
Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

COMPILING REAL-TIME DIGITAL SIGNAL

PROCESSING APPLICATIONS ONTO

MULTIPROCESSOR SYSTEMS

by

Phu D. Hoang

Memorandum No. UCB/ERL M92/68

30 June 1992

COMPILING REAL-TIME DIGITAL SIGNAL

PROCESSING APPLICATIONS ONTO

MULTIPROCESSOR SYSTEMS

by

Phu D. Hoang

Memorandum No. UCB/ERL M92/68

30 June 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

COMPILING REAL-TIME DIGITAL SIGNAL

PROCESSING APPLICATIONS ONTO

MULTIPROCESSOR SYSTEMS

by

Phu D. Hoang

Memorandum No. UCB/ERL M92/68

30 June 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

COMPILING REAL-TIME DIGITAL

SIGNAL PROCESSING APPLICATIONS

ONTO MULTIPROCESSOR SYSTEMS

by

Phu D. Hoang

ABSTRACT

The goal of this research is to develop a set of Computer-Aided Design (CAD) tools

to support the real-time implementation of Digital Signal Processing (DSP) applications onto

multiple programmable processors. The work has resulted in acomplete DSPdesign environment,
called McDAS, which can compile high level DSP applications directly downto parallel code for
MIMD multiprocessors.

One of the major challenges of the research is the assignment and scheduling of tasks
onto the processors in such a way as to maximize the throughput of the resultant imple
mentation while considering interprocessor communication delays and resource con

straints imposed by the target architecture. The scheduler in McDAS exploits
pipelining, retiming, and parallel execution simultaneously, allowing the environment
to efficiently support a wide range of applications with different types of concurrency.
Users can invoke the scheduler with different architecture configurations to explore implementa
tion trade-offs.

The code generator is similarly retargetable to different multiprocessor architectures as well as

core processors. Data buffers and synchronizations are automatically inserted to ensure correct

execution. The final implementation can beused for simulation speedup orreal-time processing.

The results on a set of benchmarks demonstrate McDAS's ability to achieve near optimal
speedups acrossa wide range of applications.

is

Jan M. Rabaey"

Thesis Committee Chairman

ACKNOWLEDGEMENT

So many people have enriched my life during my years at Berkeley. Firstof all,

I am indebted to my research advisor Jan Rabaey for his generous support and

encouragement of my work, and for allowing me the freedom to be involved in other

projects in addition to my main research. Of these ventures, working on the HYPER

high level synthesis project has been the most rewarding. Thank you, Jan, for your

advice, for your vision, for your unmatched programming style, for everything.

I would also like to thank Professors Edward Lee and Sadashiv Adiga, who

served on my qualifying exam committee, as well as my thesis committee. Professor

Lee, in particular, sparked my interest in DSP multiprocessor scheduling, and continued

to provide invaluable guidance to me during our many discussions. Thank you, Edward,

for all of your help.

My first two years, and my masters thesis, were with the Optimization CAD

group, headed by Professor Polak. I would like to thank him for his help and guidance.

The BJgroup headed by Professors Brodersen and Rabaey was an excellent

environment for research. 1 thank Professor Brodersen for sharing his deep knowledge

and experience in VLSI Signal Processing. Special thanks to Miodrag Potkonjak, Paul

Landman, Sean Huang, Lisa Guerra, Ingrid Verbauwhede, Wook Koh, Alfred Yeungk,

and Mani Srivastava for their endless reviews of my work.

The friends that I have made at Berkeley will forever enrich my life. Miodrag

Potkonjak was and will always be a friend, a teacher, and a brother. My first roommate,

David Sze, was always there when I needed him. To him, my deepest appreciation. To

my great friend John Coble: Hail to the Redskins!! Away from home, my Vietnamese

friends at Berkeley were my family. Thank you, Quyen, Hung, Dinh, Tai, Khanh, Chris,

Quan, and Johnny, for all the dinners, movies, and late-night card games.

Ill

To my best friend Quyen: All my warmth and love. Thank you for your

patience, your forgiveness, your caring, and your belief in me. The last two years have

been wonderful.

My brothers and sisters are a source of inspiration. Thank you each and every

one of you for spoiling me all of these years.

Lastly, I would like to dedicate this thesis to my parents, who I love more than

anything in this world. To my father, for his infinite love and sacrifice. To my mother: I

am 1 year, 1 month, and 27 days late. I wish you were here to celebrate with me today.

TABLE OF CONTENTS

1 INTRODUCTION 1

1.1 OVERVIEW 1

1.2 APPLICATION DOMAIN 2

1.3 CONTRIBUTION 4
1. 3. 1 Multiprocessor Scheduling 4
1. 3. 2 Design Environment 5
1. 3. 3 Estimation 6

1.4 PLAN OF THESIS 6

2 BACKGROUND 9

2.1 BASIC CONCEPTS ; 9
2.1. 1 Performance 9
2. 1. 2 Concurrency 11
2. 1.3 Granularity 14

2.2 MULTIPROCESSOR ARCHITECTURE 15
2. 2. 1 A Taxonomy 15
2. 2. 2 MIMD Computers 18
2. 2. 3 DSP Multiprocessor Systems 22

2.3 PARALLEL PROGRAMMING 23
2. 3. 1 Parallelizing Compilers 23
2. 3. 2 Parallel Languages & BlockDiagrams 24
2. 3. 3 Multiprocessor Design Environments for DSP 27

2.4 MULTIPROCESSOR SCHEDULING 29
2.4. 1 Classification 30
2. 4. 2 Complexity Analysis 33
2. 4. 3 Basic Multiprocessor Scheduling 33
2. 4. 4 Multiprocessor Scheduling in DSP 37

2.5 COMPARISON 40

2.6 SUMMARY 41

3 THE McDAS ENVIRONMENT 43

IV

3.1 McDAS SYSTEM OVERVIEW 44

3.2 SILAGE 47

3.3 FLOWGRAPH DEFINITION 51
3. 3. 1 Flowgraph Model 52
3. 3. 2 Flowgraph Library 54

3.4 ARCHITECTURE DATABASE 55

3.5 SUMMARY 57

4 SILAGE TO FLOWGRAPH TRANSLATION 59

4.1 BASIC TRANSLATION 59

4.1.1 Handling of Delayed Signals 60
4.1. 2 Generation of Arrays 61

4.2 CDFG OPTIMIZATION 63

4.3 MULTIRATE APPLICATIONS 64

4. 3. 1 Introduction 64

4. 3. 2 Multirate Transformation 67

4.4 SUMMARY 72

5 MODEL OF COMPUTATION 73

5.1 A MOTIVATING EXAMPLE 74

5.2 COMPUTATION MODEL 76

5. 2.1 A Multiprocessor Schedule 78
5.2.2 Evaluation of a Schedule 81

5.3 ARCHITECTURAL SUPPORT 82

5. 3.1 Processor Characteristics 83

5. 3. 2 Multiprocessor Topology 83
5. 3. 3 Interprocessor Communication 84

5.4 ESTIMATING COMPUTATION TIMES & MEMORY REQUIREMENTS 86
5.4.1 OperatorBenchmarking 86
5.4.2 Model Construction 93

5.4. 3 Limitation of the Technique 95
5.4.4 Memory Estimation 96

5.5 ESTIMATING COMMUNICATION DELAYS 97
5. 5.1 Time Slot Model 97

5.6 SUMMARY 101

6 SCHEDULING 103

6.1 PROBLEM DEFINITION 104

VI

6. 1. 1 Problem Formulation 104

6. 1. 2 Previous Approaches 105
6. 1. 3 Our Scheduling Strategy 106

6.2 SCHEDULING FOR FIXED THROUGHPUT 107

6. 2. 1 Definitions 107

6. 2. 2 The Scheduling Appeal: Intuitive Description 108
6. 2. 3 Node Scheduling 110
6.2.4 Complexity Analysis 115

6.3 PATH MERGING 116

6. 3. 1 Problem Definition 116

6. 3. 2 Path Merging Algorithm 118
6. 3. 3 Complexity Analysis 122

6.4 RETIMING 123

6.4. 1 Problem Definition 123

6.4. 2 Retiming Algorithm 126
6.4. 3 Complexity Analysis 128

6.5 NODE DECOMPOSITION 129

6. 5. 1 Bottleneck Node Decomposition 129
6. 5. 2 Critical Cycle Decomposition 130

6.6 SCHEDULING FOR MAXIMUM THROUGHPUT 131

6. 6. 1 Bounded Search Heuristic 131

6. 6. 2 Complexity Analysis 134

6.7 SUMMARY 134

7 CODE GENERATION 137

7.1 OVERVIEW 138

7.2 MEMORY MAPPING 140

7. 2.1 The FIFO Communication Model 140
7. 2. 2 Local Synchronization 141
7. 2. 3 Shared Memory Implementation 143

7.2.3. ICentralized Shared Memory 143
7.2. 3.2Distributed Shared Memory 144

7. 2.4 Message-Passing Implementation 148

7.3 CODE EMISSION 148

7. 3. 1 Circular Buffering 148
7.3.1. llnterprocessor Communication 149
7. 3.1.2Suue Variables 150

7. 3. 2 C Code Emission 152

7. 3. 3 Floating-Point & Fixed-Point Simulation 154
7. 3. 4 DSP Code Emission 156

7.4 SUMMARY 159

VII

8 SCHEDULING RESULTS 161

8.1 TARGET ARCHITECTURES 161
8.1.1 The Sequent Symmetry Multiprocessor 161
8. 1. 2 The SMART Multiprocessor 163

8.2 RESULTS 165
8.2.1 Scheduling a Histogram Computation on the Sequent Multiprocessor 165
8.2.2 Scheduling a Cordic Computation on the SMART Multiprocessor 170
8. 2. 3 Scheduling Different Applications 174
8. 2.4 Scheduling Applications with Global Recursions 177

8.3 SUMMARY 179

9 CONCLUSION 181

9.1 SUMMARY 181

9.2 FUTURE RESEARCH 183
9. 2. 1 Data Dependency Analysis 184
9. 2. 2 DSP Code Generation 184
9.2. 3 Computation and Memory Estimation 185
9.2.4 Scheduling for Heterogeneous System 186
9.2.5 Scheduling Data-dependent Computations 187
9. 2. 6 Loop Transformations 188

9.3 SUMMARY 191

10 REFERENCES 193

Appendix A: Flowgraph Implementation 205

A.l Flowgraph Structure 207
A.l.l AFL Format 208
A.1.2 OCT Format 210

A.2 C Data Structure 210

A.3 A Sample AFL Flowgraph 213

Appendix B: Silage To Flowgraph Implementation 219
B.l Silage Frontend 219

B.2 CDFG Generator 221
B.2.1 The Algorithm 221
B.2.2 The Data Structure 225

Appendix C: Code Generation Results 227

Vlll

CI Histogram Silage Code 228

C.2 Histogram C Code 230

Appendix D: McDAS User's Manual 243

D.1 McDAS Compilation Manager 244

D.2 Silage To Flowgraph Translator 246

D.3 Scheduler for Sequent 248

D.4 Scheduler for SMART 250

D.5 Scheduler for Ideal Multiprocessor 252

D.6 Code Generator for Sequent 254

D.7 Silage Syntax 256

INTRODUCTION
i

1.1 OVERVIEW

In recent years, a significant improvement in the computing power of

programmable digital signal processors has been observed. New advances in

architecture and technology have enable DSP processors to achieve throughputs up to

16.7 MIPS and 50 MFLOPS [Mot90]. Their high-speed performance, programmability,

and low cost have already made them the ideal implementation medium in a number of

real-time applications such as speech detection [Dau87] and speech encoding [Alr86].

Unfortunately, we have concurrently experienced an even greater increase in the

computational requirements of DSP applications. For instance, a computation rate of 1

GFLOPS is typical for High Definition Television (HDTV) applications [Fre89]. In

addition, the applications themselves are also becoming increasingly more complex,

utilizing nested loop structures or multi-dimensional vector computations. Examples of

this can be found in Code-Excited Linear Prediction coders [Cam90], CCITT Standard

Visual Telephony [CCI891, and JPEG and MPEG image compression algorithms

[Wal89]. Currently, the only means to meet the high throughput demands of these

applications is with special purpose hardware, which can be quite expensive and time

consuming to build at the prototyping stage.

Given the success of the DSP processor, one approach to obtaining a greater

computational power while maintaining a rapid prototyping capability is to employ

multiple DSP processors working in parallel. As an example, a system of 20 Motorola

DSP96002 DSP's can yield a peak throughput rate of 334 MIPS and 1 GFLOPS

[Mot90]. Already we can see a number of academic and industrial DSP multiprocessor

projects. These will be reviewed in Section 2.1.3.

The major obstacle to the prevalent use of these multiprocessor systems,

however, has been the absence of an adequate Computer Aided Design (CAD)

environment to help system designers quickly design, simulate, and prototype their

applications. In this thesis, we present a DSP design environment, called McDAS,

which can generate efficient code for MIMD multiprocessors given a behavioral input

description. The description is architecture-independent in that the designer does not

have to tailor his specification to comply to a particular target architecture or execution

scheme. The partitioning and scheduling of the application onto the processors, as well

as the code generation, are completely automated. This allows the designer to devote all

of his effort to designing and optimizing the application itself.

In the remainder of the chapter, the domain of DSP applications supported by

McDAS is characterized, and arguments are given to justify why multiprocessors are

•good target implementations. A summary of the contributions of the thesis is presented,

followed by an outline of the remainder chapters of the thesis.

1.2 APPLICATION DOMAIN

Our applications consists of medium to large-grain, synchronous digital signal

processing systems. The term "medium to large-grain" indicates that the number of

operations in the application is several (> 2) orders of magnitude greater than the

number of processors available. Applications which do not fit this category are termed

fine-grain. The inherent overhead in programmable processors often precludes a high

throughput implementation of fine-grain applications.

The term "synchronous" means that the amount of input samples consumed by

each task in the application, and the amount of output samples generated, are known at

compile time and invariable at run time. This fixed execution pattern allows a

multiprocessor scheduler to produce a schedule at compile time, eliminating the run

time scheduling overhead. Asynchronous systems, on the other hand, allows the

production or consumption of samples in tasks to depend on the value of some data.

This yields an execution pattern that is unpredictable, making high quality compile-

time scheduling difficult. These applications will not be addressed in this thesis.

Medium to large-grain synchronous systems cover the majority of the common

signal processing applications. These include filters, digital audio, speech processing,

telecommunications, robotics, sonar, radar, and image processing. A close examination

of the nature of the computations involved reveals that almost all applications contain

some amount of concurrency, and most contain a substantial amount. For instance, all

DSP applications are executed in an infinite time loop, giving rise to temporal

concurrency which can be exploited by pipelining (see Section 2.1). In addition, many

exhibit spatial concurrency which is amenable to parallel execution. The concurrency

may not be easily detected however, as it can exist at different levels of granularity. For

spatial concurrency at a large granularity or block level, there can be parallel tasks

operating on the same data. At a fine granularity level, there can be operations

performed on each element of a vector or matrix in parallel. Similarly, temporal

concurrency can exist at the block level, or lower, such as between iterations of a serial

loop.

1.3 CONTRIBUTION

We are interested in an implementation medium that can be used to quickly

prototype a wide range of DSP applications. Employing multiple DSP processors in

parallel is an attractive option in terms of cost, design time, and performance. The low

cost and programmability of a DSP processor makes it an ideal processing element, and

the abundance of available concurrency in DSP applications makes leads naturally to

parallel processing.

While these powerful DSP multiprocessor engines are attractive, they are

seldom used in the DSP community due to the lack of software tools to support the

automatic scheduling and compilation of the input program onto the multiple

processors. Currently, users of these machines have to partition their applications by

hand, usually without any regard for optimization. The necessary interprocessor

communication and synchronization are then determined, and finally, code is

handwritten for each processor. This is a painstaking and error-prone process which is

also likely to be suboptimal. The contribution of this thesis, hence, is a DSP design

environment to automate this process.

1.3,1 Multiprocessor Scheduling

A key component in the system is the multiprocessor scheduling algorithm.

The goal of the algorithm is to find a mapping of tasks onto processors in such a way as

to maximize the throughput of the resultant implementation. All types of concurrency

execution are employed to achieve the speedup. This includes pipelining, retiming, and

parallel execution. Furthermore, the scheduler can traverse the application to any level

of granularity, allowing concurrency detection to take place at a granularity level

suitable with the available hardware resources. For example, for multiprocessor

systems with few number of processors, the concurrency exploited is at a large

granularity. For systems with a large number of processors, the concurrency is exploited

at a finer granularity level to fully utilize all the available processors. By considering

granularity in conjunction with concurrency, the algorithm is able to efficiently

schedule a wide range of DSP applications.

A scheduling algorithm is only useful if it is able to consider constraints

imposed by the target architecture, specifically, the number of available processors and

the amount of available memory in each processor. The scheduler uses these parameters

as bounds to prune the search space to yield only feasible schedules. In addition,

interprocessor communication delays can often take a significant portion of the overall

execution time, and is therefore tightly integrated in the scheduling process to yield a

high quality solution. The ability to take as inputs architectural descriptions allows the

scheduler to be retargetable to different multiprocessor systems.

1.3.2 Design Environment

The McDAS environment augments the scheduler with a set of parsing and

code generation tools to facilitate the prototyping process. The input textual description

is parsed into a flowgraph representation, where concurrency is exposed explicitly. The

flowgraph is hierarchical, structuring the application into many levels of granularity.

The flowgraph serves as a central database on which all tools interact. This clean

interface makes the system very modular, and allows new tools to be easily integrated.

To schedule, the user only has to enter the processor count and the topology of the

architecture and invoke the scheduler. Different implementations can be entered and

scheduled to explore the design space. This is aided with a history mechanism for easy

backtracking. Each scheduling result can be displayed with graphical tools showing

processor assignment and utilization, as well as memory and bus usage. Finally, once a

schedule is determined, code can be generated for each processor. The code generator

supports functional simulation and real-time implementation. For simulation, C code is

emitted with bit-true or floating point data types to allow for the assessment of

quantization and truncation effects. The code generator is similarly designed to be

easily adaptable to different memory architectures and different processor instruction

sets.

1.3.3 Estimation

For the scheduling algorithm to perform well, accurate estimates of the

computation and memory costs of the tasks are vital. A methodology for estimating

computation times and memory requirements of operations is developed. The technique

relies on benchmarking a target architecture with a set of programs to obtain execution

times and memory usage of primitive operations. These values are then accumulated

systematically to obtain estimates for large tasks. Results demonstrate that the

technique is able to yield estimates to within 5% of the measured values.

A detail model of the interprocessor communication process has also been

developed. Each communication is explicitly scheduled on the appropriate bus or buses

to take into account delays due to bus congestion. This technique enables the scheduler

to accurately estimate the arrival time of a data to a processor given the time of the

transfer, the source processor, and the state of the routing network. This parameter is

^critical to the scheduler in deciding which node-processor assignment is optimal.

1.4 PLAN OF THESIS

The remainder of the thesis is composed of eight chapters, organized as

follows:

In Chapter 2, background material and previous work on parallel computation,

multiprocessor architectures, multiprocessor compilers and scheduling theory are

presented.

In Chapter 3, the McDAS DSP design environment is described in detail, and

an overview of the entire compilation process is given. We will describe the input

language Silage, as well as the hierarchical flowgraph format. Details are given as how

certain hierarchical constructs such as function calls, loops, and conditionals are

represented in the flowgraph. Finally, the parameters necessary to characterize a target

architecture is presented.

In Chapter 4, we describe our front-end parser which translates a Silage textual

description into a flowgraph. The organization of the program is presented, along with

its features. The strategy for deriving data dependencies between operations, especially

between array accesses and loop iterations, is outlined. A set of standard compiler

optimizations which is incorporated into the parser is described. These include such

transformations as dead-code elimination, common subexpression elimination, and

manifest expression evaluation. Finally, a transformation to convert a multirate

flowgraph to a single rate flowgraph via node clustering is presented.

In Chapter 5, the model of parallel computation in the McDAS environment is

given. First, an example is given to motivate the model. The computation model is then

presented, and a multiprocessor schedule is defined and interpreted. Thirdly, the

architecture and the interprocessor communication model are discussed. Next,

techniques for estimating computation times and memory requirements of DSP tasks are

presented. We verify our estimations with actual measurements and discuss the

limitation of the approach. Finally, the strategy for estimating interprocessor

communication delay is presented.

In Chapter 6, we present our scheduling algorithm under two performance

objectives: a) Given a fixed available sample period, determined the minimum number

of processors needed, b) Given a fixed amount of processors, determine the fastest

throughput implementation. The details of the node-processor assignment strategy is

described, emphasizing how it can simultaneously consider pipelining and parallel

8

execution. The algorithm is then extended to perform retiming when flowgraph cycles

are present. The granularity issue is addressed with the node decomposition flowgraph

transformation. We show how node decomposition combined with pipelining and

parallelism allow our scheduler to exploit block level parallelism, data parallelism,

block level pipelining, and loop pipelining, all in a unified manner. The results of the

scheduling are shown for a wide set of examples.

In Chapter 7, the code generation strategy is introduced. The first phase is the

memory mapper phase, which allocates buffers for interprocessor communication and

determines local and global synchronizations. We discuss how different memory

architectures affect the interprocessor communication strategy. The organization of the

code emitter is then described, detailing our implementation of buffers, I/O, and sample

delays. Finally, a mechanism for performing fixed-point and floating-point simulations

from the same C code is presented.

In Chapter 8, we describe two multiprocessor systems which have been

targeted by McDAS. The first system is the Sequent system, a shared-bus

multiprocessor machine composed of 14 PE's. The second system is the SMART

system, a configurable bus machine composed of 10 PE's. Results obtained from

scheduling different applications on both architectures are analyzed and compared.

Finally, in Chapter 9, we conclude the thesis, and point out directions for

future research.

BACKGROUND
2

In this chapter, the previous work in multiprocessor architecture, parallel

languages and compilers, and multiprocessor scheduling theory is presented and

analyzed. In Section 2.1, a number of key concepts and terminologies in parallel

computing is introduced. In Section 2.2, a classification of computers is presented and

their target applications described. The section ends with a detail look at multiprocessor

systems for DSP applications. In Section 2.3, the software aspects of multiprocessing is

treated, including parallel languages and compiler systems. Again, the section ends

with a discussion on multiprocessor software systems for DSP. Section 2.4 reviews the

research efforts in the area of multiprocessor scheduling, concentrating on those useful

for DSP. Finally, the McDAS environment and its scheduling algorithm are compared

with other systems in Section 2.5.

2.1 BASIC CONCEPTS

2.1.1 Performance

In parallel computation, multiple processing units are employed to achieve a

higher computational performance over a single processor. The performance gain can be

a reduction in latency, defined as the time elapsed between the arrival of an input

10

sample, and the availability of the corresponding output, or an increase in throughput,

defined as the rate at which the system can process incoming input data.

The performance gain is measured by the speedup over a single processor

implementation. There are two types of speedup: Execution speedup or Latency

speedup, and throughput speedup. Execution speedup on n processors is given as the

execution time of an application on one processor over the execution time of the same

application on n processors. Throughput speedup is given as the increase in the rate at

which a system can process incoming data. The maximum achievable execution or

throughput speedup for n processors is n.

Two criteria which can indirectly affect the speedup of an implementation are

the load balancing and the interprocessor communication overhead. Load balancing

tells how even the distribution of work is across the processors. When the load is

unbalanced, lightly loaded processors sit idle waiting for the heavily loaded processors

to finish. The lightly loaded processors are inefficiently used, resulting in poor speedup.

Other measures equivalent to load balancing are maximizing processor utilization and

minimizing idle time.

Interprocessor communication results when processors need to exchange data.

The time devoted to these transfers can be substantial, especially in applications that

are communication intensive. To minimize communication overhead, tasks that

communicate heavily are put in the same processor, eliminating the communication.

Note that this goal tries to cluster tasks together, while load balancing attempts to

disperse tasks to different processors. A good schedule must consider both criteria to be

effective. Another overhead which can arise is the synchronization overhead.

Processors usually need to synchronize when they communicate, and thus minimizing

communication also indirectly minimizes synchronization.

11

In this thesis, the performance speedup will be the main criteria for evaluating

the quality of a multiprocessor implementation.

2.1.2 Concurrency

The performance gain is obtained by exploiting the concurrency available in

the application. There are two types of concurrency available, each giving rise to a

corresponding concurrent processing methodology. There is spatial concurrency

(parallelism) (Figure 2.1a), where there are tasks which can be executed by several

processors simultaneously without affecting the resultant output. This methodology is

called parallel processing (Figure 2.1b). There is temporal concurrency (Figure 2.2a),

where there is a chain of tasks which is embodied in an infinite time loop. Concurrent

processing of these tasks involves dividing the chain into stages, with every stage

handling results obtained from the previous stage. This methodology is called

pipelining or pipelined processing, and is illustrated in Figure 2.2b. Pipeline processing

*o(n) yo(n) xo(n)
PE0

yo(n)

xi(n) yi(n) x,(n)
PEi

yi(n)

y2(°)
PE-

y2(n)

(a) Spatial Concurrency (b) Parallel Processing

FIGURE 2.1: Parallelism and Parallel Processing

is possible in DSP applications due to the inherent nature of signal processing to repeat

the same computation to each sample of the input stream. Note that for pipelining to

work, buffer memories must be inserted between the stages to store intermediate values.

12

(a) Temporal Concurrency

^:^y(^y -_*0-*»

• ••

PEi

(b) Pipeline Processing

FIGURE 2.2 : PipelineConcurrency and Pipeline Processing

Algorithmically, each pipelining operation corresponds to an insertion of a

sample delay into the computation. Thus, in a computation pipelined into k stages, each

output sample y(n) corresponds to the resultant output of the input sample x(n-k). In the

Z domain, the output is Y(z) =Tk(z) ••• T:(z) z_kX(z). The z'k latency is called sample

latency. In general, exploiting parallelism reduces latency, and exploiting pipelining

increases the throughput. The simultaneous application of both parallel and pipeline

processing can significantly improve both the latency and the throughput of a system.

Some applications may possess feedback or recursion, that is, when the

processing of a sample is dependent of the resultant processing of a previous sample.

This shows up in a flow graph as a cycle with one or more sample delays, as shown in

Figure 2.3(a). Inside a cycle, pipelining can alter the functionality of the algorithm,

which is undesirable. Let T(z) = T3(z)T2(z)T1(z). In Figure 2.3(a), the Z domain output

is Y(z) =T(z) [z'2 Y(z) +X(z)]. The output for Figure 2.3(b) is Y(z) =T (z) [z-3 Y(z) +

z*1 X(z)], which is different from the output in Figure 2.3(a). One technique which

allows us to effectively pipeline the cycle while maintaining the correct functionality is

the retiming transformation. Retiming involves the rearranging of delays within cycles

to achieve better performance. It has been used extensively in optimizing circuit

«^(^y+(^^^

x(n)

x(n)

i

D D-

(a) Flow graph with feedback

D —^Sj-^gj-^u.5*0

D D

(b) Delay insertion changes the functionality

•fO-^D]—i^^

D«

(c) Retiming retains same algorithm

FIGURE 2.3: Retiming

13

performance [Lei83], but is of great value in signal processing as well. Figure 2.3(c)

shows a retiming of the flow graph. The output is Y(z) =T(z) [z"1 X(z) + z"2 Y(z)]. This

is the same computation as in Figure 2.3(a) if the input stream is delayed by a sample.

The use of pipelining, parallelism, and retiming exploits all types of concurrency

available in DSP applications.

14

2.1.3 Granularity

The concurrency in DSP applications can exist at all levels of granularity, from

the largest block level granularity to the finest data level granularity. At the block level,

spatial concurrency gives rise to block level parallelism, where there are independent

tasks simultaneously processing their input data. At the data level, spatial concurrency

takes the form of data parallelism or data partitioning, where identical operations are

applied to each member of the vector or a matrix. Temporal concurrency at the block

level is amenable to block level pipelining, while at a lower loop level granularity, loop

pipelining or loop winding[Gir&7) can be employed. The ability to exploit different

types of concurrency at different granularity levels allows the consideration of all of the

above techniques in a unified manner. It should be noted that combining data

parallelism with retiming can improve the throughput of recursive applications. This

will be expanded further in later sections.

The optimal granularity level exploited by a scheduler should be dictated by

the number of processors present and the communication overhead. The greater the

number of processors available, the smaller the granularity level should be. This

guarantees that enough concurrency is exhibited to be used by all the processors.

Beyond a certain granularity however, the large number of operations present may

•significantly slow down the scheduler. Furthermore, the interprocessor communication

cost begins to play a dominant role in the overall execution time. In particular, it may

take less time to execute two nodes in one processor than to spread them to two

processors and suffer the communication overhead. This saturation effect has been

observed by a number of researchers [Chu80] [Kri87]. In [Sar89] Sarkar attempts to

capture this trade-off by assigning a cost to a granularity level equal to the maximum of

the flow graph critical path and the flow graph communication overhead. If the

granularity is too fine, the overhead term will be large, causing the cost to be large. If

the granularity is too coarse, the critical path term will be large, also causing the cost to

15

be large. The cost will be minimum at an optimal intermediate granularity. The

overhead term is calculated as the sum of the scheduling overhead of a node, over all

nodes in the flow graph, plus the input and output communication overhead. A similar

technique was used by McCreary and Gill [McC89]. They first cluster nodes into a

hierarchy of clans, defined as a group of nodes with the same input and output nodes.

Traversing the clan hierarchy bottom up, they determine whether it is cheaper to

execute the clan in one processor or not. If it is, the nodes in the clan are clustered. The

cost function is the execution time of the nodes, as well as the input and output

communications.

These work are significant as they recognize the importance of granularity in

multiprocessor scheduling. However, their approach separates the granularity

determination and the scheduling itself. As a result, their modelling of the

communication costs is done without knowing in detail the activities on the bus. We

believe that granularity determination is best done in conjunction with the scheduling

process, in an iterative manner. In this way, the scheduler can decide to change the

granularity of the flow graph based on previous scheduling results.

2.2 MULTIPROCESSOR ARCHITECTURE

2.2.1 A Taxonomy

There has been a rapid growth in the number of proposed and constructed

architectures over the past 10 years. Flynn [Fly72] originally proposed a taxonomy to

organize computers based on their processing of instructions and data. There are four

classifications:

1. SISD - Single Instruction, Single Data

2. SIMD - Single Instruction, Multiple Data

16

3. MISD - Multiple Instruction, Single Data

4. MIMD - Multiple Instruction, Multiple Data

SISD architectures represent the standard von Newmann organization of most

uniprocessor-based computers today. SIMD architectures incorporate an array of

processing elements all executing the same instructions from a central controller. These

are used to process elements of arrays in parallel. The SIMD technique can be found in

vector or array processors of today's supercomputers [Nag84][Che84]. A number of

SIMD computers have also been built to tackle problems with a massive amount of

parallelism such as image and video processing, computer graphics, database, and

simulations. Perhaps the most well known SIMD computer is the Connection Machine

from Thinking Machines Inc.[Thi87], which can be configured with 65, 536 processors.

Execution on MISD architectures would involve having multiple simultaneous

instructions on the same piece of data. Pipeline machines are often mentioned to be of

this style. The last category describes MIMD machines, which we commonly refer to as

multiprocessor computers. These computers contain processors, each with its own

independent controller. This enables the processors to execute different instructions on

different data.

Recently, Skillicorn [Ski88] presented an extension to Flynn's taxonomy to

classify the growing number of multiprocessor architectures more discriminantly. It is a

two-level hierarchy in which the upper level classifies architectures based on the

number of processors for data and for instructions, and the interconnection between

them. A lower level can be used to distinguish variants even more precisely; it is based

on a state machine view of the processors. In the taxonomy, there are four types of

functional units from which any abstract machine can be constructed. These are:

1. IP - An instruction processor to process instructions

2. DP - A data processor to process data

3. M - A memory hierarchy to store data

4. SW - A switch to provide connectivity between other functional units

17

There are three different forms of switches. A 1-to-n switch connects 1 unit to

n devices of another set of units. An n-to-n switch connects the ith unit of one set of

functional units to the ith unit of another. This is equivalent to a 1-to-l switch

replicated n times. An n-by-n switch connects any device of one set of functional units

to any other device of a second set.

With these definitions, a large number of architectures can be described

precisely. Figure 2.4a shows the arrangement of a uniprocessor machine, while Figure

2.4b shows the abstract machine for an SIMD machine.

Instructions

(a) Von Newmann SISD architecture

n-by-n

Data

Memory

Addr/Instrs

Instruction

Memory / jyj

(b) SIMD architecture

FIGURE 2.4 : Skillicorn's Taxonomy for Computer Architectures

Skillicorn's classification allows for a much more detail discrimination of the

large number of MIMD architectures that are available. These range from the familiar

18

shared memory and message passing computers to the exotic graph reduction [Dar81]

and dataflow [Gur80] machines. In this thesis, we will be concern only with the first

two architectures.

2.2.2 MIMD Computers

The ability for each processor of an MIMD machine to autonomously work on

a separate part of the problem makes MIMD machines much more general than SIMD

machines. Unfortunately, the generality comes with a cost. Cooperating to solve a

problem usually requires a tight interaction among the processors. SIMD machines

achieve this via the common instruction flow. Since MIMD processors are

independently controlled, communications and synchronizations among the processors

are necessary. Extra time and resources must be reserved for these operations. The more

processors that are used, the more the overhead incurred. Beyond a certain point, the

addition of more processors may even decrease the performance due to the excessive

overhead. This phenomenon is the saturation effect alluded to earlier. Since

multiprocessing makes sense only when the speedup achieved outweighs the overhead

paid in communications, MIMD machines tend to exploit parallelism at a coarser

granularity than SIMD machines. As a result, the number of processors in MIMD

systems (2-100) is usually much less than SIMD systems (100-100,000). With fewer

"processors, each core processor can afford to be much more powerful. There are two

common methods for processors in MIMD computers to exchange data, via message

passing and through shared memory. This gives rise to two classifications for MIMD

computers: Multicomputers and multiprocessors.

2.2. 2.1 Multicomputers

A multicomputer system consists of a number of processors that communicate

asynchronously by sending and receiving messages across a network. There are no

global or shared system resources. Each processor has its own private address space, its

19

own local memory and hardware support to transmitting and receiving messages. Using

Skillicorn's classification, the multicomputer has a structure as shown in Figure 2.5.

n-by-n

Data

Memory

FIGURE 2.5 : An Abstract machine for a multicomputer

Instruction

Memory

The send and receive constructs not only perform the communication, they also

synchronize the data transfer to ensure the receive process only starts after the send

process has completed. The processor interconnection can range from a set of connected

buses to an elaborate nationwide network. Messages may be broken up into packets and

routed through the network to the destination processor. The most well-known

multicomputer is the Intel iPSC system [Int86]. In this system, processors are connected

in a hypercube topology. A hypercube of dimension d has 2d processors, each one in

direct link with d neighbors. Other topologies include the ring, tree, and mesh.

Multicomputers are attractive because their interconnection and communication

strategy can handle a large number of physically distributed processors, enabling a

large user group and fault-tolerance. However, the cost of constructing and routing

messages at run-time can be substantial. Multicomputers are also known as loosely-

coupled systems or distributed systems.

20

2.2. 2.2 Multiprocessors

A multiprocessor system consists of a number of processors which

communicate through shared resources. The programmer sees a single address space

that all processors can access. To communicate, the sender writes the data to a specific

memory location and the receiver reads the data from the location. This process must be

done carefully to ensure correct data transfer. Firstly, the sender and the receiver must

agree at compile-time what memory location will be used to implement the writing and

reading. Secondly, they must synchronize so that the receiver processor only reads the

data after the sender has completed the write. Multiprocessors are attractive because of

their similarity to the uniprocessor from the programmer's point of view.

Multiprocessors are also called tightly-coupled systems to reflect their resource sharing.

An abstract multiprocessor machine is shown in Figure 2.6.

n-by-n

Data

Memory

FIGURE 2.6 : An Abstract machine for a multiprocessor

Instruction

Memory

Multiprocessors can be further divided into two groups depending on whether

the shared memory is centralized or distributed. In a centralized memory multiprocessor

system, the single address space is also realized by a single memory space. If many

processors shared the same data, only one copy of the data needs to be present in

memory. The biggest drawback of a centralized memory is the memory access

contention by the processors. Reads and writes to the same location must be queued,

21

slowing down the system's performance. To alleviate this problem, caching can be used

to reduce accesses to the central memory. However, the presence of caches in a

multiprocessor system introduces the problem of cache coherence, which is, how to

make sure a read always delivers the most recent value. Various techniques to solve this

problem can be found in [Arc86][Rav83][Pap84]. One example of a centralized memory

multiprocessor system is the Symmetry computer from Sequent Computer Systems

[0st86]. The Symmetry system has up to 30 Intel 30386 processors, connected by a

single shared 64-bit wide bus. Each processor has a floating point co-processor and a

64KB write back cache. The memory system can have up to 6 controllers with up to

240MB total main memory.

Extending the caching idea one more step, we get the distributed memory

multiprocessor system. Here, the single address space is divided into sections, with

each section assigned to a different processor. The shared memory is distributed so that

the memory implementing a processor's section is physically located next to the

processor. This locally resident memory effectively behaves as the processor's cache in

that reading from this memory does not access any shared resources. However, since the

memory is shared memory, the source processor can directly write data into the

destination processor's section of memory. Thus, one possible distributed memory

communication scheme is to have all writes go through the network, and have all reads

be local. This global-write-local-read communication scheme can dramatically reduce

the number of network accesses. The trade-off is that for broadcast data, all destination

processors must have its own copy of the data in its section of memory. Figure 2.7

shows the global-write-local-read scheme on a distributed memory multiprocessor. This

scheme can be found the distributed memory architecture of the SMART multiprocessor

from U.C. Berkeley [Koh89].

22

ill
Hill

1

MO •m\w x * X X

sync-+fflm

4 u 14 V

INTERPROCESSOR NETWORK

FIGURE 2.7 : Global-write-local-read Communication Scheme

2.2.3 DSP Multiprocessor Systems

DSP Multiprocessors are multiprocessors constructed from DSP processors.

These specialized processors are designed to maximize throughput in data intensive

real-time applications. As such, they boast features like two or more concurrent

memory accesses in one cycle, a floating point multiply-accumulate operation in one

cycle, and zero-overhead hardware looping[Att88]. To maintain the high throughput

support, DSP multiprocessors are designed to allow efficient interprocessor

communication. Over the years, many DSP multiprocessor systems have been proposed

or built. A few will be described here as a representative sample. One such system is the

DAD02 DSP Multiprocessor system developed at AT&T Bell Laboratories for

performing speech recognition [Sto85]. The DAD02 is composed of 15 processing

elements (PE) connected in a binary tree topology. Each PE is comprised of an Intel

8751 processor, an AT&T DSP32 signal processor, and 64 Kbytes of local memory. The

machine is used to implement various Dynamic Time Warping algorithms [Sak78] to

perform the pattern matching necessary in speech recognition. Another system is the

family of DSP multiprocessors designed at Georgia Tech [Bar91]. The first generation

DSMP-I is composed of 16 AM29325 processors connected in a 2-dimensional grid.

Each processor is capable of 5MFL0PS. The DSMP-II consists of 2 to 16 AT&T DSP32

processors connected in a ring. Each processor has a peak rate of 8MFL0PS. The

DSMP-III currently under design would contain 16 to 128 TI TMS320C40 processors

23

connected in a 3-dimensional grid. Each C40 processor is capable of 40 MFLOPS and

has 6 communication ports. Lee and Bier at UC Berkeley proposed a multiprocessor

architecture MOMA, for Maintains Ordered Memory Accesses [Lee90]. The special

feature of this architecture is a central controller, which grants access to the shared

memory bus in a prespecified, compiler-determined order. This guarantees

synchronization, since whenever two processors must synchronize on a shared location,

the writer is always granted control before the reader. One high performance

multiprocessor machine which finds application in DSP is the WARP systolic machine

from Carnegie Mellon University [Ann87]. It is also a linear array of 10 processor cell,

each equipped with a large local data memory and capable executing at 10MFLOPS.

The cells are connected in a ring architecture where each cell can transfer up to 80

Mbytes/sec to its neighbor cell. The large memory and I/O bandwidth enables the

WARP machine to efficient support fine-grain data-parallelism.

2.3 PARALLEL PROGRAMMING

While programming a uniprocessor machine has become standard practice,

programming a multiprocessor system is still new and complex. The most efficient

algorithms on serial machines may no longer be the most efficient for parallel

machines. The programmer must now decompose the algorithm into parallel parts, map

these onto the processors, layout the memory organization, and schedule the

interprocessor communications. Even worse, these parallel programs often must

undergo a major change or even be rewritten from scratch in order to run on a different

multiprocessor.

2. 3.1 Parallelizing Compilers

To alleviate this burden, attempts have been made to design compilers that map

existing sequential programs onto vector computers or multiprocessors. Most

24

supercomputer manufacturers such as Cray[Che84], Hitachi[Nag84] provide such

compilers. In addition, there are a number of experimental work from third-party

vendors and universities[Kuc84][Dav86][A1187]. Perhaps the most notable work is the

University of Illinois's Parafrase [Kuc84] and Stanford's SUIF projects [May91], which

detects parallelism from Fortran programs and generates parallel code. This is done as a

3-phase process. The first phase involves an extensive data dependency analysis of the

program to build a data dependency graph. The second phase applies various

optimizations which can exploit the architecture. For computers with vector instruction

sets, vector optimization or vectorization is appropriate. For multiprocessors,

concurrent constructs are derived. Some optimizations available are scalar expansion,

loop interchanging, fission by name, loop fusion, loop collapsing, and strip mining

[Pad86]. Finally, the last phase generates the parallel code.

The hardest phase of the process is the data dependence detection, which

translates into an integer programming problem [May91]. Since there are no efficient

algorithm known for solving integer programming problems [Kan87], many compilers

assume a data dependence whenever the dependence cannot be determined in a

reasonable time. For special case inputs, efficient algorithms are available to determine

exact dependence [Li90][May91].

. While the performance of these compilers are improving, they rest solely on

their ability to extract parallelism from the program, which can be severely limited by

the semantics of the language used and the possible unnecessary sequential organization

of the code.

2.3.2 Parallel Languages & Block Diagrams

Most programs for uniprocessors were written using Fortran, C, Pascal, or

other conventional imperative languages. These languages were designed to let

programmers manipulate data stored in the memory of a von Newmann computer. This

25

programming style translates a computational task, which may contain a large amount

of concurrency, into a series of sequential memory fetches, stores and arithmetic

operations. This artificial sequential ordering, termed the "von Newmann bottleneck"

by Backus[Bac78], makes these languages unattractive for parallel programming. In

addition, the close interaction of the language to the underlying memory storage allows

routines to modify memory in very subtle ways. The use of "call-by-reference" allows a

routine to modify parameters in the calling program. Also, most languages allow global

variables that can be modified by any routine at any time. These side effects may

inadvertently establish data dependencies between routines which were not intended.

Applicative (also called functional or data flow) languages have been proposed

as a paradigm for parallel programming. It is an attempt to capture the flavor of a

graphical flow graph in a linear textual form. In data flow, a program is interpreted as a

flowgraph, with nodes and edges. Nodes represent instances of functions and arcs

represent the flow of data between nodes. Data flow languages sequence program

actions by a simple data availability firing rule: When a node's inputs (arguments) are

available, the function associated with the node can be fired, i.e. applied to the

arguments. After firing, the results are available at the node's outputs, and these may

allow other nodes to fire. Thus, a node's outputs are only dependent on the node's

inputs. There is no side effect to obscure data dependency. The main advantage

resulting from this is that nodes which are not connected by a directed path are

independent and can be executed in parallel. To enforce the data flow semantic, these

languages possess properties such as a single assignment convention, a pass-by-value

function call, an absence of global variables, a lack of history sensitivity, and

others[Ack82). Two examples of data flow languages include Val from MIT[Ack79] and

Id from UC Irvine[Arv78]. These were developed in conjunction with the data flow

computer projects at the respective universities. Silage[Hil85] is an applicative

language developed especially for specifying DSP systems. It is the input language for

the McDAS environment and will be described in more detail in a later chapter.

26

LUSTRE [Roc91] is a synchronous data flow language used to describe hardware

controlled by a global clock. It has been used for high level synthesis in conjunction

with the ESTEREL language [Ber91] used to describe controllers. Sprite [Kro92]

combines applicative and functional constructs of applicative languages with

operational constructs of sequential languages for high level synthesis. For real-time

programming, the SIGNAL functional language [Gue91] is based on synchronous

multiple-clocked flows of data and events. Still others such as Lucid[Ash77] and

FP[Bac78] were designed to possess certain mathematical properties of functional

application which make them amenable to program verification.

Instead of working on textual languages which represent flow graphs, some

designers have chosen to work on the signal flow graphs themselves. Flow graphs or

block diagrams have been used by engineers for years to represent their systems,

whether it be in VLSI, parallel computation, DSP, or robotics. Recently, flow graphs are

finding use as a tool for specification of computations, especially in the digital signal

processing and VLSI design domain. In such a graphical design system, the user

construct a design by connecting functional blocks together into a signal flow graph,

using a graphical schematic editor. The blocks can have arbitrary functionality and may

be defined in a standard library or by the user. Each block has associated with it code

that implements the necessary processing functions. In the field of VLSI design, these

graphical design systems are abundant. Examples can be found in the OCT environment

at UC Berkeley[Har86], the System Architect's Workbench at Carnegie Mellon

University[Wal87], and commercial tools from CAD vendors like Synopsys, Valid,

Xilinx, etc.

It is very interesting to note that there are many models of computations which

can be expressed with the same block diagram representation. These include dataflow,

time-driven, control/data flow, and hybrid dynamical systems, all with very different

execution semantics[Lee89a]. A block-diagram description is thus only complete when

27

a model of computation is included. Furthermore, in constructing the flow graphs,

subtle semantic inconsistencies between parts of the flow graph can be inadvertently

created such as nodes with different rate inputs for example. In [Lee89b], Lee shows

how these inconsistencies can lead to deadlocks and unbounded memory requirements.

In this thesis, we are primarily interested in a special case of data flow, called

synchronous data flow (SDF)[Lee87b]. In synchronous data flow, the number of data

samples produced and consumed by every node on each firing is known at compile time.

For signal processing, most applications fall into this category. Knowing the data rates

permits the scheduling of synchronous data flow graphs onto multiprocessors to occur

at compile time, eliminating the run-time scheduling overhead. SDF also allows

inconsistencies to be found at compile time[Lee89b].

Many block diagram based DSP design systems for uniprocessors have been

developed. These include Blosim[Mes84], BOSS[Sha87], and Gospl[Cov87]. All of

these systems contain a library of common DSP blocks such as filters, FFT, equalizers,

decimators, etc. as well as arithmetic blocks such as adders, magnitude, log, etc.

Associated with each block are its simulation code and real-time code. The simulation

code is usually implemented in a high level language with emphasis on portability and

user interface, whereas real-time code is more concerned with exploiting hardware,

efficiency and throughput. Program construction is done by concatenating the code

associated with each block. Due to the explicit concurrency exposed in flow graph

descriptions, the extension to multiprocessor implementation was inevitable. In the next

section, we concentrate on design systems for multiprocessor digital signal processing.

2.3.3 Multiprocessor Design Environments for DSP

In this section, we discuss some multiprocessor design environments for DSP

users. By design environment, we mean a software system which aid the user in

28

developing real-time DSP applications, from algorithmic design and simulation to

implementation on real-time hardware.

Most multiprocessor DSP design environments currently available are block-

diagram based. Examples of these systems include the Gabriel system from UC

Berkeley[Lee89c], the Block Diagram Compiler (BDC) from Lincoln Labs[Zis87], the

ZC compiler from Carnegie Mellon[Pri91], the cyclo-static scheduler from Georgia

Institute of Technology[Sch85], and the Signal Processing WorkSystem-MultiProx

(SPW-MP) system from Comdisco Systems, Inc. The block diagram construction

processor is similar to uniprocessor design systems. After the block-diagram is created,

the application is scheduled onto the target multiprocessor using a multiprocessor

scheduling algorithm. Once a schedule is found, code is generated for each processor

based on the processor assignments. Extra code is inserted to perform interprocessor

communication and synchronization. Each program can then be downloaded to its

corresponding processor to be executed.

There are a few multiprocessor DSP design environments, including McDAS,

which allow users to specify their descriptions using a DSP applicative language.

Textual descriptions are not as illustrative as a graphical interface, but allows for more

flexibility and cleaner specification of hierarchical structures such as iterations,

.recursion, etc. They also prohibit inconsistencies through well-defined syntax. These

systems will have to initially translate the textual program into a flow graph description

to expose concurrency. After the scheduling is done, code is generated using standard

compiler's code generation techniques. In the past, the code synthesized from block-

diagram systems were considered superior to these compiler generated code due to their

hand-optimized libraries. With the recent advances in DSP compilers technology

however, the advantage is rapidly diminishing [Tex92][Gen89]. Furthermore, library

blocks with pre-defined code cannot be split into smaller tasks, and must be considered

by the scheduler as atomic entities. This prevents the scheduler from exploiting

29

concurrency inside these blocks, restricting the smallest exploitable granularity level to

the size of the largest block. In flow graphs built from textual descriptions however,

there is no such artificial granularity boundary. The scheduler is free to exploit

whatever granularity level it desires. Finally, many block diagram systems describe

their library blocks with sequential code such as C or Fortran. This leads to a

discrepancy between the data flow semantical model at the top level and the control

flow semantical model of the blocks. While it is possible to define an interface semantic

policy, it is implementation dependent and not portable. A completely textual

description ensures the same semantical model at all levels of hierarchy.

The major difference among all of these systems, whether graphical or textual,

lie in the multiprocessor scheduling strategy. In the next section, we review the current

approaches.

2.4 MULTIPROCESSOR SCHEDULING

Multiprocessor scheduling consists of assigning tasks to processors, specifying

the order in which the tasks are executed on each processor, and specifying the time at

which they begin execution. There is a myriad of scheduling algorithms, with all

different kinds of assumptions and approaches. The basic problem can be stated as

follows. Consider a set of P processors, and a directed graph G = (N, E). N = {nj,n2,

...,nk) are the nodes of G, and E = {elfe2,em) are the edges of G. The nodes

represent computational tasks, and the edges define a relation on these tasks, nj -» nj

implies there is an arc from nj to nj, and that the task nj must finish beforenj can begin.

Associated with each task nj is a execution time, or node weight wj. Beyond this

problem definition, different assumptions are made and different goals are pursued,

leading to a number of different classification of scheduling techniques.

30

2.4.1 Classification

We discuss here the numerous approaches to classifying multiprocessor

scheduling techniques. This is not meant to be exhaustive, but is meant to provide a

better appreciation of the different scheduling applications.

2.4.1.1 Preemptive vs. Non-preemptive

In non-preemptive schedulers, once a processor is allocated to a task, it

executes the task to completion. Preemptive schedulers allow a processor to halt

execution of a task to begin processing a new task. The interrupted task is continued at

a later time, either by the original processor or a different one. Preemption requires run

time task switching but may lead to better load balancing. Non-preemption has no run

time overhead, but performance can be affected by the task size.

2.4.1.2 Dynamic vs. Static

A scheduling taxonomy was introduced by Lee[Lee89d] to classify schedulers

according to whether three components of the scheduling task, being processor

assignment, order assignment, and time assignment, are to be performed at run-time or

at compile time. Figure 2.8 shows the properties of the four classes.A Fully dynamic

fully dynamic

static-assignment

self-timed

fully static

Node-Assignment Node-Ordering Node-Timing

run-time run-time run-time

compile-time run-time run-time

compile-time compile-time run-time

compile-time compile-time compile-time

FIGURE 2.8 : Scheduling taxonomy by Lee.

31

scheduler performs all operations at run-time[Bok81]. When all inputs to a node are

available, the node is assigned to an idle processor, which executes it. A static

assignment scheduler determines which node is assigned which processor at compile-

time, usually base on interprocessor communication costs[Sto77][Bok81]. The exact

order and timing is determined at run-time depending on which input data to which

node is available. A fully static scheduler determines everything at compile-time, so

there is no run-time scheduling and synchronization overhead. However, in order to

determine the exact time to execute nodes, the exact execution time of each node must

be known. Since this is rarely possible in a real life environment, we can decide the

order of the node execution of each processor at compile time, and let the processor

execute the nodes when possible. This is the approach of a self-timed scheduler. Self-

timed schedulers allow the execution time of nodes to be non-exact and uses

synchronization to ensure correct execution. Lee concluded that for signal processing,

self-timed scheduling is the most attractive, although any fully static scheduling

algorithm can be converted to a self-timed algorithm if synchronization costs are

addressed.

2.4.1.3 Single-execution vs. Iterated-execution

Most applications outside of signal processing assume that the application is to

be executed once on some input set. For these, only spatial concurrency is available,

and the standard scheduling objective is to minimize the execution time of the

application. In signal processing, applications are executed indefinitely on a stream of

input samples. Hence, both spatial and temporal concurrency are available. If we repeat

the minimum execution time schedule for each sample, we obtain a minimum latency

implementation. More often however, the goal is to maximize the system throughput,

with latency being a secondary objective. The approach above does not exploit the

available temporal concurrency to increase throughput through pipelining. With both

32

concurrency, we can employ both pipelining and parallel processing to achieve the

throughput speedup.

2.4.1.4 Variable Granularity vs. Fixed Granularity

Most scheduling algorithms to date assume the granularity of the given flow

graph is fixed. They do not know about and therefore will not exploit any potential

concurrency that may exist inside the nodes in the flow graph. In the case where the

granularity is too coarse for the given number of processors, there will not be enough

concurrency to fill all the processors, resulting in poor processor utilization. Schedulers

which can accept hierarchical flow graphs and can traverse different granularity levels

do not run into this difficulty.

2.4.1. 5 Others

There are still many other criteria which separate scheduling algorithms from

one another. One criteria is whether or not communication overhead is taken into

account. Most earlier scheduling algorithms do not consider communication overhead,

yielding results which are often unusable. With the types of communication intensive

applications that can exist, it is no longer feasible to ignore this important criteria.

Another classification is whether the scheduler assumes a finite resource limit or an

^infinite one. Some scheduling techniques use as many processors as necessary to

achieve their goals. Others have no consideration for memory usage limits. Even if

these techniques are good, they would need to be modified to be practical. Finally, other

key points of a scheduling algorithm is whether it can accept different types of

processors in the system, whether it can efficiently handle special types of tasks such as

data-dependent loops and conditionals, whether it can configure the architecture

topology as it schedules, and so on.

In our application of real-time signal processing, the performance constraint

forbids any excessive run-time overhead. As a result, preemptive and dynamic

33

scheduling must be ruled out. The scheduling algorithms that we will discuss in the

remainder of the section are all non-preemptive and static (fully static or self-timed)

algorithms. In order to perform the scheduling at compile-time, we must model the

events which will take place at run-time, and make scheduling decisions based on them.

As a result, static algorithms are much more complex than their dynamic counterparts.

A measure of algorithm complexity is briefly introduced in the next section.

2.4.2 Complexity Analysis

A key issue in the study of multiprocessor scheduling is the amount of

computation time needed to find a suitable schedule. In computer science, an algorithm

is said to be efficient if it requires an amount of time that is bounded by a polynomial

expression of its input size. An inefficient algorithm is one which essentially requires

an enumeration of all possible solutions before the best solution can be selected.

Solutions of this type can be characterized by algorithms whose running times are

exponential in the input size. These algorithms belong in a large family of seemingly

intractable problems called NP-complete problems. Discussions on NP-completeness is

discussed in more details in [Coo71][Kar72][Gar79]. For our purpose, it is only

necessary to know that most of the problems of interest in multiprocessor scheduling

are NP-complete [Len78][U1175]. Since it is infeasible to enumerate all possible

schedules in a reasonable time on present day computers, it is necessary to use

heuristics to find a close to optimal solution to our scheduling problem. All techniques

discussed below use some form of heuristic to arrive at their solutions.

2.4.3 Basic Multiprocessor Scheduling

Multiprocessor scheduling has its roots in management science and operations

research studies, which are mainly concerned with assigning jobs to resources in the

most efficient manner. If jobs are equated to programs and resources are equated to

34

processors, then the extension is apparent. A good overview of multiprocessor

scheduling can be found in [Cof76] and [Gon77].

Perhaps the most frequently cited reference in multiprocessor scheduling is the

work by T.S. Hu [Hu61] which presents a solution to the basic scheduling problem. Hu

assumes all nodes have equal execution times, the precedence relationship is in form of

a tree, and no communication overhead. The Hu algorithm labels each node with a level

equal to the longest distance from the node to completion. The algorithm then schedules

nodes with the highest levels first. An illustration of Hu's algorithm is shown in Figure

2.9. When trying to minimize execution time with the assumptions above, this

Level:

P2

Pi

Po

19 TW

18 14

17 12

©-©

TlS 11 Tg

13 10

T9 T6

0 12 34567 8

FIGURE 2.9 : Hu's algorithm showing optimal schedule on 3 processors

algorithm is actually optimal. However, relaxing the assumptions to arbitrary execution

times and general precedence, the problem becomes NP-complete, and algorithms using

the same technique above as heuristics became known as critical path methods or

35

HLFETs (Highest Levels First with Estimated Times) [Ada74] [Koh75]. In these

methods, the level concept above generalizes to the critical path length. The nodes are

sorted in non-increasing order and put into a list. The list scheduling method [Cof72] is

then used to implement the processor assignment. A list scheduler traverses the list and

assigns any idle processor to the next element on the list. Many other priority heuristics

were developed to be used in a list scheduler. These include: HLFET, HLFNET (Highest

Levels First with No Estimated Times), SCFET (Smallest Colevels First with Estimated

Times), Random, and so on [Gra69]. There is evidence to suggest that HLFET performs

quite well as a heuristic to minimize execution time [Ada74]. Theoretical performance

bounds on these list scheduling heuristics are discussed in [Gra69].

In an attempt to consider communication delays, algorithms were developed

which can model the overhead of data transfers between processors. The earliest work

were static assignment scheduling algorithms headed by Stone [Sto77]. The algorithm

uses network flow to group nodes to processors to minimize the overall execution and

communication costs. Stone's solution is optimal for two processors, but the

formulation becomes computationally intractable for more than three processors.

Continuing developments can be found in [Bho81]. The main problem with static

assignment algorithms is their lack of consideration for the data precedence constraints.

Thus a minimum cost assignment may not yield a minimum execution time. These

algorithms find the most use in a heterogeneous multiprocessor environment.

Another class of algorithms attempt to extend list scheduling to consider

communication delays. These include the work from Yu [Yu84], Hwang [Hwa89], and

Sih [Sih89]. The key lies in the fact that communication delay is characterized by the

starting time of the communication, the source processor, the destination processor, and

the routing path. For each candidate node to be scheduled, the earliest time it can start

execution on a particular processor is determined. This is possible because all of its

predecessor nodes have already been scheduled, and the communication delay from the

36

predecessor processors to the present processor can be calculated. Thus, to pick the next

candidate node to schedule, in addition to its critical path, these methods can look at the

earliest starting times of nodes to decide. By scheduling the communications on the

routing resources themselves, Sih [Sih89] is able to model bus contention as well.

These methods present the most accurate modelling of communications to date. Their

main drawback, as pointed out in [Sih89], is that single pass list scheduling approaches

are too greedy. At each scheduling instance, they only see nodes that are ready to be

scheduled, this lack of global vision often prevents them from making the best

scheduling decisions.

Finally, a class of scheduling algorithms have emerged, including the

algorithm to be introduced in this thesis, which takes a iterative clustering approach to

scheduling. The iterative refinement allows the algorithm to improve on the last

scheduling step by concentrating on the most troubling spot of the last schedule. This

allows these algorithms to consider the flow graph globally, yielding an improved

solution over the previous local minimization techniques. Yu [Yu84] proposed an

algorithm which clusters nodes with heavy communications together. The goal is to

minimize the critical path of the flowgraph, which in turns, minimize the completion

time. This algorithm assumes there are as many processors as needed to execute each

cluster. Sarkar [Sar89] also clusters nodes to minimize the scheduling length, but then

uses a list scheduling algorithm to perform processor assignment. Sih's clustering

algorithm is more elaborate [Sih90]. He starts with all the leaf nodes and group those

which communicate heavily into clusters. These clusters are then grouped into larger

clusters and so on to the top. He then proceeds to decluster by traversing the hierarchy

just built to expose concurrency. At each declustering step, he performs list scheduling

on the flow graph. This allows the algorithm to take into account the architecture and

arrive at the right level of granularity effectively.

37

After reviewing the literature, it can be seen that the main difference between

many multiprocessing scheduling problems lies in the problem formulation themselves,

that is, in the various assumptions that are made. For instance, one formulation may

ignore communication delays, another may not consider resource constraints, while

another may assume a fix granularity. Most scheduling formulations, we found, do not

exploit all aspects available to them in their respective applications. This has been

especially true in signal processing.

2.4.4 Multiprocessor Scheduling in DSP

As a target application for multiprocessor scheduling, real-time signal

processing is both a blessing and a curse. Signal processing allows temporal

concurrency to be exploited in addition to spatial concurrency. On the other hand, the

performance constraint requires non-preemptive, compile-time scheduling which are

more difficult to construct.

One popular approach is to use the single-execution scheduling algorithms

detailed in the last section for signal processing as well. In this case, the same schedule

is repeated for each input sample, as shown in Figure 2.10. This class of schedulers will

Po

Pi

P2

P3

P4

A0 F0

B,

H,

D,

E0

A2 F2

H, Bi H, B, G, Hi

H, H< • • •

Dt i IM D,

Jo a E2 h

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

FIGURE 2.10 : Periodic Schedule built from single-execution schedule

minimize the latency of the system, in the sense that the time elapsed between an input

and the corresponding output is optimized. However, because the temporal concurrency

38

is not exploited, these algorithms do not perform as well as far as throughput speedup is

concerned, especially in flow graphs with little spatial concurrency. The Gabriel

[Lee89c], BDC [Zis87], and ZC [Pri91] systems introduced earlier all use this

approach. They all consider communication delays and resource constraints. The ZC

scheduler, in addition, has a limited capability to exploit granularity. Nodes which

contain repetitive computations are classified as either parallel, systolic, or serial.

When a parallel node is scheduled, for instance, the scheduler can spread the parallel

computations across the processors. It is limited in that only one level of granularity is

considered.

An opposite approach is taken by Bokhari [Bok88] and Hamada [Ham92].

These algorithms consider only temporal concurrency to achieve speedup. They model

the application as a chain of tasks to be mapped onto a linear array multiprocessor

architecture. The goal is to pipeline the chain to achieve the maximum throughput.

Hamada also treats heterogenous DSP processors. Although many signal processing

applications are chain-like, there is usually a lot of parallelism inside the tasks which

are not being exploited.

Exploiting the fact that signal processing applications contain both spatial and

temporal concurrency, Schwartz and Barnwell [Sch85] introduced the cyclo-static

,multiprocessor realization paradigm. Cyclo-static scheduling was developed to address

single-sample-rate, fine grain, recursive DSP applications. The method computes

optimal performance and hardware bounds for the application, and uses these as

delimiters to the search space. The bounds computed are maximum throughput rate,

minimum number of required processors, minimum latency delay, and minimum

communication delay. An exhaustive search of the processor and time space is

performed to find the optimal solution. The solution obtained by cyclo-static scheduling

is a schedule which repeats periodically. In contrast to other periodic schedules, where

the schedule of an iteration can be represented as the schedule of the previous iteration,

39

shifted in time by one iteration period, cyclo static schedules represent the schedule of

an iteration by the schedule of the previous iteration, shifted in time by one iteration

period and shifted in processor space by a fixed displacement. This shift information is

conveyed by a principal lattice vector v e P x T. For example, a vector v = (2,2) says

the schedule for the next iteration should be replicated two processors up and 2 time

unit over. An example of such a cyclo-static schedule is shown in Figure 2.11.

P3

P2

Pi

Po

i 3 5

/ • • •

-7/ 0 2 4 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

FIGURE 2.11: Cyclo static schedule with v = (2,2)

Special cases and extensions of cyclo static scheduling have also been

investigated as a means to narrow the search even further. These include Skewed Single

Instruction Multiple Data (SSIMD) [Lee85], Fully-Static Rate Optimal [Par89], Parallel

Skewed Single Instruction Multiple Data (PSSIMD) and Generalized Parallel Skewed

Single Instruction Multiple Data (GPSSIMD)[For88]. While the cyclo-static paradigm

is very powerful, the original formulation had only theoretical value. Communication

delays were not considered, resources constraints were not handled, only fine grain

single sample rate applications were addressed, and the exhaustive search for optimal

solutions was exponential in complexity. However, a number of implementations based

on cyclo-static scheduling are currently underway at Georgia Tech [Cur92][Gel92].

These employ heuristics to find a processor and time mapping which are suboptimal but

can take into account communication delays and resource constraints.

40

2.5 COMPARISON

In this section, the McDAS design environment and its scheduling algorithm is

compared with the systems examined earlier. The goal is to point out the major

differences which exist and why they are present.

Unlike most systems which uses a block-diagram input specification, McDAS

accepts a textual description of the DSP application. One advantage over a graphical

input scheme is the increased flexibility and ease of description. This is especially true

when dealing with hierarchical constructs such as loops, recursions, and conditionals,

which are difficult to represent in graphical languages. Another advantage is the

flowgraph generated from the input textual description is able to represent the

application at all levels of granularity. This allows a scheduler to traverse different

granularity levels to exploit concurrency. Finally, the semantic models of the tasks at

different levels of hierarchy are completely consistent, unlike a block-diagram

description, which may use different models at different hierarchy levels.

A key feature of McDAS is its ability to retarget the scheduler and code

generator to different target machines. Of all the previous environments analyzed, only

the Gabriel system [Lee89c] is likewise. The use of topology libraries and user-defined

•resource constraints allows the designer to quickly prototype and assess different

realizations. Perhaps just as significant is McDAS's modular software design. The flow

graph representation provides a central repository, on which all tools interact. Many

optimizing flowgraph transformations such as common subexpression, dead-code

elimination, loop unrolling, or multirate transformations were implemented and

augmented to the design process. Other tools can be incorporated just as easily with the

flowgraph interface.

41

The main difference however, lies in the scheduling algorithm. Like most

schedulers examined, our scheduler is non-preemptive, static, of polynomial

complexity, and considers communication delays and resource availability. Unlike

them, it exploits both temporal and spatial concurrency to achieve a speedup.

Furthermore, it can traverse different levels of granularity to find the concurrency,

making it insensitive to the problem organization. This allows the scheduler to yield

efficient multiprocessor realizations to a wide range of DSP applications with different

types of concurrency.

2.6 SUMMARY

In this chapter, we reviewed some fundamental terminologies in parallel

processing and discussed previous work in three related areas — multiprocessor

architectures, parallel programming environments, and multiprocessor scheduling. A

comparison of the McDAS environment and its scheduling algorithm to the existing

work is then presented.

The main contribution of the McDAS system is its ability to consider and

exploit all aspects of the multiprocessing scheduling problem, including concurrency,

granularity, interprocessor communications, and resource constraints. This was

achieved by providing a flowgraph representation which can concisely capture both

concurrency and granularity information, and a scheduler which can optimally exploit

them.

THE McDAS

ENVIRONMENT

3

In this chapter, the McDAS DSP design environment is presented. Section 3.1

begins with an overview of the software organization of the environment. It then

explains the compilation process, from the input language Silage down to the DSP code.

Section 3.2 describes the McDAS user interface, and discusses in detail the features of

each tool. In Section 3.3, the language Silage is described, and specific features which

make it an attractive description language for DSP are highlighted. Section 3.4

examines the hierarchical flowgraph representation. Details are given as how certain

constructs such as function calls, loops, and conditionals are represented in the

flowgraph. A library which supports the reading, writing, and restructuring of the

flowgraph is described. Finally, Section 3.5 documents the information necessary to

describe a target architecture, including the topology and the processor element.

43

44

3.1 McDAS SYSTEM OVERVIEW

An overview of the McDAS environment is shown in Figure 3.1

Silage To

FlowGraph

FlowGraph

Scheduler

V /
FlowGraph

/FlowGraph\
V Database J

Library

Architecture

Database)
Code

Generator

FIGURE 3.1: McDAS system overview

Graphical

Command

FlowGraph

Transformations

Graphical

Display

The system is composed of six modules operating on a centralized flowgraph

database. The input is described using Silage, a signal-flow language developed

especially for DSP specification [Hil85]. The modules interact with each other by

reading and/or writing to the flowgraph database. Accessing the database as well as

performing common operations on it are facilitated by the Flowgraph Library, which is

linked into all tools. This modularity of design and extensive library support allows new

modules to be incorporated easily.

The compiler environment is retargetable to different multiprocessor

implementations. This is accomplished with the aid of an architecture database, which

is linked to both the Flowgraph Scheduler and the Code Generator. A set of graphic

45

tools allow for the displaying of the essential statistics of an implementation on a given

architecture. In particular, processor utilizations, bus congestions and memory

requirements can be plotted to facilitate user interaction and feedback.

The design flow through McDAS is shown in Figure 3.2. The user begins with

a Silage description of his application. The description is translated into a flowgraph

description, and a number of architecture-independent flowgraph transformations are

automatically applied to remove any dead or redundant operations. To schedule the

flowgraph, the user inputs the number of processors, chooses a desired architecture

topology from the database, and invokes the scheduler. Once finished, the scheduler

decorates the flowgraph with the processor assignments and scheduling order. The

decorated flowgraph is now called the "scheduled flowgraph". The scheduling results

showing the speedup, load balancing, processor assignments, and communication costs

can be displayed at this time. If not satisfied with the result, the user can select a new

architecture and re-schedule. Once an acceptable solution is found, the code generator

can be invoked. Currently, C code is generated which can perform floating point or bit-

true simulations. This allows an algorithm designer to verify functionality, optimize

application parameters, and assess the effects of finite word-length implementations.

For real-time implementation on DSP processors, DSP assembly code can be generated

by compiling the C code.

The Graphical Command module provides the graphical interface between the

user and McDAS. Here, all commands to input data, invoke tools, display results are

available to the user via menus and buttons. A sample screen is shown in Figure 3.3.

Other graphical display tools currently available include a flowgraph

schematic display tool and a schedule display tool. A screen dump of a 5th order IIR

filter schematics, with the feedback broken at the delay nodes, is shown in Figure 3.4. A

multiprocessor schedule for 4 processors, in the form of a Gantt chart, is shown in

Figure 3.5.

46

Architectural

Description J

Behavioral Simulation

Floating Point

Bit-true:

FIGURE 3.2 : McDAS Design Flow

\
Silage

J
Silage To

FlowGraph

FlowGraph

FlowGraph

Scheduler

Scheduled

FlowGraph

Code

Generator

Code

FlowGraph

Transformations

Graphical Display

Processor Util:

Bus Util:

47

Design Nane Jtistogran Design Version :

Machine I Sequent. Topology SluiredB us

E2SSEZED [EEaEzmagBE
graphllst: constant... lpdelay... read... cond.ee... nux... graphl.
equal... cast... shift_right... ninus... urite...
cond.e... add... graphs... and... cond_l...
graph4... graph3... cond_le... cond_g... graph5...
eraphG... nain...

Perforning conpiler optinizations ...
done...

SPECIFICATION

Edit Silage

Machine ->

Topology ->

View ->

Display ->

Help ->

Quit

COMPILATION

FlowGen

Schedule

CodeGen

Execute

•

(GRAPH

(NAME histogran>
(CLASS MODULE)

<MODEL (

(nodel_class internal)
(nodel.nane func))

)

(NODELIST

(NODE

)

(NODE

>
(NODE

(HOME n9>

(CLASS Hierarchy)
(MASTER graphl)
(ARGUMEHTS

((index k> (indexlevel OXnin lXnax 127>)
)
(ATTRIBUTES

((Dependency serial))
)
(OUT_EDGES (innax ittnin >>
(IN.CONTROL ("xC0..127]_c"))

(NAME nlO)

(CLASS data)

(MASTER equal)
(ATTRIBUTES

((Silage Chistogran.sil" 51 8 >>)
)
(IN_EDGES (innax >)
(OUT.EDGES (gnax))

(NAME nil)
(CLASS data)

(MASTER equal)
(ATTRIBUTES

((Silage ("hiotogran.sil" 52 8)>>

FIGURE 3.3 : McDAS Graphical User Interface

3.2 SILAGE

A specification language must provide to the user the primitives of the

application domain. In DSP, system designers are very comfortable with a graphical

representation of DSP algorithms. The semantics implied is known as data-flow

semantics, in which the emphasis is on the paths followed by the inputs and

intermediate results of a computation, rather than the sequence of imperative operations

Iv.it-

\V—

K£$-

O—r

r$$—~fu
td.—

l!

A _^J

r--miifH'iN,niMinvw'uia

FIGURE 3.4 : Schematics of a 5th order IIR filter

0 19 38 57 76 95 114 133 152 171 190 209 221

H 1 1 1 1 1 1 1 1 1 1 1 h

Proc: 4, Period: 1438, Busy : 90%, Speedup: 3.58, Scale: 0.16
e'"'*cntrl-D*-:-to exit, and 'h* for he

FIGURE 3.5 : Gantt Chart showing processor

performed on memory locations -- the control-flow semantics. The data-flow

representation is not only intuitive to the designer, but also explicitly exposes potential

parallelism. These two features make it the ideal specification language for

synthesizing multiprocessor implementations of DSP applications, and explain the

49

popularity of block-diagram interfaces in a number of DSP design environments

discussed previously. While this format is useful for describing traditional signal

processing algorithms such as filters and modulators, signal processing algorithms have

steadily grown more and more complex, requiring powerful constructs such as

iterations and conditionals. The introduction of these operators to pure data-flow

graphical representations has been very awkward. Textual languages such as Silage

allow the addition of these structures to a data flow environment in a natural and

concise manner.

Silage is an applicative language designed specifically for DSP specification.

Being applicative, Silage captures the data flow concept in a linear, textual form. To

support DSP, it provides as primitives certain data types and operations intrinsic to

sample stream processing. An example Silage program of an 5th order IIR filter is

shown in Figure 3.6. All variables or signals in Silage denote infinite streams of values.

These signals can have integer, floating point, or fix-point data types. A fix-point type

Fix<32, 10> means a word length of 32 bits, with 10 bits of binary fraction. This allows

the user to express precise requirements on signal accuracy, and monitor the affects of

quantization and truncation. A past sample of a signal can be accessed using a Silage

primitive operation *<a>\ For example, X@2 represents the value of signal X, 2 samples

earlier. These delay signals can be initialized using the *@@' operator. The signals can

have different sampling rates and can be synchronous or asynchronous.

A Silage program consists of an unordered sequence of definitions of signals

and of functions which are applied to these signals. In the IIR example, three functions:

IIR, Biquad, and FirstOrder are defined. A signal can only be defined once, making

statements like X = X + 1 illegal. This single assignment semantic allows for a simple

translation to a flowgraph format. To handle repetitive and conditional operations,

Silage supports iterations and conditional expressions, as shown in Figure 3.7. A finite

iteration construct allow groups of definitions to be described succinctly using an index

so

#define word fix<32,10>
#define Coefll 0.015437

func IIR (In: word) Out: word =
begin

Tmpl = Biquadfln, Coefll, Coefl2, Coefl3, Coefl4);
Tmp2 = BiquadCTmpl,Coef21,Coef22,Coef23,Coef24);
Out =RrstOrder(Tmp2,Coef31, Coef32);

end;

func Biquad (in, al, a2, bl, b2: word) out word =
begin

state@@l = 0.0;
state@@2 = 0.0;
state = in - (al * state@l) + (a2 * state®2);
out = state + (bl * state@l) + (b2 * state®2);

end;

func FirstOrder (in, al, bl) out: word =
begin

stateOl = 0.0;
state = in - (al * stateOl);
out = state + (bl * stateOl);

end;

FIGURE 3.6 : Silage description of an 5th order IIR

variable which is enumerated a known number of times. Thus, Figure 3.7a is a

shorthand notation for defining C[0], D[0], C[l], ..., D[10] separately. The implied

control structure can serve as a hint to the CAD tools, which may or may not exploit it.

An infinite iteration construct (Figure 3.7b), on the other hand, is a construct used to

iterate a computation until a data dependent condition is met. This can be interpreted as

a nesting of a separate Silage domain inside the construct. The '<§>' is used in this

•situation to refer to a value in the previous iteration of a signal in this inner domain.

The exit clause defines the termination condition as well as the output signal of the

domain. Finally, Silage supports a conditional operation to choose from among a set of

signals depending on a boolean condition (Figure 3.7c). Other important features of

Silage include vector operations and operations to switch sample rates, multiplex data

streams, etc. The discussion on the multirate operations is deferred to Section 4.4,

where a flowgraph transformation to translate a multirate description to a single rate

description is introduced. Although relatively new, Silage has proven its effectiveness.

A number of DSP design environments have already been built around this language,

51

from compiler systems [Gen89] to high level synthesis systems of custom ICs [Rab91]

and field-programmable data paths [Che92].

(i: 1.. 10)::

begin
Qi]=A[i] + B[i];

D[il = C[i]» Ala-
end;

Finite Iteration

do

i@@l = 0.0;

Acc®@l = 0;

i = i@l +1;
Acc = Acc@l+A[i]*B[i];
out = exit (i >length) -> Ace;

od;

Infinite Iteration

(a) (b)

FIGURE 3.7 : Silage description of Iterations and Conditionals

out =

Blnl

:if(n==

II (n =

1 1 (n>

0)->0.0

= l)->A[n]

l)->A[n]»

Conditional

(c)

3.3 FLOWGRAPH DEFINITION

The central database to which all tools interact is represented as a hierarchical

data/control flowgraph (CDFG). The nodes in the CDFG represent data operations,

while the data edges represent the flow of data from the source node to the destination

node. In addition, control edges can be used to enforce dependency constraints between

independent nodes. Aside from the standard arithmetic operations, the CDFG allows a

number of macro control-flow operations such as iterations and conditionals. With these

constructs, we obtain a hierarchical graph whose subgraphs represent bodies of these

iterations and conditionals. The subgraph contracts to a single node at the next level.

This hierarchical representation has the advantages of compactness and descriptiveness,

as it dramatically reduces the number of effective nodes as compared to a flattened

flowgraph. Furthermore, the macro control-flow of the algorithm is retained, preserving

the structural hints from the designer which may lead to more efficient code generation.

More details on the implementation of the CDFG is given in Appendix A.

52

3. 3.1 Flowgraph Model

This section describes the semantics of the flowgraph representation, which are

based on the Silage language. Besides describing the primitive operators, we will also

discuss the representation of constructs such as conditionals, iterations, and arrays.

Primitive Operators and Function calls

Each primitive operation in Silage has a corresponding primitive node in the

CDFG. A function call is represented as a hierarchical node, whose subgraph points to

the function body. The interpretation of these constructs is straightforward. Figure 3.8

shows the flowgraph representation of an 5th order IIR Silage description presented

earlier.

FIGURE 3.8 : CDFG description of 5th order IIR

Iterators and Conditionals

Control operators such as iterators and conditionals are hard to represent in a

flowgraph. We propose an elegant scheme, based on hierarchy: An iteration or

conditional is represented as a single node at the invocation level. This node is an

instance of a subgraph representing the body of the iteration or conditional. Information

about the iteration, such as the index and the bounds are passed as parameters to the

hierarchical node. The flowgraph representations of both the finite and infinite iteration

53

are shown in Figure 3.9a and Figure 3.9b. There are two ways to represent the

conditional operator. The first way uses the standard data-flow approach, using a

multiplexer to select between two results. This representation requires both cases to be

evaluated. The CDFG also allows a control conditional statement representation, where

only one of the cases will be executed at run-time. The flowgraph for this construct is

shown in Figure 3.9c. Notice that the signal c has two definitions! This still satisfies the

single assignment rule since the two definitions are mutually exclusive.

b

rSum '"'•.,. » Sum 'Sum '''••/Exit

a) Finite Iteration b) Infinite Iteration

c) Conditional

FIGURE 3.9 : CDFG representation of Iterations and Conditionals

Arrays

In a CDFG, arrays are represented as background memory, and all array

references are interpreted as memory reads and writes. Control edges are introduced to

establish precedences between array reads and writes to make sure that we only read an

element after it has been assigned a value. Two nodes, read and write, are introduced to

operate on arrays, as shown in Figure 3.10. A read node has two types of inputs:

Control dependency edges from other nodes, and data edges holding the index values of

the element to be accessed. The control edges originate from the nodes which produce

the desired array elements. The node has two mutually exclusive outputs, a data edge

and a control edge, depending on whether a single element or a vector is accessed. A

write node has index input edges and two mutually exclusive data input edges: An input

data edge or control edge, depending on whether a single element or a vector is stored.

54

It has one output control edge: A control precedence edge to any subsequent read nodes

which want to access its data. To simplify the representation, it is possible to store the

IN[]

IN[i]|j]

FIGURE 3.10: Read and Write nodes in CDFG

OUT[0]

array indices as arguments to the nodes if the indices are constants. In this case, no

index edges are needed. Note that for non-constant array indices, in order to establish

the correct relationship between different read and write nodes of the same array,

careful analysis these indices is mandatory. We will expand on this task in Chapter 4.

3. 3.2 Flowgraph Library

A flowgraph library based on the CDFG has been developed. It provides the

support routines to facilitate the integration of new tools into the McDAS environment.

The library is completely generic and has been used to support a number of other

'environments such as HYPER [Rab91], CADDI [Che92], and Aloha [Sun91]: It is

composed of 6 sub-libraries, as shown in Figure 3.11.

The Input & Output library contains routines to translate the flowgraph from

the AFL format to the OCT format (see Appendix A), and vice versa. It also has

routines to read in and dump out AFL text files. This is the main mechanism for the

tools to pass their results to one another. The Structure & Interconnect library contains

all routines to create, delete, copy, and modify flowgraph objects such as graphs, nodes,

edges, arguments, and attributes. All routines to connect and disconnect objects are also

55

Flowgraph
Library

" " " v " V

Input &

Output

Structure &

Interconnect

Semantic

Analysis

Memory

Management

Sorting &

Leveling
Trans

formations

FIGURE 3.11: Flowgraph Library Organization

available here. It is the largest and most often use library. The SemanticAnalysis library

performs semantic checking on the flowgraph, such as deducing and enforcing edge

types as well as resolving node and edge references. The Memory Management library

is responsible for efficiently managing the allocation and de-allocation of memory used

in creating flowgraph objects. The Sorting & Leveling library contains routines to

topological order the flowgraph, to traverse the flowgraph in depth-first and breath-first

order, to level the flowgraph from input and output, and to find the critical paths of a

flowgraph. These operations are often used in many graph algorithms in scheduling and

high level synthesis. Finally, the flowgraph Transformation library contains a number of

flowgraph transformations to remove constant nodes, transform cast nodes, transform

input and output nodes, etc.

3.4 ARCHITECTURE DATABASE

The architecture database contains a description of the different types of

possible architectures that McDAS will map to. It interacts with the scheduler and code

generator to customize the synthesis process to a particular target machine. Each

description characterizes the core processor, the number of processors, the

interconnection topology, and the memory layout of the target architecture. The content

of each description includes:

56

1. Computation time and memory requirementof each primitive instruction of the pro

cessor such as multiply, add, shift, etc.

2. Computation time overhead andmemory requirementoverheadofcontrol constructs

such as function calls, loop jump and tests, etc.

3. Instruction set of the processor.

4. Program and datamemory size for the processor.

5. Distance between processors in terms of bus hops,aswell as the data routing paths.

6. Time required to send one unitof data across 1 bus hop.

7. The memory layout of the architecture.

8. The interprocessor communication and synchronization protocols.

The first four items characterize the processor, while the last four items

describe the multiprocessor composition. From this data, it is possible for the scheduler

to estimate computation times and memory requirements of nodes as well as the

communication delays in data transfers. The code generator also uses the memory

layout and the communication protocols to generate code for interprocessor

communication and synchronization. Currently, an architecture description has

components which can be modified on the fly from the McDAS command window (such

as the number of available processors) and components which are compiled along with

the scheduling and code generation front-ends (such as header files defining instruction

costs, routines to calculate communication delays for each topology, and routines to

emit code for a specific processor). Users who want to build their own architecture

description can modify the header files and routines to reflect their architecture. The

customized header files and routines are then compiled with the generic scheduling or

code generation front-end to yield customized schedulers and code generators. These

57

are then available as options to the user from the McDAS command window. While it is

possible to standardize these interface routines so that a textual description of the

instruction set and interconnect topology can be read in on the fly, it is doubtful whether

a generic code generation strategy can have enough intelligence to generate code

efficient enough for real-time implementation.

3.5 SUMMARY

An overview of the McDAS compiler environment has been presented,

showing the components of the system as well as the design flow of the compiler.

Special attention is given to the description of the Silage input language and the

control/data flowgraph (CDFG) representation.

The system provides a complete synthesis path from Silage to executable code

on the target machine. Both the scheduler and code generator can be customized with a

header file and a few interfacing routines. A number of different versions are available

to the user, allowing rapid implementations on different architectures. Users can easily

construct and include new architecture descriptions.

The hierarchical CDFG structure allows all the concurrency of an application,

from the finest to the coarsest level of granularity, to be represented in a concise

manner. The powerful hierarchical constructs such as function calls, iterations, and

conditionals permits the CDFG to effectively support a wide range of complex DSP

applications. In addition, the availability of the CDFG library greatly facilitate the

incorporation of new tools to the environment.

SILAGE TO

FLOWGRAPH

TRANSLATION

4

The Silage To Flowgraph module translates a Silage program into a CDFG.

Section 4.1 discusses the basic translation process from Silage to CDFG. Particular

attention is given to the handling of arrays and data dependency. Section 4.2 discusses a

number of flowgraph optimizing transformations which are automatically applied to the

resultant CDFG. Finally, Section 4.3 discusses multirate DSP systems: how they are

represented in the CDFG, and how they are processed by the Silage To Flowgraph

module. In particular, the section introduces a graph clustering transformation to reduce

a multirate CDFG into a single rate CDFG.

4.1 BASIC TRANSLATION

The basic Silage to CDFG translation is performed in two phases: The Silage

front end, and the CDFG generation. At the time of the development of the Silage To

Flowgraph module, there were two existing Silage compilers: One was the Silage

simulator [Sch88] developed at IMEC Laboratory for the Cathedral II high level

synthesis project; another one was the Silage compiler developed to generate RL code

for the Kappa Architecture project [Wan88]. In an effort not to duplicate the time

consuming parsing work, the Silage front end was derived from the IMEC Silage

simulator. It parses the Silage text and builds the necessary data structures for the

59

60

construction of a CDFG. The CDFG generator then makes a 1-pass traversal of this data

structure and constructs a hierarchical CDFG representation of the Silage program.

Each Silage function definition gives rise to a CDFG graph, with each Silage primitive

operator generating a corresponding CDFG leaf node. A Silage function call results in a

hierarchical link between the calling node and the corresponding subgraph, while an

iteration construct links the iteration node to the iteration body subgraph. As the nodes

and edges are generated, the position of the Silage code (line number, character number,

filename) is copied over for error reporting. More details on the implementation of the

basic Silage to CDFG translation process is described in Appendix B.

4.1.1 Handling of Delayed Signals

In Silage, a delayed signal is expressed using the '@' operator. If the delayed

signal is needed to define the original signal, a recursion or cycle is formed. This

recursive relationship must be derived from the definition of a signal and its delayed

value, as shown in the following example Silage code:

func Biquad(in, al, a2, bl, b2: word) out word =

begin

state@@l = 0.0;

state@@2 = 0.0;

state = in - (al * state@l) + (a2 * state@2);

out = state + (bl * stateOl) + (b2 * state@2);

end;

In a flowgraph formulation, the recursion is expressed explicitly, using delay

nodes and feedback edges. Often, a delayed signal is used before the signal itself is

defined. Hence, in the CDFG construction, delayed signals must be tagged so that the

CDFG generator can know to complete the cycle once the primary signals are

encountered. This must be done even when the use of the delayed signal and the

definition of the signal occur at different hierarchical levels. In this case, the cycle is

promoted to the highest hierarchy possible so that tools which traverse the CDFG top-

61

down may see the cycle at the earliest time. This process is shown in Figure 4.1 This is

FIGURE 4.1: Delay Promotion

necessary so that there never exists a cycle without delay at any level of granularity.

Finally, it is desirable to build a delay line in the CDFG if the Silage

description contains references to consecutive sample delays of a signal. This is present

for instance, in the Silage description of the Biquad filter shown above. To accomplish

this, upon encountering a delay signal such as state@2 for instance, the CDFG

Generator works backwards to find the input edge. It checks if state@2 is present, then

state@l, and finally state. The delay line is built one by one until the primary signal is

found.

4.1.2 Generation of Arrays

As discussed in Section 3.3, array definitions and usage in Silage are

implemented as reads and writes in the CDFG. To enforce correct data dependency,

control edges are introduced to order the read and write nodes so that a read operation

can only occur after the write operation which produces the data. This entails a precise

analysis of the ranges of the indices on the array to enforce data dependency. To read

element A[i][j+k] for example, it is necessary to determine what the range of indices i,

62

j and k covers. Only when this is known will a correct data dependency be established

between this read operation and all of the previous write operations to array A.

Fortunately, Silage requires that an array index be manifest, that is, its value or range of

values must be computable at compile time. This means that all read and write index

edges, even if they are expressions, must have index ranges which can be computed by

the compiler. This is accomplished by tagging all edges which are manifest, and

propagating their values across operators whenever possible. This computation for a

number of standard arithmetic operations is shown in Figure 4.2. Here, the lb..ub

lbL.ubl Ib2..ub2 lbL.ubl Ib2..ub2 lbL.ubl Ib2..ub2

W
Ibl+lb2..ubl+ub2 Ibl-lb2..ubl-ub2 Ibl*lb2..ubl*ub2

FIGURE 4.2 : Manifest Value Propagation

represents the lower and upper bound of an index. Using this technique, all index edges

of read and write operations will be declared as manifest. Dependency checking now

reduces to determining whether the index range of the read node intersect the index

,range of any of the write nodes to the same array.

Using lb..ub to represent an index range can be a gross simplification in some

cases. For example, if we want to read to every 3rd element of an array, the index set

would be {0,3,6,9,12,...}. This is abstracted to 0..12, even though not all index values

are needed. This scheme ensures sufficient data dependency for correct execution, but

may include more dependency than necessary. As discussed in section 2.3, an exact

dependency analysis would require the CDFG generator to solve a number of integer

programming problems, which are exponential in complexity. Since this is not practical,

the approximation as outlined above is adopted. For all of the applications that we have

63

tested so far, this implementation has been sufficient. However, if no extraneous

dependency can be tolerated, more powerful dependency analysis techniques can be

examined. This issue is addressed in more detail in chapter 9, where future research

directions are discussed.

4.2 CDFG OPTIMIZATION

A number of flowgraph transformations have been implemented to perform

optimizations on the CDFG. These transformations retain the functionality of the

flowgraph but reorganize its structure to ease implementation, improve execution time,

create extra concurrency, or reduce memory requirements. Flowgraph transformations

can be classified into two groups: Architecture-independent transformations and

architecture-dependent transformations. Architecture-independent transformations are

those transformations which improve a flowgraph realization without relying on the

knowledge of the target architecture. Based largely on classical compiler optimization

theory, they restructure the flowgraph to remove redundant computations, increase

parallelism, or replace costly computations with equivalent but less costly ones. As the

architecture is not yet chosen at this point, only the architecture-independent

transformations are applied. They include: Equal node removal, cast node removal,

manifest expressions, common subexpression elimination, and dead-code elimination.

The first transformation aims to remove the 'equate' operation, which is

redundant in data flow. The second transformation removes cast operations if the input

and output data are of the same type. The third optimization collapses manifest

calculations down to a single edge. The optimization takes care of algebraic identities

such as addition or subtraction by 0, multiplication or division by 1, shifting by 0, or

any other compile-time computable expressions. The next transformation, common

subexpression elimination, attempts to remove nodes which are computing the same

64

thing. To do this, the graph is ordered from input to output, and for each input edge, we

scan its output nodes and check for identical operations. If any two nodes are the same,

we remove one of them. The ordered traversal allows entire common graph blocks to be

detected and removed. Finally, the dead-code elimination transformation removes all

computations whose results are not used. To do this, we scan the graph from output to

input, and remove nodes whose output edges are unconnected.

The optimizations above are the implementation independent transformations

available in McDAS. Many other transformations have not been implemented as it was

not the focus of the thesis. Their addition to the transformations library, however, will

further increase the effectiveness of the environment.

4.3 MULTIRATE APPLICATIONS

Some DSP systems may include a number of subsystems working at different

sampling rates. Silage supports a number of operations for the re-sampling and time-

multiplexing of signals. These operations map directly to their corresponding nodes in

the CDFG format. However, to implement these operations, it is necessary to translate

them into more basic operations. This transformation is discussed in this section. It is

âpplied to the CDFG before the optimization step to allow the CDFG optimizer to work

on its result. Before discussing how this is performed, we give a brief description of the

multirate operators as defined by the CDFG policy. A detailed discussion of multirate

digital signal processing can be found in [Cro83][Jac90].

4. 3.1 Introduction

Each signal in a synchronous data flow system has associate with it an index

set to enumerate its samples. The index set is defined by two parameters: A repetition

period and a phase. The repetition period represents the interval between successive

65

samples. In synchronous systems, this period is constant for a given signal, and in

single-rate systems, it is constant for all signals in the system. In multirate systems, the

signals can have repetition periods which are rational multiples of each other. The

phase of the signal determines the offset of the index set relative to a arbitrary origin 0.

The phase is expressed in terms of an integer value less than the repetition period. With

these two parameters, the CDFG library supports four multirate operations:

• Upsampling

The upsampling function modifies the index set of the original signal x to give

a new signal y with a shorter repetition period, or alternatively, a faster repetition or

sampling rate. The new rate is an integer factor scale faster than the original rate.

Values between the old values are filled with zeroes. The new phase can be offset by an

integer value phase. The offset is with respect to the new higher rate signal. Figure 4.3

Scale: 3

Phase: 1

-2

x[n]i

•1 0 1 2 3

I

i kl
1 • f 4•

1 • < >
< >

T
•

•30369
m

FIGURE 4.3 : UpSampling with scale = 3 and phase = 1

shows the upsampling of a sequence with scale = 3, phase = 1,

Downsampling

66

The downsampling function modifies the index set of the original signal x to

give a new signal y with a slower repetition rate. The new rate is an integer factor scale

slower than the original rate. The new phase is offset by an integer phase offset. The

offset is with respect to the old higher rate signal. Figure 4.4 shows the downsampling

of a sequence with scale = 3, phase 1.

x[n]

Scale: 3

Phase: 1

y[m]

(1

•

II

• t I
•

II

II

•

i

ii

1
(

I T T .

y[m]

-3
m

FIGURE 4.4 : DownSampling with scale =3 and phase = 1

• Time Domain Multiplexing

The time multiplexing function takes k input signals xlf X2, ..., xk, each with

the same sampling rate Fs, and results in a single output signal y with a sample rate

k*Fs. The samples of the output signal are defined as y[n] = {xj[0], x2[0], ..., xk[0],

*iP]. x2[l], xk[l], ...}. This operation is actually composed of k upsampling

operations with the appropriate phase factor, followed by a summation. Figure 4.5

shows this operation. The parameter of the Upsampling node is scale, phase.

• Time Domain Demultiplexing

67

*i[n]

x2[n]

y[m]

xk[n]

FIGURE 4.5 : Time Multiplexing

The time demultiplexing function takes an input signal x, sampled at a rate

k*Fs, and splits it into a set of output signals ylt y2, yk, each with sample rate Fs.

The samples of the output signals are defined as yj[0] = {x[0], x[k], x[2k],...}, y2[0] =

{x[l], x[k+l], x[2k+l], ...}, yn[0] = {x[k-l], x[2k-l], x[3k-l], ...}. The demultiplexing

can be done with nophase, so that the resultant outputs are in phase with one another, or

without, in which case the outputs are offset from one another by 1. Figure 4.6 shows a

time demultiplexing operation.

4. 3.2 Multirate Transformation

Multirate operations are high level DSP concepts which must be translated into

more primitive computations for realization. Consider a simple application involving a

rate change as shown in Figure 4.7. The upsampling operation produces three samples

of signal c for each sample of signal b. As a result, the computation after the rate

change is repeated 3 times, once for each sample. For each firing of the multiply node,

the add node is fired 3 times. A CDFG representation of the required computation of the

application is shown on the right. An iteration node is used to replicate the computation

after the upsampling. The three samples of signal c are derived from the one sample of

68

yitm]

y2[m]

yktm]

FIGURE 4.6 : Time Demultiplexing

Kl

K2

K2

FIGURE 4.7 : Multirate Transformation Example

signal b by padding zeroes according to the phase. The samples are grouped into an

array which feeds the iteration. The final output is an array d of three samples. The

resultant description can now be considered as a single rate program.

We now introduce a flowgraph transformation which performs the mapping as

outlined above automatically. The main idea is to cluster tasks into processes of

69

different rates and using iterations, invoke the processes the required number of times

to yield an equivalent computation. The transformation involves several steps:

1. Reveal Process

This module locates the boundary of processes by examining multirate nodes.

Since these multirate nodes may be hidden deep within the hierarchy of the CDFG, the

graph is expanded until all multirate nodes are visible at the top level. This can be done

with a simple top-down scan.

2. Determine Process

This module traverses the graph from input to output and assigns each node a

process number. At the same time, the relative rate of a process with respect to the input

rate is determined. The input rate is given a normalized value of 1. This routine is

essentially a leveling procedure, where a node is assigned a new process number and a

new rate if any of its inputs is a multirate node. The new rate is calculated as the

predecessor rate * scale, where scale is a parameter of the multirate node. This rate

gives the relative rate of this new process with respect to the input rate. If no input

nodes are multirate, they should all have the same sample rate, and the node is assigned

the same process and rate. If they do not all have the same rate, we have a multirate

inconsistency which may lead to deadlock or unbounded memory usage. This

phenomenon was studied extensively by Lee [Lee89b]. At the end of the procedure,

nodes which have the same rate are given the same process number, and all are assigned

a relative rate with respect to the input. An example is shown in Figure 4.8, where the

output of process 1 is upsampled by 2, the three signals of process 2 are time-multiplex

into one signal, and the result of process 3 is downsampled by 10. The relative rates are

shown in the first row of Table 4.1.

70

Process

1

'2'
•

Process

2

'3'

FIGURE 4.8 : A Multirate Application example

The corresponding relative rate is shown in Table 4.1.

Process 1 Process 2 Process 3 Process 4

Relative Rate 1 2 6 0.6

Integral Rate 10 20 60 6

Absolute Rate 5 10 30 3

TABLE 4.1: Process Rate

3. Calculate Process Rate

This phase determines the absolute rate of the processes. The resultant rate

dictates how many invocation of each process must occur for correct execution. In the

input to output traversal of the previous phase, we keep track of all downsampling

operations and calculate the total downsampling factor, defined as the product of all

downsampling factors. For example, the total downsampling factor of Figure 4.8 is 10.

If all relative rates are multiplied by this value, we obtain the integral rates, shown in

the second row of Table 4.1. These rates are guaranteed to be integral since they are

multiples of the maximum divided number. Although these values can be used as the

final process rates, they should be reduced to their lowest integral values to save buffer

memory. This is because each process must run to completion before the next process is

started, forcing all outputs to be accumulated. Minimizing the number of invocations of

a process reduces the amount of buffer memory which must be allocated. To do this, the

greatest common divisor of all integral rates is determined, and the absolute rate is

calculated as the integral rate / gcd (row 3).

71

4. Create Process Clusters

This phase actually restructures the CDFG by clustering each process into a

subgraph, and creating an iteration node to replicate the computation. The bounds on

the iteration is given by the absolute rate of the process. Next, the scalar input and

output signals to the processes are changed to array signals to store all results. Again,

the size of the array is determined by the rate of the process. Finally, the multirate

nodes themselves are replaced by operations to perform the correct data routing. For

upsampling, this involves routing the input signal to the correct output signal depending

on the phase, and padding all other output signals to 0. For downsampling, it involves

choosing the correct input signal (according to the phase) to route to the output. For

time-multiplexing and time-demultiplexing, both input and output signals have the

same dimension, and there is a one-to-one assignment of input to output. The phase in

this case determines the offset in the assignments.

5. Flowgraph Optimization

This restructuring phase above basically completes the transformation of

multirate CDFG's to single-rate CDFG's. However, it is often possible to perform more

optimization on the resultant structure to improve memory usage. For instance, looking

at Figure 4.7, we see that c[2] = b. We can remove this 'equate* operation, and have the

output of the first process writes to c[2] directly. This equal node removal is even more

effective in time-multiplexing and time-demultiplexing operations, where the result of

the restructuring phase yields a set of equate operations between two arrays. Thus,

applying this transformation removes any unnecessary copying of data.

In addition, with the current clustering scheme, the flowgraph performs the

computation of an entire process before proceeding to the next process. This tends to

build up much more input data than is necessary. For example, from Table 4.1, we see

that the first loop will generate 10 samples before the second loop starts. However,

72

computations in the second loop can start as soon as 2 samples are available. By

merging the two loops together, we obtain a nested loop structure where the outer loop

has 5 iterations, and the inside computation involves two iterations of loop 1, followed

by one iteration of loop 2. This reduces the buffer memory size from 10 down to 2. This

is discussed in more detail at the end of the thesis as part of the future research.

4.4 SUMMARY

The Silage to CDFG translation process has been presented. This entails the

parsing of the Silage code, the generation of the CDFG, and the optimization of the

CDFG. The key tasks involve translating the Silage delayed signals to the feedback

loops and delay lines in the flowgraph, and establishing dependencies between array

accesses. This may have to be done across the hierarchical flowgraph structure.

To handle multirate DSP applications, the module uses a node clustering

transformation to cluster operations with the same sample rate into processes. The

processes are then invoked the required number of times to yield an equivalent

computation. The number of invocations are minimized to reduce the size of buffers.

Finally, optimizations are applied to remove any unnecessary copying of data.

MODEL OF

COMPUTATION

5

Real-time DSP implementations on multiprocessors require static scheduling

to reduce run-time overhead. Every static scheduling strategy is based on a computation

model, which describes how tasks are partitioned and executed, and how

communications are conducted. The computation model in turns make a number of

assumptions on the target architecture. In this chapter, the computation model of the

McDAS system is presented. Section 5.1 provides an example to demonstrate the

motivations behind the model. Section 5.2 describes the partitioning and execution of

tasks. Specifically, it defines the components of a multiprocessor schedule, and

analyzes the throughput, speedup and communication overhead of a resulting

implementation. Section 5.3 presents the architecture support required by the model.

A static schedule is only good if accurate estimations of the computation,

memory, and communication costs are available. Section 5.4 discusses the estimation of

computation times and memory requirements of tasks. To demonstrate its effectiveness,

the estimated values are compared with actual measurements. The section concludes

with a discussion on the limitations of this estimation strategy. Finally, Section 5.5

discusses the estimation of interprocessor communication delays, and shows how it

enables the scheduler to take into account the underlying architecture topology.

73

74

5.1 A MOTIVATING EXAMPLE

A key contribution of this thesis is the scheduling algorithm, which can

simultaneously exploit spatial and temporal concurrency in a DSP application. This is

illustrated with the example of a Pitch Extractor algorithm for speech, whose flowgraph

is shown in Figure 5.1a [Slu80]. It involves calculating the Discrete Fourier Transform

of a speech signal, searching for local maxima in the spectrum to find a harmonic

pattern, and comparing this against a set of template harmonic sets. In the flowgraph,

nodes are labelled with their (fictional) computation costs. For the sake of simplicity,

all nodes are given the same cost, and communication costs are not considered. On a

single processor, the time elapsed between sample iterations, or the iteration period, is

160 time units.

a)

(^z£)—K^£)
DFT Amplitude

b)
Template Matching

K5Dh^C^h-K5^

I := delay

FIGURE5.1: Simultaneous pipelining and parallelism.

Scoring

The goal is to exploit all available concurrency to maximize the throughput.

Figure 5.1b shows the flowgraph pipelined into 6 stages, with the 5th stage having 3

tasks executed in parallel. If 8 processors are available, this partitioning is optimal,

yielding an iteration period of 20 (1 output per 20 time units), a perfect speedup as

compared to a uniprocessor implementation. For scheduling techniques that only

75

consider pipelining[Bok81], the parallel template matching task becomes the

bottleneck, limiting the iteration period to be 60 time units, a speedup of only 2.7 out of

8. When considering only parallelism [Pri91][Sih89], only the template matching task

can be sped up. The critical path limits the iteration period to 120 time units, a speedup

of 1.3 out of 8.

Cycles in the flowgraph hinder the exploitation of pipeline concurrency.

However, retiming can be used. Retiming [Lei83] involves the rearranging of delays

within cycles to achieve a better performance (see Section 2.1). Consider the flowgraph

in Figure 5.2a, the feedback prohibits the addition of pipeline stages on the feed

forward path, making the cycle the bottleneck computation. In order to schedule this

computation and at the same time preserve its functionality, a delay can be moved from

the feedback path to the forward path as shown in Figure 5.2b. This configuration

utilizes all processors and yields the maximum throughput. The combination of

retiming, pipelining, and parallelism fully exploits the available concurrency in the

graph.

a)

(^0^)-y-*^2oJ) K^oJ)

b)

(]£){r~(^

I := delay

FIGURE 5.2 : Simultaneous pipelining, retiming, and parallelism.

76

5.2 COMPUTATION MODEL

This section describes the computation model of the McDAS environment. It

explains the execution of a parallel program starting from a scheduled CDFG. As stated

in Section 1.2, our target application domain is restricted to synchronous DSP systems.

In addition, all multirate operations are assumed to have been transformed to single-

sample rate via the transformation detailed in Section 4.4.2. The single-rate CDFG then,

represents all the necessary and sufficient operations to be implemented.

From the discussion in the last section, we see that the execution of a

scheduled CDFG involves a number of autonomous sub-programs running

simultaneously, with some executing in parallel, and some in a pipeline fashion. An

example program structure is shown in Figure 5.3

Stage 0 Stage 1 Stage 2

FIGURE 5.3: An Example Program Structure

Stage 3 Stage 4

Each sub-program is a set of operations to be executed serially in some

predefined order on one processor. Thus there is a one-to-one mapping of sub-programs

to processors. The organization of the parallel computation, i.e., the number of sub

programs at any pipeline stage as well as the number of pipeline stages, depends on the

types of concurrency available in the application. Each processor executes its assigned

code once each sample period, consuming one frame of data from each of its inputs and

77

producing one frame of data for each of its outputs. Since data comes in an infinite

stream, each processor executes repetitively in an infinite loop, synchronizing at the

beginning of each sample. The pseudo-code for each processor is shown in Figure 5.4.

The global synchronization serves to ensure correct data transfer from one pipeline

stage to the next.

Sub-Programl

main ()

while (1) {

Global_sync();

Sub-Programl 0;

}

Processor 1

Sub-Program2

main ()

while (1) {

Global_sync();

Sub-Program2();

}

mmmmmmmmmmmmmmmmmmm

Processor 2

FIGURE 5.4: Pseudo-code for Sub-Programs

Sub-Program3

main ()

{

while (1) {

Global_sync();

Sub-Program3();

}

}

mmmmmmmmmmmmmmmmmm

Processor 3

Edges between the sub-programs are called buffer edges, and represent

interprocessor communications. These communications are not restricted to be between

adjacent pipeline stages, but may occur between sub-programs within the same pipeline

stage, or from non-adjacent stages. In addition, the communication is not confined to

occur only at the beginning and the end of a sub-program, but may occur at any point

within a sub-program. In the example in Figure 5.3, there are eight sub-programs

executing in 5 pipeline stages. Stage 1 and 3 have multiple sub-programs executing in

parallel. While most data transfers in this example are between adjacent pipeline stages,

there is a 2-pipeline transfer between sub-programs 3 and 6, and some interchange of

data in the middle of a pipeline between sub-programs 5 and 6. As we will later see,

78

communications between processors in the same pipeline stage require additional

synchronizations.

5,2.1 A Multiprocessor Schedule

The partitioning of the application into sub-programs is given by a

multiprocessor schedule. A multiprocessor schedule defines the processor assignment

and starting time of each node in the CDFG, and the pipeline stage of each processor.

Definition 5.1: A multiprocessor schedule 1(G) = (N, PA, ST, PS) of a CDFG G on P

processors consists of:

1. A set of nodes N of the CDFG G. The nodes can be primitive nodes or hierarchical nodes.

2. A processor assignment PA of a node. PA(n) is the processoron which node n is executed. If

n is a hierarchical node, all descendantnodes of n areassigned to PA(n).

3. A starting time ST of a node. ST(n) is the starting time of node n on processor PA(n). It is

illegal for two nodeson the same processor to haveoverlapping execution times.

4. A pipeline stage PS of a processor. PS(p) is the pipeline stage of processor p.

Figure 5.5a and b shows a CDFG and a possible execution schedule on 4

processors. The value above a node in the CDFG represents its computation time in u,s

(microseconds). Interprocessor communication is assumed to take 2 u.s for any

transaction for simplicity. The nodes which are assigned to the same processor form the

sub-program for the processor. Each processor executes its set of nodes for each input

sample. The order of execution is based on the ST values of the nodes: The node with

the earliest ST value is executed first, then the node with the second earliest ST value,

and so on. Figure 5.5c shows 2 repetitions of the schedule in the form of a Gantt chart,

showing the processor assignment and starting time of each node in the graph. The

79

processor number and pipeline stage of each processor are given in order (Processor,

Pipeline Stage). The subscript on the node name indicates the sample being processed.

The time allocated for interprocessor communication is shown as a shaded box.

This cost only occurs when the source and destination nodes are assigned to different

processors. For the sake of simplicity, we assume communications only occur at the end

of a computation. Node F can only start 2 jxs after node C finishes execution, as it must

wait for the data from node C to arrive. On the other hand, node D can start immediately

after node C finishes as its input data is already available on processor 1. Two

communications are necessary at the end of processor 0 as node B needs to send its

result to two different processors. Note that for architectures which support

broadcasting to more than one processor, this is reduced to one communication. The

global synchronization cost is assumed to be negligible in this example.

In multiprocessor scheduling, it is often not possible to exactly compute at

compile time the computation and communication times of operations. This can be due

to insufficient knowledge of the detailed operation of the architecture, operating

system, compiler, or from an abstraction of the computation model necessary to reduce

the scheduling time. Thus, although the scheduler may estimate a node to execute in a

certain time t, the actual time may be t ± e. Similarly, the communication delay can be

different from estimated. As a result, the ST() values of a schedule are only regarded as

estimates of the starting time, not the actual. This variation can cause incorrect

execution if precautions are not taken. Consider sub-program 2 in the previous example.

It is assumed that at node F's starting point, node C has finished its computation and has

forwarded its data. If this is not the case, node F will execute using incorrect data. To

ensure correct execution, a local synchronization is necessary at this point to delay

node F until correct data is available. The local synchronization is necessary for any

interprocessor communication which occur between sub-programs on the same pipeline

stage. If the multiprocessor system does not have built-in synchronization instructions,

80

Stage 0

(c)

Po»PS0

Pi.PSi

P2,PS!

,P3,PS2

A0

E

H

B,

D

i j

Stage 1

ill

global
sync

Co

E0

H

Bl

Do

Stage 2

global
sync

Fq Gq

J.i

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 (US)

FIGURE 5.5: An Example schedule

semaphores can be used. In the case of a message passing computer, the send and receive

primitives may implicitly perform the necessary synchronizations.

81

5.2.2 Evaluation of a Schedule

Given a schedule, a number of performance parameters to characterize the

quality of the schedule can be calculated. The first parameter is speedup. Two types of

speedup can be computed: Throughput speedup and latency speedup. Their definitions

were given in Section 2.1.

Definition 5.2: Let t(1) be the throughput of an application on 1 processor, and let x(n)

be the throughput of the same application on n processors, the throughput speedup

S-r(n) obtained by executing on n processors is given by Sj(n) = i(n) / x(l). In case of a

pipelined implementation, the throughput on n processors ipipe(n) is determined as 1

over the computation time of the slowest pipeline stage (called opipe(n)). In this case,

S-r(n) is given as tpjpe(n) / x(l). We refer to opjpe(n) as the stagetime.

Definition 5.3: Let o(l) be the execution time of an application on 1 processor, and let

Ciatency(n) be the latency of the same application on n processors, then the latency

speedup S^n) obtained by executing on n processors is given by S^n) = c(l) /

°latency(n)-

The period of a schedule determines how fast the system can process incoming

data, and is given by the stagetime. The stagetime is in turn determined by the

execution time of the busiest processor. Assuming a cycle takes 1 p.s, the sample period

of the example schedule of Figure 5.5 is 18 jxs, yielding a throughput of 1/18 jlls = 55.56

x 103 samples per second. Since three pipeline stages are present, the latency is 3x18 =

54 (is, reflecting the time elapsed between the arrival of an input sample and the

availability of the corresponding output.

If only 1 processor were available, the execution time of the CDFG would be

the total execution time of the nodes, plus 2 usees for outputting, for a total of 58 usees.

The throughput speedup of the 4-processor schedule is 58/18 = 3.22. On the other hand,

the latency speedup is only 58/54 = 1.074.

82

Definition 5.4: The percent communication overhead of a processor gives the percentage

of cycles devoted to performing communication over the total number of cycles used.

The average percent communication overhead is the percent of the total cycles used for

communication by all processors over the total cycles used by all processors.

The total number of cycles includes the cycles devoted to computation,

communication, as well as to idling. In the example, the communication cost of

processor 1 is 4 cycles, whereas the total cycles is 18, yielding a 22.2% communication.

The overheads for processors 2, 3 and 4 are 11.1%, 22.2% and 22.2%, respectively. The

average percent communication equals 12/72 = 16.7%.

Definition 5.5: The percent idling-time of a processor equals the percentage of idle

cycles over the total number of cycles used by the processor. The average percent

idling-time equals the percentage of the total number of idle cycles over the total cycles

used by all processors.

In the example, the idling-time of processor 1 is 2 cycles, whereas the total

cycles is 18, yielding a 11.1% idling-time. Processors 2, 3 and 4 have 11.1%, 0% and

0% idling-time, respectively. The average percent idling-time is 4/72 = 5.56%.

5.3 ARCHITECTURAL SUPPORT
•

In this section, the minimal architectural requirements to support the

computation model are presented. The characteristics of an individual processor are

first described, followed by discussions on the interprocessor connection and

communication.

83

5. 3.1 Processor Characteristics

McDAS targets MIMD parallel machines. The assumption of MIMD is

essential, since the pipelining of an application usually results in different computations

for different processors. Thus each processor must have its own program memory and

sequencer. The processors are assumed to be homogeneous and programmable, with an

instruction set that includes all standard arithmetic and logic operations. Local data

memory or register files are highly desirable for efficient execution. Each processor

must also have a mechanism for communicating to one or more neighboring processors.

This can be through I/O channels or shared memory. Adequate support for processor

synchronization is also required. The processors must be able to synchronize globally,

and local synchronization between any two processors must be possible. Hardware

support for these operations, while not mandatory, can greatly improve the execution

times.

5. 3.2 Multiprocessor Topology

The only requirement on the inter-connection structure of the processors is that

a processor must be able to communicate with any other processor in the system,

although data may go through one or more intermediate processors. The real-time

throughput constraints restrict our processors to be tightly coupled rather than

distributed over wide networks. Some possible topologies are point-to-point, shared

bus, ring, or star. The point-to-point interconnection is the most flexible, but is also the

most expensive one to implement. The shared-bus is the cheapest to implement but is

limited to a single data transfer at a time. The ring and star architectures represent

compromises as they have a set of buses for communication, though no processor is

directly connected to all processors.

While there are many choices, it is often possible to match communication

patterns to topologies that can support them efficiently. For example, a ring architecture

84

is ideal for programs consisting of pipelined tasks. Processors can send data to their

right neighbors without bus contention. For parallel program execution, however, the

communication patterns tend to consist of either broadcasts to a group of processors, or

sporadic data transfers between processors. For these, a shared bus architecture is the

most efficient since a single transmission can reach any or all processors. Since our

execution model involves pipelining as well as parallel execution, both types of

communications may exist. Architectures which can configure their interconnection to

have both shared and disjoint buses are especially attractive [Wok89]. For fixed-

topology architectures, the performance of the system will depend on the matching

between the architecture and the algorithm as well as the amount of communication

traffic. A poor match can result in large communication overhead and lower speedup.

5.3.3 Interprocessor Communication

There are two common methods for interprocessor communication: Message

passing between private memories, and communication through shared memory. In a

message passing approach, data transfers are implemented using send and receive

primitives. During its processing of a sample, a source processor may issue a send

instruction, which packages the data into a message and transmits it over the I/O

channel. On the other side, the destination processor issues a receive instructions to

*accept and store the message in its local memory.

There are in general two types of send constructs: send with blocking, and send

without blocking. When a processor sends a packet with blocking, it does not resume

execution until it receives an acknowledgment from the destination processor. With a

send without blocking, the source processor can resume execution immediately without

waiting for an acknowledge. The blocking is used to guarantee that the source processor

does not overwrite a message (with another send) before the destination processor has a

chance to read it. This communication block often results in large idle times of

85

processors, which is not desirable for real-time signal processing. The interprocessor

communication mechanism to be presented in Chapter 7 guarantees that no data

corruption can occur, making it unnecessary to wait for an acknowledgment after a send

operation. Hence, an architecture which supports transmission without blocking is

highly desirable.

When a message must be routed through a number of intermediate processors

before reaching the destination processor, the path is assumed to be known at compile

time (static routing) so that bus activities can be carefully modelled and estimated. The

routing is also assumed to be handled automatically by the network, so that the

intermediate processors do not have to expend any time or resources to the routing.

Finally, since message passing can involve large data transfers with much overhead, the

interprocessor communication bandwidth is assumed to be high enough to support real

time processing.

Communication can also be accomplished through shared memory. The

memory can be centralized or distributed. In a centralized system, all communicated

data reside in the centralized memory, accessible to all processors. The main limitation

of the centralized memory is the memory access bottlenecks. In a distributed shared

memory system, the memory is partitioned into sections, with each section located

physically close to its associated processor. Communication is done via the global-

write-local-read scheme where the source processor sends data through the network and

writes it directly into the destination processor's section of shared memory. Routing of

data across intermediate processors may be necessary and is assumed to be handled by

hardware. The destination processor can then read the data locally without accessing

the network (see Section 2.2.2.2), greatly reducing bus accesses. However, for

broadcast data, all destination processors must have its own copy, as oppose to a single

copy in a centralized memory system. Note that for a shared memory system, each

processor may still possess its own local private memory for computation.

86

Both memory organizations can support the proposed computation model. The

only desirable feature about a memory structure is that, in the absence of memory

access conflicts, the performance is deterministic. This allows computation times of

operations to be accurately estimated.

5.4 ESTIMATING COMPUTATION TIMES &

MEMORY REQUIREMENTS

This section discusses our strategy for estimating the computation times and

memory requirements for an application given a CDFG description. The goal is to

obtain estimations which are as close to the actual execution values as possible. The

more accurate the estimation, the more accurate the static schedule. The estimation

process is divided into two sections. The first part, called operator benchmarking, is

architecture-dependent and involves the profiling of benchmark programs on a

processor of the given architecture. From these benchmark programs, a cost, or weight

w is assigned to each primitive operation such as addition, shift, and multiplication.

Cost estimates are also derived for the overhead of performing loop increments, loop

tests, and function calls. These values would become part of the architectural

description of the target multiprocessor. This task is performed manually by the user.

The second phase, called model construction, is a collection of generic routines to
•

calculate the computation times of hierarchical nodes in the CDFG based on the values

obtained above. For a different target architecture, or for a different code generator on

the same target architecture, only the benchmarking has to be redone.

5.4.1 Operator Benchmarking

The operator benchmarking strategy is based on examining assembly

instructions derived from compiling benchmark CDFGs. The computation time of each

primitive node can be estimated using a number of different parameters: The number of

87

assembly instructions used, the number of processor cycles required, or the actual time

required to execute the assembly instructions. The instruction count method is

discussed first, as it is the basis for the two latter methods. These two methods will be

discussed using two different core processors: The Intel 386 processor in the Sequent

multiprocessor system, and the AT&T DSP32C digital signal processor in the SMART

multiprocessor array.

Assembly Instruction Count

By examining the C code which was generated by the CDFG code generator,

and then the corresponding assembly code generated by the vendor C compiler, it is

possible to establish a relationship between a CDFG primitive operation and its actual

assembly code implementation. Figure 5.6 shows some mappings from CDFG nodes to

assembly instructions for the Sequenfs Intel 386 processor. An "add" operation

requires 4 instructions: 2 to load the inputs, 1 to perform the add, and 1 to store the

output. Other arithmetic and logic operations such as "multiply" and "and" yield the

same instruction count. Compiler optimizations which may reduce the number of data

transfers between successive operations are not considered here. Other operations

which have to be analyzed include shift operations, pointer and array address

calculations, function calls, and loop increment and test overhead. A few constructs are

discussed below.

The number of assembly instructions in an array access depends on the number

of indices in the array, as these indices are used to calculate the actual memory location

to be accessed. Array reads and writes are generated from read and write CDFG nodes.

The first assembly instruction loads in the base address of the array. Each array index

takes 2 additional assembly instructions to derive its offset from the base address, and

to add it to the base address. The final instruction does the actual load or store. The

total number of instructions is given by the formula 2+2*n, where n is the number of

indices of the array.

88

CDFG C code Assembly Code Count

a

c = a + b;

load a, rl

load b, r2

add rl, r2, r3

store r3, c

4

b

In[#]

""**'y^\In[i1]..[in]

'/
In[iiUi„]

move &In[], rl

mult ij, offset, r2

add rl, r2, rl
•

•

mult in, offset, r2

add rl, r2, rl

load *rl, rl

2+2*n

f Func] »
Y =

Func(Xl7.., Xn);

push Xn, stack
•

•

push X|, stack

call Func

pop stack, rl

store rl, Y

3+n+

Func

JL^gr-
for(i=l;i<n;i++) {

Loop Body;

}

initialize i (2)

test i (3)

call Loop Body

increment i (1)

test i (3)

5 +

n * Body

+ 4*(n-l)

FIGURE 5.6: CDFG to Assembly Code for the Intel 386

89

Function calls are generated from CDFG func nodes. Aside from the cost of the

function body, there are overheads involve with the passing of the function parameters,

the subroutine jump, and the restoration of the stack after the call is completed. Pushing

function parameters onto the stack takes one assembly instruction each. The function

call takes one instruction, and another instruction is required to restore the stack. If the

result is to be stored in memory, an additional instruction is needed. The total number

of overhead instructions is given by the formula 3+n, where n is the number of function

parameters.

Loop structures are generated from CDFG iter nodes. There is a significant

overhead in executing loops stemming from the bookkeeping of the loop count. For a

loop with n iterations, the number of assembly instructions used for the actual

computation is n*Loop Body. However, at the end of each iteration, the loop index must

be incremented and checked against its final value to determine whether or not the loop

should terminate. There is a fixed overhead of 2 assembly instructions to initialize the

loop index. The termination test, which takes 3 instructions, is done once for each

iteration. The loop increment takes 1 instruction, and occurs n-1 times. The total

number of overhead instructions then is given by 5 + 4*(n-l), where n is the number of

iterations.

Instruction counting can provide a rough estimate of the computation time of

each CDFG primitive operation. However, it is often not sufficient because there is

often a wide disparity in the execution times of different assembly instructions. For

machines without a floating point unit for instance, a floating point operation can take

much longer to complete than an integer operation. Certain manufacturers publish the

execution time of each assembly instruction in processor cycles. Using this to convert

an instruction count to a cycle count can give a better estimate of the execution time.

Other manufacturers offer built-in timing mechanisms which help the user to measure

exact execution times. One such vendor is Sequent Computer Systems.

90

Time Measurements for the Intel 386 on the Sequent

The Sequent Symmetry multiprocessor system has a microsecond clock which

allows parallel programmers to do fine-grain timing studies of program execution. The

clock is used to measure the computation time of the Intel 386 assembly code for each

CDFG operation. Two calls to the system clock at the beginning and the end of the

instruction(s) to be measured yield the number of elapsed microseconds. The overhead

of the call is specified by Sequent Computer Systems to be 2 |is.

To obtain an accurate reading, many measurements are taken and averaged.

Figure 5.7 through Figure 5.9 each show 100 measurements of the computation time of

a C statement of the form c = a 'op' b, where 'op' is a floating point add, multiply, and

comparison, respectively. The measurements include the fetching of the two operands

from memory and the storing of the resultant operand to memory.

CompletionTime (ms)

10.00 -

8.00

6.00

4.00

2.00

0.00

Floating Point Addition

0.00 50.00

FIGURE 5.7: Measurements of Floating Point Additions

100.00 Sample

Integer operations are in general cheaper than floating point operations, as

illustrated in Figure 5.10 and Figure 5.11.

Table 5.1 and Table 5.2 shows the measured computation times of a number of

common operations on the Intel 386 processor. Some operations, such as a function call

CompletionTime (ms)

10.00 -

8.00

6.00

4.00

2.00

0.00

CompletionTime (ms)

8.00 -

6.00 -

4.00 -

2.00 -

0.00 -

Floating Point Multiplication

0.00 50!00 100.00

FIGURE 5.8: Measurements of Floating Point Multiplications

Floating Point GTE

Sample

o.oo 50:00

FIGURE 5.9: Measurements of Floating Point ">"

100.00 Sample

CompletionTime (ms)

2.00 -

Integer Addition

91

1.60

1.20

0.80

0.40

0.00
0.00 50 00 100.00 Sample

FIGURE 5.10: Measurements of Integer Additions

92

CompletionTime (ms)

3.00 -

2.00

1.00

0.00
00

Integer Shift

5000

FIGURE 5.11: Measurements of Integer Shifts

100.00 Sample

and a loop increment, are characterized by more than 1 parameters. In the array access.

Float Add Float Sub Float Mult Float Div Float GTE Float Assgn

9.25 ms 9.25 ms 8.5 ms 13.5 ms 7 ms 0.5 ms

TABLE 5.1

Int Shift Int Add Int Assgn Array Read Func Call Loop Test

1 ms 1 ms 0.5 ms (1+n) ms (4 + 6.5n) ms (1 + 2n) ms

TABLE 5.2

n represents the number of indices, while in the function call, it represents the number

of function parameters. In the loop test, it represents the number of iterations.

Time Measurement for the AT&T DSP32C on SMART

The DSP32C digital signal processor has available an emulator which allows

users to execute programs on a virtual DSP32C. It can show the memory reads and

writes, and the execution of each instruction down to the processor cycle. The emulator

is used to estimate the execution time of primitive CDFG operations by simulating their

corresponding assembly code. The computation times of the above operations on the

93

DSP32C is given in Table 5.3 and Table 5.4. The unit of measurement is in processor

cycles. For a 50Mhz DSP32C, each cycle takes 20ns.

Float Add Float Sub Float Mult Float Div Float GTE Float Assgn

22 22 22 210 53 16

TABLE 5.3

Int Shift Int Add Int Assgn Array Read Func Call Loop Test

40+8n 32 16 24n 24+8n 40+49n

TABLE 5.4

In the DSP32C, a floating-point division is implemented by software, and

hence requires a significant amount of time. In the integer shift operation, n represents

the number of bits to be shifted.

5.4.2 Model Construction

Given the cost of all the primitive nodes and all the overhead operations, the

model construction routines calculate the cost of every node in the hierarchy of a CDFG

by traversing the flowgraph bottom up, accumulating computation times of primitive

nodes into subgraphs, and so on up to the root graph.

Let us represent a hierarchical CDFG as G = (N, E), where N is the set of nodes

and E is the set of edges in the top level hierarchy of the graph. The set N can be

divided into three sets: The set of primitive nodes Np, the set of function call nodes Np,

and the set of iteration nodes Nj. Function call nodes and iteration nodes are

hierarchical nodes. Let SG(): NF u Nj -) G denote the function which returns the

underlying subgraph of a hierarchical node, and let A/(): G -> N be a function which

returns the set of nodes of a graph.

The model construction algorithm defines the computation time w(-) of each

node in a hierarchical graph G using the following three rules: VneN,

94

1. If n e Np, w(n) = predefined cost, based on benchmark results.

2. Ifn e Np, w(n) = w0(n) +2 vejV(SG(n)) w(v)» wnere w0(n) represents the overhead ofthe

function call, as analyzed in the benchmarks.

3. For n e Nj, w(n) = w0(n, L)+ L-Z ve #(SG(n)) w(v)» where w0(n) represents the overhead

of the loop, as analyzed in the benchmarks, and L is the iteration count.

Table 5.5 shows the estimated and measured computation times of a number of

standard DSP and numerical applications on the Sequent machine. The programs were

generated automatically by the CDFG code generator and Sequent C compiler.

Example # Operations Estimated (ms) Measured (ms) % Error

8pt-DCT 87 2882 2790 +3.20%

Cordic 494 11,551 11,668 -1.00%

2 Norm 1926 59,259 60,997 -2.85%

Histogram 30,687 248,291 237,667 +4.27%

256pt-DFT 760,330 7,958,590 7,944,570 +0.17%

TABLE 5.5

To quantify the complexity of the examples, the number of primitive

operations involved in each is given. The error shows that the estimation routine is able

•to achieve an approximation to within 5% of the actual execution time. Table 5.6 shows

the estimated and measured computation times of several examples on the AT&T

DSP32C processor

The measured computation times are obtained using the DSP32C emulator.

Example # Operations Estimated (eye) Measured (eye) % Error

7th-IIR 55 6497 6414 +1.2

8pt-DCT 87 2388 2511 -4.89%

TABLE 5.6

Example # Operations Estimated (eye) Measured (eye) % Error

Cordic 494 135,098 137,924 -2.04%

2 Norm 1926 109,812 114,099 -3.75%

Histogram 30,687 4,186,747 4,227,738 -0.97%

95

TABLE 5.6

5.4.3 Limitation of the Technique

Although the operator benchmarking discussed in this section is accurate, it is

based on a simplified code generation procedure. Specifically, it does not take into

account architecture-dependent optimization and code generation techniques that may

improve execution time. For instance, the estimation of computation time and memory

of a CDFG operation include the loading of both input operands into registers, and the

storing of the output operand into memory. No attempt was made to take into account

register allocation optimizations, which may remove redundant memory accesses. In

addition, the processor itself may be heavily-pipelined, or has the capability of execute

a number of instructions simultaneously, both of which can significantly affect the code

being generated.

The main problem lies in the fact that the CDFG only describes the

computations which must take place, not how it will be done. Although not

implemented, we see three approaches to solve this problem: Firstly, the operator

benchmarking approach can be applied to benchmarks which are optimized. If a large

number of real life programs are evaluated, an average value can be obtained for each

operator. This is adequate if absolute accuracy is not necessary. The second approach is

to build into the estimation routines the models for register allocation, and instruction

scheduling that is specific to the processor. The main drawback of this approach is that

the model construction routines will become architecture or processor dependent.

Another drawback is that detailed low-level interactions must be modelled, yielding an

estimation procedure which is complex and slow. The third approach involves the use of

96

large, library-based computational blocks. These blocks would have optimized

assembly code hard-wired into them, making it possible to determine their computation

time and memory requirements exactly. The only ambiguity in estimation would come

at the interfaces between the library blocks, which for most cases is negligible.

5.4.4 Memory Estimation

A communication between two processors incur memory storage at the

destination processor to buffer the data. There is often a limit on the size of this buffer

memory. It is possible to keep track of the buffer memory usage during scheduling so

that solutions which violate the memory limit can be discarded. From a scheduled

CDFG, an edge between two nodes assigned to different processors represents an

interprocessor communication. The buffer memory requirement of a node n on a

processor p, denoted as bm(n,p), is given as the sum of the buffer memory requirements

of all of its input edges. The memory requirement of each input edge depends on the

size of the data on the edge and the difference in the source and destination pipeline

stages. An edge connecting two nodes assigned to the same processor does not require

any buffer memory. The parameter bm(n,p) is used by the scheduler to prohibit a node

from being assigned to a processor if executing this node would overflow the

processor's buffer memory. To do this, each processor p has to also keep track of its

'remaining buffer memory size during scheduling. This parameter is denoted bmavail(p).

Chapter 6 will describe how bm(n,p) and bmavail(p) are used by the scheduling

algorithm.

There are a number of other memory parameters which may be important. One

parameter is the program memory required to store the code. This information is

available from the computation time estimation. Since each primitive CDFG operator is

compiled to assembly code in the operator benchmarking procedure, the code size of a

CDFG can be determined by accumulating the code sizes of its nodes. Another

97

parameter is the memory requirement for static and global variables. Currently, constant

edges in a CDFG are compiled to global variables. The estimation of static memory

requirements is thus trivial. Finally, it is possible to estimate the maximum stack

memory requirements. A stack is used to store formal parameters and local variables in

a function. The number of variables can be estimated by examining and counting edges

in a CDFG. The addition of these memory estimation tools to the McDAS environment

can enhance its generality, and is a good topic for future research.

5.5 ESTIMATING COMMUNICATION

DELAYS

The communication delay depends on the amount of data being sent and the

distance between the source and destination processors. To calculate the delay, the size

of the data, the delay in transmitting a piece of data, and the path it travels must be

known. In addition, the delay in routing a message through an intermediate processor

and in arbitrating bus accesses (if applicable) must be known. In this section, a time-

slot model is presented to estimate communication delays. In this model, when a node is

scheduled on a processor, the data transfers that are needed to bring the input variables

from their source processors to the current destination processor (if data is non-local)

are also scheduled on the appropriate bus or busses. This gives a scheduler a very clear

picture of the bus usage, and allows it to include bus congestion effects.

5.5.1 Time Slot Model

For a given architecture, let p be the lime needed to transmit a piece of data,

and let y be the minimum delay time between successive transmissions from a

processor, y is applicable when the multiprocessor system does not support an

uninterrupted transmission of block data. This task is then realized in software as

individual transmission enclosed in a loop. In this case, y gives the minimum setup time

98

between each transmission. For a given data transfer on the architecture, let to be the

starting time of the transfer, and let D be the amount of data to be transmitted Assuming

each transfer can send one piece of data, the data transfer occupies the following "time

slot" intervals on the bus:

[t0, t0 +P][t0 +Y.to +Y+P]...[to + (D-l)Y.to + (D-l)Y+M (EQ5.1)

to is assumed to include any constant setup time. Note that y is required to be

larger or equal to p since a transmission cannot occur until the bus is free. In practice,

this is often the case as time is required to set up the next data to be transmitted. When

Y« p, the disjoint time slots merges into a single contiguous time slot [to , to + Dp]. In

certain cases however, the value of y can be quite large, especially when each

transmission occurs at the end of each long iteration. In this case, y represents the

computation of an entire iteration of a loop. The two cases for y » p and y ~ P are

shown in Figure 5.12.

• r~ ~ ~—"
*o k)+Y to+2Y

(a) Y » P

P P P

to k)+Y to+2Y
(b)Y -P

FIGURE 5.12: Communication Time Slots

When the number of data transmissions is large, it can be quite time consuming

to keep track and process each individual time slot, and it may be necessary to group

the time slots into larger slots, or even into one contiguous time slot. For y » p,

merging the time slots into one time slot as [t0 , to +Dp] or [t0 , t0 +Dy] would grossly

misrepresent the activity on the bus. As a result, the McDAS system allows the user to

99

manipulate an effort parameter from the command window interface which will vary the

abstraction of the time slot model. For a strong effort, each time slot is modelled, and

for a weak effort, a number of time slots are merged together, trading-off accuracy for

processing time.

In the scheduling algorithm to be discussed in the next chapter, interprocessor

communications will be scheduled using the time slot model presented here. When

scheduling a communication, the proposed time slots are constructed and merged with

the time slots already allocated on the bus (due to previous communications), one at a

time. At any point where a request conflicts with an already scheduled request (their

time slots intersect), bus congestion occurs, and the bus arbitration mechanism of the

target architecture must be used to resolve the conflict. The approach taken by the time

slot model is to delay the transmission until the next available time slot on the bus,

resulting in a delay in arrival time of the data.

An example of a time slot delay due to bus congestion is shown in Figure 5.13.

The communication of Figure 5.13a is to be scheduled onto a bus with an existing

allocation as shown in Figure 5.13b. The resultant communication schedule is shown in

Figure 5.13c. The arrival time of the entire communication to the destination processor

is t0 + 3y + P

When the communication must make several bus hops to reach its destination,

the time slot scheduling is performed one bus at a time. In other words, the time slots

are scheduled on the first bus, and the results after scheduling are used as the starting

time of the time slots on the second bus. The scheduling is complete once the time slots

are scheduled on the last bus of the path.

We now define a number of parameters, ending with the Earliest Starting Time

parameter, which is used by the scheduling algorithm. A key feature of the scheduling

algorithm is that a node is only scheduled once all of its predecessor nodes have been

100

p p p p

i 1 1 1—
to tQ+y to+2y to+3y

(a) Proposed Communication

P P

^ 1
to to+2y

(b) Existing Communication on Bus

JLJL JL JLJL JL
4—i 1 1—i 1—

«o+P W <o+2y to+2y+P to+3y

(c) Actual Scheduled Communication

FIGURE 5.13 : Bus Congestion Modeling

scheduled. Hence, in deciding whether a node nj should be scheduled on a processor pk,

it is necessary to examine the communications that must occur to bring all the input

data needed by node n to processor p. These communication delays can be estimated

using the time slot model above. All information needed is available at this point. The

completion time of an input node (hence the starting time of the communication) and

the source processor are known since the input node is already scheduled. The size of

•the data package is obtained from the edge linking the input node to node n. The

destination processor is p, and the current state of the bus is obtained by careful

bookkeeping of all previously scheduled communications.

Definition 5.6: The Arrival time tarv(ns. p) denotes the time at which data computed in a

source node ns is available at processor p. We assume the node ns is already scheduled

on a processor and the time slot model is used to schedule the data transfers on the

appropriate bus or buses. tarv(ns, p) gives the time the last data package arrives at p.

101

Definition 5.7: The Available time tava;i(n , p) is the time at which all input data to node

n is available at processor p. It is calculated over the set I(n) of all input nodes of n as:

tavail(n . P) =max {tarv(ni, p) Ii e I(n) } (EQ 5.2)

Definition 5.8: The Ready time tready(p) is the time processor p has finished executing its

last assigned node.

For a node n to start on a processor p, all of its input data must be available at

processor p, and the processor must have completed any previously assigned

computation.

Definition 5.9: The Earliest Starting time £(n , p) of node n on processor p is defined as:

£(n , p) =max {tavaU(n , p), tready(p) } (EQ 5.3)

£(n , p) effectively abstracts the underlying architecture to the level of the

starting times of nodes on processors. The scheduling algorithm is only concerned with

this information to make its decisions, irrespective of the architecture. As a result, £(n,

p) serves as the interface between the architecture-dependent estimations and the

scheduling algorithm. This modularity allows the scheduler to deal with any

architecture in a unified manner. Each architecture would only have to provide its own

calculation of £(n , p).

5.6 SUMMARY

In order to perform static multiprocessor scheduling, a clear understanding of

the run-time behavior of the parallel program is required. This involves understanding

the computation and interprocessor communication model of the program, as well as

having accurate estimations of the computation and communication costs.

102

In this chapter, we presented a computation model composed of a number of

subprograms executing together in a pipeline and parallel fashion. The architectural

requirements to support such a model, in terms of interconnectivity, memory structure,

and synchronizations, are discussed. To derive computation and memory costs of tasks,

an estimation technique based on operator benchmarking and model construction is

presented. The method is shown to be accurate to within 5% of the actual costs for the

benchmarked architectures. Finally, a time-slot communication model is introduced to

estimate interprocessor communication delays. The model allows the scheduler to

explicitly schedule data transfers along with computations to accurately estimate their

completion times. As a side effect, bus congestion is automatically taken into account.

SCHEDULING
6

In this chapter, the scheduling algorithm is presented under two performance

objectives: Scheduling for Fixed Throughput, and Scheduling for Maximum Throughput.

Scheduling for fixed throughput performance is applicable in a real-time environment,

where the sampling rate is dictated by the application. Scheduling for maximum

throughput, on the other hand, is more appropriate for speeding up simulation. In

Section 6.1, the scheduling problem under both objectives is formulated. Section 6.2 to

6.4 describes the fixed throughput scheduling algorithm. In Section 6.2, a preliminary

algorithm is described, showing how both pipelining and parallel execution can be

simultaneously considered. In Section 6.3, the algorithm is augmented with a path

merging procedure to improve processor utilization. Section 6.4 extends the algorithm

further to perform retiming when flowgraph cycles are present. A node decomposition

technique to traverse granularity is discussed in Section 6.5. The advantage of

combining node decomposition with pipelining and parallelism is also discussed.

Finally, Section 6.6 presents the modifications necessary to adapt the algorithm to

schedule for maximum throughput.

103

104

6.1 PROBLEM DEFINITION

In this section, an explicit formulation of the scheduling problem is given. To

show how it differs from previous formulations, the deficiencies of previous approaches

are summarized. A scheduling strategy to address these problems is then derived.

6.1.1 Problem Formulation

Scheduling for Fixed Throughput

The input to the scheduler consists of three components — a control/data

flowgraph G, a real-time throughput constraint, and an architecture description

containing a processor count P, a buffer memory size BM, a computation time and

memory cost model, and a communication cost model. The throughput constraint is

expressed in terms of an available sample period. The goal is to obtain a non-

preemptive compile-time schedule for a P-processor (or less) machine which meets the

throughput constraint.

Scheduling for Maximum Throughput

The input to the scheduler consists of two parts - a control/data flowgraph G,

and an architecture description containing a processor count P, a buffer memory size
•»

BM, a computation time and memory cost model, and a communication cost model. The

goal is to obtain a non-preemptive compile-time schedule for a P-processor machine

which results in the highest throughput performance.

The CDFG represents a signal processing computation which must be repeated

once for each input frame. The CDFG can be hierarchical, with primitive and

hierarchical nodes. The iteration nodes are labelled as either "parallel" or "serial",

depicting the data dependency between the iterations. This dependency was derived

during the Silage to CDFG compilation. The nodes are assigned computation times and

105

memory requirements following the benchmarking procedures outlined in Chapter 5.

The interprocessor communication model is based on the time slot bus reservation

model also outlined in the previous chapter. The routines for calculating the Earliest

Starting Times of nodes are assumed available for the target architecture. A processor

count P completes the architecture description. The scheduler is restricted to be non-

preemptive and static, a necessity for high throughput real-time implementations.

Like most problems in multiprocessor scheduling, the formulations above fall

in the class of NP-complete problems. For this reason, algorithms which obtain optimal

solutions are discarded in favor of heuristics which obtain a fairly good suboptimal

solution in a reasonable time. We review a number of previous heuristics in the next

subsection.

6.1.2 Previous Approaches

Previous DSP multiprocessor scheduling techniques suffer from a number of

deficiencies which reduce their effectiveness or applicability to a wide range of

applications. First of all, implicit to the CDFG description is the assumption is that the

application belongs to the DSP domain. Hence, there is an infinite time loop

surrounding the computation which allows the exploitation of temporal concurrency,

i.e. the use of pipelining and retiming. This is not assumed in the classical

multiprocessor scheduling formulation [Hu61], which is not DSP-based. The only form

of concurrency that can be exploited in these problems is the parallelism concurrency.

However, a number of techniques for DSP multiprocessor scheduling [Pri91][Sih90]

still do not exploit temporal concurrency in any form. Instead, they minimize the

completion time of a single execution of the application, and replicate the schedule to

handle stream data. Secondly, most approaches [Yu84][Hwa89][Sih90][Sar89][Sch85]

do not attempt to exploit the granularity levels of the flowgraph. As a result, the input

flowgraph is usually flat instead of hierarchical. While these techniques can support

106

flowgraph nodes of different sizes, there is no attempt to decompose large nodes into

smaller nodes to improve the quality of the resultant schedules. Thirdly, some

techniques are only of theoretical value in that they don't allow for a resource

availability constraints [Sch85][Lee85][Par89]. Finally, most approaches have a very

simplified model of interprocessor communication [Bok88][Sar89], and some don't

consider it at all [Sch85][Hu61]. Exceptions are found in [Yu84][Sih90][Hwa89] which

schedules data transfers on buses to model delays due to bus congestion. However, all

communications initiated by a node are modeled as occurring at the end of the node's

computation. This is often not the way the actual communication will occur. Consider

the case of a node containing a loop which is producing an array of data, one element in

each iteration. It is better to send each piece of data as soon as it is available, instead of

waiting till the end of the loop to send the entire array. This not only has the advantage

of spreading the communication out to avoid bus congestion, but can also allow nodes

which only need parts of the array to begin execution as soon as their segments are

available. Grouping these separate communications into one slot can grossly

misrepresent the activities on the bus, leading to inaccurate estimations of

communication costs.

6.1.3 Our Scheduling Strategy

The strategy is to attack these deficiencies on two fronts. On one front, it is

crucial to provide the scheduler with as much information about the input application

and the target architecture as possible. The result of this work is the hierarchical CDFG

representation and the computation and communication models, which were discussed

in the previous three chapters. The CDFG format stores all levels of hierarchy in the

application in a efficient manner, allowing the scheduler to quickly traverse the

different granularity levels available in the application. The computation model gives

the scheduler precise computation times and memory requirements of nodes at any level

of hierarchy, and lastly, the time slot communication model allows the scheduler to

107

accurately calculate the transfer time of data between processors, even for data which

are sent while the source node is still executing. On the other front, a scheduling

technique which can use all of the information provided to achieve a high quality

solution is developed. The performance criteria is chosen to be the system throughput,

which is deemed more important than other criteria in real-time DSP processing. The

scheduling algorithm is discussed in greater detail in the remainder of the chapter.

6.2 SCHEDULING FOR FIXED

THROUGHPUT

The algorithm considers temporal and spatial concurrency to obtain a schedule

which simultaneously satisfies a system throughput requirement as well as processor

and memory bounds constraints. Initially, a number of parameters, conditions, and

bounds are introduced. Several examples are then analyzed to illustrate the key points

of the algorithm. Finally, the algorithm is described in a formal way, and its complexity

analyzed.

6.2.1 Definitions

Definition 6.1: Wlolal is defined as the computation time of the entire graph G.

Definition 6.2: The stagetime T is defined as the reciprocal of the throughput of the

system. In a real-time formulation, it is also the sample period.

The stagetime equals the time allocated to each pipeline stage in the system,

and thus to each processor in that stage. It is possible to derive some bounds on the

stagetime given the total computation Wtotai and the number of processors P.

Theorem 6.1; An upper bound Tub on the stagetime is Wlolai. A lower bound Tlb on the

stagetime is Wlolal / P.

108

Proof: Since Wtotai represent the total amount of computation in the application, there

is no need to allocate more time. Hence Tub = Wlolal. With P processors, a perfect load

balancing will give each processor Wlolal / P amount of work. Since scheduling may

yield an imperfect load balancing, and extra time for interprocessor communication

may be required, the load on the bottleneck processor is > Wtotal / P. Hence Tlb = Wtotal

/P.

Remark: Since T]b represents the lowest sample period achievable with P processors.

The user-specify sample period can be checked against T|b at the start of the scheduling

to see if it is achievable.

Theorem 6.2: The computation cost Wmax of the largest node in the CDFG (at a given

level of granularity) is < T. This is termed the Maximum Granularity Condition.

Proof: A node of computation time > T cannot be scheduled on a processor with only

time T to execute.

Hence, after checking that T is feasible, we must go through a graph expansion

phase where all hierarchical nodes whose computation times violate the maximum

granularity condition are decomposed into smaller nodes. The node decomposition

procedure is described in detail in section 6.4. For the remainder of the section, we will

assume that we have a CDFG which satisfies the maximum granularity condition.

6.2.2 The Scheduling Appeal: Intuitive Description

Given the stagetime T, the scheduler traverses the CDFG from input to output,

partitioning the graph into stages of pipelines. Nodes are scheduled onto a processor

until the total computation costs of the nodes plus the communication cost of the output

edges exceeds the stagetime T. Once a pipeline is filled, the scheduler proceeds to

schedule the remaining nodes on the next pipeline stage. At the end, the graph is

partitioned into a number of pipeline stages, and the number of processors needed is

109

returned. An example of how the scheduler work on a simple serial CDFG is shown in

Figure 6.1. Values inside the nodes represent estimates of their computation costs, and

-0
ProcO

Stage 0

^>-Oi-0
Proc2

Stage 2

>kd—g^
Procl

Stage 1

FIGURE 6.1: Scheduling a serial graph with T = 10

Proc3

Stage 3

values on the edges represent the additional delays for communication (for the sake of

simplicity, the time-slot model is not used to calculate communication delays). When

two nodes are assigned to the same processor, communications between them incur no

cost.

For a serial graph like Figure 6.1, the node accumulation is straightforward. To

schedule general graphs, it is necessary to resolve how to handle the parallelism

available in branching paths. One algorithm would be to continue accumulating nodes

to fill the stagetime, whether they are parallel or not. This would result in a schedule

shown in Figure 6.2a. A more sophisticated algorithm would exploit the parallelism in

the graph to yield a schedule shown in Figure 6.2b. This schedule uses the same number

of processors but has a smaller latency and communication cost, and possibly even a

better throughput. Exploiting parallelism while pipelining makes the scheduling task

much more difficult. Since the number of processors is fixed, not all parallelism can be

exploited, and the algorithm must decide which operations deserve extra processors and

which do not. The naive approach, on the other hand, does not have to do this as it

always puts one processor per pipeline stage. The exact criteria used for node

scheduling is discussed in the next subsection.

110

ProcO

Stage 0 Stage 1 Stage 2 Stage 3

(a) A naive approach

Stage 0 Stage 1 Stage 2

(b) A better approach

FIGURE 62 : Scheduling a general graph with T = 10

Stage 4

Stage 3

6.2.3 Node Scheduling

As illustrated in the above examples, the key goal in the scheduling for

pipeline computation is to pack as many nodes into a pipeline stage as possible. This

suggests a scheduling strategy which assigns a node to processors where it can have the

earliest start time, taking into account communication delays, memory capacity, and

processor availability. This requires exactly the information given by £(n , p), the

Earliest Starting Time of node n on processor p, as defined in chapter 5.

We propose a "list scheduling" algorithm which traverses the graph from input

to output, assigning to every node a processor and a starting time, and to every

processor a pipeline stage. At any point in the scheduling process, the scheduler keeps a

list of ready nodes K, and a list of available processors p. N contains all nodes

Ill

whose input nodes have been already scheduled. Initially, it contains all input nodes.

p contains all processors that have been assigned to a pipeline stage plus an extra

processor, called the "new" processor. When a node is scheduled on the new processor,

the processor is assigned the pipeline stage appropriate for the node, and another new

processor is added to p. This allows the scheduler to use as many processors as it

deems appropriate. The scheduling steps are as follows: VneK, Vpep, we

calculate the earliest starting time £(n , p). £(n , p) is set to KM) a very large constant,

if any of the following is true:

1. There is insufficient buffer memory in processor p to execute node n , i.e. bmavai](p) <

bm(n, p).

2. p was already assigned a pipeline stage which is different from the stage needed to execute

n.

3. There is insufficient available time left in p to execute n within the stagetime limit.

A processor p for which £(n , p) < K^ is called a feasible processor for n. Condition 1

assumes the buffermemory is local to the processor. If it is in a centralized memory, the condition

would be if bmavail(P) < bm(n , p), where bmavail(P) is the remaining buffer memory of the

entire system.

Consider the heuristic where at each scheduling step, the node n* and

processor p* which minimizes £(n , p) is chosen for scheduling. By using the earliest

starting time as a measure for scheduling, the communication cost is explicitly

considered in the processor assignment. Take the simple CDFG as shown in Figure 6.3.

Node A is already assigned to processor P0, and it is now necessary to schedule node B.

If B is assigned to Pq, it can start immediately after A terminates since there is no

interprocessor communication. On the other hand, if B is assigned to Plt there will be a

communication cost, and the earliest starting time on Pj is 6 (again, the additive

communication delay model is used for simplicity). In this way, nodes which

112

Po

Pi

5

A

O 5

FIGURE 6.3 : Earliest Starting Time Scheduling

Po A B

Pi

0 i 10

Po A 1

Pi B

11

communicate heavily with each other are grouped in the same processor as much as

possible to eliminate interprocessor communications.

This heuristic alone is not sufficient however, as it neglects other ready nodes

which may vie for the same processors. Consider the case shown in Table 6.1. Both

w(nj) S(r»i. Po) £(nj,Pi)

n0 5 5 6

nl 5 6 9

TABLE 6.1

nodes n0 and nx can execute on processors p0 and pj, although they start at different

times due to communication delays. If the minimum £(n , p) criteria is used, the

resultant schedule is shown in Figure 6.4a. If the processor assignment is reversed, we

obtain the schedule as shown in Figure 6.4b. As we can see, the second processor

n

n,

14 5 6 11

(a) (b)

FIGURE 6.4 : Greedy scheduling

113

assignment packs nodes tighter. The reason is that, although the earliest start time for

node n0 is on processor p0, scheduling it there takes that option away from node nj.

This forces nj to be scheduled on pj, where it starts much later. On the other hand, the

penalty for scheduling n0 on pY is far less. To solve this resource contention problem,

the Difference Measure 8(n) is introduced.

Definition 6.3; The Difference Measure 8(n) is defined as:

£(n) =Min {c> , p) |pe p} (EQ 6.1)

to={PEp|^(n1p)= £(n)} (EQ6.2)

C(n) =Min {£(n , p) |p€ p - ft(n)} (EQ 6.3)

8(n)= £(n)- |(n) (EQ6.4)

For a node n s X , Eq. 6.1 defines £(n) to be the earliest starting time of node n

among all available processors, and Eq. 6.2 defines ft(n) to be the processor which

achieves £(n). Eq. 6.3 defines £(n) to be the earliest starting time of node n in the
A

remaining processors. £(n) is guaranteed to be < KM since n can always execute on the
A

new processor in p. 5(n) gives a measure of how good the best assignment £ is,

compared to the second best £ A node n with a large 5(n) says that the best assignment

is much better than the second best, where as a small 8(n) says there exist comparable

choices. Thus, it is more urgent to assign nodes with a large 8(n).

A candidate node and candidate processor are then chosen as follows: The

node n , n € K, corresponding to the largest 8(n) is chosen as the candidate node, and

the processor where it achieves its earliest starting time is chosen as the candidate

processor. Formally, the candidate node n* and processor p* pair is given as:

n*= { n € N 18(n) is maximum } (EQ 6.5)

p*= fkn*) (EQ6.6)

114

Nodes which have only one feasible processor assignment have their £(n) =

Koo, so the largest 8(n) yields the node that can start earliest among these. Thus this

scheduling heuristic resorts to the previously mentioned earliest starting time heuristic

when there exist ready nodes with only one possible processor assignment. Only when

all ready nodes have at least two feasible processors does 8(n) enter to choose among

processors. If the earliest start time of a node is the same on both the new processor and

another already used processor, the used processor is chosen. Thus, a new processor is

only chosen in a scheduling step for a node nj when this node can start earlier on the

new processor than in any existing feasible processor.

Table 6.2 gives the earliest starting time £(nj, pk) of three nodes n0, nlf n2, on
A

three available processors p0, p\, p2. The £(n), £(n), and 8(n) values are also shown.

The earliest starting node is n© on processor p0. However, the candidate node chosen is

n2 on pj since its alternative choice, p2, is a lot worse. £(n2, p0) = K^, signifying that

Po is not a feasible processor for n2.

w(n{) S(nj. Po) £(ni.Pi) £(n5, p2) «ni) Ifoi) 8(ni)

no 4 4 8 12 4 8 4

"l 5 7 16 10 7 10 3

"2 3 Koo 6 12 6 12 6

TABLE 6.2

Once a candidate pair is chosen, the scheduled node is removed from N, and

new ready nodes are added. If the new processor in p was used, another new processor

is added to p. Processors assigned to pipeline stages which are no longer considered

are removed from p to avoid unnecessary computations. £(n , p) and 8(n) values that

are affected by the assignment are updated, and the next node-processor pair is chosen.

The scheduling algorithm ends when all nodes are scheduled. In the example above,

scheduling n2 on p] would push back the ready time of p} to 9, affecting all £(nj, pj)

values < 9, and hence those 8(nj).

115

The pseudo-code for the scheduling algorithm is described below:

Main (Graph, T) {

Assign Computation times and Memory usage to all nodes in Graph;
Calculate Wtotal/ Wmax, Tub/ Tlb;

Check feasibility of stagetime T;
ExpandGraph(Graph, Wmax);

Schedule (Graph, T);

}

Schedule (Graph, T) {

Input nodes =* X, po => p:
Repeat while N * 0

For each n e X, p g p do
Calculate £(n , p);

Calculate 8(n);

Schedule candidate n* and p*;

Update X,p;
}

6.2.4 Complexity Analysis

The complexity of the algorithm is 0(N(N+E)), and is derived as follows:

Assume that the total number of nodes is N, the total number of edges is E, and the

maximum number of processors is P. Assume that the calculation of t^n, p) takes 0(1)

time (which is true if a single contiguous time slot is used to estimate each

communication in the bus scheduling model). Given a fixed processor pk, for each new

node n put in N, the calculation of £(n , pk) requires calculating tarv(n , pk) for each

input edge. For the whole graph, all edges are visited, for 0(E) calculations. Adding

and removing nodes to and from K takes 0(N) time. Hence the total computation runs

in 0(N+E) time. Since P processors are considered for each node, the complexity is

0(P(N+E)). Finally, for nodes in X which were not chosen in a scheduling step, £(nj

,p*) is updated in constant time to reflect the new tready(P*)- Since there are at most N

such nodes in N, at most N £(n , p) updates are made each scheduling step. For N

scheduling steps, N2 calculations are required. The total complexity is 0(P(N+E)+N2).

116

Since the algorithm can continue to add processors beyond P, the potential number of

processors considered can be N, the number of nodes. Hence the final complexity is

0(N(N+E)).

6.3 PATH MERGING

To exploit using parallel execution along with pipelining, the scheduling

algorithm tries to assign nodes to different processors whenever parallelism is

available. In its greedy attempt to maximize parallelism, the algorithm may under-

utilize a processor. In this section, this problem is investigated in detail, and an

approach to improve the processor utilization is presented.

6,3.1 Problem Definition

Parallelism emerges when a path splits into two or more parallel paths, and

ends when the two paths join. Parallel paths are characterized by branch and join nodes,

defined as follows:

Definition 6.4: A Branch node is a node which has two or more successor nodes. A Join

node is a node which has two or more predecessor nodes.

*

It is common for the scheduling algorithm to assign different processors to the

successor nodes of a branch node. Consider the branching path shown in Figure 6.5.

Assume T = 20. The schedule after processing nodes A and B is shown in

Figure 6.5a. Node C can start at time 10 on processor P0 and time 6 on a new processor

Pj. Hence, it is scheduled on PJ This decision is made regardless of the structure of the

flowgraph afterwards. This greedy heuristic may lead the algorithm to assign very little

computation to a processor. This would be the case if, for example, the flowgraph in

Figure 6.5 continues as shown in Figure 6.6. Nodes D and E are assigned to processor

€
B

(a)

c (b)

FIGURE 6.5: Scheduling of Branching Path

Pn, PSO

0 A B

0 5 10

0 A B

WM&MMMviJ C
10

117

0 5 10 15 20

FIGURE 6.6 : Under-utilized Processor Assignment

Pj, minimizing interprocessor communications. Node F is assigned to processor P2 on

the next pipeline stage, leaving processor Pj under-utilized.

To solve this problem, parallel paths can be merged together so they are forced

to execute on one processor. This is achieve by adding a dependency edge from one end

of one path to the beginning of the other, serializing the communication. In the above

example, adding a dependency edge from node C to node B yields a schedule which

118

only uses two instead of three processors. The resultant CDFG and schedule is shown in

Figure 6.7.

b. pso A C B D H

'i.PSi F

0 5 10 15 20

FIGURE 6.7 : Path Merging to improve processorutilization

6. 3.2 Path Merging Algorithm

To perform path merging, we need a mechanism for detecting all parallel paths

and for evaluating whether or not they should be merged. Two new CDFG nodes are

introduced: The Start node and the End node. The Start node is the first node in the

CDFG. Its output edges go to all input nodes of the graph. The End node is the last node

in the CDFG, where all output nodes terminate. The Start and End nodes have no
»

behavior associated with them, and are only introduced to simplify the detection of

parallel paths. With these nodes, all parallel paths can be found by examining only

branch nodes. The Start node serves as a branch node for all input nodes, while the End

node serves as a join node for all output nodes.

Definition 6.5! The Overlap Path Time top between two parallel paths measures the time

both paths are simultaneously active. This is equivalent to the elapsed time between the

branch node of the path and the point where the two paths join again. The introduction

of the End node assures that all paths eventually join.

119

top is the minimum of the computation costs of the two paths, and it measures

the amount of parallelism that exists between the paths. The smaller the top, the less the

parallelism that can be exploited. Figure 6.8 shows a CDFG and the overlap path time

of some of its paths. All nodes have costs 1. The Start and End nodes are labelled as $

SAMPLE PATHS

ORU-OSTU. MOS-MPS. CEO-CFIMO. HJQ-HKNQ

HJQTU-HLRU, HKNQTU-HLRU, DGIMOR-DHLR

SACFI-SBDGI, ACEO-BDGIMO, DGIMPST-DHJQT

DGIMPST-DHKNQT

FIGURE 6.8 : Overlap Path Time

and $$ respectively.

The successor nodes to a branch node are called head nodes, for the obvious

reason that they are the starting nodes of the parallel paths. In the above graph, nodes J,

K, and L are head nodes of branch node H. The join node of two parallel paths is chosen

to be the first common descendant node of the two corresponding head nodes. To

facilitate the calculation of top, the transitive closure [Sed88] information of the CDFG

is used to quickly locate the join node. The transitive closure of a graph G is a graph G*

120

where there is an edge ejj connecting node n{ and nj, if there is a path from node nj to

node nj in the original graph G. This is an 0(n3) algorithm, where n is the number of

nodes. For quick access to the data dependency information, an adjacency matrix

representation of the flow graph is used. The calculation of top is as follows: The nodes

in the CDFG are leveled from output using their computation costs as weights. Given

two head nodes nj and nk, the join node njk is given as the node with the highest output

level which is still a descendant of both nj and nk. The computation on the path from a

head node to the join node is given by the difference in their output levels. The top of

two paths is then given as the minimum of the path computations. Given the transitive

closure matrix, and the output levels ol(nj), an 0(N2) algorithm for calculating top of
parallel paths is as follows:

OverlapPathTime (Graph) {

For each branch node nj e Graph do

For each pair of nodes (nj, nk) which are successor nodes to node r\x do
Locate join node njk of (nj, nk) as the node with the highest output level

which is a descendant node to both nj and nk ;
top(nj, nk) =MINlol(nj), ol(nk)] - ol(njk);

return minimum top(nj, nk);

}

The heuristic for path merging is as follows: The pair of parallel paths with the

smallest top is the best candidate for merging as it contains the least amount of

parallelism. If these two paths were assigned to different processors, one of the

processors is probably greatly under-utilized. The smallest top is returned in the overlap

path time calculation above, and a routine MergePath(Graph) adds a dependency edge

from one end of the path to the beginning of the other. top is then updated taking the

new dependency into account. MergePath() returns FALSE when there is no more

parallel paths to merge. The path merging heuristic is used to continually modify and

reschedule the CDFG. Each time MergePath() is called, the current path with the

smallest top is merged, eliminating another possible point for the under-utilization of

processors. The Schedule() routine is repeated along with MergePathQ as long as more

121

processors are needed then are available and as long as there are still parallel paths to

merge. The overall algorithm, called Partition(), is as follows:

Partition (Graph, T) {

proc = Schedule(Graph, T);

Repeat while (proc > P and MergePath(Graph) == TRUE)

Update Transitive Closure Graph, OutputLevel;
proc = Schedule(Graph, T);

}

Upon exit of the loop, we either have a feasible schedule using P or less

processors, or an infeasible schedule (proc > P) which uses the minimum number of

processors for the given stagetime T. For this latter case, a longer stagetime is needed

or more processors have to be allocated.

Figure 6.9 shows the reduction in the number of processors used when path

merging is applied to the example of Figure 6.8. Figure 6.10 shows the corresponding

improvement in average percent processor utilization.

Procs

15.00

14.00

13.00

12.00

11.00

10.00

9.00

8.00

7.00

6.00

5.00

4.00

3.00

2.00

Processors Used

^

5.00 10.00

FIGURE 6.9 : Reduction in Processorsdue to Path Merging

No Merge

With Merge

Stagetime

122

Average % Utilization

100.00

90.00

80.00

70.00

60.00

50.00

40.00

30.00

20.00

10.00

0.00

Processor Utilization

\ / \

......

\ s
••.

*

*•" f

5.00 10.00

No Merge

With Merge

Stagetime

FIGURE 6.10 : Improvement in Processor Utilization due to Path Merging

6.3.3 Complexity Analysis

The calculation in the inner loop involves updating top , finding the minimum

top, adding a dependency edge, and scheduling the graph. Updating top involves

updating the output levels and the transitive closure graph. To update the output levels,

only the source node of the newly added dependency edge and its ancestors need to

have their output levels recalculated. This takes O(N) time. In the transitive closure

graph, an edge has to be added between the source node and its ancestors to each

descendants of the destination node. This takes 0(N2) time. Locating the minimum top
takes 0(N2), and scheduling takes 0(N(N+E)) time. This inner loop repeats at most N
times since there are at most N-l merges possible. Hence, the algorithm runs in

0(N (N+E)) time. Formost examples that we have encountered, E « N, giving an 0(N3)

approximation.

123

6.4 RETIMING

The scheduling algorithm presented so far works well for flow graphs which do

not contain cycles. For those that do, some enhancements to the algorithm are needed.

In this section, a modification to the algorithm is presented to allow the retiming of

flow graph cycles to improve scheduling.

6.4.1 Problem Definition

Consider a simple flow graph with feedback as shown in Figure 6.11. There are

two sample delay operators on the feedback path. In order to execute node A, it is

necessary to have the data on edge d from two samples back in time, which we will

denote as d@2, following the Silage convention. If the scheduling algorithm is applied

0MJHl)
I—I

(b)

' o o o -*

FIGURE 6.11: Retiming Flow graphs

to the flow graph without considering the feedback path, it may pipeline the

computation as shown in Figure 6.11b. Since node D is now 3 samples behind node A,

d@2 will not be available when node A needs it. Thus it is necessary to limit the

number of pipeline stages on the forward path to ensure that proper data is available

when it is needed. Referring to Figure 6.11a, assume node A is applied to sample 0 at

time 0. Since the sample period is the stagetime T, node A will be applied to sample 2 at

time 2T. To execute this node, the output data of node D on sample 0 must be available.

124

This implies that the execution of the nodes A, B, C, D on sample 0 (indeed, on all

samples) must complete within time 2T. In general, if Ac is the number of delays in the

cycle, then the cycle must execute within time ACT. The following definitions formalize

this bound on the execution of cycles.

Definition 6.6: Let G be the flowgraph at some granularity level, and let C be any cycle

in G. Let:

Ac s the number of delays in cycle C

Wc s the total computation time of cycle C.

Ec = the total time a valid schedule would need to execute cycle C.

Theorem 6.3r For any cycle C,

Wc < Ec < ACT (EQ 6.7)

ProofiThe proof for Ec < ACT is an obvious generalization of the argument above.

Without loss of generality, we can assume that all Ac delays are grouped together. Let D

be the last node before the delay, and let A be the first node after the delay. Let d be the

output of node D. At time 0, node A processes sample 0. At time ACT, node A needs

data d from node D for sample 0. Thus, the execution time of the cycle, Ec, must be

done by this time. Wc < Ec because a schedule may not necessarily execute cycle C

^contiguously.

With this result, we get the following condition, called the Cycle Scheduling

Bound condition.

Theorem 6.4: Let n0, nlt ..., nN be the set of nodes in cycle C, and let n0 be the first

scheduled node among them. Let tsiarl(n0) be the starting time of node n0, and tdone(nk)

be the completion time of any node nk in the cycle. A valid schedule must satisfy:

tdone(nk) - tstart(no) ^ ACT (EQ 6.8)

125

ProofrThis follows directly from the fact that tdone(nk) - ^tart^o) ^ Ec» for every n°de

nk in the cycle. Theorem 6.4 will be used by the scheduling algorithm to ensure the

Cycle Scheduling Bound is satisfied when nodes of a cycle are scheduled.

Theorem 6.5: From Theorem 6.3, for every cycle c, T >Wc / Ac. In particular, T >TCB,

where TcB is the Stagetime Cycle Bound given by:

TCB=Max Wc/Ac (EQ6.9)
c

Wc is a function of the granularity level of the graph. As the granularity gets

finer, the computation times of cycles decrease as hierarchical nodes in the cycles are

replaced by only those nodes of the subgraph which belong to the cycle. In this case,

TCB also decreases. Some cycles are entirely imbedded in hierarchical nodes, and are

only uncovered when these nodes are expanded. For that case, TcB may actually

increase. Once all cycles are uncovered, however, TcB decreases monotonically to a

bound known as the Iteration Period Bound TIPB [Sch85], the stagetime cycle bound

for the finest granularity graph. This bound is the minimum achievable latency between

sample iterations, and is a theoretical lower bound for our solution.

When the scheduler makes a partition on the forward path, it is in effect

putting a logical delay there. To maintain correct functionality of the flowgraph, it is

necessary to remove a delay in the feedback path. This can be interpreted as moving

delays in the cycle around to maximize our throughput, a concept known as

retiming[Lei83]. By choosing T > TCB, one might conjecture that sufficient time is

allocated to each pipeline stage to guarantee that at most Ac partitions are made in

scheduling cycle c, thereby automatically adhering to the Cycle Scheduling Bound on

the nodes of the cycle. This, unfortunately, is only guaranteed if the nodes in the cycle

are scheduled contiguously, the stagetime is exploited completely, and communication

delays are not considered. In practice however, data transfers are often present, and

using the stagetime completely is difficult due to the granularity of the nodes. An

126

example of a cycle scheduling violation due to large granularity of the nodes is shown

in Figure 6.12.

(a)

©—©—©—©-•©•

\—i—\
(b)

0-h©-HI>Ki>h©
o o o

FIGURE 6.12: Cycle bound violation.

From Figure 6.12a, the stagetime cycle bound TCB is found to be 30/3 = 10.

Using a stagetime T = TcB = 10, we find that we need 4 partitions, which violates the

Cycle Scheduling Bound condition (Figure 6.12b). The weight of the nodes are too big

to fit in the remaining available time, leaving holes or slacks in the stagetime. If the

nodes are broken down into smaller nodes, as in Figure 6.13a, a feasible partition with

no slacks can be obtained (Figure 6.13b). Communication costs are not considered in

this example.

6.4.2 Retiming Algorithm

Using the analysis above, the scheduling algorithm presented so far can easily

be modified to handle cycles. From Theorem 6.5, the stagetime lower bound TJb is

modified to Max(Wlolai / P. TipB) to include the theoretical lower bound due to cycles.

Each time a node n, in a cycle is scheduled, Theorem 6.4 is used to ensure that the Cycle

Scheduling Bound for the node is satisfied. If it is violated, the large nodes in the cycle

are decomposed in an attempt to minimize slacks in the stagetime. This is repeated until

127

(b)

(«>OKIKi>-©KI>-©r
i

FIGURE 6.13: Node Decomposition to satisfy cycle bound condition.

there is no more violation or no more nodes in the cycle can be decomposed. This

processing step is called CyclePartition(), and is given as:

CyclePartition (Graph, T) (

(proc, ViolateFlag) = Partition (Graph, T);

Repeat while (ViolateFlag == TRUE and IsGraphFlat(Graph) == FALSE)
Graph = Expand nodes in critical cycles;
Find all cycles in Graph;

Update Wmax and TCB;

(proc, ViolateFlag) = Partition (Graph, T);

}

Note there that TcB is updated each time a node is decomposed. The overall

algorithm is modified to be:

Main (Graph, T)

Calculate WtolaI, Wmax, TCB/ Tub/ T,b;

Check feasibility of stagetime T;

ExpandGrapMGraph, Wmax);

CyclePartition (Graph, T);

}

The inner-most Schedule() algorithm is modified to perform the Cycle

Scheduling Bound check as follows:

128

Schedule (Graph, T) {

Input nodes => X, po => p.
Repeat while X *0

For each neK,pep do
Calculate £(n , p);

Calculate 5(n);

Schedule candidate n* and p*

if (Cycle Scheduling Bound(Graph) == Violated) return(FALSE);
Update X,p;

)

6.4.3 Complexity Analysis

In CyclePartitionO, Partition() is called repetitively on finer and finer

granularity flow graphs to satisfy the cycle scheduling bound. When the node

decomposed in the cycle is an iteration, each decomposition increases the number of

processors allocated to the iterationby 1, and terminates when the number of processors

reaches P. Thus, Partition() repeats at most P steps when decomposing iterations. When

decomposing functions, it may repeat more, and there is no maximum bound.

Benchmarks show that the typical number of function node decompositions is less than

five. The main computations in the CyclePartitionO routine is the search for all cycles

in the CDFG, and the Partition() routine. For cycle detection, we use Johnson's

algorithm for finding all the elementary cycles of a directed graph [Joh75], which is the

•fastest algorithm known. It has a time of complexity of 0((N+E)(C+1)), where C is the

number of cycles in the graph, and a space complexity of 0(N+E). Note that the cycles

can overlapped with each other, and hence when a node is scheduled, the cycle

scheduling bound condition must be checked for all cycles for which the node is a

member of. From the last section, Partition() was analyzed to run in 0(N2(N+E)) time.

Hence, the running time of CyclePartitionO is 0(P(N+E)[N2 +(C+l)]).

129

6.5 NODE DECOMPOSITION

Node decomposition is the means by which the scheduling algorithm traverse

from a coarse grain flowgraph to a finer grain flowgraph. In previous subsections, we

saw that nodes are broken up on two occasions: When they are larger than the available

stagetime T, and when they are part of a cycle that violates the cycle scheduling bound.

The first case is denoted as bottleneck node decomposition and the second case as

critical cycle decomposition. So far in the section, we have discussed when to

decompose nodes, now we concentrate on how the decomposition is done.

Presently, there are two types of hierarchical nodes that are candidates for

decomposition: Function nodes and Iteration nodes. Function nodes are decomposed by

replacing the nodes with their subgraphs. Iteration nodes are replaced by parallel or

serial sub-nodes (depending on the data dependencies between iterations), each

computing a subsei of the iteration range. The method of breaking up the iterations

differs between the decomposition of bottleneck nodes and the decomposition of critical

cycles. In both cases, the size of the sub-nodes is determined dynamically during the

scheduling procedure.

6.5.1 Bottleneck Node Decomposition

When decomposing bottleneck iteration nodes, the sub-nodes adapt to the

available time remaining in the stage. Thus, the number of iterations assigned to the

sub-nodes are not fixed until the first sub-node is scheduled. At that time, the first sub-

node is assigned as many iterations as can fit in the remaining stage, and subsequent

sub-nodes are assigned as many iterations as can fit in a new, empty stage with

stagetime T. This partitioning strategy allows the iterations to float across processors

from one pass of the scheduler to the next to fit the changing stagetime T.

130

6.5.2 Critical Cycle Decomposition

When decomposing iteration nodes in critical cycles, the goal is to obtain a

partition which satisfies the cycle scheduling bound condition. For nodes with serial

dependency, decomposition does not decrease the cycle computation time, but may

improve the stagetime slacks. Therefore, the same technique as discussed above is used.

For nodes with parallel dependency, decomposition actually decreases the computation

time of the cycle, making it easier to meet the cycle scheduling bound.

Consider a cycle containing a parallel iteration node as shown in Figure 6.14.

a)
ABC

b) A B C

<!£) <!([)

M

<D

FIGURE 6.14 Decomposing parallel iterationsin cycles.

<i>

Assuming a tight stagetime T = TCB = 35 and no communication delays, scheduling

Figure 6.14a with tslari(nA) = ° would yield td0ne(nE) = 2*35+10 = 80. Since tstarl(nA) +

2T = 70, the cycle scheduling bound is violated. In Figure 6.14b, after decomposition,

the stagetime cycle bound is reduced from 35 to 25. T is no longer tight, and scheduling

yields tdone(nE) = 1*35+20 = 55, tslart(nA) + 2T = 70, meeting the cycle scheduling

bound condition. Of course, the price we pay is the 2 additional processors needed to

execute the iterations in parallel. Note that the naive scheduling algorithm described in

131

Figure 6.2a would not be able to improve the stagetime at all, as the parallelism of the

iteration is not exploited.

The goal in the parallel iteration node case is to parallelize the node just

enough to satisfy the cycle scheduling bound condition, as excessive parallelizing

would only use more processors than necessary. To accomplish this, the parallel

iteration node is incrementally divided into equal weight sub-nodes until a partition

with no violation or the maximum decomposition is reached. Since the cycle scheduling

bound is tightest on the sub-node with the maximum computation, a division into equal

weight sub-nodes maximizes the chance of meeting the bound.

Currently, loops can only be divided at the boundary of each iteration. No

attempt will be made, for instance, to partition 3.5 iterations of a loop on one processor

and the remainder on another.

6.6 SCHEDULING FOR MAXIMUM

THROUGHPUT

The formulation of the scheduling algorithm from sections 6.2 to 6.5 completes

the formulation of a scheduling strategy for fixed throughput implementations. In this

section, the scheduling for maximum throughput problem is addressed. Its main

application is the minimization of simulation time on a target architecture. Since there

is no throughput constraint to meet, only those constraints imposed by the target

architecture (number of processors, amount of memory, communication bandwidth) are

still present.

6. 6.1 Bounded Search Heuristic

To maximize the throughput of the schedule, we have to minimize the

stagetime T and hence, the time allotted to each processor. This is done by performing a

132

bounded search using the CyclePartitionO routine introduced earlier as a probing

function. First, the upper and lower bounds on the stagetime are determined. A

candidate stagetime T is chosen between the two bounds, and checked for feasibility

using CyclePartitionO. This routine, as a side-effect to scheduling the flowgraph,

returns the number of processors that are needed to execute the flowgraph given a

stagetime T. By comparing the number of processors required to the actual number of

processors that are available, we can adjust the stagetime T appropriately and re

partition. This iterative refinement process terminates with the minimum feasible

stagetime. This search strategy will be discussed in greater detail.

Just as in the scheduling algorithm for real-time implementation, the upper and

lower bounds on the stagetime are calculated. However, there is no throughput

feasibility check to perform as there are no performance constraint to satisfy. Similarly,

the granularity expansion of the CDFG so that the bottleneck node Wmax <Tpr0posed is

no longer applicable as there is no fixed Tpr0p0se(j . To ensure that nodes are not

expanded more than they have to be, the proposed algorithm will start at the top level of

hierarchy, and will systematically decompose nodes only when necessary. The

Maximum Granularity Condition still applies, and limits how low Tproposed can go in

any iteration. But more importantly, it plays a crucial role in determining when a node

should be decomposed. The pseudo-code for the algorithm is shown below:
*

Main (Graph) {

Assign Computation times and Memory usage to all nodes in Graph;

Calculate Wtotai, Wmax, Tub, Tlb, TCB;

wmax = MaxWeight(Graph);

TCB = CycleBound(Graph);

T = Max(TCB , (Tub + Tib)/2 , Wmax);

Repeat while (Tlb < Tub)

CyclePartition (Graph, T);

if (proc == P)

Graphoptimal =Graph;
if (proc > P)

Tib = T;

133

if (proc < P)

Tub = T;

if (T == Wmax)

Graph = Expand bottleneck nodes with weights Wmax;
Update Wmax and TCB ;

if (T == TCB)

Graph = Expand nodes in Critical cycles;

Update Wmax and TCB ;

T = Max(TCB , (Tub + Tlb)/2 , Wmax);

}

The major modification to the previous algorithm is the outer loop to determine

the minimum stagetime and the systematic node decomposition strategy based on

available processors. The CyclePartitionO routine schedules the CDFG with stagetime

T and returns the number of processors required. If this number is greater than the

number of processors available, we increase T to give each processor more time. If it is

less or equal, we decrease T so that more processors are used. This is achieved by

updating Tub or Tib with the current T. By always picking the next T between these two

values, we guarantee convergence to the minimum feasible stagetime.

When decreasing T, care must be taken to ensure that the Maximum

Granularity Condition is not violated. When there are nodes in the graph with weights

as large as T, and the search decides that T can be decreased further, it will break up

these nodes to find a better solution. These nodes are called bottleneck nodes. In this

way, large granularity nodes are only decomposed if they block the stagetime

minimization process. This keeps the number of nodes in the graph at a minimum.

The proposed stagetime is bounded below at all times by the bottleneck nodes

and by the critical cycle bound, forcing the search to follow a pattern as shown in

Figure 6.15. The stagetime Tj represents the proposed stagetime at each iteration, and

Gj represents the corresponding CDFG. At first, the proposed stagetime decreases

monotonically as it continues to be feasible. As it decreases, the flowgraph is

continually transformed into finer and finer granularity. At a sufficiently fine

134

T T3 T5 T4 T2 • 9 T, T0
I I I I I I ub

G2 G2 G2 G2 • • Gt G0

FIGURE 6.15: Bounded Search Pattern

granularity level, there are no longer any bottleneck nodes or cycles, and the stagetime

alternates in a binary search pattern. From this phase to the end of the search, the

flowgraph remains at the same granularity level.

6. 6.2 Complexity Analysis

The outer loop of the algorithm is essentially a binary search which takes

0(log2 (Wtotal)) time. Each proposed stagetime involves calling CyclePartitionO, which

takes 0(P(N+E)[N2 + (C+l)]). Hence, the complexity of the total algorithm is

0(P(N+E)log2 (Wlotai)[N2 + (C+l)]). Although the bound is high, actual running times

on examples have been quite fast. This is due to the fact that the scheduler only

decomposes hierarchical nodes when it has to, restricting the numberof nodes actually

processed to a minimum.

6.7 SUMMARY

A multiprocessor scheduling algorithm, which simultaneously exploits

pipelining and parallelism has been presented. To be able to exploit parallelism in

addition to pipelining means that at any given pipeline stage, the algorithm must decide

whether to use one or more processors working in parallel. Since the number of

processors is fixed, not all parallelism can be exploited, and the scheduler must decide

which node deserves extra processors and which does not. The approach taken is to

exploit parallelism in a greedy fashion and iteratively improve the solution via a path

merging step. Results show that path merging is able to significantly improve processor

135

utilization. To handle applications with feedback cycles, the scheduling algorithm is

enhanced to allow the retiming of flowgraph cycles. The conditions for a retiming

violation is derived and reduced to a single test statement during scheduling.

The algorithm can also exploit the hierarchical representation of the CDFG to

arrive at the most suitable granularity for scheduling. The ability to simultaneously

consider the many types of concurrency plus the ability to traverse the flowgraph at

different granularity levels allows the scheduler to maximally exploit the potential

concurrency of an algorithm. Previous approaches tend to concentrate on a specific

concurrency type to exploit, restricting their domain to a narrow class of applications

possessing this concurrency. Some features addressed by these methods are functional

pipelining [Bok88], loop pipelining [Gir87], functional parallelism [Sih89], data

parallelism or data partitioning [Pri91]. By combining concurrency with granularity, the

scheduler is able to use all of the techniques above, and any combination of them in a

unified manner. The number of available processors dictate the granularity of the

concurrency to be exploited. At a high level, functional pipelining and parallelism is

used. At a lower granularity, loop pipelining and data parallelism can be exploited. The

search automatically guides the scheduler to the most appropriate technique for the

application and processor count. This feature allows the scheduler to find efficient

multiprocessor schedules for a wide range of DSP applications.

CODE

GENERATION

7

In this chapter, a code generation strategy for multiprocessor machines is

presented. The main difference over the code generation for uniprocessor machines is

the additional task of allocating memory for interprocessor communications and

generating synchronizations for proper data transfer. Section 7.1 gives an overview of

the code generation strategy in McDAS for both real-time implementation and

simulation speedup. The two main components in the code generator are outlined: The

memory mapper and the code emitter. In Section 7.2, the memory mapper module is

discussed. Techniques to allocate memory for interprocessor communications are

described for centralized-memory and distributed-memory systems, as well as for

message passing architectures. Interprocessor synchronizations are also discussed as

part of the overall interprocessor communication strategy. The code emission algorithm

is presented in Section 7.3. In particular, it describes how interprocessor

communication instructions are generated, and how delayed signals in DSP are

implemented. It also presents a mechanism for performing both floating-point and

fixed-point simulations from the same emitted C code. Finally, the section concludes

with a discussion on the direct generation of DSP code from a flow graph specification.

137

138

7.1 OVERVIEW

The McDAS code generator takes as input a scheduled CDFG, a target

architecture, a command file, and generates executable code for each processor. The

CDFG should be decorated with the scheduling information as determined by the

scheduler. Specifically, each node at the top level of hierarchy of the CDFG should be

assigned a processor, a pipeline stage, and its execution order in the processor. If any

such node is hierarchical, all nodes in its subgraph are assigned to the same processor.

The execution order of the subgraph nodes will be determined by the code generator,

based on data dependency. The command file is used by the code generator in

simulation mode. It gives information on the number of samples to simulate, where to

find the input signal files, what signals to display and where to store their values.

The organization of the code generator is shown in Figure 7.1. The three main

components of the code generator are the Front End Parser, the Memory Mapper and

the Code Emitter. The current code generator generates C code for the Sequent

multiprocessor system. Other target machines may be supported by modifying a number

of routines in the Code Emitter.

The front end parser is responsible for reading in the CDFG and the command

*file. The schedule on the CDFG is checked to make sure that all nodes assigned to the

same processor are assigned to the same pipeline stage and have a unique execution

order in the processor. Using the information from the command file, edges which

correspond to input or display signals are annotated with their respective files. This

information will be used by the code emitter later on to generate the necessary file I/O

operations. Next, the memory mapper takes the scheduled CDFG and derives a memory

layout for the target multiprocessor. This information is decorated on the CDFG by

annotating those edges which represent interprocessor communications and those edges

which require interprocessor synchronizations. This phase will be described in detail in

Bit-True
Library

\

CCode

Emitter

Front End

Parser

I
Memory

Mapper

C Compiler

Y^Bi
\Sim

Bit-True 7
Simulation /

Floating-Point
\ Simulation /

FIGURE 7.1: Code Generator Overview

}
Dsp Code

Emitter

i '

139

Real-time "^
^Implementation f

the next section. After memory mapping, the code emitter module takes the decorated

CDFG and generates the required code. For simulation, the C code emitter is used. The

same C code generated can implement both bit-true and floating-point simulations. In

case of bit-true simulation, a library of bit-level arithmetic and logic routines is

available to be linked with the C code. If real-time implementation is desired, DSP

assembly code is generated. This is obtained by compiling the C code or by direct

generation from the CDFG. Currently, McDAS uses commercial C compilers to

generate code for real-time implementations. The direct generation of optimized DSP

code from a flowgraph description (Dsp Code Emitter) is another approach. It is crucial

for high performance applications as the code generated by the C compilers is not well

optimized. Section 7.3 describes several research projects currently underway to tackle

this problem.

140

7.2 MEMORY MAPPING

A key element in the compilation of programs for multiprocessors is the layout

of the memory to be used for interprocessor communication. For each transaction,

memory must be allocated and synchronization steps must be inserted to ensure the

proper delivery of data from the source to the destination processor. The pseudo-code

for the memory mapper phase is:

MemoryMapper(Graph) {

Cluster all nodes assigned to one processor into subgraphs;
Derive local synchronizations between processors where necessary;
Layout and allocate memory for interprocessor communications;

}

The memory mapper starts out by clustering the nodes in the CDFG into

subgraphs according to their processor assignments. Each subgraph then defines the

computation to be performed on the assigned processor. The pipeline stage assignment

of the processor is derived from the common pipeline assignment of its nodes.

The edges which connect the subgraphs are those edges whose input and output

nodes are assigned to different processors. In other words, they are buffer edges

representing interprocessor communications. The second phase determines if any local

synchronization, in addition to the global barrier synchronization done at the beginning
*

of each sample execution (see Section 5.1), is necessary. The last phase of the memory

mapper module analyzes these edges in order to allocate the required memory to

support the transfers. These last two phases are discussed in detail in the remainder of

the section.

7.2.1 The FIFO Communication Model

The underlying model for interprocessor communications in McDAS is based

on FIFO queues. The use of FIFOs to support the passing of data is discussed in the

141

BLOSIM system [Mes84]. A queue is assigned to each interprocessor communication.

The size of the queue is equal to PS(Pdes[) - PS(Psource) +1, where PS(P) is the Pipeline

stage of processor P. The storage capacity of each data block on the queue corresponds

to the amount of data sent, which can be derived from the buffer edge. The FIFO queues

for the CDFG on Figure 6.2b are shown in Figure 7.2.

Stage 0 Stage 3

FIGURE 7.2 : FIFO queues allocation

Each processor consumes a data block on each of its input queues and produces

a data block for each of its output queues. A pointer keeps track of the current free data

block. The source processor always writes to the free data block while the destination

processor always read from the oldest block. If all processors globally synchronized at

the beginning of each sample period, this scheme allows the source processor to send

data to the destination processor sample after sample without ever corrupting any

unread data. Hence, no other synchronizations are needed in general.

7. 2. 2 Local Synchronization

When two processors in the same pipeline stage need to communicate, the

length of the FIFO is one. Explicit synchronization is therefore necessary to ensure that

the destination processor will only read the data block after the source processor has

142

written to it. This is also illustrated in Figure 7.2. This is termed local synchronization

to differentiate it from the global barrier synchronization. The local synchronization is

needed on each buffer edge whose source and destination subgraphs belong to the same

pipeline stage. These edges are specially marked so they will be recognized by the code

emitter later on. If the synchronizations of arbitrary subgroups of processors are

supported by hardware, they can be used. Otherwise, software semaphores which rely

on access to shared memory are employed[Pet85]. This synchronization mechanism is

slower, but is supported in most multiprocessor systems.

Explicit generation of local synchronization instructions is necessary in shared

memory systems, where the writing and reading of memory are not supervised. In

message passing systems however, this is usually not necessary since the send and

receive instructions are explicitly controlled by hardware. Specifically, a receive

instruction issued by the destination processor will only return from execution once it

has received the new data from the send instruction.

Note that if it was possible to perfectly predict the computation and

communication times exactly and if it was possible to invoke execution of a node on the

exact time as calculated by the scheduler, no local synchronizations would be necessary

as the nodes are only scheduled after all input data have arrived. Unfortunately, since

,such accurate estimations are not available, the synchronizations are necessary to

guarantee correct execution.

The FIFO model shields the code generator from the underlying

communication mechanism of the target multiprocessor. In the next two subsections, we

discuss how the FIFO's are implemented on shared memory and message passing

systems.

143

7.2.3 Shared Memory Implementation

A shared memory multiprocessor system can have two types of memory

organization: Centralized shared memory, and distributed shared memory. Both are

capable of supporting the FIFO model, although they differ in memory usage and

performance efficiency. A centralized shared memory is the most memory efficient, but

its main limitation is the memory access bottleneck. A distributed shared memory can

involve replicating data, but does not suffer from memory accesses conflicts as much.

7.2.3.1 Centralized Shared Memory

In a centralized shared memory system, all FIFO's reside in the centralized

shared memory, and can be accessed by both source and destination processors. Only

one copy of each FIFO is necessary. The algorithm for allocating memory to the FIFO's

is straightforward in this case:

CentralMemoryLayout(BufferEdgeList) {

Let Ptr points to the beginning of the centralized shared memory;

For each edge in BufferEdgeList do

QueueLength = PS(Pdest) - PS(Psource) + 1;

QueueSize = size of each data block * QueueLength;

Allocate memory section [Ptr , Ptr + QueueSizel to edge;

Update Ptr to point to Ptr + QueueSize;

}

Table 7.1 shows the centralized memory allocation for the scheduled CDFG of

Figure 7.2. In the table, E,j represents the buffer edge from processor i to processor j,

and Data(Ejj) gives the amount of data in bytes of each communication. Assume Eqj,

E02 represent a broadcast, and E12 and Ej4 are separate writes. The FIFO length and

memory segments are calculated using the algorithm above. Note that only one copy of

the broadcast data E0i, E02 is needed.

144

E« Data(Ey) QueueLength Memory Segment

EfJl'Eo^ 8 2 0-15

E12 12 1 16-27

E14 16 3 28-75

E23 8 2 76-91

E34 16 2 92-123

TABLE 7.1

7.2.3.2 Distributed Shared Memory

In a distributed shared memory system, the FIFO's are placed in the

destination processors's section of shared memory, and communication is done via a

global-write-local-read scheme where the source processor sends data through the

network and writes it directly into the destination processor's section of shared

memory. The destination processor can then read the data locally without accessing the

network. Figure 7.3 shows an example layout of a distributed memory address space,

taken from the SMART system [Koh89]. This system is described in more detail in the

next chapter. Each processor has its own local memory to store private data and

program which are not shared among processors. The local shared memory is used for

•accessing (reading) any shared data. This access is carried out through a local bus

independent of the interconnection network. The bus side shared address space, which

is assigned for the communication through the network, is partitioned into equal

memory segments and distributed among processors. The physical memory of each

segment corresponds to the physical memory of the associated processor's local shared

memory address space. Data, which is written to segment i, can be read from the local

shared memory of processor i, thereby achieving the interprocessor communication.

When data is broadcasted with a single instruction, the same data is written to the same

address in each destination processor's local shared memory. Distributed memory

Bus Side Shared

Memory

Local Memory

Local Shared Memory

Segment 0

Segment 1

O

O

O

Segment N

FIGURE 7.3: Distributed Memory Address Segmentation

Processor 0

Processor 1

O

O

O

Processor N

145

systems can reduce bus conflicts in general. However, for broadcast data, all destination

processors must have their own copy of the FIFO, as opposed to a single copy in a

centralized memory system.

The algorithm for allocating memory segments to the FIFO's is more involved

as each processor's local shared memory must be optimized individually. Consider the

communication patterns illustrated in Figure 7.4. Assume each communication takes 16

bytes, and the local shared memory starts at address 0. In case (a), since the

communications are independent, it is possible to allocate the same memory addresses

to both destination processors 1 and 3, yielding a mapping shown in Table 7.2a. In case

(b) however, the broadcast of processor 0 to both processors 1 and 3 claims segment 0-

15 on both processors. The memory allocation of E23 is therefore pushed to 16-31.

146

fP2 J •(P3 J

E« Mem: PI Mem: P3

E01 0-15 -

E23 0-15

TABLE 7.2

(a)

Eu Mem: PI Mem: P3

E01 0-15 -

E03 - 0-15

E23 - 16-31

TABLE 7.2

(b)

FIGURE 7.4: Memory Allocation for Distributed Memory

The memory allocation problem is then formulated as follows: Given a number

of interprocessor communications, some of which may be broadcasts, derive a memory

allocation so that the memory allocated on each processor's local shared memory is £

M, a specified constant. The challenge lies in the fact that communications between

exclusive groups of processors can use the same address, but broadcast communications

place the constraints that the same addresses must be reserved on all destination

processors. This problem is an instance of the bin-packing problem with the extra

constraints imposed by the broadcasts. Bin-packing belongs to the class of NP-complete

problems for which there is no known efficient solution [Gar79]. Since M is typically

large, it makes more sense to use a greedy but fast heuristic to find a feasible mapping

as oppose to exerting our efforts to minimize the memory allocated. We proposed the

following heuristic:

DistributedMemoryLayout(BufferEdgeList) (
Sort the BufferEdgeList so edges with the highest broadcast have the
highest priority;

}

For each edge in BufferEdgeList with highest priority do

QueueLength = PS(Pdest) - PS(Psource) + 1;

QueueSize = size of each data block * QueueLength;

Let p = set of destination processors of edge',
Ptr = beginning of local shared memory - 1;

while (TRUE) do

Let Ptr = minimum address of unallocated memory > Ptr in p;

if (Ptr to Ptr + QueueSize is free on all processors in p)

break;

Allocate segments Ptr to Ptr + QueueSize on all processors in p;

147

The algorithm treats those edges which have the most broadcasts first as they

impose the most constraints. For each communication, the first feasible memory

segment on all destination processors is chosen. If E is the number of buffer edges, and

P is the number of processors, the time it takes to find a feasible mapping for each edge

is at most O(EP) since each segment is checked against at most P processors, and at

most E segments are proposed. The complexity of the entire algorithm is 0(E2P).

Table 7.3 shows the distributed memory allocation for the scheduled CDFG of

Eij Size(Ejj) Mem: PI Mem: P2 Mem: P3 Mem: P4

E01 16 0-15 -

E02 16 - 0-15

E12 12 - 16-27

E14 48 - - 0-47

E23 16 - - 0-15

E34 32 - - 48-79

TABLE 7.3

Figure 7.2. The layout is optimum, with no holes in the allocation.

148

7.2.4 Message-Passing Implementation

In a message-passing system, each processor sees only its own private memory,

and communications must occur by data transfers. Since no address space is shared, all

shared data must be explicitly copied and sent. This makes message-passing systems

identical to the distributed shared bus system as far as memory layout is concerned. As

a result, the algorithm described in the previous subsection is used here as well. The

FIFO resides in the private memory of the destination processor, and send and receive

constructs are used carry out the data transfer. All that is required at the source

processor side is the destination processor identification in the send instruction, while

all that is required at the destination processor is a FIFO to store the data.

7.3 CODE EMISSION

Once the scheduled CDFG are partitioned into subgraphs and the memory

layout is analyzed, the code emitter is used to generate code for each respective

processor. In this section, we describe the interprocessor communication mechanism,

the state variable maintenance mechanism, and the C code emission algorithm. The

section concludes with a discussion on the direct generation of DSP code from a

flowgraph specification.

7.3.1 Circular Buffering

Two issues must be addressed before code generation can occur. They are the

bookkeeping of interprocessor communications, and the access and updating of state

variables. An addressing scheme based on circular buffers can be used to solve both

problems.

149

7.3.1.1 Interprocessor Communication

From the memory layout step, enough memory has been allocated to implement

each interprocessor communication. The only problem which remains is an addressing

scheme which is systematic enough to be implemented automatically. This is possible if

we implement the FIFO as a circular buffer, and use modulo addressing to generate the

addresses for both the source and destination processors.

The address calculation is dependent on 3 variables: An address offset d, a

current buffer index i, and the size of the buffer m, and is calculated as follows:

addr(d, i, m) = (i+d)%m (EQ 7.1)

where *%' represents the modulus operator which produces the remainder when (i+d) is

divided by m. To implement the FIFO, both source and destination processors manage

their own copy of the buffer index /, which they both initialize to the same value,

usually 0, and both decrement their respective values by one after each sample iteration.

The address offset d is the pipeline stage of the processor, and m is the number of data

blocks in the buffer. The buffer index decrement is also modular m according to the

equation

if (i—<0)i = m-l (EQ7.2)

How this supports the systematic and efficient addressing of the FIFO is

illustrated in Figure 7.5.

In Figure 7.5a, a communication between two processors on adjacent pipeline

stages is shown. The address offset d of the two processors differs by 1, and the reading

and writing to the FIFO occurs on different data blocks. After each sample, the buffer

index circular shifts to the left so that the destination processor can read the data which

was written by the source processor in the last sample. Meanwhile, the source processor

is writing its new result to the other data block, overwriting the old data. Thus for

150

write read

sample: k

write read

i 1
k-1 k-2

sample: k

read write

t 1

sample: k+1 sample: k+2

(a) Source Pipeline: d : Destination Pipeline: d+1

read write

sample: k+1

read write

1
k k+1

sample: k+2

(b) Source Pipeline: d : Destination Pipeline: d+2

FIGURE 7.5: Circular Buffer Implementation of FIFO.

* *

adjacent stage communication, the read and write swap addresses. When separated by

more than one pipeline stages, the size of the circular buffer increases proportionally,

and the same addressing strategy can apply. Figure 7.5b shows the communication of

two processors separated by two pipeline stages. Here, the address offset is 2, and the

reading of data is two blocks behind the writing of data. Note that for two processors

communicating in the same pipeline stage, the buffer consists of only one data block,

and synchronization is necessary, as was discussed in the previous section.

7.3.1.2 State Variables

Digital signal processing frequently uses delayed values of signals, that is, the

values of signals at previous samples. General purpose computing, however, has no

support for this concept. As a result, it is necessary to map it to more primitive

computations which are commonly supported. To do this, the CDFG subgraph is

traversed, and the maximum delay of all delayed signals are determined. This is easily

151

derived when analyzing delay nodes and delay lines. An array is needed to store the

signal and its delayed values up to the maximum delay. Accessing a delayed signal is

now mapped to accessing the array with the index being the delay value. At the end of

each simulation cycle, before the next sample is read in, the array is updated to simulate

the fact that it is now one sample later. One way to update the array is to shift every

element of the array to the right by one. This requires copying every element in the

delay line, which can be expensive for large delay examples. A much more efficient

way is to use the same circular buffer mechanism as described above to model the delay

line. The buffer index once again indicates the current sample. The array update now

amounts to decrementing the index according to Equation 7.2. The buffer offset d is the

amount of delay in the signal we want to access. Equation 7.1 now implements a delay

signal access. Each access takes longer but the penalty is small compare to the copying

of the array. Using circular buffers to implement delay lines is commonly used in DSP

processors [Mot90], which provide hardware support for modulo addressing.

The last issue is the maintenance of state variables across function calls.

Consider the scenario illustrated in Figure 7.6. The goal is to generate code for a 6th

FIGURE 7.6: 6th order IIR filter

order IIR filter, which comprises of three biquads. Each biquad has its own set of

coefficients, and its own internal states, resulting from the delayed signals. On each use

152

of the biquad, the input sample and the coefficients are passed in. Since the code is

exactly the same, it is desirable to have it implemented as a subroutine. The problem,

however, is that each biquad has its own internal states, which should be updated only

once every sample, not every time the biquad code is invoked. In this example, since

the biquad is invoked three times per sample, three sets of internal states have to be

kept. One approach is to keep three copies of the function, with each copy keeping its

own internal states. This increases the code size tremendously. The problem gets worse

when these functions are embedded in other functions which are again used multiple

times. Clearly, this problem must be solved using a different approach.

The approach adopted is taken from the S2C Compiler [Sch88]. It adheres to

the data flow paradigm, which says each node operation depends only on its inputs. In

other words, the internal states are passed in along with other inputs to the function.

Since the function results are only dependent upon the inputs, only one copy of the code

is needed. Careful bookkeeping is required to systematically pass in the correct state.

7.3,2 C Code Emission

This section discusses the C code emission process. It assumes that the front-

end parsing and the memory layout has already been done. The pseudo-code of the

^emission algorithm is given below. It assumes that a separate file is generated for each

processor.

C_CodeEmission(Graph) {

for each SubGraph i do

OpenFileC'proci.c");

Allocate C structures to implement circular buffers for buffer edges;
Allocate C structures to implement circular buffers for delayed signals;
GenDeclarationsO;

GenlnitializationsO;

GenReadlnputO;

GenSimulationLoopO;

GenFunction(SubGraph);

153

CloseFileC'proci.c");

}

After the CDFG has been partitioned into subgraphs for each processor, the

code emission algorithm is applied to each subgraph. A new file is opened for each to

store the code. All buffer edges representing interprocessor communications are

processed to generate the necessary C data structures to implement the circular buffers.

This includes the arrays for the buffers, and the buffer indices. Next, all delayed signals

are processed and the same circular buffer data structures are generated.

GenDeclarations() declares all the C structures above, as well as global constants.

GenlnitializationsO generates code to initialize the circular buffers and global

constants. GenReadlnputO generates code to read input samples from a file, and write

output samples to a file. The file names were derived from the command file. The code

automatically exits if the end of file is reached. GenSimulationLoopO generates the

infinite time loop which calls the subprogram, and updates all delay structures. Finally,

GenFunction() generates code for the subprogram itself.

GenFunction() is a recursive procedure to generate the top level program and

all of its subroutines, which are present if there exists any func node in the subgraph.

The pseudo-code for GenFunction() is:

GenFunction(Graph) {

for each function i do

GenFunc(function);

GenFunc(Graph) {

GenLocalDeclarationsO;

if (Graph != Main)

OrderExecution(Graph);

GenStatements(Graph);

}

GenStatements(Graph) {

154

}

for each node in Graph do

if (node is hierarchical)

GenStatements(node->Subgraph);

else

GenCode(Node);

If the graph is the top level subgraph, the nodes are already ordered according

to the schedule. However, for lower level subroutines, the nodes are ordered from input

to output to guarantee that when code for a node is emitted, the code to generate the

inputs of the node have already been emitted. GenCode() emits code to perform the

operation of the node. The input and output variables are derived from the input and

output edges, respectively. In addition, a check is performed at the beginning and end of

each node generation to see if any local synchronization instructions are needed. If they

are, the input and output edges of the node should have been annotated earlier with the

appropriate information.

7. 3.3 Floating-Point & Fixed-Point Simulation

The C code generator is designed to produce code which can be simulated

using floating-point data types for quasi-infinite precision simulation, or fixed-point

data types for bit-true simulation. Bit-true simulation is needed to assess the rounding

and truncation effects of the fixed-point arithmetic on the behavior of the algorithm. By

comparing the bit-true simulation to the floating-point simulation, the designer can

decide on the best word width and fraction width for the application, and pick the target

processor for real-time implementation accordingly. If the hardware is fixed, bit-true

simulation will at least let the designer see the resultant outputs.

Both simulation models can run from the same C code. The technique has been

implemented in the S2C compiler[Sch88]. All fixed-point primitive operations are

implemented as C macros. Two header files are created: highlevel.h and bittrue.h.

Depending on which type of simulation is desired, the corresponding header file is

155

compiled along with the C code. The highlevel.h header file is used for floating point

simulation, while the bittrue.h file is used for fixed point simulation. Each file defines

the same macro differently, depending on whether the computation is floating or fixed-

point. As an example, when a fixed-point add node is encountered, the following macro

is generated:

FixAdd(Inl, Typelnl, In2, Typeln2, Out, TypeOut);

If highlevel.h is included, this macro would be defined simply as:

Out = Inl + In2;

with the type of all the edges declared as floats. If bittrue.h is included, this macro

would be defined as:

AddBitsdnl.bits, In2.bits, Out.bits);

if (Typelnl != TypeOut) CastBits(Out.bits, Typelnl, TypeOut);

Coerce(Out.bits, TypeOut);

with the type of each edge declared as a C structure of bit streams. The fixed-point add

operation entails adding the bits of the inputs and casting the result to the type of the

output.

The header files give definitions for all arithmetic, logical, and relational

operations. The separation of the behavior of the node and its implementation through

the use of macros and header files allows the code emitter to be retargetable to different

implementations of the operations. All modifications to the implementation of a fixed-

point operation require only the modification of the header files. The code emitter

module is not changed. The power of this technique extends beyond the usage as

described in this section. It is possible to tailor the header file to issue C code which is

known to compile efficiently on a particular machine. Extending this idea one step

further, it is possible to emit DSP assembly code directly for real-time implementation.

156

While this is certainly realizable, it may still not produce code efficient enough for real

time execution. This topic is discussed in more detail in the next section.

7.3.4 DSP Code Emission

The development of DSP processors has made a significant impact on the real

time implementation of sophisticated DSP algorithms. DSP processors are specialized

programmable microcomputers which often use extensive pipelining, multiple

independent memories, parallel functional units, hardware looping, modulo addressing,

and other innovative techniques to allow real-time processing. Their impressive

processing power along with their low cost make them ideal for a wide range of real

time DSP applications. Recently, their usefulness has increased even further with the

introduction of support for multiprocessor implementations. The newly introduced

TMS320C40 from Texas Instruments Inc., for instance, has six ports for direct

interprocessor communication and a six-channel coprocessor [Wat92].

However, it is generally difficult to generate optimized code for these DSP

chips. This is primarily due to the constraints imposed by the pipelined architecture and

the parallel data transfers. Other features such as zero-overhead looping, single-cycle

multiply-accumulate, and modulo addressing are also difficult to exploit. To obtain a

good implementation, DSP designers have traditionally been forced to manually code

their applications in assembly.

To ease this task, many techniques have been developed to generate optimized

realizations of DSP applications from high level languages or flowgraph descriptions.

Almost all DSP processor vendors such as TI, Motorola, AT&T supply C compilers for

their processors. Our experience with one of these compilers, the AT&T C compiler for

the DSP32, has been disappointing. This usually stems from the fact that some semantic

information is lost in converting the DSP description into C, and the C compiler may

not be able to perform the desired optimizations[Bau90]. While these compilers are

157

continually improving, the general consensus is that the best result will come from

direct code generation from flowgraph specification.

A simple and effective approach is to provide a library of DSP functions, each

hand coded and optimized. The larger the granularity of the function, the more effective

the optimization. This technique has been used by Comdisco Systems Inc. in their Code

Generation System [Pow92] and in the Gabriel system from UC Berkeley[Lee89c]. The

major problem with this approach is the dependency on a library set, a lack of register

and memory allocation choices and possible redundant data transfers between these

functions. Recently, these two groups have joined to improve their code generation

strategy. In order to increase code generator allocation choices, they define their library

blocks in a meta-assembly language that uses the syntax of the assembly code of the

target processor, but symbolically references registers and memory. The optimizing

code generator compiles these segments together, allocates registers and memory, and

inserts data movement instructions as needed to produce good code [Pow92]. While this

will improve the code, the designer is still restricted to the library of components for

optimized code.

A more general approach by Genin [Gen89] uses a ruled-base pattern

recognizer to identify groups of low level nodes and merge them into nodes with a

higher semantic content. For examples, additions, products, and delays are merged into

product accumulation with delay nodes. These nodes can again be merged into filter

nodes. By accumulating such information, general strategies for optimal code

generation and memory management can be derived, which make the best possible use

of the context. This allows two identical nodes compiled in two different contexts to

produce different code. The reported performance of the code generator is about 5 to 50

times faster than the one produced with C compilers and is comparable to the code

generated by DSP experts.

158

Another code generator by Kim [Kim90] relies on the fact that DSP processors

are usually pipelined and often rely on pointer based addressing modes. Hence, the

compilation concentrates on the allocation of pointer registers rather than on arithmetic

operations. The register allocation algorithm keeps track of the addressing span of

registers. Each time pointer register addressing is required, the span ranges are

referenced to see if there is a register which contains the address in its span range. This

register is chosen for loading of data. To improve code even more, the register loads are

placed in NOP instructions which are inserted to meet pipeline synchronizations.

Finally, special attention is given to register allocation of inner loops to minimize

register loads between iterations.

The last two techniques are complementary as they attack important but

different parts of the code generation problem. An effective code generator must

combine the techniques proposed here to simultaneously address the register allocation

problem due to pipelining, parallel data accesses, and pointer addressing, and at the

same time recognize common DSP constructs to efficiently use multiply-accumulate

instructions, hardware looping, and modular addressing. Furthermore, considerations

must also be given to the system constraints imposed by interprocessor communication

and synchronization requirements, as well as shared memory access conflicts.

, Finally, as new code generation optimizations are developed for these

specialized DSP processors, it is not clear whether these effects can be estimated

quickly and accurately at the flowgraph level. This feature, as recalled, is of prime

importance as estimations of the computation times, memory requirements, and

interprocessor communication delays are required for scheduling. An optimized code

generator which cannot be characterized well from the flowgraph level will not be as

beneficial as one which is. In summary, while multiprocessing scheduling has received

much of the attention, a great deal of work is still needed in the code generation phase.

159

7.4 SUMMARY

A multiprocessor code generation strategy has been presented. It is performed

in two steps. The first step allocate and layout the buffer memory used for

interprocessor communication. Several algorithms were presented to layout the memory

for centralized and distributed memory systems. A FIFO data structure is used to store

the communications. Under the McDAS pipelined execution model, the FIFO

guarantees that no data will be overwritten before it has been read. An addressing

scheme is presented to allow each processor to systematically access the correct

location of the FIFOs at each sample.

The second step is the code emitter, which generates code for each processor.

Details on how the C code can be used for fixed-point and floating-point simulation is

given. For real-time execution, the DSP code generated by compiling the C code is

found to be too inefficient. Direct DSP code generation from the CDFG is proposed. A

discussion of the issues and the current research efforts in this area is presented.

SCHEDULING

RESULTS

8

In this chapter, the results obtained from the scheduling and execution of

programs using McDAS are presented. In Section 8.1, two multiprocessor systems are

described. The first is a commercial multiprocessor system from Sequent Computer

Systems, while the second is a custom-built DSP multiprocessor called SMART. In

Section 8.2, we present and analyze a number of examples which are scheduled and

compiled on these systems. Both the scheduling performance as well as the accuracy of

the estimation techniques are analyzed.

8.1 TARGET ARCHITECTURES

8.1.1 The Sequent Symmetry Multiprocessor

The Symmetry multiprocessor [Lov88] by Sequent Computer Systems is a

tightly coupled, single shared-bus MIMD multiprocessor composed of 4 to 30

processors. Our particular machine has 14 processors. The bus is a 64-bit bus with a

bandwidth of 53 MB/sec. Each processor is an Intel 386, coupled with a Weitek 1167

floating point accelerator. Figure 8.1 shows a block diagram of the Symmetry

architecture. The processors communicate through a centralized shared memory,

although caching is supported to reduce bus traffic. Each cache has a size of 64KB to

provide a high hit rate and therefore a high effective memory bandwidth as seen by the

161

162

80386 CPU

1167 FPU

I
64-KB

Write-back

Cache

i

• •

• •

80386 CPU

1167 FPU

I
64-KB

Write-back

Cache

1

Main

Memory

I
Memory

controller

System Bus

SCC1 bus

FIGURE 8.1:The Sequent Symmetry Multiprocessor

• •

I
Disk

controller

Main

Memory

I
Memory

controller

processor. A write-back cache policy is used to reduce the number of write operations

on the shared bus. To support exclusive access to shared data structures, the Symmetry

provides semaphores to allow the user to lock any section of physical memory,

hardware support for barrier synchronizations is also provided.

The Symmetry system runs the DYNIX operating system, a version of UNIX,

and supports programming in C, Fortran, and Pascal. Shared data can be declared

explicitly in the program, and is accessible by all processors working in parallel. The

spawning of parallel processes to be executed on different processors is done using a

system call called fork. In the Symmetry, the code for all processors is placed in one

file. Each processorhas associated with it a processor number, which is used to assign a

sub-program to its corresponding processor. Special calls are available to reserve and

163

free processors for execution. The code structure for a statically scheduled program on

the Sequent computer using N processors is shown below:

main () {

m_set_procs(N);

m_fork(Program);

m_kill_procs();

)

ProgramO (

proc = m_get_myid();

switch(proc)

case 0: execute subgraphO;

case 1: execute subgraphs-

case 2: execute subgraph 2;

case N-l: execute subgraph N-l;

}

Examples of some C programs generated by the code generator for the Sequent

Symmetry machine are shown in Appendix C.

8.1.2 The SMART Multiprocessor

The SMART (Switchable Multiprocessor Architecture supporting Real Time

applications) multiprocessor [Koh89] is a dedicated compute-engine developed to allow

real-time behavioral simulation of DSP algorithms. The machine attempts to speedup

simulation by at least two orders of magnitude as compared to general purpose

computer architectures. The speedup is achieved through two means. First, in order to

handle the number crunching bottleneck, a high performance DSP processor with both

floating-point and fixed-point computations is used as the core processing unit. This

results in an order of magnitude in speedup. Secondly, an additional order of magnitude

in speedup is obtained by exploiting the high degree of concurrency present in most

DSP applications through multiprocessing.

164

The SMART system consists of an array of 8 AT&T DSP32C digital signal

processors connected in a linear fashion by a single shared-bus. The peak performance

of the system is 160MFLOPS. A key feature is that the bus is configurable, in that there

are switches between neighboring processors which can be opened or closed to divide

the processors into groups. Processors with local communications are put into one

group so they can communicate among themselves independent of other groups, thus

boosting the overall communication bandwidth of the bus. Bypass units across the

switches allow global communication among all processors. A block diagram of the

SMART configurable bus is shown in Figure 8.2.

FIGURE 8.2: The SMART Multiprocessor

To reduce the amount of accesses to the shared memory, the large global shared

memory is distributed to all processors. The basic scheme of communicating data

between two processors is that of a global-write and local-read scheme, where the

source processor can write directly into the destination processor's section of shared

memory. The destination processor can then read the data via its local bus. This roughly

reduces the number of accesses to the shared bus by one half.

In case of multiple requests to use the shared bus, some requests will be

stalled, resulting in communication overhead. The SMART system provides a write-

queue for all interprocessor write operations so that the source processor can

immediately resume its computation as soon as data has been written to the queue. By

overlapping the computation time with the overhead time due to bus arbitration, the

effective communication overhead is reduced.

165

Finally, SMART provides hardware synchronization primitives for barriers and

locks.

Programming of the SMART system is done by writing C code and compiling

it with the AT&T C compiler. Unfortunately, while benchmarking was done on a

DSP32C emulator to provide computation to characterize SMART, the machine was not

operational at the time the code generator was completed. Hence, it is not possible in

this thesis to compare the scheduling results with the actual running times on the

SMART machine as it was possible for the Sequent.

8.2 RESULTS

In this section, we analyze a number of examples which were scheduled and

compiled by McDAS. The analysis is organized into specific topics, each addressing a

different issue. The first two subsections examine the scheduling of a specific example

on both the Sequent and SMART architectures, respectively. They give insights into

how tasks are partitioned and scheduled, and provide a comparison between the

estimated and actual computation times. Implementations on different numbers of

processors and topologies are also analyzed to evaluate the effects of these architectural

changes on the performance. Finally, the third subsection analyzes the scheduling

results of a wide range of applications on a fixed architecture, specifically the Sequent

machine. The applications are chosen to have different concurrency types, granularity,

and communication patterns.

8.2.1 Scheduling a Histogram Computation on the Sequent
Multiprocessor

A histogram computation involves grouping a sequence of samples into

subclasses based on their values. In this example, the input is an array of 128 samples,

to be partitioned into 32 subclasses. The computation proceeds as follows: First, the

166

minimum and maximum values of the array are determined. Next, the size of each

subclass is calculated from the total range. The third task fills in all the subclasses. This

is a parallel task where each subclass scans the array and counts how many samples fall

within its scope. The fourth task determines the baseline class, defined as the subclass

whose range covers 0. Finally, the last task computes the baseline range, given as the

number of samples in the 5 subclasses surrounding the baseline class. Input and Output

tasks perform the file reading and writing. The CDFG is shown in Figure 8.3. The value

input

22.4

min-max classwidth

5.1) •[1.5

FIGURE 8.3 : Histogram Example

baseline

o

o

inside each node represents its estimated computation time in milliseconds. As can be

.seen, the parallel iteration is the most computationally-intensive node. The total

computation time equals 245.6 ms, with 68 nodes in the hierarchical graph, and 30,687

nodes in the flattened graph.

In a first analysis, the example is scheduled onto 6 processors of the Sequent.

Figure 8.4 shows the resultant CDFG. With 6 processors, the minimum stagetime is

30,687/6 or 41ms. The scheduler automatically decomposes the parallel iteration as the

stagetime is decreased. The scheduling takes 20 sec of CPU time, and includes the

logging of intermediate solutions after each iteration. The resultant schedule has 2

pipeline stages, with processor 0 in stage 0 and processors 1-5 in stage 1. The buffer

167

FIGURE 8.4 : Histogram Example Scheduled on 6 Processors.

memory needed for interprocessor communication is shown in the accompanied table.

Processors 2-5 all receive the 128 sample input array as well as an array giving the

lower and upper bounds of the 32 subclasses, for a total of 160 data words. Since the

pipeline length is 2, the total size of the buffer is 320. Processor 1 receives this and the

results of all the iterations for a total of 540 data words. Analyzing the completion

times of the processors as estimated by the scheduler and as actually measured on the

Sequent (Figure 8.5), we see that the load is evenly distributed across the processors,

and the estimated time agrees very well with the actual completion time.

To illustrate the correlation between the estimated and the actual completion

time further, Figure 8.6 plots the two completion limes as a function of the number of

available processors. The quality of the estimation remains quite good across a wide

range of load partitions. Figure 8.7 shows the speedup obtained in the Histogram

example, as a function of the processors. For this example, we observe that McDAS is

able to consistently achieve a faster throughput with each additional processor. For

168

Load Balancing

CompletionTime (ms)

45.(

40.(

X) 1 1

Estimated

llllllltllllllllllill

30
Actual

35.00
= =

==

=

30.00
• SS

S =

7500
| = | =

20.00
=

^ ss

i

15.00
S

=
=

=

10.00
=

=
= =

5.00
1

si s

0 00
= 1 =

1
0 1 2 3 4 5 Processor

FIGURE8.5 : Load Balancing on 6 Processors for Histogram Example

Completion Time

SamplePeric

120.00 _

)d (ms) Estimated T

iiiitiiiiiitiiiiiiiiiiiiiiiii

Actual T

110.00

>

*

100.00

90.00
»

80.00
»

70.00

*

»

60.00
\

50.00

40.00
\

30.00
^4S!Si;S<i **!«.

20.00

2 4 6 8 10

FIGURE 8.6 : Estimatedvs. Actual RunningTimes for Histogram Ex

12 Processors

ample

comparison, the ideal speedup is shown. This can only result if there is perfect load

169

balancing and there is no cost for interprocessor communication.

Speedup

Speedup

Estimated

Processors

FIGURE 8.7 : Speedup Plot for Histogram Example

Table 8.1 shows the sizes of the maximum buffer memory required of a

processor as a function of the available processors. An important point to note here is

#Procs # Pipelines Size of Maximum Buffer Size of Total Buffer

2 2 540 540

4 2 540 1180

6 2 540 1820

8 2 416 2336

10 3 678 3660

12 3 735 5279

TABLE 8.1

that the buffer memory size increases with the number of pipelines in the

implementation. This is expected since the length of the FIFO buffers varies directly

170

with the pipeline length. The difference will be even more pronounced in the next

example, where pipelining is extensively used.

8.2.2 Scheduling a Cordic Computation on the SMART
Multiprocessor

The Cordic algorithm converts cartesian to polar coordinates iteratively in 20

steps. It takes as input an (X,Y) coordinate, as well as an array of correction angles. The

loop iteratively calculates the corresponding amplitude and phase. Figure 8.8 shows the

algorithm. The nodes are annotated with their computation times, which are measured

initialization

405

.iii*'*

FIGURE 8.8: Cordic Example

s,«ii.

in clock cycles. For a DSP32C processor running at 50Mhz, each clock cycle takes

20ns. Since each iteration is dependent on the results of the previous iteration, the

computation is sequential in nature. A scheduling algorithm which only exploits spatial

concurrency would perform poorly on this example. McDAS, on the other hand, is able

to achieve a good speedup by pipelining the loop and assigning successive loop

iterations to successive processors.

Figure 8.8 shows the Cordic algorithm scheduled onto 4 DSP32C processors.

The speedup is 3.76, for an average processor utilization of 94.16%. The accompanied

input initialization

405

mN/ffw/Nff/NffNifffmNm/s^ms

Proc 1, Pipeline 1

FIGURE 8.9: Cordic Example Scheduled on 4 Processors

171

Proc 2, Pipeline 2

output

o
Proc 3, Pipeline 3

table gives the buffer memory usage for each processor. It is assumed that the array of

correction angles is sent along with the intermediate results to the next pipeline stage.

The processors are thus required to buffer the array for correct execution. The farther a

processor is situated in the pipeline, the larger the buffer.

In contrast to the Histogram example, the Cordic program is communication

intensive. With a pipeline configuration as above, each processor in the pipeline will

send its results to the successor processor at the end of its computation. A linear array

architecture allows these neighbor-to-neighbor communications to occur

simultaneously, while a single shared-bus architecture is soon saturated. Figure 8.10

plots the speedup for the Cordic algorithm on the SMART machine with the bus

configured as a linear array and a shared-bus, respectively. Again, the ideal speedup is

included for comparison. The first thing we notice is the "stair case" effect of the

speedup curves. Currently, McDAS does not decompose loops at the middle of an

iteration. No attempt will be made, for instance, to assign 1.5 iterations of a loop on one

processor and the remainder on another. As a result, when there are 12 to 18 processors

available, the scheduler still has to assign at least one processor 2 iterations to execute.

172

Speedup

26

22

18

14

10

Speedup

4d>afc

LineirAiray

iSharedlius

2 4 6 8 10 12 14 16 18 20 22 24 26 28 Processors

FIGURE 8.10: Speedup for Cordic Example

The throughput remains constant until enough processors are available to allow each

iteration to be executed by its own processor. This occurs at 20 processors, after which

a great leap in throughput is attained. The decision to enforce iteration boundaries is

made to keep the number of nodes considered by the scheduler low and maintain

reasonable user response time. It also keeps program code compact. Because of this, the

computation time of one iteration of a loop may represent the finest granularity level in
t

the application (except when the number of iterations is less than the number of

available processors, for which each iteration will be expanded to its subgraph). For

most examples that we have encountered (including the Histogram), this value is much

smaller than the overall computation time and hence does not greatly affect the load

balancing. The Cordic example, however, is not computationally-intensive, allowing

this phenomenon to hinder the load balancing.

The amount of communication among the processors is shown in Figure 8.11.

When the number of processors is between 2 and 12, as more processors are utilized,

Communication

% Communication

Cordic

173

2 4 6 8 10 12 14 16 18 20 22 24 26 28 Processors

FIGURE 8.11: Percent Communication on Cordic Example.

the amount of interprocessor communication increases. From 12 to 18 processors, the

scheduler is not utilizing the additional processors well; they are either idle or only

slightly used. As a result, there is no substantial increase in the amount of

communication. When the processor count reaches 20, each processor is assigned an

iteration, and is heavily utilized. All 20 processors are now communicating with their

neighbor as opposed to 10. This results in a great surge of interprocessor

communications as shown in Figure 8.11. Architectures which are not able to cope with

this communication demand will suffer in performance. For neighbor-to-neighbor

communications, a linear array architecture can process these data transfers

simultaneously, resulting in a good speedup. A single shared bus architecture however,

will perform much worse as the shared bus forces all of these data transfers to be

processed sequentially. By contrast, the communication demand of the Histogram

example averages only 2%, making the processor interconnection not as important an

issue.

174

Finally, Table 8.1 shows the buffer memory usage of the Cordic example on

SMART as a function of the available processors. Since the application is extensively

#Procs # Pipelines Size of Maximum Buffer Size of Total Buffer

2 2 86 86

6 6 106 308

10 10 206 1134

14 11 206 1165

18 11 206 1168

22 21 406 4302

TABLE 8.2

pipelined, the buffer memory requirements of the processors in the last stages of the

pipeline can be quite large.

8.2.3 Scheduling Different Applications

The scheduling algorithm has been tested on a variety of DSP examples with

different types of concurrency and communication patterns. The goal is to see how the

algorithm exploits the concurrency to achieve speedup. For all examples discussed in

this section, a Sequent shared-bus multiprocessor composed of 8 processors is used as

the target system.

Table 8.3 shows the scheduling results for a number of examples which do not

contain global recursions. Those that are will be discussed later. A few entries need

explanation. F(G) and H(G) give the number of nodes in the totally flattened graph and

in the hierarchical graph, respectively. R(G) gives the number of nodes that the

algorithm considered during its search. F(G) characterizes the computation requirement

of the examples, while H(G) illustrates the compactness of the hierarchical description.

175

R(G) shows how the top down hierarchical search allows the scheduler to minimize the

number of nodes considered during scheduling.

Example F(G) H(G) R(G) Concurrency # Pipelines Speedup

DTW 1.7e8 98 15 Pipe/Par 2 7.08

Matrix Mult. 2.0e6 24 11 Pipe/Par 2 6.64

256-ptDFT 7.6e5 35 9 Pipe/Par 3 6.94

Pitch Extractor 1.2e5 270 22 Pipe/Par 3 7.53

2-Norm 1926 23 12 Pipe/Par 4 7.61

Cordic 494 45 24 Pipeline 7 6.37

8-pt DCT 87 62 75 Pipe/Par 5 3.26

TABLE 8.3

The dynamic time warp (DTW) algorithm [Sak78] is used in speech

recognition to compute a match between an unknown signal and a library of templates.

The algorithm above performs 1000 template matchings and outputs the score. The

dominant concurrency lies in the parallel template matching task. The matrix

multiplication application multiplies a 64x64 matrix by a 64x64 matrix, and outputs the

resultant matrix. Each element of the resultant matrix can be calculated independently,

yielding parallelism. The pitch extractor [Slu80] starts with a Fourier transformed

speech signal, performs an amplitude calculation, searches for local maxima in the

spectrum to derive a candidate pitch, and matches the pitch against a set of templates.

The amplitude calculation and local maxima search are sequential operations, while the

template matching contains parallelism. For more fine-grain examples, the 2-norm

calculation squares each element of a vector, and then sum them. The first task can be

executed in parallel, while the second must be done sequentially. The cordic calculation

is the same example as described in the last section, and involves an iterative

computation to convert cartesian coordinates to polar coordinates. Finally, the DCT

example performs an 8-point discrete cosine transform in 5 stages. The stages are

176

expanded in line, and thus there are no loops in the description. This explains the large

number of nodes present in R(G) for the example.

In almost all cases, both temporal and spatial concurrency are exploited using a

combination of pipelining and parallel execution. The amount of pipelining and

parallelism is given by the # Pipelines column. Since there are 8 processors, those

which use few pipeline stages must have many processors working in parallel. As we

can see, there is a good mix in general. Finally, the last column shows the speedup

obtained by the scheduler. It shows that although the examples are quite diverse in

computational complexity and concurrency pattern, the speedup obtained is consistently

good. One exception is the DCT example, which only achieves a speedup of 3.26.

Although it has sufficient concurrency, the amount of communication as compared to

computation (it has only 87 primitive operations) is quite significant. This is explored

more thoroughly in Table 8.4, where additional statistics derived from the scheduling

results are analyzed.

Example #Iter

#

Scheduling
Invocations

/Iter

CPU (sec)
% Comm.

Overhead

Max Buffer

Size

DTW 15 5 30.2 1.53% 807,928

Matrix Mult 14 1 5.8 5.19% 36,864

256-ptDFT 13 1 8.2 0.27% 1437

Pitch Extractor 15 3 21.7 1.12% 335

2-Norm 14 1 11.2 0.2% 2032

Cordic 14 8 12.6 4.88% 146

8-ptDCT 10 25 89.3 51.0% 18

TABLE 8.4

The percent communication overhead tells how much time the processors are

idle waiting for the bus to be available for communication or synchronization. The DCT

177

has over 50% communication overhead, giving each processor an average utilization of

40.8%. If the communication cost on the Sequent is reduced to zero, scheduling reveals

that the average processor utilization would jump to 80.2%. The analysis shows that the

Sequent machine is not efficient for fine-grain and communication intensive

computations because its interprocessor communication mechanism is somewhat

expensive.

The # Iter column gives the number of iterations the scheduler took to find the

minimal stagetime. All examples needed no more than 15 iterations to converge. As

discussed in Chapter 6, the scheduling algorithm may perform a number of scheduling

invocations at each iteration. One reason may be that the path merging mechanism was

invoked to improve processor utilization. The other source can come from successive

decomposition of large nodes in cycles to meet the cycle scheduling bound. The latter

feature will come in when examples with cycles are analyzed. For the examples here, all

scheduling invocations stems from path merging. The DCT example, with so little

hierarchy in the description, was a prime candidate for path merging. There average

number of path merging steps for the example equals 25. The number of iterations and

the number of path merges together dictate the scheduling CPU time. The CPU

measurements shown are based on a Sun Sparc II, and include the extensive logging of

schedule data for analysis.

8.2.4 Scheduling Applications with Global Recursions

We analyzed here three examples with global feedback cycles: An echo

Canceller, an adaptive differential pulse code modulator (ADPCM), and a decision

feedback equalizer (DFE). An echo canceller [Hon84] is used to cancel out the echo of

the talker or the receiver in the telephone network. This is often done by using a least

mean square (1ms) filter to estimate the echo from the input signal and using it to

remove the echo from the output signal. The 1ms filter contains a single cycle feedback.

178

ADPCM [Hon84] is a technique to reduce the bit rate needed to transmit a signal by

sending an error signal (the difference in the present and past signal values), rather than

the signal value itself. Since the error is usually small, less bits are required to

represent the error signal. At the receiver's end, the original signal is recovered using

feedback. Finally, a DFE [Hon84] filter is often used to help equalize the frequency-

dependent channel attenuation in data transmission.

The global delay recursion prohibits pipelining. However, each example

contains iterations in the cycle which can be executed in parallel. As a result, retiming

and parallel execution are used to increase performance. Since the speedup is limited by

the cycle scheduling bound (chapter 6.4), a comparison to the ideal speedup is no longer

meaningful. Table 8.5 shows the scheduling results for these examples.

Example Concurrency # Pipelines Stagetime Cycle Bound Speedup

ADPCM Retime/Par 2 1381.5 1362.8 3.72

Echo Cane Retime/Par 2 12157 6649 2.34

DFE Retime/Par 1 1500.8 1238.5 4.22

TABLE 8.5

For the ADPCM and DFE examples, the scheduling algorithm performs quite

well as the pipeline stagetime is brought down close to the cycle scheduling bound/This

*is possible because there are enough free processors to fully exploit the parallel

iterations in the cycle. In the echo canceller case however, the number of available

processors is insufficient to fully exploit all the parallelism in the iteration node. As a

result, each processor allocated to the iteration node still has to perform a number of

iterations sequentially. Hence the stagetime is still considerably larger than the cycle

bound. This analysis is confirmed when these examples are scheduled with a larger

number of processors. The ADPCM and DFE examples fail to improve, while for the

echo canceller example, the scheduler succeeds to further minimize the stagetime. In

179

principle, the scheduling of applications with cycles is thus constrained not only by the

cycle bound, but remains constrained by the available resources also, as expected.

8.3 SUMMARY

In this chapter, the scheduling and code generation tools in McDAS are

evaluated with a number of benchmark DSP examples. Two multiprocessor machines

are used as target architectures: The Sequent and SMART machines. The Sequent

computer serves not only as a sample architecture for the scheduler, but is also

currently the only machine targeted by the code generator. Hence, applications which

are scheduled can be executed to verify the code generator and the estimation routines.

The SMART machine, on the other hand, with its configurable bus, allows for the

exploration of a wide range of design implementations.

The results obtained show the scheduler's ability to exploit different types of

concurrency to achieve good speedup. For examples with spatial concurrency, parallel

execution is used. For examples with temporal concurrency, pipelining is used. In

examples with cycles, retiming is employed. Often, a combination of these techniques

are used to obtain the greatest speedup gain.

The ability to traverse hierarchy allows the scheduler to adapt to the number of

available processors. The more processors, the finer the granularity being exploited.

The top down hierarchical search strategy is shown to reduce the search space

considerably, enabling fast scheduling performance. Finally, comparisons between the

estimated and the actual execution times of tasks on the Sequent confirms the practical

use of the McDAS system as a multiprocessor compilation environment.

CONCLUSION
9

In this chapter, we review the major results presented in the previous chapters.

While the presented methods and algorithms adequately address many key issues in

DSP multiprocessor implementation, more work is needed to make the compilation

environment complete. An outline of such work is proposed for future research.

9.1 SUMMARY

The goal from the start of this research has been to develop a multiprocessor

scheduling algorithm for DSP implementation which can exploit all available

concurrency styles, at any level of granularity necessary. This has to be done within a

compilation environment which is able to address all practical constraints of a

multiprocessor system such as communication delays, and memory and processor

availability constraints.

The goal is achieved by attacking the problem on two fronts. On one front,

estimation is used to collect and store as much information about the input application

and the target architecture as possible. On the other front, a scheduling algorithm is

developed to exploit all the information available to obtain the highest quality solution.

The results of the first objective are the hierarchical control/data flowgraph (CDFG)

representation and the methodologies for estimating computation and communication

181

182

delays. These were discussed in Chapters 3, 4, and 5 respectively. The CDFG format

stores all levels of hierarchy in the application in an efficient manner, allowing the

scheduler to quickly traverse the different granularity available in the application. The

computation estimation model gives the scheduler precise computation times and

memory requirements of nodes at any level of hierarchy. The estimation is based on

benchmarking programs to obtain computation times of primitive operators, and

accumulating these costs in a hierarchical fashion for more complex computations. A

nice feature of this technique is the inclusion of the effects of the underlying compiler

technology in its cost. The effectiveness of the proposed strategy is validated by

comparing the estimated and actual computation times for a number of example

programs. In all benchmarks for both the Sequent and SMART multiprocessor systems,

an error margin of < 5% is achieved. Finally, the communication model uses a time-slot

bus reservation strategy to accurately estimate the communication delay of a data

transfer between two processors, taking bus congestion into consideration.

The scheduling algorithm presented in Chapter 6 is the result of the effort to

meet the second objective. It can simultaneously exploit both spatial and temporal

concurrency to achieve speedup. This can be done at any level of hierarchy in the

flowgraph, allowing the scheduler to consider the concurrency at a level of granularity

consistent with the amount of available processors. Furthermore, the scheduler is able

to accept architectural constraints such as maximum bounds on the number of

processors and amount of memory available, as well as the architecture topology. The

results on a set of benchmarks demonstrate the scheduler's ability to achieve near

optimal speedups across a wide range of applications.

To increase the applicability of the scheduler, a software environment is

developed to provide a complete compilation path for DSP applications, from

behavioral specification to code execution. The environment allows a designer to

experiment with different architectures, and quickly implement designs. A number of

183

graphic display tools are available to provide analysis of the flowgraph structure and

scheduling results.

The CDFG database serves as a central repository, on which compilation tasks,

such as computation estimation, scheduling, and code generation are executed. This

modularity in the design environment allows additional tools to be easily integrated into

the compilation process. As an example, a set of flowgraph optimizing transformations

to perform common subexpression elimination, dead code elimination, and manifest

expression reduction has been incorporated. These transformations are automatically

invoked after the CDFG flowgraph generation. Another flowgraph transformation which

has been implemented is the multirate transformation. It converts a CDFG with multiple

sampling rates into one with a single sampling rate. This is done by clustering

operations with the sample sampling rate into a process, and repeatedly invoking each

process according to its rate. This transformation is automatically applied to multirate

applications. Many additional tools, especially flowgraph transformations, can make a

significant contribution to the compilation environment. These will be discussed next as

part of the discussion on directions for future work.

9.2 FUTURE RESEARCH

As often occurs in research, an attempt to answer one set of challenging

questions produces as a side effect a number of even more challenging questions. The

development of the McDAS environment offers no exception. Even though the current

system already provides the designer with the capability to carry an application from

specification to design exploration and implementation, the concepts presented

hereafter can help to enhance those capabilities and turn McDAS into an even more

powerful multiprocessor compilation environment.

184

A number of topics directly in line with the work in McDAS have already been

alluded to earlier. These as well as some other directions will be summarized here.

9.2.1 Data Dependency Analysis

In the generation of a flowgraph from a textual description, careful data

dependency analysis is required to correctly connect data edges to nodes which are

dependent on them. The main challenge is the dependency analysis of multidimensional

signals such as arrays or matrices. This requires a careful examination of the range

covered by the array indices. As an example, a read operation of an array, at some

specified index, must trail a write operation to the same index of the array. The problem

lies in a lack of a concise way to represent a range of coverage of a read/write

operation, and a lack of an efficient algorithm to detect a coverage intersection.

In Chapter 2, a number of research efforts to tackle this problem were

presented. These include the SUIF project [May91], the Parafrase project [Kuc84], and

many others [Li90][A1187]. For example, it has been determined that, for certain special

case inputs, efficient algorithms are available to determine exact dependence [Li90]. In

[May91], a parallelizing compiler based on a systematic invocation of special case

algorithms is presented. The application of these techniques to the CDFG generation

module may reduce the number of dependencies which are inserted. This in turn will

maximize the concurrency available in the flowgraph.

9.2.2 DSP Code Generation

DSP processors are specialized processors which often use extensive

pipelining, multiple independent memories and functional units, hardware looping, and

other innovative techniques to allow real-time processing. While this is highly

desirable, it also makes it difficult to generate code which can fully exploit their

185

capability. The main constraints come from the restrictions imposed by the pipelined

execution and the parallel memory accesses.

In Chapter 7, a discussion on DSP code generation from a high level

description was presented. All techniques attempt to generate code which is optimized

for the target architecture. One offered a register allocation scheme which can remove

many unnecessary memory accesses between operations, while another presented a code

emission scheme which can better exploit the instruction-set of the target processor.

This technique attempts to use single-cycle multiply-accumulate instructions, modular

addressing for delay lines, zero-overhead looping, and parallel memory accesses.

There are two main approaches. One approach generates C as an intermediate

language. The main drawback is the lack of support for DSP primitives in C usually

results in inefficient code. The other approach directly synthesizes DSP code from a

flowgraph specification. The work by Genin [Gen89] and Kim [Kim90] are important

contributions in this area. For larger granularity DSP blocks, the use of a library of

hand coded DSP blocks [Pow92] provides a simple and effective compromise. In our

opinion, direct code generation from a DSP flowgraph holds the greatest promise due to

its efficiency and generality.

9.2.3 Computation and Memory Estimation

While the benchmarking technique presented in this thesis is quite effective, it

has one main drawback, its simple code generation model. Each CDFG primitive

operation is assumed to generate a set of assembly instructions which include the

fetching of input operands from memory, the execution of the operation, and the storing

of the output operand into memory. With this model, each CDFG operation takes the

same amount of time and memory to execute, no matter how and where it is used. This

allows for fast and accurate estimations. For an un-optimized compiler, this is usually

the case. However, optimizing compilers such as those described in the above

186

subsection would deviate significantly from the code generation model above, making

accurate estimations of computation time and memory usage more difficult.

To incorporate these optimizations into the estimation routines, it is necessary

to model more accurately the underlying code generation strategy to take into account

the register allocation, the pipelined execution, as well as the parallel data accesses.

This work is currently being pursued at Georgia Tech [Cur92], with very promising

results. The main drawback of this approach is that very low-level interactions must be

modelled, yielding an estimation routine which is complex, slow, and not reusable. At

larger granularity, the use of predefined optimized DSP library blocks can significantly

reduce the overall estimation error.

9.2.4 Scheduling for Heterogeneous System

It is not uncommon for the target multiprocessor to be composed of different

core processors. Usually, this occurs when each type is faster at performing some

particular task than the rest. To exploit this advantage, a scheduling algorithm must

attempt to schedule tasks onto those processors which can execute them the fastest.

This can add another dimension of complexity to the existing scheduling problem

because it may be advantageous to separate nodes which communicate heavily with

each other to exploit specialized hardware features. Thus in addition to the trade-off

between exploitation of communication cost and parallelism and granularity, this

environment introduces a new trade-off between communication cost and varying

processor computation speeds.

For classical schedulers which attempt to minimize the completion time of a

single execution of the algorithm, the extension to heterogeneous processors has been

addressed [Sih89]. In this formulation, the computation cost for a node is different for

each processor type in the architecture, and the scheduler is extended to look at each

187

case. The main issue is the increase in the complexity of the cost function and the

search space.

The same approach is not possible with the scheduling algorithm presented in

this thesis. Because pipelining is exploited, a processor, once assigned to a pipeline

stage, is restricted to perform only computations which can be scheduled on that

pipeline stage, and no others. Consider the flowgraph as shown in Figure 9.1. Suppose

ProcO

Stage 0 Stage 1 Stage 2 Stage 3

FIGURE 9.1: Pipelining in Heterogeneous Systems Unsuccessful.

that Proc 1 is of different type than the other processors, and suppose node n7 executes

faster on Proc 1 than all other processors. It still cannot be scheduled on Proc 1, even if

Proc 1 is insufficiently utilized. The pipeline clustering forces node n7 to be executed in

stage 3, while Proc 1 is already assigned to stage 1. This natural grouping of

neighboring computations to neighboring pipeline stages hinders the effective

exploitation of pipelining on a heterogeneous environment. However, when there exist

more than one processor per stage, the extension as discussed above can make a

significant contribution.

9.2.5 Scheduling Data-dependent Computations

In compile-time scheduling, the quality of the solution is directly linked to the

ability to accurately model what will occur at run-time. The better the modelling, the

188

more accurate the scheduling decisions. Data-dependent computations such as

conditional and while loop constructs dramatically reduce a scheduler's ability to

accurately model the run-time behavior.

The conventional solution is to reject static scheduling and incur the

(substantial) cost of dynamic scheduling. However, a number of research projects are

underway to minimize the amount of dynamic scheduling needed [Lee88][Loe881. This

approach, coined quasi-static scheduling by Lee [Lee88], retains as much static

scheduling as possible, and invokes dynamic scheduling only when absolutely

necessary. To obtain a high quality quasi-static schedule, Ha [Ha92] proposes a set of

possible local schedules or profiles of each data-dependent computations at compile

time, and selects the profile which minimizes the expected run-time cost. The derivation

of the profiles is dependent upon having a probability distribution of the run-time

behavior of the computation. Ha's key contributions are the derivation of these

distributions. The technique is used to schedule a number of dynamic constructs such as

data-dependent iterations, recursions, and conditionals, with very promising results.

9.2.6 Loop Transformations

Transformations are changes in the flowgraph structure which can improve the

#final implementation, without altering the input-output relationships. The improvement

may be in an increase in performance or concurrency, or a reduction in memory usage.

In Chapter 4, a number of compiler optimizing transformations are introduced as part of

the Silage to flowgraph translation process. In this section, we examine a number of

loop transformations which can be useful in the McDAS environment.

Manipulating loop structures can greatly influence the final scheduling

outcome. Examples of loop transformations include loop unrolling, loop merging, and

loop interchange. Loop unrolling is already an essential part of the scheduling

algorithm in this thesis, and is used to unroll iterations to expose more concurrency.

189

Loop interchange, a transformation where two nested loops are interchanged, can also

significantly improve the scheduler. For example, the current implementation of the

loop unrolling in the scheduler breaks a loop into a number of sub-nodes, each with a

subset of the loop. No attempt is made to share an iteration between sub-nodes. As a

result, the size of a single iteration often becomes a lower bound on the granularity

level. Sometimes this granularity level is large enough to produce a poor load

balancing. For example, consider a nested loop as shown in Figure 9.2a, where the outer

5 iterations 100 iterations 100 iterations

(a) (b)

FIGURE 9.2: Loop Interchange to Improve Load Balancing

5 iterations

loop has 5 iterations and the inner loop has 100 iterations. Assume there are 4 available

processors. The scheduler only sees 5 iterations to partition. A poor load balancing

results since one processor is assigned 2 iterations, while the rest are assigned a single

iteration. If a loop interchange is applied however (Figure 9.2b), the scheduler now sees

100 iterations to partition. A partition of 25 iterations for each processor yield a perfect

load balancing. Nested loops occur often enough in signal processing to warrant the

inclusion of the loop interchange transformation.

Loop merging, on the other hand, involves collapsing two consecutive loops

into a single loop to save buffer memory storage. Consider Figure 9.2a where loop 1has

5 iterations and loop 2 has 10 iterations Each iteration of loop 1 produces 2 data

samples while each iteration of loop 2 consumes 1 data sample. If the loops are

190

5 iterations

r- i

10 iterations

(a)

/
/ 1 iteration

/ 1

5 iterations

i

\

\ 2 iterations

\

(b)

FIGURE 9.3: Loop Merging to reduce memory requirements

executed as shown, a buffer of 10 samples are accumulated at the end of loop 1.

However, if the two loops are merged as in Figure 9.2b, the amount of buffer memory is

reduced to 2.

Finally, it is possible to perform loop unrolling on the infinite time loop itself

to expose more concurrency. Consider an application consisting only of a parallel loop

of 4 iterations, and the available number of processors is 8. Instead of decomposing

each iteration further to take advantage of the available processors, the time loop can be

unrolled to expose the computation of 2 samples. Since this will have 2 parallel loops of

,4 iterations, the 8 processors can be fully utilized.

For applications which are globally recursive, unrolling the time loop can

sometime lead to an implementation with a higher throughput than is previously

possible. A number of research projects are underway to investigate this transformation

[Par89][Pot92]. The approach involves unrolling the time loop and applying a number

of algebraic transformations in a certain order to move computations out of the

recursion. While these techniques hold great promise, they currently only address fine-

grain linear recursive applications. An extension to large-grain non-linear systems

would greatly improve the applicability of this transformation.

191

9.3 SUMMARY

In this chapter, the main contributions of the thesis are summarized, and a

number of topics which need further examination and research are discussed. In

particular, enhancements to the scheduling and code generation strategies as well as

several key loop transformations are proposed.

REFERENCES
10

[Ack79] W.B. Ackerman, J.B. Dennis: "VAL - A Value-Oriented Algorithmic

Language: Preliminary Reference Manual," MIT Laboratory for Computer

Science Technical Report TR-218, MIT, Cambridge, Mass., June 1979.

[Ack82] W.B. Ackerman: "Data Flow Languages," Computer, vol. 15, no. 2, February,

1982.

[Ada74] T.L Adam, K.M. Chandy, J.R. Dickson: "A Comparison of List Schedules for

Parallel Processing Systems," Communications of the ACM, vol. 17, 1974, pp.

685-690.

[A1187] J.R. Allen, K. Kennedy: "Automatic Translation of FORTRAN programs to

Vector Form," ACM Transactions on Programming Languages and Systems,

vol. 9, no. 4, October, 1987.

[Alr86] H. Alrutz: "Implementation of a Multi-Pulse Coder on a Single Chip FLoating-

Point Signal Processor," ICASSP'86, Tokyo, Japan, pp2367-2370.

[Ann87] M. Annaratone, et al: "Warp Architecture: From Prototype to Production,"

Proceedings of the J987 National Computer Conference, Chicago, Illinois,

June 1987.

193

194

[Arc86] J. Archibald, J. Baer: "Cache Coherence Protocols: Evaluation Using a

Multiprocessor Simulation Model," ACM Transactions on Computer Systems,

vol. 4, no. 4, 1986.

[Arv78] K. Arvind, P. Gostelow, W. Plouffe: "An Asynchronous Programming

Language and Computing Machine," Department of Information and Computer

Science Technical Report 114a, University of California, Irvine, December

1978.

[Ash77] E.A. Ashcroft, W.W. Wadge: "Lucid, a Non-Procedural Language with

Iteration," Communication of the ACM, vol. 20, no. 7, July 1977, pp. 519-526.

[Att88] "WE DSP32C Digital Signal Processor," AT &T Information Manual, December

1988.

[Bar91] T. Barnwell III, V. Madisetti, S. McGrath: "The Georgia Tech Digital Signal

Multiprocessor," submitted to IEEE Transactions on Signal Processing, July

1991.

[Bau901 K. Baudendistel, J.H. McClellan: "Code Generation for the AT&T DSP32",

ICASSP 90, Albuquerque, NM.

»[Bok81] S.H. Bokhari: "Shortest Tree Algorithm for Optimal Assignments Across

Space and Time in a Distributed Processor System," IEEE Transactions on

Software Engineering, vol. SE-7, no. 6, November 1981.

[Bok88] S.H. Bokhari: "Partitioning Problems in Parallel, Pipelined, and Distributed

Computing," IEEE Transactions on Computers, vol. 37, no. 1, January 1988.

[Bac78] J. Backus: "Can Programming Be Liberated from the Von Neumann Style? A

Functional Style and Its Algebra of Programs," Communications of the ACM,

vol. 21, no. 8, August 1978.

195

[Ber91] G. Berry: "A hardware implementation of pure ESTEREL," ACM Workshop on

Formal Methods in VLSI Design, January, 1991.

[Cam90] J.P. Campbell Jr, V. Welch, T. Tremain: "An Expandable Error-Protected 4800

bps CELP coder," ICASSP 1985.

[CCI89] Description of Reference Model 8 (RM8), Document 525, CCITT SGXV,

Working Party XV/4, Specialist Group for Visual Telephony, 1989.

[Che84] S.C. Chen: "Large-Scale and High-Speed Multiprocessor System for Scientific

Applications: Cray X-MP Series," In High-Speed Computation, NATO ASI

Series, vol. F7, J.S. Kowalik Ed. Springer-Verlag, New York, 1984, pp. 59-67.

[Che92] D.C. Chen, et al.: "An Integrated System for Rapid Prototyping of High

Performance Algorithm Specific Data Paths," submitted to International

Conference on Application-Specific Array Processors, Berkeley California,

August 1992.

[Chu80] W.W. Chu, L.J. Holloway, M.T. Lan, K. Efe: "Task Allocation in Distributed

Data Processing," Computer, November 1990, pp. 57-69.

[Cof72] E.G. Coffman Jr, R.L. Graham: "Optimal Scheduling for Two Processor

Systems," Acta Informatica, vol. 1, 1972, pp. 200-213.

[Cof76] E.G. Coffman Jr. (Ed.): Computer and Job-Shop Scheduling Theory, John

Wiley & Sons, New York, 1976.

[Coo71] S.A. Cook: "The Complexity of Theorem Proving Procedures," Proc. Third

ACM Symposium on Theory of Computing, pp. 24-30, 1971.

[Cov87] CD. Covington, G.E. Carter, D.W. Summers: "Graphic Oriented Signal

Processing Language - GOSPL," ICASSP 1987.

196

[Cro83] R.E. Crochiere, L.R. Rabiner: "Multirate Digital Signal Processing,"

Englewood Cliffs, New Jersey, Prentice Hall, 1983.

[Cur92] B.A. Curtis, V.K. Madisetti: "Task Scheduling in the Georgia Tech Digital

Signal Multiprocessor," ICASSP'92, San Francisco, CA, March 1992.

[Dau87] J.W. Daugherty: "Using the DSP32 in Speech Processing Applications," AT&T

Memorandum, Dept. 54127, May 1987.

[Dar81] J. Darlington, M. Reeve: "Alice - A Multiprocessor Reduction Machine for the

Parallel Evaluation of Applicative Languages," Proc. 1981 ACM Conf.

Functional Programming Languages and Computer Architecture, 1981, pp. 65-

75.

[Dav86] J. Davies, et al.: "The KAP/205: An Advanced Source-to-Source Vectorizer for

the Cyber 205 Supercomputer," Proceedings of the 1986 International

Conference on Parallel Processing (St. Charles, Illinois, Agu. 19-22). IEEE

Press, New York, 1986, pp. 827-832.

[Fly72] M.J. Flynn: "Some Computer Organizations and their Effectiveness," IEEE

Transactions on Computers, September 1972, C-21(9), pp. 948-960.

•[For88] H.R. Forren: "Multiprocessor Design Methodology for Real-Time DSP Systems

Represented by Shift-Invariant Flow Graphs," PhD thesis, Georgia Institute of

Technology Technical Report, 1988.

[Fre891 K. Frenkel: "HDTV and the Computer Industry," Communications of the ACM,

November 1989.

[Gar79] M.R. Garey and D.S. Johnson: "Computers and Intractability: A Guide to the

Theory of NP-Completeness," W.H. Freeman and Company, San Francisco,

1979.

197

[Gel92] PR. Gelabert, T.P. Barnwell III: "Optimal Automatic Periodic Multiprocessor

Compiler for Multi-Bus Networks," ICASSP'92, San Francisco, CA, March

1992.

[Gen89] D.R. Genin, et al.: "System Design, Optimization, and Intelligent Code

Generation for Standard DSP," ISCAS, May 1989.

[Gir87] E. F. Girczyc: "Loop Winding - A Data Flow Approach to Functional

Pipelining," ISCAS'87, pp. 382-385.

[Gon77] M.J. Gonzalez, Jr.: "Deterministic Processor Scheduling," Computing Surveys,

vol. 9, no. 3, September 1977.

[Gra69] R.L. Graham: "Bounds on certain multiprocessing anomalies," SIAM Journal of

Applied Mathematics, vol. 17, no. 2, March 1969, pp. 416-429.

[Gue91] P.L. Guernic, T. Gautier, M. Borgne, C. Maire: "Programming Real-Time

Applications with SIGNAL," IRISA, Campus de Beaulieu, France.

[Gur801 J. Gurd, I. Watson: "Data Driven Systems for High Speed Parallel Computing:

Part 1: Structuring Software for Parallel Execution; Part 2: Hardware Design,"

Computer Design, June and July 1980, pp. 91-100, 97-106, respectively.

[Ha92] Soonhoi Ha, "Compile-Time Scheduling of Dataflow Program Graphs with

Dynamic Constructs," Ph.D. Thesis in preparation, University of California,

Berkeley, 1992.

[Har86] D. Harrison: "Data Management and Graphics Editing in the Berkeley Design

Environment," Proceedings IEEE International Conference on Computer

Aided Design, November 1986.

198

[Hil85] P. Hilfinger: "SILAGE, A High Level Language and Silicon Compiler for

Digital Signal Processing," Proceedings IEEE CICC Conference, Portland,

May 1985.

[Hon84] M.L. Honig, and D.G. Messerschmitt: Adaptive Filters: Structures,

Algorithms, and Applications, Kluwer Academic Publishers, 1984.

[Hu611 T.C. Hu: "Parallel Sequencing and Assembly Line Problems," Operations

Research, vol. 9, no. 6, 1961, pp. 841-848.

[Hwa89] J.J. Hwang, Y.C. Chow, F.D. Anger, CY. Lee: "Scheduling Precedence Graphs

in Systems with Interprocessor Communication Times," SIAM Journal of

Computing, vol. 18, 1989, pp. 244-257.

[Int86] "iPSC Program Development Guide," Intel Corporation, November, 1986.

[Jac901 Geert Jacobs: "Multirate Digital Signal Processing," EDC Internal Document,

Nov. 1990.

[Joh75] D.B. Johnson: "Finding All the Elementary Circuits of a Directed Graph,"

SIAM Journal of Computing, vol. 4, no. 1, March 1975.

[Kan87] R. Kannan: "Minkowski's Convex Body Theorem and Integer Programming,"

Mathematics of Operations Research, vol. 12, no. 3, August 1987.

[Kar72] R.M. Karp: "Reducibility Among Combinatorial Problems," Complexity of

Computer Computations (R.E. Miller, Ed.), Plenum Press, 1972, pp. 85-103.

[Kem901 D. Kemp, R. Sueda, T. Tremain: "An Evaluation of 4800 bps Voice Coders",

ICASSP 1990, S4.21, pp200-203.

[Kim901 B.M. Kim, T.P. Barnwell III: "Resource Allocation and Code Generation for

Pointer-Based Pipelined DSP Multiprocessors," ISCAS'90.

199

[Koh751 W.H. Kohler: "A Preliminary Evaluation of the Critical Path Method for

Scheduling Tasks on Multiprocessor Systems," IEEE Transactions on

Computers, vol. C-24, 1975, pp. 1235-1238.

[Koh89] W. Koh, A. Yeungk, P. Hoang, J. Rabaey: "A Configurable Multiprocessor

System for DSP Behavioral Simulation," ISCAS Symposium, May 1989.

[Kri87] R. Krishnamurti: "Reconfigurable Parallel Architectures for Special Purpose

Computing," PhD thesis, Department of Computer and Information Science,

University of Pennsylvania, Philadelphia, PA, 1987.

[Kro92] T. Krol, J.V. Meerbergen, C Niessen, W. Smits, J. Huisken: "The Sprite Input

Language, An Intermediate format for High Level Synthesis," Philips

Research Laboratories, The Netherlands.

[Kuc84] D.J. Kuck, R.H. Kuhn, B. Leasure, M. Wolfe: "The Structure of an Advanced

Retargetable Vectorizer," in Tutorial on Supercomputers: Designs and

Applications, K. Hwang, Ed., IEEE Press, New York, 1984, pp. 163-178.

[Lee85] S. Lee, C. Hodges, T. Barnwell III: "An SSIMD Compiler for the

Implementation of Linear Shift-Invariant Flow Graphs," Proceedings ICASSP,

March 1985.

[Lee87] E.A. Lee, D.G. Messerschmitt: "Synchronous Data Flow," IEEE Proceedings,

September 1987.

[Lee88] E.A. Lee: "Recurrences, Iterations, and Conditionals in Statically Scheduled

Block Diagram Languages," VLSI Signal Processing III, IEEE Press, 1988.

[Lee89a] E.A. Lee: "An Informal Study of Block Diagram Linguistics," U.C. Berkeley

Internal Report, November 1989.

200

[Lee89b] E.A. Lee: "Consistency in Dataflow Graphs," U.C. Berkeley Internal Report,

November 1989.

[Lee89c] E.A. Lee, et al: "Gabriel: A Design Environment for DSP," IEEE Transactions

on ASSP, vol. 37, no. 11, November 1989.

[Lee89d] E.A. Lee, S. Ha: "Scheduling Strategies for Multiprocessor Real-Time DSP,"

GLOBECOM, Dallas Texas, November 1989.

[Lee901 E.A. Lee, J.C. Bier: "Architectures for Statically Scheduled Dataflow," UCB/

ERL M89/129, May 1990.

[Lei831 C. E. Leiserson, F. M. Rose, J. B. Saxe: "Optimizing Synchronous Circuitry by

Retiming," Proceedings of the Third Caltech Conference on VLSI, Computer

Science Press, 1983, pp. 23-26.

[Len78] J.K. Lenstra, A.H. Rinnooy Kan: "Complexity of Scheduling under Precedence

Constraints," Operations Research, vol. 26, no. 1, January 1978.

[Loe881 C. Loeffler, A. Ligtenberg, H. Bheda, and G. Moschytz: "Hierarchical

Scheduling system for Parallel Architectures," Proceedings ofEuco, Grenoble,

September, 1988.

•

[Li90] Z. Li, P. Yew: "Practical Methods for Exact Data Dependency Analysis,"

Proceedings of the Second Workshop on Languages and Compilers for Parallel

Computing, 1989.

[Lov881 T. Lovett, S. Thakkar: "The Symmetry Multiprocessor System," Proc. 1988

Int'l Conf of Parallel Processing, University Park, Pennsylvania, 303-310.

[May91] D.E. Maydan, J.L. Hennessy, M.S. Lam: "Efficient and Exact Data

Dependence Analysis," ACM SIGPLAN '91 Conference on Programming

Language Design and Implementation, Toronto, Canada, June 1991.

201

[McC89] C McCreary, H. Gill: "Automatic Determination of Grain Size for Efficient

Parallel Processing," Communications of the ACM, Vol. 32, No. 9, September

1989.

[Mes84] D.G. Messerschmitt: "A Tool for Structured Functional Simulation," IEEE J.

Select. Areas Commun., vol. SAC-2, January 1984.

[Mot90] "DSP96002 User's Manual," Motorola, 1990.

[Nag84] S. Nagashima, Y. Inagami, T. Odaka, S. Kawabe: "Design Consideration for a

high speed vector processor: The Hitachi S-810," Proceedings of the IEEE

International Conference on Computer Design: VLSI in Computers. ICCD 84.

(Port Chester, N.Y. Oct. 8-11). IEEE Press, New York, 1984, pp. 238-243.

[Ost86] A. Osterhaug: "Guide to Parallel Programming on Sequent Computer Systems,"

Sequent Computer Systems, Inc., 1986.

[Pad86] D.A. Padua, M.J. Wolfe: "Advanced Compiler Optimizations for

Supercomputers," Communications of the ACM, vol. 29, no. 12, December

1986.

[Par89] K.K. Parhi: "Rate-Optimal Fully-Static Multiprocessor Scheduling of Data-

Flow Signal Processing Programs," ISCAS, May 1989.

[Rav83] CV. Ravishankar, J.R. Goodman: "Cache Implementation for Multiple

Microprocessors," Proceedings Compcon Spring'83, February 1983, pp. 346-

350.

[Par89] K.K. Parhi, D.G. Messerschmitt: "Pipeline Interleaving and Parallism in

Recursive Filters - Parts I & II", IEEE Transactions on Signal Processing, pp.

1099-1117 & pp. 1118-1134, July 1989.

202

[Pap84] M.S. Papamarcos, J.H. Patel: "A Low-Overhead Coherence Solution for

Multiprocessors with Private Cache Memories," Proc. Eleventh International

Symposium on Computer Architecture, June 1984, pp. 348-359.

[Pot92] M. Potkonjak, J. Rabaey: "Fast Implementation of Recursive Programs Using

Transformations," ICASSP, March 1992.

[Pow92] D.B. Powell, E.A. Lee, W.C Newman: "Direct Synthesis of Optimized DSP

Assembly Code from Signal Flow Block Diagrams," ICASSP'92, San

Francisco, CA.

[Pri91] H. Printz: "Automatic Mapping of Large Signal Processing Systems to a

Parallel Machine," PhD thesis, Carnegie Mellon Univ., May 1991.

[Rab91] J. Rabaey, C Chu, P. Hoang, M. Potkonjak: "Fast Prototyping of Data Path

Intensive Architecture," IEEE Design and Test, vol. 8, no. 2, pp. 40-51, 1991.

[Sak78] H. Sakoe, and S. Chiba: "Dynamic Programming Algorithm Optimization for

Spoken Word Recognition," IEEE Trans. Acoustics, Speech, and Signal

Processing, vol. ASSP-26, pp. 43-49, 1978.

[Sar89] V. Sarkar: "Partitioning and Scheduling Parallel Programs for

Multiprocessors," Research Monographs in Parallel and Distributed

Computing, MIT Press, 1989.

[Sch85] D.A. Schwartz: "Synchronous Multiprocessor Realizations of Shift-Invariant

Flow Graphs," PhD thesis, Georgia Institute of Technology, 1985.

[Sch88] C. Scheers: "User's Manual for the S2C Silage To C Compiler," Internal

Document, IMEC Laboratory, Leuven Belgium, August 1988.

[Sed881 R. Sedgewick: "Algorithms," Addison-Wesley, 1988.

203

[Sha87] K.S. Shanmugan, G.J. Minden, E. Komp, T.C Manning, E. R. Wiswell:

"Block-Oriented System Simulator (BOSS)," Telecommunication Lab., Univ.

Kansas, Interal Memo, 1987.

[Sih89] G. Sih, E.A. Lee: "Dynamic-Level Scheduling for Heterogeneous Processor

Networks," IEEE Symposium on Parallel and Distributed Processing,

December 1989.

[Sih90] G. Sih, E.A. Lee: "A Multiprocessor Scheduling Strategy," Electronics

Research Laboratory Internal Report, U.C. Berkeley, 1990.

[Ski88] D. Skillicorn: "A Taxonomy for Computer Architectures," Computer,

November 1988.

[Slu80] R. J. Sluyter, N. J. Kotmans, A. V. Leeuwaarden: "A Novel Method for Pitch

Extraction from Speech and a Hardware Model Applicable to Vocoder

Systems," ICASSP'80, pp. 45-48.

[Sto77] H.S. Stone: "Multiprocessor Scheduling with the Aid of Network Flow

Algorithms," IEEE Transactions on Software Engineering, vol. SE-3, no. 1,

January 1977.

[Sto85] S.J. Stolfo, D. Miranker: "DADO: A Parallel Processor for Expert Systems,"

Advanced Computer Architecture (Agrawal, ed.) IEEE Computer Society

Press, 1985.

[Sun91] J.S. Sun, R.W. Brodersen: "System Module Interface Design in Siera," Internal

Document, U.C. Berkeley, November 1991.

[Tex92] "TMS320C30 C Compiler Manual," Texas Instruments, 1992.

[Thi87] "Connection Machine Model CM-2 Technical Summary," Thinking Machines

Corporation, April, 1987.

204

[U1175] J.D. Ullman: "NP-Complete Scheduling Problem," in Journal of Computer and

System Sciences, vol. 10, 1975, pp. 384-393.

[Wal87] R.A. Walker, D.E. Thomas: "Design Representation and Transformation in the

System Architect's Workbench," ISCAS'87, pp. 166-169.

[Wal89] G. K. Wallace, "Techinal Description of the Proposed JPEG Baseline Standard

for Color Image Compression," El'89, Boston, October, 1989.

[Wan88] E. Wang: "A Compiler for Silage," Master's Thesis, U.C Berkeley, 1988.

[Wat92] G. F. Watson: "Solid State," IEEE Spectrum, January 1992.

[Yu84] W.H. Yu: "LU Decomposition on a Multiprocessing System with

Communication Delay," PhD thesis, U.C.Berkeley, 1984.

[Zis87] M.A. Zissman, G.C. O'Leary: "A Block Diagram Compiler for a Digital Signal

Processing MIMD Computer," ICASSP 1987.

Appendix /V

Flowgraph
Implementation

This appendix describes the implementation of the CDFG flowgraph. The

CDFG is stored in the OCT database [Har86], which has been extended to support a

flowgraph policy. This policy is meant to capture only the structure of the flowgraph,

not its behavior. As such, it describes the only interconnection of nodes and edges.

However, each node has a pointer to where specific information on the behavior of the

node is found. The OCT schematic editor VEM [Har86] can be used to display the

flowgraph schematics. A library of behavioral primitives (addition, multiplication,

delay, decimation, etc.) is provided as a start, and is shown in Table A.l. The user can

easily add his own primitives to the library. By storing only the structure, the same

representation can be used to support a wide number of projects such as HYPER

[Rab91], CADDI [Che92], and Aloha [Sun91]. In addition, an ASCII format flowgraph

description language, supported by a set of C data-structures, is available. This ASCII

flowgraph language (AFL) has a one to one correspondence to the OCT policy, and

serves as an easy readable user-interface into the OCT database. A tool to translate the

AFL format to OCT, and vice-versa, has been developed. Developers not familiar with

OCT can work with the AFL C data-structures, and interface to OCT when needed.

205

206

TABLE A.1: Table of Flowgraph Operators

Description Function Inputs Outputs Arguments

add
u , »>

(Inl In2) (Out) None

subtract
«c j»

(Inl In2) (Out) None

multiply "#>> (Inl In2) (Out) (coef)

divide
«< /»»

(Inl In2) (Out) None

negate u >»

(In) (Out) None

inc "++" (In) (Out) None

dec
U »»

an) (Out) None

shiftjeft "«" (In LShift) (Out) (shift)

shift_right "»" Qn RShift) (Out) (shift)

and "&" (Inl In2) (Out) None

or
««!»»

(Inl In2) (Out) None

exor "A" (Inl In2) (Out) None

inv
tti>>

(In) (Out) None

equal «« »»

(In) (Out) None

cond_eq u _,»>
(Inl In2) (Out) None

cond_ne t«i »»
(Inl In2) (Out) None

cond_g u^yy
(Inl In2) (Out) None

cond_ge *'"^~" (Inl In2) (Out) None

condj t«^«
anl In2) (Out) None

cond_le t*^, »» (Inl In2) (Out) None

bit "bit" (In) (Out) (bit)

bitselect "bitselect" (In) (Out) (bit width)

bitmerge "bitmerge" (Inl In2) (Out) None

read "read" (Index) (Out) (array_name index)

write "write" (In Index) None (array_name index)

mux "mux" (CondInlIn2) (Out) None

207

TABLE A.1: Table of Flowgraph Operators

Description Function Inputs Outputs Arguments

constant "const" None (Out) (value)

cast "cast" (In) (Out) (type)

func "func" (*) (*) (*)

if "if' Cond *) (*) None

else "else" (Cond *) (*) None

iteration "iteration" (*) (*) (index min max step)

do "do" (*) (*) (avg)

exit "exit" (Cond In) None None

nop "nop" (In) (Out) None

delay "<§>" (In delay init) (Out) (delay init)

lpdelay "#" (In delay init) (Out) (delay init)

input "input" None (Out) None

output "output" (In) (Out) None

upsampling "upsample" (In scale phase) (Out) (scale phase)

dnsampling "dnsample" (In scale phase) (Out) (scale phase)

interpolate "interpolate" an scale phase) (Out) (scale phase)

decimate "decimate" (In scale phase) (Out) (scale phase)

timemux "timemux" (*) (Out) (cnt)

timedemux "timedemux" (In phase) (*) (cnt)

A.1 Flowgraph Structure

In this section, we describe the structure of the CDFG. The most interesting

feature is its support for structure hierarchy. The AFL format is described first,

followed by the corresponding representation in OCT.

208

A.1.1 AFL Format

A CDFG is described as a composition of nodes, data edges, and control edges.

Each graph contains the following information:

(graph

(name string)

(class string)

(arguments list)

(attributes list)

(model list)

(in_edges edge-list)

(in_control edge-list)

(out_edges edge-list)

(out_control edge-list)

(nodelist node-definitions)

(edgelist edge-definitions)

(controllist edge-definitions)

)

Each graph has a name. The class of a graph is either "MODULE" or "LEAF"

depending on whether it is composed of still smaller nodes or if it is a leaf-node in the

hierarchy. Arguments of a graph are parameters which influence the behavior of the

graph. An example of arguments of a graph is the default value of the delay in a DELAY

leaf graph. Attributes of a graph, on the other hand, store information which are tool-

specific. An example of an attribute of a graph may be the processor for which this

graph will be executed on. The model field points to the behavioral definition of the

graph. To define an interface to the next hierarchy level, it is necessary to declare the

inedges, incontrol, outedges, and out_control of the graph. Finally, the list of

nodes, data edges, and control edges which belong to the graph are given in nodelist,

edgelist, and controllist.

A node is defined as follows:

209

(node

(name string)

(class string)

(master string)

(arguments list)

(attributes list)

(in_edges edge-list)

(in_control edge-list)

(out_edges edge-list)

(out_control edge-list)

)

Each node is an instance of an operator, which is defined in the master field.

The operator may be primitive, such as add, multiply, etc., or it can be a graph itself, in

which case, the node is called a hierarchical node. Arguments of a node may include

the value for a constant node, the iteration index and bounds for an iteration node, etc.

Attributes of a node may be its level in a level labelling calculation or a computation

time cost, etc. Finally, an edge is defined as follows:

(edge

(name string)

(class string)

(arguments list)

(attributes list)

(in_nodes edge-list)

(out_nodes edge-list)

)

An argument of an edge is its type, which is taken from the Silage data types. It

can either be a boolean, integer, fixed-point, or floating point. An attribute of an edge

may be its register allocation.

There is a great deal of redundancy in the CDFG structure to allow the tools to

traverse the graph in the most efficient way possible.

210

A.1.2 OCT Format

The OCT format has a 1-to-l correspondence with the AFL format described

above. Thus, only a overview will be given here. In essence, a cell, representing a

graph, is composed of cell instances, representing nodes, and nets, representing data

edges. Terminals serve as interfaces between cell instances and nets, and contains a

DIRECTION property. Arguments are stored in the PARAMETERS bag, and attributes

are stored in the ATTRIBUTES bag. The MODEL bag, attached to a cell facet, shows

where to find the behavioral description of the cell. Control precedences are stored in a

PRECEDENCE bag, attached to the cell facet. The relationship is shown in Figure A.1

PRECEDENCES

bag

INSTANCES

bag

PARAMETERS
bag

ATTRIBUTES
bag

instance

master:icon or flowgraph

PARAMETERS
bag

ATTRIBUTES
bag

cell:generic name
view: flowgraph
facet: contents

term

DIRECTION

ProP

FIGURE A.1: OCT Flowgraph Policy

A.2 C Data Structure

CELLCLASS

prop

FORMAL_PARAMETERS

bag

term

DIRECTION

E?£_

MODEL

bag

This section gives the C data structures which support the AFL format.

/*

* Definitions of data structures used to represent flow graphs

*/

/* Generic pointer structure */

typedef char *pointer;

/* Pointer definitions */

typedef struct LIST *ListPointer;

typedef struct NODE *NodePointer;

typedef struct EDGE *EdgePointer;

typedef struct GRAPH *GraphPointer;

/* Generic LIST structure */

typedef enum { IntNode, RealNode, CharNode, ListNode, GraphNode, EdgeNode,

NodeNode, ArrayNode, NullNode }

EntryType;

typedef struct LIST {

char *Label;

EntryType Type;

pointer Entry;

ListPointer Next;

} LIST;

/* Graph describing data structures */

typedef struct GRAPH {

char *Name;

char *Class;

EdgePointer EdgeList;

NodePointer NodeList;

211

212

EdgePointer ControlList;

ListPointer Parents;

ListPointer InEdges;

ListPointer OutEdges;

ListPointer InControl;

ListPointer OutControl;

ListPointer Arguments;

ListPointer Attributes;

ListPointer Model;

GraphPointer Next;

pointer Extension; /* Attach your program structures here */

int Token; /* Bogus field available to the service Programs (for ordering e.g.) */

}GRAPH;

typedef struct NODE {

char *Name;

char *Class;

GraphPointer Master;

ListPointer InEdges;

ListPointer OutEdges;

ListPointer InControl;

ListPointer OutControl;

ListPointer Arguments;

ListPointer Attributes;

NodePointer Next;

pointer Extension; /* Attach your program structures here */

int Token; /* Bogus field available to the service Programs (for ordering e.g.) */

} NODE;

typedef struct EDGE {

char *Name;

char * Class;

ListPointer InNodes;

ListPointer OutNodes;

ListPointer Arguments;

ListPointer Attributes;

EdgePointer Next;

pointer Extension; /* Attach your program structures here */

int Token; /* Bogus field available to the service Programs (for ordering e.g. */

} EDGE;

A.3 A Sample AFL Flowgraph

Given the following Silage program:

#define word fix<16,2>
#define word2 fix<32,4>

func main(A, B : word) K, L: word =
begin

K = joe(A.B);
L=joel(A,B);

end;

func joe(C, D : word) E: word =
begin

E = C + D;
end;

func joel(C, D : word) F: word =
begin

F = C - D;
end;

The corresponding AFL CDFG is given as:

(GRAPH
(NAME main)
(CLASS MODULE)
(MODEL (

(model_class internal)
(model_name func))

)
(NODELIST

(NODE
(NAME n2)
(CLASS Hierarchy)
(MASTER joe)
(ATTRIBUTES

((Silage ("func.sil" 6 15)))
)

213

214

(IN_EDGES (A B))
(OUTJEDGES (K))

)
(NODE

(NAME n3)
(CLASS Hierarchy)
(MASTER joel)
(ATTRIBUTES

((Silage ("func.sil" 7 16)))
)
(IN.EDGES (A B))
(OUT.EDGES (L))

)
(NODE

(NAME n4)
(CLASS data)
(MASTER input)
(OUTJEDGES (A))

)
(NODE

(NAME n5)
(CLASS data)
(MASTER input)
(OUT.EDGES (B))

)
(NODE

(NAME n6)
(CLASS data)
(MASTER output)
(IN.EDGES (K))

)
(NODE

(NAME n7)
(CLASS data)
(MASTER output)
(IN.EDGES (L))

)
)
(EDGELIST

(EDGE
(NAME A)
(CLASS input)
(ARGUMENTS

((type fix<16,2>))
)
(ATTRIBUTES

((Silage ("funcsil" 4 11))(lhs 1))
)
(IN.NODES (n4))
(OUT_NODES (n2 n3))

)
(EDGE

(NAME B)
(CLASS input)
(ARGUMENTS

((type fix<16,2>))
)
(ATTRIBUTES

((Silage ("func.sil" 4 14))(lhs 1))
)
(IN.NODES (n5))
(OUT.NODES (n2 n3))

)
(EDGE

(NAME K)
(CLASS output)
(ARGUMENTS

((type fix<16,2>))
)
(ATTRIBUTES

((Ihs l)(Silage ("func.sil" 4 29)))
)
(IN.NODES (n2))
(OUT.NODES (n6))

)
(EDGE

(NAME L)
(CLASS output)
(ARGUMENTS

((type fix<16,2>))
)
(ATTRIBUTES

((Ihs l)(Silage ("func.sil" 4 32)))
)
(IN.NODES (n3))
(OUT.NODES (n7))

)
)

)
(GRAPH

(NAME joe)
(CLASS MODULE)
(MODEL (

(model.class internal)
(model.name func))

)
(IN.EDGES (C D))
(OUT.EDGES (E))
(NODELIST

(NODE
(NAME nl)
(CLASS data)
(MASTER add)
(ATTRIBUTES

((Silage ("func.sil" 12 17)))
)
(IN.EDGES (C D))
(OUT.EDGES (E))

)
)
(EDGELIST

(EDGE
(NAME C)
(CLASS input)
(ARGUMENTS

((type fix<16,2>))

215

216

)

)
(ATTRIBUTES

((Silage ("func.sil" 10 10))(lhs 1))
)
(IN.NODES (parent))
(OUT.NODES (nl))

)
(EDGE

(NAME D)
(CLASS input)
(ARGUMENTS

((type fix<16,2>))
)
(ATTRIBUTES

((Silage ("func.sil" 10 13))(lhs 1))
)
(IN.NODES (parent))
(OUT.NODES (nl))

)
(EDGE

(NAME E)
(CLASS output)
(ARGUMENTS

((type fix<16,2>))
)
(ATTRIBUTES

((Ihs l)(Silage ("func.sil" 10 28)))
)
(IN.NODES (nl))
(OUT.NODES (parent))

(GRAPH
(NAME joe 1)
(CLASS MODULE)
(MODEL (

(model.class internal)
(model.name func))

•)
(IN.EDGES (C D))
(OUT.EDGES (F))
(NODELIST

(NODE
(NAME nO)
(CLASS data)
(MASTER minus)
(ATTRIBUTES

((Silage ("func.sil" 17 17)))
)
(IN.EDGES (C D))
(OUT.EDGES (F))

)
)
(EDGELIST

(EDGE
(NAME C)

)
)

(CLASS input)
(ARGUMENTS

((type fix<16,2>))
)
(ATTRIBUTES

((Silage ("func.sil" 15 11))(lhs 1))
)
(IN.NODES (parent))
(OUT.NODES (nO))

)
(EDGE

(NAME D)
(CLASS input)
(ARGUMENTS

((typefix<16,2>))
)
(ATTRIBUTES

((Silage ("func.sil" 15 14))(lhs 1))
)
(IN.NODES (parent))
(OUT.NODES (nO))

)
(EDGE

(NAME F)
(CLASS output)
(ARGUMENTS

((type fix<16,2>))
)
(ATTRIBUTES

((Ihs l)(Silage ("func.sil" 15 29)))
)
(IN.NODES (nO))
(OUT.NODES (parent))

)

217

Appendix |<

Silage To Flowgraph
Implementation

This appendix describes the implementation of the basic Silage To CDFG

translator. It is performed in two phases: The first phase is the Silage front end, which

parses the Silage program and builds the necessary data structures for the construction

of a flowgraph. The second phase, the CDFG generator, builds a CDFG flowgraph from

the data structures.

B.l Silage Frontend

The Silage front end is derived from the IMEC Silage simulator. There are nine

phases in the Silage front end. They are listed below in order of execution.

• Parser(): This module uses the Lex (the Unix scanner generator), and YACC (the

Unix LALR parser generator) program to perform the usual lexical and syntactic

analysis on the input Silage program. The output is a syntax tree.

• passl(): This module creates a linked list of function definition templates from the

parse tree.

• pass2(): This module fills in all input, output, and local parameters of each

function.

219

220

• pass3(): This module builds the templates for every statement and iteration block

of each function. It also builds the left hand side (LHS) of each statement.

• pass4(): This module builds the right hand side (RHS) of each statement.

• pass5(): This module orders the function definitions from the lowest level to the

highest level function. The main function is placed last. No recursive definitions

are allowed.

• pass6(): This module topologically orders the statements within each function

definition. Because the range of the array indices has not been analyzed yet, it is

not possible to determine dependencies between statements containing arrays.

Thus, any function that has iterations or arrays are not processed. The user is

expected to have written ordered Silage statements in these cases.

• pass7(): This module evaluates all manifest expressions, including those inside

iterations to determine the range of all array indices and all delay values of

delayed signals. This range is needed for the data dependency analysis of array

signals.

• pass8(): This module performs the type checking of signals. It consists of a type

deduction phase and a type enforcement phase. For each function definition, the

routine traverses the statements from input to output and deduces the type of the

LHS from the types and operations of the RHS. When deduction is not possible,

the type is left as undefined. The type enforcement phase then traverses the

statements from output back to input and enforces the type of the result back on

the inputs. If the type enforced is different than the type deduced, and there is no

cast function, an error is declared. If the deduced type is undefined, the enforced

type is taken. Within this process, all constants are assigned a type suitable for

the operator being applied to it. Functions which were not ordered in pass6() are

also ignored here.

221

Of all the nine phases, the type checking phase of pass 8 is the weakest. It was

removed and reimplemented in the flowgraph generator phase, where the flowgraph

structure allows for a simpler implementation. The Silage front end terminates with a

linked-list of function definitions, where each function itself contains a list of Silage

statements. The functions are sorted with the lowest level functions first, as shown in

Figure B.l. This data structure is sufficient for the synthesis of a CDFG.

"N
llllliliiiilll

/
statement 1

statement 2

•

•

r Function 2 y
1

/
statement 1

statement 2

•

•

Function 1 J

statement 1

statement 2

•

•

FIGURE B.l: Silage Function Definition List

Function Main

statement 1

statement 2

B.2 CDFG Generator

The CDFG generator makes a 1-pass traversal (with back patching) of the

linked-list of function definitions, and constructs a hierarchical flowgraph description

of the Silage program. In the following sections, we will describe the algorithm and the

data structure organizations.

B.2.1 The Algorithm

The CDFG generator is a collection of routines to generate a CDFG from the

Silage Function Definition list. It assumes that the functions are ordered from the

lowest level to the highest level, and that statements inside the function definitions are

ordered according to data dependency. The essence of the program is given in the

following pseudo-code:

ConstructGraph(FunctionList) {

222

For each Function in FunctionList do

ConstructFunction(Function);

Store Function in FunctionTable;

}

ConstructFunction(Function) {

Allocate a new Graph to contain the following Edges and Nodes {
For each Parameter in Function->InputParameters do

Edge = CreateAndRegisterEdge(Parameter);

For each Statement in Function do

ConstructStatement(Statement);

}

}

ConstructStatement(Statement) {

if (Statement->Type == Single)

ConstructSingleStatement(Statement->Single);

if (Statement->Type == Loop)

ConstructIterationStatement(Statement->Loop);

}

ConstructlterationStatement(Loop) {

Node = CreateAndRegisterNodeCTteration");
Allocate a new Graph to contain the following Edges and Nodes {

For each Statement in Loop do

ConstructStatement(Statement);

}

DetermineDependency(Graph);

Node->Subgraph = Graph;

}

ConstructSingleStatement(Single) {

RightEdge = ConstructExpression(Single->RHS);

LeftEdge = ConstructExpression(Single->LHS);

Node = CreateAndRegisterNodeC'Equal");
Connect RightEdge to Node;

Connect Node to LeftEdge;

}

ConstructExpression(Exp) {

switch(Exp->Type) {

}

}

case IDENTIFIER: return(CreateAndRegisterEdge(Exp));

case PLUS: return(ConstructBinaryExp(Exp»;

case FUNC: return(ConstructFuncExp(Exp));

case READ: return(ConstructReadExp(Exp));

223

ConstructBinaryExp(Exp) {

RightEdge = ConstructExpression(Single->RHS);

LeftEdge = ConstructExpression(Single->LHS);

Node = CreateAndRegisterNode(Exp->Type);

OutputEdge = CreateAndRegisterEdge(NewNameO);

Connect RightEdge, LeftEdge to Node;

Connect Node to OutputEdge;

return(OutputEdge);

}

CreateAndRegisterEdge(Name) {

if (Name is registered in EdgeTable) return(EdgeTable[Name]);

Edge = NewEdge(Name);

Store Edge in EdgeTablelNamel;

Store Edge in Graph;

return(Edge);

}

CreateAndRegisterNode(Name) {

Node = NewNode(NewNameO);

Node->Subgraph = LeafGraph[Name];

Store Node in Graph;

return(Node);

}

The key routine is ConstructExpression(), which for a given expression,

creates a node for the operator as well as input and output edges for the operator's

inputs and outputs. The resultant output edges are returned. The routine is implemented

in a recursive way to process arbitrarily complex expressions. As the nodes and edges

224

are generated from the function definitions, the position of the Silage code (line

number, character number, filename) is copied over for error reporting.

Hierarchy Construction

Iterations and Function calls correspond to a change in hierarchy level in a

CDFG. The mechanism for constructing an iteration was discussed above, while

constructing a function call is as follows:

ConstructFuncExp(Func) {

Node = NewNode(NewNameO);

if (Func is not registered in FunctionTable) Error("Function not defined");

Node->Subgraph = FunctionTable[Func];

Build Node->InEdges, Node->OutEdges;

return(Node->OutEdges);

}

While both iteration and function constructs are expressed in the next level

hierarchy by a hierarchical node, the two differ in the following points: First, the

iteration subgraph is generated on the fly as the iteration statement is encountered. The

program temporarily descends one level of hierarchy, builds the subgraph, and returns.

The function call subgraph, on the other hand, has already been generated when the

program encountered the function's definition on the FunctionList. Hence, the linking

of the function call node to its subgraph reduces to a table lookup. Note that it is
•

possible to have many function call nodes pointing to the same subgraph, while there is

a one-to-one correspondence between an iteration node and its subgraph. Secondly, the

function call subgraph shows the exact computation of the function call, while the

iteration subgraph conveys only one iteration of the iteration node. Furthermore,

attached to the iteration node is an attribute stating how the iterations are related to

each other. Iterations are also classified into two types: parallel dependency, where the

iterations are independent of each other, and serial dependency, where the iterations

must be executed serially to ensure correct execution. The dependency in this case can

be between two successive iterations or two iterations that are farther apart. The

225

iteration loop will always be executed in sequence when there is serial dependency,

independent of the scope of the dependency. Finally, there is a formal interface between

a call to a function and the function itself, specifically, the function arguments. These

arguments serve as the inputs to the function, and all signals defined in the function

must derive from them. On the contrary, there is no such interface between an iteration

node and its subgraph. A signal defined inside an iteration, for instance, may use other

signals which were defined previously outside of the iteration. These signals, then, must

be located by the CDFG generator and imported into the iteration subgraph. For nested

iterations, this can mean importing them across many levels of hierarchy. Lastly, the

scope of the signals defined in a called function are disjoint from the scope of the

signals defined in the calling function. Hence, signals with the same name can be

defined. In the iteration case, of course, this would be a violation of the single-

assignment rule, as the scope of the signals inside or outside of the iteration is still the

same. In the next section, we discuss the data structures used by the CDFG generator

which support this detection.

B.2.2 The Data Structure

The CDFG generator uses a number of tables and lists to keep track of the

nodes and edges that are being generated. They are used for error detection and

correction, as well as for cycle generation. The tables and lists, as shown in Figure B.2,

include the EdgeTable, the FunctionList, the CycleEdgeList, and the ManifestEdgeList.

The EdgeTable is an array of hash tables indexed by the level of nested

iterations in the function definition. The EdgeTable is cleared at the beginning of each

new function definition. There is a hash table for each graph or subgraph created, each

storing all the edges that make up the graph. When an iteration is entered, the level is

incremented, and a new hash table is used to store the edges in the new subgraph. When

the CreateAndRegisterEdge() routine is invoked, we first check to see whether the edge

has already existed in the EdgeTable. To perform this check, we hash into the hash

226

EdgeTable: level 3

EdgeTable: level 2 *dge

I Moma I T^ge
EdgeTable: level 1

Name Edge

• •

• •

Function: 1 I—* Function: 2 I—^. Function: 3 I—^- # #

CycleEdge: ll—» CycleEdge: 2|—» CycleEdge: 3|—»~ • •
• • • •

ManifestEdge: 11—» ManifestEdge: 11—» ManifestEdge: 1I—*. • •

FIGURE B.2: Data Structures of CDFG Generator

tables starting at the current level and working backward to level one. If the proposed

edge exists at the current level, we return the edge; if it exists in a previous level, we

instantiate a copy of it at the current level for the current graph, and if it is new, we

create a new edge and install it in the current hash table. In processing the LHS of a

statement, the edge should always be new; otherwise, we have a single assignment

violation. Since the EdgeTable is cleared for each new function definition, it is possible

to use the same name to define two signals in two different functions.

The FunctionList keeps track of all the functions which have been translated so

far. The construction of a function call construct needs to traverse this list to link the

function call node to its subgraph. The CycleEdgeList is used in the construction of

.delay cycles, and the ManifestEdgeList is used to process array signals. These two

cases are discussed in section 4.1.

Appendix f^

Code Generation

Results

This appendix gives the Silage program for the Histogram example, and the

corresponding C program generated by McDAS. The example is scheduled on 4

processors to allow readability without sacrificing generality. The C program is

executable on the Sequent machine and includes code to gather running time statistics.

The code for a real-time implementation would be more basic and compact. Due to

limited space, only the Histogram example is shown. Other examples can be found in

-hyper/mcdas/Demo or -hoang/McDAS/Examples.

227

228

C.l Histogram Silage Code

/* Silage Description for S2C

CALCULATION OF PROBABILITY DENSITY FUNCTION (PDF)
Principle available from Dongping [DON87] and Aubert [AUB85].
Calculates normalized Amplitude Probability Function for intervals of Is of EKG,

i.e. 100 samples. */

#defineWl fix<16,0>
#define W2 fix<8,0>
#define N 128
#define M 32
#define LOGM 5

/* N : number of samples involved
x : input array of EKG samples
immax : intermediate maximum, used for applicative reason
immin : intermediate minimum, used for applicative reason
max : definite maximum amplitude sample of x
min : definite minimum amplitude sample of x
range : width of a single amplitude subclass
limit: upper limit of subclass, limit[0] only used to designate
lower limit of subclass 1
k : loop variable
subclass[k][i] : subclasses, k-index designates the particular subclass

i -index designates version (applicative) contains the number of members of
the subclass

class_of_zero : indicates the class of EKG baseline, intermediate
cz : definite class of EKG baseline
sb : designates startclass of baselinerange
baseline : intermediate value array for calculation of baselinerange
baselinerange : definite number of samples in the 5 subclasses arround the

baselineclass cz in percent of total. */

func main (x : W1[N]) baselinerange: W2 =
begin

/* first part of the description determines max. and min. value of
*the input array of EKG samples */

(k: 1 ..N-l)::
begin

immax##l = x[0];
immin##l = x[0];
immax = if (x[k] >= immax#l) -> x[k] II immax#l fi;
immin = if (immin#l >= x[k]) -> x[k] II immin#l fi;

end;
gmax = immax;
gmin = immin;

/* second part determines the limits of the 32 amplitude subclasses
of the PDF histogram, subclasses are initialized */

range = Wl((gmax-gmin)»LOGM);
limit[0] = gmin;
(k : 1 .. M)::

begin limitfk] = if (k == M) -> gmax II limit[k-l] + range fi;
end;

/* third part: filling in the subclasses */

(i :0.. M-l) ::
begin lower_limit = limit[i];upper_limit = limit[i+l];

(k : 0 .. N-l) ::
begin count##l = W2 (O);count = if (x[k] >= lower_limit & x[k] <

upper_limit) -> count#l + W2 (1)11 count#lfi;
end; subclass[i] = count;

end;

/* fourth part: determination of class of baseline */

(k : 1 .. M-l) ::
begin

class_of_zero##l = W2(0);
class_of_zero = if (limit[k] <= 0) & (limit[k+l] > 0)

-> W2 (k)
II class_of_zero#l
fi;

end;
lb = if class_of_zero >= 2 -> W2(class_of_zero - 2)

II W2(0)
fi;

ub = lb + W2 (4);
(k : 0 .. M-l) ::
begin

br##l = W2(0);
br = if (W2 (k) >= lb & W2 (k) <= ub) -> W2 (br#l + subclass[kl)

II br#lfi;
end;
baselinerange = br;

end;

229

230

C.2 Histogram C Code

/*
* Author : Phu Hoang
* Date : Sun Apr 26 20:30:48 1992
*/

#include <stdio.h>
#include <math.h>
#include <sys/types.h>
#include <sys/times.h>
#include <usclkc.h>
#include <parallel/microtask.h>
#include <parallel/parallel.h>

#ifdef HIGHLEVEL
#include "highlevel.h"
#endif
#ifdef BITTRUE
#include "bittrue.h"
#endif
#ifdef BITFAST
#include "bitfast.h"
#endif

#define at(d, i, m) ((i+d)%m)

FILE *dfd_dump, *dfd_stat[4];

FILE *OpenFile (FileName)
char *FileName;
{

FILE *FD*
FD = fopen (FileName, "r");
if (FD == NULL) {

fprintf(stderr, "Can't open file : %s\n", FileName);
exit (-1);

}
return (FD);

FILE *CreateFile (FileName)
char *FileName;

{
FILE *FD;
FD = fopen (FileName, "w");
if (FD == NULL) {

fprintf(stderr, "Can't open file : %s\n", FileName);
exit (-1);

}
return (FD);

}

/* Declaring Global Buffers */

shared Sig_Type x[2][128];
shared Sig_Type limit[2][33];

shared Sig_Type subclass[2][32];

shared slock_t subclass_31;
shared slock_t subclass_21;

/* Initialize Global Buffers */

void InitPipeLinesO
{

Sig.Type cO;
int i_0, i_l;

Float2Fix (0.0, cO, 16, 0);
for(i_0=0; i_0 < 2; i_0++)

for(i_l=0; i_l < 128; i_l++)
FixAssign (cO, x[i_0][i_l]);

for(i_0=0; i_0 < 2; i_0++)
for(i_l=0; i_l < 33; i_l++)

FixAssign (cO, limit[i_0][i_l]);
for(i_0=0; i_0 < 2; i_0++)

for(i_l=0; i_l < 32; i_l++)
FixAssign (cO, subclass[i_0][i_l]);

}

/* Initialize Semaphores */

void InitSemaphoresO
{

s_init_lock (&subclass_31);
s_lock (&subclass_31);
s_init_lock (&subclass_21);
s_lock (&subclass_21);

}

main ()
{

int i;
charstr[20];
void InitPipeLinesO, InitSemaphoresO, m_fork(), m_kill_procs(), histogram();

/* Creating Display files */
dfd_dump = CreateFile("histogram#0.dmp");
for (i=0; i<4; i++) {

sprintf(str, "histogram#0.stat%d", i);
dfd_stat[i] = CreateFile(str);

}
/* Initialize PipeLines */

InitPipeLinesO;
/* Initialize Semaphores */

InitSemaphoresO;
/* Initialize Statistic clock*/

usclk_init();
/* Reserve Processors */

m_set_procs(4);
/* Fork Processes */

m_fork(histogram);
/* Kill Processes */

m_kill_procs();

231

232

/* Closing Display files */
fclose(dfd_dump);
for (i=0; i<4; i++)

fclose(dfd_stat[i]);
}

void histogram ()
{

int nprocs, proc;
void subgraph_0(), subgraph_l(), subgraph_2(), subgraph_3();

nprocs = m_get_numprocs();
proc = m_get_myid();
printfC'Proc %d active...\n", proc);
fflush(stdout);
switch(proc) {

case 0 : subgraph_0(); break;
case 1 : subgraph.1(); break;
case 2 : subgraph_2(); break;
case 3 : subgraph_3(); break;
default: break;

}
}
>**

* Sub-Program 0
**

/* Declare Buffer indices...*/
int x0_C = 0;
int limitO_C = 0;
int subclassO_C = 0;

/* Delay structure definition goes here...*/

/* Declaring Input and Output File Descriptors */
FILE *fd_x;

/* Declaring FixedPoint Constants as globals */
Sig_Type el7, e23;

V* Initialize the FixedPoint globals */
Initsubgraph_OFixedLeafs ()
{

Float2Fix (0.000000, el7, 8, 0);
Hoat2Fix (1.000000, e23, 8, 0);

}

/* Initializing Delay structure */

ReadArray_x (pin)
Sig_TypepIn[128];
{

int i_0;
for (i_0=0; i_0<128; i_0++)

if (Read.x (&pln[i_0]) < 0)
return(-l);

return(0);
}

Read_x (pin)
Sig_Type *pln;
{

float d;
if (fscanf (fd_x, "%f ", &d) != 1) {

fprintf(stderr, "Reach end of file : filexW);
return (-1);

} else
Float2Fix (d, pln[0], 16, 0);

return(O);
}

void subgraph_0 ()
{

Sig_Type fdum;
int interval;
int CycleCount, MaxCycles;
usclk.t t32;
MaxCycles = 10;
Initsubgraph_OFixedLeafs ();

/* Opening Input files */
fd_x = OpenFile ("filex");
interval = (int)(MaxCycles/5);

/* Simulation for # cycles = MaxCycles */
for (CycleCount = 1; CycleCount < MaxCycles+1; CycleCount++) {

m_sync();
t32 = getusclk();
/* Calling main simulation routine */
Sim_subgraph_0 (x, limit, subclass);
if (-xO_C < 0) xO_C = 1;
if (-limitO_C < 0) limitO_C = 1;
if (-subclassO_C < 0) subclassO_C = 1;
t32 = getusclk() -132;
if (CycleCount%interval == 0) {

fprintf (dfd_stat[0], "Proc0(%d) = %lu usecsAn", CycleCount, t32);
fflush (dfd_stat[0]);

1
}

/* Closing Input files */
fclose (fd_x);
exit(0);

}

Sim_subgraph_0 (x, limit, subclass)
Sig_Typex[2][128];
Sig_Type limit[2][33];
Sig_Type subclass[2][32J;
{

Sig_Type n2_immax[2];
int n2_immax_C;
Sig_Type n3_immin[2];
int n3_immin_C;
Sig_Type n4_count[2];
int n4_count_C;

233

234

Sig_Type cO;

/* Declaring variables to hold temporary edges */
int k, i;
Sig_Type fdum, gmin, gmax, e4, e5, range, immax, immin;

/* statements of function body */
if (ReadArray_x(x[at(0, xO_C, 2)]) < 0)

exit(0);
n2_immax_C = 0;
n3_immin_C = 0;
FixAssign (x[at(0, xO_C, 2)][0], n2_immax[at (1, n2_immax_C, 2)]);
FixAssign (x[at(0, xO_C, 2)][0], n3_immin[at (1, n3_immin_C, 2)]);

for (k = (1); k <= (127); k++) {
/* Declaring variables to hold temporary edges */
int idum, e2, e3;
Sig_Type fdum;

FixGTE (n3_immin[at (1, n3_immin_C, 2)], 16, 0, x[at(0, xO_C, 2)][k], 16, 0,
e3);

if(e3){
FixAssign (x[at(0, x0_C, 2)][k], n3_immin[n3_immin_C]);

}
else {

FixAssign (n3_immin[at (1, n3_immin_C, 2)], n3_immin[n3_immin_C]);

FixGTE (x[at(0, x0_C, 2)][k], 16, 0, n2_immax[at (1, n2_immax_C, 2)], 16, 0,
e2);

if(e2){
FixAssign (x[at(0, x0_C, 2)][k], n2_immax[n2_immax_C]);

else {
FixAssign (n2_immax[at (1, n2_immax_C, 2)], n2_immax[n2_immax_C]);

if (--n2_immax_C<0) n2_immax_C = 1;
if (-n3_immin_C<0) n3_immin_C = 1;

}

n2_immax_C = (n2_immax_C+l)%2;
n3_immin_C = (n3_immin_C+l)%2;

, FixAssign (n3_immin[n3_immin_C], immin);
FixAssign (n2_immax[n2_immax_C], immax);
FixAssign (immax, gmax);
FixAssign (immin, gmin);
FixMinus (gmax, 16, 0, gmin, 16, 0, e4, 16, 0);
FixSR(e4, e5, 16,0, 5);
FixCast (e5, 16, 0, range, 16, 0);
FixAssign (gmin, limit[at(0, limit0_C, 2)][0]);

for(k = (l);k<=(32);k++) {
/* Declaring variables to hold temporary edges */
int idum, e6, e7, e8, e9;
Sig_Type fdum, ell, el2;

e9 = k- 1;
FixPlus (limit[at(0, limit0_C, 2)][e9], 16, 0, range, 16, 0, ell, 16, 0);
e7 = k == 32;
if(e7){

FixAssign (gmax, el2);

}

}
else {

FixAssign (ell, el2);
}

FixAssign (el2, limit[at(0, limitO_C, 2)][k]);
}

for (i = (0); i <= (4); i++) {
/* Declaring variables to hold temporary edges */
int k, el4, el5;
Sig_Type fdum, lower_limit, upper_limit, count;

el5 = i + 1;
FixAssign (limit[at(0, limitO_C, 2)][el5], upperjimit);
FixAssign (limit[at(0, limitO_C, 2)][i], lower_limit);
n4_count_C = 0;
FixAssign (el7, n4_count[at (1, n4_count_C, 2)]);

for (k = (0); k <= (127); k++) {
/* Declaring variables to hold temporary edges */
int idum, e20, e21, e22;
Sig_Type fdum, e25;

FixPlus (n4_count[at (1, n4_count_C, 2)], 8, 0, e23, 8, 0, e25, 8, 0);
FixLT (x[at(0, x0_C, 2)][k], 16, 0, upperjimit, 16, 0, e21);
FixGTE (x[at(0, x0_C, 2)][k], 16, 0, lowerjimit, 16, 0, e20);
e22 = e20&&e21;
if (e22) {

FixAssign (e25, n4_count[n4_count_C]);
}
else {

FixAssign (n4_count[at (1, n4_count_C, 2)], n4_count[n4_count_C]);

if (—n4_count_C<0) n4_count_C = 1;
}

n4_count_C = (n4_count_C+l)%2;
FixAssign (n4_count[n4_count_C], count);
FixAssign (count, subclass[at(0, subclass0_C, 2)][i]);
if (-n4_count_C<0) n4_count_C = 1;

}

n4_count_C = (n4_count_C+l)%2;

/**

* Sub-Program 1

/* Declare Buffer indices ...*/
int limitl_C = 0;
int xl_C = 0;
int subclass 1_C = 0;

/* Delay structure definition goes here...*/

/* Declaring FixedPoint Constants as globals */
Sig_Type e40, e38,e43,e45,el7,e23,e26, e29,e34, e47;

/* Initialize the FixedPoint globals */
InitsubgraphJFixedLeafs ()

235

236

Float2Fix (2.000000, e40, 8, 0)
Float2Fix (2.000000, e38, 8, 0)
Float2Fix (0.000000, e43, 8, 0)
Float2Fix (4.000000, e45, 8, 0)
Float2Fix (0.000000, el7, 8, 0)
Float2Fix (1.000000, e23, 8, 0)
Float2Fix (0.000000, e26, 8, 0)
Float2Fix (0.000000, e29, 16, 0);
Float2Fix (0.000000, e34, 16, 0);
Float2Fix (0.000000, e47, 8, 0);

}

/* Initializing Delay structure */

void subgraphJ ()
{

SigJType fdum;
int interval;
int CycleCount, MaxCycles;
usclkJ t32;
MaxCycles = 10;
InitsubgraphJFixedLeafs ();
interval = (int)(MaxCycles/5);

/* Simulation for # cycles = MaxCycles */
for (CycleCount = 1; CycleCount < MaxCycles+1; CycleCount++) {

m_sync();
t32 = getusclk();
/* Calling main simulation routine */
Sim_subgraph_l (limit, x, subclass);
if (--limitl_C < 0) limitl_C = 1;
if (-xl_C<0)xl_C= 1;
if (-subclass 1_C < 0) subclassl_C = 1;
t32 = getusclk() -132;
if (CycleCount%interval == 0) {

fprintf (dfd_stat[l], "Procl(%d) = %lu usecs.Xn", CycleCount, t32);
fflush(dfd_stat[l]);

}
}

» exit(0);
}

Sim_subgraph_l (limit, x, subclass)
Sig_Typelimit[2][33];
SigJType x[2][128];
SigJType subclass[2][321;
{

Sig_Type n5_count[2];
int n5_count_C;
Sig_Type n6_class_of_zero[2];
int n6_class_of_zero_C;
SigJType n7_br[21;
int n7J>r_C;
SigJType cO;

/* Declaring variables to hold temporary edges */
int i, k, e39;

SigJType fdum, e41, e42, lb, ub, baselinerange, class_of_zero, br;

/* statements of function body */
for (i = (5); i <= (14); i++) {
/* Declaring variables to hold temporary edges */
int k, el4, el5;
SigJType fdum, lowerjimit, upperjimit, count;

el5 = i + 1;
FixAssign (limit[at(l, limitl_C, 2)][el5], upperjimit);
FixAssign (limit[at(l, limitl.C, 2)][i], lowerjimit);
n5_count_C = 0;
FixAssign (el7, n5_count[at (1, n5_count_C, 2)]);

for (k = (0); k <= (127); k++) {
/* Declaring variables to hold temporary edges */
int idum, e20, e21, e22;
SigJType fdum, e25;

FixLT (x[at(l, xl_C, 2)][k], 16, 0, upperjimit, 16, 0, e21);
FixGTE (x[at(l, xl_C, 2)][k], 16, 0, lowerjimit, 16, 0, e20);
e22 = e20&& e21;
FixPlus (n5_count[at (1, n5_count_C, 2)], 8, 0, e23, 8, 0, e25, 8, 0);
if (e22) {

FixAssign (e25, n5_count[n5_count_C]);
}
else {

FixAssign (n5_count[at (1, n5_count_C, 2)], n5_count[n5_count_C]);
1
if (--n5_count_C<0) n5_count_C = 1;

}
n5_count_C = (n5_count_C+l)%2;
FixAssign (n5_count[n5_count_C], count);
FixAssign (count, subclass[at(l, subclassl_C, 2)][il);
if (-n5_count_C<0) n5_count_C = 1;

}
n5_count_C = (n5_count_C+l)%2;
n6_class_of_zero_C = 0;
FixAssign (e26, n6_class_of_zero[at (1, n6_class_of_zero_C, 2)]);

for(k = (l);k<=(31);k++) {
/* Declaring variables to hold temporary edges */
int idum, e30, e31, e32, e35, e36;
SigJType fdum, e37;

e37 = k;
e32 = k+ 1;
FixGT (limit[at(l, limitl.C, 2)][e32], 16, 0, e34, 16, 0, e35);
FixLTE (limit[at(l, limitl_C, 2)][k], 16, 0, e29, 16, 0, e30);
e36 = e30 && e35;
if (e36) {

FixAssign (e37, n6_class_of_zero[n6_class_of_zero_C]);
}
else {

FixAssign (n6_class_of_zero[at (1, n6_class_of_zero_C, 2)],
n6_class_of_zero[n6_class_of_zero_C]);

}
if (—n6_class_of_zero_C<0) n6_class_of_zero_C = 1;

}

237

238

n6_class_of_zero_C = (n6_class_of_zero_C+l)%2;
FixAssign (n6_class_of_zero[n6_class_of_zero_C], class_of_zero);
FixMinus (class_of_zero, 8, 0, e40, 8, 0, e41, 8, 0);
FixCast (e41, 8, 0, e42, 8, 0);
FixGTE (class_of_zero, 8, 0, e38, 8, 0, e39);
if (e39) {

FixAssign (e42, lb);

else {
FixAssign (e43, lb);

}
FixPlus (lb, 8, 0, e45, 8, 0, ub, 8, 0);
sJock(&subclass_31);
sJock(&subclass_21);
n7_br_C = 0;
FixAssign (e47, n7_br[at (1, n7_br_C, 2)]);

for(k = (0);k<=(31);k++) {
/* Declaring variables to hold temporary edges */
int idum, e50, e52, e53;
Sig_Type fdum, e49, e51, e55, e56;

FixPlus (n7_br[at (1, n7_br_C, 2)], 8, 0, subclass[at(l, subclassl_C, 2)][k], 8, 0,
e55, 8, 0);

FixCast (e55, 8, 0, e56, 8, 0);
e51 =k;
FixLTE (e51, 8, 0, ub, 8, 0, e52);
e49 = k;
FixGTE (e49, 8, 0, lb, 8, 0, e50);
e53 = e50 && e52;
if(e53){

FixAssign (e56, n7_br[n7_br_C]);

else {
FixAssign (n7_br[at (1, n7_br_C, 2)], n7_br[n7_br_C]);

}
if (-n7_br_C<0) n7 J>r_C = 1;

}

n7_br_C = (n7_br_C+l)%2;
FixAssign (n7J>r[n7J>r_C], br);

• FixAssign (br, baselinerange);
FixDisplay (dfd_dump, "subgraph_l baselinerange", baselinerange, 8, 0);
fflush (dfd_dump);

#**

* Sub-Program 2
**/

/* Declare Buffer indices...*/
int limit2_C = 0;
int x2_C = 0;
int subclass2_C = 0;

/* Delay structure definition goes here...*/

/* Declaring FixedPoint Constants as globals */
SigJType el7, e23;

/* Initialize the FixedPoint globals */

Initsubgraph_2FixedLeafs ()
{

Float2Fix (0.000000, el7, 8, 0);
Float2Fix (1.000000, e23, 8, 0);

}

/* Initializing Delay structure */

void subgraph_2 ()
{

SigJType fdum;
int interval;
int CycleCount, MaxCycles;
usclkj t32;
MaxCycles =10;
Initsubgraph_2FixedLeafs ();
interval = (int)(MaxCycles/5);

/* Simulation for # cycles = MaxCycles */
for (CycleCount = 1; CycleCount < MaxCycles+1; CycleCount++) {

m_sync();
t32 = getusclkO;

/* Calling main simulation routine */
Sim_subgraph_2 (limit, x, subclass);
if (-limit2_C < 0) limit2_C = 1;
if (-x2_C<0) x2_C= 1;
if (-subclass2_C < 0) subclass2_C = 1;
t32 = getusclkO -132;
if (CycleCount%interval == 0) {

fprintf (dfd_stat[2], "Proc2(%d) = %lu usecs.W, CycleCount, t32);
fflush (dfd_stat[2]);

}
}
exit(0);

}

Sim_subgraph_2 (limit, x, subclass)
SigJType limit[2][33];
Sig_Typex[2][128];
Sig_Type subclass[2][32];
{

SigJType n8_count[2];
int n8_count_C;
SigJType cO;

/* Declaring variables to hold temporary edges */
int i;
SigJType fdum;

/* statements of function body */
for (i = (15); i <= (24); i++) {
/* Declaring variables to hold temporary edges */
int k, el4, el5;
SigJType fdum, lowerjimit, upperjimit, count;

el5 = i+ 1;
FixAssign (limit[at(l, limit2_C, 2)][el5], upperjimit);
FixAssign (limit[at(l, limit2_C, 2)][i], lowerjimit);
n8_count_C = 0;

239

240

}

FixAssign (el7, n8_count[at (1, n8_count_C, 2)]);

for (k = (0); k <= (127); k++) {
/* Declaring variables to hold temporary edges */
int idum, e20, e21, e22;
SigJType fdum, e25;

FixPlus (n8_count[at (1, n8_count_C, 2)], 8, 0, e23, 8, 0, e25, 8, 0);
FixLT (x[at(l, x2_C, 2)][k], 16, 0, upperjimit, 16, 0, e21);
FixGTE (x[at(l, x2_C, 2)][k], 16, 0, lowerjimit, 16, 0, e20);
e22 = e20&&e21;
if (e22) {

FixAssign (e25, n8_count[n8_count_C]);
}
else {

FixAssign (n8_count[at (1, n8_count_C, 2)], n8_count[n8_count_C]);
}
if (--n8_count_C<0) n8_count_C =1;

}

n8_count_C = (n8_count_C+l)%2;
FixAssign (n8_count[n8_count_C], count);
FixAssign (count, subclass[at(l, subclass2_C, 2)][i]);
if (-n8_count_C<0) n8_count_C = 1;

n8_count_C = (n8_count_C+l)%2;
s_unlock(&subclass_21);

}
/**

* Sub-Program 3
**i

/* Declare Buffer indices...*/
int limit3_C = 0;
int x3_C = 0;
int subclass3_C = 0;

/* Delay structure definition goes here...*/

/* Declaring FixedPoint Constants as globals */
SigJType el7, e23;

»

/* Initialize the FixedPoint globals */
Initsubgraph_3FixedLeafs ()

Float2Fix (0.000000, el7, 8, 0);
Float2Fix (1.000000, e23, 8, 0);

}

/* Initializing Delay structure */

void subgraph_3 ()
{

SigJType fdum;
int interval;
int CycleCount, MaxCycles;
usclkj t32;
MaxCycles = 10;
Initsubgraph_3FixedLeafs ();

}

interval = (int)(MaxCycles/5);

/* Simulation for # cycles = MaxCycles */
for (CycleCount = 1; CycleCount < MaxCycles+1; CycleCount++) {

m_sync();
t32 = getusclkO;
/* Calling main simulation routine */
Sim_subgraph_3 (limit, x, subclass);
if (-limit3_C < 0) limit3_C = 1;
if (-x3_C<0) x3_C= 1;
if (-subclass3_C < 0) subclass3_C = 1;
t32 = getusclkO -132;
if (CycleCount%interval == 0) {

fprintf (dfd_stat[3], "Proc3(%d) = %lu usecs.Xn", CycleCount, t32);
fflush (dfd_stat[3]);

}
}
exit(0);

Sim_subgraph_3 (limit, x, subclass)
Sig_Typelimit[2][33];
SigJType x[2][128];
Sig_Type subclass[2][32];
{

Sig_Type n9_count[2];
int n9_count_C;
Sig_Type cO;

/* Declaring variables to hold temporary edges */
int i;
SigJType fdum;

/* statements of function body */
for (i = (25); i <= (31); i++) {
/* Declaring variables to hold temporary edges */
int k, el4, el5;
SigJType fdum, lowerjimit, upperjimit, count;

el5 = i + 1;
FixAssign (limit[at(l, limit3_C, 2)][el5], upperjimit);
FixAssign (limit[at(l, limit3_C, 2)][i], lowerjimit);
n9_count_C = 0;
FixAssign (el7, n9_count[at (1, n9_count_C, 2)]);

for(k = (0);k<=(127);k++) {
/* Declaring variables to hold temporary edges */
int idum, e20, e21,e22;
SigJType fdum, e25;

FixLT (x[at(l, x3_C, 2)][k], 16, 0, upperjimit, 16, 0, e21);
FixGTE (x[at(l, x3_C, 2)][k], 16, 0, lowerjimit, 16, 0, e20);
e22 = e20&&e21;
FixPlus (n9_count[at (1, n9_count_C, 2)], 8, 0, e23, 8, 0, e25, 8, 0);
if (e22) {

FixAssign (e25, n9_count[n9_count_C]);

else {
FixAssign (n9_count[at (1, n9_count_C, 2)], n9_count[n9_count_C]);

241

242

if (-n9_count_C<0) n9_count_C = 1;
}

n9_count_C = (n9_count_C+l)%2;
FixAssign (n9_count[n9_count_C], count);
FixAssign (count, subclass[at(l, subclass3_C, 2)][i]);
if (-n9_count_C<0) n9_count_C = 1;

n9_count_C = (n9_count_C+l)%2;
s_unlock(&subclass_31);

}

Appendix Tj

McDAS User's

Manual

This appendix contains information on how to use the tools in McDAS.

Specifically, manual pages are given for the McDAS compilation manager, the Silage to

CDFG translator, the scheduler, and the code generator.

243

244

D.l McDAS Compilation Manager

NAME

Mcdas —McDAS compilation manager

SYNOPSIS

Mcdas [-aV] [FlowGraph]

DESCRIPTION

Mcdas is a graphical,X-window based user interfaceto the McDAS system.It managesthe overall
scheduling andcompilation process, keepstrack ofdatabase versioning, showsthedifferent options
availableto the userat any point in timeanddisplaysthescheduling and codegenerationresults us
ing textual and graphical feedback.

The Mcdas windowconsists of differentfields,being a data entry area, a scrollbararea, a message
display window, an informationwindowand a menuarea. The functionality of those different win
dow areas will now be discussed on a one by one basis.

Data Entry Window: Allows for the setting of a number of compilation parameters, such
as the design name, the machine, and the architecture topology. A fourth field, called Ver
sion, displays the current version of the flowgraph database. This database is createdby
parsing the silage file. Each schedulingoperationcreates a new version of the database. The
designer can always go back to previous points in the design process by overwriting the
version number.

Scroll Bar Window: The ProcessorScrollBar is used to set the number of availablepro
cessors in the target architecture. The Model Scroll Bar dictates how far to model the inter
processor communication. The scheduler uses this measure to trade-off computational
time versus solution quality.

Message Window: Displays tool status and error messages.

Information Window: Textual feedback from tools(results, flowgraphs, etc) is displayed
in this window. It mustbe mentioned thatsometoolswillutilizepop-upwindowsto display
results in a graphical way.

Menu Window: Contains a number ofcommand buttons, which enable the user to interact
with McDAS,guide the synthesisprocessand displayresults.The commandscan be divid
ed in twoclasses: the genericcommands and thecompilation specificcommands.The cur
rently available commands will now be discussed in detail.

Generic Commands

Machine: Select an underlying processortechnology. One of three processorscan be se
lected: Sequent or SMART or Ideal - Sequent is the default machine. Using the Sequent
machine will result in an implementationfor the Sequent machine. That is the computation
time costs used by the scheduler will be those that were benchmarked from the Intel 386,
the core processor of the Sequent machine. In addition, the C code generated will contain
Sequent-specific routines. Similarly, using the SMART machine will use estimates from
the AT&T DSP32C, the core processor of the SMART machine. Using the Ideal machine
assumes there is no cost in I/O, function calls, and loop test and increment

Topology : Select an interconnectstructure for the architecture. One of three configura
tions can currently be selected:Shared Bus or Linear Arrayor Configurable - Shared Bus
is the default topology. Using theSharedBus topologywill specify that the core processors
are connected by a single shared bus. Using the Linear Array topology assumes that the
core processors are connected in a ring architecture. Finally, in the configurable topology,
it is assumed that we have a single sharedbus whichcan be configuredby the scheduler.

245

This is the configurable bus which is available in the SMART architecture.

View Silage : displays the original Silage description in the information window.

View Flowgraph: the current version of the flowgraph database is shown in the informa
tion window (using the AFL - ascii flowgraph language- fomat).

View History: displays a history of how each version of the flowgraph is generated, giv
ing the Machine, the Topology, and the processor count

View PartitionStat: displays the schedulingresults of the current version showing the
number of available processors, the stagetime, the speedup, the processor assignment, the
buffer memory usage, and the communications incurred.

View GanttChart: displays the scheduling results in the form of a Gantt chart

View PartitionLog: shows a log of the entire scheduling of the flowgraph. Often used for
debugging purposes.

View OutputResult: shows the outputof the applicationaftex execution on the targetar
chitecture.

Compilation Commands

FlowGen: This is normally thefirst step in the compilationprocedure.The SILAGEinput
description is read and parsed into a Control/Data Flow Graph (CDFG). The CDFG is au
tomatically displayed on the Information window.

Schedule: schedule the current vesrion of the flowgraph database. The architecture is de
rived from the Machine, Topology, and Processorsmenus and scroll bar. The scheduling
statistics is automaticallydisplayed on the Information window.

CodeGen : generate C codefor thecurrent scheduled version of the flowgraph database.
The implementation is targetted for the architecture as described from the Machine and
Processors fields. The resultant code is automatically displayed on the Information win
dow. Currently,only the SequentMachineis supported.

Execute : compile and execute the C code for the current version of the flowgraph data
base. The resultantoutput is automatically displayedon the Information window.

OPTIONS

-a

Use the ascii-daiabase format. Default is the Oct database.

-V Set the current database version. Default is die Oth version.

AUTHORS

Phu Hoang
University of California, Berkeley
hoang@zabriskie.Berkeley.EDU

BUGS

Only the Sequentmachine is currently supported forcodegeneration and execution.

246

D.2 Silage To Flowgraph TVansIator

NAME

Sil2Flow- Silageto OCT Flowgraph Translator

SYNOPSIS

SiI2Flow [-a] [-dl [-f] [-H] [-M] [-m] filename

DESCRIPTION

Sil2Flow generates a hierarchical flowgraph from a program writtenin Silage. The name of the Si
lage file should befilename.sil.

Silage is asignal-flow language developed especially for specifying Digital Signal Processing algo
rithms. Each signal in Silage is actually a stream of samples. A special operator @ is used to refer
to thevalueofasignal someiteration earlier. Silage supports boolean, integer, fixedpoint,andfloat
ingpointdata types. Interpolation and decimation of sample rates are supported. Silage follows the
single-assignment rule, which guarantees that nosignal is everdefined twice. This property makes
it translatable uniquelyinto a flowgraph representation.

The flowgraph is described asacomposition of nodes, data edges, andcontrol edges. Nodesrepre
sent computations, data edges represent the flow of data betweencomputations, andcontrol edges
are usedto force dependency constraints between nodes thatdon't communicate data. The graph is
hierarchical in that a nodemay also represent an instance of a complete graph. The flowgraph is
stored in the OCT database, to which all tools interact.

An ASCII format flowgraph description language (AFL), which hasa 1 to 1 correspondence to the
OCT policy, serves asan easy readable user-interface intotheOCTdatabase. Sil2Flow generates
anOCT flowgraph asa default, butcan generate anAFL flowgraph upon request.

The Silage To Flowgraph translator maps the Silage program to a flowgraph with essentially the
samehierarchical structure. A function call inSilage isrepresented asafunc nodewhichhasa point
er to a subgraph representing die function body. Similarly, an iteration is Silageis represented as
anIternodewitha pointer to a subgraph representing the loop body.

Sil2Flow iscurrently used by theHYPER high level synthesis system, and theMcDAS multiproces
sorcompiler system. A number of transformations are done after the basic Silage to Flowgraph
translation. The -Hoption performs transformations for HYPER. The -M option performs transfor
mations for McDAS.

OPTIONS
*

-a

Generate a textfileof the flowgraph in the AFL format. The nameof the file will bcfile-
namcafl. This flag alsodisables the generation of the OCT flowgraph.

-d Debug mode forthe frontend of Silage2Flow. Print a textfileto stdoutthe Silage program
with data types of all signals.

-f Force the creation of subgraphs for primitive nodes, not just hierarchical nodes.

-H Performsa numberof transformations to transform certain operations into more primitive
operations for HYPER. Some transformations includeexpandingmultiplication into adds
and shifts,addoperations to perform tests for exitingloops,etc.

-M Performs anumber of transformations for McDAS suchasmanifestexpression evaluation,
common subexpression, dead code elimination.

-m Sil2Flow automatically translates a multirate application intoanequivalent single-rate ap
plication by clustering operations withthesamerate into one process. Each process is then
invoked a number of times corresponding to its rate. The -m flag disables this automatic

translation to allow the user to see the most basic translation.

AUTHORS

Phu Hoang
University of California, Berkeley
hoang@zion.Berkeley.EDU

BUGS

247

Sil2Flow doesnotcoverthecomplete scope of theSILAGE language yet A precise definition of the
scope of Sil2Flow is described in Sil2Flow (5).

248

D.3 Scheduler for Sequent

NAME

ParSequent- McDAS scheduler for the Sequent multiprocessor

SYNOPSIS

ParSequent [-aLfptibec] [FlowGraph]

DESCRIPTION

ParSequent is a version of the McDAS scheduler targeted at the Sequent machine.The customiza
tionis doneby compiling theprogram withaheader fileappropriate for theSequent. The remaining
text describes the generic scheduler.

The McDAS scheduler takes a flowgraph in the OCT or AFL format, a multiprocessor architecture
description, and generates a schedule for implementing the flowgraph on the targetmachine. The
goal of the scheduler is to maximize the throughput of the resultant implementation given a target
architecture. This is achievedby simultaneously performing pipelining, retiming,and parallel exe
cution. Communication overheadis considered make the schedulingmore accurate.

The flowgraph is described as a composition of nodes,data edges,andcontroledges. Nodes repre
sent computations, data edges represent the flow of data between computations, and control edges
areused to force dependency constraints betweennodesthatdon't communicate data. The graph is
hierarchical in thata node may alsorepresent an instance of a complete graph.

The architecture description includes the characterization of the computation and communication
costs of the architecture (implemented as a C header file), the numberof available processors, and
the processor interconnection. All threecomponentscan be selected independently in the Mcdas
compilation manager.

The scheduler tries to minimize the time allocated to a pipeline stage to maximize the throughput
This is donein aniterative manner. At theendof thescheduling, the schedule isannotated backonto
the flowgraph, assigning to every node a processor, a pipeline stage, and an execution order. The
scheduling statistics isalsodisplayed ontheusershowing theprocessor assignments andutilization,
the final speedup, thememory usage, and thecommunication costs. The scheduler also generates a
schedule file which can be displayed graphically in the form of aGantt chart (seeMcDAS compila
tion manager).

OPTIONS

-a

Use the ascii-database format. Default is the Oct database.

-L Keepsa logof the scheduling results inalliterations. The information is stored in Design.-
log.

-f Force thecreation of subgraphs for primitive nodes, notjusthierarchical nodes. Usedwith
the -a option.

-p[n] Give the number of processorsavailable. The default number is 8.

-t[n] Give the amountof time available in a pipeline stage. This is used if a desired throughput
rateis known, and the goalis to minimize the numberofrequired processors. The available
time is the inverse of the desired throughput rate. The default value is 0.

-i[n] Give the numberof iterations to attemptscheduling. The defaultnumberis SO.

-b[n] Give thebusconfiguration ofthearchitecture. A valueof0 gives a shared bus architecture.
A1 givesa ring(or linear array) architecture, anda2 givesaconfigurable bus architecture.

-e[n] Give theeffort to model the interprocessor communication. The range is from 1 to 3, with

249

3 being the highest effort The higher the effort, the more detail the data transfer is mod
elled. At a low effort manydata transfersare grouped into 1 block. At a high effort, each
data transferis individually considered. Thisallows theuser to trade-offthe accuracyof the

scheduler and its scheduling time.

-c Dumps a flowgraph with the computation costs annotated.

AUTHORS

BUGS

Phu Hoang
University of California, Berkeley
hoang@zabriskie.Berkeley.EDU

250

D.4 Scheduler for SMART

NAME

ParSmart~ McDAS scheduler for the SMART multiprocessor

SYNOPSIS

ParSmart [-aLfptibec] [FlowGraph]

DESCRIPTION

ParSmart is a version of the McDAS schedulertargeted at the SMART machine.The customization
is done by compiling the program with a header file appropriate for SMART. The remaining text
describes the generic scheduler.

The McDAS scheduler takes a flowgraph in the OCT or AFL format, a multiprocessor architecture
description, and generates a schedule for implementing the flowgraph on the target machine. The
goalof the scheduleris to maximize the throughput of the resultant implementationgiven a target
architecture. This is achievedby simultaneously performing pipelining, retiming, and parallel exe
cution. Communication overhead is considered make the scheduling more accurate.

The flowgraph is described as a compositionof nodes,data edges, andcontroledges. Nodes repre
sent computations, data edges represent the flow of data between computations, and control edges
are used to force dependency constraintsbetween nodes that don't communicate data. The graph is
hierarchical in that a node may also represent an instance of a complete graph.

The architecturedescription includes the characterization of the computation and communication
costs of the architecture(implemented as a C header file), die number of available processors,and
the processor interconnection. All three components can be selected independently in the Mcdas
compilation manager.

The scheduler tries to minimize the time allocated to a pipeline stage to maximize the throughput
This is done in aniterativemanner. At theend of the scheduling, the scheduleis annotated back onto
the flowgraph, assigning to every node a processor, a pipeline stage, and an execution order.The
scheduling statistics is also displayed on the usershowing the processorassignments and utilization,
the final speedup, the memory usage,and the communication costs. The scheduler also generatesa
schedule file whichcanbe displayed graphically in the form of aGanttchart(see McDAS compila
tion manager).

OPTIONS

-a
*

Use the ascii-database format. Default is the Oct database.

-L Keeps a log of the scheduling results in all iterations. The information is stored in Design.-
log.

-f Forcethe creationof subgraphs for primitive nodes,not just hierarchical nodes. Used with
the -a option.

-p[n] Give the number of processors available. The default number is 8.

-t[n] Give the amount of time available in a pipeline stage. This is used if a desired throughput
rate is known, and the goal is to minimize the numberofrequiredprocessors. The available
time is the inverse of the desired throughputrate. The default value is 0.

-i[n] Give the number of iterationsto attempt scheduling. The default number is 50.

-b[n] Give the bus configuration ofthearchitecture. A valueof0 gives a shared bus architecture.
A1 gives a ring (or lineararray)architecture, and a 2 gives a configurable bus architecture.

-e[n] Give the effort to model the interprocessor communication. The range is from 1 to 3, with

251

3 being the highest effort. The higher the effort, the more detail the data transfer is mod
elled. At a low effort manydata transfersare grouped into 1block. At a high effort, each
data transfer is individuallyconsidered.This allows die user to trade-off the accuracy of the
scheduler and its scheduling time.

-c Dumps a flowgraph with the computation costs annotated.

AUTHORS

BUGS

Phu Hoang
University of California, Berkeley
hoang@zabriskie.Berkeley.EDU

252

D.5 Scheduler for Ideal Multiprocessor

NAME

Parldeal —McDAS scheduler for an ideal multiprocessor

SYNOPSIS

Parldeal [-aLfptibec] [FlowGraph]

DESCRIPTION

Parldeal is a versionof the McDAS scheduler targeted atan idealmultiprocessor machine.The cus
tomization is done by compiling the program with a header file appropriate for the machine. The
machine is ideal in the sense that it assumes zero overheadin function calls, loop test and increment
and I/O. The remainingtext describes the generic scheduler.

The McDAS schedulertakes a flowgraph in the OCT or AFL format, a multiprocessorarchitecture
description, and generatesa schedule for implementing the flowgraph on the target machine. The
goal of the scheduler is to maximize the throughput of the resultant implementation given a target
architecture. This is achievedby simultaneously performing pipelining, retiming, and parallel exe
cution. Communication overhead is considered makethe scheduling moreaccurate.

The flowgraph is described asacomposition of nodes, data edges, andcontrol edges. Nodes repre
sent computations, data edges represent the flow of data between computations, and controledges
areused to force dependencyconstraints betweennodes thatdon't communicatedata. The graph is
hierarchical in thata node may alsorepresent an instance of a complete graph.

The architecture description includes the characterization of the computation and communication
costs of the architecture (implementedas a C header file), the numberof available processors, and
the processor interconnection. All three components can be selected independendy in the Mcdas
compilation manager.

The scheduler tries to minimize the time allocated to a pipeline stageto maximize the throughput
This isdone in an iterativemanner. At theendof thescheduling, me scheduleis annotated backonto
the flowgraph, assigning to every node a processor, a pipeline stage, and an execution order. The
scheduling statistics isalsodisplayed ontheuser showing theprocessor assignments andutilization,
the final speedup, thememory usage, and thecommunication costs. The scheduler also generates a
schedule filewhichcanbe displayed graphically in the form of aGantt chart (seeMcDAS compila
tion manager).

OPTIONS
»

-a

Use the ascii-database format. Default is the Oct database.

-L Keepsa logof thescheduling results inalliterations. The information is stored inDesign.-
log.

-f Force thecreation of subgraphs forprimitive nodes, notjust hierarchical nodes. Used with
the -a option.

-p[n] Give the number of processorsavailable. The default number is 8.

-t[n] Give the amountof time available in a pipelinestage. This is used if a desiredthroughput
rateis known, and the goalis to minimize the numberof required processors. The available
time is the inverseof the desired throughput rate. The default valueis 0.

-i[n] Give die numberof iterations to attempt scheduling. The defaultnumberis 50.

-b[n] Give thebusconfiguration of thearchitecture. A valueof0 gives a shared bus architecture.
A 1 gives a ring (or lineararray) architecture, and a 2 gives a configurablebus architecture.

253

-e[n] Give theeffort to model theinterprocessor communication. The rangeis from 1 to 3, with
3 being the highesteffort The higher die effort, die more detail the data transfer is mod
elled. Ata loweffort many datatransfers aregrouped into 1block. Ata higheffort, each
datatransfer is individually considered. Thisallows theuserto trade-off theaccuracy of the
scheduler and its scheduling time.

-c Dumps a flowgraph with the computation costs annotated.

AUTHORS

BUGS

Phu Hoang
Universityof California, Berkeley
hoang@zabriskie.Berkeley.EDU

254

D.6 Code Generator for Sequent

NAME

How2SeqC - OCTFlowgraph To C forSequent Machine

SYNOPSIS

Flow2SeqC [-a] [-v] [-f] [-1] [-dl input

DESCRIPTION

Flow2SeqC takes a scheduled flowgraph in the OCT orAFL format, and generates C code toim
plement the behavior ofthe flowgraph. The Ccode contains library routines which implements mul
tiprocessing on the Sequentmultiprocessor machine.

The flowgraph isdescribed asacomposition ofnodes, data edges, and control edges. Nodes repre
sent computations, data edges represent the flow ofdata between computations, and control edges
are used toforce dependency constraints between nodes that don'tcommunicate data. The graph is
hierarchical inthat a node may also represent an instance ofa complete graph.

Ascheduled flowgraph isone which isannotated with amultiprocessor schedule. Specifically, each
node in the top level of hierarchy of the flowgraph isassigned a processor, an execution order, and
apipeline stage. Flow2SeqC partitions the flowgraph into subgraphs based on the processor assign
mentand the nodes inthe subgraphs are then ordered according tothe schedule. Ccode isgenerated
for each subgraph and assigned tothe correponding processor. Aprocess forking mechanism isused
to initiate multiprocessing. From that point on, each processor enters an infinite loop, executing its
code once for each data sample. The processors globally synchronize at the beginning ofeach sam
ple.

Interprocessor communication isachieved through shared memory inthe Sequent. AFIFO mecha
nism is used tosupport thecommunication between processors. The size of the FIFO iscalculated
from the pipeline stage assignment of the source and destination processors, guaranteeing that no
data can becorrupted during execution. The FIFOs are automatically generated and managed by the
Ccode.

Acommand file input.com should bepresent atcompiled time totell the compiler where tofind the
input signal samples, and how many iterations to simulate. Flow2C generates the Cfile inputx and
a makefile tocompile the inputx program to simulate in either fixed point or floating point arith
metic. This isdone by entering: make high for floating point, ormake bitfor fixed point. These
commands generate executables inputH and inputB that perform the actual simulation. The files

, storing theinputsamples should bepresent at simulation time.

The results ofthe simulation are stored in a file called input.time. This file uses the xgraph-format
(cfr (OCT) xgraph). Anumber ofstatistics file are also generated which measure the running time
ofeach processor. These can beused tovalidate the accuracy of the estimations done inthe sched
uler.

OPTIONS

-v

Reads the flowgraph in the AFL format.

Verbose mode used with -a option. Check and print to stdout the various steps inreading
the flowgraph from the AFL file.

-f Force the creation ofsubgraphs for primitive nodes, not justhierarchical nodes. Used with
the -a option.

-1 Minimize the number oflocal variables used inthe Cprogram,
-d Prints the generated code tostandard outinstead of toinputx

AUTHORS

BUGS

Phu Hoang
University ofCalifornia, Berkeley
hoang@zion.Berkeley.EDU

255

256

D.7 Silage Syntax

NAME

Silage - Silage syntax and Flowgraph structure

DESCRIPTION

Silageis a signal-flow language developed especially forspecifying DigitalSignalProcessing algo
rithms.Each signal in Silage is actuallya streamof samples. A specialoperator '@*is used to refer
to thevalueof a signalsomeiteration earlier. Silagesupports boolean, integer, fixedpoint,andfloat
ing point data types. Silagefollows the single-assignment rule, which guarantees that no signal is
ever defined twice. This property makesit translatable uniquely into a flowgraph representation.

The flowgraph is describedas a composition of nodes,data edges, and control edges. Nodes repre
sent computations,data edges represent the flow of data betweencomputations, and control edges
are used to force dependencyconstraintsbetween nodesthat don't communicatedata.The graph is
hierarchical in that a node mayalsorepresent an instance of a complete graph. The flowgraph is
stored in the OCT database, to which all HYPER tools interact.

The SilageTo Flowgraph translator maps the Silage program to a flowgraph with essentially the
samehierarchical structure. Afunction callinSilage isrepresented asafunc nodewhich hasa point
er to a subgraph representing the function body. Similarly, an iteration is Silage is representedas
an Iternode witha pointer to a subgraph representing the loop body.

An ASCIIformatflowgraph description language (AFL), which hasa 1 to 1 correspondence to the
OCTpolicy, servesas an easy readable user-interface into the OCTdatabase. Sil2Flow generates
an OCT flowgraph as a default, but can generate an AFLflowgraph uponrequest.

SYNTAX SUMMARY

The Silage language used in Sil2Flow is basedon the Silage to C (S2C) compilerwritten by Chris
Scheers [1], extended to include indefinite iterations, loopdelays, and improved specification of
multirate signals. Onlytheadded features available in Sil2Flow willbe described here. The syntax
for these constructs aredefined, andsome examples illustrated. Thereader isencouraged torefer to
[1]for thebasicSilage description and[2] for thebasic OCTflowgraph policy.

Loop Delay: In Silage,in order to accumulate or finda maximum of a sequence of signals,an itera
tion construct is used to run across the length of the sequence, as in:

sum[01 = 0;

(i:l..N)::

sum[i] = sum[i-l] + valuefi];

Becausea statementlike "sum= sum + value[i]" does not obey the singleassignment rule, the op
erations above had to be expressed using an array, as "sum[i] = sum[i-l] + value[i]". This notation
canbe misleading, foranarrayis notwhatis wanted here. Theproblem canbe solvedby introducing
another notation for loop local variables whichallows the valueof a local variableat a previous it
eration to be accessed. We thereby introduce the loop delay operator:

sum#n

which means "the value of sum, n iterationsago". The indexn must be manifest and smaller than
the maximum value of the loopcounter. Loop delayscan be initializedin the same way timingde
lays are initialized,but using '##' insteadof '@@\ Theaccumulation abovecan now be expressed
elegandy as:

sum##l = 0;

257

(i:l..N)::

sum = sum#l + valuefi];

Only the final valueof sum is available at theendof the loop.

Infinite Iterations: The iteration construct is used to repeat some computation a fixed numberof
times. However, in certain applications, it is desirable to repeat the computation untila certain con
dition is met,whichdepends ondiedata being computed. In [1], theauthor allowed forprocedurally
executableSilage to handlethis case,usinga while-do construct In orderto maintain the data flow
semantic, Sil2Flow is replacingthis with a do-exit construct defined in BNF form as follows:

<indefinite iterations:= 'do' { <definition> ';' }+

<exitclause>';'

'od* ';'

<exitclause>::= <expr> '=' 'exit' <if_body>

'tixe'

<if_body>::= <expr> '->' <epxr>

I <expr> '->' <expr>'II' <expr>

I <expr> '->' <expr>'II' <if_body>

In a do-exit construct, we treatthecomputation asbeingin its own indefinite loop, which ends when
the exit condition is met. The signals declared to be exited is then exportedback to the main indef
inite loop as output signals of the indefinite iteration. An example Silage program using a do-exit
construct is:

func main (In: fix<12,5>) Out: fix<12,5> =

begin

do

od;

end;

i@@l=0;

i = i@l + l;

m = exit i > In -> i II -1;

Multirate functions: Sil2Flow will support 6 multirate functions: Upsampling, Downsampling, in
terpolation, decimation, time-multiplexing, and time-demultiplexing. Forrelease 1.0,only the first
4 are supported. The syntax in BNF form is as follows:

<resample_stmt>::= <name> '=' <resample_funo '('

<name> ',' <scale> 7 <phase> ')'

<resample_func>::= 'Upsample'

I 'Downsample'

I 'Interpolate*

I 'Decimate'

258

<scale>::= <integer>
<phase>::= <integer>

scale andphaseare integralvaluesrepresenting the factor to resampleby and whichsample to start
with,respectively. Thephasevalueis alwayswithrespectto the higherrate signal. Asan example:

x = Downsample(y, 2,1);

meansthat the signaly is to be resampled witha lowersamplerate. The rate is decreased by 2, and
the resamplingstarts with sample y[l] insteadof y[0]. The resultant signal is called x. For more
information on these operations, see[3].

REFERENCES

[1] Scheers, C, "UserManual for theS2CSilage toC Compiler," IMEC Laboratory, Belgium, Au
gust 1988.

[2] Rabaey, J., andP. Hoang, "OCT Flowgraph Policy," U.CBerkeley Internal Document Septem
ber, 1989.

[3] Jacobs, G., "Multirate Digital Signal Processing," European Development Center,November,
1990.

AUTHORS

Phu Hoang
Universityof California,Berkeley
hoang@zion.Berkeley.EDU

	ERL-92-68 (1 of 3)
	ERL-92-68 (2 of 3)
	ERL-92-68 (3 of 3)

