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A Zoo of Strange Attractors from the Canonical Chua's Circuits

L.O.Chua

University of California Berkeley

Abstra'ct

By adding a linear resistor Rq in Chua's circuit, we obtain an
immensely richer bifurcation landscape, including an endow
ment of more than 20 new distinct strange strange attractors
which were suppressed when Rq -> 0. We interpret this aug
mented circuit as a global unfolding of Chua's circuit because
its basic mechanism is similar to the local unfolding theory in
nonlinear mathematics.

Moreover, this augmented Chua's circuit, which has only 7
parameters, is canonical in the sense that it is capable of du
plicating all qualitative behaviors ofa 21-parameter family C
of ordinary differential equations in R3.

Explicit formulas are given for calculating the 7 circuit pa
rameters of the augmented Chua's circuit so that it is topo
logical^ conjugate (i.e., equivalent) to any member of this 21-
parameterfamily of3rd-order piecewise-linear circuits;namely,
the Chua's circuit family. This paper closes with a gallery of
selected strange attractors from this canonical circuit.

1 Introduction

Let Cdenote the family of all continuous, odd-symmetric, 3-
region piecewise-linear vector fields in R3. By changing coor
dinates if necessary, there is no loss of generality to assume
that the affine regions are bounded by two planes: x = 1 and
x = —1, respectively. Suchvectorfields can be described by
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Observe that Eq.(l) is characterized by 21 parameters
(a0> a«jj &;» hj = 1,2,3). Thisfamily corresponds to the class of
vector fields studed in [1-2], and includes the equations describ
ing Chua's circuit [3], and the canonical circuit realization in
[4], asspecial cases. The circuit given in [4] is canonical in the
sense that given any vector field belonging to C, there exists a

set of circuit parameters such that the corresponding circuit in
[4] exhibits the same qualitative behaviors, and no circuit hav
ing fewer circuit elements has this property. The proof of this
property is based on the fundermental normal form theorem
provedin [1] which asserts that two vector fields in C are equiv
alent, i.e., topologically conjugate, if and only if corresponding
matrices Ao and Ai have identical eigenvalues.

There exist many other circuits which can be shown also to
becanonical [5]. In this paper, we will single out the canonical
circuit shown in Fig. 1 because it is obtained by adding a
linear resistor in series with the inductor L in Chua's circuit.
Here, the nonlinear resistor is described by an odd-symmetric
3-segment vr —in characteristic (Fig.l(b)) described by

ir = !{vr) = GhVR + -(Ga - Gb)[\vR + Bp\ - \vR - Bp\] (2)

where Ga and G\, are the slopes of the inner and outer seg
ments, respectively.

The breakpoint voltage Bp can be normalized to unity, with
out changing the circuit's qualitative behaviors. Mathemati
cally, we can interpret the augmentedcircuit in Fig.l as a global
unfolding of Chua's circuit. In this sense, we can state that the
two canonical circuits in [4] and Fig.l are global unfoldings of
the only two viable chaotic circuit candidates derived in [3].

Although other canonical circuits in [5] may be prefered for
specific applications, as dictated by the practicabity of the cor
responding circuit parameters, from the pedagogical and his
torical point of view, we will henceforth focus our attention
to this new canonical circuit. Our main goal in this paper is
to unify all previously investigated members of Chua's circuit
family [6-13] and produce the circuit parameters for this new
canonical circuit in order to obtain the corresponding bifurca
tion behaviors and/or chaotic attractors.

In Section 2 we will present the explicit formulas for calcu
lating the circuit parameters for this new canonical circuit, as

well as for its dimensionless form.

In Section 3, we will apply the formulas from Section 2 to
reproduce the qualitative behaviors of all previously published
results on Chua's circuit family. We will then select a subset
of the most interesting strange attractors from this tedious but
worthwhile exercise and present them in the form of a gallery
of strange attractors.

2 State Equations and Explicit For
mulas for Equivalent Circuit Pa
rameters

The state equation for the canonical Chua's circuit in Fig.l is
given by:

dv\

It = i f2
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where f(v\) is given by Eq.(2). Since we can assume Bp = 1
without changing the qualitative behavior, the dynamics of this
circuit is uniquely characterized by only 7 parameters; namely,
Ci,C2,L,Ri,Ro.)Ga, and G&.
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Fig.l Canonical circuit obtained by a global unfolding

of Chua's circuit and the nonlinear characteristic

By following exactly the same reasoning and procedures
given in [4], we can prove that this circuit is canonical. In
particular, let {/xi,^2>Hz } denote the eigenvalues of Ao in the
inner region D0, defined by |i| < 1, and let {1/1,1/7, "3 } denote
the eigenvalues of Ai in the odd-symmetricouter regions D+\
and D-\. These eigenvalues can be arbitrarily specfiled except
that complex eigenvalues are assumed to occur in complex-
conjugate pairs. Consequently, we can transform these (possi

bly complex)eigenvalues into the following equivalent set of 6
real numbers:

Pi = Pi + /*2 + (13

?2 = ^1^2 + /*2/*3 + /*3^1

P3 = H1H2H2

qx = V\ + V2 + I/3

q2 = Uit/j + t/2i/3 + 1/3V1

q3 = 1/11/21/3

(4)

(5)

Since it is more convenient to work with real numbers, we
will, without loss of generality, refer to {pi,P2>P3>9ij92>93} as
our eigenvalue specifications. Since two identical linear circuits
with diferent impedance scalings have identical eigenvalues, we
need at least 7 circuit parameters in order to calculate them
uniquely to match a given set of eigenvalue parameters. The
circuit in Fig.l has the minimum number of parameters needed.
We fix the impedance level by assuming for convenice C\ = 1.

From this, we can prove the canonical property of the circuit
in Fig.l bya constructive method; namely byderiving the for
mulas for the remaining 6 parameters explicity, as in [4]. We
now collect these formulas as follow:
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Observe that there is a set of eigenvalues of measure zero (e.g.,
when any denomintor in Eqs.(6)-(12) iszero) forwhich Eqs.(6)-
(12) are undefined. In such cases, we caninvoke the fundamen
tal theorem of differential equations which asserts that the so
lution is a continuous function of its parameters. Consequently,
we can make arbitrarily small perturbations of such eigenval
ues without changing the qualitative behavior of the original
circuit. It is these perturbed eigenvalues parameters that we
use in calculating the circuit parameters in Fig.l. This purtur-
bation does not affect our claim of canonical property because
our circuit in Fig. 1 is only required to have the same qualita
tive behaviors, not the same eigenvalues as the member of the
21-parameter Chua's circuit family.

Since usually we are only interested in the qualitative behav
iors of the canonical circuit, we can rescale time to eliminate
one of the parameters in Eq.(3), as well as rescaling the vari
ables to obtain the following equivalent dimensionless system:

= a[y-x-f(x)]

where

dr

dy_
dr
dz_
dr

—- = x-y + z

— = -Py-1Z

f(x)=bx +^(a-b)[\x +l\-\x-l\

(13)

or equivalently

{bx + a — b ifx>l

ax if I x |< 1 )
bx —a + b if x < —1

(14)

The dimensionless variables and parameters are defined as fol
lows:

x = Vi/Bp y = V2/Bp z = i3(—) (15)

a^/d /? =*£* 1±™«Cl (16)
Li

a = RGa b = RGb (17)



And the dimensionless time is

r =

t

RC2
(18)

Observe that the dimensionless time r is negative if either
R < 0 or C2 < 0. In either case, the dynamics of the di
mensionless equation (13) are identical to those of the Eq.(13)
by integrating Eq.(13) backwards in time. If weprefer to inte
grate in the usual times,as when calling a standard integration
subroutine, we need only introduce one more parameter a and
use the following equivalent system:

x = aa[y - x - f(x)]
y = <r[x-y + z]
z = <r[-Py-fz]

where

f 1 if
a = \ -1 if

RC2 >0
RC2 <0

Here the dot . denotes differentiation with respect to the di
mensionless time r.

3 Translating Previous Bifurcation
Parameters and Phenomena into

the New Canonical Chua's Circuit

3.1 Intermittency Route to Chaos

Figs. 2-7 show a series of Lissajou's figures obtained from the
circuit. When we start from L ——0.00744, the v\ —v2 figure is
a symmetric limit cycle (Fig.2). As L decreases and reaches a
critical value, this symmetric limit cycle splits into two asym
metric limit cycles, which are symmetric to each other. As L
decreases further, intermittency eventually occurs (Fig.3). The
waveform associated with the trajectory consists of a long reg
ular phase and is followed by a short burst. As L decreases fur
ther, the regular phases get shorter and the bursts appear more
frequently (Fig.4). The waveform looks completely chaotic. As
L decreases further, half of the attractor suddenly disappears
as shown in Fig.5. This chaotic attractor will gradually shrink
and eventually become a periodic limit cycle (Fig.7). Fig.6
shows a period-2 limit cycle.

3.2 Torus Breakdown

We start from C\ = 5, when the corresponding v\ —v2 figure
is a limit cycle (Fig.8). As C\ decreases and reaches a critical
value the periodic attractor has undergone a Hopf bifurcation,
thereby giving birth to a two-torus(Fig.9). As we decrease C\
further we observed that the two-torus and periodic attractor
(phase-locking) alternatively appear and disappear many times.
Fig. 10 gives a sample of some of the periodic attractors. As C\
further decreases we found a folded torus (Fig. 11). It is rather
interesting to observe that a further decrease of C\ resulted in
the two folded tori merging together and giving rise to a double
scroll attractor (Fig.13). In Fig.12 we show a periodic window.

4 A Gallery of Strange Attractors

In Figs.15-25 we present a gallery of strange attractors.
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PARAMETERS: C,= 1, C,= -75, Ga= 14.7, Gb= 36

R = .066667, R0= .006667, L= -.00744

LYAPUNOV EXPONENTS: Xl = 0, X^ = -.01, X3= -5.39

Fig.2 Time waveform, spectrum of the signal, phase-plot observed

for the indicated nonlinear characteristic and the set of parameters.

Corresponding Lyapunov exponents are also given.

PARAMETERS: C,= 1, C,= -75, Ga= 14.7, Gb= 36

R = .066667, R0= .006667, L= -.0096

LYAPUNOV EXPONENTS: X, = .25, ^ = 0, 7l,= -12.40

Fig.3 Experimental results (see the caption of Fig.2 for explanation)

for the set of parameters as indicated.

PARAMETERS: C,= 1, Cf= -75, Ga= 14.7, Gb= 36

R = .066667, Ro= .006667, L= -.0105

LYAPUNOV EXPONENTS: X, = .18, ^ = 0, A,- -11.70

Fig.4 Experimental results (see the caption of Fig.2 for explanation)

for the set of parameters as indicated.
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PARAMETERS: C,= 1, C,= -75, Ga= 14.7, Gb= 36
R = .066667, R0= .006667, L= -.010666

LYAPUNOV EXPONENTS: A, = .21, X, = 0, X,= -14.16

Fig.5 Experimental results (see the caption of Fig.2 for explanation)
for the set of parameters as indicated.

PARAMETERS: C,= 1, C--75, Ga= 14.7, Gb= 36
R = .066667, R0= .006667, L= -.0018133

LYAPUNOV EXPONENTS: X, =0, ^ =-.06, X,= -17.30

Fig.6 Experimental results (see the caption of Fig.2 for explanation)
for the set of parameters as indicated.

PARAMETERS: C,= 1, C,= -75, Ga= 14.7, Gb= 36

R = .066667, Ro= .006667, L= -.019

LYAPUNOV EXPONENTS: X, = 0, X, = -.16, V -17.94

Fig.7 Experimental results (see the caption of Fig.2 for explanation)
for the set of parameters as indicated.
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PARAMETERS: C,= 5, C,= 100, Ga= .599, G,= .77

R = .000929, R0= -1.4286, L= .136

LYAPUNOV EXPONENTS: X, = 0, ^ « -.01, Xy= -.02

Fig.8 Experimental results (see the caption of Fig.2 for explanation)

for the set of parameters as indicated.

PARAMETERS: C,= 1, C,= 100, Ga= .599, Gb= .77
R = .000929, Ro= -1.4286, L= .136

LYAPUNOV EXPONENTS: X, = 0, X, = 0, X,= -.01

Fig.9 Experimental results (see the caption of Fig.2 for explanation)

for the set of parameters as indicated.

PARAMETERS: C,= .6, C^ 100, Ga= .599, Gb= .77
R = .000929, R0= -1.4286, L= .136

LYAPUNOV EXPONENTS: X{ =0, X, = -.01, X3= -.02

Fig.lO Experimental results (see the caption of Fig.2 for explanation)

for the set of parameters as indicated.
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PARAMETERS: C,= .51, C^ 100, Ga= .599, Gb= .77

R = .000929, Rq= -1.4286, L= .136

LYAPUNOV EXPONENTS: Xx = .01, ^ = 0, k,= -.02

Fig.ll Experimental results (see the caption of Fig.2 for explanation)

for the set of parameters as indicated.
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PARAMETERS: C,= .5, Cj= 100, Ga= .599, Gb= .77

R = .000929, Rq= -1.4286, L= .136

LYAPUNOV EXPONENTS: Xx = 0, ^ = -.01, X^= -.04

Fig.12 Experimental results (see the caption of Fig.2 for explanation)

for the set of parameters as indicated.

PARAMETERS: C,= .35, C^ 100, Ga= .599, Gb= .77

R = .000929, Rq= -1.4286, L= .136

LYAPUNOV EXPONENTS: Xx = 0, ^ = -.01, ^= -.04

Fig.13 Experimental results (see the caption of Fig.2 for explanation)

for the set of parameters as indicated.



PARAMETERS: C,= .28, C^ 100, Ga= .599, Gb= .77

R = .000929, R0= -1.4286, L= .136

LYAPUNOV EXPONENTS: Xx = .01, X, = 0, X,= -.09

Fig.14 Experimental results (see the caption of Fig.2 for explanation)
for the set of parameters as indicated.

PARAMETERS: C,= 1, Cf= -1.0837, Ga= -3.1935, Gb= .0064

R = .02947, Ro= 0.0349, L= -.0275

LYAPUNOV EXPONENTS: Xx = .17, Xj = 0, Xj= -1.93

Fig.15 Experimental results (see the caption of Fig.2 for explanation)

for the set of parameters as indicated.

PARAMETERS: C,= 1, C,- -1.3184, Ga= -1.4925, Gb= -.1871

R = .1502, R0= 1.5866, L= -2.3642

LYAPUNOV EXPONENTS: X, = .18, X> = 0, X,= -.60

Fig.16 Experimental results (see the caption of Fig.2 for explanation)

for the set of parameters as indicated.



PARAMETERS: C,= 1, C,= -1.4245, Ga= .2065, Gb= .5247

R = -.3463, Rq= -3.7953, L= -5.8026

LYAPUNOV EXPONENTS: Xx = 0.10, ^ = 0, X^= -.20

Fig.17 Experimental results (see the caption of Fig.2 for explanation)

for the set of parameters as indicated.
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PARAMETERS: C,= 1, C^ 9.3515, Ga= -3.4429, Gb= -2.1849

R = .33065, Ro= .00036, L= .006913

LYAPUNOV EXPONENTS: Xx = .07, ^ = 0, Xj= -.71

Fig.18 Experimental results (see the caption of Fig.2 for explanation)

for the set of parameters as indicated.

PARAMETERS: C,= 1, C^ 3.7091, Ga= -2.204, Gb= .1439

R = 1.2544, Ro= -.0447, L= .2423

LYAPUNOV EXPONENTS: X, = .06, X, = 0, X>= -.28

Fig.19 Experimental results (see the caption of Fig.2 for explanation)

for the set of parameters as indicated.



PARAMETERS: C,= 1, C^ 6.5792, Ga= -2.8922, Gb= -1.5962

R = .4087, R0= -.00167, L= .1008

LYAPUNOV EXPONENTS: Xx = .06, ^ = 0, X3= -.74

Fig.20 Experimental results (see the caption of Fig.2 for explanation)

for the set of parameters as indicated.

PARAMETERS: C,= 1, C,= -17.389, Ga= -32.257, Gb= -9.677

R = .0473, R0= 0.0349, L= -.0275

LYAPUNOV EXPONENTS: X{ = .05, \ = 0, X^= -8.89

Fig.21 Experimental results (see the caption of Fig.2 for explanation)

for the set of parameters as indicated.

PARAMETERS: C,= 1, q= -1.3018, Ga= -.2892, Gb= .8156

R = -.5846, R0= -1.2758, L= 32.689

LYAPUNOV EXPONENTS: Xx = .02, X, = 0, X>= -0.05

Fig.22 Experimental results (see the caption of Fig.2 for explanation)

for the set of parameters as indicated.



PARAMETERS: C,= 1, C,= -1.4589, Ga= 2.2668, Gb= -.9541

R = .5375, R0= 1.8562, L= 4.5284

LYAPUNOV EXPONENTS: Xx = .05, ^ = 0, X>= -.87

Fig.23 Experimental results (see the caption of Fig.2 for explanation)

for the set of parameters as indicated.

PARAMETERS: C,= 1, Cj= -4.8989, Ga= 11.045, Gb= 4.1057

R = -.2265, R0= -.0000737, L= .136

LYAPUNOV EXPONENTS: Xx = .15, k, = 0, ^= -.98

Fig.24 Experimental results (see the caption of Fig.2 for explanation)

for the set of parameters as indicated.

PARAMETERS: C,= 1, C,= -1.3635, Ga= 2.3282, Gb= -.8982

R = 1.9775, R0= .555, L= 4.8052

LYAPUNOV EXPONENTS: Xx = .05, ^ = 0, X^= -.75

Fig.25 Experimental results (see the caption of Fig.2 for explanation)

for the set of parameters as indicated.


