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Abstract

We describe a two- dimensional CNN array of resistively coupled Chua's
circuits that deal with some elementary aspects of spatial cognition,
namely; recognizing open curves and objects from closed ones and
locating the shortest path between two locations. In this case, two
situations are analyzed: flat and wrinkled surfaces. The performance of
this model was examined using computer simulations although this method
can be implemented electronically via VLSI technology.
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1. Introduction

Biological systems ordinarily perform reasoning and logical decisions beyond the

capabilities of our most sophisticated computer systems. Intuitively, these tasks

seem to require mechanisms in which each aspect of the information in the situation

can act on other aspects, simultaneously influencing and being influenced by them. To

implement these mechanisms a class of models called "Parallel Distributed Processing

(PDP)" have been developed [11. These models assume that information processing takes

place through the interactions of a large number of simple processing elements called

units, each sending excitatory and inhibitory signals to other units.

PDP models are related to "analog neural networks". Their key features are

asynchronous parallel processing, continuous- time dynamics and global interactions

of network elements. In the Hopfield networks [2,3] each neuron is coupled with every

other and the corresponding integrated circuit is not technologically feasible.

Cellular Neural Networks (CNN) [4,5] have been developed to overcome these

problems. They possess the key features of neural networks, but each unit/cell of the

CNN is connected only to its neighbor cells. Each cell contains linear and nonlinear

circuit elements. Cells not directly connected together may affect each other

indirectly because of the propagation effects of the continuous- time dynamics of the

CNN. The CNN can perform parallel signal processing in real time, many examples of

its possibilities can be found in the literature [6]; e.g. noise removal, corner

extraction, edge extraction, connectivity analysis, the Radon transform, thinning and

half-toning, to mention only the most relevant.

Recently, Krinsky et al. [7,8] have proposed what they called "The Autowave

Principles for Parallel Image Processing". Autowaves represent a particular class of



nonlinear waves, which spread in active excitable media at the expense of the energy

stored in the medium. Under some conditions, these waves can be represented

essentially by two states, one is assigned to those parts of the system that are

moving along a limit cycle, while the remaining points are represented by the second

state.

The fundamental properties of autowaves differ basically from those of classical

waves in conservative systems. Thus, autowaves do not reflect or interfere, but

annihilate and diffract. Using these properties, Krinsky et al. prove the ability of

the autowaves for some image processing operations, such as contrast regulation,

restoration of a broken contour, and edge detection [7]. Principles of parallel

analog information processing by means of distributed systems are also discussed in

Ref. [9].

By coupling several Chua's circuits we have been able to show, analytically the

existence of traveling wave solutions in this system [10,11]. Traveling waves are a

particular case of autowaves since they only trigger from one stable equilibrium

state to a second one where they remain from then on. The diffraction and

annihilation of these waves are found to be extremely interesting properties for

image analysis. The purpose of this paper is to show that a two- dimensional CNN

array of coupled Chua's circuits can be used for image processing. We will bring to

focus some examples, namely; distinction between closed and open curves and finding

the shortest path in a labyrinth.

In the last case, two possibilities can appear in real life, since the labyrinth

can be flat or wrinkled. For example, the first situation is typical for hospitals or

large office buildings where large open surfaces with only walls or furniture to

block the way are common. The second situation could correspond to the case of anyone

going from point A to point B separated by some hills with gentle and steep slopes.



In this case, the shortest path may not be the one that takes less time since other

factors must be considered; for example, the available stored energy. In other words,

instead of taking the geometrically shortest path between A and B, that may include

climbing steep hills, it may be better to go around the obstacle in order to save

energy.

Due to the fact that our array is a set of resistively coupled Chua's circuits,

it has been found that the velocity of the traveling waves decreases with the

diffusion coefficient and can fail to propagate at, or below, some critical value of

the diffusion coefficient. This effect can only be found in a discrete model where

the internal dynamics of each circuit cell plays an important role and it can

potentially be used to solve three- dimensional spatial image problems with a two-

dimensional non- homogeneous array of Chua's circuits.

2. Model of the Two-Dimensional CNN Array of Chua's Circuits

The basic unit (cell) of our two- dimensional CNN array is a Chua's circuit

[12-17] (Fig.l), a simple active nonlinear circuit which exhibits a variety of

bifurcation and chaotic phenomena. The circuit contains three linear energy- storage

elements (an inductor and two capacitors), a negative linear conductance, and a

single nonlinear positive resistor. Every cell is coupled with their four closest

adjacent neighbors through linear resistors, thereby simulating a diffusion process.

The circuit dynamics for each cell can be described by a third- order

autonomous nonlinear differential equation. In particular, we will choose the

dimensionless form given by (1.1) in Ref. [12], which we rewrite for each circuit

cell at the position (i,j) of the array as,



xi,J = a ^i.j " hKj)) + Dtxi-i,j + Xi+ij + *i,j-i + xlfJ+1 - 4 xItJ]

yl.J = XU " yi.J + ZiJ (1)

Ki =-p yu

where 1 s {i,j> < n, n is the size of the array. h(x) describes the three- segment

piecewise- linear curve of the nonlinear resistor described by

h(x) = m1 x + (m0 - mx) x2 + e x a x
2

= mo X + e Xj 5 x s x2

= mx x + (m0 - mx) Xi + e x ^ x, (2)

where e is a small constant called the "DC offset".

We will choose xx = -1 and x2 = 1. Observe that in view of the symmetric

configuration of the nonlinear characteristics (i.e. its integral is equal to zero),

it is necessary to include an offset, e * 0, in order to have a traveling wave

solution [10].

In Eq. (1), D represents the diffusion coefficient of the variable x, and is

given by o/(G R) in its dimensionless form1, where G is the conductance in Siemens of

the linear resistor in the Chua's circuit, and R is the coupling resistance in Ohms.

D is assumed to be constant in the first two cases presented in this paper. However,

a diffusion coefficient which is a function of the position, D = D(i,j), is necessary

to describe a wrinkled labyrinth, as we will show later.

The set of fixed parameters used throughout this paper is {a,£,m0,m} =

{9,30,-1/7,2/7}, G = 0.7 and e = -1/14. For these values of the parameters the

xWe use the same scaled parameters as in Ref. [17].
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propagation failure mentioned above occurs at, or below, some critical value of the

diffusion coefficient D* = 0.51 (R* = 25).

The equilibrium states of Eq. (1) obtained by setting x, , = y. . = z, . = 0
*»j *»j »»j

are summarized as follows,

State

Po
P

(mj-mQj/nij - z/ml
-e/m0

(m0-m1)/m1 - e/ml

(ra0-ml)/ml + e/m1
e/mf

(mj-moJ/m! + e/ml

Here x, y and z are vectors of dimension n x 2. Each of these three

equilibrium states represents a solution to Eq. (1) for all values of the parameters.

The nonlinear boundary value problem described by equations (1) and (2) was

completed by imposing zero- flux boundary conditions. A uniform time step of 0.01 was

used throughout as the differential equations were integrated using the explicit

Euler method. The spatial step size is kept at a constant value equal to one, as a

consequence of our assumption of a discrete array.

3. Examples of Homogeneous Two-Dimensional CNN Array of Chua's Circuits for

Image Processing

Here we present two examples for illustrating the possibilities of using a

two- dimensional CNN array of Chua's circuits for image processing. Recall that

autowaves, and by definition, traveling waves, are not reflected by obstacles and

boundaries and do not interfere when two of them collided with each other. Our model

is able to recognize open curves and shapes from closed ones, and can identify the

shortest path between two locations. Since the autowaves propagate throughout the



medium with a constant velocity, a large number of circuits operate simultaneously.

On the other hand, classical methods for detecting closed curves usually consists of

scanning all possible points of the array in order to locate first the objective

being classified, and then following the boundary of the object, by trial and error,
until the closed curve is identified.

The problem for finding the shortest path between two points is equivalent to

solving the traveling salesman problem [3,18,19], In this frequently studied

optimization problem, a salesman is required to visit in some sequence each of n

cities; the problem is to determine the shortest closed tour in which every city is

visited only once. A Hopfield neural network can solve this problem by defining a

specific synaptic connection between neurons that minimizes an energy function [3].

The main difference between the classical solution of the traveling salesman problem

and our approach is the connection between neurons. In the first case, the neurons

are connected between them in a specific way in order to solve a specific problem,

while in our model each cell is only connected with the nearest neighbors.

For the two examples to be presented below, we make the following assumptions:

(1) The input image for pattern cognition is "stored into the memory" of our

array by keeping (i.e. clamping) those circuit cells that coincide with the

position of the obstacles, at the same initial state, at all times. This

assumption is equivalent, from the point of view of numerical simulation, to

imposing some kind of boundary conditions for the obstacles so that traveling

waves can surround them because of the diffraction properties of the

autowaves.

(2) Only binary images are assumed in these two examples. The two allowed



states coincide with the two equilibrium states P+ and P. in Chua's circuits.

(3) A traveling wave is always initiated at the left top corner of our array

by setting one of the Chua's circuits at the positive equilibrium state P+

while maintaining the remaining cells at P.. The traveling wave triggers from

P. to P+ at constant velocity, and spreading throughout the image. We should

point out that even though each cell can settle to either P±, the state

dynamics of each node are continuous (the state of a node is not binary
valued).

The pictures presented in this section are obtained by computer simulations

with a SUN 4 Workstation. The numerical simulations take 15 minutes to "complete" an
array of 45 x 45 Chua's circuits.

3.1. Detection of Closed Curves

Figure 2.a shows two possible obstacles that our model can detect and

differentiate. One of them is an open cavity (left top of the figure) while the
second one is a closed obstacle.

The set of computer snapshots in Fig. 2 shows the traveling wave propagating

throughout the input image. Because of the dispersion but not interference and

reflection properties of autowaves, the traveling wave surrounds the wall of the open

cavity and differentiate the closed obstacle by bypassing it, from those that are

opened by filling up the open space. Thus, the closed objects will remain at the

initial state P.. This criterion can distinguish a closed curve from an unclosed one.

This method can be implemented by adding a simple decision circuit designed to
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identify the cells that have triggered from a negative initial state to a positive

final state. Another possibility is to generate the difference picture of the result

of this transformation from the original image. Then, the closed curves can be

detected. Observe that unlike many other approaches, this method for closedness

detection is invariant against translations, rotations and scaling.

This application of autowaves for image processing can also be implemented by

a CNN cloning template [20].

3.2. Shortest Path in a Labyrinth

This application follows from the first example. After a traveling wave is

initiated at the left top corner of Fig.3a, it propagates throughout the image (see

consecutive snapshots 3b to 3f). Because of its constant velocity, the shortest path

will coincide with the path that takes the least time. Let us suppose that our wave

must find which is the shortest path to reach the left bottom corner of the image. In

this case, our autowave "explores" all the possible ways to reach that point. In the

successive snapshots shown in figure 3, observe that upon hitting the obstacle,

centered at cell (30,10), the traveling wave splits and eventually surrounds this

object (Fig. 3d), and finally annihilates each other when the two wave fronts

collided with each other [7].

Figure 3f shows the final state when the program stops after the wave reaches

the left bottom corner. With the help of a simple external circuit, the times at

which the cells had triggered from state P_ to P+ can be stored and compared in order

to determine the path that takes the least time to reach the final destination.



4. The Wrinkled Labyrinth

In this case, a new third degree of freedom is added to our problem. Suppose

the ground is not flat but wrinkled. In this case, the shortest path is the path that

takes the least energy. This class of problems could be useful for moving systems

with a limited amount of stored energy between two points on an ondulated surface.

From a numerical point of view, this situation can be achieved with a

discretized array of cells, each one connected with their adjacent neighbors through

different linear resistors R. These resistors, which vary from Rmin to Rmax, are used

to code the difficulty of slopes. Gentle slopes will correspond to values of R which

are close to Rmln, while steep slopes to values of R close to Rmax.

Then, the input image is a black and white photo with different tonalities of

greys of the wrinkled terrain where for example, the clearest parts of the photo

correspond to the higher zones of the terrain and are therefore identified with R
IT) AX

The remaining tonalities are identified with corresponding values of resistors until

the minimum allowed value, Rmin, is reached. This can be achieved experimentally by

fixing the value of the coupling linear resistors with voltage- controlled impedances

[21,22]. Thus, the different grey tonalities are discretized in discrete voltages
levels.

As mention in the Introduction, the discretized version of the coupled Chua's

circuits exhibits an interesting effect usually found in nerve propagation, namely;

"Propagation Failure". By choosing those points of the terrain that are unreachable

for our autowave to values of R at, or greater than some critical value R* where the

"failure" phenomenon appears, the traveling wave propagating throughout the array
will fail to propagate from those points that remain isolated from the* rest of the
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image.

Figure 4a represents a possible ondulated terrain. This image shows the

discretized values of the resistance for the interval, 1<R<30. The cell located near

the top of the Mexican hat have been assumed to be unreachable for the autowave and

hence, their coupling resistances have been set to values of R £ R* = 25. The

objective is to find the best path between the top cell (1,1) and the bottom corner

at cell (45,45) of Fig.4a. As in the preceding examples, the image processing begins

when a traveling wave is initiated at the top cell (1,1) of Fig.4a by setting the

cell (1,1) at the steady state P+ at t = 0, while the remaining cells are set at P_.

After that (t > 0), the autowave spreads throughout the wrinkled labyrinth, as

expected.

Obviously, for the homogeneous case, the shortest path is along the diagonal

of the array. In this case, in view of the inaccessibility of the top of the Mexican

hat, the autowave finds the best path by flowing and engulfing, around the obstacle.

The set of figures 4b to 4f shows this behavior. In those zones of the array where

the coupling resistance is close to the critical value R*, the autowave velocity

decreases, while in the other favorable zones (gentle slopes) its velocity increases.

Once the autowave reaches our destination cell (45,45) at the bottom corner; it stops

to propagate (Fig.4f).

This approach allows us to save the system's stored energy by choosing the

most favored path; i.e. the path where the diffusion processes involved in the wave

propagation are favored.
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5. Conclusions

We have shown that a two- dimensional CNN array of Chua's circuits can be used

for image analysis. Results similar to those proposed by Krinsky et al. [7] for

autowave propagation have been reproduced numerically, namely; detection of closed

curves and finding the shortest path in a labyrinth.

Those results were obtained in a resistively coupled homogeneous array of

Chua's circuits when a traveling wave propagates throughout an input image.

Obviously, the examples shown in section 3 are a special case of the wrinkled

labyrinth. By using a non- homogeneous array it is possible to analyze three-

dimensional surfaces, or ondulated surfaces, in order to find the best path (i.e. the

one that favor the autowave propagation) between two points. The unreachable places

for our autowave can be fixed by setting the corresponding cells of the CNN array to

be coupled with their neighbors through *resistances at, or greater, values than R*.

Since for R > R* the wave fails to propagate [10,11], these points of the input image

will remain isolated from the rest, as if they are obstacles.

It is important to remark that for autowave processes the traveling wave

velocity scales as (R* - R)i/2, i.e. for values of the resistance lower than R* and

close to the allowed R^ the changes in the values of the velocity are small if we

compare with R. Consequently, for the wrinkled labyrinth shown in figure 4a, our

autowave can not identify perfectly that the best path is to go through the lower

values of the resistance in Fig. 4a. To solve this problem the input image can be

discretized for values of the resistance closer to R\ In this case, the ability of

the autowave to identify the best path is improved, but the process becomes slower.

The wrinkled labyrinth is a powerful technique to discriminate steep slopes
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from gentle slopes, as well as to indicate to an autonomous system in real time which

places are unreachable, depending on its stored energy. This technique is based on

the observation that the state of each cell can be changed in order to vary the value

of the critical resistance R* via some external controlling parameters [11].

The possibility of building large arrays of Chua's circuits via VLSI

technology, as well as the use of voltage- controlled resistors to store the

ondulated surfaces, make this autowave approach a unique tool for real time image

processing.
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Figure Captions

Figure 1: Chua's circuit consists of a linear inductor L, a linear resistor of

conductance G, two linear capacitors Cx and C2, and a nonlinear resistor known as the

Chua's diode. Each unit is connected to its neighbors through linear resistors R at

node Vj.

Figure 2: (a) The input image; a cavity and an obstacle on a 45 x 45 CNN array

of Chua's circuits. From (b) to (f) the traveling wave initiated at the top left cell

(1,1) of the figure spreads throughout the image surrounding the obstacles and

entering the cavity. In this way, both objects are identified.

Figure 3: (a) The input image; a labyrinth defined by three obstacles on a two-

dimensional array of Chua's circuits. From (b) to (f) the traveling wave initiated at

the top left cell (1,1) of the input image spreads throughout the image. The autowave

properties of annihilation and diffraction are clearly seen. The traveling wave stops

when it reaches the final cell (45,45), left bottom of the figure.

Figure 4: The wrinkled labyrinth, (a) The input image; a Mexican hat. This image

shows the discretized values of the resistance in the interval, 1<R<30. From (b) to

(f) the traveling wave initiated at the top of the figure (a) spreads throughout the

image. Picture (f) shows the final state when the autowave reaches its destination.

The hole at the center of the picture represents those places that are unreachable

for the autowave.
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