
Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

-

GRAPH ALGORITHMS FOR EFFICIENT

CLOCK SCHEDULE OPTIMIZATION

by

Narendra Shenoy, Robert K. Brayton, and
Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M92/79

3 August 1992

GRAPH ALGORITHMS FOR EFFICIENT

CLOCK SCHEDULE OPTIMIZATION

by

Narendra Shenoy, Robert K. Brayton, and
Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M92/79

3 August 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

GRAPH ALGORITHMS FOR EFFICIENT

CLOCK SCHEDULE OPTIMIZATION

by

Narendra Shenoy, Robert K. Brayton, and
Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M92/79

3 August 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Graph Algorithms for Efficient Clock Schedule

Optimization

Narendra Shenoy,RobertK. Brayton andAlberto L. Sangiovanni-Vincentelli
Department of Electrical Engineering andComputer Sciences

University of California, Berkeley,CA-94720

1 Introduction

In aggressive designs, when the technology permits tight control onprocess variations,
the performance of adesign will probably rely oncycle borrowing using level-sensitive
latches. At the same time, level-sensitive latches force the designer to obey short path
constraints. Thus the use of level-sensitiveelementsis both a boon and a curse.

In this paper, we allow edge-triggered and level-sensitive memory elements in a
circuit. A single clock, multi-phase clocking scheme is assumed. We assume theinitial
circuit is logically correct and are only concerned with optimizing the clock schedule,
i.e. finding the minimum clock cycle time and the corresponding times for the rise and
fall ofall clock phases. Clocks are not gated and clock skew is assumed negligible. It is
possible toextend the algorithms presented inthis paper toincorporate non-zero skews.

Related early efforts in the area of timing issues ([2], [71, [4], [5]) concentrated on
timing verification. Unger etal. ([9]) give an excellent description of the constraints
for various clocking schemes used in digital design. Wallace et al. ([10]) use explicit
unrollingoftheclockfortiminganalysis. Weinema/. ([Ill) present an iterative scheme
for timing analysis but do not take short paths into account. Dagenais et al. ([1]) use
an iterative algorithm to calculate optimal clocking parameters. Ishii et al. ([3D give
an algorithm ofpolynomial complexity for verification ofarbitrary clocking schemes but
consideronly the maximum propagationdelays. Sakallah etal. ([6]) present an algorithm
to optimize (conjectured to be optimum) the clock cycle based on linear programming.
Szymanski ([8]) presents arestricted version ofthe model given in ([6]), makes astrong
case for its use, and proposes an efficient technique to reduce the size of the linear
programming problem.

The main contributions of this paper are efficient graph algorithms to compute an
optimal clocking scheduleofacircuit. Similarto [8] wemake therestriction that all clock
events be ordered. We also present in the appendix, aformal proofofthe equivalence of
an extension to the model used byIshii etal. [3] and the restricted model ofSakallah [61

given by Szymanski [8]. *

In section 2, we introduce the basic terminology. Section 3deals with the clocking
constraints. The results from Szymanski [8} are summarized in section 4. Asimplified,
albeit restricted, graph algorithm and its analysis is given in section5. Ageneral algorithm
is presented in section 6. Section 7presents the result ofthe algorithm applied to avideo
coder. Results concerning effectiveness and efficiency are given insection 8. Section 9
concludes the paper.

2 Definitions

Memory elements are assumed to be either edge-triggered or level-sensitive. Each
memory element has adata input, aclock input and asingle output. For an edge-triggered
latch (flip-flop), at the appropriate edge of the phase connected to the clock input, the
latch samples the data input and the value ispresented at the output. This output remains
stable until the next occurrence ofthe phase edge. Thus the input ofalatch and its output
are effectively decoupled. For alevel-sensitive latch (also called just "alatch"), the data
at the input is transmitted to the output as soon as the active period of the latch begins.
The output is held at the data value from the time the active period ends until the next
active period and fresh data from the input arrives. Thus the input and output are not
isolated during the active period. The retardation([l]) at a level-sensitive latch is the
amount by which the valid output isdelayed since the beginning of the active period. It
is the time borrowed from the current phase bythe logic preceding the latch, inorder to
complete thecomputation. For correct operation of both memory elements, we need the
data signal to bestable at the input before the latching edge occurs by an amount called
the set-up time. It isalso required that the signal be stable after the latching edge by an
amount called the hold time.

We assume, without loss of generality, that edge-triggered elements sample input
data onthe falling transition and level-sensitive latches are active when the phase ishigh.
Thus, the falling edge of each phase isthe critical edge with respect towhich set-up and
hold constraints must be satisfied.

A clocking scheme, $ is acollection of / periodic signals with acommon period c,
and is represented by $ = {<j>\, 02, •••, <j>i). Associated witheach phase fa are two real
numbers $,- and c,-, the time of occurrence respectively of therising and falling edges of
<£» (0 < (s;,e,) < c). Associated with each phase i is its local timezone, an interval of
timeof length c, such that theendof the active phase coincides withtheendof the local
timezone. Let0 < e\ < e2 •••< e/ = c; thus wechoose theglobal reference timeframe

The extension to the Ishii's model consists of adding minimum propagation constraints. Though both
forms have been freely usedin theliterature, we are unaware of any effort made torelate thetwo. The fact
that themodel proposed by Sakallah implies theconstraints used by Ishii was shown in [8]. However, the
converse was not known.

e _e iqlocal zone of phase 2 J
2" -1»| k- I

1
1
1

1
i<B1"*

l

«fc
2

"

S €

2 3 .

•'a >
|

£1ld1 € 3

c

"3
1

*global time reference <

c+ ere2

Figure 1: Three phase clocking scheme

as the last phase e/. The clocking scheme specifies a complete ordering of the rise and
fall ofthephases. Note that thisis astronger assumption than in [6]. The reason weneed
to make this assumption will be clear in the next few sections.

We say fa -< fa if et- < ej. We use the phase shift operator Eij introduced in [6], to
translate allmeasurements of time from thelocal zone of phase i to thelocal zone of j.
The phase shiftoperator for apath between phase i and phase j is defined as

Eij = ej - e;

= c + ej - et-

if<fc <fa

otherwise

Consider the clocking scheme in Figure 1. Let an event be an upward or downward
transition of adata signal. Consider an event at a fa memory element occurring attime
t\, givenin terms of thelocal timezone for fa. If thisevent causes another eventata fa
memoryelementwith adelay say rf, i.e. time t\ + d withrespect to zone one; then En
is the shift that must be subtracted from t\ + d to convert the event to the local time zone
of fa. To distinguish between variables inthe local time zone from the global frame we
use asuperscript L.Thus inthe local time zone of fa, ef = c. The local rise of aphase
is sf = Si +c/ - e; = si + En if Si < e,- and sf = st- - e,- = st- +En - e/ if a,- > e,-.
Henceforth we assume that s, < et. If Si > e, then the constraints (S2), derived in the
nextsection willdiffer by aterm as isexplained intheAppendix. Consequently, apriori
information is needed ontherelative occurrence of the rise and fall of each phase in the
global frame and therelative occurrence of the fall of all the phases. The first enables us
to choose thecorrect form of theconstraint from S2 and the second is necessary for the
valid translation of events from one time zone to another.

The circuit C is modeled as a finite, edge-bi-weighted, directed multi-graph G =
(V, E,D,d). For every memory element i € C there is a vertex i>, € V. In addition
for every primary input and primary output of the circuitthere is a vertex in V. If there

is apath of combinational logic from amemory element (or primary input), say i, to a
memory element (or primary output), say jt we create an edge etJ e E from u, to Vj.
The edge weight Dij (d^) is the maximum (minimum) sum ofthe gate delays along the
combinational paths from i to j. We say v, is a fanin ofvj (vj is a fanout of v{) if there
is adirected edge from v{ to vj in the graph. We denote the fanin set of v, by Flfa),
the fanout set by FO(vi). A path v{ -£+ Vj is aset ofalternating edges and vertices
{vv, e,i, U!, e12, •••, en-ij, *>i}, and every pair ofsuccessive edges forms an input-output
pair to the vertex between. Henceforth all vertices will be simply indexed by avariable
instead ofavariable subscript ofv, i.e. we will use i to denote avertex instead of v,-. We
denote the phase ofthe latch represented byvertex v, as <f>(i).

The rise (fall) of the phase tomemory element i isdenoted bys, (e,) when there isno
ambiguity. So latches i and j may have the same phase kand c,- and ej will both denote
ek. Thus the symbol et isoverloaded tosignify both the fall of phase i and the fall of the
phase used to clock memoryelement i.

Eachlatch in the circuit is associated with fourvariables:

Ai = latest that the signal isvalid at the input of latch i,
a» = earliest that thesignal is valid attheinput of latch i,
Ri = latest that the signal isvalid at the output oflatch i,
U = earliest that thesignal isvalid at the output of latch i.

These variables are measured with respect to the local time zone ofthe phase ofthe latch.
We constrain all variables to lie within [0, c]. The problem posed is:

Given acircuit G(V, E, D, d),find the minimum clock cycle c, and the rise andfall times
for each ofthe phases (s{, ej, so that the clocking scheme meets all timing constraints.

3 Clocking Constraints

The clocking constraints for optimal clock schedules may be written as follows [6] [8].
We use the conservative design constraints. Szymanski [8] makes astrong case for the
use ofthis set ofconstraints versus the aggressive set described by Sakallah et al. The
long path constraints are of the form:

Ai = max (Rj + Dn - En). (\)vjeFi(iy J 3 3X} v1;

The short path constraints areofthe form:

at = min (r,- + cL- - En). (7)

The propagation constraints for a latch are:

Jk =max(j4,-,«fr) (3)

r,- = «f. (4)
(Sakallah used r, = max(a,-, sf) instead)2. The constraints for a flip-flop become:

Ri = 4 (5)

fi = ef. (6)
We also need

«i < 4." (7)

The set-up and hold constraints are of the form

Ai <e±-S (8)

and

H < a{ (9)

where S is the set-up time and H is the hold time for a latch/flip-flop. Let this set of
constraints (1-9) be called SI.

We now derive asetofinequalities which are bothnecessary and sufficient forcorrect
clocking. Denote a flip-flop by F and alatch by L. We can have 4 types ofpaths in the
graph G. The path j •£• i can be

1. from a latch j to a latch i (LL)

2. from a latch j to a flip-flop i (LF)

3. from a flip-flop j to a latch i (FL) or

4. from a flip-flop j to a flip-flop i (FF).

In addition we constrain all paths to necessarily terminate if they encounter a flip-flop.
Letthe setof allsuch paths bedenoted byV(G). Fora path p we index thevertices on
the path with p0(= j), •••,pN(= i). Apath isallowed tohave repeated vertices; hence
the set V(G) can be infinite.
Theorem 1: The set ofconstraints SI described above are equivalent to the following
inequalities (S2) for each path p e V(G). The path p is denoted by j 4- i. The
inequalities depend on the typeof p:

2tIt is therelaxation of thisconstraint that prevents theminand maxinteractions between theconstraint in
(2) and (4)

1. pis oftype LL or LF: e, >Sj +Dj{ - Kj.c +S

2' ^«?ftW«FLwro«.->ei +^-Aj<c +5where £„ =££=i At-i* and
hji isan integer defined recursively (from 1to N) as

0 if k = j (i.e. A? = p0)

#J*-iifc*-i <e* (10)
k -^Ifc-i + life* <e*-i

In addition for each path p:j-^i consisting ofasingle edge(eJt) we need

3. pis oftype LL or LF: et- <Sj +dj{ +(1 - A'£)c - #

4. pis oftype FL or FF: et- <e, +dj{ +(1 - .firjt-)c - H

where e/Jt = ^A:=1 dk-\k. Constraints 1-2 are called the set-up constraints ofS2 and 3-4
called the hold-time constraints. Ife7 < sj then we need to subtract c from the right hand
side of the equations.

Theproofof Theorem 1is given inthe Appendix.

4 Redundant Constraints

This section isbasically areproduction of the equivalent theorems from [8], that can be
used to reduce the number ofconstraints in S2. Constraints 3and 4in S2 total up to \E\
constraints. Constraints 1and 2, on the other hand, must hold for all paths, and possibly
are infinite innumber. Hence we must find amore compact representation. Consider the
constraints 1and 2in S2. These can be represented in the form x{ - x5 > ap{ - K?iC,
where the parameters o£/K]{ depend on the path p:u -• v {<f>(u) = j, <j>(v) = i) and
Xi = ei or s^ xj = ej or Sj.

N

<*% =]£Dk-\k +S fc =Ois2andfc =iVis.7 (11)
k=i

and K?{ > 0. The dependence ofthe constraints (on the path) is over all paths from
memory element j to memory element i. We modify this dependence to include all paths
ofthe same type (LL/LF or FL/FF) as pand having the same phases at the end points. Let
U'* =pfvfeffi " K^' F°r agWen Cl°ck Cycle C* U»is ^ relevant bound. Let Cbe
the set ofsimple cycles in V{G). Recall that there must be at least one memory element
in every cycle. Consequently for any cycle p:i -+ i, Kf{ = Kp > 0. The vertex given

J = <

by k = 0 is the same as the vertex given by k = N. A weak lower bound ontheclock
cycle c is

c> if) = max
P€V(Q)

I N \
X>fc-1*
Ar=l

K,
(12)

V 7
Consequendy U£ - S < 0 for all paths that contain asimple cycle and c > fa Asaresult
we conclude that asimple way to compute U^ is

U!i=u max (o?uv-Klvc). (13)
V limpte paths p: u -• v,4(u) = j,4{v) = i

Intuitively, if we encounter any cycle on apath from uto v, we can only decrease Ufa.
Also note that as cincreases, Ufa decreases for all paths from phase j tophase i. However,
if we make use of the lower bound on c, we will get a setof tight constraints. Hence
Uji <Ufi for any feasible clock cycle c.

For a given clock cycle c, the relevant constraints Sc may be obtained as follows.
Each edge e inthe graph G isweighted with De - Kec. Solve an all pairs longest path
problem (with the constraint that apath cannot continue if itencounters aflip-flop), given
that the graph has nopositive cycles. Thelength of thelongest path gives usthe constant
on the right hand side ofthe inequality, denoted by t/£. Since we have / phases, we can
have at most 2/ variables (rise and fall times). The value of K£• can range from 0 to
|V|-1. Hence we have |V|/(2/-l) = 0(\V\l2) relevant constraints for the circuit Ifwe
are given aclock cycle cthis reduces to 0(f) constraints. To compute all relevant long
path constraints for all valid clock cycles, weuse the approach suggested by Szymanski
[8]. This has acomplexity of 0(/|2?||V|). This approach also requires the computation
of i> (0(|F||f7|6), where bis the number ofbits ofaccuracy required incomputing ^).

The constraint 5to 8in S2 can be written as a:,- - xj < 7?. +tf£c, with

7|t- = dji - H eji e E (14)

and

ty = 1- *5- (15)
Once again we modify this dependence to include all paths of the same type (LL/LF or
FL/FF) as p and having the same phases at the end points. Recall that for an edge e,,,
Kji 6 {0,1}, implying Sej{ € {0,1}. Let XJ =7^ +6]iC. Thus L){ decreases with
decreasing c, since b]{ > 0. With the lower bound on c, we get L£ >it for any feasible
clock cycle. Since we have Econstraints, we can just keep the minimum value of7,-,- for
Kji € {0,1}. Thisyields 2/2 constraints.

So in all wehave OdF]/2) constraints.

5 Optimization

Sakallah et ai [6] formulated the clock cycle minimization as aLinear Programming
(LP) problem using relaxed constraints derived from SI. Szymanski used techniques to
reduce the number ofconstraints but still solved it as a LR Inthis section we show that
the LP has aspecial structure that makes itpossible to solve itefficiently.

The problem formulation for clock cycle optimizationmay be posed in several equiv
alent forms. The Linear Programming formulation is conceptually the simplest.

P: min(c)

s.t. xi - xj < -aji + K%c 0(|F|/2)constraints
Xi - xj < 7it- + Sjic 0(2/2)constraints

0 < x{ < c

i> < xQ(= e\) = c

We could solve this as a Linear Programming problem alone. Instead we propose a
binary search method. Ifwe fix the clock cycle to avalue say c = ir, then the constraint
set reduces to 0(/2). This can be done by just evaluating the right hand sides with c= tt
and picking the minimum. This takes 0(\V\l2). The constraints are then ofthe form

Xi - xj < kji 0(/2)constraints
Xi - x0 < 0 0(/)constraints

0<a?t

^ < S()(= 6/) = IT

We can choose toappend the phase separation constraints at this time. Arestricted set
ofduty cycle constraints are also permitted. The next section will present ageneralized
algorithm which will handle arbitrary duty cycle constraints. This reduces to afeasibility
check at c= 7r, and the theorem below shows that this can be done in polynomial time.
Theorem 2: Given aclock cycle tt > fa it is possible to check iftt is avalid clocking
scheme, and ifso to find values for the rise and fall times of the /phases in 0(P) time.
Proof: It is well known that the feasibility of aset of constraints of the form x{ - x5 <
kji, kji e R, can be related to the shortest path on agraph problem.

To check for feasibility we constructagraph Gp(Vp, Ep) as follows. Foreach variable
Xi construct avertex vPi. For each constraint x{ - xj < k]i$ construct an edge from vPj
to vPi with weight k]{. Henceforth when we say "we add an edge ofweight w", we mean
the following - ifaprevious edge exists we simply change its weight to be the minimum
of the original weight and w. Ifno such edge exists we create anew edge of weight w
in the graph. Add edges to all vertices vPii(i ^ 0) from v^ with weight 0(vPi < Vpo).
Construct azero vertex v2 (not to be confused with v^) which has edges from all vertices

8

other than vPo with weight zero (vPi > 0). Weigh the edge from v^ to vz with -tt.
Add an edge from vz to ifo ofweight n. This construction makes the graph Gp strongly
connected. From every vertex there isan edge tovz. There isanedge from vz tov^,, and
there is an edgefrom v^ to allothervertices.

Initialize the potential of vz to 0 andthepotentials of allothernodesto +00. Nowdo
aBellman-Ford iteration for the shortestpaths. Ifthere isanegative cycle inGpy itwill be
detected and such a cycle implies a setofinconsistent equations, implying infeasibility.
Else, thealgorithm will terminate with a setofconsistent potentials forallvertices. The
complexity is 0(/3). Ifthere are any upper bounds on variables, we initialize the potential
of thevertex thatrepresents thatvariable to theupper bound instead of +00.

Ifthere isanegative cycle inthegraph Gp, it implies thattheconstraints areinfeasible.
Let C- be anegative cycle with weight -W through, vertex vPi. This implies we have a
constraint (after elimination from the set) x, < Xi - W, i.e. 0 < -W, clearly infeasible.
•

Inorder todoguarantee that binary search will find the optimum clock cycle, we need
to prove two results:

1. Convexity ofP: If xq, xr are feasible to the problem P with clocks cycles qand
r(q > r)respectively, then there exists asolution to all clock cycles between rand
a.

2. There is a tight upper bound on the clock cycle. Note that this implies that the
upper bound is actually attained. So we have to show the existence of anupper
bound C and a feasible solution xc for c-C.

Theorem 3: Let xq, xr be feasible solutions to the constraints inPwith clocks cycles q
and rrespectively (q > r). Letc = Ag+(l-A)r(A e [0,1]). Then a; = \x*+(l-\)xr
is a feasible solution to theconstraints inP with clock cycle c.
Proof: Considerany constraintofthe form a;, - xj < a+6c,where a, 6are real constants.
We know

x] - xq- < a + bq

»5 $xr: - xr: < a + br

AxJ-AsJ < \a + \bq
(1 - X)xri - (1 - A)*J < (1-A)a + (1-A)6r

(A*? + (1-A)*J)-(A*J + (1-A)*J) < a + 6(A9 + (l-A)r)

Hence x = Xx* + (1 - \)xr is feasible forelock cycle {Xq + (1 - A)r).
Theorem 4: C = iV^/max Dijt where Dtj isthe delay between vertex i and vertex j
is a tightupper bound ontheclock cycle.
Proof: We will give an algorithm to find C. The short path constraints (S2.5-8) have a
positive right hand side always. The long path constraints have a right hand side ofthe

form -atji +K%c with iif£, possibly equal to zero. However any cycle in Gp must have
at least one edge going from aphase fa to aphase fa such that ej < e,. Such an edge will
have a stricdy positive coefficient for c, i.e. K* orfy will be > 0. The smallest value
for this coefficient is 1. The largest value aJt can have for an edge is \V\ max D{j. Any
cycle can have at most 2/ edges. So for a clock cycle C > 2l\V\ max Da there will be

eijZE J
nonegative cycles in thegraph Gp. Now carry outtheBellman-Ford iteration for c = C.
Since there are no negative cycles, we are guaranteed that the algorithm will converge to
a valid solution. •

Note that we never really need to compute C, only justify the existence of C that
depends on thedelays of thegates in the circuit.
Lemma 1: The complexityofbinarysearch is 0((\V\l2+P) log C) ~ 0(\V\l2log\V\)3.
Proof: The first term is the complexity ofselecting the minimum value of the right
hand side /£ for a given clock cycle it. The second term is due to the Bellman-Ford
iteration in Theorem 3. Ifwe normalize all numbers by max Dijt then for \V| > / we

getlogC = log(2/|F|) - 0(log|F|). Hence0((\V\l2 + P)logC) ~ 0{\V\l2\og\V\).
•

Itshould be pointedout thatduty cycleconstraints areofthe form mc< Xi-Xj < Mc,
where 0 < m < M < 1. The minimum duty cycle constraint will cause thecoefficient
for c to be negative, i.e. -m. Theorem 4 excludes the presence of such constraints.
Consequendy the bound inthe previous Lemma does nothold in the presence ofminimum
phase separation constraints. In fact the addition of these constraints may render the
problem infeasible. Intuitively, a long path may force the clock cycle c to be ofatleast
value II; this forces the on-timeofaphase to be at least mil,and ashortpath may cause a
violation. The next section describes ageneral algorithm which finds the optimum clock
cycle ordetects infeasibility. We are guaranteed that the binary search will work only if
there isno cycle for which the sum ofthe coefficients ofc is negative. Asimple case is
when m € [0, {].

6 Optimization: A General Algorithm

This algorithm ismotivated by the technique used in Linear Programming which adds a
constraint to the active set only when needed. We take advantage ofthe special structure
ofthe constraints (Theorem 2) to find a feasible solution for a given clock cycle, if it
exists. The general problem is of the form

P: min(c)
s.t. Xi - xj < min/k=i,...,N(a£ + b^c)

CL<C

log is logarithm to base 2.

10

We construct aconstraint graph Gp(VPi Ep) as described inTheorem 2. The general
algorithm is described below.

General Algorithm

c = clock cycle
cl = lower bound on c

Gp(VptEp) = constraint graph
c = cl

while (TRUE) {
flag = check-constraints(Gp, c)
if (flag == ALL POSITIVE CYCLES) {

return TRUE (c is the optimum clock cycle)
} if (flag == NEGATIVE CYCLE) {

c = new-lower-bound

} if (flag == INFEASIBLE) {
return FALSE (problem is infeasible)

}
}

The routine check-constraints () for a given clock cycle can return one of
three values:

1. ALL POSITIVE CYCLES: The set of constraints for the current clock cycle is
feasible.

2. NEGATIVE CYCLE: The set ofconstraints forthe current clock cycle isinfeasible
because atleast one negative cycle exists in Gp.

3. INFEASIBLE: The problem is infeasible.

Thesearchstartsatthelowerboundoftheclockcycle. The routine check-constraints ()
evaluates the dominating constraint for each edge eJt- Le. min (a), +6*tc) and setting
it as the edge weight Wji. Floyd-Warshall is used detect the shortest path from xp to xq,
keeping track of the sum of the 6,/s for the shortest path. During the Floyd-Warshall
iterations wekeep track of the diagonal values of the Floyd-Warshall matrix. As soon as
oneof these values becomes negative, we analyze all thecycles detected so far for each
vertex. LetWg = YXwjk) denote the weight of the cycle if one exists from Xi to Xi at
this time. Let Bu denote the sum of the 6t/s for the cycle. There arise four cases as
shown in figure 2:

1. Wf{ < 0 and Bu > 0: Feasible clock cycles must be greater than or equal to
c+ -g^- = (new-lower-bound)(cycle C\ in figure).

2. Wfi < 0 and Bu < 0: The problem is infeasible because, for every clock cycle
greater than c thiscycle will haveanegative value (cycle Ci in figure).

11

c/f

Cycle
Weights

0, 4r~^c

Figure 2: Graphical interpretation of the cycle weights

3. Wf{ >0and Bu > 0: cis possibly feasible ifWfc >0holds for all vertices j and
the Floyd-Warshall algorithm iscompleted (cycle C3 in figure).

4. W% >0and Bu <0: Feasible clock cycles must be less than or equal to c+-^g-
(cycle C4in figure). "

Note that the clock cycle being tested (c) is monotonically increasing. If we encounter
avertex i satisfying case 1, then we get alower bound on the clock cycle. If vertex
i satisfies case 2then the problem is infeasible. Cases 3and 4 does not give us any
information unless the regarding infeasibility because we are examining just one ofthe
cycles in the graph. The last case does give an upper bound on the clock cycle, which
can be used to detect infeasibility early. The ensuing lemmas provide insight into the
problem.

Lemma 2: If for any c(> cL), there is a negative cycle through vertex i, such that
W* <0, and Bu <0(for that cycle), then for all c > c, there is anegative cycle through
i.

Proof: Let us denote the negative cycle through i at clock cycle cas CL. Let &be the

12

dominating constraint foreach edge etj in C_ atclock cycle c4. Then

Dtj»,!?iJV(4+6 '̂)) < E(4+6 '̂)
C_ ** " C-

< D4+4c)+4(c'-c)
C-

< WZ + Buic'-c)
< 0

Thus the weight of C_ for a clockcyclec is negative. •
Lemma 3: If the problem P is infeasible then 3 acycle C in Gp, such that

1. ^2 (b^) is strictly negative, or
eij€C,k=l,~,N

2. £ (4)<0and £ (6*) = 0.
e,jeC,fc=l,...,N ey€C1fc=l,...,JV

Proof: By contradiction. Suppose the above condition does nothold i.e., forallcycles if
£ (4)<0,then J] (6*) >0, else £ (6*-) >0. Then

e1J6C7,/:=l,-..,N eijeC,k=l,~',N eij€C,k=l,-,N
forasufficiendy large c,it ispossible tomake allcycles inthe graph have stricdy positive
weight anda feasible solution to P canbe found usingTheorem 2. •
Theorem 5: TheGeneral Algorithm iscomplete, i.e. it finds anoptimum solution if one
exists, else it reports the problem as infeasible.
Proof: Theproof is given graphically. We break the proof into two parts; in the first
part we prove that the algorithm converges to a solution in a finite number of iterations,
secondwe prove that the clock cycle is optimum.

Let cn denote the value ofthe cin the wth iteration, n > 0, cq = cl. The proof relies
onthefact thatthenumber of cycles in theconstraint graph is finite, though exponential
in the number of constraints (number of cycles ~ 0((N + 1)'epI). Assume without
loss of generality, that there negative cycles (Co, Cw -Cn) in theconstraint graph for
Co? ci, •••, cn. Note thatcycle Cp is negative forallvalues of c € [cp, cp+i]. When the
algorithm reports theexistence of a negative cycle in iteration n, it either gives a value
for cn+i in the next iteration, or reports the problem to be infeasible. The proof for
infeasibility is provided bya setof cycles such that theminimum weight of these cycles
for all c > cl is stricdy negative.

ALe. a\j +b^c =fc=min Ja^ +b^c)

13

Cycle
Weights

Feasible region

Optimal value of c

Figure 3: Graphical interpretation of optimality

To show that the clock cycle reported in iteration n (if the problem is feasible) is
optimum, we note that for all c € [cLi cn), we have aproofofinfeasibility, namely aset
of negative cycles. For c = cn, there are no negative cycles, hence there is a solution
to the xft from Theorem 2. Intuitively the feasible region isthe interval defined bythe
cycles determining the new upper and lower bounds on c (C\ and C2 in figure 3. •

7 Example

In this section we describe the algorithm for optimal clocking applied to the data path
of a signal processing design taken from [12]. The data path isa part of avideo data
compression system. It uses adelta PCM compression algorithm. The compression is
achieved by anon-linear quantization operation Q. Its inverse D is used to maintain the
prediction value. The circuit is shown in figure 4. The delays of each component are
shown along side ([min, max] delays). The input signal is 9 bits and the compressed
value is 6bits. All 9bit lines are shown as dark lines and the 6bit lines are light. The
memory elements at the inputs to the subtraction unit are flip-flops (falling edge). The
rest of the elements are level-sensitive (active high). The circuit graph for this circuit is
shown in figure 5.

For this circuit, a lower bound on the clock (using equation 14) is 60 units (cycle
through b, c, f, b). However the optimum clocking for this circuit is88 units due tothe

14

Input
signal n

—U

Set-up = 3
Hold = 5

[0,40]

Figure 4: Video Coder

• Output
r-i Signal

[0,40]

♦' >+n

Credlcted value
i next clock cycle

Figure 5: Circuitgraph forVideo Coder

15

path b, c, e. A valid optimum solution is s\ = 27, e\ = 30, s2 = 85 e2 = 88 = c.

8 Experiments

We use several MCNC sequential examples and some of the largest ISCAS circuits as
benchmaiks. These were originally intended to be single phase edge-triggered designs.
In order to construct two-phase sequential circuits, we use atechnique due to Szymanski
[8]. First replace all edge-triggered elements by level-sensitive ones. Then duplicate each
circuit into two circuits called x and y. The latches in x are clocked byone phase and the
latches in ybythe other phase. The outputs oflatches in xare used as inputs to the circuit
y and vice versa. This generates two-phase circuits, with twice the number of gates and
latches. We use the unit fanout delay model; each gate has adelay of1plus 0.2 units per
each fanout ofthe gate. The set-up and hold times were set to 0. We constrained the duty
cycle ofeach phase tolie between 0.3 and 0.5 of the total clock cycle. The results (on a
DEC5000) are shown in the table below.

name size read-in lower

bound

time optimal
clock

time time ([8])
(# nodes/#latches) (sec.) (sec.) Al(sec) A2(sec.) (sec.)

2shiftreg 28/6 0.01 7.20 0.01 7.20 0.01 0.01 _

2planet 284/12 0.22 11.60 0.01 11.60 0.01 0.01 _

2sl423 1314/148 2.04 145.80 1.15 145.80 0.25 0.23 _

2s5378 5558/328 2.33 44.40 1.26 44.40 0.14 0.14 _

2s9234 11194/456 7.00 108.40 0.19 108.40 0.22 0.23 —

2sl3207 16054/1338 8.40 120.80 102.89 120.80 0.40 0.41
2s35932 32706/3456 12.14 77.00 5.75 77.00 0.73 0.72 .

2s38584 38814/2904 28.79 146.80 19.87 146.80 2.29 2.29 4.1
2s38417 44794/3272 59.90 84.40 858.46 84.40 3.34 3.49 6.0

Table 1: Table ofResults for simpledelay model

The second column gives the numberofnodes and the third column gives the number
oflatches in the network. The time taken for constructing the circuit graph is shown in
column 3. Column 4and 5give the lower bound on the clock cycle and the time required
to compute itusing the algorithm in [8]. Once this lower bound is computed, in order to
perform the optimizationof the phases, the constraints S2of Section 3need tobesolved.
This can be done by alinear program solver, as in [8], or by the algorithms proposed in
Section 5 and 6. Column 6gives the optimal clock cycle values. The time required for
computationusing thealgorithm given intheprevious sections isshown incolumns 7 and
8. Al is the simplified algorithm in section 5and A2 is the general algorithm in section

16

6. The last column gives the time reported by Szymanski [8] to compute the optimal
clock for the same examples, with adifferent delay model and clocking scheme using a
standard linear programming package.

Table 2 gives the results for the same circuits mapped into an industrial sequential
library. This library has realistic gate delays and set-up/hold times for the memory
elements. The run times for the clock schedule optimization algorithms are similar to

name size read-in lower

bound

time optimal
clock

time

(#gates/#latches) (sec.) (sec.) Al(sec.) A2(sec.)
2shiftreg 10/6 0.01 5.60 0.01 9.90 0.01 0.01

2planet 574/12 0.62 21.00 0.02 21.00 0.01 0.01
2sl423 852/148 1.92 53.70 1.17 53.70 0.16 0.17
2s5378 2034/326 2.07 14.30 1.28 17.50 0.12 0.11
2s9234 3375/392 3.31 22.30 2.23 25.20 0.24 0.24

2sl3207 4954/978 3.76 27.20 4.52 29.70 0.32 0.31
2s35932 16160/3070 17.10 18.40 5.01 18.40 0.66 0.63
2s38584 18780/2900 35.93 34.40 3.12 34.40 2.46 2.31

2s38417 23116/3456 31.67 28.70 2642.62 28.70 2.56 2.75

Table2: Tableof results for"Mapped" circuits

those inTable 1. It was found that a negative cycle (if one exists) is discovered early
during the Hoyd-Warshall iterations, as aresult inmostcases the Floyd-Warshall isnever
completed forlower (i.e. infeasible) clock cycles.

9 Conclusion

Inthis paper weusethe circuit model and the clock model proposed by Sakallah et al..
The clocking constraints and thetechnique for eliminating redundant constraints are due
to Szymanski. Sakallah and Szymanski used standard linear programming to solve the
resulting problem. Wehave shown that theresulting LPhas aspecial structure and can be
efBciendy solved. Therestricted version of the algorithm has apolynomial bound onthe
number of operations required for computing the optimal clock cycle. The complexity
of the algorithm is 0(|F|/2log \V\) (where / is the number of clock phases and \V\
the number of memory elements). The general algorithm has aworst case exponential
complexity like the simplex method, but for our application it seems to typically take
only a few iterations fless than 10). Both algorithms use a"shortest path on a graph"
algorithm for the core computation. Resulting run-times are reported for large sequential
circuits withboth, a simplistic delay model and a complex delay model. Run times for

17

both algorithms are similar for thetwo algorithms.

Acknowledgements

We thank Dr. T. Szymanski for several comments on the optimal clocking problem and
related issues. We also thank L. Lavagno and K. J. Singh for the help in the preparation
of this document. We gratefully acknowledge the support of NSF under grant EMC-
8419744, and DARPA under grant JFBI90-073.

A Proof of Theorem 1

We shall drop the superscript on A'? to simplify the notation. We point out that for the
pathp,
N-l

^2Ekk+i =Kjtc + e{ - ej.

SI => S2) Let Gbe agraph for which SI has asolution. Let p € V(G). Then pmust
be one ofthe four types described. Let us examine the set-up constraints.

• LL(or LF) :Since there can be no flip-flops along p, we get

Ak > Rk-i + Dk-ik - Ek-ik
Rk-i > Ak-\

implying^ >Ak-i+Dkk-i-Ekk-i. Summingfromk = Q(Le. i)tok = N(i.e.
j) we get

N

Ai >Rj +^2 Dk-ik - (e{ +Kjic - ej). (16)
fc=i

Together with ^4, <ef - Sand Rj > sf we get

ef-S > sf +Dji-KjiC-ei+ej

c+«i > s'j+ej + Dji-KjiC+ S

* +* > sf + ej+Dji-KjiC + S

ei > (sj-el + ej) + Dji-Kjic + S

e,- > Sj + Dji - Kjic + S.

18

This equivalent to constraint 1 ofS2.

• FL(orFF): We have

Ak > Rk-i+Dk-n-Ek-ik
Rk-\ > Ak-i

implying Ak > Ak-\ + Dk-\k - Ek-\k. Summing from k = 0to k = N we get
N

Ai >Rj + Yl Dk-ik - (e{ +Kjic - ej). (17)
Jfc=i

Together with A{ < ef - Sand Rj =ef (since j is aflip-flop) we get
ef'-S > ef+ Dji-Kjic-ei + ej

c+ e{ > ef + ej + Dji-KjiC+S
4

>e/ +et- > ef + ej + Dji-KjiC+S

*i > (ej-et + ej) + Dji-KjiC + S

e,- > ej + Dji - Kjic + S

This is equivalent to constraint 2 of S2.

It remains to prove the hold time inequalities in S2 for each path consisting of one
edge eji.

• LL (orLF): For anyedge eji we know

ai < rj + dji - Eji

Hence

Vj = sf
ai > H

H < Sj+dji-(ei-ej + Kjic)

H <

*

(sf+ej) +dji - e{ - Kjic

e, < (sf+ej - ei) +dit- +e/ - Kj{c --H

€,• < sj + dji + (l-Kji)c-II.

19

This is equivalent to constraint 3 of S2.

• FL(orFF): For any edge eJt we know

Hence

flf < rj -f dji - Eji
tj = ef
a{ > H

H < ef +dji-fr-ej + Kjic)

H < (ef + ej) +dji-ei-KjiC

ei < (ef + ej-efi + dji + ei-Kjic-H

ei < ej + dji + (l-Kji)c-H

This is equivalent to constraint 4 of S2.

Thus we have shown that S2 is satisfied if SI is.
SI <= S2) Let the set S2 beconsistent. We will show that there exists asolution to

SI by constructing an algorithm to calculate aset ofvalues that satisfy the constraints in
SI. The algorithm isgiven below. The superscript ofeach variable reflects the iteration
number.

R*i = sf if i is a latch
R% = ef if i is a flip-flop
A°i = max (#5 + Dji - Ej{)

i€F/(t)V 3 3 3%'
do {

foreach memory element i{
if (i is a latch) {

Rf^1 =max(A*,.sf)
} else { /* i is a flip-flop*/

Rk+l = ef
}

}
} while (not converged)
foreach latch i {

20

if (i is a latch) {
Ti =

} else {

}
}
foreach latch i {

}

We need to show that the set ofsequences {Ri}kLQi {4?}?io converge foreach i and
that the limit points of these sequences satisfy the set-up constraints. Itiseasy tosee that
the sequences are monotone increasing. Assume that there exists alatch or flip-flop i for
which the sequence {A*}j£_0 either does notconverge orconverges to avalue greater than
ef - S. Then since the sequence is monotone increasing, 3N, such that A? >ef - S.
Now we will construct apath pas follows. We let pn = i. We define pv-\ recursively
as the fanin of pv for which AvPv - RvPv_x = Dv.Xv - EPv_xPv. The recursion terminates
in four cases

• v = 0 is alatch for which Rf* = s£ or
PO PO

• v =0is a flip-flop for which R^ = e^ or

• we find alatch v =V such that Rpv = s%v or

• we find aflip-flop v = V such that R^v = e^v or

Note that the first case is isomorphic tothethird case withV = 0 (henceforth called case
1). Similarly the second case is isomorphic to the fourth case with V = 0 (henceforth
called case 2).

1. case l(LLorLF):

an _ pN — n 1?
**-VN ^PN-l ~ ^PN-lPN ~ ^PN-lPN

pN _ aN-1
•"-PJV-l ~ APN-l

AN-1 _ RN-l _ n p
^PN-l ^PN-l ~ ^PN-lPN-l ~ ^PN-2PN-l

RN-l _ aN-2

Ti = sf

T{ = ef

Rv - sL

21

Summing up we get

N

SPv + E (Dm-im - EPm_lPm) > ef-5

5i + DH ~ €i +ei ~ #i«c > ef-5, where j = py

(«* - ei +e,-) +Dji - Kjic > (ef-e, +e,)-5

Sj + Dji-KjiC + S-LjiC > e{

contradicting an S2 constraint (1 or 2 as the case may be) for path p.

2. case2(FLorFF):

Apn > ei - S
AN - PN - n j?

PN ilPW-i - ^PN-lPN ~ &PN-1PN

RN = AN~l

AN~l - nN~l - n j?
"•PN-\ "PN-1 ~ ^PN-lPN-l ~ ^PN-lPN-X

pN-l _ aN-2
""-PiV-l ~ APN-2

Rv = eL^PV epv'

Summing up we get

N

epv + Z^ (^m-lm ~ Epm-iPm) > ef-5
m=V+l

ef +Dji +a-ej +Kjic > ef-5, where j = pv

(ef-el +ej) +Dji-Kjic > (ef - e, +e.) - 5

ej + Dji-KjiC+S > ei

contradicting an S2 constraint (3 or 4 as the case may be) for path p.

22

Hence the sequences {Af}^ converge to legal values for each i. This also implies
that the sequences {Ri}f=0 converge to legal values for each i. Let the limit point ofthe
sequences bedenoted by Ai and Ri for each latch/flip-flop i.

We now prove that hold time constraints are satisfied. For sake of contradiction
assumethereis alatchor flip-flop i for whichthe hold time is violated.

a, < H

rj-\-dji-Eji < H forsome./€FI(i).

There arise two cases depending onwhether j isa flip-flop oralatch.

1. j is alatch: rj = sf

sf + dji-ei + ej-Kjtc < H

(sf +ej - e/) +dji +e/ - et- - Kjic < H

Sj + dji + c - Kjic - H - Ljic < ei

This contradicts constraint 5 or 6 in S2.

- aL2. j is a flip-flop: rj = e

ef +dji - a +ej - Kjic < H

(ef +ej - e,) +rfJt- +e/ - et- - ifyc < #

ej + rfjt + c - JiTjtC - if < et-

contradicting constraint 7 or 8 in S2.

It remains to show that a, < Ai for all i when i is a latch. We have

ai = *§%<{*$ +**-*#)
rf < Rf

ai - il^o^"1"^'"^
dji < ^ji by definition
«,- < min (#f + £>,,• - £it)

a,- < max (Rf + Z>,t- - Ej{)

fli < -At*

23

D

This proof assumes that ej > Sj. Note that in case ej < sjt there is an additional
term of -c on the right hand sides of all the equations that use Sj. The proofis analogous
to the one above.

The next important thing tonote is a bound onthe number of iterations needed for
convergence of the iterative scheme described above.
Lemma 4: The iterative scheme will converge in at most \V\ - 1iterations.
Proof: It is easy to see that the short path constraints require \E\ relaxations (each edge
once). The convergence of the long path constraints can be seen by showing that the
problem is related to finding the longest path on agraph with non-positive cycles. Weigh
each edge ej{ € E with Dj{ - Ej{. Each vertex i (memory element) € V has two
variables, Ai, Ri. Initialize all Ri as in the algorithm. Now carry out a relaxation ofall
the edges, (\V\ - 1) times. This ensures every vertex-disjoint path has been considered
as a Dath inthe relaxation. Any cycle can be represented as a path p : i -*• i. We know
c> kJj; (see equation 12), where Dp is the sum of the delays along pand Kp is the sum
ofthe Ee for each elying on p. As aresult traversing acycle can only decrease the arrival
times. Consequendy we need atmost \V\ - 1iterations. •

References

[1] M. R. Dagenais and N. C. Rumin. Automatic Determination of Optimal Qocking
Parameters in MOS VLSI Circuits, hi Advanced Research in VLSI.Proc. ofthe 5th
MIT Conference, pages19-33,1988.

[2] R. B. Hitchcock. Timing Verification and TimingAnalysis Program. InProceedings
ofthe Design Automation Conference. IEEE/ACM, 1982.

[3] A. Ishii and C. E. Leiserson. ATiming Analysis of Level-Clocked Circuitry. In
AdvancedResearch in VLSI: Proc. ofthe 7th MIT Conference, 1990.

[4] N. P. Jouppi. Timing Verification and Performance Improvement of MOS VLSI
Designs. PhD thesis, Stanford University, Stanford CA-94305, October 1984.

[5] J. K. Ousterhout. ASwitch-Level Timing Verifier for Digital MOS VLSI. IEEE
Transactions on Computer-Aided Design, CAD-4(3):336-349, July 1985.

[6] K. Sakallah, T. N. Mudge, and O. A. Olukotun. Check Tc and min Tc: Tuning
Verification and Optimal Qocking ofSynchronous Digital Circuits. InProceedings
ofthe International Conference on Computer-Aided Design, pages 552-555. IRRF.
1990.

24

[7] T. G. Szymanski. LEADOUT: A Static Timing Analyzer for MOS Circuits. In
Proceedings of the International Conference on Computer-Aided Design, pages
130-133. IEEE, 1986.

[8] T. G. Szymanski. Computing Optimal Qock Schedules. In Proceedings of the
Design Automation Conference, pages 399-404. IEEE/ACM, 1992.

[9] S. H. Unger and C. J. Tan. Qocking Schemes for High-Speed Digital Systems.
IEEE Transactions onComputers, C-35(10):880-895, October 1986.

[101 D. Wallace and C. H. Sequin. ATV: AnAbstractTiming Verifier. In Proceedings of
theDesign Automation Conference, pages 154-159. IEEE/ACM, 1988.

[Ill N. Weiner and A. Sangiovanni-Vincentelli. Timing Analysis inaLogic Synthesis
Environment. InProceedings oftheDesignAutomation Conference, pages 655-661.
BEEE/ACM, 1989.

[12] R. Zahir. ControllerSynthesisforApplicationSpecificIntegratedCircuits. Hartung-
Gorre Verlag, Konstanz, Germany, 1991.

25

