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Abstract

Characterization of thebehavior of anasynchronous system depending onthedelay ofcomponents andwires is a major
task facing designers. Someof these delays are outside the designer's control, and in practice may have to be assumed
unbounded. The existing literature offers a numberof analysis and specification models,but lacks a unifiedframework to
verifydirectly if thecircuitspecification admits a correctimplementation underthesehypotheses.

Our aim is to fill exactly this gap, offering both low-level (analysis-oriented) and high-level (specification-oriented)
modelsfor asynchronous circuitsand theenvironment wheretheyoperate,togetherwithstrongequivalence resultsbetween
the properties at the two levels. One interesting side result is the precise characterization of classical static and dynamic
hazards in terms of our model. Consequently the designer cancheckthespecification anddirectly decideif the behaviorof
anyimplementation will depend,e.g., on the delaysof thesignalsdescribedby such specification.

Wealsooutlinea designmethodology basedon ourmodels, pointingout howtheycan be used to select appropriate high
and low-levelmodels depending on the desired characteristicsof the system.

1 Introduction

Formal methods and CAD support for synthesis of asynchronous control circuits have become an important issue in VLSI
design, as designers are tackling the most difficult problems of system-level design, such as inter-component interfacing,
where asynchronous circuits are inevitable.

The asynchronous circuit designer must face two major problems in his work:

• Specify in a clear and unambiguous way the desired behavior of the system.

• Implement that behavior correctly. The asynchronous circuitbehavior depends heavily on the delay of the components
and the interconnecting wires. Only some of these delays are under the designer's control, and can be used (often
with a non-trivial effort) to achieve a correct implementation of the specified behavior. Some delays depend on the
environment, and/or some signals must travel on long busses, and no reliable assumption can be made on those delays.

The existing literature describes models to solve both these problems separately. Namely a number of high-level
specificationtechniques for control-oriented asynchronous circuits have recently become available (see, for example, [4, IS,
16], [25, 11, 12]). Among them Signal TransitionGraphs (STGs) based on Petri nets as an underlying formalism, have
captured wide attention, due to a simple yet powerful mechanism to describe explicitly the major aspects of asynchronous
control circuit behavior, such as concurrency, causality and conflict ([20] and [5]). Furthermore, all these models (unlike



olderones, as Flow Tables [22]) allow to specify the system in its interaction with the environment, which is alsocrucial for
control, reactive hardware.

Ontheother hand, a number of analysis models (see [3] for a thorough review) allow thedesigner to verify, for example,
if thecircuit will orwill not have hazards during its operation, or if, depending on therelative magnitude of the delay of
two components, it may "hang" forever in an invalid state. In classical, informal terms, a circuit that operates correctly
independently of thedelays of each component iscalled speed-independent, while onethat operates correctly independentof
thedelays of each interconnecting wireis called delay-insensitive.

These circuit models, though, are defined only for circuits built outof components whose output signal behavior can be
characterized as aBooleanfunction of a set of input signals. Such class of circuits excludes some very useful components,
for example fair arbiters, thatcannot be described by such interconnections of Boolean functions. Moreover it does not
allow for behavioral abstraction, by modeling some component using non-determinism rather than explicitly describing
its operation indetail. For example, it is much easier todescribe a CPU interacting with a bus interface as a device that
can non-deterministically read orwrite, rather than deterministically describe itsinstruction memory, program counter, etc.
Modeling the CPU as alternating between read and write cycles may not beacceptable either, since the interaction between
successive, pipelined cycles can be non-trivial.

Moreover there isno known general methodology to decide whetheragiven STG specification admits an implementation
that is, for example, hazard-free, or speed-independent, or delay-insensitive. And there is no satisfactory characterization of
the above properties if the delays are pure (i.e. atranslation in time ofthe input waveform) rather than inertial (i.e. short
"pulses" are not transmitted). The only effort in this direction, to the best ofour knowledge, is the so-called Change Diagram
representation, that was shown in [25] to be formally equivalent to hazard-free circuits under the unbounded inertial gate
delay model. Change Diagrams, however, are not general enough, in that they can represent concurrency and causality, but
not conflict, i.e. they can model only deterministic behavior, and as such the description, for example ofabus protocol with
different read and write phases isawkward and imprecise, as we informally argued above.

Furthermore the classical definition ofa"valid" Signal Transition Graph specification is unnecessarily restrictive, as [28]
showed by presenting some useful, correctly implementable behaviors that cannot be described using the constrained STGs
used by Chu in [5]. For example Chu required the Petri net underlying the STG to be safe, live andfree-choice, in order to
ease the STG analysis/synthesis task. This requirement is not part ofthe STG definition/«?r se, and has nothing to do with a
deeper characterization ofthe STG behavior as, say, speed-independent or delay-insensitive.

In this paper we approach the problems mentioned above in the most general way, in the following steps.
• Give ageneral, low-level model ofthe structure and behavior of an asynchronous structure (where with the term

"asynchronous structure", or sometimes "asynchronous system", we mean an interconnection of basic components
that may be more complex than standard logic gates). This model, called Asynchronous Control Structure (ACS)
allows multi-output components, non-determinism, etc. The structure of the ACS is alabeled, directed graph, while
its behavior is described by astate-transition-likerepresentation, that describes the events that can occur in every state
and the corresponding next state ofthe system (Arc-Labeled Transition System, ALTS). We need astructural mode!
because fundamental aspects ofasynchronous design, such as delays, are associated with the structural components of
the system. r

• Describe how aspecial case of ACS, where each component has one output and is described by aBoolean function
corresponds to the classical model ofan asynchronous circuit The corresponding ALTS behavior specification now is
determined by those Boolean functions changing the values ofthe circuit outputs in response to inputand output signal
transitions. °

• Relate the local and global properties ofthe ALTS ofacircuit with known low-level properties ofthe circuit such as
hazards, speed-independent operation, etc., both under inertial delays and pure delays. In order to establish formally
tiiis^correspondence, we will have to introducesome auxiliary forniaUsms matcapture me"history"ofthe circuit, beside
its current state", and show how this "history" relates to significant properties of the state-based ALTS description

• Give ageneral high-level model ofthe behaviorofan asynchronous system (the associated structure will be described
using the same graph-like representation as in the low-level model). This model, the Signal Transition Graph, wiU
not have unnecessary restrictions superimposed, to allow us to prove the correspondence between low-level ALTS
properties (and hence circuit properties) and high-level STG properties.

At this point the designer can use the framework to verify ifaspecification meets some circuit-level requirements or
conversely, given aset ofcircuit-level properties, what class ofspecifications needs tobe used.



Asynchronous Control Structure
Binary Asynchronous Control Structure
Transition System
Arc-Labeled TransitionSystem
State-Transition Diagram
Cumulative Diagram
Asynchronous Logic Circuit
Pure Delay
InertialDelay
Petri net

Signal TransitionGraph

Structural model of asynchronous systems
Binary version ofACS
Uninterpreted state-transition based behavioral model
TS with transitions interpreted as signal value changes
ALTS withbinary-labeled states
Cumulative historyof transitions in the system
Structural/behavioral model of asynchronous circuits
All inputchanges aretransmitted to the output
Pulses shorter thanthe delay magnitudearenot transmitted
Uninterpreted event-based behavioral model
PN with transitions interpreted as signal value changes

Table 1: Principal abbreviations used in the paper

Note that thepaper isnotconcerned with the details ofhow each component willbeimplemented inaspecific technology.
The main concern istoanalyze properties that are common toevery implementation of thespecified behavior, using amodel
that isgeneral enough toabstract variousdifferent implementation techniques, butdetailed enough tohave practical relevance.
Such component implementation issues are dealt withelsewhere (see, for example, [8], [13], [1]).

The paper is organized as follows. Section 2 defines the low-level structural and behavioral model of asynchronous
systems, called Asynchronous Control Structure and Arc-Labeled Transition System, together with the related trace and
partial order models. Section 3 describes Asynchronous LogicCircuits, a special cases of Asynchronous Control Structures,
andrelates properties of the two, underlining the effectsof the inertial/pure delaymodeldichotomy. Section4 defines Signal
Transition Graphs asinterpreted Petri netsanddescribes theproblem of their implementation in Asynchronous LogicCircuits.
Section 5 presents a classification of Signal Transition Graphs according to thecorresponding Asynchronous LogicCircuit
properties. Section6 compares theChange Diagram modelproposed in [25] with theSTG model. Section7 outlinesa design
methodology based on our models. Section 8 concludes the paper.

To help the reader remember the numerousabbreviations used throughoutthe paper, we have collected them in Table 1,
together with a brief summary of their meaning.

2 A Low-level Structural and Behavioral Model for Asynchronous Systems

This section introduces a low-level, state-transition-based, model of asynchronous systems. It has two components: a
structural component called Asynchronous ControlStructure (ACS) andan associated behavioralcomponent to describeits
evolution in time, the Arc-Labeled Transition System (ALTS).

The combination of the two (ACS andALTS) is somewhat similar1 to anetworkof interacting asynchronous Finite State
Machines (the structure, describing who communicates with whom) together with a State Table describing the behavior of
the entire system, where each state is the product of the states ofeach machine, and transitions correspond to allowed change
of values on the interconnecting signals.

The properties of the model are characterized using the concept of Cumulative Diagram, that records the history of
changes of each signal in the Asynchronous Control Structure. We then give an example of the power of our model using
an asynchronous fair arbiter, that would be impossible to describe using "standard", Boolean-function based, models of
asynchronous circuits.

2.1 Asynchronous Control Structures

The notionofAsynchronous ControlStructure(ACS) is ageneralization ofthe"interconnection structure"ofanasynchronous
control circuit. It removes the usual structural limitation (used, e.g. by [17] or [22]) that each component has exactly one
output signal. Thus an ACS structure can represent an arbitrary interconnectionof modules, with the only restriction that
no two modules can drive a single signal2. The behavior of this interconnection of modules will be described using an
Arc-Labeled Transition System, as shown in Section 22.

1This analogy shouldnotbe taken literally, and isonlygiven tohelpthereader understand thegeneral idea of theapproach.
2I.e. no wired-or orwired-and constructs areallowed, butnotethatatthislevelof abstraction theycanstillbemodeled usingdiscrete gates.
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Figure 1: A Binary Asynchronous Control Structure and its State Transition Diagram

FormaUy, an Asynchronous (Discrete) Control Structure (ACS) is adirected graph (V, H, Y, p), where Vis afinite set of
nodes, associated with the abstract discrete components ofthe ACS, H,H CVxVisa finite set ofarcs, standing for the
interconnections between the components, Y = {ylt... ,yn] is afinite setoffinite-state variables, or signals, and/?: H—y
isalabelling (total) function, associating every arc with avariable. Any two arcs labelled with the same variable must have
the same source node (i.e. they represent abranching interconnection), so formally V(vx, t*), (v[, vL) € J? we must have
Piyuvi) = p(v[, v'2) =>vl=v[.

We also denote the sets ofinput and output interconnections for acomponent v as: IH(v) = {« v) e H), and
O (v) = {(v, v') e H), respectively. The sets of input and output signals, or simply inputs and outputs, for acomponent
are denoted: IY(v) ={y: p-i(y) G/*}, and 0Y(v) = {y: p-\y) €0H), respectively,
v ASimPo e?"iple1 °f mACS iS described in Fi&™ l-(a). Here V = {a,6,c}, H= {(c,a),(a,c),(c,6),(6,c)},
rv7 \ rf6' »i 6'' 3nd p(c'a) =Aa'p(a'c> =Ra*p(c'6> =Ah> tib>c) =^ Furthermore I* (c) ={(a, c), (6, c)},

•* (c) = {Ra, Rb}, and so on.
For every variable ye Y,S(y) = {y°, y\...,y*} iscalled the set ofvariable values, or states.
Aji ACS {V, H, y, p) is called aBinary Asynchronous Control Structure (BACS) ifVy : S(y) ={0,1}. Hence for a

BACS, the set of allowed changes can be denoted as Y x {+, -}, where «+" stands for asignal change from 0to 1, and
- for asignal change from 1to 0. The behavior ofaBACS is defined by abinary transition system, called state transition

diagram, which is introduced inthe following section.

2.2 Transition Systems and State Transition Diagrams
This section describes how the interconnected components ofan ACS behave in time, that is how the variables associated
with them change, using some key concepts from [10].

ATransitionSystem(TS)isapair(5,^),where5isasetof^«,and^|JE;c 5 x 5,isasetof/rflwiVw/w.Notethat
we do not.restrict Sand Eto be finite. The directed graph representation ofaTS is as usual: states are vertices and transitions
are arcsJFoi-example, in Figure lft)S = {Sl,...,s13}an<iE = {(sus2),(suSi)...}. We denote (s,, s2) €£ by Sl £s2.

An Arc-Labelled Transition System (ALTS) is aquadruple (S, E, A, 6), where (5, E) is aTS, Ais afinite alphabet of
actions and 6:E —Ais a(total) labelling function, which assigns each transition asingle action name in A. Each action
name represents achange of value ofavariable in the associated ACS, and each (possibly infinite) path along the graph
representsavalid sequence ofsuch changes in time. Thus the ALTS describes the completeaUowedbehavioroftheassociated
ACS.Forexample inFigurel wehave^ ={R+, J£,ii^, J2+/^il+.A,-}, where we use A+ to denote the change
of snjnal A, from 0to 1, and .4J to denote the change from 1toO. Furthermore^,^) =i2+,*(*2,s7) =72+andsoon
tv 3/exSf ^ f? °fVari?bleS y (,y' =n) we deflne aBmarv (encoded) Transition System, or State Transition
Diagram (STD) (S, E, A), where {S, E) is aTS and A:5 - {0, l}» is a(total) labelling function such that each state is
encoded with abinary vector consistingofthe values ofBoolean variables. The »-th component ofthe vector associated with



each state s isdenoted as A(s),-, but for simplicity, unless itcreates confusion, we generally use the simpler notation s,-. An
STD is called contradictory ifAisnot injective. Hence for anon-contradictory STD we can identify the state with its binary
label.

For every STD arc, connecting a pair ofstates s and s',we allow s and s' to differ inone and only one component, say
the »-th. This componentvariable, y,-, is called excited in state s and its value s,- is markedwith a "*" in s. Since there can be
several outgoingarcs from each state, a number ofvariables can be excited in it. The variables that are not excited in a state are
called stable init We assume thattransitions between thestates can have arbitrary butfinite delays, andthatthese delays are
associated withthedelays ofthecomponents in themodeled BACS (similar to thegate delay model inasynchronous circuits,
Section 3.2). We call anSTDinitialized if it has anexplicit initial state. Forexample, inFigure l.(b)Y = {RaiAa,Rb,Ab},
and A(si) = 0000, A(ss) = 1000 andsoon. Furthermore, Ra and Rb areexcited andAa andA\> arestable in s\.

Note thatevery STD can bealso interpretedasanArc-Labelled TransitionSystem, with thefollowing labelling (consistent,
sinceexactlyone variablechangesin every arc of an STD):

Ve =(s,s>)eE:6(e) ={yt «*• =©and *J =1
v ' v ' { y{ if St = 1and s< = 0

The followingimportantpropertyof any STD comes directly from its definition:

Property 2.1 No statein an STD canhave twooutgoing transitions labelled with thesame variable butwithdifferent signs.

We can now examine more in detail the meaning of Figure 1. It represents the interconnection of an arbiter and two
other components (the arbiter's environment), that independently of each other may request access to a single resource, with
signals, Ra and Rb. The arbiter grants access with Aa and Ah (which are mutually exclusive).

Note that this BACS/STD pair specifies afair behavior, because if the arbiter receives a request at one input, say Ra,
while it is processing a previous request from Rb, then it must, after finishing the transaction for Rb, respond to Ra before
it can react to a new request from Rb again. Our abstract arbiter is capable of distinguishing the order in which the two,
possibly concurrent, requests arrive at its inputs, by going to two different states (s7 and 513), labelled with the same vector
1100(hence the STD is contradictory).

2.2.1 .Reachability and Unique Action Relations

Intuitively, a state s2 of a TS (5, E) is reachable froma state s\ if thereexistsa directed path from s\ to s2. Moreformally,
the direct reachability relation is simply given by the set E. For any pair of states s, s' € S, the state s' is called reachable
from s if there is a finite length (includingzero length) sequenceof transitionsleadingfrom stos'. Therefore reachability is
given by reflexive and transitive closure of E, i.e. E*. In the example ofFigure l.(b) all states are mutually reachable.

Similarly for anyALTS (5, E, A} 6) we candefine thereachability through a sequence ofactions. Specifically, for direct
reachability through action a, a e A, we have sE(a)s' if sEs' and 6(s, s') = a. For example in Figure l.(b) we have
slE(R+)s2. For general reachability through a sequence of actions, sE(a)s' wouldimply that there is a finitesequence
of action names a G A*, a = ai,a2,...,am such1h2itsE(ai)slis1E(a2)s2)...,sm~1E(am)s'. We can sometimes usethe
notion ofan allowed sequence from a state, i.e. a isallowedfrom s if 3s' such that sE(a)s'. So Ri, A+, Rf isallowed in
si, but it is not allowed in s2 in Figure l.(b)

Note also that among the various arcs labelled with the same action in Figure l.(b), some of them actually represent
exactly the same"event". For example, arcs (s2,S3) and (s7,s6) both represent the same event, the arbiteracknowledging
request Ri from the environment Now we make this intuitiveidea more formal, because it will becomeimportantwhen
we relate state-based models, such as the State Transition Diagram, with event-based models, such as the Signal Transition
Graph, where the notion of uniqueoccurrenceofan event is explicit.

ForanALTS(5,i7,A,6),wedefineapaiiwserelation~1ontheset^ofarcsas(si,s/1) ~! (s2,s'2)if£(01,«i) = 6(s2,s'2)
and s[ ^ s2 and sii?s2 (i.e. there exists an arc (sj, s2) e E). Let ~ be theequivalence relation formed by thereflexive,
symmetric andtransitive closure of ~1. We call~ theunique action relation. We caneasily seethatUnique-ActionRelation
partitions the setE into a setofUnique-Action Relation-classes, [E]A. Each such class, [e]a, is called anaction. The setof
actions with the samename, a, is called the action set of the name a and denoted as [E)a. This notion will be useful later,
whenwe shall associatethe transitionsof an STG with the transitions of the corresponding STD.

Forexample, inFigurel.(b) wehave (s2,s7)~1 (s3,s6),and (s3,s6) ~! (s4, S3), hence,by transitivity,(s2,s7) ~ (s4,s5).
Also (si, s8) ~! (s2, s7). Then [e]R* = {(si, s8), (s2, s7), (s2,s6)} (s4, s5)}. In this very simple case, each action set has a
single element, [E\Rt = {[e]^} and so on.



For anaction [e]a, theset,always forming a connected subgraph, of states which are thesources for thetransition arcs in
[e]° is called excitation region for action [e]a. So in Figure l.(b) the excitation region of [e]R* is {si, s2, s3, s4}, and they
correspond to the states where the labelbit for Rbhasvalue0 andis tagged with "*".

2.2.2 Interleaving Semantics of Concurrent Actions

Throughout this paper weassume that theactions associated with asetofarcs outgoing from thesame state can beperformed
inthe modeled system concurrently, i.e. independently of each other. See for example -R+ and Rf in si inFigure l.(b),
which are "produced" by different and independent components. Since our model isentirely asynchronous, wemust assume
that thechanges of corresponding variables can occur in time inany order.

Our low-level behavioral model, ontheother hand, requires that a single variable changesforevery transition. Wethen
choose tomodel such concurrency by interleaving, i.e. considering all possible alternative chain orderings compliant with
the partial order between possibly concurrent actions (in Figure l.(b) this corresponds topaths si, s2, s7 and si, s8, si3). Such
amodeling isconvenient yet sometimes problematic, because ithides the semantic distinction between true concurrency and
"shuffled" alternative selections. This distinction can be made explicit only inmodels with explicit causality notions, and we
postpone it until Section 4, where wewillconsider Signal Transition Graphs.

223 Properties ofTransition Systems and State Transition Diagrams

In this section we analyze aset ofbehavioral properties ofTransition Systems and State Transition Diagrams that we will
show later been connected with corresponding, important properties ofasynchronous systems. For example, the property of
confluence below is closely connected to the requirement that the "long term behavior" ofthe system must notbe influenced
bythe relative magnitude of the delay of two components. No matter who "wins the race", wemust still beable toreach the
same state in the future. Similarly, local confluence will be shown to be related to the classical concept ofstatic hazards in a
circuit

Following [10], wecall an ALTS {S, E,A,6):

• confluent, ifVs, si, s2 € 5, if sE*sl3 and sE*s2,then 3s3 6 S such that s\E*s3 and s2E*s3.

• locally confluent, if Vs, si, s2 € S, if sEsl4 and sEsl, where si ^ s2, then 3s3 GS such that slEs3 and s2£s3. If
such s3 isunique, then the ALTS iscalled uniquely locally confluent.

So, Figure l.(b) is confluent (all pairs ofstates can reach any state), but not locally confluent, due to si, s2 and s8 (s!Es2,
s\Ess, but there isno common immediate successor of s2 and s8).

Keller, in [10], gave three sufficient conditions for local confluence (and hence confluence) ofan ALTS. An ALTS is:

• deterministic, if Vs, si, s2 € S and Vo e A, if s£(a)sl and s£(a)s2, then si = s2 (i.e. for each action there can be
only one outgoing transition from astate that is labeled with it).

• commutative,ifVs € Sand Va, 6e A, ifab and 6a are allowed in s, then 3s' such that sE(ab)s' and sE(ba)s' (i.e. if
the effect ofinterleaving two transitions both allowed in astate and not mutually exclusive is the same).

• persistent, ifVs e Sand Va, 6e A, a# b, if aand 6are allowed in s,then ab is allowed in s (i.e. ifno transition can
disableanotherone).

It was proven in [10] that ifan ALTS satisfy all these conditions together, then itis both Locally Confluent and Confluent
The definition ofSTD implies that ifan STD satisfies these conditions, then itis uniquely locally confluent.

The ALTS in Figure l.(b) is deterministic and persistent, but not commutative (due to st, R+ and Rt again). So being
confluent it shows that Keller's conditions are only sufficient.

Now, even though our state-based model has no "direct" idea of causality between actions, we can still locally verify
if some action has "a unique set of predecessors", that can somehow be identified with its causes. Hence we define the
property ofstrict causality ofan ALTS, which, as the Unique Action Relation, will become more clear when we introduce
our event-based model, where such causality is explicit

3I.e. s\ is Teachable from s.
4I.cthere isan arc (s,8\) € E.



Let S = (5, E,A,6) bean ALTS and let [E]A beits set of actions. Let S([e)a) denote the excitation region for action
[e]a € [E]A. Let7r(si, s2) beadirected path of states between s\ and s2.

An ALTS is called strictly causalfor action [e]a andstates € S if:

• Vsj, s2 € 5([e]a), si # s2, such that 3^(s, S!), ir(s, s2), with ?r(s, S!) n 5([e]°) = 0and tt(s,s2) n 5([e]°) = 0(i.e. s!
is the first statein rr(s, si) where[e]° is excited, andsimilarly fors2),

- 3s3 e S([e]a) (possibly coincident with si or s2) such that:

* 7r(s,s3)nS([e]a) = 0and
* 3tt(s3, si) such thattt(s3, si) C 5([e]a).

I.e. si and s2havea common"ancestor", through states where [e]a is alsoexcited,which is a successor of s and
where [e]a is alsoexcited forthe first time.

An ALTS is called strictly causal if it is strictly causal for allactions [E]A in and allstates in 5.
This definition means, informally, thateach excitation region of each action hasa single"top" state (ora"cycle" of such

states, as in the example below), where it becomes excited for the first time, and all other states in the region (which is
connected by definition)aresuccessors ofit through pathswithin theregion. So actionsleadinginto this "top" state(orcycle)
can be informally identified with its causes.

Ontheother hand, if theALTS is notstrictly causal, it means that someaction has "manyalternative ways" of becoming
allowed.

The ALTS in Figure l.(b) is strictly causal, because, for example, for action [e]Rt the states in its excitation region
{si, s2, s9, sio} form acycle. So, for example, from state s4 wecan reach both s\ and s8 (through ss), and in this case the
thirdstate in the definition coincides with su whences8 is reachable without leavingthe excitation region. Similarly forall
other triples of states and actions.

Finally, when analyzingthebehaviorof anALTS we areinterested in checkingif we have a pointwhere futurebehaviors
diverge completely. Such behavior is, in general, not desirable, andhencethe liveness of an ALTS is important to check.
We defineit only forfinite ALTS. Forafinite ALTS, with thereachability relation E* between states, we define the mutual
reachability relation between anytwo states, s, s' € S if bothsE*s' ands'E*s holdforthem. Thisis anequivalence relation,
so it givesriseto a setof equivalence classes. Built fora giveninitial state, theseclasses form a partial order induced by the
reachability relation.The maximal classesin this partial orderarecalledfinal classes (i.e. once we enterone of these classes,
we can never leave it).

A finite ALTS is live if it forms a single equivalence class for anyinitial state. Such a TS is represented by a strongly
connected graph. In a live ALTS, for every states e S andevery action name a e A, thereexists a states' e S, reachable
from s, in which a is allowed. The ALTS in Figure l.(b) is obviously live.

2.3 TVace Models

For an ACS defined by an ALTS we can define another representation, called Trace Structure, orTrace Model (see [23])5,
of its behavior. This representation will be needed in Section S.3, because delay-insensitive circuits were defined in the
literatureusing Trace Models, so in order to define delay-insensitivity within our framework we must relate Trace Models
with Arc-Labelled Transition Systems.

A Trace Model representationof the behavior (describedby an Arc-Labeled Transition System) ofa structure(described
by a Binary AsynchronousControl Structure) is a pair {A, E), where E C A* is a prefix-closed set of traces, or stringsof
actions. This model is defined with respect to a given initial state, and represents the execution historyof the ALTS. Each
tracethen stands for a (possibly infinite) sequence of actions that can be performed on the variablesof the ACS. The set of
traces in E contains those traces thatareallowed by thebehavioral specification.

For a BACS withanassociated initialized STD anda setof variables Y, we canalsothink abouta Binary Trace Model,
which is a pair (Yt E), where E C (Y x {+, -})* is a prefix-closed setof traces, or strings of signal changes asallowed by
the STD.

In the example in Figure 1, initialized in state *i, we have A = {J2+,i2~,A+,.Aj,i^,i^,.Aj}",j4^}, and E =
{€,R+, Rf, R+Rf, RfRi> RtAt, RfAf, RiA+Rf, ...} (here cstands for the empty trace).

5Weare forced to introduce this term here, asasynonym of themore common Trace Structure", onlyto avoid confusion withtheabbreviation of the
term "Transition System" (TS).



The following property ofthe Binary Trace Model generated from an STD isthe result ofProperty 2.1 and ofthe definition
of STD.

Property 2.2 In aBinary Trace Model (Y, E),for every trace in E and any variable y eY, all the occurrences ofyhave
alternating signs, i.e. between any two consecutive changes ofthe same sign there isat least one opposite change.

2.4 Cumulative Diagrams

In order to characterize classes ofbehaviors ofasynchronous systems, we need the concept ofhistory ofthe execution ofa
state-based specification. The complete history of the system is represented by aset oftraces, where each trace records exactly
the order of occurrences of actions. The state of the Arc-Labeled Transition System, on the other hand, describes only the
final result of such execution. In this section, following [17], we will describe amodel to describe this history, where only
the number ofoccurrences ofeach action is recorded, called aCumulative Diagram (CD). Hence this representation will be
of intermediate "precision" between a Trace Model and an ALTS.

The Trace Model description ofthe operation of an initialized ALTS contains all the traces ofthe ALTS starting from its
initial state. The mechanism oftrace generation induces anatural mapping between traces and sets ofstates, where each trace
maps to the set ofstates where the ALTS may be at the end ofits generation. Note this mapping is functional if the ALTS
is deterministic. In this case, the state in which the ALTS arrives for agiven trace with respect to an initial state is uniquely
determined through the reachability relation.

On the other hand, for any ALTS (not just deterministic ones) we can think about another mapping from the set oftraces.
This mapping defines, for every trace a e E, a multiset of action names p, with the multiplicity of each name ae A, p(a),
equal tothe number ofoccurrences ofa ina. Amultiset obtained in this way iscalled a cumulative state. It is convenient to
represent a cumulative state by a vector ofnatural numbers with dimension |j4|.

We can easily see from the above definition that a cumulative state defines a class ofequivalence between traces ofthe
ALTS which are simple permutations of each other (note that not every permutation may be avalid trace). Let [a] be such
equivalence class for trace a. Every trace 0 e [a] brings the ALTS to the same cumulative state p. Therefore we can identify
this pwith [a]. Now itshould be clear that for every deterministic, commutative and persistent ALTS, where all the traces in
[a] bring the ALTS in the same state, there exists afunctional mapping between cumulative states and ALTS states.

The set ofcumulative states generated by an ALTS through its Trace Model model (denoted by [E]) is apartial order. This
order is asubset of the natural integer vector ordering and is built upon the. prefix order between traces up to permutations.
Formally, [a] C [/?] ifVa e [a] 3/3 e [/?] such that a is aprefix of/?.

The partial order of cumulative states, built as above, is called the Cumulative Diagram (CD) (more precisely, we will use
its Hasse diagram, where the reflexive and transitive edges have been removed).

For example, Figure 2contains an initial fragment of the CD for the ALTS described in Figure 1. Note that the CD model
cannot describe the local divergence after traces Ra + Rb+ and Rb + Ra+. In fact both traces lead to the same cumulative
state 1100, that corresponds to states s7 and s13 in Figure l.(b). This also illustrates that the mapping between CD states and
STD states in general is a relation, nota function.

The above definitions are easily adapted to the case of aBACS and its STD. By Property 2.1, we can change the notion
of cumulative state and build the CD for a set of variable names Yrather than their changes Yx {+, -}. This modified
version of CD is isomorphic to the original version because all the changes of the same variable are linearly ordered (see
also Property 2.2).

Now we have all the necessary information to define the notion of speed-independent and semi-modular behavior, which
are crucial (as we will see in Section 3.6) for more practical purposes, such as the analysis and synthesis of asynchronous
control circuits.

2.5 Speed-independence and Semi-modularity

The intuitive notion of speed-independent behavior can be more formally described using confluence, that ensures that the
"long term" behavior of the modeled asynchronous system does not depend on the winner ofa race between concurrent
transitions. In this section we give aset of alternative definitions ofaset ofALTS properties. These properties will be shown
to correspond to:

• interesting circuit properties, such as the absence ofhazards inSection 3,and

• high-level specification properties in Section 5.
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Figure2: The Cumulative Diagram of Figure 1

So this sectionprovidesthe desiredbridge between the two domains.
Let us firstrecall some definitions from latticetheory. Let C be a partial order. An element z e C is a zero element if

for all c e C we have z C c. An element c e C is a greatest lower bound (g.l.b.) of two elements ci, c2 e C, denoted
c = c\ n c2, if c < ci, c < c2 and c' < c\ A c' < c2 => c' < c. Similarly wecan define theleast upper bound (l.u.b.) of a pair
of elements, denoted c = c\ Uc2 by replacing < with >. A /am'ce is a partial order whereeverypair of elements hasa g.l.b.
anda l.u.b.. A lattice is distributive if the g.l.b. and l.u.b. operations aremutually distributive. An element c\ of a partial
orderC covers anotherelement c2of C if c2 < c! and there is no c3 such that c2 < c3 < cx. A lattice is semi-modularif for
every pair of elementsci and c2 thatcovera thirdelementC3 (thenobviouslyC3 = c\ n c2), they arebothcoveredby c\ Uc2.

• An ALTS (STD) is calledSpeed-independent-1 if it is confluent.

• Afinite ALTS (STD) is called Speed-independent-2 withrespect to a stateif the CD generated forthis stateis a lattice
witha zeroelement,according to the partial orderdefinedin Section2.4. The ALTS (STD) is calledSpeed-independent-2
if it is Speed-independent-2 with respect to every statein S.

• A finiteALTS (STD) is calledSpeed-independent-1 ([19]) with respectto a state s if it has a single final equivalence
classwhen initialized in s (Section 2.2.3). The ALTS (STD) is called Speed-independent-3 if it is Speed-independent
with respect to every state in S.

Forexample,theALTS in Figure 1.(b)satisfies Speed-independent-3, because it is finiteandit hasasingle final equivalence
class forevery initial state. We can easily see that the TS is confluent,and hence Speed-independent-1. Furthermore its CD,
represented in Figure2, is a lattice(zero is cumulative state0000), so the STD is Speed-independent-2.

It can be shown that, despite our intuition, the definitions above are not strictly equivalent for a given finite ALTS
(STD). Speed-independent-1 is equivalentto Speed-independent-3 in the finitecase, while Speed-independent-1 and Speed-
independent-2areequivalent if (but not only if) the given finiteALTS (STD) is deterministic, commutative andpersistent:

Proposition 2.1

• Afinite ALTS (STD) is Speed-independent-2 ifit is Speed-independent-1 andpersistent.

• AnALTS (STD) is Speed-independent-1 if it is Speed-independent-2, deterministic andcommutative.

The example in Figures 1 and 2 shows that our conditions for the equivalence between Speed-independent-1 and Speed-
independent-2areonly sufficient andnotnecessary, becausethisALTS isboth Speed-independent-1 andSpeed-independent-2
but not commutative.

Semi-modularity, that we will relate to hazard-freeness, is a stronger property than speed-independence. Again, two
alternative definitions can be formulated.

• An ALTS (STD) is called Semi-modular-l if it is locally confluent.



• A finite ALTS (STD) is called Semi-modular-2 with respect to a given state if the CD generated for this state is a
semi-modular lattice with a zero element, according to the partial order defined in Section 2.4. The ALTS (STD) is
Semi-modular-2 if it is Semi-modular-2 for every statein 5.

A Proposition analogous to Proposition 2.1 can also be shown to hold about Semi-modular-1 and Semi-modular-2.
The ALTS in Figure l.(b) is not locallyconfluent, hencenot Semi-modular-1. It is not Semi-modular-2 either, because

thecorresponding CDin Figure 2 is not semi-modular, duefor example tocumulative states 1110 and 1101, thatbothcover
1100, butare notcovered by their least upper bound 2222 (recall that covering means being immediately above inthepartial
order).

A last class ofALTSs, significantbecause ofsome interestingresults onsufficient conditions for itssynthesis with realistic
logic gates ([8]), is connected with the definition of strict causality (or, informally, of a"unique set of actions causing an
action") described in Section 2.2.3.

• AnALTS (STD) iscalled Distributive-l if itisstrictly causal and locally confluent.

• A finite ALTS (STD) is called Distributive-2 with respect to a given state if the CD generated for this state is a
distributive lattice with a zero element, according to the partial order defined in Section 2.4. The ALTS (STD) is
Distributive-2 if it is Distributive-2 for everystate in S.

A Proposition analogous to Proposition 2.1 can also be shown to holdabout Distributive-l andDistributive-2.
Itshould beobvious that the following inclusion holds for the classes ofALTSs (STDs): Distributive C Semi-modular C

Speed-independent.

3 Modeling Asynchronous Logic Circuits

In this section we will show how "real" asynchronous circuits, built out ofgates and wires, fit as aspecial case ofour Binary
Asynchronous Control Structures and State Transition Diagrams.

We will use two different delay models, pure and inertial, todescribe the behavior of the circuit, and characterize circuit
properties such ashazards in terms of ALTS properties such as local confluence.

3.1 A Low-level Model for Asynchronous Logic Circuits
Here, as in Section 2.1, we describe acircuit as the conjunction ofastructure (a graph) and abehavior (a set ofBoolean
functions and delays).

An Asynchronous Logic Circuit (ALC, [19], [17]) is atriple {X, Z, F), where X is aset ofinput signals {\X\ =m), Zis
aset ofoutput signals (\Z\ = n) F= {fuf2, ...,/„} is aset ofBoolean functions, the circuit elementfunctions, such that
for each i e {1...n}, ft;: {0,1 }di -+ {0,1}, where d{ is the numberofinputs ofelement z{. We denote by Y = XUZ, the
set ofsignals ofthe ALC. The structure ofan ALC can be represented by adirected graph with one node for each variable,
and an arc connecting the node corresponding to each inputofft with the node corresponding to y,6.

Structurally, an ALC is aspecial case ofaBACS. The difference is thatevery structural componentofthe ALC is uniquely
associated with asingle variable, thus implying that each component, v{, has only one output, {y,} =0Y(«,•). The value of
this output can be characterized either by the value ofthe corresponding Boolean function ft (if y, is an output signal) or by
the value of thesignal itself(if y, is an input signal).

An ALC is initialized if its initial state is defined, as abinary vector sO € {0,1 }"+m. An ALC is autonomous ifX = 0.
Figure 3.(a) describes avery simple autonomous ALC, where Z= {zuz2) z3} and ft = 23, f2 =z*, /3 = zx +z2.

3.2 Taxonomy of Models for Asynchronous Logic Circuits
An initialized ALC produces adynamic behavior, resulting from the transitions ofboth input and output signals. The input
signals are changed by the environment and the output signals are changed by the ALC. The output values are determined by
two factors. The first factor is the evaluation ofthe Boolean function associated with the element. The second factor is the
inherent switching delay ofthe physical logic gate, which must be taken into account by the model.

pio^dw SOCiate *n0de ^ ^ mPat °f ** AL° to PTOVide ** W8y °f modelin8 the input wires of the circuit as components with potential delay
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Figure 3: A circuit,its StateTransition Diagram andits CumulativeDiagram with Inertial Delays

Therefore the dynamic behavior of the ALC is modeled through a number of abstractions, which can be classified as
follows:

1. Delay model of an element (delay model "in small", see Section 3.3):

• pure delay model,

• inertial delay model.

2. Delay model of the circuit (delay model "in large"):

• feedback delay model ([9]), assuming that there are delays only in the feedback wires.

• gate delay model, ([19]), assuming that only the logic elements have finite delays.

• gate and wire delay model, ([3] and [4])assuming that both gates and wires have finite delays.

3. Environment behavior model (input change constraints):

• fundamentalmode, assuming that inputs can change their values only after the circuit has reached a stable state,
where none of its variables is excited.

• input-output mode,allowing the environment to changethe input values in some states,not necessarilystable,in
accordance with some protocol of interactionbetween the ALC and the environment The fact that input values
maychangein some states,autonomouslyor in consequence of some output change, is explicitly indicatedin the
model (reactive behavior).

4. Circuit switching semantics ("race" model):

• general multiple winner, assuming that any subset of the set of unstable signals may win the race due to a
concurrent switching process.

• extended multiple winner, where all concurrently changing signals go through a third, undefined, state before
reaching their final value.

Brzozowski and Seger ([3]) showed that General Multiple Winner and Extended Multiple Winner yield equivalent
results, but the latter allows more efficient analysis of the circuit hazards than the latter. Ternary simulation, can be
used to analyzea circuitwith the Extended MultipleWinnermodel,but only in a ratherlimitedcase, the Fundamental
Mode operation. The ternary simulation of thedynamic behavior of an ALCin I/O mode (or of anautonomous ALC)
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cannot givemeaningful results for such effects likehazards orspeed-independence7. Due tothese reasons our analysis
assumes the General Multiple Winnerrace model and I/O mode.

33 Delay Models of an Asynchronous Logic Circuit element

Let an ALC (X} Z} F)beinitialized insome state s. Every element Zi of the circuit ismodeled as asequential composition
of a delay-free logic function evaluator and a delay block. For every element *,- wecall it (and the corresponding output
variable) stable in s if its current valueSi is equal to thevalue of its function /,. Otherwise we callit excited. We assume that
ifavariable isexcited, then this variable may change its state after some finite time interval, which we call the element delay.
For example, inthe circuit inFigure 3.(a), initialized instate 000,z3 isstable while zx and z2 are excited. What happens next,
whenever zx orz2 changes value, depends onwhether we use the pure or inertial delay model.

3.3.1 Inertial Delay Model

In the Inertial Delay model (ID), an excited variable may change its state after afinite delay. This means that for any excited
variable z, there are two possibilities. One is that its value, 0 or 1, changes tothe opposite, i.e. to 1or 0,after a finite but
unbounded amount oftime. The other possibility is that the value ofits function ft is changed before 2, manages to change,
so that the previous value appears at the inputofthe delay block. In this case the output z,ofthe element ceases tobe excited
and retains its previous value, which becomes stable (hence the term "inertial"). Speaking in more quantitative terms, the ID
model means that ifan element has aswitching delay ofdtime units, pulses generated by the logic evaluator with duration
less than dare filtered out, while pulses longer than dunits appear at the output 2, shifted in time by dunits.

Since we are dealing with completely asynchronous circuits, we cannot precisely say whether in the second situation
above the element has or has not producedashort pulse at its output. We shall therefore regard this behavior (when ft changes
before z,-)as anomalous or hazardous.

332 Pure Delay Model

We can alternatively assume that the delay block ofeach element is not inertial when itbecomes excited, i.e. itcannot filter
out the pulses whose duration is less than agiven value d(this behavior is close to reality for long wire delays). Therefore
even though the function value changes before the output 4 has changed, the element remains excited, and just shifts in time
me complete sequence ofits "expected" output transitions. With this Pure Delay model (PD), the valueofthe element in state
sof foe ALC, must be m<)deled byapair, (r?,r^ r? e ^ ^
while the second component is the excitation number (recording how many excitations have been registered by the functional
evaluator since the element was last stable), r? e {0,1,2,...}. In this model, the state ofthe ALC is avector oflength \Y\
witheach component beingof theabove form.

We can now define an element « to be stable, according to the PD model, in state s if r? =0. Otherwise itis excited
The normal operation of the element is described by the following sequence of transitions: (r?,0) -+ (r? 1) —(p" 0)
The hazardous operation, on the other hand, is described by the following sequences of transitions: either (r? r?) J
(^^r/^-l)-(^,7^0(ifr/>0)o^(r^-^/)-(rl^r/ +l)-,(^^7 '̂̂ -2).

Now, with this definition ofthe behavior ofeach gate, we can describe the operation ofthe entire circuit for both the ID
and the PD models.

3.4 Circuit Behavior Description with Inertial Delays
Let us consider, as an example, the circuit shown in Figure 3.(a). Ifwe assign the all zero vector as the initial state ofthis
ALU, variables zx and z2 are excited in this state. As usual, we designate this fact by labelling the value ofan excited variable
with an asterisk (*). Therefore the initial state is marked as 0*0*0. Using the ID model ofan element we can think about two
possible states directly reachable from this state through the element normal switching behavior, 10*0* and 0* 10* Although
variables zx and z2 are excited concurrently and can switch independently, our interleaving semantics ofconcurrent actions
cc^d^TfcXr^". 8Peed"indePe!uI«ce1can te <**k«l *n>ugh *"* technique [3], they are meaningful only for aveiy restrictive modeling

n^an^^rr ^ ^ ^
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requires thatthe first oftheabovetwo states is reached ifvariable zx changes beforez2(and vice-versa). Inbothcases variable
23 now becomes excited.

We can thus use a depth-first search procedure to generate the set of states reachable from the initial state. This set,
together with therelation ofdirectreachability betweenstates, canbe represented by a graph, which satisfies ourdefinitionof
an STD. Note that thetransitions inthis graph are labelled by thechanges of variable values. Since thenumber of signals in
theALC is fixed (\Y| = n + m), it is obviousthatthe sizeof theSTD, in terms of the number of its state labels, is bounded
by 2n+m.

Proposition 3.1 The STDforany ALC,under the ID element model, isdeterministic, commutative and non-contradictory9'.

This Proposition follows directly from the ID model of an element and the uniqueness of the resultof Boolean function
evaluation for any given binary encoded state.

Therefore determinacy andcommutativity are theintrinsic properties of the STD description for anyALC obtained using
theID model. This implies that confluence and local confluence are determined (up tosufficiency) byhow thecircuit satisfies
thepersistencycondition.

We can now define speed-independence, semi-modularity, and so on for an ALC modeled with Inertial Delays. Let
C = {X, Z,F) be an ALC modeled with inertial delay and let S = (S, E, A) be its associated STD. According to the
classification of Section 2.5 and Proposition3.1:

1. Cis Speed-independent if the STD S is confluent.

2. CisOutput-persistent if it is Speed-independent and for each pair of edges sx E(y\ )s2 and sx i?(y2 )s3, if yx € Z, then
y* is enabled in s3 (i.e. no output signalcanever be disabled).

3. Cis Semi-modular if the STD of S is locally confluent.

4. Cis Distributive if the STD of S is strictly causal and locally confluent.

Analogousdefinitions exist fora BACS (except forOutput-persistent).
Output-persistency guarantees that no transition of an outputsignal will ever be disabled, thus guaranteeing a correct

behaviorfor them (recall thatdisabling a transition means possiblycausing a spurious pulseon the signal).
Obviously ID-DistributiveClD-Semi-modularClD-Output-persistentclD-Speed-indepehdenL
Note that Semi-modular as defined above is equivalent to the "operational"definition due to Muller ([19]). An ALC is

called Semi-modular with respect to a given stateif the STD built from this this state has no transition from a state where some
z{ is excited to another state where *,- is stable but has thesame value. So anALC is Semi-modular if its STD is persistent.

Also, note that Proposition 2.1 and 3.1 immediately imply that for an ALC with the ID model Speed-independent-
1 (confluence) is implied by Speed-independent-2 (lattice), and similarly for Semi-modular-1 and Semi-modular-2 and
Distributive-l and Distributive-2.

TheSTD and aninitial fragment of theCD for theALCexample inFigure 3.(a) is shown inFigure 3.(b) and (c). TheSTD
is live, Speed-independentbut not Semi-modular (persistencyis violatedin states 1*01 and01*1, where z2and zx aredisabled
after the transition z£ from states 10*0* and 0* 10*, respectively). Itis confluent but not locally confluent Furthermore it is
stronglyconnected, thus havingsingle final equivalenceclass,and it contains only non-transient cycles of states. The CD is
a lattice(onecaneasily provethatevery pairof cumulativestates hasits leastupperboundin the CD), but not semi-modular.
It has a zero element, the empty multiset (or all zero vector).

3.5 Circuit Behavior Description with Pure Delays

Throughout this section we will refer to properties of the ALC under consideration when analyzed with the Inertial Delay
modes by prefixing them with ID. Properties withoutthe prefix, on theotherhand, referto the ALC analyzed with the Pure
Delay model.

An Asynchronous Logic Circuit can be analyzed with the PureDelay model in a similar way as in the InertialDelay case,
by building its CD with a depth-first search procedure, from the initial state. According to the notation introduced earlier,
each state, s, is labelled by a vectorof \Y | = n + m pairs (rf , r/), where the first component is thebinary valueon theoutput
of the delayblock, 2,-, and the secondcomponent is the number ofpotentialchangesthat the element will generate on its own

8Being non-contradictory, wecan identify each state of the STD with its unique binary vector code.
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before itwill become stable. Let us call such avector the PD-vector. This graph does not satisfy the definition ofan STD,
given in Section2.2, because the label is not binary. Nevertheless, it satisfies the definition ofan ALTS, and again, due to
the unique evaluation of the Boolean functions describing the ALC, we can make use of the fact that every state inset S is
uniquely labelled by the PD-vector, and show that the following Proposition holds.

Proposition 32 The ALTSfor any ALC, under the PD element model, is deterministic, persistent and non-contradictory.

Equality between PD-vectors requires also equality ofthe second component, so commutativity does not hold in this case.
However, due to non-inertialityofelements behavior, we can claim persistency, because every element records its excitation,
and cannot bedisabled by changing thevalue attheoutputof its Boolean evaluator.

The latter detail drastically changes the role of the CD that can bebuilt from the ALTS associated with the ALC. Such a
CD is no longer adescription that can be meaningfully used for characterizing the confluence properties ofthe ALC behavior.

The definition ofabounded circuit becomes crucial in such characterization. The PD model ofan ALC (PD-ALC) is
called k-bounded (or simply "bounded") if for every reachable state s in the associated ALTS, V*t-: if < k. An immediate
consequence ofboundedness is thtfinitenessof the ALTS of a PD-ALC.

The following Proposition is the implication ofthe fact that aPD-modeled ALC can accumulate unbounded "switching
events" in its elements if itsoperation is cyclic.

Proposition 33 The PD model ofan ALC, which is \D-live9 and non-\D-persistent, isunbounded.

This is true because in a live, non-persistent ID model of a circuit there is nobound to the number of times the circuit
can reach astate s where avariable &becomes disabled before ithas achance to fire. So every new arrival in this state will
increment thecorresponding if.

• The PD model ofan ALC is called Speed-independent ifthe associated ALTS is finite and confluent.

• The PD model ofan ALC is called Semi-modular ifthe associated ALTS is finite and locally confluent.

• The PD model of an ALC is called Distributive ifthe associated ALTS isfinite, strictly causal and locally confluent.
Analogous definitions exist for a BACS.

This definition and Proposition 3.3 imply the following importantresult

Theorem 3.4 The PD-model ofan ALC, which is \D-live, isPD-Speed-independent iffit is \D-Semi-modular10.

This theorem in practice claims that for the PD model ofan asynchronous circuit, speed-independence amounts to semi-
modularity, if one considers acyclically operating circuit This result provides acrucial justification for the restriction to
semi-modularity, when we look for necessary and sufficientconditions for the hazard-free, speed-independent implementation
ofan ALC.

Note also that this equivalence result strongly favors the use ofsemi-modularity rather than speed-independence as the
characterization ofa"correct" circuit in the ID case. The ID model can be too optimistic in many practical cases, so a
design made for semi-modularity (or output-persistency) will be more "robust" with respect to technology changes, different
implementations ofother components of the system, and soon.

Obviously PD-DistributiveCPD-Semi-modular.
Our ALC example in Figure 3.(a) generates the ALTS whose initial fragment is shown in Figure 4. This ALTS is

persistent but non-commutative. It is infinite and not locally confluent. The PD-ALC is unbounded, therefore it is not
Speed-independent

Our analysis ofID and PD models ofALCs has an importantby-product It gives concise and general characterization of
hazards in the ALCs behavior.

jLe. the STD of the same circuit, modeled with Inertial Delays, is live. That is, it forms asingle equivalence class for any initial state (Section 223)
luI.e. thesame circuit modeled with Inertial Delays is Semi-modular.
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Figure4: Cumulative Diagram forPure Delay Model

3.6 On Static and DynamicHazards of Asynchronous LogicCircuits

The traditional definition of hazards ([22]) assumes two types of hazards, static and dynamic. Static hazards are again of
two types, 0-1-0 and 1-0-1, and they model the behavior of an element which generates spurious pulse at its output. The
dynamichazards, 0-1-0-1and 1-0-1-0,model the erroneous behavior of an element that should switch from 0 to 1 or 1 to 0,
respectively, but duringthis process returns back to its previous state.

Leaving aside the question of how dangerous such hazards are in an asynchronous context we can identify how this
behavior canbe analyzedat our ID and PD modelinglevel.

For agiven ALC,the ID model, represented by theSTD, can onlydepict static hazards. They are present if the ID-ALC
is non-persistent. An elementwhoseexcitation is disabled, withoutswitching, in state0(1) is defined to havean0-1-0(1-0-1)
static hazard11. Hence, if the ALC is ID-Semi-modular (or ID-Output-persistent), then it is free from hazards.

Fora given ALC, the PD model, represented by its ALTS, can describe all hazards, characterized as follows. An element
whoseexcitationnumber if is greater than 1hasa hazard. The rank,k, of this hazard is equal to rf.

This characterization allows us to define not only "standard" static or dynamic hazards, but any dynamic hazardous
behavior that can be generated by the circuit element. In fact, the "standard** static hazardcorresponds to rf = 2, while the
"standard*' dynamic hazard to rf = 3.

4 A High-level Behavioral Model for Asynchronous Systems

The previous Sections discussed various inter-relatedmodels ofAsynchronous Control Structures and Logic Circuits, and the
relationshipbetween model properties, such as confluence, and circuit properties,such as hazards.

In this section we develop a very general, event-based, model of BACS and ALC that unlike STDs and Trace Models,
has an explicit notion of causality and concurrency. So for example we will be able to distinguish the cases where events
a and 6 are truly concurrent, independentof each other,and the case where either a can happen, and then cause 6, or 6 can
happen,and then cause a (an example of this distinction will be given in Figure6).

The model, called Signal TransitionGraph(STG), is basedon interpretedPetrinets, and is a development of similar,but
less general, models presented by [20] and [5].

We first recall some basic definitions from the theory of Petri nets then establish relationships between STGs and the
models described in the previous Sections.

"Strictly speaking, thisis notahazard in the"ideal" model, because theoutput of thedelay blockdoes notchange. Dueto the physical considerations
above, though, this kind of situation can actually generatea spurious pulse on the output.
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4.1 Petri Nets

Petri nets are a widely used model for concurrent systems, because they have a very simple and intuitive semantics, that
directly capturesconcepts like causality, concurrency and conflict between events.

APetri net (PN) isa triple V = (T, P, F). T isanon-empty finite set oftransitions. P isanon-empty finite setofplaces
F c (T x P) u (P x T) is the flow relation between transitions and places12.

APN marking isa function m: P -> {0,1,2,...}, where m(p) is called the number oftokens in p under marking m.
Amarked PN isa quadruple V = (T, P,P,mo), where mo denotes its initial marking. Atransition t e T isenabled ata
marking mif all itspredecessor places are marked. An enabled transition t mayfire, producing a new marking rri with one
less token ineach predecessor place and one more ineach successor place (denoted by m[t > rri).

Asequence oftransitions and intermediate markings m[tx > mx [t2 > ... rri iscalled afiring sequencefrom m. The
set ofmarkings rri reachable from amarking mthrough afiring sequence is denoted by [m >. The set [mo > is called the
reachability set ofa marked PN with initial marking mo, and amarking m € [mo > is called a reachable marking. APN
marking mis live iffor each rri e [m > for each transition t there exists a marking m" e [rri > that enables t. Amarked
PNisliveif its initial marking is live.

Amarked PN is k-bounded (or simply "bounded") ifthere exists an integer ksuch that for each place p, for each reachable
marking mwe have m(p) < k. Amarked PN is safe ifitis 1-bounded. Atransition tx disables another transition i2 at a
marking mifboth tx and t2 are enabled at mand t2 is not enabled at rri where m[tx > rri. Amarked PN is persistent ifno
transition can ever bedisabled at any reachable marking.

APN is aMarked Graph ifevery place has exactly one predecessor and one successor. AMarked Graph is persistent for
every initial marking mo, furthermore every strongly connected marked graph has at least one live and safe initial marking.
APN isfree-choice ifany two transition with acommon predecessor place have only one predecessor.

Amarked Petri net V= (T, P, F, mo) generates an Arc-Labeled Transition System (ALTS) (K >,E,Tt 6) (Section 2.2)
as follows. For each edge (mx, m2) e E, where mx [t > m2, we have 6(mx, m2) = t. Under this mapping, each Unique-
Action Relation-class [e]\ with e= sE(t)s' corresponds to aparticularfiring ofatransition t.

The following Proposition is an obvious consequence of the PN firing rule and ofthe results in [10]:
Proposition 4.1

1. The ALTS corresponding to amarked PN isfinite ifand only ifthe PN is bounded.
2. The ALTScorresponding toa marked bounded live PN is live.

3. The ALTS corresponding to amarked PN isdeterministic and commutative.

4. The ALTS corresponding to amarked persistent PN is persistent, locally confluent and confluent

4.1.1 Cumulative Diagram of a Petri Net

As in Section 2.4, we can define the Cumulative Diagram (CD) ofaPetri net, and analyze its properties as alattice. This will
be useful in order to establish the desired correspondence between PN properties and circuit properties

According to [26], we define the Cumulative Diagram of amarked PN as follows. Given afiring sequence mUi >
mx[t2 >. mofamarked PN V={T, P, F, mo), the correspondingyin^ vector is amapping V:T- {0,1,2,...} such
matforeachtransmon^^(<)ismenumberof(xx:iirrenc^oftintnesequence.
* ^tlVbe»!,esetr0ifa11 ^g vectors of V. We define amapping p:V- [mo >that associates each firing vector with
the final markmg of the corresponding firing sequence. Note that the mapping is well defined, since in any marked PN the
markmg reached after asequence of transition firings from mo depends only on the number ofoccurrences ofeach transition
m the sequence, not on the order of occurrence.

The set V, called the Cumulative Diagram of 7>, was shown in [26] to be apartial order when we define Vx QV2 if:
• Vx(t)<V2(i) for alii and

• marking p(V2) is reachable from marking p{Vx).

The following Theorem was proved in [2]:

12APN can be represented as adirected bipartite graph, where the arcs represent elements of the flow relation.
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Theorem 4.2 The ALTS ofa PN isconfluent ifthe net isfree-choice, bounded and live.

The following Theorems wereprovedin [26]:

Theorem 43 The CD ofamarked PN isasemi-modular lattice with azero element ifthe net ispersistent.

Theorem 4.4

1. The CD ofamarked PN isadistributive lattice with azero element ifthe net issafe and persistent

2. The CD ofa Marked Graph is a distributive lattice with a zero element.

3. Let V be a PN whose CD Visdistributive. There exists a safe and persistent PN V whose transitions are labelled
with the transitions ofV andwhose CD is isomorphic to V.

4. Let V be a safe persistent PN, let Vbe its CD. There exists a safe Marked Graph V" whose transitions are labelled
with the transitions ofV and whose CDis isomorphic to V.

5. Let S be afinite distributive ALTS with aset oflabels T. There exists asafepersistent PN Vandasafe Marked Graph
V" whose transitions are labelled with those in Tand whose CDs are isomorphic to the CD generated by S.

4.2 Signal Transition Graphs

Interpreted Petri nets, where transitions represent changes of values of circuit signals, were proposed independently as
specification models for Asynchronous Logic Circuits by [20] (where they were called Signal Graphs) and [5] (where they
were called Signal Transition Graphs, STGs). Both papers proposed to interpret a PN as the specification of an ALC
C= (X, Z, F)(where Y denotes, as usual, (X UZ), bylabelling each transition with an element ofY x {+, -}. A label yf
means that signal yi € Y changes from 0 to 1,and j/,r means that y,- changes from 1to0, while j£ denotes either yf ory,~.

AnSTG isaquadrupleQ = (V, X, Z, A) where V isamarked PN, X and Z are (disjoint) sets of inputand output signals
respectively andA :T -*• (X U Z) x {+, -} labels each transition of V witha signal transition. An STG is autonomous if
it hasno input signals (i.e. X = 0).

Both [20] and [5] gave also synthesis methods to translate the PN into an STD (called Transition Diagram in [20] and
StateGraph in [5]) and henceinto an ALC implementation of the specified behavior.

Givenan STG Q = {V, X, Z, A) andthe ALTS ([mo >, E, T, 6) corresponding to its PN V, we definethe associated
STD S —([mo >, E, A) as follows. For each m G [mo >, we have A(m) = sm,where sm is a vector of signal values. Let
5•" denote the value of signal y,- in marking m.

Obviouslythe STD labelling mustbe consistent with theinterpretation of the PN transitions, so we must have forallarcs
e = (m, rri) in the STD:

• if A(6(e)) = yf, then sj" =0and sf = 1.

• ifA(6(e)) = yj, then sf - 1and sf = 0.

• otherwise sj" = S™'.

Figure 5 shows an example of an STG and the corresponding STD. Note that for historicalreasons PN transitions are
denoted by the corresponding labels and PN places are denoted by circles PN places with only one predecessor and one
successor are generally omitted. So in Figure 5.(a) the initial marking of the PN (corresponding to the leftmost state in
Figure 5.(b))appears on the edgebetween y~ and x+.

An STG is defined as valid if its STD is finite (i.e. the PN is bounded)and has a consistent labeling. In this paper we
will only consider valid STGs (otherwise their interpretation as controlcircuit specificationswould lose its meaning).

One consequence of this requirement is similar to Property 2.1:

Property 4.1 In a validSTG, for allfiringsequences ofits PN, thesignsofthetransitions ofeach signalalternate.
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(a)

Figure 5: A Signal Transition Graph and itsState Transition Diagram

Figure 6: A Persistent Signal Transition Graph with non-persistent underlying Petri net

Two STG markings mx andmj are equivalent if for each finite firing sequence mx[tx > rr^fa > ... there exists afiring
sequence mx [t[ > rri^t^ > ... such that A(U) =Aft) for all i. This relation partitions the set of reachable markings into
equivalence classes. The equality between STG markings (and hence STD states) in the following will always be modulo
tins equivalence13.

An STG is persistent iffor each reachable marking mi, iftx is enabled in mx andmx[i2 >mz.with^!) # A(t2) then
there exists atransition^ enabled in m2 such that 4ft) =A(tz). An STG is outputpersistent ifthe above definition holds
forall tx suchthat A(tx) e Z.

Note that this definition ofSTG persistence allows acase like that in Figure 6to be treated as persistent, even though the
underlying PN is not persistent. So PN persistency is astronger condition than STG persistency. Only the transition labeling
Atfojt maps two different PN transitions into y+ (and similarly for *+) "erases" the distinction that was present between
the PNs underlying Figures 6and 5.(a), so that the two STGs generate isomorphic STDs. This Figure illustrates clearly the
semantic gap arising from using apurely interleaving semantics (as in the STD) versus using atrue concurrent semantics

(as in the oTG).

The following Theorem is adirect consequence ofthe results in [26]:
Theorem 4.5

1. For every deterministic, commutative andpersistent STD Sthere exists an STG whose PN is persistent, bounded and
generates S.

2. For every distributive STD Sthere exists an STG whose PN is asafe Marked Graph and generates S.
3. For every distributive STD Sthere exists an STG whose PN is safe, persistent and generates S.

43 Signal Transition Graphs and Asynchronous Logic Circuits
r^i1^8111011 G^hS WCre mtroduced to^^ Asynchronous Logic Circuits, aspecial case of Binary Asynchronous
Control Structures We are now ready to establish acorrespondence between the STD associated with avalid STG and
the STD associatedwith aBACS. We shall also examine when asimilar correspondence can be established with the STD
associated with an ALC.

^vely.ourt^etistoimplementmeSTGasacircmtwimonesigna^
function computed by each gate maps each STD binary label into the corresrx>nmng/mp/^vfl/^ for that signal. The implied
value for signal y,- in state sm is defined as the complement of 1? if y, is excited in *"\ *? otherwise. So for example if

Which amounts toobservable behaviorequivalence.
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sm =00*1for signal ordering y0yi &, then the implied value ofy0 is 0, the implied value ofyx is 1and the implied value of
Sfcisl.

Both [20] and [5] recognized that an STG has an STD-isomorphic circuit implementation if (but not only if) output
signal transitions are persistent, and the STD is non-contradictory. Later on Chu ([6]) formulated anecessary and sufficient
condition for the existence ofacircuit implementation ofavalid STG, called Complete State Coding in [18] (who proved it
to be necessaryand sufficient).

An STG has the Complete State Codingproperty ifall markings with the same binary label have the same set ofenabled
output signal transitions. So we can state the following Theorem.

Theorem 4.6 Let S be the STD ofavalid STG. Let Y= XUZbe its set ofsignals. UtC- (V, H, Y, p) be aBACS whose
STD is isomorphic toS.

The output signals Z ofS can be characterized asBoolean functions ofsignals in Y ifand only if the STG has the
Complete State Codingproperty.

This can beproved observing that if the STG has the Complete State Coding property, then theimplied value rule defines a
unique Boolean mapping between thesetof STD labels and thevalue of each signal. On the other hand, suppose that the
STG does not have the Complete State Coding property. Then two states with the same label have adifferent implied value
for someoutputsignal z,-, and there is no Boolean function of thesetof STG signals thatcan characterize *,-.

Corollary4.7 Let S be the STD of a valid autonomous STG (i.e. X = 0;.
There exists anautonomous ALC such that itsSTD is isomorphic toS ifand only ifall the states ofS have distinct labels.

Theorem4.6 means thateachoutput signalof an STG canbe implementedas a Boolean function if and only if its value
andexcitation in each STD stateis uniquelydetermined by the STD statebinarylabelitself.

The problem, given a valid STG Q without the Complete StateCoding property, to determineanotherSTG Q' with the
Complete State Coding propertyand such that its set of traces (restricted to the signalsofQ) is a subset of the tracesof Q was
solvedrecentlyforvariousspecial classes ofSTGs (see, forexample, [27] or [24] forMarkedGraphs and [14] for free-choice
STGs).

5 Classification of Models of Asynchronous Logic Circuits

We are now ready to proceed with the next contribution of this paper,a classification of the Signal Transition Graph models
according to the type of Asynchronous Control Structure or Asynchronous Logic Circuit they give origin to.

Note thatthe majorfocus of this section is the analysis of the "protocol of interaction" between the nodes in a BACS or
an ALC, ratherthan a synthesis methodology for the internal structureof each node. We are interested in checking when a
given STG describesa speed independent or semi-modularinteractionbetween nodes, and we assume that each node can be
realistically modeled using an instantaneous Booleanevaluation and puredelay or inertial delay (see Sections 3.4 and 3.S).
This pointof view is interesting, forexample, if the interconnections betweennodesoccuroutside a single integrated circuit,
so that the delaysbetween them arelarge compared with the delays inside the circuit,andareoutsideof the directdesigner's
control. The reader is referred to [8], [13] or [1] for examples of techniques to realize the function of each node using a
specific implementation technology.

The practical relevance of this section is thatan STG thatspecifies a behavior that is not speedindependent will almost
certainly cause a malfunctioning implementation, sincethe behavior of the implementation will depend on the delaysof the
components. Similarly, an STG thatspecifies a behavior thatis not outputpersistent will most likely be implementedwith a
circuitthat suffers from hazard problems (due to the analysis in Section 3.5) unlessa special careis devoted to its low-level
design. Analogous considerations applyto the usefulness of having the STG describe a delay-insensitive behavior whenthe
interconnection delays between the circuitcomponents arewidely variable and unpredictable.

5.1 Speed Independence with Inertial Delay

Using thedefinitions from Section 3.4,we can nowcheck, given anSTG, if theassociated BACS orALC belongs to anyof
the speed-independence classes. We will give sufficient conditions foreach class (necessary and sufficientconditions canbe
derived usingthe definitionsdirectlyon the STD, but canbe in general moreexpensive to compute).

The following Proposition is a result ofTheorems 4.2,4.3 and 4.4.
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Proposition 5.1 LetG - {V,X, Z, A) bea valid STG, and letS beitsassociated STD. Let A = (V, H, Y,p)bea BACS,
modeled with inertial delay, such that itsSTD is isomorphic to S and node v<> has IY (v0) = Zand 0Y(y0) = X (i.e. inputs
Z and outputs X: this special node represents the environment where the circuit described by the STG willoperate).

• A is \D-Speed-independent ifV isfree-choice, bounded andlive.

• A is \D-Semi-modularifV ispersistent.

• A is ^-Distributive ifV safeandpersistent.

• A is \D-Distributive ifV is a Marked Graph.

Obviously if the STGhas the Complete State Coding property, and hence has an ALC implementation (Section 4.3), then the
above results holdfor theALCas well,because it is justa special case of BACS.

The following Propositionis a result ofTheorem 4.2.

Proposition 5.2 Let Q= {7>, X,Z, A)be a valid STG with the Complete State Codingproperty, and let S be its associated
STD. LetC- {X, Z, F)be an ALC, modeled with inertial delay, such that its STD isisomorphic to S.

• Cis \D-Output-persistent ifV is live and Qisoutputpersistent.

The following Propositionis a result ofTheorems 4.4 and4.5.

Proposition 53 Let A = {V, H, Y, p) be a BACS, modeled with inertial delay, and let S be its associated STD.

• ifAis\D-Semi-modular, then there exists an STG whose PN isboundedandpersistent, and whose STD isisomorphic
toS.

• ifAis \D-Distributive, then there exists an STG whose PN is safe andpersistent, and whose STD is isomorphic to S.
• ifAis \D-Distributive, then there exists an STG whose PN is aMarked Graph, and whose STD is isomorphic to S.

5.2 Speed Independence withPure Delay

We will now give conditions, similar to the previous Section, in order to characterize an ALC implementation ofan STG
using the pure delay model (Section 3.5). We will only consider circuits that exhibitacyclic behavior, that is whose operation
does not "stop" after afinite number oftransitions, because they have the most practical interest

The following Proposition isaresult ofTheorems 4.2,4.3 and 4.4.

Proposition 5.4 LetG = (V, X, Z, A) be avalid cyclic STG, and let Sbe its associated STD. Let A= (V, H, Y, p) be
aVMS, modeled with pure delay, such that its ALTS is bounded and isomorphic to S, and node v0 has IY (t/0) = Zand
otAV° .,7 '*•* mputs Zand outpm X: tfUs sPecial mde ^Presents the environment where the circuit described by the
STG will operate). J

• AisPD-Semi-modularifV isfree-choice, live and safe.
• Ais PD-Semi-modularifV ispersistent.

• Ais PD-Distributive ifV safe andpersistent.

• AisPD-Distributive ifVisaMarked Graph.

Obviously ifthe STG has the Complete State Coding property, and hence has an ALC implementation (Section 4.3), then the
above results hold for the ALC as well, because it is justaspecial case of BACS. Proposition 5.3 holds also in the pure delay
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5.3 Delay Insensitivity

Informally, aDelay-Insensitive circuit operates correctiy under the inertial gate and wire delay model in input-output mode
with general multiple-winnerraces (Section 3.2). Amore formal definition was given by Udding in [21], using Trace theory

Let A= (V, H, Y, p) be aBACS, let S = (5, E, A) be its associated STD, and let T = {A, E) be its associated Trace
Model. Let v(y) for signal yGY, denote the node vGVsuch that yG0Y(v) (i.e. yis an output of v). Let v0 be aspecial
node qualified as "the environment" (this distinction is necessary to speak about "output persistency"). The delay insensitivity
of A iscaptured by the following four rules ([21]):

flo For all s € A* and yx* GA,we must have syjf y? g" E, i.e. Property 2.2 must hold for T.

Rl FoT^l s'*e A* and #' y2 € A* such mat "(w) ="(») (*•* are both outputs of the same node), we must have
isyxy2i G17) = (syZyft GE). So signals that are output ofone node cannot be ordered.

R2 This rule, dealing with commutativity, takes two forms, indecreasing order of strictness:

i% For alls,* GA* and yx, y\ G4, such that */(yi) # v(yi)(i.G. outputsofdifferent nodes), ifsy\yl g I7Asy£y* g
E then (ayf y^t € E) = (sy2 yft G17). So no change in the ordering between two transitions produced by two
different nodes can change thesubsequent behavior of any node. Thisruleis satisfied if S is commutative.

B[ For all s,t GA" and y*, y2, $ G4 such that i/(yi) ^ !/(&) and v(y$) ^ !/(&) (i.e. & is the output ofanode
different from yx and &) if syly^tyl e EAsy^y^t e E then sy^y^ty^ G 27. So no change in the ordering
between two transitions produced by two different nodescanchange the subsequent behaviorof another node
(i.e. yi and y2 can"have memory" of this change in the ordering, but no-oneelse can).

R$ This rule, dealing withpersistence, takes three forms, in decreasing order of strictness:

R!i For all s G A* and y?, y£ GA, yj" ^ y£, if syj G E A sy\ GE then sy\ y£ G17. This rule is equivalent to S
being commutative.

R% For all s G4* and y?, yj G4, y* ^ y|, such that either u(yx )£v0ot */(&) ^ v0, if sy* Gi7 Asy| Gi7then
sy\V2 € <£>ie- only transitions producedby the environmentcan disableeach other. This rule is similarto the
idea of output persistency.

R%' For all s G A* and y^y^e A, y? £ y}, such that i/(yi) ^ i/(y2), if ay? € EAsy} £ E then sy*y£ G E, i.e.
no transitions produced by different nodes can disable each other.

- Incases R% and R%' it is assumed thatthe implementation of nodes withmutually disabling transitions can do so without
hazards, using appropriates circuit design techniques.

All the circuits that Udding considers must satisfy Ro and Rx. In addition:

1. thecircuits thatsatisfy R^ and R^ are called thesynchronization class, Cx.

2. thecircuits thatsatisfy-RJ and R% are called thedatacommunication class, C2.

3. thecircuits that satisfy -RJ andR%' are called thearbitration class, C3.

4. thecircuits thatsatisfy B![ and R%' are called thedelay insensitive class, C4.

Obviously Cx C C2 C C3 C C4.
Now we can verify, given an STG, whether the BACS (or ALC, if it exists) implementing its output signals belongs to

any of the delay insensitivity classes. An STG generates a Trace Model as the set of its firing sequences. So in principle
a check whether an STG specification describes a system in Cx, C2, C3 or C4 would requirea check whether a potentially
infinite set of traces satisfies the above rules.

Fortunately wecan dobetter than that, and examine theSTD generated by theSTG, which is finite for valid STGs14.
The followingProposition is a trivialconsequence of the PN firing rule:

Proposition 5.5 LetG = {V,X, Z,A) bea valid STG. and letS beitsassociated STD. Let A = (V, H, Y,0) bea BACS
such that itsSTDis isomorphic toS and node t>o has IY (vq) = Z and 0Y(vq) = X (i.e. inputs Z and outputs X).

14This can still beverycostly, inpractice, since thesizeof theSTD can beexponential inthesizeof theSTG.
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Ro is automaticallysatisfied, since G satisfiesProperty 4.1.

Rx is satisfied if and only ifforall states mx, m^ and m3 of S such that mx E(y\ )m2E{yl )m3 and v(yx) = 1/(^1) there
exist ra* andms such that mx E(y2)m^E{y\)ms.

Ri :

R2 is satisfied if and only if for all states mX)m2,mi,m2 and mj of S such that mxE(yl*)m2E(y2*)m3 and
mi-E(2£)™2#(yr )m3»we have m2 = m^ (modulo the equivalence described inSection 4.2).

R% is satisfied ifand only iffor all pairs ofsimple paths mxE(yl) m2E{y2) m3E(y$) . ..m1_il?(y?_1) m{E{y*)
m,+1 and mxE(y^) m!lE{y\) m^E{y^)... »?»{_,£(#_,) m< wehave E(yj) enabled inm<.

R3 :

R^ is satisfied ifandonly ifG is persistent

R% issatisfied ifand only ifG is output persistent

R%' is satisfiedifandonly iffor all states mx,m2,m!l ofS such that mx E{y\ )m2andmxE(y2*)m2'andi'(yx) = vfo)
there exist m3 and mj such that m2E(yl)m3 and milE{y\)m!i.

6 On the relationship between Signal Transition Graphs and Change Diagrams
Change Diagrams, described more in detail in [25,11,12], are an event-based model for Asynchronous Logic Circuits that
bears some resemblance to Signal Transition Graphs, but has some interesting properties of its own. In this Section we
compare the two models, and show how, when we limit ourselves to Semi-modular circuits, they have similar modeling
power. So the choice between the two is just dependent on the need for choice modeling (as in Output-persistentcircuits) and
ontheavailability of analysis and synthesis algorithms.

The definition ofChange Diagrams is based on two types ofprecedence relations between transitions in Asynchronous
Logic Circuits.

1. the strong precedence relation between transitions a* and 6*, usually depicted by asolid arc in the graphical represen
tation ofChange Diagrams, means that that 6* cannot occur without the occurrence ofa*.

2. the weak precedence relation between transitions a* and b\usually depicted by adashed arc in the graphical represen
tation, means that 6* may occur after an occurrence ofa*. But 6* may also occur after some other transition c*, which
is alsoweaklypreceding 6*, withouttheneedfor a* to occur.

AChange Diagram is therefore formally defined as atuple (A, -•, h, M, O), where:

• Ais aset of transitions or events, labeled with transitions ofaset of signals Y (as in Section 4.2).
• -» C (A x A) is the strong precedence relation between transitions.

• •" Q (A x A) is the weak precedence relation.

• M is a setof initiallyactivearcs.

• O isasetof so-called disengageable arcs.

The relations -• and hare mutually exclusive (i.e. (a*, b*) e - implies that (a*, b*) ^ h and vice-versa), and all the
predecessors ofa transition a* must be either ofthe strong type or ofthe weak type. Hence the set of transitions A is
partitioned into AND-type transitions (with strong predecessors) and OR-type transitions (with weak predecessors).

ThefiringruleofChange Diagrams is similar to thatofPNs, with arcs playing the roleofplaces and flow relation elements
at the same time. Each arc is assigned an integer activity which, unlike PN marking, can be negative. Initially each arc in M
has activity 1, and each arc notin M has activity 0.

• An AND-type transition is enabled ifall its predecessor arcs have activity greater than 0.

• An OR-type transition is enabled ifat least one predecessor arc has activity greater than 0.
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When an enabled transition fires, the activity ofeach predecessor arc is decremented, and the activity ofeach successor arc is
incremented1 . AChange Diagram is bounded ifthe activity on each arc is bounded (both above and below) in all possible
firing sequences.

Disengageable arcs are "removed" from the Change Diagram after the first firing oftheir successor transition. They are
used to represent the initialization sequence ofacircuit, and we will not enter into details concerning their usage.

Following [25], we can associate a State Transition Diagram S = (5, E, X) with a Change Diagram, as we did in
Section 42 for STGs. Let 5 be the set ofreachable activity vectors (similar to PN markings). An arc (s, s') GEjoins two
activity vectors s} s' GS if there exists atransition y\ GAthat is enabled in sand whose firing produces s'. The labeling
must beconsistent, so for each arc (s, s') e E corresponding to transition y* wemusthave:

• A(s)i =0and A(s')i = 1for an arc associated with yf,

• X(s)i = 1and \(s')i =0 for an arc associated with yf.

• otherwise A(s),- = X(s')i.

A Change Diagram iscorrect if it satisfies the following conditions, ensuring that the above labeling isconsistent:

for all firing sequences, thesigns of thetransitions of each signal alternate (similar toProperty 4.1).

no two transitions of the same signal can beconcurrently enabled in anyreachable activityvector.

• the Change Diagram is connected andbounded (i.e. the set S isfinite).

The maintheoretical resultconcerning Change Diagrams is stated (without proof) in [25]. A transient cycle in anSTD is
defined asa cycle where at leastonevariable is continuously excited with the same value(seeFigure 9 foranexample).

Proposition 6.1 Each Semi-modular STD without transient cycles hasa corresponding correct Change Diagram.
Each correct ChangeDiagramhas a corresponding Semi-modular STD.

Thus Change Diagramsareequivalentin modelingpower to Semi-modular STDs, and hence to Semi-modular ALCs.
ChangeDiagrams areuseful in practice becauseofthe availability oflow-complexity polynomialtime analysisalgorithms

to decide, e.g.:

• whether a given Change Diagramis correct,and hence it can be used as a valid specificationof a Semi-modular ALC.

• whether a given ALC has adistributiveChange Diagram, and hence adistributive STD16.

Furthermore synthesis algorithms from Change Diagrams to ALCs in various technologies were outlined in [11].
The main limitation ofChange Diagrams is their inability to describe choice among alternative behaviors, as modeled by

places with more thanone successor in PNs. So a designer faced with the description, forexample, of a self-timed memory
element, must describe the various possible read/write cycles of a 0/1 datum as an alternation rather than a choice between
them.

Given Theorems 5.3 and 6.1, we can see that thereis a strongmodeling similaritybetween Change Diagrams and STGs.
Both can model all Semi-modular ALCs, that is a broad class of interest for asynchronous design. At the same time this
similarityis only limited becauseSTGs candescribechoice,andthereis a differencein the modeling power when unbounded
PNs andChangeDiagrams areconsidered.

Figure 7.(a) shows acyclic finite Change Diagram withunbounded arc activity17. Such unbounded behavior, in which the
i-th(i= 1,2,...) occurrence ofevent c is causedeitherby the i-th occurrence of a orby the a'-th occurrence of 6, is represented
in Figure7.(b) as a Change Diagram unfolding ([11]). In the unfolding each event a* represents a unique occurrenceof the
correspondingevent a in a firing sequence of the Change Diagram(similarly for 6* with respect to 6 and c* with respect to c).

The same behavior can be represented by the infinite PN in Figure 7.(c). We conjecture that there exists no finite PN
representing it. The seemingly equivalent PN shown in Figure8.(a) describes in effect a different behavior. Its "unfolding"

•

•

15The activity of apredecessorarc a* h 6* of anOR-type transition 6* can becomenegative asaconsequenceof a firing of b* duetopositive activity on
some other arc c* h 6*. It can then become positive againwhen 6* fires in turn.

16Note that this analysis can beperformed bydirect construction of theChange Diagram, without going through theexponential sizeSTD.
17Here events are notlabeled with signal transitions for thesake of simplicity. It is possible to construct acorrect interpreted Change Diagram showing

the same type of behavior.
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Figure 9: Anunbounded Change Diagram with an equivalent bounded Petri net

into an execution net (see [26]) hi Figure 8.(b) shows that here the i-th occurrence ofevent ccan be caused byany combination
ofpairs ofthe form a* and 6»~* where A: can be ofany value between 0and t. The difference between these behaviors is
obvious.

The Change Diagram is able to remember the number ofoccurrences ofevents a and 6, using the negative activity
mechanism. So if a fires twice, as represented in Figures 7.(d), 7.(e) and 7.(f) (empty circles represent negative activity on
the arc between band c), and then it stops firing, ccan fire again only after 6has fired three times, inorder to"re-absorb" the
negative activity. On the other hand in Figure 8.(a), if a fires twice and then stops, ccan begin firing again as soon as 6fires,
because thereis no way to remember anunbounded "debt" of tokens.

Asa final example, consider Figure 9.(a). Itrepresents an initially one-place buffer that becomes two-place when event
6occurs. The behavior is Semi-modular, because no event is disabled. Yet there is no bounded equivalent Change Diagram,
because bounded Change Diagrams can represent only Semi-modular behaviors without transient cycles. In this example
event 6is continuously enabled during the cyclic firing ofaand c. An equivalent Change Diagram, shown inFigure 9.(b), has
an unbounded negative activity onthe arc between 6and c(Figure 9.(c) shows such negative activity after three occurrences
of a and c).

In summary, both Signal Transition Graphs and Change Diagrams can represent Semi-modular circuits, and their modeling
power differs only when it comes todescribe unbounded behaviors (not interesting for speed-independent circuit design) and
choice. The designer can choose between them depending onthe need, respectively, for an explicit representation of choice
inSignal Transition Graphs and polynomial timeanalysis and synthesis algorithms inChange Diagrams.

7 A Design Methodology based on Asynchronous Control Structures and Signal
Transition Graphs

To summarize the major contributions of the paper, we outline a design methodology based on the proposed modeling
formalism.

• The design process begins when the designer selects:

- thecircuit andelementdelay models thatneedto be used(Section 3.2),depending on, for example:
* the chip implementation technology, wheregatedelays or interconnection delaysmay dominate.
* the partitioningof the system into chips, boards and cabinets, that may dictate to consider some wire or

component delay to be unbounded.

* the trade-offbetween modularity (when little is assumed on the environmentwherethe circuitwill operate)
and performance (when such knowledge of the environmentcan greatlyhelp to improve the performance).

- the classofbehaviorthatbest fits the synthesisalgorithms andthe system-level requirements. Forexample:

* good synthesis algorithms exist for distributive specifications([8]).
* using a purely speed-independent specification, rather than a semi-modular one, increases the risk of mal

functioning due to hazards,as we arguedin Section 3.5,.
* on the other hand, there are inherently non-semi-modular behaviors, such as arbitration, which may be

required by the type of application. In this case, one would like to use the output-persistency criterion to at
least make sure that the parts of the system that need to be designed with standard logic gates will not be
inherently (i.e. independent of the implementation style) prone to hazards.
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- the classofPetrinet underlyingthe SignalTransition Graph specification thatoffers theoptimaltrade-offbetween
ease of analysis and descriptive power:

* structural properties18, such as being a Marked Graph or being free-choice, are very easy to compute, yet
allow to use, forexample, Proposition 5.1 to designdistributive circuits.

* behavioral properties19, such as liveness, safeness, boundedness, persistency, are ingeneral harder tocompute,
butthe PN literature offers a wealth of efficient algorithms. Sowecan use again Proposition 5.1 todesign
semi-modular circuits.

* ontheother hand, results likeProposition 5.3 show that if thedesigner chooses todescribe, say, adistributive
behavior, then it can be specified using an STG whose underlying PNis a Marked Graph.

• Once the above choices have been made, the STG describing the desired behavior can beverified against the chosen
properties, using theresults from theliterature summarized in this paper.

• Then an implementation isproduced using asynthesis algorithms from the literature (e.g. [8], [13], [1]).

• Finally, the resulting circuit can beverified (using, for example, [7]) against the very same properties selected in the
first step, since our framework provides auniform representation for such properties both at the specification and at the
implementation level.

8 Conclusions

This paper has achieved three major objectives:

• Define alow-level structural and behavioral model for asynchronous systems, the Asynchronous Control Structure
and its companion Arc-Labeled Transition System. This model is more powerful than similar models known from the
literature (e.g. [19] or [12]) because itallows to use non-determinism for behavior abstraction and for components that
cannot becharacterized as Boolean functions, e.g. arbiters.

• Characterize concepts such as hazards, delay-insensitivityand speed-independence in terms of formal properties of the
Arc-Labeled Transition System and its Cumulative Diagram, both using pure delays and inertial delays. In this context,
we proved that in the pure delay case speed-independence is equivalent to semi-modularity.

• Relate those properties of the Arc-Labeled Transition System (and hence of the circuit) with high-level properties of
ageneral, Petri net based specification, the Signal Transition Graph. So we can constrain the Signal Transition Graph
representation depending on the class ofcircuits that we want to describe, rather than artificially imposing constraints
such as safeness and liveness.

In conclusion we provideaunified model, based on aSignal Transition Graph specification, where the desired properties
common to every implementation (because they are part ofthe specification itself) can be formally analyzed and verified.
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