Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

GRAPH ALGORITHMS FOR EFFICIENT
CLOCK SCHEDULE OPTIMIZATION

by

Narendra Shenoy, Robert K. Brayton, and
Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M92/79

3 August 1992

GRAPH ALGORITHMS FOR EFFICIENT
CLOCK SCHEDULE OPTIMIZATION

by

Narendra Shenoy, Robert K. Brayton, and
Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M92/79
3 August 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

GRAPH ALGORITHMS FOR EFFICIENT
CLOCK SCHEDULE OPTIMIZATION

by

Narendra Shenoy, Robert K. Brayton, and
Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M92/79

3 August 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Graph Algorithms for Efficient Clock Schedule
Optimization

Narendra Shenoy, Robert K. Brayton and Alberto L. Sangiovanni-Vincentelli
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA-94720

1 Introduction

In aggressive designs, when the technology permits tight control on process variations,
the performance of a design will probably rely on cycle borrowing using level-sensitive
latches. At the same time, level-sensitive latches force the designer to obey short path
constraints. Thus the use of level-sensitive elements is both a boon and a curse.

In this paper, we allow edge-triggered and level-sensitive memory elements in a
circuit. A single clock, multi-phase clocking scheme is assumed. We assume the initial
circuit is logically correct and are only concemed with optimizing the clock schedule,
i.e. finding the minimum clock cycle time and the corresponding times for the rise and
fall of all clock phases. Clocks are not gated and clock skew is assumed negligible. It is
possible to extend the algorithms presented in this paper to incorporate non-zero skews.

Related early efforts in the area of timing issues ([2], [7], [4], [5]) concentrated on
timing verification. Unger et al. ([9]) give an excellent description of the constraints
for various clocking schemes used in digital design. Wallace ez al. ([10]) use explicit
unrolling of the clock for timing analysis. Weiner ezal. ([11]) present an iterative scheme
for timing analysis but do not take short paths into account. Dagenais et al. ([1]) use
an iterative algorithm to calculate optimal clocking parameters. Ishii ez al. ([3]) give
an algorithm of polynomial complexity for verification of arbitrary clocking schemes but
consider only the maximum propagation delays. Sakallah et al. ([6]) present an algorithm
to optimize (conjectured to be optimum) the clock cycle based on linear programming.
Szymanski ([8]) presents a restricted version of the model given in ([6]), makes a strong
case for its use, and proposes an efficient technique to reduce the size of the linear
programming problem.

The main contributions of this paper are efficient graph algorithms to compute an
optimal clocking schedule of a circuit. Similarto [8] we make the restriction that all clock
events be ordered. We also present in the appendix, a formal proof of the equivalence of
an extension to the model used by Ishii ez al. [3] and the restricted model of Sakallah [6]

given by Szymanski [8]. !

In section 2, we introduce the basic terminology. Section 3 deals with the clocking
constraints. The results from Szymanski [8] are summarized in section 4. A simplified,
albeit restricted, graph algorithm and its analysisis given insection 5. A general algorithm
is presented in section 6. Section 7 presents the result of the algorithm applied to a video
coder. Results conceming effectiveness and efficiency are given in section 8. Section 9
concludes the paper.

2 Definitions

Memory elements are assumed to be either edge-triggered or level-sensitive. Each
memory element has a data input, a clock input and a single output. For an edge-triggered
latch (flip-flop), at the appropriate edge of the phase connected to the clock input, the
latch samples the data input and the value is presented at the output. This output remains
stable until the next occurrence of the phase edge. Thus the input of a latch and its output
are effectively decoupled. For a level-sensitive latch (also called just “a latch”), the data
at the input is transmitted to the output as soon as the active period of the latch begins.
The output is held at the data value from the time the active period ends until the next
active period and fresh data from the input arrives. Thus the input and output are not
isolated during the active period. The retardation([1]) at a level-sensitive latch is the
amount by which the valid output is delayed since the beginning of the active period. It
is the time borrowed from the current phase by the logic preceding the latch, in order to
complete the computation. For correct operation of both memory elements, we need the
data signal to be stable at the input before the latching edge occurs by an amount called
the set-up time. It is also required that the signal be stable after the latching edge by an
amount called the hold time.

We assume, without loss of generality, that edge-triggered elements sample input
data on the falling transition and level-sensitive latches are active when the phase is high.
Thus, the falling edge of each phase is the critical edge with respect to which set-up and
hold constraints must be satisfied.

A clocking scheme, is a collection of ! periodic signals with a common period c,
and is represented by € = (¢1, 2, -, ¢). Associated with each phase ¢; are two real
numbers s; and e;, the time of occurrence respectively of the rising and falling edges of
#i (0 < (si,€;) < ¢). Associated with each phase i is its local time zone, an interval of
time of length ¢, such that the end of the active phase coincides with the end of the local
time zone. Let0 < e < e3--- < ¢ = ¢; thus we choose the global reference time frame

'The extension to the Ishii’s model consists of adding minimum propagation constraints. Though both
forms have been freely used in the literature, we are unaware of any effort made to relate the two. The fact
that the model proposed by Sakallah implies the constraints used by Ishii was shown in [8]. However, the
converse was not known.

l local zone of phase 2
e, 0 fo0CE ZONG Ol phase 2
2 L) e

]

|
I__| local zone of phase 1, :
1 | §j|
- |

1

? o H

2

3 | [

!

|

g szel 4233 4, I 3 i
|

|
|

0 global time reference © e————————a

C+ 61-02

Figure 1: Three phase clocking scheme

as the last phase e;. The clocking scheme specifies a complete ordering of the rise and
fall of the phases. Note that this is a stronger assumption than in [6]. The reason we need
to make this assumption will be clear in the next few sections.

We say ¢; < ¢; if e; < e;. We use the phase shift operator E;; introduced in [6], to
translate all measurements of time from the local zone of phase ¢ to the local zone of j.
The phase shift operator for a path between phase 7 and phase j is defined as

Ej; = ej—¢ if §; < ¢;
= c+e—e¢ otherwise

Consider the clocking scheme in Figure 1. Let an event be an upward or downward
transition of a data signal. Consider an event at a ¢; memory element occurring at time
t1, given in terms of the local time zone for ¢,. If this event causes another event at a b
memory element with a delay say d, i.e. time t; + d with respect to zone one; then Ej,
is the shift that must be subtracted from ¢; + d to convert the event to the local time zone
of ¢,. To distinguish between variables in the local time zone from the global frame we
use a superscript L. Thus in the local time zone of ¢;, ¥ = ¢. The local rise of a phase
issf’ =38;it+e—e =38;+ FE;if s; <e,-andsf' =8 —e=8+FE;—eifs; > e
Henceforth we assume that s; < e;. If s; > e; then the constraints (S2), derived in the
next section will differ by a term as is explained in the Appendix. Consequently, a priori
information is needed on the relative occurrence of the rise and fall of each phase in the
global frame and the relative occurrence of the fall of all the phases. The first enables us
to choose the correct form of the constraint from S2 and the second is necessary for the
valid translation of events from one time zone to another.

The circuit C is modeled as a finite, edge-bi-weighted, directed multi-graph G =
(V,E,D,d). For every memory element i € C there is a vertex v; € V. In addition
for every primary input and primary output of the circuit there is a vertex in V. If there

is a path of combinational logic from a memory element (or primary input), say i, to a
memory element (or primary output), say j, we create an edge e;; € E from v; to v;.
The edge weight D;; (d;;) is the maximum (minimum) sum of the gate delays along the
combinational paths from i to j. We say v; is a fanin of v; (v; is a fanout of v;) if there
is a directed edge from v; to v; in the graph. We denote the fanin set of v; by FI(v;),
the fanout set by FO(v;). A path v; £ v; is a set of altemating edges and vertices
{vi, i1, v1,€12, -+, €ny j»v;}, and every pair of successive edges forms an input-output
pair to the vertex between. Henceforth all vertices will be simply indexed by a variable
instead of a variable subscript of v, i.e. we will use i to denote a vertex instead of v;. We
denote the phase of the latch represented by vertex v; as &(2).

The rise (fall) of the phase to memory element 7 is denoted by s; (e;) when there is no
ambiguity. So latches i and j may have the same phase k and e; and e; will both denote
ex. Thus the symbol e; is overloaded to signify both the fall of phase ¢ and the fall of the
phase used to clock memory element :.

Each latch in the circuit is associated with four variables:

A; = latest that the signal is valid at the input of latch ¢,

a; = ecarliest that the signal is valid at the input of latch i,
R; = latest that the signal is valid at the output of latch z,
Ti = earliest that the signal is valid at the output of latch 1.

These variables are measured with respect to the local time zone of the phase of the latch.
We constrain all variables to lie within [0, c]. The problem posed is:

Given a circuit G(V, E, D, d), find the minimum clock cycle c, and the rise and fall times
Jor each of the phases (s;, €;), so that the clocking scheme meets all timing constraints.

3 Clocking Constraints

The clocking constraints for optimal clock schedules may be written as follows [6] [8].
We use the conservative design constraints. Szymanski (8] makes a strong case for the
use of this set of constraints versus the aggressive set described by Sakallah et al.. The
long path constraints are of the form:

A= legFa}(i)(Rj + Dj; — Ej;). (1)

The short path constraints are of the form:

a; = erg}r}(i)(?‘j + dji — Ej;). (2)

The propagation constraints for a latch are:

R; = max(4;,s¥) (3)
r; = s (4)
(Sakallah used r; = max(a;, sF) instead) 2. The constraints for a flip-flop become:
Ri=¢f (5)
ri = €f. (6)
We also need
a; < A; (7
The set-up and hold constraints are of the form
Ai<ef-S (8)
and
H<aq; 9)

where S is the set-up time and H is the hold time for a latch/flip-flop. Let this set of
constraints (1-9) be called S1.

We now derive a set of inequalities which are both necessary and sufficient for correct
clocking. Denote a flip-flop by F and a latch by L. We can have 4 types of paths in the
graph G. The path j 5 i canbe

1. from a latch j to a latch ¢ (LL)

2. from alatch j to a flip-flop ¢ (LF)

3. from a flip-flop j to a latch ¢ (FL) or
4. from a flip-flop j to a flip-flop ¢ (FF).

In addition we constrain all paths to necessarily terminate if they encounter a flip-flop.
Let the set of all such paths be denoted by P(G). For a path p we index the vertices on
the path with po(= j),- -+, pn(= i). A path is allowed to have repeated vertices; hence
the set P(G) can be infinite.

Theorem 1: The set of constraints S1 described above are equivalent to the following
inequalities (S2) for each path p € P(G). The path p is denoted by j > i. The
inequalities depend on the type of p:

2It is the relaxation of this constraint that prevents the min and max interactions between the constraint in
(2) and (4)

L. pisoftype LL orLF: ¢; > s; + Dj; — Kfe+ S

2. pisoftype FL or FF: ¢; > e; + Dj; - KTic+ S where Dj; = Y| Dy_11 and
K7, is an integer defined recursively (from 1 to N) as

Oifk = j(i.e. k= pg)
K;')k = K;"k-l ifep—1 < ex (10)
K;k—l + lifer < ex—y

In addition for each path p: j 5 ¢ consisting of a single edge(e;;) we need
3. pisoftype LLorLF: ¢; < s; + dj; + (1 — Kf)e- H
4. pisoftype FLorFF: ¢; < ej + dj; + (1 - K})e—H

where dj; = T, dy_14. Constraints 1-2 are called the set-up constraints of S2 and 3-4
called the hold-time constraints. If e; < s; then we need to subtract ¢ from the right hand
side of the equations.

The proof of Theorem 1 is given in the Appendix.

4 Redundant Constraints

This section is basically a reproduction of the equivalent theorems from {8], that can be
used to reduce the number of constraints in S2. Constraints 3 and 4 in S2 total up to | E|
constraints. Constraints 1 and 2, on the other hand, must hold for all paths, and possibly
are infinite in number. Hence we must find a more compact representation. Consider the
constraints 1 and 2 in S2. These can be represented in the form z; — z; 2 a;’,- - K;-’,-c,
where the parameters a;?,- /K ;-’,- depend on the path p : u — v (¢(u) = 7, #(v) = %) and
Ti = €; Or 8;, T; = €; O ;.

N
of; =) Drie+S5 k=0isiandk = Nisj (11)
k=1
and K ;-’,- 2 0. The dependence of the constraints (on the path) is over all paths from
memory element j to memory element i. We modify this dependence to include all paths
of the same type (LL/LF or FL/FF) as p and having the same phases at the end points. Let

Us; = ,,?pa(xg)(a?,- -K ;-’,-c). For a given clock cycle ¢, U¥; is the relevant bound. Let C be

the set of simple cycles in P(G). Recall that there must be at least one memory element
in every cycle. Consequently forany cycle p: i — i, K % = K, > 0. The vertex given

by k = 0is the same as the vertex given by k = N. A weak lower bound on the clock
cycle cis

N
> Diik
¢c2> Y= max k=1

PEP(G) K,

(12)

Consequently Uy ~ § < O for all paths that contain a simple cycle and ¢ > 1. As a result
we conclude that a simple way to compute U 5 is

Uj; = max (of, — KT ¢). (13)
V smpopttap: u — v, (u) = j, Hv) = i

Intuitively, if we encounter any cycle on a path from to v, we can only decrease U 5ie
Also note that as cincreases, U ; decreases for all paths from phase j to phase i. However,
if we make use of the lower bound on ¢, we will get a set of tight constraints. Hence
Us; <U J'f for any feasible clock cycle c.

For a given clock cycle c, the relevant constraints S, may be obtained as follows.
Each edge e in the graph G is weighted with D, — K.c. Solve an all pairs longest path
problem (with the constraint that a path cannot continue if it encounters a flip-flop), given
that the graph has no positive cycles. The length of the longest path gives us the constant
on the right hand side of the inequality, denoted by U 5i- Since we have [phases, we can
have at most 2! variables (rise and fall times). The value of K;-’,- can range from 0 to
|V|—1. Hence we have [V |I(21 - 1) = O(|V|{?) relevant constraints for the circuit. If we
are given a clock cycle c this reduces to O(/2) constraints. To compute all relevant long
path constraints for all valid clock cycles, we use the approach suggested by Szymanski
(8]. This has a complexity of O(!| E||V]). This approach also requires the computation
of % (O(|V|| E|b), where b is the number of bits of accuracy required in computing 1).

The constraint 5 to 8 in S2 can be written as z; — z; <95+ 6;,-c, with

vi=di— H ei €ER (14)

and
6;?{ =1- K;’, (15)

Once again we modify this dependence to include all paths of the same type (LL/LF or
FL/FF) as p and having the same phases at the end points. Recall that for an edge ej;,
K;; € {0,1}, implying 6%; € {0,1}. Let L% = 75 + 8;c. Thus L; decreases with
decreasing c, since 63; > 0. With the lower bound on ¢, we get L > L.'f',- for any feasible
clock cycle. Since we have E constraints, we can just keep the minimum value of 7 for
K;; € {0,1}. This yields 2/2 constraints.

So in all we have O(|V|2) constraints.

S Optimization

Sakallah et al. [6] formulated the clock cycle minimization as a Linear Programming
(LP) problem using relaxed constraints derived from S1. Szymanski used techniques to
reduce the number of constraints but still solved it as a LP. In this section we show that
the LP has a special structure that makes it possible to solve it efficiently.

The problem formulation for clock cycle optimization may be posed in several equiv-
alent forms. The Linear Programming formulation is conceptually the simplest.

P min(c)
st zi—z; < —oyi + Khe O(|V|#*)constraints
z; — z; < 75 + bjic 0(212)constraints
0<z;<¢

Y<zo(=e€)=c

We could solve this as a Linear Programming problem alone. Instead we propose a
binary search methed. If we fix the clock cycle to a value say ¢ = m, then the constraint
set reduces to O(I2). This can be done by just evaluating the right hand sides with ¢ = =
and picking the minimum. This takes O(|V|12). The constraints are then of the form

z; — z; < kT O(*)constraints
z;—29<0 O(!)constraints
0<

Y<zo(=e))=m

We can choose to append the phase separation constraints at this time. A restricted set
of duty cycle constraints are also permitted. The next section will present a generalized
algorithm which will handle arbitrary duty cycle constraints. This reduces to a feasibility
check at ¢ = , and the theorem below shows that this can be done in polynomial time.
Theorem 2: Given a clock cycle = > 1, it is possible to check if is a valid clocking
scheme, and if so to find values for the rise and fall times of the phases in O(13) time.
Proof: It is well known that the feasibility of a set of constraints of the form zi—z; <
kji, ki € R, can be related to the shortest path on a graph problem.

To check for feasibility we construct a graph Gp(V;, Ey) as follows. For each variable
Z; construct a vertex vp,;. For each constraint z; — z; < k7;, construct an edge from Vp;
to vp; with weight k7;. Henceforth when we say “we add an edge of weight w”, we mean
the following - if a previous edge exists we simply change its weight to be the minimum
of the original weight and w. If no such edge exists we create a new edge of weight w
in the graph. Add edges to all vertices v,,, (¢ # 0) from Upo With weight 0 (vp;, < vp,).
Construct a zero vertex v, (not to be confused with Up,) Which has edges from all vertices

other than v, with weight zero (v, > 0). Weigh the edge from vy, to v, with —7.
Add an edge from v, to vy, of weight 7. This construction makes the graph G strongly
connected. From every vertex there is an edge to v.. There is an edge from v, to vy, and
there is an edge from vy, to all other vertices.

Initialize the potential of v, to 0 and the potentials of all other nodes to +00. Now do
a Bellman-Ford iteration for the shortest paths. If there is a negative cycle in Gy, it willbe
detected and such a cycle implies a set of inconsistent equations, implying infeasibility.
Else, the algorithm will terminate with a set of consistent potentials for all vertices. The
complexity is O({%). If there are any upper bounds on variables, we initialize the potential
of the vertex that represents that variable to the upper bound instead of +oc.

If there is a negative cycle in the graph G, itimplies that the constraints are infeasible.
Let C_ be a negative cycle with weight —W through, vertex vp;. This implies we have a
constraint (after elimination from the set) z; < z; — W, i.e. 0 < —W, clearly infeasible.
o

In order to do guarantee that binary search will find the optimum clock cycle, we need
to prove two results:

1. Convexity of P: If 27, 2" are feasible to the problem P with clocks cycles ¢ and
(g >) respectively, then there exists a solution to all clock cycles between and
q.

2. There is a tight upper bound on the clock cycle. Note that this implies that the
upper bound is actually attained. So we have to show the existence of an upper
bound C and a feasible solution z€ for ¢ = C.

Theorem 3: Let z7, z" be feasible solutions to the constraints in P with clocks cycles ¢q
and 7 respectively (¢ > 7). Letc = Ag+(1-X)r (X € [0,1]). Thenz = Az9+ (1=X)z"
is a feasible solution to the constraints in P with clock cycle c.

Proof: Consider any constraint of the form z; —z; < a+ b, where a, b are real constants.
We know

zl—-2! < a+bg
zi—-z; < a+br
Az{ - Azl < da+ Abg
(1=Naf=(1-X)25 < (1= Nat(1-Apr
(A2 + (1= X)) = (el +(1 - Na§) € a+b(Ag+ (1= A)r)

Hence z = Az? + (1 — A)a" is feasible for clock cycle (Ag + (1 — A)r).

Theorem 4: C = |V|21 max, D;;, where D;; is the delay between vertex i and vertex j
ij

is a tight upper bound on the clock cycle.

Proof: We will give an algorithm to find C. The short path constraints (S2:5-8) have a
positive right hand side always. The long path constraints have a right hand side of the

9

form —a;; + KF;c with K%, possibly equal to zero. However any cycle in G, must have

at least one edge going from a phase ¢; to a phase é; suchthat e; < e;. Such an edge will

have a strictly positive coefficient for c, i.e. K ¥, or 6;; will be > 0. The smallest value

for this coefficient is 1. The largest value a;; can have for an edge is |V/| emg% D;;. Any
7

cycle can have at most 2! edges. So for a clock cycle C > 21 V] max, D;; there will be
i

no negative cycles in the graph G,. Now carry out the Bellman-Ford iteration for ¢ = C.
Since there are no negative cycles, we are guaranteed that the algorithm will converge to
a valid solution. o
Note that we never really need to compute C, only justify the existence of C that
depends on the delays of the gates in the circuit.
Lemma 1: The complexity of binary search is O((|V|2+1%)log C) ~ O(|V |2 1og |V])>.
Proof: The first term is the complexity of selecting the minimum value of the right
hand side !7; for a given clock cycle #. The second term is due to the Bellman-Ford
iteration in Theorem 3. If we normalize all numbers by max, D;;, then for |[V| > [we
[3]

getlog C =log(2!|V]) ~ O(log|V|). Hence O((|V|2 + 1) 1og C) ~ O(|V|21og |V]).
a

It should be pointed out that duty cycle constraints are of the form me < z;—z i < Me,
where 0 < m < M < 1. The minimum duty cycle constraint will cause the coefficient
for ¢ to be negative, i.e. —m. Theorem 4 excludes the presence of such constraints.
Consequently the bound in the previous Lemma does not hold in the presence of minimum
phase separation constraints. In fact the addition of these constraints may render the
problem infeasible. Intuitively, a long path may force the clock cycle ¢ to be of at least
value I7; this forces the on-time of a phase to be at least m 7, and a short path may cause a
violation. The next section describes a general algorithm which finds the optimum clock
cycle or detects infeasibility. We are guaranteed that the binary search will work only if
there is no cycle for which the sum of the coefficients of c is negative. A simple case is
when m € [0, 1].

6 Optimization: A General Algorithm

This algorithm is motivated by the technique used in Linear Programming which adds a
constraint to the active set only when needed. We take advantage of the special structure
of the constraints (Theorem 2) to find a feasible solution for a given clock cycle, if it
exists. The general problem is of the form
P min(c)
8t. i —z; < ming=y,...n(ak; + bkc)
cr, <c

3log is logarithm to base 2.

10

We construct a constraint graph G,(V;, E,) as described in Theorem 2. The general
algorithm is described below.

General Algorithm

¢ = clock cycle
¢, = lower bound on ¢
Gp(Vp, Bp) = constraint graph
c=cL
while (TRUE) {
flag = check-constraints(G,, c)
if (flag == ALL POSITIVE CYCLES) {
return TRUE (¢ is the optimum clock cycle)
} if (flag == NEGATIVE CYCLE) {
¢ = new-lower-bound
} if (flag == INFEASIBLE) {
return FALSE (problem is infeasible)
}

The routine check-constraints () for a given clock cycle can return one of
three values:

1. ALL POSITIVE CYCLES: The set of constraints for the current clock cycle is
feasible.

2. NEGATIVE CYCLE: The set of constraints for the current clock cycle is infeasible
because at least one negative cycle exists in Gp.

3. INFEASIBLE: The problem is infeasible.

The search starts at the lower bound of the clock cycle. The routine check-constraints ()

evaluates the dominating constraint for each edge e;; i.e. . =nlliBN(a§,- + b%;c) and setting
it as the edge weight w;;. Floyd-Warshall is used detect the shortest path from z, to z,,
keeping track of the sum of the ;;’s for the shortest path. During the Floyd-Warshall
iterations we keep track of the diagonal values of the Floyd-Warshall matrix. As soon as
one of these values becomes negative, we analyze all the cycles detected so far for each
vertex. Let W = 3 (wji) denote the weight of the cycle if one exists from z; to z; at
this time. Let B;; denote the sum of the b;;’s for the cycle. There arise four cases as
shown in figure 2:

1. Wi < 0and B; > 0: Feasible clock cycles must be greater than or equal to
c+ le%“- = (new-lower-bound)(cycle C; in figure).

2. Wi < 0and B;; < 0: The problem is infeasible because, for every clock cycle
greater than c this cycle will have a negative value (cycle C; in figure).

11

| w©€ Gy

Figure 2: Graphical interpretation of the cycle weights

3. W§ 2 0and By; > 0: cis possibly feasible if W¥; > 0 holds for all vertices j and
the Floyd-Warshall algorithm is completed (cycle C in figure).

4. W > 0and By; < 0: Feasible clock cycles must be less than or equalto c + _lvg%
(cycle Cj in figure).

Note that the clock cycle being tested (c) is monotonically increasing. If we encounter
a vertex i satisfying case 1, then we get a lower bound on the clock cycle. If vertex
¢ satisfies case 2 then the problem is infeasible. Cases 3 and 4 does not give us any
information unless the regarding infeasibility because we are examining just one of the
cycles in the graph. The last case does give an upper bound on the clock cycle, which
can be used to detect infeasibility early. The ensuing lemmas provide insight into the
problem.

Lemma 2: If for any ¢(> cz), there is a negative cycle through vertex i, such that
W < 0,and By; < 0(forthat cycle), then forall ¢’ > ¢, thereisa negative cycle through
2.

Proof: Let us denote the negative cycle through i at clock cycle cas C_. Let £ be the

12

dominating constraint for each edge e;; in C- at clock cycle ¢ 4. Then

kr}nn (a +b’°c) < a{“-+b§-c’

—,,

3, (o 465D < 30k + o)

IA

EZ(a,J + bk ic) + b (c —c)
Cc-

< W&+ By(c —¢)

< 0
Thus the weight of C_ for a clock cycle ¢’ is negative. a
Lemma 3: If the problem P is infeasible then 3 a cycle C in Gy, such that
1. D> (b)) is strictly negative, or
ei;€Ck=1,-,N
2.) (af)<0amd > (¥%)=o0.
ei;€C\k=1,- N ei; €C\k=1, N

Proof: By contradiction. Suppose the above condition does not hold i.e., for all cycles if
> (a%) <0, then > (5)>0ese Y. (b5) > 0. Then

€i; €Ck=1,+,N - €ij €C k=1, N ei;€C\k=1,---,N
for a sufficiently large c, it is possible to make all cycles in the graph have strictly positive
weight and a feasible solution to P can be found using Theorem 2. o

Theorem S: The General Algorithm is complete, i.e. it finds an optimum solution if one
exists, else it reports the problem as infeasible.

Proof: The proof is given graphically. We break the proof into two parts; in the first
part we prove that the algorithm converges to a solution in a finite number of iterations,
second we prove that the clock cycle is optimum.

Let ¢, denote the value of the ¢ in the n*® iteration, n 2 0, ¢o = cr. The proof relies
on the fact that the number of cycles in the constraint graph is finite, though exponential
in the number of constraints (number of cycles ~ O((N + 1)IE»l). Assume without
loss of generality, that there negative cycles (Cp, C, - - - Cy) in the constraint graph for
€0,€1, - *, ¢a. Note that cycle C,, is negative for all values of ¢ € [cp, cp4+1]. When the
algorithm reports the existence of a negative cycle in iteration », it either gives a value
for cn41 in the next iteration, or reports the problem to be infeasible. The proof for
infeasibility is provided by a set of cycles such that the minimum weight of these cycles
for all ¢ > ¢y is strictly negative.

: . &
‘ie. a,l‘j + b{‘jc =, min N(afj +b5;¢)

13

W Sn-1
33

Cycle
Weights|

00

Feasible region

éptimal value of ¢

‘_\\\\\\t_p\\\\\\ﬂ"\‘

W Sh-1
ii

Figure 3: Graphical interpretation of optimality

To show that the clock cycle reported in iteration n (if the problem is feasible) is
optimum, we note that for all ¢ € [cz, ¢,), we have a proof of infeasibility, namely a set
of negative cycles. For ¢ = cj, there are no negative cycles, hence there is a solution
to the z;’s from Theorem 2. Intuitively the feasible region is the interval defined by the
cycles determining the new upper and lower bounds on ¢ (C) and C; in figure 3. o

7 Example

In this section we describe the algorithm for optimal clocking applied to the data path
of a signal processing design taken from [12]. The data path is a part of a video data
compression system. It uses a delta PCM compression algorithm. The compression is
achieved by a non-linear quantization operation Q. Its inverse D is used to maintain the
prediction value. The circuit is shown in figure 4. The delays of each component are
shown along side ([min, max] delays). The input signal is 9 bits and the compressed
value is 6 bits. All 9 bit lines are shown as dark lines and the 6 bit lines are light. The
memory elements at the inputs to the subtraction unit are flip-flops (falling edge). The
rest of the elements are level-sensitive (active high). The circuit graph for this circuit is
shown in figure 5.

For this circuit, a lower bound on the clock (using equation 14) is 60 units (cycle
throughb, ¢, £,b). However the optimum clocking for this circuit is 88 units due to the

14

nput 10, 40]

signat
h (515] ¢ 0,30
1 y
b - ' Q —D e Ouput
¢2 > Signal
nim 515 g + o
1 Q _D
92| "B29 ¢
[0, 40)
— D
$1 +
redicted valus
SeLup=3 next clock cycle

Figure 4: Video Coder

Figure §5: Circuit graph for Video Coder

15

pathb, c, e. A valid optimum solutionis s; = 27, e; = 30, s, = 85 e =88 =c

8 Experiments

We use several MCNC sequential examples and some of the largest ISCAS circuits as
benchmarks. These were originally intended to be single phase edge-triggered designs.
In order to construct two-phase sequential circuits, we use a technique due to Szymanski
[8]. First replace all edge-triggered elements by level-sensitive ones. Then duplicate each
circuit into two circuits called x and y. The latches in x are clocked by one phase and the
latches in y by the other phase. The outputs of latches in x are used as inputs to the circuit
y and vice versa. This generates two-phase circuits, with twice the number of gates and
latches. We use the unit fanout delay model; each gate has a delay of 1 plus 0.2 units per
each fanout of the gate. The set-up and hold times were set to 0. We constrained the duty
cycle of each phase to lie between 0.3 and 0.5 of the total clock cycle. The results (on a
DEC5000) are shown in the table below.

name size | read-in | lower time | optimal time

time ([8])

(# nodes/#latches) | (sec.) | bound | (sec.) clock | Al(sec.) | A2(sec.) (sec.)

2shiftreg 28 /6 0.01 720 0.01 7.20 0.01 0.01 -
2planet 284 /12 022 | 11.60 0.01 11.60 0.01 0.01 -
251423 1314 /148 2.04 | 145.80 1.15 | 145.80 0.25 0.23 -
255378 5558 /328 233 | 4440 126 | 4440 0.14 0.14 ﬁﬁ -
259234 11194 /456 7.00 | 108.40 0.19 | 108.40 0.22 0.23 -
2513207 16054 /1338 8.40 | 120.80 | 102.89 | 120.80 0.40 041 -
2535932 32706 /3456 | 12.14 | 77.00 5.75 77.00 0.73 0.72 -
2538584 38814 /2904 | 28.79 | 146.80 | 19.87 | 146.80 2.29 2.29 4.1
2538417 44794 /3272 | 5990 | 84.40 | 858.46 84.40 3.34 349 6.0

Table 1: Table of Results for simple delay model

The second column gives the number of nodes and the third column gives the number
of latches in the network. The time taken for constructing the circuit graph is shown in
column 3. Column 4 and 5 give the lower bound on the clock cycle and the time required
to compute it using the algorithm in [8]. Once this lower bound is computed, in order to
perform the optimization of the phases, the constraints S2 of Section 3 need to be solved.
This can be done by a linear program solver, as in [8], or by the algorithms proposed in
Section 5 and 6. Column 6 gives the optimal clock cycle values. The time required for
computation using the algorithm given in the previous sections is shown in columns 7 and
8. Al is the simplified algorithm in section 5 and A2 is the general algorithm in section

16

6. The last column gives the time reported by Szymanski [8] to compute the optimal
clock for the same examples, with a different delay model and clocking scheme using a
standard linear programming package.

Table 2 gives the results for the same circuits mapped into an industrial sequential
library. This library has realistic gate delays and set-up/hold times for the memory
elements. The run times for the clock schedule optimization algorithms are similar to

name size | read-in | lower time | optimal time
(#gates/i#latches) | (sec.) | bound (sec.) clock | Al(sec.) | A2(sec.)
2shiftreg 10/6 001 | 5.60 0.01 9.90 0.01 0.01
2planet 574/12 0.62 | 21.00 002 | 21.00 0.01 0.01
251423 852/148 192 | 53.70 1.17 | 53.70 0.16 0.17
2s5378 2034/326 207 (1430 1.28 17.50 0.12 0.11
259234 3375/392 3.31] 22.30 223 | 2520 0.24 0.24
2513207 4954/978 3.76 | 27.20 4521 29.70 0.32 0.31
2535932 16160/3070 | 17.10 | 18.40 5.01 18.40 0.66 0.63
2538584 18780/2900 | 35.93 | 34.40 312 3440 2.46 2.31
2538417 23116/3456 | 31.67 | 28.70 | 2642.62 | 28.70 2.56 2.75

Table 2: Table of results for “Mapped” circuits

those in Table 1. It was found that a negative cycle (if one exists) is discovered early
during the Floyd-Warshall iterations, as a result in most cases the Floyd-Warshall is never
completed for lower (i.e. infeasible) clock cycles.

9 Conclusion

In this paper we use the circuit model and the clock model proposed by Sakallah et al..
The clocking constraints and the technique for eliminating redundant constraints are due
to Szymanski. Sakallah and Szymanski used standard linear programming to solve the
resulting problem. We have shown that the resulting LP has a special structure and can be
efficiently solved. The restricted version of the algorithm has a polynomial bound on the
number of operations required for computing the optimal clock cycle. The complexity
of the algorithm is O(|V|2log|V|) (where ! is the number of clock phases and |V/|
the number of memory elements). The general algorithm has a worst case exponential
complexity like the simplex method, but for our application it seems to typically take
only a few iterations (less than 10). Both algorithms use a “shortest path on a graph”
algorithm for the core computation. Resulting run-times are reported for large sequential
circuits with'both, a simplistic delay model and a complex delay model. Run times for

17

both algorithms are similar for the two algorithms.

Acknowledgements

We thank Dr. T. Szymanski for several comments on the optimal clocking problem and
related issues. We also thank L. Lavagno and K. J. Singh for the help in the preparation
of this document. We gratefully acknowledge the support of NSF under grant EMC-
8419744, and DARPA under grant JFBI90-073.

A Proof of Theorem 1

We shall drop the superscript on K ,?’J- to simplify the notation. We point out that for the
path p,
N-1

Z Erpyr = Kjic+e — €;.
k=0

S1 = §2) Let G be a graph for which S1 has a solution. Let p € P(G). Then p must
be one of the four types described. Let us examine the set-up constraints.

* LL (or LF) : Since there can be no flip-flops along p, we get

Ar 2 Ri_y+ Dy — Erp_1i
Ry 2> Apyy

implying Ay > Ag—y+ Dk—1 — Eri—1. Summingfrom k = 0(i.e. t)tok = N(i.e.
7) we get

N
A; > R; + E Di—1k — (& + Kjic — ¢;). (16)
k=1
Together with A; < ef — S and R; > sF we get

e{‘—S > s§‘+Dj,-—Kj,-c—e,-+ej
4
cte 2> sJI-'+ej+Dj,-—Kj,-c+S
4
erte > sf+ej+Dji—Kjic+$
4
& > (sf—e+e;)+Dji— Kjic+ S
4
e 2 8+ Dj;— Kjic+ S.

18

This equivalent to constraint 1 of S2.
¢ FL (or FF): We have

Ar 2 Ri_1+ D1k — Epyi
Ry > Ay
implying A > Ag—1 + Dr_1x — Ex—1x. Summing from k = Qto k = N we get
N
A; > R; + Z D11 - (e + Kjic — €;). (17)
k=1

Together with A; < e} — § and R; = e (since j is a flip-flop) we get

ef’—S > eJI-'+DJ-;—Kj.-c—e,-+ej
4
cte 2 eJL-’+ej+Dj,-—Kj.-c+S
4
elte; > ef+ej+Dji—Kjic+$
4
& > (ef —er+e)+Dji— Kjct+ S
4
e 2 ej+Dji—-Kjic+§

This is equivalent to constraint 2 of S2.

It remains to prove the hold time inequalities in S2 for each path consisting of one
edge e;;.

e LL (or LF): For any edge €;; we know
a; < rj+dj—Ej;

ry = SJI-'
e; > H
Hence
H < sJI-‘+d,-,-—(e;—e_,-+Kj,-c)
4
H < (sf‘+ej)+dj,--e,-—Kj;c
4
e; < (sf‘+ej—el)+dj,-+ez-Kj,~c—H
4
e < sj+dji+(1-Kj)e— H.

19

This is equivalent to constraint 3 of S2.

e FL (or FF): For any edge ¢;; we know

ai < rj+dji—Ej
r; = ef"
a; > H
Hence
H < ef-' + dji — (& — e + Kjic)
U
H < (eF+e)+dji—ei- Kjic
$
e < (ef+ej—e)+dji+e—Kjic— H
4
& < ej+dji+(1-Kj)e— H

This is equivalent to constraint 4 of S2.

Thus we have shown that S2 is satisfied if S1 is.
S1 <= S2) Let the set S2 be consistent. We will show that there exists a solution to
S1 by constructing an algorithm to calculate a set of values that satisfy the constraints in

S1. The algorithm is given below. The superscript of each variable reflects the iteration
number.

RY)=sl if i is a latch
R)=ef if i is a flip-flop
AY = jg%)(zzg + Dj; — Ejq)
do {
foreach memory element i{
if (i is a latch) {
RI*! = max(4%, sF)
} else { /* i is a flip-flop*/
A

Al}'+] = k+1 i —E
{ jg}val’(‘:.)(RJ + Dji — Ej;)

}

} while (not converged)
foreach latch i {

20

if (i is a latch) {

1‘,‘:8{'
} else {
r;=e,L

}
}
foreach latch i {

. — mi 4+ d;i; — Ej;
a; jénFlII}i)(rJ-*- i — Eji)

We need to show that the set of sequences { R¥}£2,, { A}, converge for each i and
that the limit points of these sequences satisfy the set-up constraints. It is easy to see that
the sequences are monotone increasing. Assume that there exists a latch or flip-flop < for
which the sequence { A% }%2, either does not converge or converges to a value greater than
el — S. Then since the sequence is monotone increasing, 3N, such that AY > eF - S,
Now we will construct a path p as follows. We let py = i. We define p,_, recursively
as the fanin of p, for which Ay, — R} _ = Dy_1, — Ep,_,,,. The recursion terminates
in four cases

L

o OT

* v = 0is alatch for which R}, = s
* v = 0is a flip-flop for which RS = eZ or

o we find alatch v = V such that R}, = sZ or

o we find a flip-flop v = V such that R, = e or

Note that the first case is isomorphic to the third case with V = 0 (henceforth called case
1). Similarly the second case is isomorphic to the fourth case with V = 0 (henceforth
called case 2).

1. case 1 (LL or LF):

N L
APN > €; -5

N N -
APN - RPN-] =D PN—1PN — EPN—]PN
N _ N-1
RPN-I - APN—-I
N-1 N-1 _
APN-I - RPN—l = D PN—2PN—1 — EPN—ZPN—I
N-1 _ N=-2
RPN-x - APN-z
v _ L
Ry, = s,,.

21

Summing up we get

N
v+ D (Dmotm = Eppp_ip) > €F =8
m=V+1
4
s¥+ Dji—ei+ej—Kjc > eb -8, where j = py
4
(85-’ —e+e€;)+ Dji — Kjie > (e,L —-e+e)—S
4
8j+ Dj;i — Kjic+ S - Ljic > ¢

contradicting an S2 constraint (1 or 2 as the case may be) for path p.

2. case 2 (FL or FF):

N
APN

N-1
APN-]

Summing up we get

N
ell;v + Z (Dm—lm - Epm-lpm)

m=V+1

e§' + Dj;i + €; — e + Kjic
(ef’ —e+ej)+ Dj; - Kjic

e+ Dj; — Kjic+ S

Ap

- RI{'VN-l
ooy
- RII?VN—-II

RN-I

PN-1

v
RPV

et -5
DPN-IPN - EPN-IPN
N-1
APN—I
DPN-zPN—l - EPN-sz-l
N=2
APN-z
L
€py -
> e -8
4
> ef’—S, where j = py
4
> (e,!’—ez+e,-)—S
4
> e

contradicting an S2 constraint (3 or 4 as the case may be) for path p.

22

Hence the sequences {AF }%2o converge to legal values for each i. This also implies
that the sequences { R¥}§2., converge to legal values for each 7. Let the limit point of the
sequences be denoted by A; and R; for each latch/flip-flop i.

We now prove that hold time constraints are satisfied. For sake of contradiction
assume there is a latch or flip-fiop ¢ for which the hold time is violated.

a; < H
ri+di—-E; < H for some j € FI(3).
There arise two cases depending on whether j is a flip-flop or a latch.
1. jisalaich: rj = s¥
.sf-‘+d,-;—e;+e,- -Kjic < H
I
(Sf-’+ej—el)+dji+el—e,~—K,-,-c < H
4
$jtdji+c—Kjje—H—Ljic < ¢
This contradicts constraint 5 or 6 in S2.
2. jisa flip-flop: r; = e¥
ef’+dj,-—e,-+e_,- -Kjic < H
4
(ef’+ej—61)+dj;+ez—e;—Kj,-c < H
I
ej+djj+c—Kjjc— H < e

contradicting constraint 7 or 8 in S2.
It remains to show that a; < A; for all ¢ when 7 is a latch. We have

: L N
i g},l}b)(rg +dj; EJt)
R}

: L .o ..
i gll:,l}%‘.)(R] + dji — Ej;)
Dj; by definition

. L
;in (Bj + Dji - Eji)

L

; g%i)(Rj + Dji — Ej)
A;.

a;

L)
IAN A IAN DA

S
IA

8
IN

23

a

This proof assumes that e; > s;. Note that in case e; < 8;j, there is an additional
term of —c on the right hand sides of all the equations that use s ;. The proof is analogous
to the one above.

The next important thing to note is a bound on the number of iterations needed for
convergence of the iterative scheme described above.
Lemma 4: The iterative scheme will converge in at most |V | — 1 iterations.
Proof: It is easy to see that the short path constraints require | E| relaxations (each edge
once). The convergence of the long path constraints can be seen by showing that the
problem is related to finding the longest path on a graph with non-positive cycles. Weigh
each edge ej; € E with Dj; — E;;. Each vertex i (memory element) € V has two
variables, A;, R;. Initialize all R; as in the algorithm. Now carry out a relaxation of all
the edges, (|V| - 1) times. This ensures every vertex-disjoint path has been considered
as a path in the relaxation. Any cycle can be represented as a path p : 7 — i, We know
¢ > g2 (see equation 12), where D, is the sum of the delays along p and K, is the sum
of the E, for each e lying on p. As aresult traversing a cycle can only decrease the arrival
times. Consequently we need at most |V| — 1 iterations. o

References

[1] M. R. Dagenais and N. C. Rumin. Automatic Determination of Optimal Clocking
Parameters in MOS VLSI Circuits. In Advanced Research in VLSI:Proc. of the 5th
MIT Conference, pages 19-33, 1988.

[2] R.B. Hitchcock. Timing Verification and Timing Analysis Program. In Proceedings
of the Design Automation Conference. IEEE/ACM, 1982.

[3] A. Ishii and C. E. Leiserson. A Timing Analysis of Level-Clocked Circuitry. In
Advanced Research in VLSI: Proc. of the 7th MIT Conference, 1990.

[4] N. P. Jouppi. Timing Verification and Performance Improvement of MOS VLSI
Designs . PhD thesis, Stanford University, Stanford CA-94305 , October 1984.

(5] J. K. Ousterhout. A Switch-Level Timing Verifier for Digital MOS VLSI. /EEE
Transactions on Computer-Aided Design, CAD-4(3):336-349, July 1985.

[6] K. Sakallah, T. N. Mudge, and O. A. Olukotun. Check 7. and min T.: Timing
Verification and Optimal Clocking of Synchronous Digital Circuits. In Proceedings
of the International Conference on Computer-Aided Design, pages 552-555. IEEE,
1990.

24

[7] T. G. Szymanski. LEADOUT: A Static Timing Analyzer for MOS Circuits. In
Proceedings of the International Conference on Computer-Aided Design, pages
130-133. IEEE, 1986.

[8] T. G. Szymanski. Computing Optimal Clock Schedules. In Proceedings of the
Design Automation Conference, pages 399-404. IEEE/ACM, 1992.

[9] S. H. Unger and C. J. Tan. Clocking Schemes for High-Speed Digital Systems.
IEEE Transactions on Computers, C-35(10):880-895, October 1986.

[10] D. Wallace and C. H. Sequin. ATV: An Abstract Timing Verifier. In Proceedings of
the Design Automation Conference, pages 154-159. IEEE/ACM, 1988.

[11] N. Weiner and A. Sangiovanni-Vincentelli. Timing Analysis in a Logic Synthesis
Environment. In Proceedings of the Design Automation Conference, pages 655-661.
IEEE/ACM, 1989.

[12] R.Zahir. Controller Synthesis for Application Specific Integrated Circuits. Hartung—
Gorre Verlag, Konstanz, Germany, 1991.

25

