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ABSTRACT - In this paper we present an n-dimensional canonical piecewise-linear

electrical circuit. It contains 2n two-terminal elements: n linear dynamic elements

(capacitors and inductors), n-1 linear resistors and one nonlinear (piecewise-linear)

resistor. This circuit can realize any prescribed eigenvalue pattern, except for a set of

measure zero, associated with (i) any n-dimensional two-region continuous piecewise-linear

vector fields and (ii) any n-dimensional three-region symmetric (with respect to the origin)

piecewise-linear continuous vector fields. We also proved a theorem that specifies the

conditions for a vector field, realized with our canonical circuit, to have two or three

equilibrium points.



I. Introduction

Extensive investigation of low-dimensional nonlinear systems has yielded great

improvements in the understanding of its evolution, resulting in an enormous number of

experimental and theoretical works. Among low-dimensional nonlinear systems, piecewise

linear systems are of particular importance. A class of these systems; namely, the class of

three-dimensional three-region symmetric (with respect to the origin) piecewise-linear

continuous vector fields, has been extensively investigated by L.Chua and his co-workers1,2.

Recently, a piecewise-linear circuit has been presented3, such that it contains the minimum

number of elements needed to generate all possible phenomena in any three-dimensional three-

region symmetric (with respect to the origin) piecewise- linear continuous vector fields. In

the above sense, this circuit is called canonical3.

However, many nonlinear dynamical systems are intrinsically high-dimensional. Fluid

flows, chemical reactions and electrical circuits with distributed parameters have many

spatially-distributed degrees of freedom. The behavior of these systems cannot be understood

(except in limited contexts) in terms of low-dimensional dynamics. In order to understand

better the temporal and spatial evolution of high-dimensional nonlinear systems, it is

highly desirable to derive an n-dimensional canonical circuit, as a paradigm for high -

dimensional chaos.

In this paper, we will present an n-dimensional piecewise- linear electrical circuit,

which is canonical in the following sense : (i) it can realize any eigenvalue pattern

(except for a set of measure zero) associated with any n-dimensional two-region continuous

piecewise-linear vector fields, or any n-dimensional three-region symmetric (with respect to
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the origin) piecewise-linear continuous vector fields; (ii) it contains the minimum number

of elements (this number is 2n) needed for such a circuit. In Section II we give the

structure of our circuit It is a generalization of the canonical circuit presented in Ref.3

and contains 2n two-terminal elements: n linear dynamic elements (capacitors and inductors),

n-1 linear resistors and one piecewise-linear 2-terminal resistor. In Section III we prove

that our circuit is canonical and develop an efficient algorithm for calculating the circuit

parameters from an arbitrarily given set of eigenvalues, except for a set with zero Lebesgue

measure. Further, in Section IV we prove a theorem that specifies the conditions for our

canonical circuit to have two or three dc operating points. We close the paper with Section

IV where we give conclusions and pose some question for further studies.

n. Canonical Chua's circuit

Consider the class D_(n,k) of n-dimensional k-region continuous piecewise-linear vector

fields. We define a k-segment Chua's diode4 as a nonlinear resistor with a piecewise-linear

v-i characteristic:

k-l

i =Bq +a,v + [bj |v - Ej|

(aQ, a1$ bj, ...., b^, E^ ...., Ek_! are arbitrary real numbers). Note that every circuit

which contains n linear dynamic elements (capacitors and inductors, possibly mutually

coupled), one k-segment Chua's diode and an arbitrary number of linear resistors is a member

of L(njc). Let us define c(n,k) to be the subclass of L(n,k) such that, the v-i

characteristic of Chua's diode is symmetric with respect to the origin. The three-

dimensional canonical Chua's circuit3 is a member of c(3,3). Moreover, it follows from Ref.



5 and 6 that one can derive all possible nonlinear dynamics phenomena in c(3,3) by analyzing

this circuit alone.

In this paper we shall restrict ourselves on (L(n,2) and c(n,3) and prove that there

exist a circuit, such that all circuit parameters can be determined uniquely and which

possesses any (except a set of measure zero) prescribed eigenvalue pattern associated with

Q_(n,2) and C(n,3).

First of all, we calculate the minimum number of elements needed for such a circuit.

Since our goal is an n-dimensional circuit described by n first-order differential

equations, it must have n dynamic elements (capacitors and/or inductors). Since we consider

the vector fields in L(n,2) and C(n,3), the circuit is allowed to have only one Chua's diode

whose v-i characteristic is two-segment piecewise-linear (see Fig. 1(a)), or three-segment

piecewise-linear and symmetric with respect to the origin (see Fig. 1(b)). Define the regions

D and D by v < 1 and v > 1 for the v-i characteristic shown in Fig. 1(a), and, D , D
1 i -10

and D by v < -1, |v | < 1 and v > 1 for the v-i characteristic shown in Fig. 1(b). The
i i l

state equations of the circuit in each of these regions are affine. Since, for the vector

fields in C(n,3), the eigenvalues in the regions D and D are identical, in view of
-l+i

symmetry, the total number of eigenvalues characterizing each circuit is 2n.

Impulsively, one might rush to conclude that 2n parameters are enough. However,

because of the well-known impedance scaling3 property of linear systems this is not correct.

Indeed, an autonomous linear 2-element RC circuit has two circuit parameters R and C, but

has only one natural frequency 1/RC (or time constant RC). This frequency remains unchanged

if the circuit parameters changed to <xR and C/a, where a is an arbitrary real number. In

other words, to produce the natural frequency, one can assign an arbitrary value to one

parameter, and find the value of the other parameter. The circuit having a single natural



frequency can be uniquely identified only by specifying also the the impedance level through
the value of R.

This situation is similar for n-dimensional circuits. Since the left-hand sides of

the following equations (6) and (7) are homogeneous functions of the zeroth order (the

circuit parameters are the unknown variables) the circuit with 2n parameters (G, R, L,
i J k

Cj) produces the same set of eigenvalues as the same circuit with 2n parameters (ocG., R/oc,

Lk/a, aCp. In other words, to generate 2n eigenvalues for L(n,2) or c(n,3) we need at least

2n+l parameters: n of them determine the dynamic elements, two parameters determine the v-i

characteristic of the nonlinear resistor, and the remaining n-1 parameters are linear

resistors. Thus, the minimum number of circuit elements is 2n, characterized by 2n + 1

parameters.

Of course, while there exist more than one canonical circuit for Q_(n,2) and C(n,3),

not every circuit containing 2n elements is canonical. Figure 2(a) shows a three-dimensional

canonical circuit given by Chua and Lin3. Although there exist other three-dimensional

canonical circuits (two new three-dimensional canonical Chua's circuit are presented by

Lj.Kocarev et al.), the state equations of the circuit in Fig.2(a) are the simplest: the

matrix B in Eq.(4) is tridiagonal and its elements have the simplest possible form (in

Ref.8 we find all other three dimensional canonical Chua's circuits and proved that the

circuit from Ref.3 has the simplest state equations).

Having this in mind, we can easily extend the original and simplest canonical

Chua's circuit to an n-dimensional circuit by simply adding alternatively L's (with serial

R's) and C's (with parallel G's), as shown in Fig.2. Note that as n ^ ©o, the canonical

Chua's circuit is equivalent to connecting a lossy transmission line across Chua's diode.



In the region D , the state equations of the n-dimensional circuit from Fig.2.d are

linear:

\\ 1
dt

\
dt

—

dvc
n-1

dt

diL
n

dt

a a .. a
1,1 1.2 l,n

a a ...a
2.1 2.2 2,n

a a a
n-1,1 n-1,2 n-l,n

a a .. a
n,l n,2 n,n

n-1

3 M-X
0

where (assuming that the slope of the v-i characteristic in D is equal to G) the matrix in
0 a

the region D is given by:

M0 =

C~ c

1

u

0

R

2 ~2

1

C

0 0 0 ••• 0 . 0

2 1

G3
u:

0 0

1

0 0

0 ••• 0 0

0

o 0 o o ... 0-£ -^ £
n-1 n-1 n-1

0 0 0 0 ••• 0 0 1
R

n

IT
n J

for n even (Fig.2(d) with equal number of capacitors and inductors), and
7

(1)

(2a)



Mo =

G
a

0 0 o .•• 0 0
i i

R2
E7

1
C

1

U2

G3

o o

i o

0 0 0 0-

0 0 0 0-

0 0

0 0

1

0 0

R

U C , E—
n-1 n-1

1

c

1

u
n-1

G
n

for n odd (Fig.2(e) with one more capacitor than inductors).

Remarks:

(2b)

1) The matrix MQ in Eq.(2) has only 2n-l different non-zero elements, since

a.. = -a , i = 2, ..., n-1.
M-l M+l

2) The matrix of the canonical Chua's circuit is a submatrix of Eq.(2): the first three

rows and columns.

3) If we increase the dimension of the circuit by one, the corresponding matrix will have

only two new elements: a and a (since, a = = -a ).
n+lji n+lji+1 v nji-1 nji+r



Similarly, in the regions D and D+ , where the state equations are affine, the

corresponding matrix M will have the same elements as M , except for a , where the slope

of the v-i characteristic must be changed to G . We shall denote it by a :

Observe that the n-dimensional canonical Chua's circuit is characterized by a

canonical piecewise-linear state equation9:

where

A =

X =A +B X +£C.|<cc.,X> - p.
i=l

B = Mr C2 =

nxl

"l = a2 =

0

•-(G-Gb)/2Cl
0

0

p, = -1,

(4)

c = - c

nxl

P2 = i

and < , > denotes a vector dot product
nxl

Denote by |^, \x2 , ..., Hn and v^ v2 Vn the eigenvalues of the matrices M and
spectively. Some of the ji*s an

avoid complex numbers, we can define:

Mj} respectively. Some of the u.'s and v's may be complex conjugate numbers. In order to



p. -2 *i
i = l

q = I v2
i = l

P2 =2 H.H,
i = 1 n-1

j = i + 1 n

P3 =2 Hfift
i = l n-2

j = i + 1 . . . .,n-l

k = j + 1 , . . .,n

q, = Iv.v.
^2 i j

i = l n-1

j = i + 1 n

q = I V.V.V.
3 i j k

i = 1 n-2

j = i +1 n-1

k = j +1, . . .,n

(5)

vn-l vn-lWp.-n.tys-.n. (-lrx-v^.-v

The characteristic polynomial of the matrix M is:

(s-|i1)(s-|l2)...(s-jii|) =
0n ^ n-1 ^ n-2= s -p:s -p2s - p S - p = 0

n-1 r n

where (-1)"" *p is a sum of all (n-k)-th order main subdeterminants of the

matrix M •
o

p.- I
.-i

v.

n-1 n

"P2= I I
Sl=1 S2>S1

a a
s ,s s ,s
11 12

a a

2 12 2

n-m+l n-m+2

wmX =1 I- I
sr1 s2>si Sm>Sm-!

a .. a
s ,s s ,s
11 1 m

s ,s s ,s
2 1 2 m

s ,s s ,s
ml mm

10
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(6b)

(6c)



(-l)"-'p„ =

a a
1.1 1.2

a a
2,1 2,2

a a
n,l n,2

l.n

2,n

n,n

where a.. are the elements of M .
ij o

In a similar fashion for the matrix M we have:

«,= I
v1

s ,s
1 1

n-1 n

•<k= I I
s =1 s >s

1 2 1

a a

Ysi V2
a a

SA s ,s
2*1 2 2

n-m+l n-m+2

a ». a
s ,s s ,s
11 I'm

™m\ =1 I- I 2 1 2 m

S1=I S2>S1 "m**"-!

(-D"\ =

s ,s, s fi
ml mm

a a ••• a
1,1 1.2 ai,n

a a ... a
2,1 2,2 2,n

a a „ . a
n,l n,2 n.n

where a = a., (i = 2, ..., n), and a, is given by Eq.(3).

11
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(7a)

(7b)

(7c)

(7d)



HI. Proving the circuit is canonical

In this section we will prove that the n-dimensional circuit shown in Fig.2(d) and

2(e) is canonical.

Theorem 1.:

The circuit from Fig.2(d) (or Fig.2(e)) is canonical; that is it contains the minimum

number of elements (this number is 2n) needed to realize any eigenvalue pattern associated

with L(n,2) and C(n,3), except for a set with zero Lebesque measure.

We shall prove now the following three lemmas.

Lemma 1:

Let us define: •

n-m+l n-m+2 n

\j=l I- I

a a .. a
S J S J S J

11 12 1 m

a a — a

2 1 2 2 2 m

s.=* s >s. s >s
1 2 1 m m-1

a a ... a
s ,s s ,s s ,s
ml m 2 mm

(/ = 1, 2, ...,n; m = 1, 2,..., n-/+l), where a., are the elements of M .
ij o

Then:

m-l(i) A = (-I)"" p
m,l i

m+l ^+1
(ii) A = (-1)1

m,2 P,-q,

Proof. See Appendix A.

m = 1, ..., n

m = 1, ..., n-1

12



Lemma 2:

The numbers A ,, defined in Lemma 1 satisfy the following recurrent relations:

Ai,/ = Ai./+i + ar l= h -' n_1 (8a>

Ai, = an (8b)

A2.rA2./+i+a/Ai,/+rP/' /=1 n"2 W

Vi = an-i Ai* " Pn-i (9b)

A , = A , + a. A , - B. A ,
m,/ m,/+l / m-l,/+l W m-2 ,/+2

m= 3,..., n-1; /=!,..., n-m

A , = a A - B A
m^i-m+I n-m+1 m-l,n-m+2 "n-m+1 m-2ji-m+3

m =3, ..., n

where

a/ =a/,/ (/ = l>2"- n> and Pr a/,/+ia/+i,/ (/ =1A— n_1)-

(10a)

(10b)

Proof. See Appendix B.

Lemma 3:

Let AmJ (m = 1, 2, ...,n; / = 1, 2, ... n-m+1), a, (/ = 1, 2, ...n) and p, (/ = 1, 2,
...n-1) be real numbers that satisfy the relations (8-10). Then the numbers a , ..., a;

1 n

P,» ♦••> Pn_j can be determined uniquely from the numbers A , ..., A ; A ,

-,An-U*

13



Proof. See Appendix C.

Proof of Theorem 1.

Let My M-2 » •••» Hn and Vj, v2, ..., Vn be the eigenvalues of the matrices M and

Mjt respectively. Using the relations (5) we can obtain the numbers p , p , ..., p and q ,

qo ..., q . From Lemma 1, we find 2n-l numbers A , ..., A ; A , ...,A , while
z ™ 1,1 n.l 1,2 n-1,2

from Lemma 3, c^, ..., cy p^ ..., p Since our circuit contains 2n+l parameters (but

only 2n in the DQ region), we can assign an arbitrary value to any one of them. Taking, for

example:

C= a (a is an arbitrary value)

and using the definition of a. and p, in Lemma 2, we obtain:

G = -aC
a 1 1

and

L2= -1/(P,C,)

R2= -a2L2

C3= -1/(P2L2)

G , = -a , C ,
2/-1 2/-1 2/-1

L2T -1%-C2/.,)

R2r "a2/L2/

c2/+,= -wj^

R = -a L , for n even,
n n n

G = -a C , for n odd.
n n n

Finally, the last (2n+l)-st parameter G is calculated as follows:
b

14



X =q
1,1 Hi

Gb = - «,c>
Thus, we can calculate the parameters of our circuit from any given set of

eigenvalues, except when:

°V "•' an; Pi* -' Pn-i; "i =°» °° <n)
since in this case some of the parameters will be zero or will tend to infinity.

Fortunately, the set S satisfying relations (11), has a zero Lebesque measure. Hence the

circuit is canonical. |

Remark:

4) If the prescribed eigenvalue pattern belongs to S, we can perturb one of the ji's or v's

so that the qualitative behavior of the system does not change, thereby obtaining a

realizable eigenvalue pattern.

Lemmas 1 and 3 and Theorem 1 give an efficient algorithm for calculating the

circuit parameters from any prescribed set of eigenvalues, except for the set S. We will

now illustrate this algorithm with the following examples.

Example 1. Three-dimensional canonical Chua's circuit.3)

Let Hj. H2 » H3 and vf v2, v3 be the eigenvalues of the 3-dimensional canonical

circuit Then, the circuit parameters can be determined by the following procedure:

Step one: From (5) we have:

p^^ + Hj + Hj , - pa - ^ +^ + jys . p3 =W3

4. =V. +V2 +V3 • " % ' V,V2 +V!V3 +V2V3 • % = V1V2V3
Step two: From Lemma 1 we have:

15



p2_q2 p3-q3

A, f = p„ , X = q
3,1 r3 1,1 Ml

Step three: From Lemma 3 we obtain:

!) °, =AU • A,,2 • P,=-A2, +A23 +«,AU
A A.. +A3^ +«,A2^

A =

2) a2 =AU-AU' ^2 =- A2, +A2J +«2 AU

3> «3 = AU

Step four: From Theorem 1 we have:

C=a , G= -aiCl . Gb =- a,C,

V-V0J.C,). R2=-«2L2,. C3= -1/(P2L2) , G3=-a3C3

It is easily verified that these parameters are identical to those calculated using the

explicit formulas in Ref.3.

Example 2. Five-dimensional Chua's circuit.

Let \i, \i , ..., \i and v , v, ..., v be the eigenvalues of the 5-dimensional

canonical circuit (Fig. 2(c)). The circuit parameters are:

C1=a G=-«iCl, Gb =-aiCl, L= -VCP.C,) , R2=-a2L2

C3=-1/(P2L2), G3=-a3C3, L4= -l/(p3C3), R4= -a^, C= -1/(P4L4), G5= -a5Cs

where from Lemma 3 we have

D «,-A,.,-Au. P. - "\. +A2, +«,A U
. _V^ +a.A«
Au= pj

16



_ A.. +A43 +aA3

_ A.. +tt.A4.2
U P,

2> «2 =\2 - AU • P2 =-A2, +A2. +a2AU
. _ -A3^ +A3J +tt2A2^
A'.4 ft

K2

. _-\a+a2A33

3> «3 =AU -\4 ' P3 =- A23 +A2.4 +a3A,.4
AU= <A,+ «3A2/P3

4) a4 =\4-AU P3 =" A2.4 +«4AU
5> «5=AU

6> S, =*,., - Au

From Lemma 1 we obtain:

P2 " %
1.1 *I u p, Ii

A, = p3,1 F3

-%

" p, %

A. = p5,1 F5 \, =1,

A. = -p2,1 F2

A = -p
4,1 F4

a p3 ' %
A -*

A« n .n

where p. and q. are obtained from (5).

Remark:

5) For n > 5, a computer program is available for calculating the circuit parameters.

17



IV. Some properties of the canonical circuit

In this section we generalize Theorem l3 as follows:

Theorem 2:

(i) The following conditions are equivalent:

i.l) The vector field in L(n,2) has two equilibrium points;

i.2) The canonical circuit has two dc operating points;

i.3) G < -G < Gor G > -G > G ;
a e b a e b

i.4) pn / o^ < 0

(ii) The following conditions are equivalent:

i.l) The vector field in C(n,3) has three equilibrium points;

i.2) The canonical circuit has three dc operating points;

i.3) G < -G < G or G > -G > G :
a e b a e b

i.4) pn / c^ < 0

where G is defined by the continued fraction:

Ge = l- (12)
V

G +

3 1
R. + +

G.-i +

Proof of Theorem 2.

1

Rn

18



(i)

1) The equilibrium points of our canonical circuit can be obtained from state equation (4)

dX
when = 0, that is:

dt

or

B X +[C.|<a.,X> - p. | =0 (13a)
i=l

- i0 (vc ) + iL = o
1 1 2

vc +RijL " vc =° i = 2,4,6, ...
'"' ' M (13b)

" Jl -Givc + V =° i = 3, 5,7, ...
i-1 i i+1

v + R i = 0
C . n L

n-1 n

In Fig.3. we show the circuit which is obtained from the canonical circuit

(Fig.2(d)) with the capacitors open-circuited and the inductors short-circuited. In fact,

the equations (13b) are the KCL and KVL equations of the resistive circuit shown in Fig.3.

Solving these equations we obtain the dc operating points of the circuit, which means that

the equilibrium points and the dc operating points are identical. Hence, the conditions

i.l) and i.2) are equivalent.

2) Equation (13a) in region D becomes:

MoX =0

So, when det MQ * 0 the canonical circuit has one and only one equilibrium point in the D

region (X = 0). Hence, if the circuit has two equilibrium points, one of them must be

located in the Di region. The converse is also true. This also means that the circuit will

have only one dc operating point at the origin, and one in the D region (see Fig.4).

Segment B in Fig.4 is described by:

i =Gbv +(G - Gb) (14)

while the load line is defined by:

i = - Gev (15)

19
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where G is given by (12).

The intersection points of (14) and (15) have the following coordinates:

G -G
b a

v« = ^, 7T ^d K= -GvA
0 G + G ° e °

b e

Since the circuit in the region Dj has an equilibrium point if and only if v > 1, we

have:

which is equivalent to:

Thus, the conditions i.2) and i.3) are equivalent.

3) Since

G +G
a e

< 0
G+G

b e

G < - G < GL or G > • G > G.
a e b a e b

pn =(-1)""1 det Mo and qn =(-1)"'1 det M{
and expressing det M (m =0, 1) as:

m

n-1

(•1>-'detM.%-C..,L.)=Ht[ TTA +
k=l k^s ,s +1

s =1 1 1

si=l,...ji-3 k^s .s +l,s.^+l s,=l,...4i-2i+l k^s..s.+l k=l
82=3^-1 112 2 s2=l...^-2i+3 J J

.:. j=i '
8j=2i-l^..,n-l

where a, = G,, for k odd (k > 1), a = R for k even, and a = G if m = 0, while a = G if m
kk kk la lb

= 1, we can show by mathematical induction that:

G + Ga p
a e rn

20



Hence, the conditions i.3) and i.4) are equivalent,

(ii) The proof is similar.|

V. Conclusion

In this paper we have presented an n-dimensional three-region canonical circuit. It

contains 2n elements and realizes any eigenvalue pattern (except for a measure zero set)

associated with (i) any n-dimensional two-region continuous piecewise-linear vector fields

and (ii) any n-dimensional three-region symmetric (with respect to the origin) piecewise-

linear continuous vector fields.

We remark that there are two reasons for choosing a k-segment piecewise-linear v-i

characteristic:

k-l

i =ao +ajv + £bj |v - Ej|

for Chua's diode. First, any such characteristic can be exactly synthesized and built in

practice by using only op AMPs, pn - junction diodes and batteries, by several methods10,11.

Second, the dynamics of piecewise-linear circuits can be analyzed, at least at an intuitive

level, using standard linear system theory, and there is hope that even a rigorous proof of

chaos may be achieved for certain parameter values, as Reference 5.

We close our paper with the following directions for further studies:

(i) To find an n-dimensional canonical k-regional piecewise- linear circuit. This is of

particular importance since any nonlinear v-i characteristic can be described with an k-

region piecewise-linear continuous characteristic;

(ii) To investigate new phenomena in the n-dimensional canonical k-regional piecewise-

linear circuit, especially when n tends to infinity. This is also important in order to

understand the dynamic of high- and infinite-dimensional systems.
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Appendix A.

(i) This is obvious from (6).

(ii) From (6) and (7) we have:

Pi • %- I \, - E a = a . - a

<-" <P».-W-

n-m n-m+1 n

I I- I
8=1 8 >S. S >S

1 2 1 m+1 m

n-m n-m+1 n

-E I- E
S =1 8 >S 8 >S

1 2 1 m+1 m

s ,s s ,s s ,s
11 12 1 m+1

s .s s„ ,s^ s ,s
2 1 2 2 2 m+1

a a — a
S ,S 8 ,8 S , S
m+1 1 m+1 2 m+1 m+1

S..S. S.S^ 8,8
11 12 1 m+1

s- is. s» .s„ s_ ,s
2 1 2 2 2 m+1

8 . ,8. S .8. S ,8
m+1 1 m+1 2 m+1 m+1

"*1 " «1> AmX

Thus: A_, ='(-«" V "V I1
m,2 (P, - q.)
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Appendix B.

We shall prove only the relation (10a). The other relations can be proved in a

similar way. Since a, ,= 0 for k> 1, we have

/,/ m-l./+l

n-m+3 n-m+4

n-m+1 n-m+2 n

\,/ = E E •• E
8 =/ S >S 8 >S

1 2 1 m m-1

a a — a
8 ,S 8 ,S_ 8 ,8
11 12 1 m

a a —a
8 ,S S ,S S ,8

2 1 2 2 2 m

a a "-a
8 ,S 8 ,8 S .8
ml m 2 mm

n-m+2 n-m+3 n

-1/ E I- I

a a "-a
S ,8. 8 .8,, S^.S

2 2 2 3 2 m

a a — a

3 2 3 3 3 m

- a

8 =/+l 8 >S 8 >S
2 3 2 m m-1

a a —a
S ,S 8 ,8 S ,8

m z m j mm

n-m+3 n-m+4 n

S =1+2 8 >S 8 >S
3 4 3m m-1

*lM 0 -0

a ,, a —a
s ,/+1 s„,s„ s„,s
3 3 3 3 m

0 a'
8 J S ,S

m j mm

n-m+1 n-m+2 n

• E I- I
S =1+1 S >S 8 >S

1 2 1m m-1

a a — a

11 12 1 m

a a —a
S ,8 S ,8 8 -S

2 1 2 2 2 m

a a — a
S ,8 8 ,8 S ,S
ml m 2 mm

V+iAz+i I E " I

a a ••• a
8 ,8 8 J S .8

3 3 3 4 3 m

a a — a
S J. 8 ,8 S ,S

4 3 4 4 4 m

s„='+2 S >S„ 8_>S_ 1
3 4 3 m m'1

a a —a
S 4, S J 8 ,S
m 3 m 4 mm

23



+ A / = a, A , -0i A , + A , .m,/+l / m-l,/+l H m-2,/+2 m,/+l

The lemma is proved.|

Appendix C.

Step One (/ = 1):

Using (8a), (9a), (10a) and (10b), we obtain:

ai - Ai,i " Au

Pi =" A2.i +A2^ +ai Au
A., = (- A • + A + a A. W BJ.3 v j+2.1 j+2,2 1 j+1.2 ' M

j=l,2,...4»-3

A „ = (-A + a A ) / B
n-2.3 v n,l 1 n-1,2' ' Kl

Note that A are obtained in this step, i = 1, 2, ... n-3; they will be used in the

following steps.

Step Two (/ = 2):

From (8a), (9a), (10a) and (10b), we get:

a = A, - A „
2 U U

r2 2,2 23 2 1,3

A. = (- A +A + a A )/B
j,4 v j+2,2 j+2,3 2 j+U ' K2

j=U,...ji-4

\.3.4 =("A-,, +«2 A,23> I h
Step k (/ = k, k = 3, ..., n-3):

Using (8a), (9a), (10a) and (10b), we obtain:,

a, = A , - A
k ljc ljc+l

K - " A2Jc +\*+,+ °kV.
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A „ = (- A + A + a A ) / B
jJc+2 v j+2Jc j+2Jc+l k j+ljc+r He

j=U,...ai-k-2

An-k-lJc+2 = ('An-k+U + ak An**+1) f K
Similarly, we determine A in this step, since they are needed in the subsequent

steps.

Step n-2 (/ = n-2):

Using (8a), (9a) and (10b), we obtain

a „ = A „ - A
n-2 lji-2 l.n-1

K-2 ="V2 +Vl +an-2 Vl

AU = (" K-2 + an-2 Vl >I Pn-2
Step n-1 (/ = n-1):

From (8a) and (9b) we have:

a , = A - A
n-1 lji-1 lji

p , = - k + a A
"n-1 2ji-l n-1 U

Step n (/ = n):

Finally, we use (8b):

a = A
n l,n

This completes the proof.|
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Figure captions:

Fig.l.a) The v-i characteristic of the two-segment Chua's diode (G * G )
a b

b) The v-i characteristic of the three-segment Chua's diode (G * G )
a b

Fig.2. a) 3-dimensional canonical Chua's circuit

b) 4-dimensional canonical Chua's circuit

c) 5-dimensional canonical Chua's circuit

d) n-dimensional canonical Chua's circuit (for n even)

e) n-dimensional canonical Chua's circuit (for n odd)

Fig.3. The dc circuit

Fig.4 The dc operating points
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