Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

THE FLOW-TABLE TECHNIQUE FOR
THE SYNTHESIS OF ASYNCHRONOUS
SEQUENTIAL CIRCUITS

by

Avaneendra Gupta

Memorandum No. UCB/ERL M92/83

11 August 1992

THE FLOW-TABLE TECHNIQUE FOR
THE SYNTHESIS OF ASYNCHRONOUS
SEQUENTIAL CIRCUITS

Copyright © 1991

by

Avaneendra Gupta

Memorandum No. UCB/ERL M92/83

11 August 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

THE FLOW-TABLE TECHNIQUE FOR
THE SYNTHESIS OF ASYNCHRONOUS
SEQUENTIAL CIRCUITS

Copyright © 1991

by

Avaneendra Gupta

Memorandum No. UCB/ERL M92/83

11 August 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

'~ THE FLOW-TABLE TECHNIQUE
FOR
THE SYNTHESIS OF ASYNCHRONOUS SEQUENTIAL CIRCUITS

Avaneendra Gupta

Department Of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

Abstract

Synthesis of asynchronous sequential circuits has been studied extensively from a theoretical per-
spective. However, due to the inherent difficulties encountered in the various stages of the syn-
thesis procedure, many of the techniques have not been automated for use in practical applica-
tions. In this report, the detailed stages involved in the synthesis of asynchronous circuits us-
ing the traditional flow-table based technique are described. The synthesis procedure derives the
flow-table representation of the circuit from a verbal description or a signal transition graph spec-
ification. State reduction is then invoked, identifying and merging equivalent states. The re-
duced flow-table is subsequently subjected to state assignment techniques. The excitation func-
tions derived from the flow-table are modified to guarantee the absence of any combinational
hazards. Under the assumptions of bounded stray delays, fundamental mode of operation, and
the restriction that successive input changes can be between adjacent input combinations only,
the synthesis procedure yields an optimized hazard-free realization of the asynchronous circuit.

rRA A2

Professor A.gﬂae'h’ ard Newton
Research Advisor

Acknowledgements

Being amidst the wealth of opportunity and academic enrichment at UC Berkeley, I have been most
fortunate to have received the astute and invaluable guidance from my professors and colleagues who have
inspired and shaped my research on the synthesis of asynchronous circuits. I sincerely thank my esteemed
professor and research advisor, Prof. A. Richard Newton, whose consistent support and inspiration helped
me pursue my study with purpose and determination, and without his guidance, this work would not have
been possible.

I also wish to thank Prof. Robert Brayton and Prof. Alberto Sangiovanni-Vincentelli for their
stimulating lectures which helped me build a strong foundation in computer-aided design. My sincere thanks
- to Prof. Robert Brodersen for consenting to be the reader for this report and for his constructive criticism
which helped make this report complete.

My heartfelt gratitude to my friend and mentor, Bill Lin, who has been the guiding-light throughout
this research as well as other class projects which I undertock at Berkeley. Besides being an unending source
of inspiration, guidance and stimulating discussions, he has been a very helpful and patient mentor and is a
wonderful friend.

Last, but not the least, my fond and heartfelt thanks to my fiancee, Neha and to both our parents.
Without their enthusiasm and encouragement, this work would never have seen the light of day.

This research was sponsored in part by the Defense Advanced Research Projects Agency under
contract N00039-88-C-0292 and JFBI90-073, and Digital Equipment Corporation. I would like to extend my
grateful thanks to them for their invaluable support.

Contents

Table of Contents _ ii
List of Figures v
. List of Tables : : vi
1 Introduction 1
1.1 The need for asynchronoussystemso« ... et 1
1.2 Limitations of asynchronousdesigns. ceeecesssensas 2
1.3 Survey of asynchronous design methodologies 3
14 OrganizationoftherePOmt v v v o v e e v oot e o vevceonneeas 4

2 The Finite-State Model 6
2.1 Sequentialmachinesot eietieeeeeeecnennens 6
2.1.1 Finite-statemachines0ttt et eneeeeennenn 6

2.1.2 Thebasicmodel of asequentialmachine 7

2.1.3 Flow-table representation of a sequentialmachine 9

2.2 Thesynchronousmachinemodelc00000eveen. cee 9
23 Asynchronousmachines cc0eoveeeess e e e s s oo 10
2.3.1 Fundamentalmodeofoperaion . . . « ¢ v v v v e e 0 e e v v b v ... 11

24 Pulse modecircuits c e e s e s eceeseeccassea e D § |
3 Flow-Table Synthesis : An overview 12
3.1 Problemspecification i 00ttt e e e 12
32 Assumptions ceeceescss et et et 12
3.3 Anoverview of the synthesis procedure e et ettt 13

4 Derivation of the Flow-Table 17
41 Adesignexample 000ttt ettt 17
4.2 Flow-table derivation from a verbal circuitdescription 19

4.3 STG transformation to the equivalentflow-table 21

ii

§ Reduction of the primitive flow-table 22
5.1 Objectivesofflow-tablereduction .". ¢ttt vt i et et v 22
5.2 Analogy with flow-table reduction for synchmnousmadnnes 23
5.3 Previous work in state minimization C e e e e e e 24
54 Compatibility classes andclosedcovering . . « « v e v e e v 000 o ceees 25
5.5 Exact algorithm for state-minimizationcc0e0cveeeeeee.. 26
- 5.5.1 Generation of compatibilitypairs s e e 26

55.2 Derivation of maximal compatibilityclasses0c... 29
5.5.3 Generation of prime compatibility classes . « « « « « ¢ ¢ s e 0 e 0o 30
5.5.4 Formmulation of the minimal coveringproblem. 31
5.5.5 Solution to the covering problem e s e s e e ee e 33
5.6 Fommation of the reduced flow-table e s e e e e st e 33
5.7 Outputassignment forunstable States« o ¢ e o e s v 0 o0 e v oo 34

6 State Assignment in Asynchronous Circuits 37
6.1 Objectives of state assignment in asynchronouscircuits 37
6.2 MTT state assignment techniques c e e s e e e 39

6.2.1 Adjacencygraph............. O c.. 39
622 Connected row-SetasSignMent. . o o o« ¢ ¢ « ¢ o o o 0 e 0 oo o oo o o 40
6.2.3 Shared-row assignment e e oo et e et 43
6.3 STT assignmenttechniquescc0... et et 4
6.3.1 Unicode STT asSigNMents . . « ¢« « ¢ « ¢ v o0 0 o e s s oo oeosasns 45

7 Hazard-Free realization of the flow-table 48
7.1 Derivationof excitationfunctions ¢ ottt ettt 43
7.2 Eliminationofhazards0ttt ittt 50

8 Signal Transition Graph Based Synthesis Technique -1
8.1 'mesignaltransitiongraph.... Cececsoarasssenas 55
8.2 Thestategraph...... et e e e c et s et e e e e 56
8.3 Syntactic checks on the STG . e s e et e e et 56
8.4 The STG-based synthesis pmcedure N ceeacs s ue e 59

9 Discussion 60

Bibliography 62

A Implementation details 65
A.1 Input/Outputformats e s eces s e e s eanne B -
A2 Datastructures e e et a s e e et et e et 66

A.2.1 Representation of the finite state machine ceecceacaas 66
A.2.2 The flow-table reductionstage e e et 67
A23 Thestateassignmentstage. . « « « « o o o o oo . ce et eeseenann 67
A.2.4 Derivation of the reduced machine et 68

A3 Anoverviewofthealgorithm0ci it ieeeennn. 69

A4 AsampleexeCution cccoeevcecosscccsccncocss T2

.....

List of Figures

2.1
22

3.1

4.1
4.2

5.1
52

6.1
7.1

8.1
8.2

Schematic representation of a SequentialMachine 7
Hardware Model of a synchronous machine ceseens 10
Synshesis flow for fundamental-mode asynchronous circuits 15
STG Representation of the 4-phase handshake protocol [10] e e oo 18
Possible input-output sequence for the 4-phase handshake circuit 19
Flow-table reduction algorithm for asynchronous machines 27
Merger Graph for the handshake example cesssseaesss 29
Adjacency graph for machineM1 e et e e s e e e 41
Example to demonstrate static-1hazard et 53
Persistent STG for the 4-phase handshake machine 58
State graph for the persistent STG of Figure8.1ccvoe.. 58

List of Tables

4.1

5.1
52
53
54

6.1
6.2
6.3
6.4

7.1
72
7.3
74

Al

The Primitive Flow-Table for the 4-Phase Handshake Machine 20
Modified Flow-Table for the 4-Phase Handshake Machine 23
The initial merger table for the 4-phase handshake machine. 28
The finalmergertable e et e e ettt e e 29
Reduced table derived from the partition {(2,34)(1,5)} . . . « « « e e e ... 35
MachineMI1 " ececeserasenaseenserene 39
Reduced table formachine M1c0veeees ceee. 40
Shared-row assignmentformachine M1t eenn 44
Uru‘code .S'IT state assignment for reduced machine M1 47
Machine . 49
Unicode STT state assignment for machine M2 et e e s e s e e 49
Y -matrix for the unicode STT assignment for machineM2 50
Example to illustrate presence of hazards in a critical-race-free circuit e e 51
MachineM3 ittt ittt nnnnn n

Chapter 1

Introduction

1.1 The need for asynchronous systems

The operation of clocked synchronous networks is synchronized with a central system
clock whose time period is greater than the delay of the critical path. Since the critical path is
the slowest combinational path that would be used at least once during the circuit operation, the
system-level latency is dictated by the worst-case stray delays. In such circuits, a state change
occurs only in response to a clock pulse and all storage elements which must change state do so
simultaneously at the clock pulse. Further, in response to an input change, the next state does not
change immediately but only at the next clock pulse. These characteristics of clocked synchronous
circuits eliminate any further timing considerations and, provided that the clock period is carefully
chosen, eliminate problems caused by hazards. They also simplify the process of circuit synthesis
from its initial description of the network as a state table or a state diagram [1].

However, the presence of a central fixed-period clock has its own inherent limitations
and problems. First, the determination of the fixed clock period necessitates an exact evaluation
of the worst case system delay which is defined by the delay of the critical path. This evaluation
may not always be feasible due to the absence of exact values for all types of delays which occur
in the circuit. If estimated values for the stray delays are used to determine the clock period, a very
pessimistic estimate of clock frequency must be used to guarantee the proper operation of the circuit
under all possible input combinations.

Added to this problem is the problem of clock-skew. In the case of large circuits, line
delays could add up to be significant enough so that the time taken by the signals to travel down
the wires could be significantly large. In such a situation, the clock pulse could arrive at different

1

memory elements at different times, causing possible erroneous operation.

Perhaps the most important practical limitation of a central fixed-period clock to synchro-
nize the circuit operation is in the design of networks with inputs which could change at any time
and cannot be synchronized by a central clock. For such circuits, it is not possible to determine a
fixed period for the system clock since the rate of arrival of inputs is both variable and unknown.

Asynchronous systems, which are designed to operate correctly in the absence of syn-
chronizing clock pulses, offer an attractive alternative to the limitations and problems posed by
synchronous designs. They do not have their computational rates constrained by a central fixed-
period clock. Thus the system-level latency is dominated by the average-delay only and not by the
worst-case delay. For example, an asynchronous or a self-timed adder can signal when the result
on its outputs is valid and the absence of any synchronization makes asynchronous design the only
choice in applications where the rate of arrival of inputs is variable. In an asynchronous design, the
speed of operation of the system is governed by the rate of arrival of external inputs into the system
and the action dependencies within the system and is independent of the element (gates) and line
(wire) delays.

1.2 Lil'nitations.of asynchronous designs

However, attractive as it may seem, the synthesis of asynchronous systems poses many
timing problems. A correctly designed synchronous circuit waits long enough for all the memory
elements to reach a stable condition before allowing the next input change. This design procedure
eliminates errors due to circuit timing in the synthesis process. However, in the synthesis of asyn-
chronous circuits, the absence of a synchronizing clock and the presence of unequal delays through
the various paths in the circuit necessitate special design techniques to eliminate the inherent timing
problems.

Therefore, in order to simplify the design and synthesis of asynchronous circuits, a few
assumptions must be made about the extemal environment as well as the operation of the circuit.
The most important of these is the assumption that the circuit operates in fundamental mode, ie.,
after a change in external inputs, the next input change occurs only after the circuit reaches a stable
(unchanging) condition. This means that the time inteﬁal between two successive input changes is
sufficiently large so as to allow the circuit to reach its stable state after the first input change. This
assumption, along with the others made on the external and internal environments to guarantee the
proper operation.of the circuit, is described in detail in subsequent chapters.

1.3 Survey of asynchronous design methodologies

The theoretical aspects of the design of asynchronous digital systéms have been studied
quite extensively in literature, although the practical application of these techniques has only re-
cently gained momentum. This recent revival of interest in asynchronous design is mainly due to
the development of mathematical theory which has enabled a deeper understanding of asynchronous
behavior [2, 10, 20).

The oldest and the traditional approach to asynchronous design is based on the represen-
tation of the initial circuit in the form of a flow-table (or state-table). The flow-table is subsequently
synthesized to yield excitation equations for the non-input signals (intemal state variables and out-
put signals) [1, 2, 7, 8, 9]. The problem of hazards has also been studied in detail and the necessary
conditions required to guarantee hazard-free operation of the synthesized circuit have been formu-
lated. The major objective of this work was to develop an automated system for the synthesis of
hazard-free asynchronous circuits using the flow-table synthesis technique as described in the above
references and to compare it with some of the more recent approaches, as described below.

Chu [10] introduced the concept of Signal Transition Graphs (STGs) as a restricted class
of interpreted Petri nets. STG's have recently been used as an efficient specification for asyh-
chronous circuits. In [10] a procedure to synthesize asynchronous circuits guaranteed to function
correctly under no assumption of gate-output delays is also presented. This synthesis proceduxi first
modifies the initial STG description of the circuit, if necessary to guarantee that the STG satisfies
certain properties of liveness and persistency. It then converts the modified STG to its equivalent
finite automaton called the state graph, which is then transformed, if necessary, to ensure that every
state in the graph is assigned a unique coding. Excitation functions for the next-state and output
signals are then derived directly from the state graph.

Lavagno [14), under the more realistic assumption of unbounded gate-input delays de-
scribes a synthesis procedure which guarantees that most of the synthesized circuits are hazard-free.
He also outlines an algorithm to design delay tests which could be employed to check the synthe-
sized circuit for the presence of hazards. Lavagno’s approach, however, assumes that the given
STG specification of the asynchronous circuit satisfies the Unique State Coding (USC) property
(14]).

Vanbekbergen [17] presents a technique to satisfy the STG requirements of the USC prop-
erty and persistency by introducing the concept of Generalized Lock Classes and lock graphs. These
transformations are performed at the STG level before its conversion to the equivalent state graph.

4

In another follow-up to the above paper (18], he suggests a technique to satisfy the USC property
at the state graph level by the addition of new variables (intemnal signals) to the initial STG. The
internal signals are added in a way that the logic of one particular non-input signal is minimized,
while maintaining the original concurrency in the STG.

Ebergen [19] has developed a new synthesis technique for asynchronous circuits, both
speed independent and delay-insensitive circuits. This technique is based on a mathematical for-
malism called the trace theory, and uses the model of a directed trace structure to specify the initial
circuit. :
Ilana, et al [23, 24] describe a technique for realizing speed-independent combinational
logic, and present the design of a simple asynchronous RISC processor. Other successful designs of
asynchronous processors have been reported by Martin, et al (21, 22], llana, et al [23], and Meng,
etal [13].

1.4 Organization of the report

In this report, a synthesis procedure is presented which guarantees that the synthesized
circuit is free of any critical races as well as any static and dynamic hazards under the assumption
of single-input changes. The input to this procedure is the flow-table representation of the asyn-
chronous circuit. The flow-table could be derived from the circuit’s verbal description or a signal
transition graph specification. The table is then reduced by identifying and merging equivalent
states, and the reduced flow-table is subjected to state assignment techniques. The derivation of
the excitation Y -matrix is dependent on the state assignment technique employed. Two-level logic
equations for the intemal state variables and the output signals are generated from the Y -matrix.
The excitation functions are modified, if necessary, to eliminate any combinational hazards. The
final logic equations synthesized guarantee that the circuit will operate correctly under the assump-
tions of bounded stray delays and fundamental mode of operation, and with the restriction that
successive input changes are between adjacent input combinations only.

In Chapter 2, preliminaries regafding sequential machines and the finite-state model are
presented and the generic hardware models of synchronous and asynchronous networks are de-
scribed. An overview of the complete synthesis procedure for asynchronous circuits is presented
in Chapter 3. This procedure is then described in detail in the following chapters. In Chapter 4, the
design example of the 4-phase handshake protocol is introduced, and the process of derivation of
the initial fow-table from a verbal description of the circuit is described.

Subsequently, the algorithms employed for the reduction of the flow-table are described
in Chapter 5. In Chapter 6, different state assignment techniques for asynchronous circuits are
summarized and the unicode state assignment procedure is described in detail. The final stage of
the synthesis procedure which involves the realization of a hazard-free combinational logic from
the reduced flow-table is presented in Chapter 7.

A summary of the signal transition graph based synthesis procedure for asynchronous
circuits is presented in Chapter 8. This chapter is aimed at understanding the pros and cons of

“the flow-table and the STG synthesis techniques which are presented in Chapter 9. Finally, the
implementation details of the synthesis package async which has been implemented are described
in Appendix A.

Chapter 2

The Finite-State Model

2.1 Sequential machines

Ina combinational circuit, the outputs are combinationalfunctions and depend only on the
present inputs to the circuit. No information or data is stored in the circuit. In contrast, a function
whose value depends not only on the present external inputs but also on the previous inputs is
called a sequential function. Sequential Circuits are realizations of sequential functions and the
mathematical model used to describe a sequential function is called a sequenrial machine [2).

2.1.1 Finite-state machines

- In a sequential machine, the output at a particular time ¢ depends on the extemnal inputs
applied to the circuit at that time, as well as the inputs applied at previous time points. This depen-
dency on inputs at previous time points requires that the information regarding the previous inputs
be stored in the machine in some form. The input-history of a circuit at a particular time ¢ is the
sequence of inputs applied to the machine at previous time points.

However, any particular sequential machine can have infinite types of previous histories.
This would require infinite memory capacity for storing them. However, practically speaking, it
is not possible to implement machines with infinite stbrage capacities. Thus a restriction on the
types of machines which could be studied and implemented is inevitable. Implementable machines
should therefore have their behavior affected by past histories in only a finite number of ways.

The different unique intemal histories of a machine are each represented by an internal
state. Each state thus corresponds to a particular history of past inputs. Then, the fact that the outputs

6

N — 21
It x2————e1 Combinational s~ Ouput
Signals 4 [2m Signals
xn ————=} Logic
:
Y1
l‘ th D1
y2 D2 Y2
°
°
2 Yk
X - Dk
Present State / Next State /

Secondary Variables Memory Devices Excitation Variables

Figure 2.1: Schematic representation of a Sequential Machine

depend on the present external inputs as well as the past inputs can be expressed as a function of the
present inputs and the state of the machine. Since states are stored using memory devices, only a
finite number of which can be used in practice, analysis of sequential machines is restricted to only
those machines which have a finite number of intemnal states.

2.1.2 The basic model of a sequential machine

A sequential machine can be schematically represented as shown in Figure 2.1. The
input to the machine is from a finite set of input symbols. This set is called the input alphabet
I. The signals which constitute the input alphabet are called input variables and may take values
from the set (0, 1). An input configuration I is defined as an ordered tuple of 0's and 1's, where
each member of the tuple represents the value of the particular input variable in I. Similarly, the
output is produced from a finite set of output symbols called the output alphabet O. The signals
constituting the output alphabet are represented by binary-valued output variables. The ordered
tuple of 0’s and 1°s iden@fying the values of the variables in a particular output symbol is called the

output configuration.

In Figure 2.1, the set of variables (21, 23, ...,Za) represents the set of input variables
while the set (21, 22, ..., 2m) represents the set of output variables.

The signal value at the output of each memory element represents the szate (secondary)
variable. The set (y1, 2, ..., yx) in Figure 2.1 represents the set of state variables and the k-tuple
of 0's and 1’s defines the present internal state of the machine at any time ¢. The signal value at
the input to each memory element (which is an output from the combinational logic) is identical
to the respective value of the state variable at the next time point ¢ 4 1 and is therefore termed the
excitation (next-state) variable. The set (14, Y3, ...,Ys) represents the set of excitation variables
and the k-tuple of values for the excitation variables is termed as the next state of the machine.

As is evident from the schematic diagram, the output of the machine produced by the
combinational logic is a function of the present inputs as well as the present state of the machine.
Such machines where the output is a function of both the present inputs and the internal state are
called Mealy machines. Machines in which the output is a function of the present state only and
independent of the external inputs are called Moore machines. It is possible to convert any Mealy
machine into its equivalent Moore machine and vice-versa, so that both the machines produce the
same output sequence for any input sequence [2].

The next state of the machine also depends on the present values of the external inputs as
well as the present internal state. The intemnal behavior of the machine is restricted to a deterministic
behavior, in the sense that for every possible pair of present state and input combination there
exists only one possible transition to a new next state. Such behavior is represented by the staze
transition function, which maps every (presentstate, ezternalinput) condition to a next state.
When a machine is in a particular state at any time ¢ and an external input is applied to it, the
machine temporarily goes into an unstable state, in which the values of the excitation variables
(¥’s) and the state variables (3’s) are unequal. The machine is said to have reached a stable state
when Y; = y; for all ¢, ie., the values of signals at the inputs and outputs of each memory element
are equal.

Summarizing the above in mathematical terms, a sequential machine M can be repre-
sented by a quin-tuple M = (1,0, S, 4, A), where ; |

I = finite set of input variables

O = finite set of output variables

S = finite set of states

6 :I x § — S is the state transition function

A:I'x S = O is the output function for Mealy machines, and
A:S—> OismeoixtputﬁmctionforMooremachines

2.1.3 Flow-table representation of a sequential machine

One of the methods of representing the relationship between the input, present state, out-
put and next state variables of a sequential machine is the State table or the Flow-Table. The be-
havior of a machine on the application of a particular input sequence is defined as the succession of
states through which the machine passes along with the output sequence produced. Every machine
has an initial state which is the intemal state of the machine before the application of any input
sequence. The flow-table alohg with the initial state uniquely specify the behavior of the machine,
The state which the machine reaches after the apphcanon of the input sequence is called the final
state of the machine,

' A flow-table is a two-dimensional array in which the rows correspond to intemnal states
and the columns to input configurations. The entry defined by the element (i, 5) corresponding
to the state S; and input configuration I; represents the next state and the output produced if the
machine is in present state S; and gets an external input J;. In practice, it often occurs that some
combinations of states and input conditions are not possible. In other situations, although the state
transitions are defined, the output values produced are not critical, and hence left unspecified. This
class of sequential machines in which, for certain combinations of present state and input values,
either the next state, or the output, or both are unspecified are termed as incompletely-specified
sequential machines.

Sequential machines can be of two types : synchronous or asynchronous. This distinction
is based primarily on the synchronous or asynchronous nature of the computational and communi-
cation steps of the machine [15]. A synchronous machine is one which is synchronous with respect
to both its computational and communication steps. On the contrary, an asynchronous machine is
synchronous with respect to communication, but asynchronous with respect to its computational
steps. This distinction is explained in detail in the following sections of this chapter.

2.2 The synchronous machine model

The operation of a synchronous machine is synchronized by a central fixed-period clock.
For correct operation of the machine, the time period of the clock must be greater than the critical

10

Input Signals Output Signals
_ N , \
V Combinational
, Logic

—N Next State
—/ Variables

= - Delay <: :‘ K: Clock
Present State Logic
Variables

Figure 2.2: Hardware Model of a synchronous machine

path of the circuit. In the schematic form, a general synchronous circuit can be represented as shown
in Figure 2.2. The clock pulses are used to trigger the next state of the machine after the values of
the excitation variables have stabilized at the output of the combinational logic.

Ina synclironous machine, change of internal state occurs only in response to a clock
pulse. Thus due to a change in external inputs, the machine enters its next state only on receiving the
subsequent clock pulse. The external inputs to the machine must therefore arrive in synchronization
with the clock pulses. Similarly, the outputs are sampled only at the clock pulses.

2.3 Asynchronous machines

The schematic diagram of a general sequential circuit in Figure 2.1 also represents the
model of an asynchronous network. The operation of the circuit is not synchronized by a central
clock. Therefore, a change in inputs can directly lead to a transition to the next state without waiting
for any synchronization. However, due to unequal delays in the different paths of the combinational
logic, the change of internal state variables may not be simultaneous. This results in race conditions
and related timing problems.

As described in the previous chapter, the design of asynchronous circuits is complicated
by the fact that it is difficult to guarantee the simultaneous change of multiple signals in a single
transition. Moreover, the external inputs to the circuit are not synchronized and can change at any
instant. Due to these degrees of freedom, it could be possible that the input configuration changes

11

twice in succession even before the circuit reaches stability as a result of the first change. In such
a situation, the operation of the circuit would be unpredictable and erroneocus. To eliminate this
timing problem, certain restrictions on the external and internal environments have to be imposed.

23.1 Fundamental mode of operation

Under the assumption of fundamental mode, the external inputs to the circuit are con-
strained to change only after the circuit is in the stable mode, ie., the values of the excitation vari-
ables at the inputs to the delay elements and the corresponding values of the secondary variables at
the delay element outputs are equal.

' In addition to the above restriction, another input constraint has to be imposed. Due to the
presence of stray delays and the fact that inputs can change at any time, it is necessary to prohibit
the simultaneous change of two or more input signals. The restriction that only one input variable
may change at any time, along with the assumption of fundamental mode is termed as the normal
Jfundamental mode of operation. '

For an asynchronous circuit, the external input variables along with the secondary'vari-
ables define the rotal state of the circuit. Since each stable state of the circuit essentially represents
a total state, the circuit can go from one stable state to another without any change in its secondary
variables. This means that the two stable states are distinguished only by the states of their external
inputs. This is in contrast to a synchronous circuit in which the total state is represented only by the
states of the intemnal variables. This unique property of asynchronous circuits is employed in the
process of state minimization and is described in detail in Chapter 5.

2.4 Pulse mode circuits

In fundamental mode asynchronous circuits, all input signals are assumed to be level
signals. In contrast, a different class of circuits called pulse-mode circuits is based on inputs being
pulses rather than level signals. The design of these circuits requires certain restrictions on the
duration of pulses in order to guarantee deterministic circuit operation. Under the restrictions, it
has been shown that the operation of pulse-mode circuits reduces to that of clocked synchronous
circuits [1, 2, 9].

Chapter 3

Flow-Table Synthesis : An overview

In this chapter, the various stages involved in the synthesis of fundamental mode asyn-
chronous circuits are outlined. The synthesis procedure begins with the initial description of the
circuit in terms of a flow-table. In case the circuit is specified in terms of its graph-theoretic de-
scription as a Signal Transition Graph (STG) [10], the STG is first transformed into its equivalent
flow-table representation.

3.1 Problem specification

The input to the synthesis procedure is a flow-table description ora signal transition graph
representation of the asynchronous circuit. The process of deriving the flow-table from a verbal
description of the circuit is very unsystematic and hence not included in the synthesis procedure.
However, the process of transforming an STG specification of the circuit into a flow-table can be
automated easily .

As its output, the procedure generates the excitation functions for the non-input variables,
viz., the output and the intemal state variables. Under the assumptions described below, the exci-
tation functions generated guarantee the hazard-free operation of the circuit,

3.2 Assumptions

As described in previous chapters, certain constraints on the extemnal environment have
to be imposed in the design and synthesis of asynchronous circuits. Moreover, in order to guarantee
the proper behavior of the synthesized circuits, a few additional assumptions on the intemal envi-

12

13

ronment have to be made to ensure a hazard-free operation. These assumptions are summarized
below :

1. The circuit operates in fundamental mode. After a change in the input configuration, no
other input change is allowed until the circuit reaches a stable state. This assumption poses
the following relation between the delays of the extenal and intemal environments : the
time-difference between any two successive input transitions should be sufficiently large so
as to allow the circuit to reach a steady state after the first input change. This assumption also
implies that a transition from one stable state to another is only in response to a change in the
input configuration.

2. All stray delays within the network are assumed to be bounded. Stray delays include both
element and line delays.

3. During any state change, no critical race conditions are permitted, although non-critical races
are allowed. The concept of critical and non-critical races is described in Chapter 6.

4. Although certain state assignment techniques could be employed so as to guarantee that the
circuit is free of all critical races, the presence of hazards may still cause the circuit to mal-
function as demonstrated by the example presented in Chapter 7. It is therefore essential to
eliminate all possible combinational hazards to guarantee the correct operation of the circuit.
Unger [9] has shown that any function is realizable with a circuit free of all combinational
hazards involving single-input changes. However, if multiple input changes are involved,
then any function with more than one prime implicant contains hazards that cannot be elim-
inated through logical design alone.

It is therefore necessary to restrict the external environment so that only single-input changes
are permissible. Thus successive input transitions are restricted to adjacent input combina-
tions,

3.3 An overview of the synthesis procedure

Under the above assumptions on the external environment and the design technique, the
synthesis procedure aims at deriving the excitation functions for the output signals and the internal
variables of the circuit. The synthesis techniques are designed so as to ensure that the circuit be-

haves correctly under all input conditions, ie., no erroneous output is obtained for any sequence of
applicable inputs.

14

Figure 3.1 outlines a diagrammatic representation of the various steps involved in the
flow-table synthesis procedure. These steps are explained in brief below and studied in detail during
the course of this report.

1. Derivation of the flow-Table description ¢
From the initial representation of the circuit in terms of a verbal description or an STG spec-
ification, the flow-table is derived under the assumption of single input variable changes.
Thus the entries in the flow-table comesponding to simultaneous changes of two or more in-
put signals are unspecified. In addition, the outputs corresponding to unstable states are also
unspecified and are assigned later in the synthesis process.

2. Reduction of the primitive flow-table :
The initial state-table called the Primitive Flow-Table is modified to represent a table of an
incompletely specified synchronous machine. The process of state minimization then aims
at finding the minimal row machine with the same terminal characteristics as the original
machine. Two types of minimization are possible in an asynchronous machine :

o States which are redundant, in the sense that their function is accomplished by one or
more other states of the machine, can be eliminated.

o States which are distinguishable only by the values of the input variables and have the
same values for the secondary variables can be merged together.

Using standard techniques adopted for incompletely specified synchronous circuits, the re-
duction procedure identifies the set of states which should be included in a minimal machine,

3. Formation of the reduced flow-table :

Once the set of states in the equivalent minimal machine have been identified, the initial flow-
table is converted to its reduced form. In the case of asynchronous machines, certain unique
characteristics of the flow-table are utilized to simplify the procedure deriving the reduced
flow-table.

4. Assignment of outputs to unstable states :

Since the initial primitive flow-table had the outputs of the unstable states unspecified, certain
states in the reduced table may also have their outputs unassigned. These outputs are assigned
based on certain design criteria like the speed of output change or complexity of the output
logic.

15

Description

Flow=Table
Description

Reduction Of
The Flow-Table

Reduced
Flow=Table

Output Assignment
To Unstable States

State Assignment

BN
Excitatio

and
Output Tables

\
Derivation Of Excitation
Functions

limination Of Static
and dynamic hazards
the excitation function

Realization

Figure 3.1: Synthesis flow for fundamental-mode asynchronous circuits

16

S. State assignment :

State assignment techniques for synchronous circuits aim at minimizing the complexity of the
combinational logic. In contrast, the assignment of the binary-valued secondary variables in
asynchronous machines has a very different objective. Since the delays associated with the
different state variables may be unequal, state assignment has to guarantee that the successful

* completion of the intemnal transitions is independent of the relative values of these delays.
Although multiple changes of state variables are permitted in a single transition, it has to be
guaranteed that when two or more state variables change in a transition, the final state of the
circuit is independent of the order in which these state variables change.

6. Derivation of excitation functions :
After state assignment, the excitation and output tables are derived, from which the two-level
logic functions for the state variables and output signals are generated.

7. Hazard-free implementation of the combinational logic :

To guarantee a proper operation of the circuit under the assumptions listed earlier, the combi-
national logic has to be made hazard-free. This involves the elimination of static and dynamic
hazards for single-input changes.

Chapter 4

Derivation of the Flow-Table

The first step in the synthesis procedure is the representation of the asynchronous machine
in the form of a flow-table. In case a verbal description of the circuit is given, the flow-table has to be
derived manually. However, if the circuit is specified in terms of its graph-theoretic representation as
a signal transition graph, the process of transforming it to an equivalent flow-table can be automated
and thus incorporated in the synthesis procedure.

In this chapter, the special characteristics of the flow-table representation of asynchronous
circuits are presented and the method of deriving the flow-table from the initial circuit description
is described.

4.1 A design example

To illustrate the design process, a classical example of an asynchronous circuit is de-
scribed in this section [10]. This example is referred to in subsequent chapters of this report, unless
otherwise mentioned.

The asynchronous circuit considered is that of a 4-phase handshake protocol, which is an
example of an interface between two circuits A and B operating independently. The signal transition
graph representation of the machine is depicted in Fig. 4.1. It consists of two input signals R;, and
Ain and two output signals 4., and R,,; which are described below :

R;n : input signal from circuit A.

Aous : acknowledge signal to circuit A.
Rous © ready signal to circuit B.

Ain : acknowledge signal from circuit B.

17

18

Lo
AN
Lol

Figure 4.1: STG Representation of the 4-phase handshake protocol [10]

The start-state of the machine is the state in which all signals are low and is given by the
initial marking on the edges Aous~ — Rint, and Ain= — Rous*. When circuit A wishes to signal
circuit B, it does so through the 4-phase handshake in the following manner : Circuit A sends a
high on signal R, to the interface. Upon receiving a positive transition on R;, » the interface sends
an acknowledge back to circuit A by a positive transition on the signal Aoq;. Simultaneously, it
also signals circuit B with a high on the ready signal Ro.,. After this, the following two processes
can proceed independently and in parallel :

1. After receiving the acknowledgement from the interface on Aoy, circuit A withdraws the
high on R;,. The interface then changes A, back to low.

2. When circuit B receives a 1 0n R,y it signals the interface with a high on its acknowledge
signal 4;,. Upon receiving this acknowledgement from circuit B, the interface withdraws
its ready signal R, to circuit B. Following this, circuit B withdraws its A;,, signal.

19

]
»
-]

]
:
—t-—b—g - —=-
S N I) N O

RN S ISP PN Sy SRy TGS N S
—e—— e e e e e e R
—_—tee e e - -
——— e e e e e e

® @ ® ® ® ®
Figure 4.2: Possible input-output sequence for the 4-phase handshake circuit

4.2 Flow-table derivation from a verbal circuit description

In this section, the derivation of the flow-table representation from the initial verbal de-
scription of the 4-phase handshake circuit is described. Simultaneously, the properties of a flow-
table for an asynchronous machine are highlighted. To illustrate the process of flow-table derivation,
Figure 4.2 shows a possible input sequence and the corresponding output sequence.

As mentioned earlier, asynchronous circuits have two distinct types of states : unstable
and stable states. When an input change occurs, the machine temporarily goes into an unstable
states and then assumes the stable state condition. In the flow-table, stable states are distinguished
from unstable ones by enclosing them in a box.

The start-state of the machine is the state where all signals are low, and is denoted by state
[1] Thus the stable state[1]is entered in the first row under the input condition (Rin, Aia) = (0, 0).
If Rin goes high at this point, then both the outputs Roy: and Ao, g0 high simultaneously. This
new state is denoted by the stable state @ Thus a E‘is entered in the second row under the input
condition 10, with the outputs 11. Also, an unstable State 2 is entered in the first row under the
input 10, signifying that the stable state [1] will change to the stable state [2] under the inputs 10
after passing through the transient unstable State 2,

Now, if input A;, also goes high, then the circuit enters a new state where the output Roy
is Iow and Aoy is high. Thus the stable state [3]is entered in the third row under column 11, with

20

Statef, }-2.,.,,.4,.,.
Rt.ﬂA!.ﬂ
00 01 11 10
00 - - 2
4 - 3 |i2in
- s [|3fo1] 2
[4f10] 5 - 2
1 |[[sto0]| 3 -

Table 4.1: The Primitive Flow-Table for the 4-Phase Handshake Machine

the outputs 01 and an unstable state 3 is entered in the same column in the second row. Continuing
in this way, next-state and output entries are determined for every possible input combination and
history of past input-values. In case a stable state @ with the same outputs under the same input
~ condition already exists, then a transition to that state is épeciﬁed by entering the unstable state §
in the comresponding column; otherwise, a new row is augmented and a new state is introduced in
the column of the input configuration. The final table derived is shown in Table 4.1. It has five
rows and 4 columns, each row corresponding to a stable state and each column to a different input
condition. Although states [1] and [4] occur in the same column with input condition 00, they are
distinct since they have different outputs.

In conclusion, the main features of the primitive flow-table which completely specifies
the logical behavior of the gi;ren machine, can be enumerated as follows :

1. The table has exactly one stable state in each row.

2. In the event of an input change, a horizontal move occurs from the present stable state to an
unstable state in the column of the new input configuration.

3. A vertical move from an unstable state S to the corresponding stable state S represents a
change in the values of the internal state variables.

4. A horizontal move can only start from a stable state, since an input change can occur only
when the circuit is stable (assumption of fundamental mode of operation).

5. Since it is assumed that only one input signal can change at any time, entries corresponding
to multiple input signal changes in any row are unspecified.

6. Outputs corresponding to unstable state are also unspecified.

21

7. Even under the same input condition, there are distinct stable states for each different output
condition. '

4.3 STG transformation to the equivalent flow-table

As described earlier, the derivation of the flow-table from a verbal description of the éir-
cuit is very unsystematic and prone to errors. However, signal transition graphs provide an efficient
means for specifying the behaviorof asynchronous circuits and their transformation to an equivalent -
flow-table can be easily automated and thus incorporated within the synthesis procedure.

The concept of signal transition graphs as effective means of specifying asynchronous
circuits and their use in the synthesis procedure is described in Chapter 8. One method of translating
STG's into flow-tables is described in [14]. This approach first converts a STG into its equivalent
finite automaton, the state graph, which is then used to derive the flow-table. A direct method of
transforming STG’s into flow-tables can eliminate the intermediate state graph stage, thus reducing
the huge space complexity associated with state graphs, at the same time making the transformation
faster.

Chapter 5§

Reduction of the primitive flow-table

5.1 Objectives of ﬂow-tabie reduction

. It is evident from the procedure for flow-table derivation that the table contains only one

stable state in each row and entries corresponding to multiple-input changes are unspecified. The
construction of the initial primitive table thus leads to more states than would actually be necessary
to specify the behavior of the given machine. Reduction in the number of internal states may lead
10 a reduction in the number of state variables necessary to encode the internal states. This may not
only result in a reduction in the number of memory elements required for the feedback loops, but
may also lead to a reduction in the complexity associated with the combinational logic required to
implement the excitation functions for the output and state variables. Thus for economical realiza-
tions, it is desirable to reduce the number of intemal states in the flow-table,

In an asynchronous machine, each stable state represents a tota! state which is specified
by the secondary variables as well as the extemnal input variables. Thus an asynchronous circuit
can change states due to a change in its input variables only and not necessarily involving a change
in any of its secondary variables. Such states can therefore be distinguished by the values of their
input signals. In addition, there may also be states which are redundant, ie., states whose function
is accomplished by one or more other states of the machine. The reduction of the flow-table of an
asynchronous circuit therefore has two objectives : removal of redundant states, and identification
and subsequent merger of states which are distinguishable only by the values of the input signals.

Minimization of the number of intemal states of an asynchronous machine has many
advantages :

23

Nezt - gtateT- Rout Aout
Present RinAin
State 00 01 11 10
1 00 - - 2
2 4 - 3 (2} 11
3 - 5 {3} 01 2
4 (4] 10 s - 2
5 1 isl 00 3 -

" TableS.1: Modified Flow-Table for the 4-Phase Handshake Machine

1. Since the number of memory elements necessary for the implementation of a machine is usu-
ally proportional to the number of internal states, state minimization may reduce the com-
plexity and cost and hence the reliability of the realization.

2. Diagnosis of a machine is much easier in the absence of any redundant states.

3. State minimization reduces the length of the test-patterns needed to test the machine and thus
-reduces the time complexity associated with testing.

It is therefore desirable to transform the given machine into another machine with the
same terminal behavior, but which is free of any unnecessary states. Flow-table reduction thus
corresponds to finding the minimum-row table with the same terminal characteristics.

5.2 Analogy with flow-table reduction for synchronous machines

- The primitive flow-table derived for asynchronous machines can be modified to represent
a table of an incompletely specified synchronous machine. Each row of the primitive table contains
only one stable state. Therefore, the stable state S occurring in a row r; could be denoted as the
present state for row r;. Then, each entry of row r; occurring under an input configuration I;
represents the next-state and corresponding output generated when the machine is initially in state
S and gets a new input configuration I;. The modified table for the 4-phase handshake machine is
represented in Table §.1. ' ,

Since the modified table has many unspecified entries, it is analogous to the flow-table
of an incompletely specified synchronous circuit. It however has the special characteristic that in
each row, there is exactly one next state entry which is the same as the present state. This means
that for each present state and for exactly one input configuration, the machine does not undergo

24

any change in its internal variables. Standard flow-table reduction techniques used for state mini-
mization of incompletely specified synchronous circuits can now be applied to the modified table of
the asynchronous circuit. In this chapter, an exact algorithm for the minimization of incompletely
specified finite-state machines with special reference to asynchronous machines is presented.

5.3 Previous work in state minimization

The general theory of incompletely specified machines has been widely studied in lit-
erature (1, 2, 9, 27, 30]. The minimization process for such machines consists of finding the set
of maximum compatibles and selecting the smallest closed collection of compatibles from the set.
However, other than explicit enumeration, no systematic procedure for selecting a minimal closed
set of compatibles has been presented. Since the set of all maximum compatibles is obviously
closed, the upper bound on the number of states in any minimized table is equal to the number of
maximum compatibles [9). In contrast, the set of maximum compatibles for a completely specified
machine is disjoint. Therefore, in the case of completely specified machines, the number of states
in the minimum machine is equal to the total number of maximum compatibles.

Ginsberg [29] proves the lower bound on the number of the states in any minimal machine
to be the number of states in the largest maximal incompatible (those incompatibles not included
in any other incompatible). Grasselli, et al [27] present a minimization procedure by illustrating
that only a few compatibility classes need to be considered as members of any minimal solution.
Their procedure is therefore less enumerative than most known methods. They describe an integer
linear program formulation for the selection of the essential maximum compatibility classes. This
formulation is an extension of McCluskey’s prime implicant table [4]. Rao and Biswas [30] extend
the ideas of [27] by giving stricter conditions for the generation of prime classes and the elimination
of those maximum compatibles which will never be included in any minimal solution.

An exact algorithm for the minimization of incompletely specified machines with special
reference to asynchronous machines is presented in this chapter. This algorithm is based on the
generation of maximal compatibility classes (MC-Classes). From the set of MC-classes, the set of
prime classes is generated. The minimal cover consists only of prime classes, and the set of prime
classes to be included in the minimal cover is formulated as an integer-linear program which is
solved using a binate covering algorithm.

5.4 Compatibility classes and closed covering

In this section, a few definitions which are essential for an understanding of the state
minimization algorithm are presented.

Definition 1 [1]: In a completely specified machine, two states s; and 83, are said to be equivalent if and
only if, for every possible input sequence applied to either state, the owtput sequence generated is the same.

Definition 2 [1]: Two completely specified machines, My and M3, are said to be equivalent if and only ¥f,
Jor every state in My, there exists an equivalent state in M3, and vice versa.

Definition 3 [1]: Two machines are isomorphic if and only if they are identical except for a re-labeling of
their states.

Definition 4 [1]: A minimal machine is a one which has no equivalent states. Disregarding isomorphism,
the minimal machine of a completely specified machine is unique.

Definition § [9]: In the case of incompletely specified machines, state s; in machine M, is said to cover
state s; in machine M if and only if, every inpus sequence applicable to both the machines when they arein
their respective states s; and s; generates the same output sequence whenever the outputs of M are defined.

Definition 6 [9]: With the above definition of state cover, machine M, is said 1o cover machine M; ifand
only if, for every state s; in My, there exists a corresponding state 8; in M such that s; covers s;.

Definition 7 [1]: Two states, 8; and s; of machine M are compatible {fand only if, for every input sequence
applicable to both s; and s;, the same output sequence is generated whenever both outputs are specified and
irrespective of whether s; or s; is the initial state.

Definition 8 [I]: A compatibility class is g set of states in which all members are pairwise compatible.

Definition 9 [1]: A Maximal Compatibility Class (MC-class) is a compatibility class not contained in any
other class.

Definition 10 [1]: A set of compatibility classes is closed if, for every class C in the set, all its implied
compatibles are also contained in the set. A closed covering is a closed set of compatibles which contains
all the states of the machine. A closed cover specifies the sets of states which are compatible and therefore
may be covered by single states of the reduced machine.

In the case of completely specified machines, the equivalence partition , ie., the sets of
equivalent states is unique. This leads to a unique reduced machine. However, for an incompletely

26

specified machine, two or more different reduced machines may each cover the original machine.
Thus the aim of flow-table reduction is extended to the dual objective of finding a reduced machine
which not only covers the original machine, but also contains a minimal number of states.

A closed cover of the states of an incompletely specified machine serves the function of
an equivalence partition for a completely specified machine. However, the difference lies in the
fact that while the equivalence partition consists of disjoint sets, the closed cover may contain sets
which are overlapping. This leads to the realization that the closed cover in incompletely specified
machines is not unique. The objective of state minimization is therefore to select a closed cover
which has the minimum number of compatibles and thus defines a minimum-state machine that
covers the original machine. .

In conclusion, the problem of state minimization aims at finding a closed set of compati-
bility classes of minimal cardinality, which covers all the states of the given machine.

5.5 Exact algorithm for state-minimization

An overview of the exact state-minimization algorithm is depicted in Figure 5.1. From
the set of maximal compatibility classes, the algorithm generates all possible prime classes. The
problem of selecting the minimal closed set of prime compatibles is formulated as a minimal binate
covering problem. The solution to the covering problem gives the list of prime compatibles to be
included in aminimal cover. Since the set of states in any prime compatible are pairwise compatible,
they can be merged together into a single state. Thus the list of primes obtained as a solution to the
covering problem also gives the number of states in the minimal machine.

5.5.1 Generation of compatibility pairs

The first step in the minimization algorithm is the determination of the pairs of compatible
states. This procedure is based on the formation of the Merger Table [1] which is generated from
the initial flow-table. The merger table describes the pairwise compatibility of the intemnal states.
The initial merger table is generated by the following procedure :

1. If a pair of states can be directly recognizable from the flow-table as being compatible (their

next states and output entries do not conflict), a *-* is placed in the cell corresponding to the
pair.

44
SEERE 2

KISS Format File

|

J

Generation of Maximal
Compatibility Classes /

! /

/
Ganeration of Prime //
Compatibility Classes Vs
/

] \

Generation of the minimal Reduction Of CC-Table
set of prime compatibles (application of pruning rules)

Generation of Covering
and Closure constraints

~

) \\\
Derivation of the recuced a Sal of he
on ¢ minimal covering problem
flow-table

Reduced - Minimal
Flow-Table

Figure 5.1: Flow-table reduction algorithm for asynchronous machines

28

1 2 31 4

Table 52: The initial merger table for the 4-phase handshake machine

2. Else, if a pair can be directly recognized as being incompatible (at least one of their output
entries conflict), a **’ is'entered in the cell.

3. Else, although the next state entries of a pair of states may conflict, but their corresponding
outputs do not, then the states cannot be directly identified as either compatible or incom-
patible. In this case, the compatibility of the two states depends on the compatibility of the
state-pairs which appear as conflicting next state entries. For such a pair of states, the depen-
dency conditions for their compatibility are entered in the cells corresponding to the pairs.
These dependency conditions are called as implied conditions.

The initial merger table for the 4-phase handshake protocol is shown in Table 5.2. The
pair of states (1,4) have conflicting outputs under the input condition 00 and hence the cell cor-
responding to them is marked with a ***, Pairs (1, 3), (1,5), (2,3), (2,4), (3,4), and (3,5) can
be directly recognized as compatible pairs. However, the pairs (1,2), (2, 5), and (4,5) cannot be
directly recognized as either compatible or incompatible. All these three pairs have states 1 and 4
as conflicting next-state entries and thus the implied condition (1,4) is written in the cells corre-
sponding to them. It is to be noted that for purposes of flow-table reduction, both the stable and
unstable states are treated alike and hence no distinction is made while writing them.

The next step in the generation of compatibility pairs is to update the initial merger table
s as to remove any inconsistencies. The table is updated step-by-step until it cannot be updated any
further. This step is based on the implied conditions entered in some cells of the merger table. If a
pair of states (p;, p;) are incompatible and are included in the implied list of another pair (pm, pn).
then the pair (pm, pn) is obviously incompatible too. This rule is applied to the merger table in a
systematic manner until no further incompatibilities can be determined. In the 4-phase handshake
example, it is evident from the initial merger table that the pair (1,4) is incompatible, This pair is
included in the implied list of pairs (1,2), (2,5), and (4, 5). Thus the merger table is modified to
denote the pairs (1,2), (2,5), and (4, 5) as incompatible by placing a **" in their respective cells.
The final merger table for the example is obtained as in Table §.3.

29

[

W &l wi N

[

— — | *
1

2| 3|4

Table $3: The final merger table

Figure §.2: Merger Graph for the handshake example

The final list of compatibility pairs are the pairs of states which do not have a **’ in their
cells. Thus the pairs (1,3), (2, 3),(3,4), (1,5). (2,4) and (3, S) form the list of compatibility pairs
for the 4-phase handshake sequential machine.

5.5.2 Derivation of maximal compatibility classes

From the list of compatibility pairs determined in the previous step, the maximal com-
patibility classes (MC-classes) can be generated by the formation of the Merger Graph [1] and the
largest complete polygons in the graph can be identified. The Merger Graph has a node for each
state of the original machine and an edge between two nodes if they form a compatible pair. A
complete polygon of the graph identifies a set of states which are pairwise compatible. Thus the
largest complete polygons determine the maximal compatible sets. The merger graph for the 4-
phase handshake example is shown in Figure 5.2. The largest complete polygons in the graph can
be identified as the set of states (2, 3,4) and (1,3, 5), which form the maximal compatibles.

However, a different technique is used to determine the MC-Classes. This technique is
a dual-procedure based on the use of incompatibility pairs to recursively break down large sets of
states into smaller sets until the sets finally remaining are the MC-Classes [26]. To illustrate the

30

basic operation, consider the initial set of states (1,2, 3,4, 5). Now, if the pair (1, 4) is identified as
an incompatible pair, then the original set of states is split into two sets : a set (2, 3,4, 5) with the
state 1 omitted and a set (1,2, 3, 5) with the state 4 deleted. This operation is applied recursively on
the two sets generated. The procedure for the generation of the MC-Classes is enumerated below :

1. Start with the initial set of all states.

2. Assume the procedure begins with the first state, Sy. Split the set into two sets : one con-
taining all states except Sy, and the other containing state Sy along with all states which are
compatible v)ith it. This second set is easily identifiable from the merger table by selecting
the states with non-*** entries in the column corresponding to S.

3. Move to the next column which contains at least one ‘** entry. Let this column be j. For
cach set on the list containing the state S; and having at least one state which is incompatible
with S ;, replace it with two sets : one without S; and the other without states which are
incompatible with S;.

4. Repeat the procedure for every column in succession. At each stage, eliminate those sets on
the list whichare contained in other sets on the list.

This procedure when applied to the handshake example yields the following steps :

fal. (1,2,3,4,5) the initial set of states
bl. (2,3,4,5)(1,3,5) splitting with respect to state 1
fcl. (3,4,5)(2,3,4)(1,3,5) splitting set (2, 3,4, 5) with respect to state 2
(dl. (3,5)(3,4)(2,3,4)(1,3,5) splitting set (3,4, S) with respect to state 4
[el. (2,3,4)(1,3,5) deleting sets (3, S) and (3, 4) contained

" within (1,3, 5) and (2, 3, 4) respectively

§.5.3 Generation of prime compatibility classes

Since the potential number of MC-Classes for large machines could be very large, the
complexity of the covering problem could be reduced by eliminating those classes which would
not be included in any minimal cover. This stage of the minimization procedure mémfom aims at
selecting those MC-Classes which are potential candidates for inclusion in any minimal solution.

A compatibility class C; is said to be excluded by a class C; if C; contains all the internal
states of C; (Ci 2 C;), and all the classes implied by C; are also implied by C;. A Prime Com-
patibility class is one that is not excluded by any other compatibility class. By this definition and

31

by the procedure for the generation of MC-Classes, all the maximal compatibility classes gener-
ated classify as prime compatibility classes. It has also been proved by Grasselli [27] that prime
compatibility classes are the only ones which need to be retained for a minimal cover.

However, the MC-Classes generated are not the only prime compatibles. Other prime
compatibles have to be generated from the list of maximal compatibles. This procedure is based
on the decomposition of each maximal compatible into sub-classes and subsequent elimination of
those sub-classes which are excluded by other classes already generated. The algorithm begins
with the initial list of MC-Classes and selects the maximal compatible of largest size (n). It then
generates all sub-classes of size (n — 1). Only those sub-classes which are not excluded by classes
already on the list are added to the initial list of MC-Classes. This process is applied recursively
to the newly-determined prime classes of size (n — 1), to generate prime classes of all sizes. This
procedure guarantees that only prime classes are added to the list, ie., no class already on the list is
ever excluded by a newly generated class.

To further reduce the number of prime classes generated, thus reducing the complexity
of the covering problem, additional pruning rules can be employed as described in [30]. These are
based on an extension of the concept of implied compatibles called transitivity of implication.

5.5.4 Formulation of the minimal covering problem

The objective of the covering algorithm is to select the smallest closed set of compatibles
from the set of prime compatibles generated in the previous stage, so as to satisfy the following
constraints :

o Each state of the machine is covered by at least one selected prime class. These constraints
form the Covering constraints.

* The set of selected classes is closed with respect of implication. This constraint implies that
if a prime class C is selected, then all its implied compatibility pairs must be included in at
least one prime class from the list of selected prime classes. This forms the set of Closure
constraints.

o The cardinality of the set which satisfies the above covering and closure constraints is mini-
mal.

The third condition forms the objective function which is to be minimized under the cov-
ering and closure constraints [27]. To illustrate the formulation of the covering problem, assume

2

that the total number of states in the machine is s and the number of prime classes generated is n.
Let the number of classes with a non-empty set of implied compatibles be p. Corresponding to each
compatible class Ci, letc; be defined as the variable such that ¢; = 1 if C; is included in the minimal
cover and 0 otherwise. -

Cost function

The objective of the covering problem is to assign values from the set (0,1) to each
¢, t = 1,...,n, soas to satisfy the following cost function subject to the covering and closure
constraints :

n -
minimize Z (2
=]

Covering constraints

If state o; is included in compatibles C;;1,Cy, ...,Cir, then the covering constraint for
state s; specifies that at least one of these compatibles must be included in the minimal cover. This
is expressed in mathematical terms in the form of a boolean equation :

ci1+cat..+cr21 i=1,.,s

Closure constraints

If a compatible class C; is selected, then each member of its implied set of compatibility
pairs must be contained in at least one of the classes included in the minimal cover. Let the set of im-
plied classes for C; be (CasCp, ..., Cy). Let C, be contained in compatibles Cq,, Cayy +oey Caqs Cs
in compatibles Cpg, , Cg,,, Cg, and so forth. Thus for each compatible, C;, the closure constraints
can be formalized as :

&+ (cay +Cag+ oot Cao)c + 3 + o + eg)erlCmytepntotey)=1

Constraint inequalities

The above set of covering and closure constraints can be rewritten as mathematical in-
equalities as shown below :
ci+cat..+¢cr >0, i=1,..,s
=& + (Cay + Cag + -+ €a,) > -1

33

=&+ (ca +cg+.atcs)> -1

“&G+(ententtey)>-1

Formation of the Covering-Closure Table

The above constraints can be represented by means of a table called the Covering-Closure
Table or the CC Table. This table has a row for each compatible class and a column for each
constraint. The table has two sections, one for the covering constraints and the other for representing
the closure constraints. For each covering constraint corresponding to state s;, a 1 is placed in the
rows of the prime compatibles which include s;. For each closure constraint of the form

=& +(Cay +Cag + 0o+ €a,) > =1 ,

there is a column having a 0 in row corresponding to compatible C;, and a 1 in rows corresponding
10 compatibles Cq,, Cayy +-oey Ca,.

5.5.5 Solution to the covering problem

Before applying a binate covering algorithm to the above representation of the covering
problem, the size of the CC-Table and hence the complexity of the covering algorithm can be greatly
reduced by the application of pruning rules to the CC-Table. These rules are based on the concept
of essential rows and row and column dominance and are described in [27]. Since the covering
problem is NP-complete, reduction of the size of the CC-Table may considerably reduce the time -
needed to find a minimal cover.

Once the CC-Table is reduced, the covering problem is solved using a standard binate
covering package called “sm_mat_bin_minimum.cover()” which takes as its input the CC-Table
and generates the list of prime compatibles which are included in a minimal cover.

5.6 Formation of the reduced flow-table

Once the prime compatibles which are included in the minimal cover are determined,
the original primitive flow-table has to be reduced. The reduction procedure aims at merging the
states which belong to the same prime compatible. However, the compatibles selected to form the
minimal cover may not necessarily be disjoint, ie., a state of the original machine may be included

34

in two or more selected prime compatibles. It is therefore necessary to make the cover disjoint
before deriving the reduced table.

Once the selected prime compatibles form a parzition of the original set of states, the
initial primitive flow-table can be reduced based on the minimal cover. This reduction process is
simplified compared to that of synchronous flow-tables due to the intrinsic nature of the primitive
flow-table for an asynchronous machine, i¢., the presence of exactly one stable next-state in each
row which is the same as the present state for that row, and the outputs for unstable states being
unspecified. ’

The basic step in the reduction of the primitive flow-table is to merge rows which have
their corresponding present states included in the same compatible. The merger process aims at
combining the next-state and output entries of the rows being merged to conform to the compatibles
included in the minimal cover. In case a stable state is merged with an unstable state, the merged
state in the reduced table is marked as stable. Also, in such a case, the output of the stable state
represents the output of the merged state.

From the process of flow-table derivation, it is observed that two stable states which occur
under the same input configuration must have conflicting output entries. If this was not true then
only one of them would appear as a stable state under that input condition. This leads to the fact
that in the procedure for the generation of prime compatibles no two states in the same compatible
can have their next-state entries under any particular input condition as both stable states. It is also
true that unstable states have their outputs unspecified. Thus while merging any two rows of the
primitive table, it is only possible to mérge a stable state with an unstable state, or to merge two
unstable states together. In either of these cases, the states being merged are the same; only their
status may differ as being stable or unstable. Thus a situation where two stable states in any column
are to be merged can never occur and therefore, in any merger, conflicting output entries are never
encountered. This fact is utilized in simplifying the process of flow-table reduction.

The reduced flow-table for the 4-phase handshake machine is shown in Table 5.4. The
reduced table is constructed by merging the rows corresponding to the states in the compatibles
(2,3,4)and (1, 5).

5.7 Output assignment for unstable states

In the primitive flow-table, the outputs for the unstable states are left unspecified. In the
process of deriving the reduced table, there could be situations when two unstable states in two rows

35

Nezt — State, RogtAout
Present Rindin
State 00 01 11 10

1 4110) S,- 01 11
2 l pm Elw 30- 20-

Table 5.4: Reduced table derived from the partition {(2,34) (1.5)}

are merged together, as a result of which the outputs of the merged next-states remain unspecified.
These unspecified output entries have to be assigned values before the reduced flow-table can be
used to derive the excitation functions.

In certain situations, the assignment of outputs is dictated by the necessity to guaranfee
that no momentary false output occurs in the transition. In the case of synchronous circuits, mo-
mentary false outputs pose no problems since outputs are sampled at the clock pulse. Howevér.
transient false outputs in asynchronous circuits can cause problems if the output is used as an input
for another asynchronous circuit. Thus in case of a transition from one stable state to another, both
with the same outputs, the output of the intermediate unstable state has to be assigned the same
value to prevent any transient output values. .

However, in the event of a change from one stable state to another, both with different
output values, the assignment of output to the unstable state could be based on different design
criteria like the speed of output change desired (fast or slow output transition), or the complexity
of the output logic. For a transition from stable state s; with output O to stable state s; with output
1, the intermediate unstable state s; can be assigned the output 1 if a fast output change is desired
or the value 0 if a slow output transition is required.

However, a particular unstable state S; may be an intermediate state for more than one
state transition. This means that the stable state @ may be reached from more than one previous
stable state. In such a situation, the output assignment procedure has to take all such transitions into
consideration. Let us assume that an unstable state Si is the intermediate state for transitions from
states[S1}[Sk] Let the output of the state [5:]be 2. 1f either of the states [51][Sk]have
outputs equal to Z, then the output assigned to unstable state S must also be Z in order to prevent
any false transitions. However, if the outputs of all these states are different from that of @. then
the unstable state S can be asslgned an output based on different design criteria.

Another criteria for output assignment can be based on the objective of minimizing the
complexity of the output logic. The heuristic used to estimate the complexity of the output logic is

36

based on the concept of distance. The distance between two binary values is defined as the number
of bit-positions in which the two values differ. Let n be the number of outputs of a given circuit and
for a particular unstable state S, let k be the number of stable states which have a transition to[S]

'mmthcouqmtofmemstablestateSlsassxgnedsoastomlmmzemetotalsumofmed:stanoes

of the assigned output from the output of the stable state [S] and the outputs of the k stable states

which have a transition to S.

Definition 11 [9] : Flow-tables in which any input change produces at most one output change are called
Single-Output Change (SOC) flow-tables, while tables which produce a sequence of output changes for a
single input change are called Multiple-Output Change (MOC) tables.

Definition 12 [9] : SOC tables in which every state transition leads directly to a stable state without passing
through a sequence of transient unstable states are called normal-mode flow-tables.

The flow-table derivation procedure described in the previous chapter produces tables in
which every transition leads directly to a stable state. Therefore, in order to make the tables normal-
mode flow-tables, the outputs of the unstable states should be assigned such that every transition
involves only a single-output change. This can be accomplished by the following procedure : for
every transition from stable state s; to stable state s;, assign the output of the intermediate unstable
state equal to either the output of s; or the output of s;.

As presented in Chapter 6, the state assignment techmque is easy to automate in the case
of a normal-mode flow-table.

Chapter 6

State Assignment in Asynchronous

Circuits

6.1 Objectives of state assignment in asynchronous circuits

State assignment is the process of representing the internal states of a machine by com-
binations of values of binary state variables. In the case of a synchronous machine with n states,
[log n] state variables are necessary and sufficient for representing the n states and the goal of state
assignment is to assign a unique coding to each internal state so as to minimize the complexity of the
combinational logic. However, in asynchronous machines, owing to the different delays associated
with each feedback path, multiple cﬁangw of secondary state variables may lead to race conditions.
Thus the primary goal of state assignment is to guarantee that the successful completion of any
state transition is independent of the relative values of the delays associated with each secondary
variable. Moreover, in order to guarantee the proper operation of the circuit, [log n] state variables
may no longer be sufficient to represent all the intemal states and it may be necessary to induce
redundancy in the state assignment.

Against the background of the above primary objective, the secondary objectives of state
assignment in asynchronous circuits could be one or more of the following :

1. Use a minimum number of state variables.

2. Minimize transition time : Each transition from one stable state to another may be routed
through a number of intermediate transitions, each of which involves change of a single state
variable. Transition time of an assignment is defined as the maximum number of steps re-

37

38

quired for the completion of any state transition. For fundamental-mode circuits which allow
only single input changes, transition time of an assignment affects the minimum period be-
tween any two successive input changes and thus the speed of operation of the circuit. Thus a
secondary objective of state assignment could be to minimize the transition time. The concept
of transition time i$ discussed later on in this chapter under the connected row-set method of
state assignment.

3. A modification of the above objective could be to have a single transition time state assign-
ment so as to allow multiple state variable changes in a single transition. This technique of
state assignmém is called single transition time (STT) assignment and is described in later
sections of this chapter. Itis one of few state assignments techniques which can be automated
with an exact algorithm.

The asynchronous state-assignment problem is different from the synchronous one due
to the additional constraints introduced by the primary objective : if two or more state variables
change during any transition, the final state of the circuit should be guaranteed to be independent of
the relative order of the changes of those state variables. A change of multiple state variables during
a single transition is called a race condition. A race could be either critical if the final state reached
depends on the order in which the state variables change, or non-crirical otherwise. Obviously,
since we cannot guarantee that all state variables which have to change during a state transition
will change simultaneously, any state assignment with race conditions must have only non-critical
races. Thus a race-free assignment is sufficient but not necessary for proper operation of the circuit
9] '

In the light of the above difficulties, the design of race-free circuits may not always be
possible with uni-code state assignments such that all state transitions involve only single state
variables changes. It therefore becomes necessary to relax some of the conditions of traditional
state assignment techniques. We may need to assume that each state can be assigned more than one
encoding, and/or that each transition can take place in more than one time-step.

Definition 13 [9] : Assignments which have the property that a single state transition may take place in
multiple time-steps are called Multiple Transition Time (MTT) assignments while those which require only
a single time-step are termed Single Transition Time (STT) assignments.

Thus in STT assignments, all state variables which have to change in a state transition
are allowed to change simultaneously. While MTT assignments increase the minimum time-period

39

Nezt - State, 292,
Present Zoz)
State 00 01 11 10
1 00 2 - 6
2 1 2111 4 -
3 1 3,01 5 -
4 - 3 4110 7
5 - 2 S5il11 8
6 1 - 4 6} 00
7 1 - 4 7410
8 1 - 5 8111

Table 6.1: Machine M1

between two successive input changes, STT assignments do not hamper the speed of operaticn in
this respect.

6.2 MTT state assignment techniques

6.2.1 Adjacency graph

The two different MTT methods of state assignment which will be discussed ahead are
based on the formation of an'adjacency graph. This graph has a vertex for each state (row) of
the flow-table and edges between any two states which need to be assigned adjacent codes. States
which need to be assigned adjacent codes are those which have a transition between them. Thus, if
for any pair of states s; and s, and for any input condition Ji, if the next-state entry N(s;, I;) is the
unstable state s, and the next-state entry N(s;, Ii) is the stable state s,,, then it is essential that
states s; and s; be assigned adjacent codes and hence have an edge between them in the adjacency
graph. This edge is labeled by the input condition J; to signify the input under which the two states
have a transition.

In effect, the adjacency graph lists all the adjacency constraints which must be satisfied
by any race-free assignment. The state assignment problem is then to assign codings to each state
so that all pairs of states which are adjacent in the adjacency graph are assigned codes differing in
only a single state variable. However, if s, happens to be the only state in the column I}, then the
race is a non-critical race and can be allowed since the circuit cannot reach any other intermediate
state instead of sp,.

Nezt — State, 202,

Present : Z0Z)

State 00 01 11 10
A Aloo|jal11] B,00 |{Al 00
B A 10 | C,10 ||B]10|[B} 10
C A, 01 [[cloi] p,11 |lcl11
D - [A1 {[pJuf ¢ 11

Table 6.2: Reduced table for machine M1

To illustrate the concept of adjacency graph and the different methods of MTT assign-
ments, the asynchronous machine M 1 shown in Table 6.1 is used. After state minimization and as-
signment of outputs to unstable states, the reduced machine is as obtained as shownin Table 6.2. The
final list of disjoint compatibles which are used to derive the reduced table are (1, 2, 6), (4,7), (3, 8),
and (5). The reduced machine therefore has 4 states labeled A, B, Cand D. State D has its transition
on input 00 unspecified. '

The adjacency graph derived from the above reduced flow-table for machine M1 is de-
picted in Figure 6.1. As is evident from the graph, state A has to be assigned a code adjacent to B.
Similarly, the code of B should be adjacent to D and the code assigned to D has to be adjacent to A.
Thus the set of states (A, B, D) form a cycle, as do the sets (4,C, D), (4, B, C), ad (B,C, D).
It is clear that the minimum number of state variables (2) are not sufficient to implement a state
assignment for which all state transitions involve only a single state-variable change. Thus in this
case there does not exist any unicode assignment such that all transitions occur between adjacent
states. ' .

This example illustrates that redundancy may be necessary for successful state assign-
ment, in the sense that more than the minimum number of state variables may be required to guar-
antee the proper operation of the circuit.

6.2.2 Connected row-set assignment

This is a method of state assignment where each state transition is allowed to take place
in more than one time-step so that each step involves only a single variable change. Each state
is assigned a set of codings, which constitutes the row-set of the state [2]. The row-sets of every
state are constructed so that each code in the set can be reached from every other code in the same
set through a sequence of intermediate codes, each belonging to the same set and each transition

41

@ 00,11 @

oo

Figure 6.1: Adjacency graph for machine M1

involving only a single variable change. Such row-sets are termed connected row-sets.

For successful state assignment, the connected row-sets of each state have to be con-
structed so that the following condition is satisfied : for any pair of states which are adjacent in the
adjacency graph, the corresponding row-sets of the two states must be intermeshed, ie., a code in
the row-set of one of the states must be adjacent to a code in the row-set of the other state, With
this construction procedure, any transition from state s; to s; can be accomplished by a series of
transitions within the row-set of s; to a code which is adjacent to some code in the row-set of s; and
then a final transition to that adjacent code. Thus every state transition in the flow-table can then be
executed by a sequence of single-variable changes. However, there is no known non-enumerative
algorithm for the construction of connected row-sets.

Criteria for constructing row-sets :

A simple criteria which could aid in the construction of connected row-sets is to order
the vertices in descending order of their degrees and start with the vertex with the highest degree
(which is the state with the maximum number of adjacent states). Let the degree of the vertex with
the highest number of adjacencies be k. If the number of states in the machine is n, then the lower
bound on the number of state variables required for state assignment is m = [logn]. However, if k
is greater than m, then two there could be two possibilities : the number of state variables could be
increased, or the state corresponding to the vertex with the highest degree can be assigned multiple
codes so that the required number-of adjacent codes are available to be assigned to its adjacent
states.

In the adjacency graph for the reduced machine of M1, vertices A and C have the highest

42

degrees. Starting with vertex A, its adjacent vertices are B, C, and D. Thus two state variables
are not sufficient for this state assignment. We therefore increase the number of state variables to
3 and assign the following codes : A4(000), B(001), C(010), and D(100). The next vertex to be
considered is C with adjacent vertices A, B, and D. The adjacency of C with A is already satisfied
in the codes assigned so far. However, to satisfy the adjacency of C with B and D, an additional
code has to be assigned to C so that it is adjacent to codes assigned to B and D. This additional code
also has to be adjacent to the code 010 already assigned to C, in addition to being adjacent to the
codes 001 of B, and 100 of D, Obviously, of the remaining three-variable codes, there is no code
which satisfies all these conditions. We therefore assign the code 101 to C, which is adjacent to the
codes of both B and D. However, to make the row-set of C connected, additional codes 110 and 111
have to be assigned to state C. This satisfies all the required adjacencies and thus is a feasible state
assignment. -

With this assignment, if the circuit is initially in state C represented by the code 010 under
the input condition 01, and the input changes to 11, then the circuit would go through the sequence of
single-variable changes 010 — 110 — 111 — 101 — 100. The above transition therefore requires
four steps for its completion. Since this is also the longest transition, the above state assignment
has a transition time of four.

Reducing Adjacencies :

Before beginning the state assignment procedure, it is prudent to reduce the number of
adjacency constraints, if possible. This reduction can be performed at the level of the reduced flow-
table [2]. If there exist two states s; and s;, such that their corresponding next states under an input
condition I are the same (s;, where s, # 3, 8;), then the next-state entries can be modified by
making N(s;,I) = s; instead of ;. This modification has the effect that the transition 8 — 8 is
replaced by the sequence of transitions 8; —» s; — . This would help in reducing the number of
adjacencies associated with state s; and thus possibly the number of state-variables.

Since the connected row-set assignment technique is largely intuitive, it is very difficult
to automate. However, universal n-state row-set assignments [2, 9], which use a fixed number of
state variables for all machines with the same number of states can be casily automated. These
assignments, in general utilize more number of state variables, but may reduce the transition time
and hence the speed of operation of the circuit.

43

6.2.3 Shared-row assignment

In the connected row-set assignment technique, the sequence of intermediate states for
any two different state transitions are disjoint, in the sense that no two state transitions share the same
intermediate states. However, this may not always be necessary. For example, two state transitions
occurring under two different input conditions may be made to share intermediate states. This may
lead to a reduction in the number of state variables needed for a state assignment free of critical
races.

On the contrary, in the shared-row technique of state assignment, a unique code is assigned
to each state and additional codes are used as intermediate codes to route transitions between rows
which are not adjacent. Codes which are used as bridging states augment the flow-table as sup-
plementary rows and are used in different columns to bridge transitions between different pairs of
rows. However, in the same column, the shared row can be used to bridge more than one transition
only if all those transitions have the same final state. Unfortunately, this method is also enumerative
_ like the connected row-set technique.

This method is illustrated on the machine M1 whose adjacency graph is shown in Figure
6.1. The first step is to determine the destination sets for each stable state. The destination set
corresponding to a stable state s; under the input configuration I; is defined as the set of states
which have state s; as their next state under the input I;. This is denoted as D;;. For example,
under the input combination I} = 00, the set of states (A4, B, C) have their next-state entries as
the state A and therefore form the destination set D 4;. The list of destination sets obtained for the
reduced machine M1 shown in Table 6.2 is ;

InputI; = 00: (4,B,C)
Input I = 01 : (4,D),(B,C)
Input I = 11: (4, B), (C, D)
InputZ, = 10: (C, D)

Obviously, a two variable solution is not possible for the machine. For a three variable solution, let
us assign the states of M1 with the following codes so as to satisfy the adjacency constraints for state
A : A(000), B(001),C(010), D(100). The objective is to make each destination set connected.
The above assignment makes the sets (A4, B) and (4, D) connected. The remaining sets which are
to be connected are (4, B,C), (B, €), and (C, D). The obvious choice is to start with the state C
which belongs to all these three destination sets. A code is therefore assigned from the remaining
unassigned codes to the shared row R; such that it is adjacent to the code already assigned to

Nezt = State, 202)
Present o2z Code
State 00 01 11 10 yl y2 y3
A 1AL00|]{AL11] B,00 |[[A]00 0 0 O
B A,10 | R1,10 |[B}10]|B] 10 0 0 1
C A,01 |[[ClO1|[R2,11[|Cl11 0 1 0
D - A1l IDL11 | R2, 11 1 0 O
R1 - C, 10 - - 0 1 1
" R2 - - DII|CIT| 1 1 0

Table 6.3: Shared-row assignment for machine M1

-C(010). The assignment of the code (011) to the shared-row R, connects both the destination sets
(A,B,C),(B,C). In order to connect the remaining set (C, D), the code (110) is assigned to the
second shared-row R;. The next-state entries in the Table 6.2 have to be changed appropriately

'to set up the above indirect transitions. The modified flow-table is shown in Table 6.3. Although,
the above shared-row assignment requires the same number of state variables as the earlier row-set
technique for Machine M1, in certain cases this method could give a considerable reduction in the
total number of state variables used.

6.3 STT assignment techniques

As explained earlier, MTT assignments may increase the minimum time required between
two successive input changes if the transition time of the assignment is more than a single state
change. To circumvent this problem, assignments could be selected which either have only single-
variable changes or allow the simultaneous change of multiple variables in a single transition. These
assignments would require only a single time-step for the completion of any transition and hence
are termed as single-transition time assignments.

Assignments which have only a single variable change for any transition are termed one-
shot assignments [9]. These assignments assign multiple codes to each state, but the row-sets of
each state need not be connected. However, the set of codes are assigned such that for any pair of
states s; and s; which are adjacent in the adjacency graph, every code assigned to any state ; is
adjacent to some code assigned to s;. In general, one-shot assignments require a lot more variables
than other state assignment techniques.

Another method of STT assignment is based on the assignment of a single unique code to
each state and the codes assigned to adjacent states may not be adjacent. These assignments allow

45

multiple state variables to change simultaneously and therefore must guarantee the absence of any
critical races. Such assignments are called Unicode STT assignments [2]. Unlike the assignment
techniques discussed earlier which are based on trial-and-error and hence very difficult to automate,
unicode STT assignments are more algorithmic and probably the only asynchronous assignment
techniques which can be easily automated.

6.3.1 Unicode STT assignments

As discussed, the main objective of the unicode assignment technique is to assign a unique
code to each internal state so as to guarantee that the state-table is free of any critical races. In this
case, the circuit can allow multiple changes of state variables in a single state transition and still
guarantee the proper operation of the circuit.

If multiple state variables are allowed to change simultaneously, then the order in which
the variables change cannot be prespecified. Forexample, a state coded as 1001 can have a transition
to another state coded as 1100 through the intermediate points 1101 and 1000. Thus the set of four
points 1001, 1100, 1101, and 1000 can be specified by the transition subcube denoted by the cube
*1-0-’, where a ‘-’ in a bit position means that the corresponding variable can take either of the
values 0 or 1. The intersection of two transition subcubes is the set of points contained in both the
subcubes. '

With the above definition of transition subcubes, the condition for the absence of any
critical races in any column of the flow-table can be specified. In any column represented by the
input condition I} and for any pair of transitions with different destination statés. the two transitions
do nothave acritical race between them if their transition subcubes are disjoint, ie., their intersection
is the null-set [5]. This condition forms the basis for the unicode assignment technique.

Therefore, in order to eliminate critical races between any two transitions with different
destination states, there must be some state variable which distinguishes between the pair of transi-
tions. For example, for a transition from state s; to s; and another from state s 10 s;, with 85 # a1,
a variable must be assigned such that it takes the value O for states s; and s;, and the value 1 for
states s and sy, or vice-versa. Based on this condition, a construction procedure for unicode state
assignments can be formulated as described below. This procedure works only for normal mode
flow-tables.

1. For every column i of the flow-table, 1 < i < m, where m is the number of columns, form
the set of stable states in the column denoted by Q;. Each of these sets of stable states have

46

then to be distinguished by the appropriate number of state variables. Sets containing only a
single stable state can be eliminated.

2. For each of the remaining sets Q;, do the following :

(a) assign [log m] state variables, where m is the cardinality of set Q; (the number of stable
states in column).

(b) Assign a unique coding in these state variables to each of the stable states in Q;. If the
number of possible codes in these state variables is greater than the number of stable
states, some of the stable states may be assigned codes in which some variables are
unspecified. ’

(c) The remaining unstable states in column ¢ are assigned the same code as the stable state
which is reached from them. In other words, if N'(s;,I;) = s, with sz # s;, then s; is
‘assigned the same code in these variables as the state s,.

3. Inthe final step, the unnecessary state variables can be deleted. The state assignment obtained
so far can be considered as a table whose rows represent the states and columns represent the
state variables. Thus each row ¢ defines the coding assigned to state s;. A column ¢; includes
a column c; if cx has the same value as ¢; in the rows where ¢; is specified. Column ¢;
covers column ¢y if cx includes c;, or cx includes %7, where %5 is the column obtained by
complementing the 0°s and 1°s of ¢;.

With these definitions, the following steps can be taken to remove columns which are unnec-
essary, thus reducing the number of state variables.

(a) Delete columns which are covered by other columns.

(b) For any two columns, ¢; and c;, the intersection of ¢; with ¢; is defined as follows :

cNej =null if ex; # caj for some k.
= ckl' ifck,' =’
= Ckj ifegg="*-'

= epg otherwise

For a pair of columns ¢; and ¢;, if either ¢; N ¢; or ¢; N & exists, then the two columns
can be replaced by a single column which is defined by the non-null intersection.

The above procedure is illustrated on the reduced machine M1 shown in Table 6.2. The sets of
stable states in the 4 columns are (A), (A,C), (B,D), and (A,B,C). Of these, set (A) can be removed

47

State._ wo w1 2 »
A 0 0 0 O
B 1 0 0 1
c 1 11 -
D 0 1 1 -

Table 6.4: Unicode STT state assignment for reduced machine M1

since it is a single-state set. Thus the sets which need to be distinguished by state variables are
(A,C), (B,D) and (A,B,C). We assign the state variable g to the set (A,C), the variable ¥1 to the set
(B,D), and the variables y; and y; to the set (A,B,C).

State A is assigned yo = 0 and C is assigned yo = 1. Since state B has a transition to
C in the column 01, B is assigned the same value of yo = 1 as state C. Similarly, state D hasa
transition to A in the same column and is therefore assigned yo = 0. In the column defined by the
input configuration 11, the variable is used to distinguish states B and D by assigningy; = 0to
B and y; = 110 state D, States A and C are assigned the values of y; = 0 and 1 respectively.

 Finally, under the input condition 10, states A, B, and C have to be distinguished by

variables y; and y;. States A and B are assigned the values yoy3 = 00 and 01 respectively and
since C is the only remaining state, it is assigned the value yay3 = *1—" with variable ¥ being
unspecified. In this column, D has a transition to state C and thus is assigned the same coding in
variables y2y; as state C. The final state assignment is shown in Table 6.4 and requires four state
variables. However, as is evident from the table, columns described by variables) -and y; are
identical and hence can be replaced by their intersection which is equal to either of the columns
itself. Also, the column specified by variable yp covers the column corresponding to y3 and hence
¥3 can be eliminated. Thus the final state assignment requires only two variables and is defined as
A(00), B(10), C(11), and D(01).

Modifications of the above procedure have been described by Tracey [6]. This technique
involves distinguishing between each pair of transitions in the same column instead of between all

stable states in a column and usually produces state assignments with fewer variables than the above
method.

Chapter 7

Hazard-Free realization of the
flow-table

In this chapter, the techniques involved in realizing a hazard-free realization of the circuit
based on the unicode STT state assignment described in the previous chapter are presented. Afterthe
state assignment stage, the next step in the synthesis procedure is the derivation of excitation tables
for the next-state and output variables. In the case of asynchronous circuits, this step depends on the
technique used for state assignment. From the excitation tables, the logic equations for a two-level
implementation of the combinational logic are derived. The excitation functions are then modified,
if necessary, to guarantee that the combinational logic is free of any static and dynamic hazards
under the assumptions of fundamental-mode of operation and single-input changes described in
Chapter 3.

7.1 Derivation of excitation functions

The process for the derivation of excitation functions for the output signals is the same
as that for synchronous circuits. However, asynchronous circuits differ in many respects from syn-
chronous circuits in the procedures to be followed for deriving the next-state excitation functions.
In synchronous circuits, state codes which are not assigned to any state can never be reached by the
circuit and hence can be ignored. Thus the specification of the Y-matrix for synchronous circuits
does not specify the next-state entries for the codes which are not assigned to any internal state. On
the contrary however, in asynchronous circuits with unicode STT assignments which allow multi-
ple state variables to change during a single state transition, unassigned codes may be reached as

48

49

Nezt - State, ZoZ,
Present ZoZ1
State 00|01 11]} 10
A All1A]]l B {||A
B AlC B
C A [[c]| D |[cC
D A| A|lD]|| E
E Al c]|D]|IE]
Table 7.1: Machine M2
State_w w1_w w5

A 0 0 0 O

B 1 0 0 1

C 1 1.1 0

D 0o 1 1 1

E 1 1 1 1

Table 7.2: Unicode STT state assignment for machine M2

intermediate codes in a single state transition. Thus care has to be taken to specify the next-state
entries of all possible codes so as to guarantee that all transitions are executed as desired. This
procedure is explained below with the help of an example machine.

Consider a transition from state s; to state s; in the column specified by an input condi-
tion I;. The subcube corresponding to this transition is computed as the cube which contains all
- the minterms (codes) which could be reached in the s; — s; transition. Then for each code in the

transition subcube (and not only the codes of s; and s;), the next-state entry under the input con-
figuration Jj; has to be assigned the code for state s;. This ensures that the circuit will ultimately
reach the destination state s;, irrespective of the order in which the state variables change.

The above procedure for derivation of the Y -matrix is illustrated with the machine M2
whose flow-table is shownin Table 7.1. The initial unicode STT assignment is obtained by assigning
variable g to distinguish between states (A,C), y to distinguish between (B,D), and y; and y3 to
distinguish between the set of states (A,B,C,E). The initial assignment is shown in Table 7.2. Since
columns y; and y; are identical, they can be replaced by one column #1. Thus the final unicode
assignment which requires only three state variables yo, y1, and gz is : A(000), B(101); C(110),
D(011), and E(111). .

‘ As described above, although the codes 001, 010, and 100 have not been assigned to any
state, their next-state entries need to be specified in the Y'-matrix if these codes could be reached

50

State Code] 00 | O1 | 11 | 10
A~ 000 || 000 | 000 [101 | 000
001 {000 {000 101] -
010 {000 | 000 | 011 | -
D 011 {000 o000]o011]111
100 {{000]| 110|101 | -
B 101 ||000| 110] 101 | 101
C 110 [|oo0|110] 011|110
E 111 {|ooo|110}|011] 111

Table 7.3: Y -matrix for the unicode STT assignment for machine M2

as intermediate codes in a state transition. The final Y-matrix obtained is shown in Table 7.3. The
flow-table for machine M2 contains only the state A in column 00. Thus for each of the states,
the next-state entry in the input column 00 is specified as the state A, coded as 000. The rest of
the codes, 001, 010, and 100 are also assigned the next-state code for state A since they are in the
transition subcubes of D — A and B — A state transitions under the input condition 00. In column
01, there is a transition from state B(101) to state C(110). This transition involves the change of
two state variables, and yz. The transition subcube for this state transition s ‘1 — —°. Therefore,
in the Y'-matrix, thé next-state entries for the four codes 100, 101, 110, and 111 are specified as
state C (110). It should be noted that the next-state entries for codes 901. 010, and 100 under the
input configuration 10 are unspecified since these codes can nevef be reached in any state transition
under the input condition 10.

7.2 Elimination of hazards

In a synchronous circuit, the outputs are sampled at the clock pulses only after they have
stabilized and hence any temporary spurious outputs do not affect the operation of the circuit to
which the outputs act as the inputs. However, this is not the case in asynchronous circuits and any
transient pulses at the secondary outputs may adversely affect the operation of the circuit. More-
over, since the combinational circuit controls the state variables of the complete sequential circuit,
spurious pulses in the combinational logic in asynchronous circuits may take the circuit into an
incorrect stable state. Even though the state assignment technique which is utilized guarantees that
the circuit is free of any critical races, the presence of hazards may still cause the circuit to mal-
function under particular input combinations. Hill, et al [3] illustrate this through the following
example.

51

Nezt — State, ZyZ,
Present T2
State | 00| O1 | 11 | 10

A ||All[Aal]lfAal] D
B |(B]|B]| A |[B]

c |a]|B|[c]]|[c]
D | A|[[D]] c|[D]

Table 7.4: Example to illustrate presence of hazards in a critical-race-free circuit

Consider the asynchronous circuit given by its state transition table in Table 7.4, and the
state assignment A(00), B(01), C(11), D(10). The excitation functions for the two state variables,
y1 and ¥ are given by :

Y1 = ®T2n + nani 21 + yzaz + 122737
Y2 = 72 + 2%z + n12277

Assume that the circuit is initially in the stable state [C] (y231 = 11) under the input
condition z1z2 = 11. In this state, if input z; changes from 1 to 0, the circuit should remain at
the stable state | C | with both variables y; and y, remaining unchanged. However, it may happen
that the product term y2y1z1 goes to 0 faster than the product term y 2,7 changes to 1 (owing to
a delay in the inverter associated with z,). This will lead to the condition in which all the product
terms in the excitation functién for Y} have the value 0, as a result of which Y5 will momentarily
change to 0. The circuit may thus make an erroneous transition to the stable state @

It is therefore essential that the combinational logic in asynchronous circuits be designed
to be hazard-free. Unger [9] has shown that for single-input changes, any function is realizable with
a circuit free of all combinational hazards. However, this is not the case for multiple-input changes,
and functions with more than one prime implicant contain hazards that cannot be eliminated through
logical design alone. Therefore, the restriction that only single-input changes are permissible is im-
posed on asynchronous circuits as described in Chapter 3. The assumption of bounded stray delays
is essential since the bounds have to be used to determine the minimum time difference between
consecutive input changes, which is needed to guarantee that the combinational circuit reaches sta-
bility before the application of the next input change. This assumption is therefore necessary for
proper operation of the complete sequential network with hazard-free combinational logic.

Different types of combinational hazards along with the conditions for their presence in
two-level implementations of combinational logic for single-input changes are summarized below.

52

These conditions form the basis for algorithms designed to eliminate this class of combinational
hazards [9, 2].

Definition 14 [9] : Combinational hazards can be either static or dynamic hazards. Static hazards are
present when the output of the circuit is required to remain constant (either 0 or 1) as a result of an input
change, but the circuit produces an even number of pulses at the output before stabilizing at the initial value.
Dynamic hazards, on the contrary, are present when the output is supposed to change from 0 to 1, or vice-
versa, but the circuit produces three or more output changes instead of a single change.

Definition 15 [2] : Let I) and I be two adjacent input conditions differing in only one variable z ;. Let f
be the output function, such that f(I\) = f(I2) = 0. Then, a two-level sum-of-products realization of the
function f has a static 0-hazard for the input transition Iy — I if and only if there is a product term having
both the literals z; and T; and all other literals have the value 1 in both I and I,

Definition 16 [2] : A two-level sum-of-products realization of the function f has a static 1-hazard for the
input transition I\ — I, where f(I) = f(I2) = 1, if and only if there is no product term that has the vaiue
Ilinboth I, and I, '

Definition 17 [2] : A two-level representbn'an of a combinational function f has a dynamic hazard for
a transition between the adjacent input combinations I, and I differing in the variable z; and such that
f(I) # f(I2), if and only if there exists a product term that contains both the literals z ; and F; and all other
literals in that product term have the value I in both I, and I,

Static 0-hazards can be eliminated by deleting any product terms containing both a vari-
able and its complement. All static 1-hazards can be eliminated by including every prime-implicant
of the function in its realization. To accomplish this, not only should every point where the function
has a value 1 be covered by a product term, but each adjacent pair of points with f = 1 should also
be covered by a product term.

As an example, consider the logic equation given by f = Z1%3 + z1z2. This function is
graphically depicted in Figure 7.1 along with its realization. The cube 7,73 includes the minterms
000 and 010, while the cube z;z; includes the minterms 110 and 111. This is obviously the min-
imum realization of the function f. However, although the cubes 010 and 110 are adjacent, the
prime implicant which contains them, z,73 is not included in the realization of f. Consider the
circuit defined by the above realization of f to be in the present state where (z1, 22, z3) = (1,1,0).
Under this input condition, @ = 0 and b = 1 and therefore, f = 1. Now, consider a single input
change where z, changes from 1 to 0, to the new input configuration (zy, z3,z3) = (0,1,0). The
value of f under this input condition should remain constant at 1, since a changes to 1 and b to 0.

53

X lx
1 -

e — LS PR |
010 X - >_
§—.—-— 10 13 a2 f
1‘.3 X b
X2

Figure 7.1: Example t0 demonstrate static-1 hazard

However, if the delay in line a is greater than that in line b, b may change to 0 before a can change to
1, thus giving a temporary false output of 0. This static-1 hazard can be eliminated by including the
cube z2%; in the realization of f. Under the above input change, this cube has the constant value
1, thus preventing any spurious output.

From the conditions described earlier for the presence of dynamic hazards, it is evident
that by the elimination of static hazards, all dynamic hazards for single-input changes are also
eliminated. .

As mentioned above, static and dynamic hazards are the result of unequal delays in var-
ious paths of the circuit. Another type of hazard could arise as a result of delays when, due to
a change in an input signal, one state variable changes even before the input change reaches the
logic circuit generating another state variable. These hazards are called essential hazards and occur
because the change in an input signal reaches different parts of the network at different times [7.3).

Definition 18 [9] : A flow-table has an essential hazard Starting in stable state @ for input variable z; if
and only if the stable state reached after one change in z, is different from that reached after three changes
inz;. :

Such hazards are due to the basic specification of the circuit and cannot be eliminated by
logical manipulations of the excitation functions. The only possible means of eliminating essential
hazards is by adding appropriate delays in the feedback paths so as to ensure that the secondary state
variables do not change until the input change propagates to all parts of the circuit [9, 8]. Miller (8]
has proven that if an asynchronous, machine contains an essential hazard, then any asynchronous
network which realizes this machine and contains no steady-state hazard must contain at least one
delay element. Further, if an asynchronous machine contains no essential hazards, it can be realized

54

by an asynchronous network containing no delay elements. He has also shown that any sequential
network with more than one delay element in the feedback loops can be replaced by an equivalent
network containing a single delay element.

Chapter 8

Signal Transition Graph Based
Synthesis Technique

In this chapter, the asynchronous design methodology based on the concept of signal
transition graphs (STG’s) which are used as graphical representations for specifying the behavior
of asynchronous circuits.

8.1 The signal transition graph

Signal Transition Graphs (STG's) were first introduced by Chu [10] as a restricted class
of live-safe free-choice Petri nets for specifying the behavior of asynchronous circuits and have
recently been very efficiently used for automating the synthesis of asynchronous circuits [10, 11,
12, 14, 17, 18).

Definition 19 [10] : An STG is a petri-net which is restricted to a free-choice net such that, if any two
transitions share the same input place, then thas place Is the unique input place Jor both the transitions.

In an STG, the transitions are interpreted as value changes on the signals (input, internal
or output signals) of the circuit, and could be either positive transitions from 0 to 1 (labeled by
a ‘+'), or negative transitions from 1 to 0 (labeled by a *-*). Further, the class of STG's used for
representations of asynchronous circuits has the property that if a place has more than one transition
as its successor, then all its successor transitions must be transitions on input signals.

In informal terms, an STG can be defined as a finite directed graph in which nodes rep-
resent signal transitions and the directed arcs determine the precedence constraints on the internal

55

56

and the external environments. A transition is enabled when all its fanin edges have at least one
token. When a transition fires, ie., the signal changes value from a 0 to 1 or vice-versa, a token is
removed from every fanin edge and simultaneously, a token is added to every fanout edge of that
transition. For purposes of asynchronous circuit specifications, we consider STG's with live and
safe markings. A marking on an STG is live if every transition is or can be enabled through some
sequence of firings from the marking. A marking is sqfe if no edge can be assigned more than one
token, ie., once a transition has fired, it can fire again only after some other transition has fired, A
~ STG has at least one live and safe marking if and only if it is strongly connected [10]. The STG for
the 4-phase handshake protocol described in Chapter 4 is depicted in Figure 4.1.

8.2 The state graph

The equivalent finite automaton representation for an STG is called the state graph. A
state graph is a directed graph where each state is in one-to-one correspondence with a live-safe
marking of its STG. An edge from state s, to state s, means that the marking represented by s> can
be reached from matrepresented by & by the firing of the single transition with which the edge is
labeled. The restncuon to live-safe markings guarantees that all valid markings are reachable from
one-another.

An STG can be converted to its equivalent state graph by an exhaustive simulation of
token flow. This procedure starts with alive-safe marking and with token flow on the STG, generates
the state graph. For each new live-safe marking M, it creates a new state in the state graph, and
for each transition enabled in M, it fires the transition, creates a new edge from the previous state
to the new state, and recursively calls the procedure on each of the new markings. The states of
the graph are labeled by the values of the input and output signals in the marking corresponding to
that state. Thus, in a state graph, the nodes represent the states, the node labels correspond to state
assignments and the edges represent signal transitions.

8.3 Syntactic checks on the STG

Before the STG can be converted to its equivalent state graph, it has to be checked and
transformed, if necessary, to satisfy a few syntactic properties of liveness and persistency (10, 11].
These properties have to be satisfied to guarantee that the STG conforms to the representation of a
sequential circuit.

57

Definition 20 [10] : A STG is said to be live if it is strongly connected and if in any of its simple cycles, for
any signalt, transitionstt and t= alternate.

Liveness guarantees that after a signal transition, the next transition is always defined
(strongly connected), and that no signal will be required to undergo two successive high or low
transitions (alternation of t+ and ¢=). Obviously, this property is necessary for the STG to represent
a control circuit. Therefore, a STG which does not conform to the liveness property cannot be used
in the synthesis of a sequential circuit.

Another property which the STG should satisfy before it can be used in the synthesis
procedure is that of persistency.

Definition 21 [10] : A signal transition is said to be persistent if and only if, once the transition is enabled,
only the firing of that transition can disable it. By this definition, a STG is said to be persistent if all its
transitions are persistent.

Persistency guarantees that if there is a transition on a signal t;, due to which another tran-
sition ¢3 is enabled, then the complementary transition of ¢; can only be enabled after the transition
on ¢; has fired. Transitions which are not persistent can be made so by the addition of appropriate
edges to the STG.

In formal terms, let t; < ¢; denote that the firing of transition ¢, either immediately
or after a sequence of other transitions, enables transition #;. Then, the property of persistency
of a STG implies that if t; = ¢, and ¢; — t3, and if ¢, is the complementary transition of ¢,
then t3 = ¢, must hold. Thus by checking this criteria for each transition, appropriate arcs can be
added so as to make the STG persistent. However, input transitions in an STG are restricted to have
exactly one fanin arc. Thus, if #; is an input transition, then the new arc is added to the immediately
preceding output transition.

In the STG of Figure 4.1, after R;,* has fired, the transitions Rou+ and Aot are
enabled. However, since there exists apath Rin* — Aot — Ria—,thesignal R;, can be disabled
even before Roye* has fired. This means that the transition Aoyt — Rin is not persistent. This
transition can be made persistent by the addition of the arc Roust — Aouet. With this new arc
added, the arc Rin* — Aou* becomes redundant and is therefore deleted. Similarly, the arc
Ain* = Ry~ isnon-persistent and can be made so by the addition of the new arc Ague* — Roue™.
This new arc necessitates the addition of the arc Rous™ — Agee~. The final persistent STG is shown
in Figure 8.1.

58

A_out - -— R _out -

A

..“ + ‘-u -

:

A _ocut ¢+ ~af—— R _cut +

SR,

R_in - Adn +

Figure 8.1: Persistent STG for the 4-phase handshake machine

Ain Rin Aows Rous)

Rout +

Figure 8.2: State graph for the persistent STG of Figure 8.1

59

The state graph of the persistent STG is derived by the procedure described in the previous
section and is shown in Figure 8.2. The states of the graph are labeled according to the signal
combination 4, Rin Aout Rout.

8.4 The STG-based synthesis procedure

Once the STG has been checked and modified, if necessary, to satisfy the properties of
liveness and persistency, it is converted by an exhaustive token-flow simulation to its equivalent
finite automaton, the state graph. Since the state graph has its states labeled by the values of the
output and input signals, there may exist two or more distinct states which have the same codes
assigned to them. This discrepancy may lead to erroneous behavior, since the labels on the states
are used to derive the excitation functions. Such state graphs are said to have the property of non-
persistency due to state assignment. Thus, before the circuit equations can be synthesized, the state
graph has to satisfy the property of unique state coding (USC), whereby each state should have a
unique label assigned to it. State graphs which do not satisfy the USC property can be modified
to do so by the addition of extra internal signals to distinguish the states which have the same
assignments [10]. Vanbekbergen [17] also presents a technique based on the concept of Generalized
Lock Classes 1o transform the initial STG so that its corresponding state graph satisfies the USC
property.

After the state graph is modified such that each state has a unique code assigned to it, it
can be directly used to derive the logic equations for each non-input signal. However, Chu [10)
presents the technique of net contraction which essentially decomposes the initial STG into several
STG's and maps them into their respective state graphs. Each of these state graphs is used to derive
the corresponding individual circuits, from which the the final circuit is assembled. This technique
has the advantage that it generally produces more efficient circuit implementations.

Chapter 9
Discussion

Although the flow-table technique for asynchronous synthesis has been studied quite ex-
tensively, the synthesis procedure has not been automated in the application world. The main prob-
lem which anses in the flow-table synthesis process is in the state assignment stage. Most of the
efficient state assignment techniques like the connected row-set and shared-row assignments are
essentially intuitive, trial and error procedures, and hence very difficult to automate. Other assign-
ment procedures likeihe unicode STT assignments use a large number of state variables and are thus
quite inefficient. The only other assignment techniques which could be easily automated are the
universal n-state assignments, which have been proved to be accomplished with only two transition
times [9], but have the drawback that they require twice the minimum number of state variables.

The flow-table synthesis procedure described in this report assumes bounded stray delays,
a criteria which must be satisfied in order to determine the minimum time difference between any
two successive input changes. For circuits in which the stray delays are unbounded, the minimum
interval between two consecutive input changes so as to guarantee fundamental mode of operation
cannot be determined. However, such circuits can still be synthesized by the generation of ready or
completion signals which indicate to the extemal environment that the circuit is ready for the next
input change [2].

Another drawback of the synthesis procedure described is the presence of delay elements
in the feedback loops of each state variable. Moreover, the delays of these elements is assumed
to be large enough to guarantee fundamental mode of operation. These delay elements hamper
the speed of operation of the circuit and to an extent sacrifice the main objective of asynchronous
designs : obtaining a speed-up by not restricting the circuit operation with a central fixed-period
clock. As described in Chapter 7, only circuits which do not have any essential hazards can be

60

61

realized without any delay elements. Circuits which demonstrate the presence of essential hazards
require at least one delay elemem'to guarantee their correct operation under all input conditions.

However, the flow-table design methodology offers many advantages over the STG-based
synthesis procedure. The STG technique has to guarantee that the initial STG is live and persis-
tent before it can be used for synthesis. This requires a large amount of pre-processing and may
also sacrifice the original concurrency to some extent. The persistency requirement is necessary
to guarantee that all output signals which are enabled as a result of a change in an input signal are
allowed to fire before the input signal undergoes its complementary transition. However, this prob-
lem is solved in the inherent derivation of the flow-table itself. In the construction of the flow-table,
all outputs which are enabled as a result of an input transition are changed simultaneously and the
fundamental mode of operation guarantees the correct behavior of the circuit under all possible
input conditions. Another restriction of the STG procedure is the satisfaction of the unique state
coding requirement, either at the STG level, or at the state graph level. The state assignment stage
in flow-table synthesis eliminates this requirement.

Against the backdrop of the above advantages, it can be concluded that if efficient tech-
niques for state assignment are developed, the flow-table synthesis procedure could offer an attrac-
tive altemative to the signal transition graph approach to asynchronous circuit synthesis.

Bibliograp'hy

(1] Zvi Kohavi, “Switching and finite automata theory”, New York : McGraw Hill (Series:
McGraw-Hill computer science series), 1978.

(2] ArthurD. Friedman and Premchandran R. Menon, “Theory and design of switching circuits”,
Woodland Hills, California : Computer Science Press, Digital system design series, 1975.

(3] Frederick J. Hill and Gerald R. Peterson, “Introduction to switching theory and logical design”,
New York : Wiley. 1981.

[4] E. J. McCluskey, “Introduction to the theory of switching circuits”, New York, McGraw;HiIl,
McGraw-Hill electrical and electronic engineering series, 1965.

[5) C.N. Liu, “A state variable assignment procedure for asynchronous sequential switching cir-
cuits”, Journal of ACM, Vol. 10, pp. 209-216, April 1963.

[6] J. H. Tracey, “Internal state assignments for asynchronous sequential machines”, JEEE Trans-
actions on Electronic Computers, Vol. EC-15, pp. 551-560, August 1966.

[7] Charles H. Roth, Jr., “Fundamentals of logic design”, Second Edition, West Publishing Com-
pany, St. Paul, 1979.

[8] Raymond E. Miller, * Switching theory Vol. I, New York, Wiley, 196S.

[9] S. H. Unger, “Asynchronous sequential switching circuits”, Wiley-Interscience, New York,
1969.

[10] Tam-Anh Chu, “Synthesis of self-timed VLSI circuits from graph-theoretic specifications",
Ph.D Dissertation, Department Of EECS, MIT, June 1987.

(11] T.Meng, R. W. Brodersen and D. G. Messerschmitt, “A synthesis method for self-timed VLSI
circuits”, Proceedings of the International Conference on Computer-Aided Design, pp. 514-
517 November 1987.

62

63

[12] T. Meng, R. W. Brodersen and D. G. Messerschmitt, “ Automatic synthesis of asynchronous
circuits from high-level specifications”, JEEE Transactions on Computer-Aided Design, Vol.
8,No. 11, pp. 1185-1205, November 1989,

[13] T. Meng, G. M. Jacobs, R. Brodersen and D. Messerschmitt, “Asynchronous Processor De-
sign for Digital Signal Processing”, Proceedings of the International Conference on Acoustics
Speech and Signal Processing, New York, NY, pp. 2013-2016, April 1988.

{14] Luciano Lavagno, K. Keutzer and A. Sangiovanni Vencentelli, “Algorithms for synthesis of
hazard-free asynchronous circuits”, Proceedings of the Design Automation Conference, pp.
302-308, 1991.

[15] G. Gopalakrishnan and P. Jain, “Some recent asynchronous system design methodologies”,
Technical Report No. UU-CS-TR-90-016, Department of EECS, University of Utah, October
1990.

(16] Bill Lin and Fabio Somenzi, “Minimization of symbolic relations”, Proceedings of the Inter-
national Conference on Computer-Aided Design, Santa Clara, California, pp. 88-91, Novem-
ber 1990.

(17] Peter Vanbekbergen, F. Catthoor, Gert Goossens and Hugo De Man, “Optimized synthesis of
asynchronous circuits from graph-theoretic specifications”, Proceedings of the International
Conference on Computer-Aided Design, pp. 184-187, 1990.

(18] Peter Vanbekbergen, Gert Goossens and Hugo De Man, “A local optimization technique for
asynchronous control circuits”, Proceedings of the International Workshop on Logic Synthesis,
1991.

(19] Jo C. Ebergen, “Translating programs into delay insensitive circuits”, Ph.D Thesis, Center for
Mathematics and Computer Science, Amsterdam, CWI Tract 56, 1989.

(20] David L. Dill, “Trace theory for automatic hierarchical verification of speed-independent cir-
cuits”, Cambridge, Mass. : MIT Press, 1989.

[21] AlainJ. Martin, Steven M. Bumns, T. K. Lee, Drazen Borkovec and Pieter J. Hazewindus, “The
design of an asynchronous microprocessor”, Proceedings of the Decennial Caltech Confer-
ence on VLSI, MIT Press, pp. 351-373, March 1989,

64

[22] AlainJ. Martin, Steven M. Bums, T. K. Lee, Drazen Borkovec and Pieter J. Hazewindus, “The
first asynchronous microprocessor: the test results”, Technical Report CS-TR-89-06, Caltech,
1989.

[23] David Ilana, Ran Ginosar and Michael Yoeli, “Self-timed architecture of a reduced instruction
set computer”, Technical Report no. 732, Department of Electrical Engineering. Technion,
Israel October 1989,

[24] David Ilana, Ran Ginosar and Michael Yoeli, “An efficient implementation of boolean func-
tions and finite-state machines as self-timed circuits”, Computer Architecture News, Vol. 17,
No. 6, pp. 91-104, December 1989.

[25] Victorl. Varshavsky, “Self-timed control of concurrent processes : the design of aperiodic log-
ical circuits in computers and discrete systems”, Kluver Academic Publishers, Boston, 1950.

[26] M.C. Paull and S.H. Unger, “Minimizing the number of states in incompletely specified se-
quential switching functions”, IRE Transactions on Electronic Computers, vol EC-8, pp. 356-
367, September 1959.

[27] A. Grasselli and F. Luccio, “ A method t‘ormin'imizingthe number of internal states in in-
completely specified sequential networks”, JEEE Transactions on Electronic Computers, Vol.
EC-14,No. 3, pp. 330-359, June 1965.

(28] H.J. Mathony, “Universal logic design algorithm and its application to the synthesis of two-
level switching circuits”, Proceedings of the IEE, Vol-136, Part E, No. 3, pp. 171-177, May
1989,

{29] S. Ginsberg, “A synthesis technique for minimal state sequential machines,” IRE Transactions
on Electronic Computers, Vol. EC-8, No. 1, pp. 13-24, March 1959.

[30] C.V.S. Rao and N.N.Biswas, “Minimization of incompletely specified sequential machines,"”
IEEE Transactions on Computers, Vol. C-24, No. 11, pp. 1089-1100, November 1975,

[31] R.W. House and D. W. Stevens, “A new rule for reducing CC Tables,” JEEE Transactions on
Computers, Vol. C-19, No. 11, pp. 1108-1111, November 1970.

Appendix A |

Implementation details

This appendix describes the various implementation details - input / output formats, data
structures and algorithms - of the synthesis package which has been developed. The package has
been implemented in C programming language under the UNIX operating system. The executable
version called async, along with the source files is in the directory /users/aguptalresearchifiow sable.

A.1 Input/ Output formats

The asynchronous finite-state machine is specified in the standard XISS format. The first
three lines of the input file specify the number of inputs, cutputs and internal states in the machine.
These lines begin with the commands ‘', ‘.0’, and ‘s’ respectively. The file ends with the “.¢’
command. Line beginning with the ‘#’ character act as comments and are ignored. Every other line
in the input file represents a unique state transition, and is specified in the following format :

input presentstate nextstate output

The present_state and the next_state entries appear as symbolic values representing the names of
the internal states. Unstable next_states are distinguished from their corresponding stable states by
preceding them with the **’ character.

Inputs and outputs appear as strings of 0°s and 1°s, representing the values of the different
input and output variables in a particular state transition. Since only single-output changes have
been assumed, state transition entries corresponding to multiple input changes do not appear in the
input file since they are unspecified, and hence serve as don’t cares. Moreover, outputs of unstable
states are unspecified and written as strings of *-* characters.

The output of the synthesis procedure is a reduced flow-table in XSS format. The output
is written into a file with the name < present.file.name > .reduced. Since the reduced ma-
chine is subjected to state assignment before being written into the output file, the present_state and
next.state entries are not symbolic entries, but actual values of binary-coded state variables.

65

66

A.2 Data structures

A.2.1 Representation of the finite state. machine

. The package is implemented using dynamic array structures described in the file array..
Central to the implementation is the data structure for the finite state machine defined in the file
stsable.h. The asynchronous machine is type-defined as a structure smp_stg, with the following
fields :

struct smp_stg {
char ®reset_state : start-state of the machine
array®states . : array of states, each of type smp._state
array.t *edges : array of edges, each of type smp.edge
int ni : number of inputs
int no : number of outputs generated

int no_state_variables : number of state variables needed for state assignment

}

Each state is type-defined as a structure smp_state with § fields, and completely represents all in-
formation regarding the particular state. This information includes its name and index number,
transitions in which it is the destination, and transitions in which it is the present state. The data
structure is described below :

struct smp_state {
char *name : symbolic name of the state
int index : index number of the state in the array of states

array.t fanins : array of edges which have the state as their destination state

array. fanouts : array of edges which have the state as their initial state

int *code : integer string of 0°s and 1°s which is the code assigned to the state
} .

Finally, each edge represents a state transition and is type-defined as a structure smp_edge with the
following fields : :

struct smp.edge {
char *inpus : input for the state transition
char *output : output generated by the transition

struct smpstate *src : pointer to the present_state of the transition
struct smpstate *sink : pointer to the destination state of the transition
int unstable : flag which is set to 1 if the sink state is unstable and to 0 otherwise

}

The above data structures efficiently model the finite state machine with minimal storage com-
plexity. Moreover, as is evident, there is little repetition of information, since pointers are used to
reference the desired element (state or edge). For example, each fanin (fanout) of a particular state
is merely a pointer to the appropriate edge in the list of edges. Similarly, the source and sink states
of each edge are pointers to reference the particular states of the state array. Appropriate care has
also been taken to overcome the absence of random-access mechanisms in the array data structure.
Internal to the package, the index values of the states are used for computation instead of the sym-
bolic values. This has the advantage that the state can be randomly accessed with its index value,
thus avoiding the time complexity involved with sequential access.

67

A.22 The flow-table reduction stage

The data structures employed for the process of flow-table reduction are defined in the file
compatible.h. The reduction process begins with the determination of the compatible pairs. The
list of compatibility pairs is type-defined as a structure CP_LIST with the following two fields :

struct CPLIST{
array.t *cp : array of compatible pairs, each of type CP
int nr_pairs : number of pairs in the list

The structure CP is defined as follows :

struct CP {

int stl,512 : indices of the two states in the pair

int pairindex : index number of the pair in the array

array.t *list : array of implied compatibility pairs

int nrimplies . total number of implied compatibles
In the next stage of machine reduction, the list of maximal compatibles, MAX.CP_LIST is generated
from the list of compatibility pairs. This list is type-defined as a structure MAX.CP_LIST with the
following two fields : .

struct MAX_CP.LIST {
“array4*maxcp : array of maximal compatibles, each of type MAX.CP
int nr.max.cp : number of maximal compatibles in the array
}
Each maximal compatible in tum is defined by a structure MAX_CP as shown below :
struct MAX_CP {
array.t *array : array of states which form the compatible
int *nr.terms : number of states in the compatible

array.t *implied Jist : array of compatibility pairs implied by the maximal compatible
int nrimplied.pairs : number of implied pairs in the above array
}

A.23 The state assignment stage

The state assignment stage is essentially composed of two steps. The first step involvesthe
determination of the sets of states to be distinguished under each input condition. In the second step,
appropriate number of state variables are assigned to each set and the variables are then assigned
values from the set (0, 1,2). The data structures for this stage of the synthesis procedure are defined
in the file unicode_assign.h.

The main data structure is comprised of the state assignment table which is defined as follows

struct assign.table { -
arrays *variables : array of states which are to be distinguished by the same input
int no.variables : number of elements in the above array

}

Each set of states is defined as a structure state_variable, with the following fields :

68

struct state_variable {

array.t *states : list of indices of states which comprise the subset

char *input : the input condition in which the above list of stable states occur
} int nostates : number of states in the subset

Once the sets of states to be distinguished are determined, [logn] number of binary valued state
variables are assigned to each set S, where n is the cardinality of the set. The state variables are
then assigned values from the set (0, 1,2) s0 as to distinguish the states in the same set by different

assignments to the variables which are assigned to the set. The data structure State_assignment is
utilized for this stage.
struct state_assignment {
array-t *vars : array of state variables, each of type unicode.var
int no.vars : number of state variables in the above list

} .
The structure unicode.var is defined as shown below :

~ struct unicode.var { ' :
int *states :listofsmuinu\emachine.eachofwhichisasﬁmedavalue&omﬂwsa(o,1.2)
int no_states : number of states in the list

}

A.2.4 Derivation of the reduced machine

The last staée in the synthesis process derives the reduced machine on the basis of the
unicode STT state assignment performed in the previous step. The data structures for this stage
are defined in the file excitarion.h. Hierarchically, the central structure is the Y -matrix defined as
shown below :

struct y.matrix {
array.t *codes : list of rows of the flow-table, each of type y.matrix_row
int noorows : number of rows in the flow-table

}
Each row of the above Y -matrix is defined as follows ;
struct y.matrix_row {'
int *presentcode : code assigned to the present state of the row
char *present.name : symbolic name of the present state
array.t *next : array of next state entries for the row, each of type matrix.state
}
Each next_state entry is defined as a matrix_state with the following fields :
struct matrix.state {

int*code : code assigned to the next state

char *name : symbolic name of the next state-

char *input : input condition under which the next state occurs
char *output : output produced by the transition

intindex :index value of the next state in the list of states

69

A.3 An overview of the algorithm

In this section, the various steps of the overall algorithm along with the interfaces to the
different procedures are presented.

1. read.stg() : This procedure reads the input file and initializes the data structure for the spec-
ified finite state machine,

Input : 1. file in XISS format.
Output: 1. the finite state machine of type smp_stg.

2. create_comp_pairs() : Pair-wise compatibility of states is checked and compatible pairs de-
termined.

Input : 1. the data structure for the machine of type smp_stg.
Output : 1. list of compatibility pairs of type CP_LIST.

3. ﬁnd.max.comﬁa:() : Computes the maximal compatibles based on the list of compatibility
pairs generated in the previous step. :

Input : 1. the machine of type smp.stg.
2, list of compatible pairs of type CPLIST.
Output : 1. list of maximal compatibles of type MAX.CP_LIST.

4. attachimplied.pairs() : Computes the implied list of compatibility pairs for each MC-Class,
by finding the union of the list of implied pairs for each pairwise compatible states.

Input : 1.'list of maximal compatibles
2. list of compatibility pairs
3. the total number of states in the machine
Output : 1. updates the data structures for the list of MC's with the list of implied pairs for each MC.

5. find_prime_compats() : Derives the list of prime compatibles (PC’s) from the list of maximal
compatibles generated in the previous step. This procedure is based on repeated decomposi-
tion of each MC-Class and elimination of subclasses which are excluded by other classes.

Input : 1. the initial machine of type smp_stg.
2. the list of compatibility pairs of type CP_LIST.
3. the list of maximal compatibles of type MAX_CP_LIST.
Output: 1. augments the original list of MC’s with the prime compatibles generated.

6. generate.matrix : The next step in the algorithm is to find a minimal set of prime compatibles
which satisfy the closure and covering constraints. This utilizes the standard binate covering
package documented in the file mincov.doc. The data structures and the routines for handling
them utilized by this package are defined in the file sparse.doc. This procedure represents
the covering and closure constraints in the form of a sparse matrix. The data structure for the
sparse matrix is essentially a doubly-linked list of rows and columns, each row and column
in turn being a doubly-linked list of non-zero entries.

Input : 1. the initial finite state machine

2. the list of compatibility pairs

3. the list of prime compatibles of type MAX.CP_LIST.

4. a pointer to the sparse matrix generated by the procedure.
Output : 1. the number of constraints in the sparse matrix

70

7. sm.matbin.minimum_cover() : This is the binate covering package defined in the file min-
cov.doc. It generates the set of rows of the covering-closure matrix which satisfy all the
constraints. This set of rows defines the set of prime classes which form the minimal cover.

Input : 1. the covering matrix of type sm.matrix.
2. set of other parameters described in the file mincov.doc.
Output: 1. the list of rows which form the minimal cover.

8. find disjointcover() : Since the prime classes in the minimal cover are not disjoint, states in
the original machine may be covered by more than one prime class. This routine makes the
prime compatibility classes disjoint, so that they form a partition of the original set of states.

Input : 1. the index numbers of the prime classes in the minimal cover.
2. the original list of prime classes.
3. the initial machine of type smp_stg.
Output : 1. modified list of the selected prime classes so that the cover is disjoint.

9. checksolution() : Double checks that the disjoint list of selected prime classes satisfy all the
closure and covering constraints. ,

Input : 1. the selected list of disjoint prime classes.
’ 2. the original list of prime compatibles.
3. the initial finite state machine.
4. the list of compatibility pairs.
Output : 1. a boolean value which if 0 (1) means that the solution is incorrect (correct).

10. writereducedstable() : This procedure generates the reduced flow-table from the disjoint
list of prime classes selected to form the minimal cover. The reduced table is generated
from the original one by merging the states which occur in the same prime class. The states
of the reduced table are given new symbolic names of the type stk, where k is the index
number of the state. The new reduced machine is written in KJSS format into a temporary
file < original_file.name > .reduced.

Input : 1. name of the temporary file into which the table is to be written.
2. the original flow-table of type smp_stg.
3. the list of disjoint prime classes in the minimal cover.

Output : (none).

11. read.stg() : The data structure for the reduced machine is initialized by reading in the tem-
porary KISS file,

12. assign.outputs.singlechange() : The outputs of the unstable states in the reduced machine
are assigned so as to have single output changes only. This is accomplished by assigning the
output of the unstable states equal to the output of the corresponding stable states, A different
variation of the output assignment procedure called assign-outputs.min._distance() has also
been written. This procedure assigns the output of the unstable state S; so as to minimize the
sum of the distances of the assigned output from the outputs of the stable states which have
a transition to S;.

13. unicode_state_assign() : The state assignment stage begins with the determination of the sets
of states which occur as stable states under the same input condition. These sets of states have
to be distinguished by different assignments of state variables to them. This state assignment

procedure is based on the unicode STT assignment technique and is described in detail in
Chapter 6. ,

71

Nezt — State, ZoZ)
Present 2021
State 00 01 11 10
1 00 2 - 6
2 1 2111 4 -
3 1 3401 5 -
4 - 3 4110 7
5 - 2 5411 8
6 1 - 4 6} 00
7 1 - 9 7410
8 1 - 5 811
9 - 3 |lof11] 7

Table A.1: Machine M3

Input : 1. the reduced machine of type smp.stg.
Output : 1. the sets of states which have to be distinguished for each input condition.

14. assign.state-variables() : For a set of states S under the input condition I with cardinality n,

15.

16.

[logn] state variables are required to distinguish them. This procedure thus determines the
appropriate number of state variables for each set of states and then assigns values to those
variables. The final state assignment table produced is checked for row covering. Rows in
the state assignment table covered which by other rows are deleted and the final minimal state
assignment is thus determined. '

_Input : 1. the set of states to be distinguished under each input combination.
2. the reduced machine,
Output : 1. the final state assignment.

generate.y_matrix() : With the above assignment to the states of the reduced machine, the
excitation matrices for the next-state and output functions are to generated. This not only
involves the substitution of the codes for the symbolic values of the states, but also has to
determine the next-state entries for codes which are not assigned to any state.

Input : 1. the reduced finite state machine

Output: 1. the Y -matrix which gives the next-state and output values for each combination of
the state variables,

write final_reduced_table() : Finally, in the last stage of the synthesis process, the Y-matrix
is used to generate the reduced machine in K/SS format. The machine is written into the file
< original_file.name > .reduced. This file can then be used as an input to standard pack-
ages like ESPRESSO to generate the 2-level logic equations for the internal state variables
and the output signals.

72

A.4 A sample execution

The execution of the program async is demonstrated on the machine M3 which is de-
scribed by its state diagram in Table A.1. The machine has 2 input signals, 2 output signals, and
9 intemal states. According to the assumption that successive input changes are restricted to ad-
jacent input combinations only, the next state entries for multiple input changes are unspecified.
Moreover, the outputs for the unstable states are also unspecified.

. Machine M3 is synthesized using the asynchronous synthesis package, async. The result
of the execution is described at the end of this appendix.

As is evident from the sample execution, the final reduced machine has $ states, named
10 through st4. The outputs of the unstable states in the reduced machine are assigned equal to
the stable state which they lead to. This preserves the property of single output changes which is
essential for unicode STT state assignment. The initial unicode assignment requires $ state vari-
ables. However, after deletion of all rows which are covered by other rows of the state assignment
table, the final state assignment requires only 4 state variables to prevent all critical races. In the
final reduced flow-table, next state entries have to be assigned not only to the states of the machine,
but also to the codes which are not assigned to any state, This is necessary to prevent any incorrect
state transitions, since it is assumed that all state variables can change simultaneously. However,
there may be certain codes which can never be reached under pameular input combinations. These
next state entries are unspecified and serve as don't cares.

reading machine m3.kiss...
read state table and computed compatible pairs...
inpus=2
outputss 2
states= 9
computing maximal compatibles...
Jinding prime compatibles...
The final list of PRIME COMPATIBLES is :-

0:126
1:4
2:38
3:58
4:79

computed covering matrix ...

bounds: states = 9, max compatibles = 5, upper bound = 6
solving binate covering ...
total cpu time is 0.00 sec.
prime compatibles selected: 0123 4
Jinal disjoint list of prime compatibles selected:

0:1,2,6,

1 :4,

2:3,8,

3.5,

4:7,9,
writing reduced table into temporary file : examples/m3.kiss.reduced...
reading reduced table from temporary flle : examples/m3.kiss.reduced...
removing temporary flle : examples/m3.kiss.reduced..,
assigning outputs to unstable states...

the reduced flow-table is:-
reset state: st0
4 2
0 2
K s
D 18

00 st0 50 00
01 0 s 11
10 50 50 00
11 st gl 10
11 sd s 10
01 st *2 01
10 st *sed 10
00 7] *s0 00
01 e 2 01
11 2 523 11
10 2 s2 11
00 44 *s:0 00
o1 4 2 o1
10 s i 10
11 s s ¥}
o1 3 *s10 "
y} 3 sg3 11
10 s3 ss2 11

]
assigning unicode STT assignment...

the set of states to be distinguished:- .
input 01 2 st s22
input 10 2 860 s12 std

input 11 2 stl 514 st3

inidal state assignment table :-

st0 stl 2 s 3
0 1 1 1 0
0 1 0 1 0
0 2 1 2 1
0 0 1 0 1
0 0 2 1 2
the final unicode state assignment is:-
st st s2 s 3
0 1 1 1 0
0 1 0 1 0
0 0 1 0 1
0 0 2 1 2
Following codes are assigned to states :»
st0: 0000
sel1: 1100
se2: 1010
sid: 1101
se3: 0010
Generating Y-Matrix...
state code | 00 01 10 1
st0 0000 | 0000 0000 0000 1100
0001 | 0000 = — —
st3 0010 | 0000 06000 1010 0010
0011 | —— asee - —
0100 | 0000 o 1100
o101 | 0000 == - —
0110 | ooen - D —
o111 | —aee onee o —
1000 | 0000 1010 11060
1001 | 0000 1010 e
s2 1010 | 0000 1010 1010 OOI0
on | ——— 1010 ——
st 1100 M- 6000 1010 1101 1100
sd 1101 | 6000 1010 1101 1101
1110 | ——— 1010 o —
1111 | o 1010 o o

writing coded reduced flow-table into file : examples/m3.kiss.reduced
Final reduced machine in KISS format :
2

d
Y] 2
] s

00 0000 0000 OO0
01 - 0000 o000 11
10 0000 0000 00
11 0000 1100 10
00 0001 0000 00
00 0010 0000 00
01 0010 0000 11
10 0010 1010 11
11 o016 o010 11
00 0100 0000 00
11 0100 1100 10
00 o101 0000 OO0

01
1

01

01
10
11
01

01
10
¥

o1
10
1
o1
o1

1000
1000
1000
1001
1001
1010
1010
1010
1010
011
1100
1100
1100
1160
1101
1101
1101
1101
1110
1

1010
1100

1010

1010
1010
0010
1010

1010
1101
1100

1010
1101
1101
1010
1010

o1
10

o1

01
11
11
o1

01
10
10

o1
10
11
01
o1

