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ABSTRACT

We investigate the synchronization between two systems consisting ofcoupled circle
maps that have a common drive, which may be chaotic or regular. We observe several
new aspects ofchaotic and regular synchronization. In the chaotic regime the transition
from synchronization to nonsynchronization corresponds to the transition from one to two
Liapunov exponents. We find regions in the parameter space with periodic motion where
synchronization is always achieved, never achieved, or, depending on the initial conditions,
sometimes achieved. The nonsynchronization or synchronization are stable in the presence
of a weak chaotic (or noisy) signal.

PACS numbers: 05.45.+b



This work concerns the study of synchronization of chaotic and nonchaotic systems.

Ourmotivation comes from the recent publications on chaotic synchronization[1-4]. Pecora

and Carroll[l] observed that it is possible to synchronize two identical stable systems with

a chaotic drive, even if the initial conditions are different for the two systems. They used

a dynamical system of the type u = g(u,w), w = h(u,w) and asserted that a variable w'

governed by w' = h(u,w') will synchronize with w only if the sub-Liapunov exponents of

the driven subsystem are all negative. The sub-Liapunov exponents they defined depend

on the Jacobian matrix of the w subsystem, taking derivatives with respect to w only.

The synchronization condition is also valid for discrete time systems, as was found for the

example in [4].

Here we show that the sub-Liapunov exponents as defined in [1] are Liapunov expo

nents of the global system consisting of driving and driven systems together. In a simple

system consisting of coupled sine-circle maps we find that the regime of chaotic synchro

nization occurs when one of the Liapunov exponents of the global system is negative and

the other positive. The synchronization is lost when both exponents become positive,

which has been referred to as the hyperchaos regime[5].

In our studies of chaotic synchronization in coupled digital phase locked loops[4] we

found that, depending on the parameters and initial conditions used, chaotic synchroniza

tion may sometimes occur, never occur, or always occur between the driving and stable

subsystem. This may also be observed when the driving and driven systems are completely

stable, i.e., in the periodic or quasiperiodic regime. Here we show that this phenomenon

is caused by the lack of symmetry between w and w'. In the driving system there is a

feedback between w and u, which does not exist in the driven system. It turns out that

w and w' are in fact different subsystems, which may have different orbits and distinct

stability properties.

In our system of coupled sine-circle maps we will show that synchronization between

the driving and driven system is never observed in most of the Arnold tongues, where the

systems are completely stable. There are regions of periodic motion where synchronization

is always obtained, and in other regions synchronization may or may not occur, depending

on the initial conditions used. In the latter case we study the basin of attraction and find



a nonfractal structure.

Consider the following system of equations

#+* =# +n+A rin[2ir(# - #)], (la)

#+» =^« +fi' +A sin[27r(^? - «)], (16)

as the driving system. Now consider a driven subsystem of the above equations, identical

to the first equation,

<K+1 =« +0+̂ sin[27r(^ - rff)]. (2)
The operation modulo 1 is assumed on the right-hand side of the above equations. We

show in Fig. 1(a) the phase diagram for any of the variables fa, fa or fa. The white

part represents periodic orbits and the shaded area represents chaotic or quasiperiodic

motion. [In all the numerical calculations shown here we have neglected a transient of

3000 iterations]. The Arnold tongues[6] emanating from k = 0 are evident in the figure.

The structure of the phase diagram can be better understood if we make the following

change of coordinates: Define 0J = ft - </>%, 9% = </>? + #?, 6% = <£J - <£J, H_ = ft - ft'

and ft+ = n + ft'. In the new variables Eqs. (1) and (2) become

0?+1 = 0? + ft- - - sin(27r^n), (3a)

02n+1=0£ + ft+, (36)

and

0?+1 =0J +ft_ _A[sm(27r0«) +sin(27T0?)]. (4)

Thus the evolution of fa and fa can be decomposed in two motions: the circle map (Eq.

3(a)) and a trivial linear motion (Eq. 3(b)). Eq. (4) is a driven circle map. The border

of invertibility for the circle map (Eq. (3a)) is given by k = 0.5. Below this line chaotic

motion does not exist; there are only periodic or quasiperiodic orbits.

We note that synchronization between fa and fa implies synchronization between $i

and 03, because the same change of coordinate is made for fa and fa. The concept of



synchronization is coordinate independent if and only if one makes the same change of

coordinate in both driving and driven systems.

The region where synchronization between fa and fa (or 9\ and 0$) is observed (white)

is shown in Fig. 1(b) for the initial conditions <j>\ = 0.2, <f>\ = 0.0 and <j>\ = 0.5. Com

paring Figs. 1(a) and 1(b) we see that synchronization is generally not observed when the

motion is periodic, with the exception of the period one tongue, nor when the motion is

quasiperiodic. In fact, as we will show, synchronization in most of the periodic tongues

is never possible. We also see regions where the motion is chaotic (above the k = 0.5

line) and synchronization is observed as found previously [1,4]. In other chaotic regions

synchronization is not found.

All these features can be understood by studying the eigenvalues (or equivalently the

Liapunov exponents) of the global system consisting of the driving and driven systems

together.

The Jacobian matrix of the global system in the 9 coordinates is given by

/l-2ibcos(27r^) 0 0 \
J = 0 1 0 . (5)

\ -JkcOs(27T0f) 0 l-JfecOs(27T0J)/

Now we calculate the product of the Jacobian matrices in a given orbit of period N and

find the eigenvalues of the resulting matrix, which are

Ai = JJ [l-2ibcos(27r^)]? (6a)
n=l,N

A2 = 1, (66)

A3= JJ [l-&cos(27r0J)]. (6c)
n=l,JV

[The eigenvalues are, of course, the same if calculated in the <j> coordinate system.] The

Liapunov exponent associated with the eigenvalue At- is defined as

A'-jfel^l. (7)
In our system one of the Liapunov exponents A2 is zero, reflecting the fact that one of

the variables has a trivial motion. We calculate the two other Liapunov exponents Ai



and A3 and plot the region where they are positive (shaded area) in Figs. 2(a) and

2(b), respectively. Comparing Figs. 1(b) and 2 we see that synchronization is possible

only if A3 is nonpositive. The driven system is more stable than the driving system,

and when both Liapunov exponents become positive chaotic synchronization is lost. The

presence of more than one positive Liapunov exponent in a given system has been called

hyperchaos[5]. Using this nomenclature, it is the hyperchaos regime that determines the

region of nonsynchronization when the system is chaotic.

Now we calculate the sub-Liapunov exponent as defined by Pecora and Carroll[l]. The

sub-Liapunov exponent A3 for $?+1 is a function of the Jacobian with respect to <f>$ and

is given by

A3 =Jin^ 1 £ In |8«+x/a«l =̂ 4 E k I1 " fc «*P*(« "«)l- W
~*°° n=l,N ~*°° n=l,JV

It turns out that A3 is in fact A3; that is, the sub-Liapunov exponent of the driven subsys

tem as defined in [1] is one of the Liapunov exponents of the global system. This occurs

because fa does not depend explicitly on fa, which makes the elements J13 and J23 of the

Jacobian matrix equal to zero. When one calculates the product of the Jacobian matrices

for a given orbit, these elements of the product remain zero. This insures that one the

eigenvalues gives the sub-Liapunov exponent denned by Pecora and Carroll. This result is

easily generalized to higher dimensions.

Now we turn our attention to phenomenon of nonsynchronization in the periodic

regions for the system governed by Eqs. (1) and (2). The first case we consider is the

period two tongue, which is the tongue situated in the middle of Figs. 1 and 2. For k = 0.5

the period two orbit is stable for 0.464 ^ ft_ 5 0.535. There is only one stable attractor for

fa, whereas for fa we find two attractors, one of them being the same as the attractor for

fa. We calculate the nontrivial eigenvalues Ai and A3 according to Eq. (6) with N = 2. In

Fig. 3(a) weshow Ai as a solid line and A3 as dashed and dotted fines for the synchronizing

and nonsynchronizing attractors, respectively. For 0.485 5 ft- ^ 0.514, A3 is less than

one for both synchronizing and nonsynchronizing attractors. Thus synchronization may

or may not be observed depending on the initial conditions. Outside this interval the

eigenvalue corresponding to the nonsynchronizing orbit (dotted curve) is greater than



one, and therefore unstable. This implies that in these regions fa and fa will always

synchronize, since the basin of the synchronizing attractor now constitutes the entire phase

space.

By analyzing the period three orbit we identified regions where synchronization never

occurs (except if the initial conditions for fa and ^3 are completely identical). For k = 0.5

the period three orbit is stable for 0.336 ^ ft_ ^ 0.367. In this case we also find one

stable attractor for fa and two attractors for ^3, one of them synchronizing with fa.

The nontrivial eigenvalue Ai is shown as a solid line in Fig. 3(b). The eigenvalues A3

for the synchronizing and nonsynchronizing attractors are the dashed and dotted fines,

respectively. At ft_ ^ 0.342 or ft_ ^ 0.362, A3 for the synchronizing attractor is greater

than one, consequently it is unstable. Therefore, in these parameter ranges, the period

three orbits for the two systems are always different, independent of the initial conditions

(when they are not identical). For 0.359 ^ ft_ ^ 0.362 synchronization is always found,

since in this region the nonsynchronizing attractor is unstable.

For periodic tongues with period greater than three synchronization is never obtained.

We find that the synchronizing attractor is always unstable for the driven system in these

Arnold tongues.

The nonsynchronization we see in the periodic regime is not related to the situation in

which fa and fa have the same attractor, but are out of phase. For our system where fa

and fa are coupled the attractors are always in phase when they are stable and identical.

We studied the basin of attraction where synchronization may or may not occur for

the period two and three orbits. In Fig. 4 we show the initial conditions, in the #3 vs. 9\

plane, which lead to synchronization (white) and nonsynchronization (shaded) for period

a two orbit (k = 0.5 and ft_ = 0.49). The basins of attraction are regular, and do not

show a fractal structure. This implies that the addition of a chaotic signal with small

amplitude to the two subsystems does not cause their synchronization, as can be the case

if the basins are entirely fractal. For the period three orbit we also find nonfractal basins

of attraction.

We observe that the regions where synchronization is always achieved, never achieved,

or sometimes achieved remain with the addition of a weak chaotic (or noisy) signal to both



subsystems governed by fa and ^3. Also, the regions of positive sub-Liapunov exponent

for fa do not change. In other words, Figs. 1(b) and 2(b) remain the same. This shows

that the necessary condition for chaotic synchronization stated in [1], that is, negative

sub-Liapunov exponent for fa, is not sufficient.

In conclusion, we have observed several new aspects of regular and chaotic synchro

nization. By considering driving and driven subsystems as a whole system we have shown

that the sub-Liapunov exponents defined by Pecora and Carroll are Liapunov exponents

of the global system. Chaotic synchronization is possible when the driven subsystem is

more stable then the driving system. We verified that the lack of symmetry between the

driving and driven subsystems may result in nonsynchronization even when they are com-

petely regular. We found that the eigenvalues of the global system characterize the regions

where regular synchronization is always achieved, never achieved or sometimes achieved

depending on the initial, conditions.

This work was supported in part by NSF Grant ECS-8910762 and by DARPA under

AFOSR Contract F49620-90-C-0065.
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FIGURE CAPTIONS

Fig. 1. (a) Regions of periodic motion (white) for any of the variables fa, fa and ^3. We

consider the motion periodic if within 1000 iterations the system returns to the initial

point within a radius of 10-6; (b) regions where synchronization (white) and non-

synchronization (shaded) are observed for the initial conditions fa = 0.2, fa = 0

and fa = 0.5. We consider the orbit synchronized if after the transient period (3000

iterations) \fa —fa\ < 10~6.

Fig. 2. Regions with positive Liapunov exponents (a) Ai and (b) A3 (shaded). We considered

the Liapunov exponents positive if A,- > 10~4 for N = 30,000.

Fig. 3. Eigenvalues Ai (solid) and A3 (with the dashed and dotted lines corresponding respec

tively to the synchronizing and nonsynchronizing attractors) for k = 0.5; (a) period

two and (b) period three orbits. The inset in (a) shows the basins of attraction for

the synchronizing (white) and nonsynchronizing attractors (shaded) for a period two

orbit (k = 0.5, ft_ = 0.49).
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