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Abstract

Synthesis of asynchronous sequential circuits has been studied extensively from atheoretical per

spective. However, due to theinherent difficulties encountered in thevarious stages of the syn

thesis procedure, many of the techniques have notbeen automated for use in practical applica

tions. In this report, the detailed stages involved in the synthesis of asynchronous circuits us

ingthe traditional flow-table based technique are described. The synthesis procedure derives the

flow-table representation of the circuit from averbal description orasignal transition graph spec

ification. State reduction is then invoked, identifying and merging equivalent states. The re

duced flow-table is subsequently subjected to state assignment techniques. The excitation func

tions derived from the flow-table are modified to guarantee the absence of any combinational

hazards. Under the assumptions of bounded stray delays, fundamental mode of operation, and

the restriction that successive input changes can be between adjacent input combinations only,

the synthesis procedure yields an optimized hazard-free realization of the asynchronous circuit
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Chapter 1

Introduction

1.1 The need for asynchronous systems

The operation of docked synchronous networks is synchronized with a central system

dock whose time period is greater than the delay of the critical path. Since the critical path is

the slowest combinational path thatwould be used at leastonce during the tircuit operation, the

system-level latency is dictated by the worst-case stray delays. In such circuits, a state change

occurs only in response to a clock pulse and all storage dements which must change state do so

simultaneously atthe clockpulse. Further, in response to aninputchange, the next state does not

change immediately butonlyatthenextclock pulse. These characteristics ofclocked synchronous

circuits eliminate any further timing considerations and, provided that the clock period iscarefully

chosen, eliminate problems caused byhazards. They also simplify theprocess of circuit synthesis
from itsinitial description of thenetwork asastate table ora state diagram [1].

However, the presence of a central fixed-period dock has its own inherent limitations

and problems. First, the determination of the fixed clockperiod necessitates anexactevaluation

of the worst case system dday which is defined by the dday of thecritical path. This evaluation

may notalways be feasible due tothe absence of exact values for all types of ddays which occur

inthe circuit If estimated values for the stray ddays are used todetermine the dockperiod, avery
pessimistic estimate ofdock frequency mustbeused toguarantee the properoperation ofthe circuit
under all possible input combinations.

Added to this problem is the problem of clock-skew. In the case of large circuits, line
delays could add uptobesignificant enough so that the time taken by thesignals to travel down
the wires could besignificantly large. In such asituation, the dock pulse could arrive at different



memory dements at different times, causing possible erroneousoperation.

Perhaps the most importantpractical limitationofacentral fixed-period dock to synchro

nize the circuit operation is in the design of networks withinputs whichcouldchange at anytime

andcannotbe synchronized by a central dock. Forsuchcircuits, it is not possibleto determine a

fixed period forthe systemdock sincethe rate ofarrival of inputs is bothvariable andunknown.

Asynchronous systems, which are designed to operate correctly in the absence of syn

chronizing dock pulses, offer an attractive alternative to the limitations and problems posed by

synchronous designs. They do not have their computational rates constrained by a central fixed-

period clock. Thus the system-level latency is dominated by the average-delay only and notby the

worst-case delay. Forexample, an asynchronous or a self-timedadder can signalwhen the result

on itsoutputs is valid and theabsence ofanysynchronization makes asynchronous design theonly

choice in applications where therate of arrival ofinputs isvariable. Inanasynchronous design, the

speed ofoperation ofthesystem is governed by therate ofarrival ofexternal inputs into thesystem

and the action dependencies within the system and is independent of thedement (gates) and line

(wire) ddays.

1.2 Limitations of asynchronous designs

However, attractive as it mayseem, thesynthesis of asynchronous systems poses many

timing problems. A correctly designed synchronous circuit waits long enough for all the memory
elements toreach astable condition before allowing the next input change. This design procedure
eliminates errors due tocircuit timing inthe synthesis process. However, inthe synthesis ofasyn
chronous circuits, the absence ofasynchronizing dock and the presence ofunequal ddays through
the various paths in the circuitnecessitate special design techniques to eliminate the inherent timing
problems.

Therefore, inorder to simplify the design and synthesis of asynchronous drcuits, a few
assumptions must bemade about the external environment as well as the operation of the circuit
The most important of these is the assumption that the circuit operates infundamental mode, ie.,

after achange inexternal inputs, the next input change occurs only after the circuit reaches astable
(unchanging) condition. This means that the time interval between two successive input changes is
sufficiently large so as to allow the circuit to reach its stable state after the first input change. This
assumption, along with the others made on the external and internal environments to guarantee the
proper operation of the circuit, is described indetail insubsequent chapters.



1.3 Survey of asynchronous design methodologies

The theoretical aspects of the design of asynchronous digital systemshave been studied

quite extensively in literature, although the practical application of these techniques hasonly re

cently gained momentum. This recent revival of interest in asynchronous design is mainly due to

thedevelopment ofmathematical theory whichhas enabled adeeperunderstanding ofasynchronous

behavior [2,10,20].

The oldestand the traditional approach to asynchronous designis basedon the represen

tation oftheinitial circuit inthe form of aflow-table (orstate-table). The flow-table is subsequently

synthesized to yield excitation equations for the non-input signals (internal state variablesand out

putsignals) [1,2,7,8,9]. The problem of hazards has also been studied in detail and thenecessary

conditionsrequired to guarantee hazard-free operation ofthe synthesized circuithave been formu

lated. The major objective of this workwasto develop an automated system forthe synthesis of

hazard-free asynchronous drcuitsusingthe flow-table synthesistechniqueasdescribed in the above

references andto compare it with someofthe morerecent approaches, as described below.

Chu [10] introduced the concept ofSignal Transition Graphs (STGs) as a restricted class

of interpreted Petri nets. STG's have recently been used as anefficient specification for asyn

chronous drcuits. In [10] a procedure to synthesize asynchronous circuits guaranteed to function

correctly undernoassumption of gate-output ddaysisalso presented. Thissynthesis procedure first

modifies the initial STG description of the circuit, ifnecessary to guarantee thatthe STG satisfies

certain properties of liveness and persistency. It then converts themodified STG to itsequivalent

finite automaton called the state graph, which isthen transformed, ifnecessary, toensure that every

state in the graph is assigned a unique coding. Excitation functions for the next-state and output
signals are thenderived directly from the state graph.

Lavagno [14], under the more realistic assumption of unbounded gate-input delays de

scribes asynthesis procedure which guarantees thatmostof thesynthesized drcuits are hazard-free.

He also outlines an algorithm to design delay tests which could beemployed tocheck the synthe
sized circuit for the presence of hazards. Lavagno*s approach, however, assumes that the given
STG specification of the asynchronous circuit satisfies the Unique State Coding (USQ property
[14].

Vanbekbergen [17] presents atechnique tosatisfy the STG requirements of the USC prop

erty and persistency byintrodudngthe conceptofGeneralizedLock Classes and lock graphs. These
transformations are performed at the STG levd before itsconversion tothe equivalent state graph.



In another follow-up to the above paper [18], he suggests a technique to satisfy the USC property

at the state graph level by the addition of new variables (internal signals) to the initial STG. Hie

internal signals are added in a way that the logic of one particular non-input signal is minimize,

while maintainingthe original concurrency in the STG.

Ebergen [19] has developed a new synthesis technique for asynchronous circuits, both

speed independent and delay-insensitive drcuits. This technique is based on a mathematical for

malismcalledthe trace theory, andusesthemodelofadirected tracestructure to spedfy the initial

circuit

Dana, et al [23,24] describe a technique for realizing speed-independent combinational

logic, andpresentthe designofa simpleasynchronous RISC processor. Othersuccessfuldesignsof

asynchronous processors have been reported by Martin, et al [21,22], nana, et al [23], and Meng,

etal[13].

1.4 Organization of the report

In this report, a synthesis procedure is presented which guarantees that the synthesized

circuit is free of anycritical races aswell asanystatic and dynamic hazards underthe assumption

of single-input changes. The inputto this procedure is the flow-table representation of the asyn

chronous circuit The flow-table couldbe derived from the circuit's verbal description or a signal

transition graph specification. The table is then reduced by identifying and merging equivalent

states, and the reduced flow-table is subjected to state assignment techniques. The derivation of

theexcitation y-matrix is dependent onthe state assignment technique employed. Two-level logic

equations for the internal state variables and the output signals are generated from the y-matrix.

The excitation functions are modified, if necessary, to eliminate any combinational hazards. The

final logic equations synthesized guarantee that the circuit winoperate correctly under the assump
tions of bounded stray delays and fundamental mode of operation, and with the restriction that

successive input changes are between adjacent input combinations only.

In Chapter 2, preliminaries regarding sequential machines and the finite-state modelare

presented and the generic hardware models of synchronous and asynchronous networks are de

scribed. Anoverview of the complete synthesis procedure for asynchronous circuits is presented
inChapter 3. This procedure isthen,described indetail inthe following chapters. In Chapter 4,the
design example of the 4-phase handshake protocol isintroduced, and the process of derivation of
the initial flow-table from averbal description ofthecircuit is described.



Subsequently, the algorithms employed for the reduction of the flow-table are described

in Chapter5. In Chapter 6, different state assignmenttechniques for asynchronous circuits are

summarized and the Unicode stateassignment procedure is described in detaiL The final stageof

the synthesis procedure which involves the realization of a hazard-free combinationallogic from

the reduced flow-tableis presentedin Chapter7.

A summary of the signaltransition graph based synthesis procedure for asynchronous

drcuits is presented in Chapter 8. This chapter is aimed at understanding the pros and cons of

the flow-table and the STG synthesis techniques which are presented in Chapter 9. Finally, the

implementationdetailsof the synthesis package async which hasbeen implemented aredescribed

in Appendix A.



Chapter 2

The Finite-State Model

2.1 Sequential machines

Inacombinationalcircuit, theoutputsare combinationalfunctionsand depend onlyonthe

present inputsto the drcuit No information or data is stored in the drcuit In contrast a function

whose value depends not only on the present external inputs but also on the previous inputs is
called a sequential function. Sequential Circuits are realizations of sequential functions and the

mathematical model used todescribe asequential function iscalled asequential machine [2].

2.1.1 Finite-state machines

In asequential machine, the output at aparticular time t depends on the external inputs
applied to the drcuit at that time, as well as the inputs applied at previous time points. This depen
dency on inputs at previous time points requires that the information regarding the previous inputs
be stored inthe machine insome form. The input-history ofadrcuit at aparticular time t is the
sequence of inputs applied tothe machine at previous time points.

However, any particular sequential machine can have infinite types ofprevious histories.
This would require infinite memory capacity for storing them. However, practically speaking, it
is not possible to implement machines with infinite storage capadties. Thus arestriction on the
types ofmachines which could be studied and implemented isinevitable. Implementable machines
should therefore have their behavior affected by past histories in only afinite number ofways.

The different unique internal histories ofamachine are each represented byan internal
state. Eachstatemuscorrespondstoaparticularhistoryofpastinputs. Then, the fact that the outputs
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Figure 2.1: Schematic representation ofa SequentialMachine

dependon the present external inputsas well as the past inputscan be expressed as a functionof the

present inputs and the state of the machine. Since states are stored using memory devices, only a

finite numberof whichcanbe usedin practice, analysis of sequential machines is restricted to only

those machines which have a finite number of internal states.

2.1.2 The basic model ofa sequential machine

A sequential machine can be schematically represented as shown in Figure 2.1. The

input to the machine is from a finite setof input symbols. This setis called the input alphabet
I. The signals which constitute the input alphabet are called input variables and may take values
from the set (0,1). An input configuration I is defined as an ordered tuple of 0's and Ts, where

each member of the tuple represents thevalue of the particular input variable in /. Similariy, the

output is produced from a finite setof output symbols called the output alphabet O. The signals

constituting the output alphabet are represented by binary-valued output variables. The ordered

tupleof 0*s and 1*s identifying thevaluesof thevariables in a particularoutputsymbolis calledthe
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output configuration.

In Figure 2.1, the set of variables (*i,*2f»>*n) represents the set of input variables

whilethe set (2:1,22,..., zm) represents the setofoutput variables.

The signalvalue at the output ofeach memory element represents the state (secondary)

variable. The set (yi, j&,...,yu) in Figure 2.1 represents the setof state variables and the fc-tuple

of O's and Ts defines the present internal state of the machineat any time t. The signalvalue at

the input to each memory dement (which is an output from the combinational logic) is identical

to the respective value of the state variable at the next time point t + 1 and is therefore termed the

excitation (next-state) variable. The set (Yi, Y2,...,%) represents the set of exdtation variables

and the fc-tuple ofvalues for the exdtation variables is termed as the next state of the machine.

As is evident from the schematic diagram, the output of the machine produced by the

combinational logic is a function of the present inputs as well as the present state of the machine.

Such machines where the output is a function ofboth the present inputs and the internal state are

called Mealy machines. Machines in which the output is a function of the present state only and

independent of the external inputs are called Moore machines. It is possible to convert any Mealy

machine into its equivalent Moore machine and vice-versa, so that both the machines produce the

same output sequence for any input sequence [2].

The next state ofthe machine also depends on the present values ofthe external inputs as

well as the present internal state. The internal behaviorofthe machine is restricted to a deterministic

behavior, in the sense that for every possible pair of present state and input combination there

exists only one possible transition to a new next state. Such behavior is represented by the state

transition function, which maps every (presentstate,externalinput) conditionto a next state.

When a machine is in a particular state at any time t and an external input is applied to it the

machine temporarily goes into an unstable state, in which the values of the exdtation variables

(Y's) and the state variables (r/s) areunequal. The machine is said to have reached a stable state

when Yi = y,- for all t, ie., the values of signals at the inputs andoutputsof eachmemory element

are equal.

Summarizing the above in mathematical terms, a sequential machine M can be repre

sentedby a quin-tuple M = (1,0,8,6, A),where:

I = finite set of inputvariables

O = finite set ofoutputvariables

5 = finite set of states

S :I x 5 -• 5 is the state transition function



A:JxS-*Oisthe output function for Mealy machines, and

A: 5 -♦ O is the outputfunctionfor Moore machines

2.1.3 Flow-table representation ofa sequential machine

Oneof themethods of representing therelationship between the input presentstate, out

put and next state variables of a sequential machine is the State table or the Flow-Table. The be

havior of a machineon the applicationof a particular inputsequenceis defined as the succession of

statesthroughwhichthemachinepassesalongwiththe outputsequenceproduced. Every machine

has an initial state which is the internal stateof the machine before the application of any input

sequence. The flow-table along with the initial state uniquely specify the behavior of the machine.

The state whichthe machinereaches after the application of the input sequenceis called Ottfinal

state of the machine.

A flow-table is a two-dimensional array in which the rows correspond to internal states

and the columns to inputconfigurations. The entry defined by the element (t, j) corresponding

to the state S, and input configuration J, represents the next state and the outputproduced if the

machine is in present state5, andgetsan external input/,. In practice, it oftenoccurs that some

combinations of states andinputconditions arenotpossible. In othersituations, although the state

transitions aredefined, theoutputvalues produced arenotcritical, andhence left unspedfied. This

class of sequential machines in which, forcertain combinations of present state andinput values,

either the next state, or the output or both are unspedfied are termed as incompletely-specified
sequential machines.

Sequentialmachines canbe of twotypes: synchronous or asynchronous. This distinction

is based primarily on thesynchronous or asynchronous nature of thecomputational andcommuni

cation steps of the machine [15]. Asynchronous machine isone which issynchronous with respect

to bothitscomputational and communication steps. Onthecontrary, an asynchronous machine is

synchronous withrespect to communication, but asynchronous withrespect to its computational

steps. This distinction is explained indetail in the following sections ofthis chapter.

2.2 The synchronous machine model

The operation ofasynchronous machine issynchronized bya central fixed-period dock.
For correct operation of themachine, thetime period of theclockmustbe greater thanthecritical
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path of thedrcuit Intheschematic form, ageneral synchronous drcuit canberepresented as shown

in Hgure 2.2. The clock pulses are usedto trigger thenext state ofthemachine afterthevaluesof

theexcitation variables have stabilized atthe outputof the combinational logic.

In a synchronous machine, change of internal state occurs onlyin response to a dock

pulse. Thus due toachange inexternal inputs, the machineenters itsnext state onlyonreceiving the
subsequent dock pulse. Theexternal inputs tothe machine musttherefore arrive insynchronization
with the clock pulses. Similariy, the outputs are sampled only at the clock pulses.

2.3 Asynchronous machines

The schematic diagram of a general sequential drcuit inFigure 2.1 also represents the

model of an asynchronous network. The operation of the circuit isnot synchronized byacentral
dock. Therefore, achange in inputs can directly lead to atransition to the next state withoutwaiting
for any synchronization. However, due to unequal delays inthe different pathsofthe combinational
logic, thechange ofinternal statevariables maynotbesimultaneous. Thisresults inrace conditions
and related timing problems.

Asdescribed in the previous chapter, the design ofasynchronous circuits iscomplicated
by the fact that it is difficult to guarantee the simultaneous change ofmultiple signals in asingle
transition. Moreover, the external inputs to the circuit are not synchronized and can change at any
instant Due to these degrees of freedom, itcould be possible that the input configuration changes
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twice insuccession even before the circuit reaches stability asa result of thefirst change. Insuch

a situation, the operation of the drcuit would be unpredictable and erroneous. To rfimmat* this

timing problem, certain restrictions onthe external and internal environments have tobeimposed.

23.1 Fundamental mode ofoperation

Under the assumption offundamental mode, the external inputs to the circuit are con

strained to change only after the drcuit is in the stable mode, ie., the values ofthe exdtation vari

ables attheinputs tothedelay elements and the corresponding values ofthesecondary variables at
the dday element outputs are equal.

Inaddition totheabove restriction, another inputconstrainthastobeimposed. Duetothe

presence ofstray ddays and the fact that inputs can change atany time, it is necessary toprohibit
the simultaneous change of two ormore input signals. Hie restriction thatonly oneinput variable

may changeat any time, alongwiththe assumption of fundamental mode is termed as the normal

fundamental modeofoperation.

Foran asynchronous circuit, the external input variables along with thesecondary vari

ables define the totalstate ofthe drcuit Since each stable state ofthe drcuitessentially represents
atotal state, the circuit can go from one stable state toanother without any change inits secondary
variables. This means thatthetwo stable states are distinguishedonlybythestates of their external

inputs. This isin contrast to asynchronous drcuit inwhich the total state isrepresented only by the
states of the internal variables. This unique property of asynchronous drcuits isemployed indie
process of state minimization and is described indetail in Chapter 5.

2.4 Pulse mode circuits

In fundamental mode asynchronous circuits, all input signals are assumed to be levd

signals. In contrast adifferent dass ofcircuits calledpulse-mode circuits isbased on inputs being
pulses rather than level signals. The design of these drcuits requires certain restrictions on the
duration of pulses inorder to guarantee deterministic drcuit operation. Under the restrictions, it

has been shown that the operation ofpulse-mode circuits reduces tothat ofdocked synchronous
circuits [1,2,9],



Chapter 3

Flow-Table Synthesis: An overview

In this chapter, the various stages involved in the synthesis of fundamental mode asyn
chronous drcuits are outlined. The synthesis procedure begins with the initial description of the
circuit interms of a flow-table. In case the drcuit isspecified intenns of its graph-theoretic de
scription as aSignal Transition Graph (STG) [10], the STG is first transfonned into its equivalent
flow-tablerepresentatioa

3.1 Problem specification

The input to the synthesis procedure is aflow-table description orasignal transition graph
representation of the asynchronous drcuit The process of deriving the flow-table from averbal
description ofthe drcuit is very unsystematic and hence not induded in the synthesis procedure.
However, the process of transforming an STG spedfication of the drcuit into a flow-table can be
automated easily.

As its output, the procedure generates the excitation functions for the non-inputvariables,
viz., the output and the internal state variables. Under the assumptions described bdow, the exd
tation functions generated guarantee the hazard-free operation ofthe circuit

3.2 Assumptions

As described in previous chapters, certain constraints onthe external environment have
to be imposed in the design and synthesis ofasynchronous drcuits. Moreover, in orderto guarantee
the proper behavior ofthe synthesized drcuits. a few additional assumptions on the internal envi-

12
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ronment have to be made to ensure a hazard-free operation. These assumptions are summarized

below:

1. The drcuit operates in fundamental mode. After a change in the input configuration, no

otherinputchange is allowed untilthe circuit reaches a stable state. This assumption poses

the following relation between the ddays of the external and internal environments : the

time-difference between any two successive input transitions should be sufficiently large so

asto allowthe drcuit to reacha steadystateafterthe first input change. This assumptionalso

implies that a transition from one stablestate to another is only in response to a Change in the

input configuration.

2. All stray delays within the network are assumed to be bounded. Stray delays include both

element and line ddays.

3. During any state change, no criticalraceconditions are permitted, although non-critical races

areallowed. The concept ofcriticalandnon-criticalraces is described in Chapter 6.

4. Although certain state assignmenttechniquescould be employed so as to guarantee that the

drcuit is free of all critical races, the presence ofhazardsmay still cause the circuit to mal

function as demonstrated by the example presented in Chapter7. It is therefore essentialto

eliminate allpossible combinational hazards to guarantee the correct operation ofthe circuit

Unger [9] has shown that any function is realizable with a drcuit free of all combinational

hazards involving single-input changes. However, if multipleinput changes are involved,

then any function withmorethanone prime implicant contains hazards thatcannotbe elim

inatedthroughlogicaldesign alone.

It istherefore necessary torestrict theexternal environment sothat onlysingle-input changes

are permissible. Thus successive input transitions are restricted to adjacent input combina

tions.

3.3 An overview of the synthesis procedure

Under theabove assumptions ontheexternal environment and thedesign technique, the

synthesis procedure aims atderiving theexcitation functions for theoutput signals and theinternal

variables of the drcuit The synthesis techniques are designed so as to ensure thatthe circuit be

haves correctly under all input conditions, ie., noerroneous output isobtained for any sequence of
applicable inputs.
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Figure 3.1 outlines a diagrammatic representation of thevarious steps involved in the

flow-table synthesis procedure. These steps are explained inbriefbdowand studied indetail during
the course ofthis report

1. Derivationofthe flow-Table description:

From the initial representation of the circuit intenns ofaverbal description oran STG spec
ification, the flow-table is derived under the assumption of single input variable changes.
Thus theentries inthe flow-table corresponding tosimultaneous changes of twoormore in

putsignals are unspedfied. Inaddition, theoutputs corresponding to unstable states are also

unspedfied andareassigned laterin the synthesis process.

2. Reduction of the primitive flow-table:

The initial state-table called thePrimitive Flow-Table is modified to represent a table of an

incompletely specified synchronous machine. The process of state minimization thenaim*

at finding the minimal row machine with the same terminal characteristics as the original
machine. Twotypes of minimization are possible inan asynchronous machine:

• States which are redundant, inthe sense that their function is accomplished byone or
more other states of the machine, can be eliminated.

• States which are distinguishable only bythe values of the input variables and have the
same values for the secondary variables can bemerged together.

Using standard techniques adopted for incompletdy spedfied synchronous circuits, the re
duction procedure identifies thesetof states which should beincluded in aminimal machine.

3. Formation of the reduced flow-table:

Once the setofstates inthe equivalentminimal machine have beenidentified, the initial flow-

table is converted to its reduced form. In the case ofasynchronous machines, certain unique
characteristics ofthe flow-table are utilized to simplify the procedure deriving the reduced
flow-table.

4. Assignment of outputs to unstable states:

Since the initial primitive flow-table had the outputs ofthe unstable states unspedfied, certain
states in the reduced table may also havethdroutputsunassigned. These outputs are assigned
based on certain design criteria like the speed ofoutput change or complexity ofthe output
logic.
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5. State assignment:

State assignment techniques for synchronous drcuits aim at minimizingthe complexityofthe
combinational logic In contrast, the assignment ofthe binary-valued secondary variables in
asynchronous machines has avery different objective. Since the delays associated with the
different state variables may beunequal, state assignment has to guarantee that ^
completion of the internal transitions is independent of the relative values of these delays.
Although multiple changes ofstate variables are pennitted in asingle transition, it has to be
guaranteed that when two ormore state variables change matransition, the final state ofthe
drcuit is independent ofthe order in which these state variables change.

6. Derivationofexdtation functions:

After state assignment, the exdtation and output tables are derived, from which the two-levd
logic functions for the state variables and output signals are generated.

7. Hazard-free implementation ofthe combinational logic:

To guarantee aproper operationofthe circuitunder the assumptiorisKstedearh^r. the combi-
national logic has to be made hazard-free. This mvolves me elimmationofstatic and dyriamic
hazards for single-inputchanges.



Chapter 4

Derivation of the Flow-Table

The first stepinthesynthesis procedure istherepresentation oftheasynchronous machine

inthe form ofa flow-table. Incase averbal descriptionofthecircuit isgiven, the flow-table hastobe

derived manually. However, if the drcuit isspedfied interms ofitsgraph-theoretic representation as
asignal transition graph, theprocess oftransforming it toanequivalent flow-table canbeautomated

andthus incorporated in the synthesis procedure.

Inthis chapter, the spedal characteristics ofthe flow-table representation of asynchronous

drcuits are presented and the method of deriving the flow-table from the initial drcuit description
is described.

4.1 A design example

To illustrate the design process, a classical example of an asynchronous circuit is de

scribed inthis section [101. This example isreferred toinsubsequent chapters ofthis report, unless
otherwise mentioned.

The asynchronous drcuit considered isthat ofa4-phase handshake protocol, which isan
example ofan interface betweentwo drcuits Aand Boperatingindependendy. The signal transition
graph representation ofthe machine isdepicted inFig. 4.1. Itconsists oftwo input signals #,„ and
Ain and two output signalsA** and R^ which aredescribed bdow:

Rin : input signal from drcuit A.

A^ : acknowledge signal to circuitA.

Rout: readysignal to circuitB.

Ain : acknowledge signal from circuit B.

17
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Figure 4.1:57X7 Representation ofthe 4-phase handshakeprotocol [10]

The start-state of the machine is the state inwhich all signals are low and isgiven bythe
initial marking on the edges ApuT -♦ Jfc„+, and Ain- -> 1^+. When drcuit Awishes to signal
circuit B, it does so through the 4-phase handshake in the following manner: Circuit A sends a

high on signal Rin tothe interface. Upon receiving apositive transition on J£,„, the interface sends
an acknowledge back to circuit A bya positive transition on the signal A^. Simultaneously, it
also signals circuit B with ahigh on the ready signal R^. After this, the following two processes
canproceed independently andin paralld:

1. Afterreceiving the acknowledgement from the interface on A©*, circuit A withdraws the
highon R{n. The interface thenchanges A^ backto low.

2. When drcuit Breceives a1on R^, itsignals the interface with ahigh on its acknowledge
signal Ain. Upon receiving this acknowledgement from drcuit B, the interface withdraws

its ready signal R^a to drcuit B. Following this, drcuit Bwithdraws its Ain signal.
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Figure 4J: Possible input-outputsequencefor the4-phase handshake circuit

4.2 Flow-table derivation from a verbal circuit description

In this section, the derivation of the flow-table representation from the initial verbal de

scription of the 4-phase handshake drcuit is described. Simultaneously, the properties of a flow-

table foranasynchronous machinearehighlighted. To illustrate the process of flow-table derivation.

Figure 4.2 showsa possible inputsequence andthe corresponding outputsequence.

As mentioned earlier, asynchronous drcuits have two distinct types of states: unstable

and stable states. When an input change occurs, the machine temporarily goes into an unstable

states and thenassumes the stable state condition. In the flow-table, stable states are distinguished

from unstable ones by endosing them in a box.

The start-state ofthemachine isthestate where allsignals are low,andisdenoted by state

[TJ Thus the stable state[T]is entered tothefim =(0,0).
If Rin goes high at this point, then both theoutputs Rout and A** gohigh simultaneously. This

new state is denoted by the stable state [2} Thus a[2] is entered in the second row under the input
condition 10, with the outputs 11. Also, an unstable State 2 is entered in the first row under the

input 10, signifying that the stable state [7] will change to the stable state [T] under the inputs 10
after passing through the transientunstable State 2.

Now, if input Ain also goes high* then thedrcuit enters anewstate where theoutput Rout

is low and A^ is high. Thus the stable state \s\is entered in the third row under column 11, with
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Table 4.1: The Primitive Flow-Tablefor the4-Phase Handshake Machine

the outputs 01 and an unstable state 3isentered inthe same column inthe second row. Continuing
inthis way, next-state and output entries are determined for every possible input combination and

history ofpast input-values. In case astable state \s\ with the same outputs under the same input
condition already exists, then atransition to that state is specified by entering theunstable state 5

in thecorresponding column; otherwise, anewrow is augmented and anew state is introduced in

the column of the input configuration. The final table derived is shown in Table 4.1. It has five

rows and 4 columns, each row corresponding toastable state and each column toadifferent input
condition. Although states \T\ and |7]occur in the same column with input condition 00, they are
distinct since they have differentoutputs.

In conclusion, the main features of the primitive flow-table which completely spedfies
the logical behavior of the given machine, can be enumeratedas follows:

1. The table has exacdy one stablestate in eachrow.

2. In the event of an input change, ahorizontal move occurs from the present stable state toan
unstable state in thecolumn of thenewinput configuration.

3. A vertical move from an unstable state 5 to the corresponding stable state 5 represents a
change in the values of the internal state variables.

4. A horizontal move can only start from astable state, since an input change can occur only
when the circuit is stable (assumption of fundamental mode ofoperation).

5. Since it is assumed that only one input signal can change at any time, entries corresponding
tomultiple input signal changes inany row are unspedfied.

6. Outputs corresponding tounstable state are also unspedfied.
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7. Even underthe sameinputcondition, there are distinctstable states foreachdifferentoutput

condition.

4.3 STG transformation to the equivalent flow-table

As describedearlier, the derivation ofthe flow-table from a verbal descriptionofthe cir

cuit is very unsystematicandprone to errors. However, signaltransition graphs provideanefficient

means forspecifyingthebehaviorofasynchronous drcuits andtheirtransformationto anequivalent

flow-table canbe easily automated andthusincorporated within the synthesis procedure.

The concept of signaltransition graphs as effective means of spedfying asynchronous

drcuits and theiruseinthesynthesis procedure isdescribed inChapter 8. Onemethodoftranslating

STG's into flow-tables is described in [14]. This approach first converts a STG intoitsequivalent

finite automaton, the state graph, which is then used to derive the flow-table. A direct method of

transforming STG'sinto flow-tables can eliminate theintermediate state graph stage, thusreducing

thehuge spacecomplexityassociated withstate graphs, atthe sametime makingthe transformation

faster.



Chapter 5

Reduction of the primitive flow-table

5.1 Objectives of flow-table reduction

It is evident from the procedure for flow-table derivation that the table contains only one

stablestate in each row andentriescorresponding to multiple-inputchanges areunspedfied. The

construction ofthe initialprimitivetablethus leadsto morestatesthanwould actuallybe necessary

to specify the behaviorof the given machine. Reductionin the numberofinternalstatesmay lead

to a reduction in the numberofstatevariables necessary toencodethe internal states. This may not

only result in a reduction in the numberofmemorydements required forthe feedback loops, but

may also lead to a reduction in the complexityassodated withthe combinational logic required to

implement the excitation functions for the output and state variables. Thus for economical realiza

tions, it is desirable to reduce the number ofinternal states in the flow-table.

In anasynchronous machine, each stable state represents a totalstatewhichis spedfied

by the secondary variables as well as the external inputvariables. Thus an asynchronous drcuit

can change states dueto achange in itsinputvariables onlyand notnecessarily involving achange

in anyof its secondary variables. Suchstates can therefore be distinguished by the values of their

input signals, hi addition, there may also be stateswhich areredundant,ie., states whose function

is accomplished by one or more other states of the machine. The reduction of the flow-table of an

asynchronous circuittherefore has two objectives: removalof redundant states,andidentification

and subsequent merger of states whichare distinguishable onlyby thevalues oftheinput signals.

Minimization of the number of internal states of an asynchronous machine has many
advantages:

22
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Table 5.1: ModifiedFlow-Tablefor the4-PhaseHandshake Machine

1. Sincethenumberofmemory elements necessary for the implementationofamachine isusu

ally proportional to thenumber of internal states, state minimization mayreduce thecom

plexityandcostandhencethe reliability ofthe realization.

2. Diagnosis ofamachine ismuch easier intheabsence ofanyredundant states.

3. State minimization reduces thelength of thetest-patterns needed to testthemachine and thus

reduces the timecomplexity assodated withtesting.

It is therefore desirable to transform the given machine into another machine with the

same terminal behavior, but which is free of anyunnecessary states. Flow-table reduction thus

corresponds to finding the minimum-row table with the same terminal characteristics.

5.2 Analogy with flow-table reduction for synchronous machines

The primitive flow-table derived for asynchronous machines can be modified to represent
atable ofan incompletely spedfied synchronous machine. Each row ofthe primitive table contains
only one stable state. Therefore, the stable state 5 occurring ina row r, could be denoted as the
present state for row r,\ Then, each entry of row r,- occurring under an input configuration Ij
represents the next-state and corresponding output generated when the machine isinitially instate
5 and gets anew input configuration Ij. The modified table for the 4-phase handshake machine is
represented in Table 5.1.

Since the modified table has many unspedfied entries, it isanalogous tothe flow-table
ofan incompletely specified synchronous circuit. It however has the special characteristic that in
each row, there isexactly one next state entry which is the same as the present state. This means
that for each present state and for exactly one input configuration, the machine does not undergo
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anychange in its internal variables. Standard flow-table reduction techniques used forstatemini

mizationofincompletely spedfied synchronous drcuitscannowbe applied to themodifiedtableof

the asynchronous drcuit In this chapter, anexactalgorithm forthe minimization of incompletely

spedfied finite-state machines with spedal reference to asynchronous machines is presented.

S3 Previous work in state minimization

The general theory of incompletely spedfied machines has been widely studied in lit

erature [1,2,9,27, 30]. The minimization process for such machines consists of finding the set

of maximum compatibles and selecting the smallest dosed collection ofcompatibles from the set

However, other than explicit enumeration,no systematic procedure for selecting a minimal dosed

set of compatibles has been presented. Since the set of all maximum compatibles is obviously

closed, the upper bound on the number of states in any minimized table is equal to the number of

maximum compatibles [9]. In contrast the set ofmaximum compatibles for a completely spedfied

machine is disjoint Therefore, in the case ofcompletely spedfied machines, the number of states

in the minimum machineis equalto the totalnumberofmaximum compatibles.

Ginsberg [29] proves the lower boundon thenumberofthe statesin any minimal machine

to be the number of states in the largestmaximal incompatible (those incompatible not included

in any other incompatible). Grasselli, et al [27] presenta rninimization procedure by illustrating

that only a few compatibility classes need to be considered as members of any minimal solution.

Their procedure is thereforeless enumerativethanmost known methods. They describean integer

linearprogram formulation for the selectionof the essential maximum compatibilitydasses. This

formulation is anextensionofMcCluskey's primeimplicanttable[4]. Rao andBiswas [30] extend

theideasof[27] by givingstricterconditions forthe generationofprimedasses andthe elimination

of thosemaximum compatibles which will neverbe included in anyminimal solution.

Anexact algorithm forthe minimizationofincompletelyspedfied machineswith spedal

reference to asynchronous machines is presented in this chapter. This algorithm is based on the

generation of maximal compatibility dasses (MC-CIasses). From the set ofMC-dasses, the set of

prime dasses is generated. Theminimal cover consists only of prime dasses, and thesetof prime

classes to be included in the minimal cover is formulated as an integer-linear program which is
solved using a binatecovering algorithm.
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5.4 Compatibility classesand closed covering

In this section, a few definitions which are essential for an understanding of the state

minimization algorithm are presented.

Definition 1 [11: In a completely specified machine, two states «< and#;,are said tobeequivalent ifand
only ft forevery possible input sequence appliedtoeither state, the output sequence generated isthe same.

Definition 2 [1J: Two completely specified machines. Mi and Mi, are said to be equivalent ifand only ft,
for every statein Mi, there existsanequivalent statein M2, andviceversa.

Definition 3 [1]: Two machines are isomorphic ftandonly ft they are identical exceptfor are-labeling of
their states.

Definition 4 [J]: Aminimal machine isaone which hasno equivalent states. Disregarding isomorphism,
the minimalmachine ofa completely specified machine isunique.

Definition 5 [91: In the case cfincompletely specified machines, state «< in machine Mx is said tocover
state 8j in machine Mi ftandonly ft, every input sequence applicable to both the machines when they are in
their respective states a,- andsj generates the same outputsequence whenever the outputsofM2 are defined.

Definition 6 [9J: With the above definition ofstate cover, machine Mi issaid to cover machine Mi ftand
only ft, for every state tiinMi, there exists acorresponding state 8j in Mi such that «< covers «j.

Definition 7 [11: Two states, *< andsj cfmachine Mare compatible ftandonly ft,for every input sequence
applicable to both a and ai% the same output sequence isgenerated whenever both outputs are specifiedand
irrespective ofwhether «,oralis the initialstate.

Definition 8 [1J: Acompatibility class is aset ofstates in which all members are pairwise compatible.

Definition 9 [1J: AMaximal Compatibility Class (MC-class) is acompatibility class not contained in any
other class.

Definition 10 [11: Aset ofcompatibility classes is dosed ft, for every class Cin the set, all its implied
compatibles are also contained in the set. Aclosed covering isaclosed set ofcompatibles which contains
all the states ofthe machine. Aclosed cover specifies the sets ofstates which are compatible and therefore
may be covered by single statesof the reduced machine.

In the case of completely spedfied machines, the equivalence partition, ie., the sets of
equivalent states is unique. This leads to aunique reduced machine. However, for an incompletely
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spedfied machine, two or more different reduced machines may each cover the original machine.
Thus the aim of flow-table reduction isextended tothe dual objective of finding areduced machine
which not only covers the original machine,but alsocontains a minimalnumberof states.

A dosed coverofthe states ofanincompletely spedfiedmachine serves the function of

an equivalence partition for a completely spedfied machine. However, the difference lies in the

fact that while the equivalence partition consists ofdisjoint sets, the dosed cover may contain sets
which are overlapping. Thisleads tothe realization that thedosedcover in incompletely spedfied

machines is not unique. The objective of state minimization is therefore to sdect a dosed cover

which has the minimum number of compatibles and thus defines a minimum-state machine that

covers the original machine.

Inconclusion, theproblem ofstate minimization aims atfinding adosedsetof compati

bilityclasses ofminimal cardinality, whichcovers allthe states ofthe givenmachine.

5.5 Exact algorithm for state-minimization

An overview of the exactstate-minimization algorithm is depicted in Figure 5.1. From

the setof maximal compatibility dasses, the algorithm generates all possible prime dasses. The

problem ofselecting theminimal dosed setof prime compatibles is formulated asaminimal binate

covering problem. The solution tothecovering problem gives thelistof prime compatibles tobe

included inaminimalcover. Since the setofstates in any primecompatibleare pairwise compatible,
theycan bemerged together intoasingle state. Thus thelistof primes obtained as asolution to the

covering problem alsogives the number ofstatesin the minimal machine.

5.5.1 Generation ofcompatibility pairs

The first stepinthe minimizationalgorithm isthe determination ofthe pairs ofcompatible
states. This procedure isbased onthe formation of the Merger Table [1] which is generated from
the initial flow-table. The merger table describes the pairwise compatibility of the internal states.
The initial merger table is generated by the following procedure:

1. Ifapair ofstates can be directly recognizable from the flow-table as being compatible (their
next states and output entries do not conflict), a•-• is placed inthe cell corresponding tothe
pair.
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Figure 5.1: Flow-table reduction algorithmfor asynchronous machines
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Table 52: The initialmerger tablefor the4-phase handshake machine

2. Else, if apair can bedirectly recognized as being incompatible (at least one of their output
entries conflict), a **' is entered in the cell

3. Else, although the next state entries of a pair of states may conflict, but theircorresponding

outputsdo not, then the states cannot be directiy identified as either compatible or incom

patible. In this case, the compatibility of the two states depends on the compatibility of the

state-pairs which appear asconflicting nextstate entries. For such apair ofstates, thedepen

dency conditions for their compatibility are entered in the cells corresponding to the pairs.

These dependencyconditionsarecalledas impliedconditions.

The initial mergertable for the 4-phase handshake protocol is shownin Table 5.2. The

pair of states (1,4) have conflicting outputs under the inputcondition 00 and hence the cell cor

responding to them is marked with a '••. Pairs (1,3), (1,5), (2,3), (2,4), (3,4), and (3,5) can

bedirectly recognized as compatible pairs. However, the pairs (1,2), (2,5), and (4,5) cannot be

direcdy recognized as either compatible orincompatible. All these three pairs have states 1 and 4

as conflicting next-state entries and thus the implied condition (1,4) is written in the cells corre

spondingto them. It is to be noted that for purposes of flow-table reduction, both the stable and

unstable states are treated alikeandhence nodistinction ismadewhilewriting them.

Thenextstep in thegeneration of compatibility pairs is toupdate the initial merger table

soastoremove anyinconsistendes. Thetable isupdated step-by-stepuntilit cannotbeupdated any

further. This step isbased ontheimplied conditions entered insome cells of the merger table. If a

pair ofstates (p,», pj)are incompatible and are included inthe implied list ofanother pair (pm, p„),
then the pair (pm,Pn) isobviously incompatible too. This rule is applied to the merger table in a
systematic manner until no further incompatibilities can bedetermined. Inthe4-phase handshake

example, it isevident from the initial merger table that the pair (1,4) isincompatible. This pair is
included inthe implied list of pairs (1,2), (2,5), and (4,5). Thus the merger table ismodified to
denote the pairs (1,2), (2,5), and (4,5) as incompatible byplacing a •*• intheir respective cells.
The final merger table for theexample is obtained asinTable 5.3.
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Figure52: Merger Graphfor thehandshake example

The final list ofcompatibility pairs are the pairs of states which do nothave a •*•in their

cells. Thus me pairs (1,3), (2,3), (3,4).(1,5), (2,4^

for the 4-phase handshake sequentialmachine.

5.5.2 Derivation ofmaximal compatibility dasses

From the listof compatibility pairs determined in the previous step, themaximal com

patibility dasses (MC-classes) can be generated bythe formation of the Merger Graph [1] and the
largest complete polygons in the graph can beidentified. TheMerger Graph has anode for each

state of the original machine and an edge between two nodes if they form a compatible pair. A
complete polygon of the graph identifies aset of states which are pairwise compatible. Thus the
largest complete polygons determine the maximal compatible sets. The merger graph for the 4-
phase handshake example isshown inFigure 5.2. The largest complete polygons inthe graph can
be identified as the set of states (2,3,4) and (1,3,5), which form the maximal compatibles.

However, a different technique isused to determine the MC-Qasses. This technique is

adual-procedure based on the use of incompatibility pairs torecursivdy break down large sets of
states into smaller sets until the sets finally remaining are the MC-Classes [26]. To illustrate the
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basic operation, consider theinitial setofstates (1,2,3,4,5). Now, if thepair(1,4) is identified as

an incompatible pair, thentheoriginal setof states is splitintotwo sets: a set (2,3,4,5) withthe

state 1omitted and a set(1,2,3,5) with thestate 4 ddeted. Thisoperation is applied recursively on

the two sets generated, the procedure for the generation ofthe MC-Classes isenumerated bdow:

1. Start with the initial set of all states.

2. Assume the procedure beginswith the firststate. Si. Split the set into two sets : one con

taining all states except.Si, and the other containing state Si along with all states which are

compatible with it This second set is easily identifiable from the merger table by selecting

the states with non-*** entries in the column corresponding to S\.

3. Move to the next column which contains at least one '*' entry. Let this column be j. For

each set on the list containing the stateSj andhavingat leastonestate whichis incompatible

with Sj, replace it with two sets : one without Sj and the other without states which are

incompatiblewith Sj.

4. Repeat the procedure for every column in succession. At each stage, eliminate those sets on

the list whidrare contained in other sets on the list

This procedure when applied to the handshake example yields the following steps:

[a]. (1,2,3,4,5) the initialset ofstates

[b]. (2,3,4,5) (1,3,5) splitting withrespectto state 1

[c]. (3,4,5) (2,3,4) (1,3,5) spotting set (2,3,4,5) withrespectto state2

[d]. (3,5) (3,4) (2,3,4) (1,3,5) splitting set (3,4,5) with respect to state4

[e]. (2,3,4) (1,3,5) ddetmg sets(3,5) and (3,4) contained

within(1,3,5) and (2,3,4) respectively

5.5.3 Generation of prime compatibility classes

Since the potential number of MC-Classes for largemachines couldbe very large, the

complexity of the covering problem could be reduced by eliminating those classes which would

not be included in any minimal cover. Thisstageof theminimization procedure therefore aims at

selecting those MC-Classes which are potential candidates forinclusion in anyminimal solution.

Acompatibility dass Cj is saidto beexcludedby a classC, if C, contains all theinternal

states of Cj (Pi D Cj), and all the dasses implied by C,- are also implied by Cj. APrime Com
patibility class is onethatis notexcluded by any other compatibility dass. Bythisdefinition and
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by the procedure for the generation of MC-Classes, all the maximalcompatibility classes gener

ated classify as prime compatibility dasses. It has also beenproved by Grasselli [27] thatprime

compatibility classes are the only ones which need to be retained for a minimal cover.

However, the MC-Classes generated are not the only prime compatibles. Other prime

compatibles have to be generated from the list ofmaximal compatibles. This procedure is based

on thedecomposition ofeach maximal compatible intosub-classes and subsequent elimination of

those sub-dasses which are excluded by other classes already generated. Ihe algorithm begins

with the initial list of MC-Classes and selects the maximal compatible of largest size (n). It then

generates all sub-dasses of size (n -1). Only those sub-dasses which are notexduded by classes

already onthe listare added tothe initial list of MC-Classes. This process is applied recursivdy

to thenewly-determined prime classes of size(n - 1),to generate prime dasses ofallsizes. This

procedure guarantees that onlyprime classes are added tothelist ie.,noclass already onthelistis
ever exduded by a newly generated class.

To further reduce the number of prime dasses generated, thus reducing the complexity

of thecovering problem, additional pruning rules can be employed asdescribed in [30]. Theseare

based onan extension of theconcept of implied compatibles called transitivity ofimplication.

5.5.4 Formulation of the minimal covering problem

The objective of the covering algorithm istoselect the smallest dosed setofcompatibles

from the set of prime compatibles generated inthe previous stage, so as to satisfy the following
constraints:

• Each state of the machine iscovered by atleast one selected prime dass. These constraints
form the Coveringconstraints.

• The set of selected classes isclosed with respect of implication. This constraint implies that
ifaprime class C is selected, then all itsimplied compatibility pairs must be included inat

least one prime dass from the listof selected prime dasses. This forms the setof Closure
constraints.

• The cardinality of the setwhich satisfies the above covering and closure constraints ismini
mal.

The third condition forms theobjective function whichis to be minimizedunderthe cov

ering and closure constraints [27]. To illustrate the formulation of the covering problem, assume
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that the totalnumberof statesin the machineis s andthe numberof primeclassesgenerated is n.

Let thenumberofclasses withanon-emptysetofimplied compatibles be p. Corresponding toeach

compatible class Cit let c, be defined as the variable such that c,»1 ifC, is included in the minimal

cover and 0 otherwise.

Cost function

The objectiveof the covering problem is to assign values from the set (0,1) to each

c„ t = l, ...,n, so-as to satisfy the following cost function subject to the covering and closure

constraints:

minimise 5"!Cj
tat

Covering constraints

If state Si is included in compatibles C,i,Ca, ...,C,>, then the covering constraint for

state si spedfies that at least one ofthese compatibles must be induded in die minimal cover. This

is expressed in mathematical tenns in the form of a booleanequation:

en + ca +.»+ Cir > 1 is l,..,a

Closure constraints

If acompatibledass C, is selected, then eachmemberofits implied set ofcompatibility

pairs mustbe contained in at least one ofthe dasses included in the minimal cover. Let the set ofim

plied dasses for C, be (Ca,C0,..., C,). LetCabecontained incompatibles Cai,Caiy..., Caa, C0

incompatibles C^, Cg,,...., C$b and so forth. Thus for each compatible, C„theclosure constraints

can be formalized as:

$ + (Cai + Co, + .»+ Ca.)(c^ + Cft + ...+ C^).....^ + C^+ ...+ Cy,) = 1

Constraint inequalities

The above set of covering and closure constraints can be rewritten as mathematical in

equalities as shown below:

Ctl + Ci2 + ... + Cir > 0, i = 1,..., s

-$ + (Cox + C«i + ... + Ca.) > -1
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-$ + (*A + CA +.» + c&) > -1

-* + (c^ + Ct,+... + c„) >-1

Formation of the Covering-Closure Table

Theabove constraints canberepresented bymeansofatable called theCovering-Closure

Table or the CC Table. This table has a row for each compatible class and a column for each

constraint Thetable hastwosections, oneforthecovering constraintsandtheotherforrepresenting

theclosure constraints. Foreach covering constraint corresponding to stateat, a 1 isplaced in the

rows ofthe prime compatibles which include a,. For each closure constraint ofthe form

-ft + (Co, + Co, + ... + C.) > -1

there isacolumn having a0inrow corresponding tocompatible C„ and a 1inrows corresponding
to compatibles C*t, Cai,...., Ca«.

5.5.5 Solution to the covering problem

Before applying a binate covering algorithm tothe above representation ofthe covering
problem, the sizeofthe CC-Tableand hence the complexityofthe covering algorithm canbegreatly
reduced by the application ofpruning rules tothe CC-Table. These rules are based onthe concept
ofessential rows and row and column dominance and are described in [27]. Since the covering
problem isNP-complete, reduction ofthe size of the CC-Table may considerably reduce the time
needed to find a minimal cover.

Once the CC-Table is reduced, the covering problem is solved using a standard binate

covering package called MsmjnatJbinjninimumxoverO" which takes as its input the CC-Table
andgenerates the listof prime compatibles which are included in a minimal cover.

5.6 Formation of the reduced flow-table

Once the prime compatibles which are included in the minimal cover are determined,

the original primitive flow-table has to be reduced. The reduction procedure aims at merging the
states which belong tothe same prime compatible. However, thecompatibles selected to form the

minimal cover may not necessarily be disjoint, ie., astate of the original machine may beinduded
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in two or more selected prime compatibles. It is therefore necessary to make the coverdisjoint

before deriving the reduced table.

Once the sdected prime compatibles form a partitionof the original set of states, the

initial primitive flow-table can be reduced basedon the minimal cover. This reduction process is

simplified compared tothat of synchronous flow-tables due tothe intrinsic nature of the primitive
flow-table for an asynchronous machine, ie:, the presence ofexactly one stable next-state in each

row which is the same as the present state for that row, and the outputs for unstable states being

unspedfied.

The basic step in the reduction of the primitive flow-table is to merge rows which have

their corresponding present states included in the same compatible. The merger process aims at

combiningthe next-stateandoutput entriesofthe rowsbeingmergedto conformto the compatibles

included in the minimal cover. In case a stable state is merged with an unstable state, the merged

state in the reduced table is marked as stable. Also, in such a case, the output of the stable state

represents the output of the merged state.

From the process of flow-table derivation, it is observed that two stable states which occur

under the same input configuration must have conflicting output entries. If this was not true then

only one of them would appear as a stable state under that input condition. This leads to the fact

that in the procedure for the generationof prime compatiblesno two states in the same compatible

can have their next-state entries under any particular input condition as both stable states. It is also

true that unstable states have their outputs unspedfied. Thus while merging any two rows of the

primitive table, it is only possible to merge a stable state with an unstable state, or to merge two

unstable states together. In either of these cases, the states being merged are the same; only their

statusmay differ asbeing stableorunstable. Thus a situationwhere two stable statesin any column

areto be merged can never occur and therefore, in any merger,conflicting output entries arenever

encountered. This fact is utilized in simplifying the processof flow-table reduction.

The reduced flow-table for the 4-phase handshake machine is shown in Table 5.4. The

reduced table is constructed by merging the rows corresponding to the states in the compatibles

(2,3,4) and (1,5).

5.7 Output assignment for unstable states

hi the primitive flow-table, the outputs for theunstable states are left unspedfied. In the

processofderiving the reducedtable, there couldbe situationswhen two unstable states in two rows
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State

Next - State, RoutAout

00

HinAin
01 11 10

1 4 .10 5,- 3.01 2J.11
2 1 ,00 5100 3,- 2.-

Table 5.4: Reduced tablederivedfrom thepartition {(2,3,4) (7,5)}
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are mergedtogether, asa resultof whichthe outputs ofthe mergednext-states remainunspedfied.

These unspecified output entries have to be assigned values before the reduced flow-table can be

used to derive the excitation functions.

In certain situations, the assignment of outputs is dictated by the necessity to guarantee

thatno momentary false outputoccurs in the transition. In the caseof synchronous circuits, mo

mentary false outputs pose no problems since outputs are sampled at the dock pulse. However,

transient false outputs in asynchronous circuits can cause problems iftheoutput isused asaninput

for anotherasynchronous drcuit Thus in caseofa transition from one stablestateto another, both

with the same outputs, the output of the intermediate unstable state hasto be assigned the same

value to prevent any transientoutput values.

However, in the event of a change from one stable state to another, both with different

output values, the assignment of output to the unstable state could be based on different design

criteria like the speed of output change desired (fast orslow output transition), orthecomplexity

of the output logic. For atransition from stable state a,- with output 0 tostable state Sj with output
1, the intermediate unstable state sj can beassigned the output 1if a fast output change is desired

or the value0 if a slow outputtransition is required.

However, a particular unstable state 5, may be an intermediate state for more than one

state transition. This means that the stable state [5^] may be reached from more than one previous
stable state. Insuch asituation, theoutput assignment procedure has totakeallsuch transitions into

consideration. Let us assume thatanunstable state Si is the intermediate statefortransitions from

states [5i"t....f5in. Let the output of the state fsTl be Z. If either ofthe states [sTj..., [sTj have
outputs equal toZ, then the output assigned tounstable state Si must also beZ inorder toprevent
any false transitions. However, ifthe outputs ofall these states are different from that oi\sX then
the unstable state Si can beassigned an outputbased ondifferent design criteria.

Another criteria for output assignment can bebased onthe objective of minimizing the
complexity of the output logic. The heuristic used toestimate the complexity of the output logic is
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based onthe concept ofdistance. The distance between two binary values isdefined as the number
ofbit-positionsinwhich the two values differ. Let nbe the numberofoutputs ofagiven circuit and
for aparticular unstable state 5, let*be the numberofstable states which have atransition to [s}
Then the output of the unstable state S is assigned so as tominimize the total sum of the distances

ofthe assigned output from the output ofthe stable state [s] and the outputs ofthe ib stable states
which have a transition to 5.

Definition 11 [91: Flow-tables in which any input change produces atmost one output change are called
Single-Output Change (SOC) flow-tables, while tables which produce asequence ofoutput changesfor a
single input change arecalled Multiple-Output Change (MOC) tables.

Definition 12 [91: SOCtablesin which every state transition leadsdirectly to astable state withoutpassing
through asequence oftransient unstable states are called normiX-modeflow-tables.

The flow-table derivation procedure described inthe previous chapter produces tables in
whicheverytransition leads directly to astable state. Therefore, inordertomakethetables normal-

mode flow-tables, the outputs of the unstable states should be assigned such that every transition
involves only asingle-output change. This can be accomplished bythe following procedure: for
every transition from stable state *,- to stable state Sj, assign the outputof theintermediate unstable
state equal toeither the outputof st orthe outputof 9j.

As presented inChapter 6, the state assignment technique iseasy toautomate inthe case
of a normal-mode flow-table.



Chapter 6

State Assignment in Asynchronous

Circuits

6.1 Objectives of state assignment in asynchronous circuits

State assignment is the process of representing the internal states of a machine by com

binations of valuesof binary state variables. In the case of a synchronous machine with n states,

[log n] state variables are necessary and suffident for representing the n states and the goal ofstate
assignment istoassign aunique coding toeach internal state soastominimize thecomplexityofthe

combinational logic. However, inasynchronous machines, owing tothe different ddays associated

witheach feedback path, multiple changes of secondary state variables maylead torace conditions.

Thus the primary goal of state assignment is to guarantee that the successful completion of any
state transition is independent of the relative values of the ddays assodated with each secondary
variable. Moreover, in order to guarantee the proper operation ofthe circuit, flog n] state variables
may no longer be suffident to represent all the internal states and itmay be necessary to induce
redundancy in the stateassignment

Against the background ofthe above primary objective, the secondary objectives ofstate
assignment inasynchronous drcuits could be one or more ofthe following:

1. Use a minimum number of state variables.

2. Minimize transition time: Each transition from one stable state to another may be routed
through anumberofintermediate transitions, each ofwhich involves change ofasingle state
variable. Transition time of an assignment is defined as the maximum number of steps re-
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quiredfor thecompletionofanystatetransition. Forfundamental-mode circuits whichallow

onlysingle input changes, transition timeof anassignment affects theminimum period be

tweenanytwo successive inputchanges and thusthespeedofoperation ofthecircuit Thus a

secondary objectiveofstate assignmentcouldbetominimizethetransition time. The concept

oftransition time is discussed lateron in thischapter underthe connected row-setmethodof

state assignment

3. A modificationof the above objective couldbe to have a singletransition time stateassign

ment so as to allow multiple state variable changes in a single transition. This technique of

state assignment is called single transition time (STT) assignment and is described in later

sections ofthis chapter. It is one of few state assignments techniques which can be automated

with an exact algorithm.

The asynchronous state-assignment problem is different from the synchronous one due

to the additional constraints introduced by the primary objective : if two or more state variables

change during any transition,the final stateofthe drcuit shouldbe guaranteed to be independent of

the relativeorderofthe changesofthose statevariables. A changeofmultiple statevariables during

a single transition is called a race condition. A race could be either critical if the final state reached

depends on the order in which the state variables change, or non-critical otherwise. Obviously,

since we cannot guarantee that all state variables which have to change during a state transition

will changesimultaneously, any stateassignment with race conditionsmust have only non-critical

races. Thus a race-free assignment is suffident but not necessary forproperoperationofthe circuit

191.

In the light of the above difficulties, the design of race-free drcuits may not always be

possible with uni-code state assignments such that all state transitions involve only single state

variables changes. It therefore becomes necessary to relax some of the conditions of traditional

stateassignmenttechniques. We may need to assumethateachstatecanbe assigned more thanone

encoding, and/or thateachtransition cantake place in morethanone time-step.

Definition 13 [91: Assignments which have the property that a single state transition may take place in
multiple time-steps arecalledMultiple Transition Time(MTT)assignments while those which require only
a single time-step aretermed Single Transition Time (STT) assignments.

Thus in STT assignments, all state variables which have to change in a state transition

are allowed tochange simultaneously. While MTT assignments increase the minimum time-period
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Table 6.1: Machine Ml

between twosuccessive input changes, STTassignments do nothamper the speed of operation in
this respect

6.2 MTT state assignment techniques

6.2.1 Adjacency graph

The two different MTT methods of state assignment which will be discussed ahead are

based on the formation of an adjacency graph. This graph has a vertex for each state (row) of

the flow-table and edges between any two states which need to be assigned adjacent codes. States

whichneedto be assigned adjacent codesare thosewhichhave a transitionbetweenthem. Thus, if

for any pair ofstates j, and j, and for any input conditionI*, if the next-state entry N(si, Ik) isthe
unstable state sm andthe next-state entry N(sjt Ik) is the stable statesm, then it is essential that

states Si and sj beassigned adjacent codes and hence have anedge between them inthe adjacency

graph. This edge islabeled bythe input condition Ik tosignify theinput under which the two states
have a transition.

In effect, theadjacency graph lists all the adjacency constraints which must be satisfied

by any race-free assignment The state assignment problem isthen toassign codings toeach state
sothat all pairs ofstates which are adjacent inthe adjacency graph are assigned codes differing in
only asingle state variable. However, if*» happens tobethe only state inthe column I*, then the

race isa non-critical race and can beallowed since the circuit cannot reach any other intermediate
state instead of sm.
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Table 62: Reducedtablefor machineMl

To illustrate the concept of adjacency graph and the different methods of MTT assign

ments, the asynchronous machine Ml shown in Table 6.1 is used. After state minimization and as

signment ofoutputs to unstable states, the reduced machine is as obtained as shown in Table 6.2. The

final listof disjointcompatibleswhichareusedtoderivethe reduced tableare(1,2,6), (4,7), (3,8),

and(5). The reduced machinetherefore has4 stateslabded A,B, CandD. StateD hasits transition

on input 00 unspedfied.

The adjacency graph derived from the above reduced flow-table for machine Ml is de

picted in Figure 6.1. As is evident from the graph, state A has to be assigned a code adjacent to B.

Similarly, the code of B should be adjacent to D and the code assigned to D has to be adjacent to A.

Thus the set of states (A, B, D) form a cyde, as do the sets (A, C, D), (Ay £, C), and (B, C, D).

It is clear that the minimum number of state variables (2) are not suffident to implement a state

assignment for which all state transitions involve only a single state-variable change. Thus in this

case there does not exist any Unicode assignment such that all transitions occur between adjacent

states.

This example illustrates that redundancy may be necessary for successful state assign

ment, in the sense that more than the minimumnumberofstate variables may be required to guar

antee the proper operation of the circuit

6.2.2 Connected row-set assignment

This is a methodof state assignment whereeach state transitionis allowedto take place

in more than one time-step so that each step involves only a single variable change. Each state

is assigned a set of codings, which constitutes the row-set of the state [2]. The row-sets of every

state are constructed so that each code in the set can be reached from every other code in the same

set througha sequence of intermediate codes, each belonging to the same set and each transition
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OO, 11

Ol

11, io

Figure 6.1: Adjacency graphfor machine Ml

involving only a singlevariable change. Such row-setsaretermed connectedrow-sets.

For successful state assignment the connected row-sets of each state have to be con

structed sothat the following condition is satisfied: for any pair of states whichare adjacent in the

adjacency graph, the corresponding row-sets of the two states must be intermeshed, ie., a code in

the row-set of one of the states must be adjacent to a code in the row-set of the other state. With

this construction procedure, any transition from state *,* to sj canbe accomplished by a series of

transitions within the row-set ofa, toacode which isadjacent tosome code inthe row-set ofsj and
thena final transition to thatadjacent code. Thuseverystate transition in the flow-table canthenbe

executed by a sequence of single-variable changes. However, there is no known non-enumerative

algorithm for the construction ofconnected row-sets.

Criteria for constructing row-sets:

A simple criteria which could aid in the construction of connected row-sets is to order

the vertices indescending order of their degrees and start with the vertex with the highest degree
(which isthe state with the maximum numberofadjacent states). Letthe degree of the vertex with

thehighest number ofadjacendes bek. If thenumber of states in themachine is n, thenthelower

bound on the numberof state variables required for state assignment ism = \logn\. However, ifk
is greater than m, thentwothere could betwopossibilities: thenumberof state variables could be

increased, or the state corresponding to the vertex with the highest degree can beassigned multiple
codes so that the required number-of adjacent codes are available tobe assigned to its adjacent
states.

In the adjacency graph for the reduced machine of Ml, vertices A and Chave the highest



42

degrees. Starting with vertex A, its adjacent vertices are B, G and D. Thus two state variables

arenot suffident for this stateassignment We therefore increase the numberof statevariables to

3 and assign the following codes: 4(000), 5(001), C(010). and J0(1OO). The next vertex tobe
considered isCwith adjacent vertices A, B,and D. The adjacency ofCwith A isalready satisfied
in the codes assigned so far. However, to satisfy the adjacency of C with B and D, an additional

code has tobeassigned toCsothat itisadjacent tocodes assigned toB and D. This additional code

also has to beadjacent to the code 010 already assigned to G inaddition tobeing adjacent tothe
codes 001 of B, and 100 of D, Obviously, of the remaining three-variable codes, there is no code

which satisfies all these conditions. We therefore assign the code 101 toC,which isadjacent tothe
codesofboth B andD. However, to make the row-setofC connected, additional codes 110and 111

haveto be assigned to state C.This satisfies all therequired adjacendes and thusis a feasible state

assignment

Withthisassignment, ifthecircuit isinitially instate Crepresented by thecode 010under

the inputcondition01, and the inputchanges toll, then die drcuit would go through the sequence of
single-variable changes 010 -• 110 -• 111 -• 101 -»100. The above transition therefore requires
four steps for its completion. Since this isalso the longest transition, the above state assignment
has a transition time of four.

Reducing Adjacencies:

Before beginning the state assignment procedure, it is prudent to reduce the number of

adjacency constraints, ifpossible. Thisreduction can beperformed atthelevelof the reduced flow-

table [2]. If there exist two states *,- and sj, such that their corresponding next states under an input
condition J are the same (a*, where sk ^ 4,*,-), then the next-state entries can bemodified by
making N(siy I) = sj instead of sk. This modification has the effect that the transition at -* sk is
replaced bythe sequence oftransitions *,• -♦ Sj -* **. This would help inreducing the number of
adjacencies associated with state «,- and thus possibly the numberof state-variables.

Since the connected row-set assignment technique is largely intuitive, itisvery difficult
to automate. However, universal n-state row-set assignments [2,9], which usea fixed number of

state variables for all machines with the same number of states can be easily automated. These
assignments, in general utilize more numberofstate variables, but may reduce the transition time
andhence the speedofoperation ofthe circuit



43

6.2.3 Shared-row assignment

In the connected row-set assignmenttechnique, the sequence of intermediate states for

anytwo differentstatetransitions are disjoint inthe sensethatno two statetransitions share the same

intermediate states. However, this may notalways benecessary. For example, twostate transitions

occurring undertwodifferent input conditions may bemade to share intermediate states. This may

lead to a reduction in the number of state variables needed for a state assignmem free of critical

races.

Onthecontrary, inthe shared-row techniqueofstate assignment auniquecode isassigned

to each state and additionalcodes areused as intermediatecodes to route transitionsbetween rows

which are not adjacent Codes which are used as bridging states augment the flow-table as sup
plementary rows and are used indifferent columns tobridge transitions between different pairs of
rows. However, inthesame column, theshared row can beused tobridge more than onetransition

onlyifallthose transitions have thesame final state. Unfortunately, thismethod isalso enumerative

like the connected row-settechnique.

This method is illustrated onthe machine Ml whose adjacency graph is shown inHgure

6.1. The first step is to determine the destination sets for each stable state. The destination set

corresponding to a stable state st under the input configuration Ij is defined as the setof states

which have state *,- as their next state under the input Ij. This is denoted as £„. For example,
under the input combination I\ = 00, the setof states (A, B, C) have their next-state entries as

the stateA and therefore form the destination set DA\-The list ofdestination sets obtained forthe

reduced machine Ml shown in Table 62 is:

Input/i=00:(A,B,C)

Input/2 = 01:(A,i)),(B,C)

foput/3 = ll:(,4,£),(C,I>)

Input J4 = 10: (CyD)

Obviously, atwo variable solution isnot possible for the machine. For athree variable solution, let
us assign the states ofMl with the following codes so as tosatisfy the adjacency constraints for state
A : A(000), 5(001),C(010), 0(100). The objective is to make each destination set connected.

The above assignment makes the sets (A, B)and (A, D)connected. The remaining sets which are
to beconnected are (A, B, C), (£, C), and (C,D). Theobvious choice is to start withthestate C

which bdongs to all these three destination sets. A code istherefore assigned from the remaining
unassigned codes to the shared row R\ such that it is adjacent to the code already assigned to
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Table 63: Shared-row assignmentformachineMl

C(010). The assignment of the code (011)to the shared-row Ri connectsboth the destination sets

(A,ByC),(ByC). m order to connea me remainmg set (C,i?), the cx>de(110) is assigned to the

second shared-row Ri. The next-state entries in the Table 6.2 have to be changed appropriately

to set up the above indirect transitions. The modified flow-table is shown in Table 6.3. Although,

the above shared-row assignment requiresthe same number ofstate variables as the earlierrow-set

technique for Machine Ml, in certaincases this method could give a considerable reductionin the

total number of state variables used.

6.3 STT assignment techniques

As explainedearlier, MTT assignmentsmay increase theminimum time required between

two successive input changes if the transition time of the assignment is more than a single state

change. To circumvent this problem, assignments couldbe selectedwhich eitherhave only single-

variable changes orallowthe simultaneous change ofmultiplevariables in asingletransitioa These

assignments would require only a singletime-step for the completion of any transition andhence

are termed as single-transition time assignments.

Assignmentswhichhaveonly asinglevariable change foranytransition aretermedone-

shotassignments [9]. These assignments assign multiplecodes to each state,but the row-sets of

eachstateneed not be connected. However, the set ofcodes are assigned such that for any pairof

states Si and sj which areadjacent in the adjacency graph, every code assigned to any state* is

adjacent tosomecode assigned to Sj. Ingeneral, one-shot assignments require alotmorevariables

thanother stateassignmenttechniques.

Anothermethod of STT assignment isbased ontheassignment ofasingle unique code to

each state and the codes assigned to adjacent states may notbe adjacent These assignments allow
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multiplestate variablesto change simultaneously and thereforemust guarantee the absenceof any

critical races. Such assignments are called Unicode STT assignments [2]. Unlike the assignment

techniquesdiscussed earlier which are basedon trial-and-error and hence very difficult to automate,

Unicode STT assignments are more algorithmic and probablythe only asynchronous assignment

techniqueswhich can be easily automated.

63.1 Unicode STT assignments

Asdiscussed, themainobjective oftheUnicode assignmenttechnique istoassign aunique

codeto eachinternal stateso as to guarantee thatthestate-table is freeof anycritical races. In this

case, the circuitcan allowmultiple changes of state variables in a singlestate transition and still

guarantee the proper operation ofthe circuit

If multiple statevariables are allowed to change simultaneously, thenthe orderin which

thevariableschange cannotbeprespedfied. Fbrexample, astate codedas 1001 canhaveatransition

to anotherstate coded as 1100throughthe intermediate points 1101 and 1000. Thus the set of four

points 1001,1100,1101, and 1000 canbespecified bythetransition subcube denoted bythecube

'7-0-*, where a '-* in a bit position means that the corresponding variable can take either of the

values 0 or 1. Theintersection of two transition subcubes isthesetof points contained inboththe
subcubes.

With the above definition of transition subcubes, the condition for the absence of any
critical races inany column ofthe flow-table can be spedfied. Inany column represented by the
input condition Ik andforanypairof transitions withdifferent destination states, thetwotransitions

donothave acritical race between them iftheirtransitionsubcubesaredisjointie.,theirintersection

isthe null-set [51. This condition forms the basis for the Unicode assignment technique.
Therefore, inorder toeliminate critical races between any twotransitions with different

destination states, there must be some state variable which distinguishes between the pairoftransi
tions. Forexample, for atransition from state ** to «,- and another from state a* to «i, with *,- / stt
a variable must be assigned such that it takes the value 0 for states j* and sjt and the value 1for
states sk and s/, or vice-versa. Based onthis condition, a construction procedure for Unicode state

assignments can beformulated as described bdow. This procedure works only for normal mode
flow-tables.

1. Forevery column t of the flow-table, 1 < s < m, where m is the number of columns, form

thesetof stable states in thecolumn denoted byQt. Each of these setsof stable states have
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thento bedistinguished by the appropriate numberof state variables. Setscontaining onlya

single stable state can be eliminated.

2. Foreachofthe remaining sets <?,, do the following:

(a) assign flog m\ statevariables, where m isthecardinality of setQi(the numberofstable

states in column t).

(b) Assign a unique coding in these statevariablesto each of the stable states in Qi. If the

number of possible codes in these state variables is greaterthan the number of stable

states, some of the stable states may be assigned codes in which some variables are

unspedfied.

(c) The remaining unstable states in column t areassignedthe same code as the stable state

which is reached from them. Inother words, ifN(sj, 7() = sk,withsk £ sjt thensj is

assigned the same code in these variables as the state sk.

3. Inthe final step,theunnecessary statevariables canbe ddeted. The stateassignmentobtained

so far canbe considered asa tablewhoserowsrepresent the states andcolumnsrepresent the

state variables: Thuseach row t defines thecoding assigned to state a,-. A column Cj includes

a column c* if c* has the same value as c,- in die rows where Cj is spedfied. Column Cj

covers column ck if ck includes c,-, or ck includes 7J, where cy is the column obtained by

complementing the 0*s and1*s ofCj.

With these definitions,the followingstepscanbe taken to remove columns which areunnec

essary, thus reducing the number ofstate variables.

(a) Delete columns which arecovered by other columns.

(b) For anytwo columns, c, and cj% theintersection ofct withe, is defined as follows:

Ci n Cj s null ifc« £ ckj forsomek.

a e« ifckj - •••

= Ckj ifcki = '-•

a cki otherwise

For apair of columns c, and cj, ifeither c,- n cj orc,- n cj exists, then the twocolumns

canbe replaced by a singlecolumnwhichis defined by the non-nullintersection.

The above procedure is illustrated on the reduced machine Ml shown in Table 6.2. The sets of

stable states in the4 columns are (A), (A.Q, (BJ>), and (A,B,Q. Of these,set (A) canbe removed



State VO yi V2 W

A 0 0 0 0

B 1 0 0 1

C 1 l 1 -

D 0 i 1 -
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Table6.4: Unicode STT state assignmentfor reduced machineMl

since it is a single-state set Thus the sets which need to bedistinguished by state variables are
(A,Q, (B,D) and (A,B,Q. We assign the state variable so to the set (A,Q, the variable yi to the set
(B,D), and the variables yi and j& to the set(A3,Q.

State A is assigned yo = 0 and Cis assigned y0 = 1. Since state B has a transition to
Cin the column 01, B is assigned the same value of yo = 1as state C. Similarly, state Dhas a
transition to Ain the same column and is therefore assigned yo =0. In the column defined by the
input configuration 11, the variable yi is used to distinguish states Band Dby assigning y\ =0to
Band yi =1to state D. States Aand Care assigned the values ofyi =Oand 1respectivdy.

Finally, under the input condition 10, states A, B, and Chave to be distinguished by
variables j& and j&. States A and B are assigned the values jay* = 00 and 01 respectivdy and
since Cis the only remaining state, it is assigned the value y2j& » 'l-* with variable yj being
unspedfied. In this column, Dhas atransition to state Cand thus is assigned the same coding in
variables tnV3 as state C. The final state assignment isshown inTable 6.4 and requires four state
variables. However, as is evident from the table, columns described by variables yi and yj are
identical and hence can be replaced by thdr intersection which is equal to either of the columns
itself. Also, the column spedfied by variable yo covers the column corresponding to y* and hence
3& can be eliminated. Thus the final state assignment requires only two variables and isdefined as
A(00). B(10),C(ll), and D(01).

Modifications ofthe above procedure have been described by Tracey [6\. This technique
involves distinguishing between each pairoftransitions in the same column instead ofbetween all
stable states inacolumn and usually produces state assignments with fewer variables than the above
method.



Chapter 7

Hazard-Free realization of the

flow-table

In this chapter, the techniquesinvolvedin realizing ahazard-free realization ofthe drcuit

based ontheUnicode STT state assignment described inthepreviouschapterare presented. Afterthe

stateassignment stage, the next stepin the synthesis procedure is the derivation ofexdtation tables

for the next-state and outputvariables, hi the case ofasynchronous circuits, this step depends onthe

technique used for state assignment From theexdtation tables, thelogic equations for atwo-levd

implementationofthe combinational logicare derived. The excitation functions arethen modified,

if necessary, to guarantee that the combinational logic is free of any static and dynamic hazards

under the assumptions of fundamental-mode of operation and single-input changes described in
Chapter 3.

7.1 Derivation of excitation functions

The process for the derivation of excitation functions for theoutput signals is thesame

as that for synchronous drcuits. However, asynchronous circuits differ inmany respects from syn
chronous drcuits in the procedures to be followed for deriving thenext-state excitation functions.

In synchronous drcuits, state codes which are not assigned to any state can never be reached bythe
drcuit and hence can be ignored. Thus the specification of the y-matrix for synchronous drcuits
does not spedfy the next-state entries for the codes which are not assigned to any internal state. On
the contrary however, in asynchronous drcuits with Unicode STT assignments which allow multi
ple state variables tochange during asingle state transition, unassigned codes may be reached as
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Next-State, ZoZi
Present

State 00

*0*1

01 ] 11 | 10
A A A B A

B A C B B

C A EL D C

D A A D E

E A C D |b
Table 7.1: Machine M2

State yo y\ to to
A 0 0 0 0

B 1 0 0 1

C 1 1 1 0

D 0 1 1 1

E 1 1 1 1

Table 72: Unicode STTstate assignmentfor machineMl
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intermediate codes in a singlestatetransition. Ihus care has to be taken to specify the next-state

entries of all possible codes so as to guarantee that all transitions are executed as desired. This

procedure is explainedbdow with the help of anexample machine.

Consider a transition from state st to state Sj in the columnspecified by aninputcondi

tion Ik. The subcube corresponding to this transition is computed as the cube which contains all

theminterms (codes) which could be reached inthe «,- -♦ sj transition. Then for each code in the

transition subcube (and notonlythecodes of «,- and sj), thenext-state entry under the input con

figuration A has to be assigned the code for state Sj. This ensures that thecircuit willultimately

reach thedestination state sj, irrespective of theorder in which the state variables change.

The above procedure for derivation of the y-matrix is illustrated with the machine M2

whose flow-table isshowninTable7.1. TheinitialUnicode STTassignmentisobtainedbyassigning

variable yo to distinguish between states (A,Q, y\ to distinguish between (B,D), and j& and j& to

distinguish between the setofstates (A.B.CE). The initial assignment is shownin Table 7.2. Since

columns y\ and yj are identical, they canbe replaced by one column yi. Thus the final Unicode

assignment which requires only three state variables yo, yi, and yi is : A(000), B(101), C(110),

D(011),andE(lll).

As described above, although the codes 001,010, and 100 have notbeen assigned to any

state, theirnext-state entries need to be specified in the y-matrix if these codes could be reached



State Code 00 01 11 10

A 000 000 000 101 000

001 000 000 101 —

010 000 000 on —

D on 000 000 on in

100 000 no 101 —

B 101 000 no 101 101

C 110 000 no on no

E HI 000 no on in
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Table 73: Y-matrixfor theUnicode STTassignmentfor machine Ml

as intermediate codes in a state transition. The final y-matrix obtained is shown in Table 7.3. The

flow-table for machine M2 contains only the state A in column 00. Thus for each of the states,

the next-state entry in the input column 00 is specified as the state A, coded as 000. The rest of

the codes, 001,010, and100are also assigned the next-state code forstateA sincethey are in the

transition subcubes ofD-*AzndB->A state transitions underthe inputcondition00. Incolumn

01, there is a transition from state B(101) to state G(110). This transition involves the change of

two state variables, yi and y*. The transition subcube for this state transition is *1—'. Therefore,

•in the y-matrix, the next-state entries for the four codes 100,101,110, and 111 are spedfied as

state C (110). It should be noted that the next-state entries for codes 001,010, and 100 under the

input configuration 10are unspecified since these codes canneverbereached in anystate transition

under the input condition 10.

7.2 Elimination of hazards

In a synchronous drcuit, theoutputs are sampled atthe dock pulses only afterthey have

stabilized and hence anytemporary spurious outputs do not affect the operation of the drcuit to

which theoutputs act astheinputs. However, this isnotthe case in asynchronous drcuits and any

transient pulses atthe secondary outputs mayadversdy affect theoperation of the drcuit More

over, since the combinational circuit controls the state variables of the complete sequential drcuit,
spurious pulses in the combinational logic in asynchronous circuits may take the circuit into an

incorrect stable state. Even though the state assignment technique which isutilized guarantees that
the circuit is free of any critical races, the presence of hazards may still cause the circuit to mal

function under particular input combinations. Hill, et al [3] illustrate this through the following
example.
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Table7.4: Example to illustratepresence ofhazards in a critical-race-free circuit

Consider the asynchronousdrcuit given by its state transition table in Table 7.4, and the

state assignment A(00), B(01), C(ll), D(10). The excitation functions for the two state variables,

yi and y2 are given by :

Y\ = yinyx + yiy\x\ + yix2x\ + y\x2T\

Yi = yix2 + yiU\x\ + yix2TT

Assume that the circuit is initially in the stable state [c] (j/2yi = 11) under the input
condition x\x2 = 11. In this state, if input x\ changes from 1 to 0, the drcuit should remain at

the stable state \c\ with both variables y2 and y\ remaining unchanged. However, it may happen
that the product term yzV\*\ goes to0 faster than the product term y\x2Y\ changes to 1 (owing to

adelay in the inverter associated with x\). This will lead to the condition inwhich all the product
terms in the excitation function for Y\ have the value 0, as a result ofwhich Y2 will momentarily
change to 0. The circuit may thus make an erroneous transition to the stable state [d].

Itis therefore essential that the combinational logic inasynchronous circuits be designed
to be hazard-free. Unger [9] has shown that for single-input changes, any function isrealizable with
acircuit free ofall combinational hazards. However, this is not the case for multiple-input changes,
and functions with more than one prime implicant contain hazards that cannot be eliminated through
logical design alone. Therefore, the restriction that only single-input changes are permissible is im
posed on asynchronous circuits as described in Chapter 3. The assumption ofbounded stray delays
is essential since the bounds have to beused to determine the minimum time difference between

consecutive inputchanges, which is needed toguarantee that thecombinational circuit reaches sta

bility before the application ofthe next input change. This assumption is therefore necessary for
proper operation ofthe complete sequential network with hazard-free combinational logic.

Different types ofcombinational hazards along with the conditions for their presence in
two-level implementations ofcombinational logic for single-input changes are summarized below.
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These conditions form the basis for algorithms designed to eliminate this class of combinational

hazards [9,2].

Definition14 [9] : Combinational hazards can be either staticor dynamic hazards. Static hazards are

present when the output of the circuitis required to remain constant (either0 or 1) as a resultof an input

change, but the circuitproducesanevennumber ofpulsesat theoutputbeforestabilizing at theinitialvalue.

Dynamic hazards, on the contrary, arepresentwhen theoutput is supposedto changefrom 0 to l.or vice-

versa, but the circuitproduces three or more outputchanges insteadofa single change.

Definition 15 [2] : Let I\ and I2 be two adjacent input conditions differing in only one variable x,-. Let f

be the output function, such that f(I\) = f(I2) = 0. Then, a two-level sum-of-products realization of the

function f has a static0-hazard for the input transition I\—>I2 ifandonly if there is a product term having
both the literals x,- and x,- and all other literals have the value 1 in both 1\ andl2.

Definition16 [2] : A two-level sum-of-products realization of the function f hasa static 1-hazard/br the

input transition Ii -* I2,where f(I\) = f{I2) = 1, ifandonly if there is noproduct term thathasthe value

1 in both 1\ and I2.

Definition 17 [2] : A two-level representation of a combinational function f has a dynamic hazard for

a transition between the adjacent input combinations Ii and I2 differing in the variable x,- and such that

f{h) 7* f{h)> if andonly ifthere existsa product termthatcontainsboth the literals x,- and"Si and all other

literals in that product term have the value 1 in both 1\ andl2.

Static 0-hazards can be eliminated by deleting any product terms containing both a vari

able and its complement. All static 1-hazardscan be eliminatedby including every prime-implicant

of the function in its realization. To accomplish this, not only should every point where the function

has a value 1 be covered by a product term, but each adjacent pair ofpoints with / = 1 should also

be covered by a product term.

As an example, consider the logic equation given by / = x"ix"3 + x\x2. This function is

graphically depicted in Figure 7.1 along with its realization. The cube 11x3 includes the minterms

000 and010, whilethe cube X1X2 includes the minterms 110and 111. This is obviously the min

imum realization of the function /. However, although the cubes 010 and 110 are adjacent, the

prime implicant which contains them, x2xi is not included in the realization of /. Consider the

circuit defined by the above realization of/ tobe inthe present state where (xi, x2, x3) = (1,1,0).

Under this input condition, a = 0 and 6 = 1 and therefore, / = 1. Now, consider a single input

change where xi changes from 1 to0, to thenew input configuration (xi, x2,X3) = (0,1,0). The

value of / under this inputcondition should remain constant at 1, sincea changes to 1 and 6 to 0.
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x,jc.

x,x

D

xr D
B>-'

Figure 7.1: Example to demonstrate static-1 hazard

However, ifthe delay in line ais greater than that in line 6, 6may change to 0before acan change to
l.thusgivingatemporaryfalseoutputof0. This static-1 hazard can be eliminated by including the
cube x2x-3 inthe realization of /. Under the above input change, this cube has the constant value
1,thuspreventing anyspurious output

From the conditions described earlier for the presence of dynamic hazards, it isevident
that by the elimination of static hazards, all dynamic hazards for single-input changes are also
eliminated.

As mentioned above, static and dynamic hazards are the result ofunequal delays in var
ious paths ofthe circuit Another type ofhazard could arise as aresult ofdelays when, due to
achange in an input signal, one state variable changes even before the input change reaches the
logic circuit generating another state variable. TTiese hazards are called essentialhazards and occur
because the change in an input signal reaches different parts ofthe network at different times [7,3].

Definition 18 [91: Aflow-table has an essential hazard starting in stable state \s\for input variable *,• if
and only ifthe stable state reached after one change in xt is differentfrom that reached after three changes
in x^

Such hazards are due to the basic specification of the circuit and cannot be eliminated by
logical manipulations ofthe excitation functions. The only possible means ofeliminating essential
hazards is by adding appropriate delays in the feedback paths so as to ensure that the secondary state
variables do not change until the input change propagates to all parts ofthe circuit [9,8]. Miller [8]
has proven that ifan asynchronous.machine contains an essential hazard, then any asynchronous
network which realizes this machine and contains no steady-state hazard must contain at least one
delay element Further, ifan asynchronous machine contains noessentialhazards, itcanberealized
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by an asynchronous network containingno delay elements. He has also shown that any sequential

network with more than one delay element in the feedback loops can be replacedby an equivalent

network containing a single delay element



Chapter 8

Signal Transition Graph Based

Synthesis Technique

In this chapter, the asynchronous design methodology based on the concept of signal

transition graphs (STG's) which are used as graphical representations for specifying the behavior

of asynchronous circuits.

8.1 The signal transition graph

Signal Transition Graphs (STG's) were first introduced by Chu [10] as a restricted class

of live-safe free-choice Petri nets for specifying the behavior of asynchronous circuits and have
recently been very effidently used for automating the synthesis of asynchronous circuits [10,11,
12,14.17,18].

Definition 19 [10J : An STG is apetri-net which is restricted to afree-choice net such that, ifany two
transitions share the same input place, then thatplace isthe unique Input placeforboth the transitions.

In an STG, the transitions arc interpreted as value changes on the signals (input, internal
or output signals) of the drcuit and could be either positive transitions from 0 to 1(labeled by
aV), or negative transitions from 1to 0 Gabded by a *-'). Further, the class of STG'sused for

representations of asynchronous drcuits has the property that ifaplace has more than one transition

as its successor, then all its successor transitions must be transitions on input signals.
In informal terms, an STG can be defined as a finite directed graph inwhich nodes rep

resent signal transitions and the directed arcs determine the precedence constraints onthe internal
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and theexternal environments. A transition is enabled when all its fanin edges have atleast one

token. When a transition fires, ie., the signal changes value from a 0 to 1or vice-versa, a token is

removed from every fanin edge and simultaneously, atoken is added toevery fanout edge of that

transition. For purposes of asynchronous circuit spedfications, we consider STG's with live and

safe markings. A marking on anSTG is liveif every transition is orcan be enabled through some

sequence of firings from themarking. A marking is safeifno edgecanbe assigned morethan one

token, ie., once atransition has fired, it can fire again only aftersome othertransition has fired. A

STG has at leastone live andsafe markingifandonly ifit is stronglyconnected [10]. The STG for

the 4-phasehandshake protocol described in Chapter4 is depicted in Hgure 4.1.

8.2 The state graph

The equivalent finite automaton representation for an STG is calledthe state graph. A

state graph is a directed graph where each state is in one-to-one correspondence with a live-safe

marking of itsSTG. An edge from state s\ to state s% means thatthemarking represented by s2can

be reached from thatrepresented by s\ by the firing ofthe single transition with which the edgeis
.4-

labeled. The restriction to live-safemarkingsguarantees thatallvalidmarkingsare reachable from

one-another.

An STG can be convened to its equivalent state graph by an exhaustive simulation of

token flow. Thisprocedure starts withalive-safe marking and withtokenflow ontheSTG, generates

the state graph. For each new live-safe marking M, it creates a new state in the state graph, and

for each transition enabled in M, it fires die transition, creates anew edge from the previous state

to the new state, and recursively calls the procedure on each of the new markings. The states of

the graph are labeled by thevalues of theinputand output signals in the marking corresponding to

thatstate. Thus, in astate graph, the nodes represent the states, thenodelabels correspond to state

assignmentsandthe edges represent signaltransitions.

8.3 Syntactic checks on the STG

Before the STG canbe converted to itsequivalent state graph, it hasto be checked and

transformed, if necessary, tosatisfy a few syntactic properties of liveness and persistency [10,11 J.

These properties have tobesatisfied to guarantee that the STG conforms totherepresentation of a
sequential drcuit
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Definition 20 [10]: A STG is said to be live ^ it is stronglyconnectedand ifin any ofits simple cycles, for

any signalt, transitionst+ andt" alternate.

Liveness guarantees that after a signal transition, the next transition is always defined

(strongly connected), and that no signalwill be required to undergo two successive high or low

transitions (alternation of t+and f). Obviously, this property isnecessary for theSTG torepresent

acontrol circuit Therefore, aSTG whichdoes notconform to the livenessproperty cannotbe used

in the synthesis ofa sequentialcircuit

Another property which the STG should satisfybefore it canbe used in the synthesis

procedureis that of persistency.

Definition 21 [10]: Asignal transition is saidtobepersistent ifand only if,once thetransition is enabled,
only the firing of that transition can disable it. By this definition, a STG is said to be persistent if all its
transitions are persistent.

Persistency guarantees thatifthere is atransition on asignalt\, due to whichanother tran

sition t2 is enabled, thenthe complementary transition of*i canonlybe enabled afterthe transition

on12 has fired. Transitions which are notpersistent can bemade soby the addition of appropriate
edges to the STG.

In formal terms, let t\ A t2 denote that the firing of transition U, either immediately
orafter a sequence of other transitions, enables transition t2. Then, the property of persistency

of a STG implies that if *i A t2t and *i -» r*. and if f2 is the complementary transition of 11,
then t* A 12 must hold. Thus by checking this criteria for each transition, appropriate arcs can be
added soastomaketheSTG persistent However, input transitions inanSTG are restricted tohave

exactly one fanin arc. Thus, if t2 isan input transition, then the new arc isadded tothe immediately
preceding output transition.

In the STG of Figure 4.1, after Jfc„+ has fired, the transitions «Rou*+ and A^ are

enabled. However, since there exists apath Jfcn+ -»A*** -♦ £,„-.thesignal Rin can bedisabled

even before Rout* has fired. This means that the transition A^* -+ Rin" isnot persistent This
transition can be made persistent by theaddition of the arc R^* -+ A^. Withthisnew arc

added, the arc Jfc„+ -t A^ becomes redundant and is therefore deleted. Similarly, the arc
A,n+ -• Rout" isnon-persistent and can bemade sobythe additionofthe new arc A*** -• RouC
This new arc necessitates the additionofthe arc Rout" -• ^om". The final persistent STG isshown
in Figure 8.1.



Figure 8.1: PersistentSJGfor the4-phasehandshake machine
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Figure 8.2: State graphfor thepersistentSTG ofFigure 8.1
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Thestate graphof thepersistent STGisderived bytheprocedure described intheprevious

section and is shown in Figure 8.2. The states of the graph are labded according to the signal

combination AinRinAoutR<K*.

8.4 The STG-based synthesis procedure

Once the STG has been checked and modified, if necessary, to satisfy the properties of

liveness and persistency, it is converted by an exhaustive token-flow simulation to itsequivalent
finite automaton, the state graph. Since the state graph has its states labded by the values of the

output and input signals, there may exist two or more distinct states which have the same codes

assigned to them. This discrepancy may leadto erroneous behavior, since the labelson the states

are used toderive the excitation functions. Such state graphs are said tohave the property of non-
persistency due tostate assignment. Thus, before the drcuit equations can besynthesized, the state

graph has to satisfy the property of unique state coding (USC), whereby each state should have a

unique labd assigned to it State graphs which do not satisfy the USC property can bemodified

to do so by the addition of extra internal signals to distinguish the states which have the same

assignments [10]. Vanbekbergen [17] also presents atechnique basedonthe concept ofGeneralized
Lock Classes to transform the initial STG so that itscorresponding state graph satisfies the USC
property.

After the state graph ismodified such that each state has aunique code assigned toit,it
can be directly used toderive the logic equations for each non-input signal. However, Chu [10]
presents the technique of net contraction which essentially decomposes the initial STG into several

STG's and maps them into their respective state graphs. Each ofthese state graphs isused to derive
the corresponding individual drcuits, from which the the final drcuit is assembled. This technique
has the advantage that itgenerally produces more efficient drcuit implementations.



Chapter 9

Discussion

Although the flow-table technique for asynchronous synthesishas been studied quiteex

tensively, the synthesis procedurehas notbeen automatedin the applicationworld. The main prob

lem which arises in the flow-table synthesis process is in the state assignment stage. Most of die

efficient state assignment techniques like the connected row-set and shared-row assignments are

essentially intuitive, trial and errorprocedures, and hence very difficult to automate. Other assign-

ment procedures like the UnicodeSTT assignments use a largenumberofstatevariables and are thus

quite inefficient The only other assignmenttechniques which could be easily automated are the

universaln-state assignments, which have been provedto be accomplishedwith only two transition

times [9], but have the drawback that they requiretwice the minimum number of state variables.

The flow-tablesynthesis proceduredescribedin this reportassumesbounded straydelays,

a criteriawhich must be satisfied in orderto determine the minimum time difference between any

two successive input changes. For circuits in which the stray ddays are unbounded, the minimum

intervalbetween two consecutive input changesso as to guarantee fundamental mode of operation

cannotbe determined. However, such drcuits canstillbe synthesizedby the generation ofreadyor

completion signalswhich indicateto the externalenvironmentthat the circuit is ready for the next

input change [2].

Anotherdrawback of the synthesisprocedure described is the presence ofdelayelements

in the feedback loops of each state variable. Moreover, the ddays of these elements is assumed

to be large enough to guarantee fundamental modeof operation. These delay dements hamper

the speed ofoperation of the circuit and to anextentsacrifice the mainobjective of asynchronous

designs: obtaining a speed-up by not restricting the circuit operation with a central fixed-period

clock. As described in Chapter 7, only drcuits which do not have any essential hazards canbe
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realized withoutany delaydements. Circuits whichdemonstrate the presence of essential hazards

require atleastone delayelementto guarantee theircorrect operation underall inputconditions.

However, the flow-table design methodologyoffersmanyadvantages overdieSTG-based

synthesis procedure. The STG technique has to guarantee that the initial STG is live and persis

tentbefore it canbe used for synthesis. This requires a large amount of pre-processing and may

also sacrifice the original concurrency to some extent The persistency requirement is necessary

to guarantee thatall output signals which are enabled asa result ofachange in aninputsignal are

allowed to fire before the input signal undergoes itscomplementary transition. However, this prob

lem is solvedin the inherent derivation ofthe flow-table itself. In theconstruction ofthe flow-table,

all outputs which are enabled asaresult of an input transition are changed simultaneously and the

fundamental mode of operation guarantees the correct behavior of the drcuit under all possible

input conditions. Another restriction of the STG procedure is the satisfaction of the unique state
coding requirement, either at the STG level, oratthe state graph levd. The state assignment stage

in flow-table synthesiseliminates this requirement

Against the backdrop of the above advantages, it can be concludedthat if efficient tech

niques for state assignment are devdoped, the flow-table synthesis procedure could offeranattrac

tivealternative to thesignal transition graph approach to asynchronous circuit synthesis.
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Appendix A

Implementation details

This appendixdescribes the variousimplementationdetails• input / output formats, data
structures andalgorithms - of the synthesis package which has been devdoped. The package has
been implementedin C programming language underthe UNIX operating system. The executable
versioncalledasync,alongwith the sourcefiles is inthe directoryfusers/agupta/researchJflowjable.

A.1 Input / Output formats

The asynchronous finite-state machine is spedfied in the standardKISS format The first
threelines ofthe input file specify the numberofinputs,outputsandinternal statesin the machine.
These lines begin with the commands T, \o\ and 'jt respectivdy. The file ends with the '.e'
command. Linebeginning withthe '#' character actascomments andare ignored. Everyother line
in the input file represents aunique state transition, and is spedfiedinthe following format:

input presentjtate nextjtate output

The present-state and the nexustate entries appear assymbolic values representing the names of
the internal states. Unstable next-states are distinguished from their corresponding stable states by
preceding them with the '*' character.

Inputs and outputs appear asstringsofO's and 1*s, representing thevalues ofthedifferent
input and output variables in a particular state transition. Since only single-output changes have
been assumed, state transition entries corresponding tomultiple input changes donotappear inthe
input file since they are unspedfied, and hence serve as don't cares. Moreover, outputs of unstable
statesareunspedfied andwritten as strings of'-' characters.

Theoutputof the synthesis procedure isareduced flow-table inKISSformat. Theoutput
is written into a file with the name < present-filename > .reduced. Since the reduced ma
chine is subjected tostate assignment before being written into theoutput file, thepresent-state and
nexustate entries are not symbolic entries, but actual values ofbinary-coded state variables.
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A.2 Data structures

A.2.1 Representation of the finite state machine

Thepackage is implemented using dynamic array structures described in thefile arrayX
Central to the implementation is the data structure for the finite state machine defined in the file
stjable.h. The asynchronous machine is type-defined as a structure smpjtg, withthe following
fields:

structsmp-stg{
char *resetjtate : start-state of the machine
arrayj*states : array of states, each of type smp^tate
arrayj *edges : array ofedges, each of type smpjedge
intni : number of inputs
intno : number of outputsgenerated
intnojtate.variables: number ofstate variables needed for state assignment

}

Each state is type-defined as a structuresmpjtate with5 fields, and completely represents all in
formation regarding the particular state. This information indudes its name and index number,
transitions in which it is the destination, and transitions in which it is the present state. The data
structure is described below:

structsmpjstate{
char*name : symbolic name of the state
intindex : indexnumberof thestate in thearrayof states
arrayJfanins : array ofedges which have the state as their destination state
arrayjfanouts: assay ofedges which have the state as their initial state
int*code : integersiringof O'sand l*swhichis the codeassigned to the state

Finally, each edge represents a state transition and is type-defined asa structure smpjedge with the
following fields:

struct smpjedge {
char *input : input for the state transition
char*output : outputgenerated by the transition
struct smpjtate *src : pointer to the presenLstate of the transition
structsmpjtate *sink: pointer to the destination state of the transition
intunstable : flag wluch is set to 1 if the sink state is unstable and to 0 otherwise

}

The above data structures efficiendy modd the finite state machine with minimal storage com
plexity. Moreover, as is evident, there is little repetition of information, since pointers areused to
reference the desired element (state oredge). Fbrexample, each fanin (fanout) ofa particular state
ismerely a pointer to theappropriate edge inthelistofedges. Similarly, thesource and sink states
ofeach edge are pointers to reference the particular states ofthe state array. Appropriate care has
also been taken toovercome the absence ofrandom-access mechanisms inthe array data structure.
Internal tothe package, the index values ofthe states are used for computation instead ofthe sym
bolic values. This hasthe advantage that thestate canberandomly accessed with its index value,
thus avoiding thetime complexity involved with sequential access.
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A.22 The flow-table reduction stage

The data structuresemployedfortheprocessof flow-table reductionare definedinthe file
compatible.h. The reduction process begins with the determination of thecompatible pairs. The
listofcompatibility pairs istype-defined asa structure CPJJSTwith the following two fields:

structCPJLIST{
arrayj *cp :.array of compatible pairs,eachoftype CP
intnrjpairs: number of pairs in the list

The structure CP is defined as follows:

structCP{
intstl, st2 : indices of the twostatesin thepair
intpairJndex: indexnumberof thepair in the array
arrayJ *list : array of implied compatibilitypahs
intnrjmplies: total number of implied compatibles

In the next stage ofmachine reduction, the listofmaximal compatibles,MAXJCPJJST isgenerated
from thelist of compatibility pairs. Thislist is type-defined as a structure MAXJCPJJST withthe
following two fields:

structMAX-CPJUST{
arrayj *maxxp : array ofmaximal compatibles, eachof typeMAXjCP
int nrjnazxp : number ofmaximal compatibles in thearray

Each maximal compatible in turn is defined bya structure MAX.CP asshown bdow:

structMAX-CP {
arrayj +array : array ofstates which form thecompatible
int *nrjerms : numberof states in thecompatible
arrayj *impliedJist: array ofcompatibility pairs implied by the maximal compatible
int nrJmpliedjxurs : number ofimplied pairs inthe above array

A.23 The state assignmentstage

The stateassignmentstage is essentiallycomposedoftwo steps. The first step involves the
determinationofthe setsofstates to be distinguished undereach input condition. In the second step,
appropriate number ofstate variables are assigned to each set and the variables are then assigned
values from the set (0,1,2). The data structures for this stage ofthe synthesis procedure are defined
in the file unicodej2ssign.h.
The main data structure iscomprised ofthe state assignment table which isdefined asfollows:

structassign-table {
arrayj ^variables: array ofstates which are to be distinguished by the same input
int no-variables : number ofelements inthe above array

Each set ofstates is defined as astructure state.variable, with the following fidds:
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struct state-variable{
arrayj *states: listof indices of states which comprise thesubset
char+tnput : the inputconditionin which the above list ofstable states occur
intnojtates : numberofstates in the subset

}

Once die sets ofstates to be distinguished are determined, \logn] number ofbinary valued state
variables are assigned toeach set5, where n is the cardinality of the set The state variables are
then assigned values from the set (0,1,2) so as todistinguish the states inthe same setby different
assignments to die variables which are assigned to the set The data structure statejtssignment is
utilizedfor this stage.

structstate-assignment {
arrayj *vars:arrayof statevariables, eachof typeunicode.var
int no-vars : number of state variables in the above list

}

The structure unicode.var is defined as shown below:

struct unicodcvar {
int *states : list ofstates in the machine, each ofwhich isassigned avalue from the set (0,1,2)
int nojtates: number of states in the list

}

A.2.4 Derivation of the reduced machine

The last stage in the synthesis process derives the reduced machine on the basis of the
Unicode STT state assignment performed inthe previous step. The data structures for this stage
aredefined in the file excitadonJi. Hierarchically, thecentral structure is the y-matrix defined as
shown bdow:

structy.matrix {
arrayj *codes: listof rows of theflow-table, each of type yjnatrixjow
int nojrows : number of rows in the flow-table

}

Each row of the above y-matrix is defined as follows:

structyjnatrixjow {
int*presentjzode : codeassigned to thepresentstateof therow
char *presentjiame: symbolic name of thepresent state
arrayJ*next : array ofnext state entries fortherow, each oftype matrix-state

Each next-state entry isdefined asamatrixjtate with the following fields:

structmatrix-state {
int *code : code assignedto the nextstate
char*name : symbolic name of the next state*
char*input : inputconditionunder whichthe next state occurs
char *output: outputproduced by the transition
int index : index value of the next state in the list ofstates

}
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A.3 An overview of the algorithm

In this section, the various stepsof the overallalgorithmalong with the interfaces to the
different procedures are presented.

1. readjtgO: This procedure reads theinput file and initializes thedata structure for thespec
ified finite state machine.

Input : 1. file in KISS format
Output: 1. the finite state machine of typesmpjtg.

2. createxompj)airs(): Pair-wise compatibility of states is checked and compatible pairs de
termined.

Input : 1. the data structure for themachine of type smpjtg.
Output: 1. list ofcompatibility pairs of type CPJJST.

3. findjnaxjcompatO: Computes the maximal compatibles based onthe listof compatibility
pairs generated in the previous step.

Input : 1. the machine of typesmpjtg.
2. listofcompatible pairs of type CPJJST.

Output: 1. listof maximal compatibles of typeMAXJCPJJST.

4. attachJmpliedfairsO: Computes theimplied listofcompatibility pairs for each MC-Class,
by finding theunion ofthelistof implied pairs for each pairwise compatible states.

Input : 1." listofmaximal compatibles
2. list ofcompatibility pairs
3. the total number of states in the machine

Output: 1. updates the data structures for the listofMC*s with the listof implied pairs for each MC.

5. fmd^rimexompatsQ: Derives thelistof prime compatibles (PC's) from thelistof maximal
compatibles generated in the previous step. This procedure isbased on repeated decomposi
tion ofeach MC-Class and elimination ofsubclasses which are exduded byother dasses.

Input : 1. theinitial machine of type smpjtg.
2. thelistof compatibility pairs of type CPJJST.
3. thelistof maxunal compatibles of type MAXJCPJJST.

Output: 1. augments the original list ofMC's with the prime compatibles generated.

6. generatejnatrix: The next step in the algorithm is to find aminimal set ofprime compatibles
which satisfy the dosure and covering constraints. This utilizes the standard binate covering
package documented in the file nuncovMoc. The data structures and the routines for handling
them utilized by this package are defined in the file sparse.doc. This procedure represents
the covering and dosure constraints inthe form ofasparse matrix. The data structure for the
sparse matrix is essentially a doubly-linked listof rowsand columns, eachrow andcolumn
in mm beinga doubly-linked list ofnon-zero entries.

Input : 1. the initial finite state machine
2. thelistof compatibility pairs
3. thelistof prime compatibles of type MAXjCPJJST.
4. a pointer tothe sparse matrix generated by the procedure.

Output: 1. the number ofconstraints inthe sparse matrix
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7. smjnatMnjninimumxoveri) : This is the binate covering package defined in the filemin-
covMoc. It generates the set of rows of the covering-dosure matrix which satisfy all the
constraints. This set of rows defines the set ofprimeclasseswhich form the minimal cover.

Input : 1. thecovering matrixoftype smjnatrix.
2. set ofother parameters described in the filemincovJoc.

Output: 1. the list ofrows which form the nunimal cover.

8. findjlisjointxoveri): Since the prime dasses intheminimal coverare notdisjoint, states in
the original machine may be covered by morethan one prime class. This routine makesthe
primecompatibility classes disjoint, sothatthey form a partitionofthe original setof states.

Input : 1. the index numbers ofthe primeclasses in the minimal cover.
2. the originallist ofprime classes.
3. the initialmachineof type smpjtg.

Output: 1. modified listofthe selected prime classes so thatthecoveris disjoint

9. checkjolutionf): Double checks that thedisjoint listof selected prime classes satisfy allthe
closure and covering constraints.

Input : 1. the selected list ofdisjoint primeclasses.
2. the original list ofprimecompatibles.
3. the initial finite state machine.
4. the list ofcompatibilitypairs.

Output: 1. a boolean value which if0 (1) meansthatthe solutionis incorrect (correct).

10. writeseduceditableO : This procedure generates the reduced flow-table from the disjoint
list of prime classes selected to form the minimal cover. The reduced table is generated
from the original one by mergingthe states which occurin the same prime dass. The states
of the reduced table are given new symbolic names of the type stk, where A; is the index
number of the state. The new reduced machine is written in KISS format into a temporary
file < originalJ'He.name > .reduced.

Input : 1. name of the temporary file into which the table is to be written.
2. the original flow-table oftype smpjtg.
3. the list ofdisjointpruneclassesin the minimalcover.

Output: (none).

11. readjtgf): The data structure for the reduced machine is initialized by readingin the tem
porary KISS file.

12. assignxutputsjinglejchangef): The outputs of the unstable states in the reduced machine
are assigned so asto havesingle outputchanges only.This is accomplished by assigning the
outputoftheunstable states equal to theoutput ofthecorresponding stable states. A different
variation of the outputassignment procedure called assignj)utputsjninjUstance() has also
been written. This procedure assigns the outputofthe unstablestate5, so asto minimize the
sum of the distances of the assigned output from the outputsof the stablestates which have
a transition to 5,-.

13. UnicodejtatejtssignO: The state assignment stage beginswiththe determination ofthe sets
ofstates whichoccurasstable statesunderthe same inputcondition. These setsofstates have
to be distinguished by different assignments of state variables tothem. This state assignment
procedure is based on the Unicode STT assignment technique and is described in detail in
Chapter 6.



Present

State

Next - State, ZqZi

00
*0*1

01 | 11 10

1 1,00 2 — 6

2 1 2 ,11 4 —

3 1 3 ,01 5 —

4 — 3 4 ,10 7

5 — 2 5 ,11 8

6 1 - 4 6100
7 1 — 9 nio

8 1 — 5 jjii
9 - 3 91.11 7

Table A.1: Machine M3
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Input : 1. the reduced machine oftype smpjtg.
Output: 1. thesetsofstates which havetobe distinguished foreachinputcondition.

14. assignJtate-variables(): Fbrasetofstates 5 underthe inputcondition I with cardinality n,
\logn] state variables are required to distinguish them. This procedure thusdetermines the
appropriate number of statevariables for each set of states and then assignsvalues to those
variables. The final state assignment tableproduced is checked for row covering. Rows in
the state assignment table covered which by other rows aredeleted andthe finalminimal state
assignment is thus determined.

Input : 1. the setof states to be distinguished undereachinputcombination.
2. the reduced machine.

Output: 1. the final stateassignmem.

15. generate.}>jnatrix() : With the above assignment to the states of the reduced machine, the
excitation matrices for the next-state and output functions are to generated. This not only
involves the substitutionof the codes for the symbolic values of the states, but alsohas to
determine the next-state entries for codes whichare not assigned to anystate.

Input : 1. the reduced finite state machine
Output: 1. they-matrix which givesthenext-state and output values foreach combination of

the state variables.

16. writeJmalj-educedJableO: Finally, in thelaststage of the synthesis process, die y-matrix
is used to generate the reduced machine in KISS format The machine is written into the file
< original.fHe jiame > .reduced. This file can then beused as an input to standard pack
ageslike ESPRESSO to generate the 2-levd logic equations for the internal statevariables
and the output signals.
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A.4 A sample execution

The execution of die program async is demonstrated on the machine M3 which is de
scribed by its statediagram in Table A.1. Hie machine has 2 input signals, 2 output signals,and
9 internal states. According to the assumption thatsuccessive inputchanges are restricted to ad
jacent inputcombinations only,dte next state entries for multiple inputchanges are unspedfied.
Moreover, the outputs for the unstablestatesarealsounspedfied.

MachineM3 is synthesizedusing the asynchronous synthesispackage,async. The result
ofthe executionis described at the end ofthis appendix.

As is evident from the sample execution, the final reduced machine has 5 states, named
stO throughst4. The outputsof the unstable states in the reduced machine are assigned equal to
the stable state which they lead to. This preserves the property of single output changes which is
essential for Unicode STT state assignment The initialUnicode assignment requires S state vari
ables. However, afterddetion of all rows which are coveredby otherrows ofthe stateassignment
table, the final state assignmentrequires only 4 statevariables to prevent all critical races. In the
final reduced flow-table, next stateentries haveto be assigned not only to the statesofthe machine,
but alsoto the codes which arenot assigned to any state. This is necessaryto preventany incorrect
state transitions, since it is assumedthat all statevariables can change simultaneously. However,
theremay be certain codeswhich canneverbe reached underparticular input combinations. These
next state entries are unspedfied and serve as don't cares.



reading machine m3.Mss~
read state table and computed compatible pairs*.

Inputs* 2
outputs* 2
states* 9

computing maximal compatibles*,
finding prime compatibles*.
The final list ofPRIME COMPATIBLES is :-

0:126
1:4

2:38
3:58
4:79

mmmBmmmmmmmm+mmmmmmm^mmmmmmmmmmmmmmmmmmmmtmmmmwmmm

computed covering matrix *»
bounds: states * 9, max compatibles* 5, upper bound* 6

solving binate covering*.
total epu time is 0.00 see.
prime compatibles selected: 01234
final disjoint list ofprime compatibles selected:

0:1,2,6,
1:4,
2:3,8,
3:5,
4:7,9,

writingreduced table Into temporaryfile: examples/m3Jussj,educed*.
reading reduced tablefrom temporaryfile: examples/m3.ldss.reduced*.
removing temporaryfile: iexamples/m3JassjeducedL.
assigning outputs to unstable states*.t
the reducedflow-table is>

# reset state: stO
J 2
.0 2
j 5

•P 18
00 stO stO 00
01 stO stO 11
10 stO stO 00
11 stO •stl 10
11 stl stl 10
01 stl •sa 01
10 stl •st4 10
00 sQ •stO 00
01 sa sa 01
11 sa •sa u
10 sa sa 11
00 std •stO 00
01 st4 •sa 01
10 st4 st4 10
11 std std 11
01 sa •stO n
11 sa sa u
10 sa •sa n
.e

assigning Unicode STTassignment*
the set ofstatesto be distinguished:*

input 01 :st0st2
input 10 :st0st2st4
input 11 :stlst4sa



initial state assignment table :-
sto sti sa sa

0 1 1 1 0
0 1 0 1 0
0 2 1 2 1
0 0 1 0 1
0 0 2 1 2

thefinal Unicode state assignment 1st'
stO sa sa st4 sa

0 1 l 1 0
0 1 0 1 0
0 0 l 0 1
0 0 2 1 2

Following codes tire assigned to statei•:•

stO: 0000
stl: 1100
sa: 1010
st4: 1101
sa: 0010

Generating Y-Matrix*.

state code I 00 01 10 11

stO 0000 1 0000 0000 0000 1100
0001 0000 MM MM MM

sa 0010 0000 0000 1010 0010
0011 MM MM MM MM

0100 0000 MM MM 1100
0101 0000 mm MM MM

0110 mm MM MM MM

0111 MM MM MM MM

1000 0000 1010 MM 1100
1001 0000 1010 MM MM

sa 1010 0000 1010 1010 0010
1011 MM 1010 MM MM

stl 1100 0000 1010 1101 1100
st4 1101 0000 1010 1101 1101

1110 MM 1010 MM MM

1111 — 1010 MM MM

writing coded reduced flow-table intofile: examples/m3.ktssjedueed

Final reduced machine InKISS format:
J 2
jf 2
j 3
00 0000 0000 00
01 0000 0000 11
10 0000 0000 00
11 0000 1100 10
00 0001 0000 00
00 0010 0000 00
01 0010 0000 11
10 0010 1010 11
11 0010 0010 11
00 0100 0000 00
11 0100 1100 10
00 0101 0000 00



00 1000 0000 00
01 1000 1010 01
11 1000 1100 10
00 1001 0000 00
01 1001 1010 01
00 1010 0000 00
01 1010 1010 01
10 1010 1010 11

11 1010 0010 11
01 1011 1010 01
00 1100 0000 00
01 1100 1010 01
10 1100 1101 10
11 1100 1100 10
00 1101 0000 00
01 1101 1010 01
10 1101 1101 10
11 1101 1101 11
01 1110 1010 01
01 1111 1010 01


