i)
t=0

= (JV - 1)(A° - A)(l - itjv-i) - (A0 - A)(m - (N - l)**^) + (ji° - p)

=^-1>(l?^-rt+lf^A0-A))-

Proof of Proposition 5 : Given the expression obtained above, and since

A- (W M+ c \*X-{X^ a-(M-rc))

in this specific case, the ratio to be minimized becomes

*'M _ (N _n /,(M +c)ji° j, _ (a-(M +c))A° A2
M W i; ^ Afa J l Mo J J '

Cancelling the first derivative of this ratio with respect to M yields

1(n°M + c\-i~ (Ma-(M + c)a\ _ l,%0q - (M +c),.t /-Ma-a(o-(M +c))\
2KH> Ma ' V (Ma)2 >/" 2l Ma J V (Ma)2 J'

(48)
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Simplifying on both sides and taking the squares, we find that the optimal M is given by

a

M + c = ?—i7- (49)

By substitution we find the exponent

E = N-\ „Mo U- (fthl^)(a-c)- /,oi2z£liM V KF ' c J

= (Jv-i)1

(a-c)- /><

((A° + „°)(c)-A°a)
c(a - c)

In the case where fi is nonzero one can simply replace chy c —(3.

Proof of Proposition 6 : One can easily verify that the proposed solution

A, = A,

Pi = ip,

with

A=(AV*±i)*,

satisfies the optimalityequations in Proposition 1. Using the fact that the invariant distri

bution for an M/M/oo process is Poisson with parameter /? = -, and hence mean p we find

that

H'(M) = EM^-AO +TmOSn-w+i)
t=0

= E^(A°-A) + 7rt+12-(M0-//)
t=0

= *,• (A° - A) +V - „).
P
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Proof of proposition 7 : Since

we must minimize

H'(M) =AO +„P*±£- JWH +c)
a \ a

M M

Cancelling the first derivativeof this ratio with respect to M yields

c2
M + C= jr.

ap°

By substituting one obtains the exponent :

M>o M a c
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