
Copyright © 1992, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



FEEDBACK STABILIZATION: NONLINEAR

SOLUTIONS TO INHERENTLY NONLINEAR

PROBLEMS

by

Andrew Richard Teel

Memorandum No. UCB/ERL M92/65

12 June 1992



FEEDBACK STABILIZATION: NONLINEAR

SOLUTIONS TO INHERENTLY NONLINEAR

PROBLEMS

by

Andrew Richard Teel

Memorandum No. UCB/ERL M92/65

12 June 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



This work is supported in part by the Army Research Office under grants DAAL-88-K-
0106 and DAAL-91-G-0191 and the National Aeronautics and Space Administration
under grant NAG2-243.



Feedback Stabilization:

Nonlinear Solutions to Inherently Nonlinear Problems

by

Andrew Richard Teel

Abstract

Control strategies are developed for nonlinear systems that fail to satisfy differen

tial geometric conditions for input-to-state linearizability under state feedback and change
of coordinates.

The central part of this work is motivated primarily by a popular "ball and beam"

laboratory experiment. For this example, the differential geometric conditions for input-to-
statelinearizability are not satisfied. Strategies have been developed previously to overcome

this limitation in a neighborhood of an equilibrium manifold in order to achieve (approxi
mate) tracking and local stabilization. However, the domains of attraction for these methods

are very small.

Control strategies, are presented for a general class of nonlinear systems, of which

the "ball and beam" isan example, which result in arbitrarily large domains ofattraction for

both thesmall signal tracking problem and the stabilization problem. The main component
ofthe approach isthe use of saturation functions to limit the destabilizing effects that cannot

be removed by geometric linearization techniques. One of the new elements of this work is

the nesting ofsaturation functions to systematically isolate and diminish these destabitizing
effects.

One can think of linear chain of integrator systems that are subject to "actuator

constraints" as nonlinear systems that cannot be made to appear linear globally. The

methodology ofnested saturation functions provides new, simple globally stabilizing control
laws for such systems.

In addition to developing methodologies for systems like the "ball and beam" and

linear systems subject to "actuator constraints", asymptotically stabilizing control strategies
are developed for a class of nonholonomic control systems. These systems generically do

not satisfy geometric conditions for input-to-state linearization. New, smooth time-varying
and locally stabilizing control laws are developed based on previous work in the literature



on steering nonholonomic systems with sinusoids. Globally stabilizing strategies are then
achieved by again introducing saturation functions.

Finally, results are presented that improve regions of feasibility for a recently
developed nonlinear adaptive control scheme.

These different settings are used to argue for the desirability of tackling inherently
nonlinear control problems with new, inherently nonlinear solutions. The case is made for

continued research to develop powerful, specialized tools to add to the nonlinear control
toolbox.

S. Shankar Sastry

Chairman
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unduly maligned and misunderstood and which I would like to explain:

Your life can be modeled by a differential equation like

x = fix3 (0.1)

where fi > 0, because, after all, we all have finite escape time. The unknown constant

fi accounts for the fact that some of us escape faster than others. Now, for purposes of

analogy we make the following definitions:

+00 = "good"

-co = "bad"

The system was originally designed so that x(Q) > 0. But due to a large a prioridisturbance

known as original sin, the initial condition has been irrevocably reset so that x(0) < 0. This

is "bad". Fortunately, there are some as yet unmodeled dynamics. In fact, your life is better

modeled by

x = fix3 + F(z)tia(x) + W(w)$(x)
z = ui (0.2)

W = U2 + Z

with z(0) = 0 and w(Q) = 0. F(z) is a monotone nondecreasing bump function with

F(z) = 0 for all z < 0 and F(z) = 1 for all z > a for some arbitrarily small a > 0. F is

known as the "faith" function. The function W is known as the "good deeds" function and

satisfies W(w) = w for all w € R. The function $ satisfies $(x) = 0. Observe that the z

and w dynamics are completely controllable. £la(x) is the "restoring" function and satisfies

Cl(x) + fix3 > |x|3 for all x € R. We then have the following results:

Theorem 0.1 For any x(0) < 0, 3ui and a Ti > 0 associated to u\ such that x(Tl) =

"good*.

Proof. We appeal to the results of [0]1 which state, "for God so loved x that he gave the

'restoring' function fta, that whosoever activates the 'faith' function F shall not go to 'bad'

in finite time, but shall have everlasting life." The result then follows from the fact that

the 'faith' function can be completely activated using the control U\. D

Theorem 0.2 Let Td be the finite escape time associated with the trajectory of (0.1) starting
at x(0) = x0 < 0. Ifui is chosen such that z(t) < 0 for all t < Td, then the solution of
(0.2) satisfies x(Td) = "bad".

1[0] John. The Gospel According to John. In The Bible, ch. 3, v. 16, 1stcentury A.D.
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Proof. Again we appeal to the results of [0]2 which state, "The 'restoring' function fta

is the way, the truth, and the life, x does not go to 'good' accept by the action of the

'restoring' function and hence by activating the 'faith' function." •

For more information, I refer the reader to the complete work of [0] which is an

excellent monograph on the subject.

Although the above analysis would suggest otherwise, a relationship with God

through Jesus Christ is very personal. It is this relationship that gives me the power to

press on. Finally, I would like to thank my parents for their constant encouragement and

my wife, Laura, who endured the rare lows and help me celebrate the abundant highs.

![0] John. The Gospel According to John. In The Bible, ch. 14, v. 6, 1st century A.D.
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Chapter 1

Introduction

The intent of this dissertation is to present new, nonlinear solutions to control

nonlinear systems which cannot beadequately controlled using existing methods. Ofcourse,

existing methods have provided a wonderful point of reference from which to work. For

example, much work has been done in nonlinear control theory to determine conditions

under which a nonlinear system can be exactly linearized using a nonlinear state feedback

and coordinate transformation. In other words, the engineer is able to determine when he

is dealing with a linear system that is simply masquerading as a nonlinear system. In this
case, after the appropriate transforming feedback and coordinate change have been applied,
linear control tools can be applied to achieve a desired response.

Further, we do not advocate adeparture from the tools ofgeometric control theory
which have been responsible for the development of many of the existing methods. These

tools will continue to serve the control engineer well as coordinate-free conditions are gen
erated for transforming nonlinear systems into normal forms that are short ofbeing linear.
The geometric conditions for transforming a system into pure feedback form as found in

[Akhrif and Blankenship, 1988] and [Kanellakopoulos et a/., 1991], or the conditions for
transforming a nonlinear system into a special partially linear normal form as found in

[Byrnes and Isidori, 1991] are testimony that this is already taking place. We anticipate
that geometric control theory will continue to work hand in hand with stability theory to
establish useful normal forms and provide stabilizing solutions for systems in these normal
forms.

Our focus has mainly been on stabilization issues although new normal forms
have naturally arisen out of some of our work. Again, the existing literature has been the



inspiration for many of our results.

For example, the work of Hauser and co-workers [Hauser et a/., 1992] on the pop

ular "ball and beam" experiment has been a central motivator. This system is an example

of a system that cannot be exactly linearized, even locally, although its Jacobian linear

approximation is controllable. The most applicable existing method for controlling this

system is to use a feedback and coordinate transformation to make the system look approx

imately linear. Next, linear control tools are applied and finally, the nonlinear perturbations

are incorporated into the performance analysis. The major limitation of this approach is

that the performance is acceptable only in a small operating region. This limitation mo

tivated the development of a new stabilizing design technique that involves the judicious

use of saturation functions. The discussion of this approach as it applies to the "ball and

beam" experiment is described in chapter 4. Using this approach we are able to achieve

stabilization for the "ball and beam" on arbitrarily large regions of operation.

An offshoot of this research was to study the global stabilizability of linear sys

tems subject to input saturation. Here, negative theorems in [Fuller, 1969] and [Sussmann

and Yang, 1991] provided direction for establishing the power of using nesting saturation

functions in a systematic manner. The negative theorem established that linear solutions

were not sufficient, and in this sense the problem is inherently nonlinear. We discuss the

nested saturation approach in chapter 2 as it applies to stabilization and tracking problems

for linear null-controllable systems.

With the nested saturation technology in hand, we have a natural tool with which

to achieve semi-global stabilization for a class of partially linear nonlinear systems. This

class includes the cautionary examples of [Sussmann and Kokotovic, 1991] and [Byrnes and

Isidori, 1991] which suggest existing high-gain methods are not sufficient. The stabilizing

solution to this problem is discussed in chapter 3. We are encouraged that results of both

chapters 2 and 3 have been further generalized by other authors (see [Yang et al., 1992]

and [Lin and Saberi, 1992b]) after studying our results. We include a statement of these
advances for completeness.

The intuition developed for the "ball and beam" example is shown in chapter 4 to

be applicable to a canonical example presented in [Kokotovic et a/., 1991] as a challenging

control problem. In fact, we develop a stabilizing control strategy for a class of systems

that includes this canonical example. We refer to these systems as higher order feedforward

systems and discuss geometric conditions for obtaining this normal form.



For tracking (rather than stabilization) problems, we use chapter 5 to show that,

in fact, solving the stabilization problem goes a long way in solving the associated tracking

problem. We do this by combining the results of chapter 4 with the recently developed

nonlinear regulator theory of[Byrnes and Isidori, 1990] toachieve small signal (approximate)
tracking for the "ball and beam" example. The important feature is that we achieve basins

of attraction much larger than for any existing methods.

An investigation of inherently nonlinear stabilization problems must include the

study of nonholonomic control systems. Although these systems are controllable, even the

local stabilization problem is difficult. In fact, the negative result of [Brockett, 1983] es

tablished that these systems cannot be asymptotically stabilized using smooth static state

feedback. More recently, Coron provided a positive but nonconstructive result demonstrat

ing that time-varying feedback was sufficient to stabilize these systems [Coron, 1992]. These

results have encouraged the pursuit of explicit time-varying asymptotically stabilizing con
trol laws for nonholonomic systems. In chapter 6, we develop locally and globally stabilizing
control algorithms for a subclass ofnonholonomic systems. We focus on nonholonomic sys
tems in chained form developed by Murray and Sastry [Murray and Sastry, 1991a] and the

diffeomorphically equivalent power form systems. Many ofthe results inchapter 6are taken
from joint work with Murray and Walsh in [Teel et a/., 1992].

Finally, in chapter 7,we return to theadaptive control problem we studied in [Teel
et a/., 1991]. Recently, Kanellakopoulos and his coworkers have developed a nice solution
for the class of nonlinear systems in pure feedback form. (See [Kanellakopoulos et a/., 1991]
and [Krstic et a/., 1991] for example.) We combine these ideas with nonlinear error-based
adaptive ideas (found in [Teel et a/., 1991] and [Pomet and Praly, 1989] for example) to
produce an algorithm that has a potentially larger domain offeasibility.

Throughout this dissertation we illustrate the complementary roles that differential
geometry and themethods ofstability theory play in contributing powerful, specialized tools
to the nonlinear control toolbox.



Chapter 2

Global Control Problems for

Linear Systems with Bounded

Controls

For linear systems subject to "input saturation", the global stabilization problem

is inherently nonlinear. By this we mean that, for all but the simplest of cases, a linear

feedback willnot suffice. In this chapter, wepresent a new,nonlinear solution to the problem

of global stabilizing multiple integrators with bounded controls. The generalization of our

result to all linear null-controllable1 systems, developed by Sontag, Sussmann and Yang in

[Sontag and Yang, 1991], [Yang et a/., 1992], is also mentioned. We discuss how our solution

can be applied to the tracking problem for a certain class of trajectories. This includes a

discussion of linear regulator theory with "input saturation". Also, emerging performance

issues are discussed.

2.1 Introduction

The study of linear systems subject to "input saturation" has a rich history. (See,

for example, [Anderson and Moore, 1971].) One of the primary focuses of this research

has been to study the effects of a saturating input when applying a linear control law. For

A linear time-invariant system is said to be (globally) null-controllable (with respect to someconstraint
set) if, given any initial condition, there exists a control, which takes values in the constraint set, that steers
the system to the zero state in some finite time.



example, much of the rich literature of the 1950's and 1960's on the problem of absolute

stability (see [Aizerman and Gantmacher, 1964], [Narendra and Taylor, 1973], or [Popov,

1973]) was motivated by this problem.

It has been shown that only linear, stabilizable systems having no open-loop eigen

values with positive real part can be globally asymptotically stabilize using a bounded con

trol (see theorem 2.1.) Therefore, when this condition does not hold, it is natural to study

domains of attraction for open-loop unstable systems with saturating linear feedbacks. See,

for example, [Kosut, 1983], [Krikelis and Barkas, 1984], [Gutman and Hagander, 1985] and
[Dolphus and Schmitendorf, 1991].

Concerning theglobal stabilization problem, some authors have ignored thenatural

open-loop eigenvalue constraint to propose algorithms that have no hope of converging
([Chen and Wang, 1988]) except in the simplest of cases: open-loop systems that are stable
or have simple itu-axis eigenvalues. This approach hasspread to the discrete-time literature

([Chou, 1991]) even though the analogous natural open-loop eigenvalue condition has been
established (see, for example, [Sontag, 1984], [Ma, 1991]).

We propose to study the interesting problems that remain in the global stabiliza

tion oflinear systems subject to "input saturation" motivated by the following two results:

Theorem 2.1 ([Sontag and Sussmann, 1990]) Given the system

x = Ax+ Bcr(u) (2.1)

where a : Rm -» Rm is bounded, globally Lipschitz, and invertible in a neighborhood of the
origin, there exists aglobally stabilizing control u= k(x) ifand only if (2.1) isasymptotically
null-controllable.

Asymptotic null-controllability is equivalent to the conditions that the pair (A, B) is stabi
lizable and all the eigenvalues ofAare located in the closed left-half complex plane. For a
discussion ofthis notion, see [Schmitendorf and Barmish, 1980] and [Sontag, 1984].

Theorem 2.2 ([Fuller, 1969],[Sussmann and Yang, 1991]) Suppose the system (2.1)
is a chain ofintegrators oflength n where n> 3. Let a :R -»• R be bounded with sa(s) > 0
fors^O and with both limits lim^ioo existing and nonzero. Then there does not exist a

linear functional h(x) such that the control u- h(x) globally stabilizes (2.1).



The implications of these theorems are straightforward. Given that the linear

systemis stabilizable, the problem can be solved if and only if the eigenvalues of the linear

system are in the closed left-half of the complex plane, and, even then, only the simplest

cases can be handled with linear feedback.

In [Sontag and Sussmann, 1990], a complicated induction procedure was outlined

to generate a globally stabilizing control for all linear null-controllable systems. In this

chapter we develop a far more explicit and straightforward construction, specialized to

linear chain of integrator systems. The procedure has recently been extended in [Sontag

and Yang, 1991] to apply to all linear null-controllable systems.

2.2 Global Stabilization

We start with the following definition:

Definition 2.1 Given two positive constants L, M with L < M, a function a : R —• R

is said to be a linear saturation for (L,M) if it is a continuous, nondecreasing function

satisfying

1. a(s) = s when \s\ < L

2. \a(s)\ < M for all s € R.

In the subsequent control design, one can choose arbitrarily smooth functions out of this

class. Now consider the linear system consisting of multiple integrators:

X\ = £2

: (2.2)

xn = u

We are searching for a bounded control that will globally asymptotically stabilize (2.2). We

now present our main results.

Theorem 2.3 There exist linear functions hi : Rn -* R such that, for any set of positive

constants {(£,-, Mt)} where Li < Mi for i = 1,...,nand Mi < ^ for i = 1,..., n-1, and
for any set offunctions {crt} that are linear saturations for {(Li,Mi)}, the bounded control

u = -crn(hn(x) + crn-i(hn-i{x) + •••+ <Ti(M*))) •*')

results in global asymptotic stability for the system (2.2).



Proof. Consider the linear coordinate transformation y = Tx which transforms (2.2) into

y = Ay + Bu where A and B are given by

A =

0 1

0 -.

0 ••

♦ . 1"

B =

' 1 "

0 1
_ 1

The recursive nature involved yields a transformation characterized by

i=o V3 J

where

\U 3\{i~3)\
The inverse of the transformation is characterized by

i=0 VJ /

A suitable control law is

u = -<rn{yn + ^n-i(yn-i + •••+ ai(yi)) •-•)

which yields the closed loop system

y\ = 2/2 + •••+ yn - (Tn(yn + <rn-i{yn-\ + •••+ <ri(yi)) •••)

£2 = 3fe + -.-+y„-(Tn(yn + <7n_1(yn_1 + .-. + <Ti(y1))..-)

fti-1 = 2/n ~ <7n(2/n + C7„_i(yn_i + •••+ <7i(t/i)) •••)

Vn = -On(yn + <Jn-l(yn-l + ' •' + <7l(tfl)) •' •)

(2.3)

(2.4)

We begin by considering the evolution of the state yn. Consider the Lyapunov function
K = 2/n- The derivative of Vn is given by

Vn = -2yn[on(yn + On-iiyn.i + •••+ oitoh)) •••)]

From definition 1, condition 1 applied to an and condition 3 applied to <7n_! coupled with
the fact that Mn.x < ^-, we see that Vn < 0for all yn $ Qn = {yn : \yn\ < &l}. In fact, Vn



8

is negative and bounded away from zero since Ln and Mn_x are constants. Consequently,
yn enters Qn in finite time and remains in Qn thereafter. Further, because the right-hand
side of (2.4) is globally Lipschitz, the remaining states yu..., yn_x remain bounded for any
finite time.

Now consider the evolution of the state 2/n-i- First observe that after yn has
entered Qn, the argument of an is bounded as

life + <7n-l(2/n-l + •••+ <T\{yi)) ••-)| < *f + Mn_!
2

< Ln

Consequently, after yn enters Qn, on operates in its linear region from condition 2 of defi

nition 1. Then the evolution of yn_i is given by

yn-i = -<7„_i(s/„_i + •••+ <ti(j/i)) •••)

Using the same argument as for yn we can show that yn_i enters an analogous set Qn-\ in

finite time and remains in Qn-i thereafter. Again, allof the remaining states stay bounded.

This procedure can be continued to show that after some finite time the argument of every

function <rt- has entered the region where the function is linear. After this finite time, the

closed loop equations have the form

£i = -y\

2/2 = -2/i - 2/2

yn = -2/1-2/2 yn

Clearly, the dynamics, after the prescribed finite time, are exponentially stable. •

The number of saturation functions required can be decreased by stabilizing the

states in pairs rather than one at a time. We employ a slightly more restrictive class of

linear saturation functions.

Definition 2.2 Given two positive constants L, M with L < M a function a : R -+ R is

said to be a, simple linear saturation for (X,M) if it is a continuous, nondecreasing function
satisfying

1. a(s) = s when \s\ < L

2. s [a(s) - s] > 0 when \s\ < M



3. \o(s)\ = M when \s\ > M.

Where before we needed n saturation functions, now we need one function for each pair of

states. If the dimension of the state space is odd, we will need one additional saturation

function for the additional state. Accordingly, define n = n/2 if n is even and n = (n 4-1)/2

if n is odd.

Theorem 2.4 There exist linear functions hi : Rn -* R such that for any set of positive

constants {(it-, Mi)} where Li <Mi fori =l,...,n and Mi <j^ for i =1,..., h-1, and
for any set offunctions {a,} that are simple linear saturations for {(£,-, Aft)}, the bounded
control

u = -oa{hn(x) + e^-i(/!*_!(a) + •••+ (Ti(hx(x))). ••)

results in global asymptotic stability for the system (2.2).

Proof. Consider the same coordinate change as in the proof of the previous theorem.

We will proceed in a similar manner as before, this time showing that the states 2/n-i,2/n
enter within finite time and thereafter remain in a region where the function a^ is linear.

Since thedifferential equation is globally Lipschitz, theremaining states 2/1,..., 2/71-2 remain
bounded. With <rn operating inits linear region we can iterate to show that t/n_3, yn_2 enter
and remain in a region where <rn_i is linear. Eventually, this leads to the conclusion that

after some finite time, the closed loop equations have the form

yi = -2/1

fa = -2/1 - 2/2

yn = -2/1-2/2 2/n

which is an exponentially stable linear system.

Consider the dynamics of 2/n-i, 2/n^

yn-l = 2/n-<7n(yn-l+2/n + <7n-l(\))

yn = -<7n(2/n-l + 2/n + ^n-l('))

To show that 2/n-i,2/n enters a sufficiently small neighborhood of the origin we use the
following Lyapunov-like function:

WXfln-i, 2/n) =£yJLi +-2/n (2.6)

(2.5)
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This positive definite function is only a Lyapunov-like function because there will be points
in the state space where W > 0. However, we will show that the integral ofW is negative
over known closed form solutions of (2.5) in theregion where <7n is saturated. Further, when
it is possible that an is not saturated, W is strictly decreasing (outside a neighborhood of
the origin.)

Consider the following regions of the state space:

region I: yn-.x + yn> Mn + Mn_i

region II: t/n-i + 2/n < -Mn - Mn-\

region IE: |y»_i + 2/n I < Mn + Mn-i

We begin by showing that any bounded initial condition in region I yields a trajectory that

enters region III in finite time. Observe that in region I (2.5) is given by

yn-l = 2/n-M* (2j)
yn = -Ma

Consequently, the closed form solution of the trajectories in region I are given by

2/n-iW = yn-i(t0) + yn(U)t - M^y - Mnt
yn(t) = yn{U)-Mnt

(For purposes of integration, we have set t0 = 0. This can be done since (2.7) is time-
invariant.) Now, we have

+2

2/n-i W + 2/nOO = 2/n-i(M + 2/n(M - 2Mnt + yn{t0)t - Mn-

We assume that

2/n-l(*o) + 2/n(*o) > Mn + M„_i

and we solve for a tb such that

yn-i(tb) + yn(h) = Mn + Ma-i

Using the quadratic formula it is straightforward to show that such a tb exists and is finite

and positive. The same argument holds for region II by symmetry.

Now consider an initial condition such that

2/n-i(*o)+ yn(U) = Mt + Mn_i
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To enter region I, we must have

yn-i(to) > -2/n(M

since the boundary of region I is a line of slope -1. This implies

2/n(t0) > 2Mn

yn-i(t0)< -M„ + Af„_i

Assume we enter region I. We show that we return to region III in finite time tb > 0 and

that W(tb) - W(t0) < 0. From the discussion above for trajectories in region I and since

2/n-l(*o) + 2/n(*o) = 2/n-l(*&) + yn(tb)

it follows that

t2
Mn± -r [2Mn - yn(to)]tb = 0

This implies

'& =jj^Wo)"2Mn)
which is positive because yn(U) > 2Mn. Now consider

W(tb) - W(t0) =ifoj.ifo) +yl(tb) - 2/Li(*o) - 2/n(M) .
First consider

!(»2-i(**)-flLi(*o))
Observe that in terms of yn-i(t0)

2
h = ]jJ7(-lfci-l(*o) +Mfi-1 - Mn)

Evaluating the closed form solution for yn-i at tb yields

yn-i(h) = -»B-i(*o) + 2(Mn_1 - Mn)

A straightforward calculation then shows that

yl-xih) - 2/n-i(M =42/n-i(*o)(Mn - Mn-i) +4(Mn - Mn-i)2

Since 2/n-i(*o) < -Mn + M*-! and Mn > Mn_i, it follows that 2/n-i(*&) - 2/n-i(*o) < 0.
Now consider

kylW-ytoo))
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Evaluating the closed form solution for yn at tb yields

2/n(*&) = -2/n(*o) + 4Mn

A straightforward calculation then shows that

vXtb) - 2/n(M = Syn{t0)Mn +16M|

Since yn(t0) > 2Mn, it follows that yl(th) - yl(t0) < 0.

By symmetry, the same analysis holds for trajectories originating on the boundary

of region II and entering region II.

Now consider trajectories in region III. We have

W = 2/n-l[2/n-<7n(2/n-l + 2/n + <7fi-l(2/))]

+2/n[~<7n(2/n-l + 2/n + ^ii-l(y))]

= (2/n-l + 2/n)[-<7n(2/n-l + Vn + °n-l{y))] + 2/n-l2/n

= (2/n-l + 2/n)[2/n-l + 2/n ~ ^n(2/n-l + 2/n + (7n-l(2/))]

-(2/n-l + 2/n)2+ 2/n-l2/n

= {Vn-1 + 2/n)[2/n-l + 2/n ~ ^n(2/n-l + 2/n + ^n-lfa))]

-|(2/n-l + 2/n)2 ~ |2/„-l " \yl
< |(2/n-l + 2/n)|Mn_! - \yl_x - ^2/2 _ 1^^ + y^2

The final inequality follows from definition 2.2, property 2. Consider the level set

w=\mI_,
On this level set, a circle of radius Mn_i in the 2/n-i?2/n plane, we have

Mn-1 < |2/n-l + 2/n I<V^Afn_!

Consider |2/n_! + 2/n| = A?Mn_! where k € [1, V^]. Then

W < -iMl^-^kMn-xf + kMl^
= -(I-fc + I^M^

Since A: 6 [1, V^], W' < 0. Since W" is bounded by a quadratic negative definite function
plus a linear perturbation in region III, W < 0 outside of the level set W = ^M?^ and
inside region HI. Further, if the trajectory leaves region IE, it returns in finite time and

at a lower energy level W. Consequently, for any e > 0, the trajectories of 2/n-i,2/n enter
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a circle of radius Ma-i + € in finite time and remain in that circle thereafter. If Ma-i is

chosen so that

La = \/2(M„_i + e) + Mn-i

(i.e. La > Mn_i(\/2 +1)), then oa operates in its linear region after some finite time. Once
<7n becomes a strictly linear function we have

!Jn-3 = 2/n-2 - <7n-l(2/n-3 + 2/n-2 + ^n-2(y))

yn-2 - -0-n-l(2/n-3 + 2/n-2 + <7n_2(2/))

and the same analysis applies to show that 2/n-3,2/n-2 eventually enters a sufficiently small
neighborhood of the origin. The iterative process continues until it canbe shown that, after

some finite time, every saturation function is operating in its linear region. After this time,
the dynamics of (2.2) are those of an exponentially stable linear system. D

Remark. The results of theorem 2.2 indicate that it is not possible to further

reduce the number of saturation functions by trying to stabilize three states at a time.

After the above results were establish, Sontag and Yang were able to make the

natural extensions for thegeneral linear setting. For convenience, to prepare for this result,
the following class offunctions is defined as in [Sontag and Yang, 1991]:

Definition 2.3 Let Tn : Rn -> R be a class ofjunctions satisfying

1. The zero function / = 0 belongs to T.

2. For any f € Tn, any vector H € Rn, and any simple linear saturation a, the function
<r(HTx + f(x)) £ Fn.

Further, let Tn^ = {/ € ?n • \f\ < e}

The following theorem, stated and proved in [Sontag and Yang, 1991], represents thecurrent
state of the art for globally stabilizing linear systems with bounded controls:

Theorem 2.5 ([Sontag and Yang, 1991]) Consider the asymptotically null-controllable
system

x = Ax + Bu (2.8)

where x € Rn and u € Rm. Then, for each e > 0, 3*< € ^„,c, i = 1,..., m, such that with
the feedback

Ui = ki(x) i = l,...,m
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the resulting closed-loop system is globally asymptotically stable. Furthermore, the closed-
loop system has the converging-input converging state (CICS) property: ife(t) € Rn is any
(vector-valued) function that satisfies limt_x» e = 0, then all solutions of

x = Ax +Blk^x),..., km(x)f +e(t) (2.9)

converge to zero as t —• oo.

Remarks.

1. Results for sigmoidal functions more general than simple linear saturations are re

portedly discussed in [Yang et a/., 1992].

2. That there exists a control yielding a closed-loop with the CICS property is significant

because it allows for solving this problem with dynamic output feedback for observable

systems. The state x will converge to the origin as the estimates of the states converge

to the actual states. For more on the CICS property and related topics, see [Sontag,

1989].

2.3 Restricted Tracking

We now discuss how the controls of the previous section can be used to achieve

asymptotic tracking for linear null-controllable systems subject to "input saturation". We

begin by considering the tracking problem for the chain of integrators system studied in

detail in the previous section. Then we use the general results of [Sontag and Yang, 1991]

to state a solution to the multivariable linear regulator problem when the input is subject

to saturation. In both cases, we restrict the associated feedforward piece of the reference

trajectory to be sufficiently small.

2.3.1 Chain of Integrators

Consider the nonlinear system

Xi = X2

(2.10)
Xn = <7n+i(tt)

V = Xi
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Here <7n+1 is a linear saturation for (Zn+i>Mn+i). The task is to cause y to track a desired

reference trajectory yd given by 2/d, yd, •••, 2/j •

Corollary 2.1 If \yd{t)\ < Ln+i - e for all t > t0 andfor some e > 0 then there exist

linear functions hi : Rn -+ R such that for any set of positive constants {(it-, Mi)} where

Mn < e, Li < Mi for i = 1,..., n and Mi < ^- for i = 1,..., n- 1 and for any set of
functions {oi} that are linear saturations for {(£;, Mi)}, the feedback

*> =y^ ~ °n(hn{x) +<7„-i(/in-l(z) +•••+<?l(hl(x)) •••)

where x is defined as Xi = Xi - 2$ for i = 1,..., n, results in asymptotic tracking for the
system (2.10).

Proof. In terms of 5, (2.10) becomes

xi = x2

*n = -y^ + Vn+l(u)

Observe that, with the specified control law, if we chose Mn < e, then an+i(') is always
operating in its linear region so the closed loop system becomes

Xi = x2

«n = -<7n{hn(x) + <7n-l(hn-l(x) + •••+ <7i(/ii(x)) •••)

Now if {(Li,Mi)} satisfy Mt- < ^ for i = l,...,n - 1 and crt-(-) satisfies definition 1,
then we have the conditions of the stabilization theorem ofsection 2.2. Consequently, x
asymptotically approaches zero. In turn, this implies that y(t) asymptotically approaches
yd(t). U

For a result with fewer saturation functions we assume, for (2.10), that an+i is a
linear saturation for (La+i,Ma+i).

Corollary 2.2 // \ydn)(t)\ < La+i - efor all t > t0 and for some e > 0 then there exist
linear functions hi : Rn -• R such that for any set of positive constants {(Xt,Mt)} where
Ma <e, Li< Mi fori = l,...,n and Mi < ^U for i = l,...,n- 1and for any set of
functions {<rt} which are simple linear saturations for {(Xt-, Mi)}, the feedback

u= ydn) - ^a(ha(x) +<ra-i{ha-i(x) +•••+o^h^x)) •••)
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where x is defined by Xi =xt - y£"1J for i=1,...,n, results in asymptotic tracking for the
system (2.10).

2.3.2 Multivariable Linear Regulation

The results of this chapter can be easily applied to the trackingproblem when it is

cast in the language of linear regulator theory (see [Francis, 1977]). In this framework, we

consider a multivariable linear system with inputs that are subject to saturation together

with an exogenous system that generates disturbances and reference trajectories:

x = Ax + Ba(u) + Pw

w = Sw (2.11)

e = Cx + Qw

Here, x e Rn, w € Ra, u € Rm, and e € Rp. The vector e represents the tracking error and

cr: Rm -h. Rm is given by

o{[uu..., um]T) = [ai(ui),..., om(um)]T (2.12)

where <r; is a simple linear saturation for (I,-,Mt). The two problems to solve are the

following:

State Feedback Regulator Problem. Find, if possible, a feedback u = a(x,w)
such that

1. the equilibrium x = 0 of

x = Ax + Bff(a(x, 0))

is globally asymptotically stable and locally exponentially stable.

2. For all (x(0), w(0)) € Rn x Rs, the solution of the closed-loop system satisfies

lim e(t) = 0.

Error Feedback Regulator Problem. Find, if possible, a dynamic error feed

back u = 0(z), z = n(z, e) where z € R" such that

1. the equilibrium (z, z) —(0,0) of

x = Ax + 5<r(0(2))

£ = 7j(z, Cx)

is globally asymptotically stable and locally exponentially stable.
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2. For all (x(0), w(0), z(0)) € Rnx R5 x Rv the solution of the closed-loop system satisfies

lim e(t) = 0.

In keeping with the natural eigenvalue requirements of this chapter, we make the

following assumption:

Assumption 2.1 The eigenvalues of A have nonpositive realpart.

We now make the following additional assumptions which are standard in linear regulator
theory.

Assumption 2.2 The eigenvalues of S have nonnegative real part.

Assumption 2.3 The pair (A, B) is stabilizable.

Assumption 2.4 The pair

[c q],

is detectable.

A P

0 S

We then have the following state feedback regulator solution.

Theorem 2.6 Suppose assumptions 2.1, 2.2, and 2.3 hold. If there exists matrices II and
T which solve the linear matrix equations;

IIS = AIL + BT + P

cn +Q = o (2-13)
and for i = 1,.. .,m, 3et-,T > 0 such that \Tiw(t)\ < Li - et- for all t > T then the state
feedback regulator problem is solvable.

Proof. By assumption II and Tsatisfy (2.13). We make aninvertible, triangular coordinate
change such that f = x - IIu;. We then have

£ = £(x-Ilw)
= Ax + Ba(u) + Pw- USw

(2 14)
= A(x - Ilw) + B(o(u) -• Tw) + AIlw + BTw + Pw - USw

= A£ + B(a(u) - Tw)
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Now, given the ct's of the theorem we choose

Ui = Tiw + ki(()

where ki € Fn,ei. If we define *(£) = [fci(f),..., &ro(£)]T, then the closed loop is given by

i = At+ Bk(t) + B[v(Tw + k(t))-rw-k(Q]
= A£ +Bk(0 +<f>{t) [ ' }

Now, since there exists T > 0 such that \Tiw(t)\ < Li - et- for all * > T, it follows that

\Tiw(t) + *,-({(t))| < Zt- for all t > T. Then it follows that

Oi(Tiw(t) + *,•(£(«))) = I>(t) + *,•(«*)) Vt > T

From this and the definition of<f>(t) it follows that limt_oo 4>(t) = 0. Then, from theorem 2.5,

since the closed loop hasthe CICS property, lim^oo£(t) = 0. Finally, consider e = Cx+Qw.
From the definition of ( and (2.13),

e = C(+CTLw + Qw = C(.

Since limt_,oo £(t) = 0, it follows that limt_K» e(*) = 0. D

Theorem 2.7 Suppose assumptions 2.1, 2.2, 2.3, and 2.4 hold. If there exists matrices II

and T which solve the linear matrix equations (2.13) and for i = 1,.. .,m, 3et-,T > 0 swcA

that \Tiw(t)\ < Li —et- for allt>T then the error feedback regulator problem is solvable.

Proof. Thedetectability assumption allows us to build a linear observer to asymptotically

determine (with exponential convergence) the states x and wfrom e (see [Francis, 1977]).
We construct a feedback exactly as is the proof of theorem 2.6, replacing the states x and

w by their estimates. Now since the corresponding closed-loop has the CICS property, the
problem is solved. D

2.4 Performance Issues

Thetechnology of nested saturations to solved the bounded input control problem
for linear systems is new. The first results were intended to demonstrate that such a solution

exists. Little regard was given to describing theflexibilities ofsuch a design orpossible ways
to enhance performance. In this section, we do not intend to answer these questions in full.
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However, we wish to point out certain performance issues that we have witnessed in our

brief experience with these control laws. We anticipate that this section will inspire further

research in this area, perhaps leading to the study of optimal stabilizing control laws, given

the saturation characteristic and some suitable cost criterion, out of the family Fn,t of

bounded feedbacks.

2.4.1 Pole Placement

We begin by focusing on the flexibility of pole placement in the design of nested

saturation control laws. We focus on the chain of integrators system for simplicity. The

issue ofpole placement naturally affects the performance ofthe system in a neighborhood of

the origin after each saturation function has entered its linear region. The control engineer,
in general, would like the assurance of global asymptotic stability without sacrificing the
freedom of arbitrary pole placement. However, as one can easily observe, the standard

design outlined in section 2.2 places all of the closed-loop poles at s = -1. It is worthwhile

to point out that there is nothing special about the value s = -1. Rather, it is an artifact

ofour coordinate change. In fact, by constructing our coordinate change y = Tx so that
y = Ay + Bu where B is as before and A is given by

A =

0 A2 A3 ... An

0 0 A3 An

0 0 0 An

0 0 0

we areable to achieve arbitrary pole placement subject to the constraint that all eigenvalues
have zero imaginary part. The control

u = -crn(Kyn + <7n-i(An_iyn_i + ... + ^(A^i) •••)

achieves such pole placement.

To prepare for arbitrary pole placement, we wish to consider the stabilization of

an integrator chain of length In where we make a preliminary coordinate change y - T\x



to yield y = Ay + Bu where B is as before and A is given by

J(Ax) 1(A2) 1(A3) .-• l(An)

J(X2) 1(A3) ••• l(An)
A =

where

j(S) =

02

02

02

02 02 J(Xn-i) l(An)

02 02 02 J(Xn)

' 0 s

1« =
5 s

o2 =
0 0 '

0 0 s s 0 0

To demonstrate that the control
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(2.16)

(2.17)

U= -an{\n{yn-\ + 2/n) + ^n-l(A„_i(2/„_3 + yn-4) + ••' + <7l(Ai(tfi + Jfe)) ' ••)

results in global asymptotic stability andwith poles placed arbitrarily (in pairs) on the real
axis, we must show that

Vi-i = kyi - <7t(At(ft_i + yi) + at_i)

Vi = -<7t(A,-(y,-_i + 2K) + (7t-_i)

is such that the trajectories of yi-\,yi enter in finite time and remain in a region where Oi
is linear, for a sufficiently small M»_i (the bound on the magnitude of <rt_i). If we define
yi-i = Xiyi-i and &• = Xiyn then (2.18) becomes

fc-i = Aifo-A^fc-x + jfe + ai-i)

& = -A^i^ + y{ + (jt_i)

Now the result follows from section 2.2 by scaling time by a factor of A,-.

Weare nowin a position to achieve arbitrary poleplacement. Consider the control

U= -crn{Xn{yn-l + yn) + <7n-l(An_i(2/n_3 + yn_2) + ... + ^(A^t/i + y2) - V) ->•) (2.20)

where y = T\x is defined (implicitly) above. We have demonstrated that, after some finite
time, the closed-loop dynamics are given by

fa = -Aiyi + v

fa = -Ait/i - A1J/2 + v

fa = -A12/1 - Xxy2 - X2y3 + v (2.21)

(2.18)

(2.19)

fan - -A12/1 - \xy2 - X2y3 - X2y4 Xny2n-i - Xny2n + v
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We will now choose v to achieve arbitrary pole placement. We begin by choosing

v = -<?-X(cxyx + c2y2 - v) (2.22)

where cx and c2 are chosen to place the poles of

Aci =
-Xx 0

-Ai -Xx

First we show that, in general, the system

+ -ci -c2

fa = -Ait/i - &i<7_i(ci2/! + c2y2)

fa = -Aij/i - A12/2 - b2o-i(cxyi + c2y2)

is globally asymptotically stable as long as both eigenvalues of Ac{ have real part less than

or equal to -Ai < 0 and the pair (A, B) defined by

A =

B =

-Xx 0

-Ai -Ax

&i b2\

(2.23)

(2.24)

(2.25)

is controllable. Todo so we will appeal to the Popov criterion (see [Popov, 1973] or [Naren-

dra and Taylor, 1973]) which gives us that (2.24) is globally asymptotically stable if 3r > 0
such that

P{u) = Re[(l + jur)g(ju)] > 0 Vw 6 R (2.26)

(this is conservative since (7_i lies in the sector (0,1]) where

g(s) = CT{sI-A)-1B

and

C= [ cx c2
It can be shown that the transfer function g(s) is given by

b\cx + b2c2 bxc2Xx
9(s) = s + Xx (s + Ax)2

We now solve for cx and c2 in terms of the coefficients of the Hurwitz polynomial associated

with the desired eigenvalues of Aci given by

p(s) = det(sl - Act) = s2 + dxs + d2

(2.27)

(2.28)

(2.29)

(2.30)
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This can always be done since the pair (4, B) is controllable. Solving for cx, c2 and substi

tuting into (2.29) we get

a(c) ~dl~ 2Al I A* " diXl +d2 (9 1U9[S)~ s+Xx + (s +Xx)2 (2'31)
Now, for Popov's criterion, we choose r = j. Then

, . dx —2XX , A? —rfiAi -j- d2 .
P(a,) =-^-+ V+A» (2'32)

Now, p(s)either has two(possibly distinct) real eigenvalues ora pair of complex eigenvalues.

Consider first that the roots of p(s) are at s = —ax and s = -a2 for some ax,a2 > 0. In

this case

d\ = ax + a2

rf2 = «ia2

We then have

=-aAi +oi +o, +(A.-o.XAi-a,) 33
Ai a;2 + Xx

and, hence, P(w) > 0 if ax > Xx and a2 > Xx.

Consider now that the roots of p(s) are at s = -a ± juft for some a, ft > 0. In
this case

c?x = 2a

d2 = a2+/32

We then have

_, , -2Ax + 2a: (Ax-/?)2

and, hence, P(w) > 0if a > Xx. Finally, since we know that (2.24) is globally asymptotically

stable, aconverse Lyapunov argument, similar to that used in [Sontag and Yang, 1991]) can
be used to demonstrate that for Af_2 sufficiently small (where |v'| < M_2) the trajectories
of

fa = -Xxyx - e-x(cxyx + c2y2 - v)
i (2.35)

2/2 = -Xxyx - Xxy2 - o„x(cxyx + c2y2 - v )

enter in finite time and remain in a region where <r_x is linear.

At this point we have the system

fa,2 = Aclyx>2 - B0v

fa,4 = AclyX}2 + J(X2)y3A - B0v
. (2.36)

£2n-l)2n = Aciyh2 + J(X2)y3A + J(Xn)y2n-l,2n - B0V



where

B0 = 1 1 Vi-U = A-i Vi ]
We now focus on the (yXi2,2/3)4) dynamics. Since the pair (A,B) given by

where

A =

A =

Ad 0

Ad J(X2)

is controllable, there exists a coordinate change transforming (A,B) into

Ad *

0 J(A2)

where the pair («/(A2), B) is controllable. Now we choose

B =

B =

Bo

Bo

*

B

v = —cr_2(cii/3 + c2fa - v")

C = c\ c2
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(2.37)

(2.38)

(2.39)

(2.40)

is chosen to place the poles of J(A2) + BC (to the left of -A2). It is now apparent that this

process can be continued to arbitrarily place the poles of the closed loop system, since the

original At's were shown to be arbitrary.

2.4.2 Performance

To highlight the performance issues involved in control systems with bounded

controls, wefocus on the 2-dimensional chain of integrators

xx = x2

x2 = a(u)

Weconsider the effects ofplacing both of the poles of the Jacobian approximationat s = -A.

Following the procedure of the previous section, this is done by choosing

This yields the system

2/i = Xxx + x2

2/2 = x2

fa = Xy2 -f o(u)

fa = o{u)

(2.41)

(2.42)
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Figure 2.1: Time trajectory for the system (2.41) using the control (2.43) with A= 1 and

(*i(0),*2(0)) = (l,0).
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Figure 2.2: Time trajectory for the system (2.41) using the control (2.43) with A= 1 and

(*i(0),a2(0)) = (2,0).



5 r^ ! : 1 1 ! ! j ; . .

0 i \ i—.•*"*—i /—*7-..— .ij -i i f i i !

a li i ii l it ii i ii i ii ii i! ii i ii ii • •i it • •. I •. •. I. .. . i , . . .
10 20 30 40 SO 60

Tim*(mo)
70 80 90 100

25

Figure 2.3: Time trajectory for the system (2.41) using the control (2.43) with A= 1 and

(*i(0),*2(0)) = (5,0).
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Figure 2.4: Time trajectory for the system (2.41) using the control (2.43) with A= 1 and
(*i(0),*2(0)) = (10,0).
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Figure 2.5: Time trajectory for the system (2.41) using the control (2.43) with A= y/J and
0*i(OWO)) = (10,0).
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Figure 2.6: Time trajectory for thesystem (2.41) using thecontrol (2.43) with A= ypl and
(*i(0),*2(0)) = (10,0).
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Figure 2.7: Time trajectory for the system (2.41) using the control (2.43) with A= y/X and

(»i(0W0)) = (10,0).
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Figure 2.8: Time trajectory for the system (2.41) using the control (2.46) with Xx = 0.25,
A2 = 1.0 and (si(0),a:2(0)) = (10,0).
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We then choose the control u = -X(yx + y2). In the original coordinates we have

u= -X2xx - 2Xx2. (2.43)

If we further define

then we have the system

fa = Xyx

fa = Xy2

2/i = Xfa - Xa(yx + y2)

y2 = -Xa{yx + y2)

At this point we can scale time, defining r = j and denoting jp by ('), we have

Vi = 2/2 - <r(jk + fa)

2/2 = -^(2/i + 2/2)

So we see that we can achieve the convergence of this canonical system on an arbitrary
time scale. One might then be tempted to choose Aarbitrarily large to achieve arbitrarily
fast convergence. The reason why this intuition fails, as it must since we are restricted

to bounded controls, is that the transient performance is not uniform with respect to the
initial conditions. This is significant because as Agrows, the size of the initial conditions of

y grows. As alluded to in [Fuller, 1969], the performance ofthis type ofbounded control is
much closer to optimal for small initial conditions then it is for large initial conditions. To
demonstrate this point we show in figure 2.1 - 2.4, simulations of the two dimensional chain

ofintegrators system (2.41) using the control (2.43) with various size initial conditions. For
purposes of comparison, we chose a:2(0) = 0 for each simulation. The value ofxx(0) is set
at 1,2,5 and 10, respectively. The saturating function a in (2.41) was chosen to be a simple
linear saturation with L = M = 0.05.

We demonstrate the effects of tuning Aby showing in figures 2.4 - 2.7 the tra
jectories of the system (2.41) using the input (2.43) and choosing Ato be 1, y/Z, v^2 and
VCI, respectively. Again, a is a simple linear saturation with L= M= 0.05. Observe the
improved transient performance as A decreases.

The tradeoff is apparent. From these figures, and the discussion above, we see
that, given some a priori knowledge of the size of initial conditions, we can achieve few
oscillations and slow convergence in the tail by choosing Asmall while we can achieve many
oscillations and fast convergence in the tail by choosing Alarge. (In fact, given a bound on
the initial conditions, picking Asmall enough insures that the control never saturates.)

(2.44)
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We suggest that we do not have to settle for this tradeoff. The discussion of the

previous section on arbitrary pole placement provides the solution. In fact, if we choose

u= -X\xx - 2X2x2 - o2((X\ - X\)xx +2(A2 - Ax)z2) (2.46)

with A2 > Ax we can use Ax to tune the transient performance and A2 to tune the perfor

mance in the tail. The success of such an approach is determined by comparing figure 2.8

to figure 2.4. Again, the limiting saturation on the control is a simple linear saturation with

L —M —0.05. The function o2 in (2.46) is a simple linear saturation with L —M —0.02.

Hence, we have the following design suggestion. If an approximation on the size

of initial conditions is known, the A;'s of the previous section should be chosen to optimize

the transient performance of the system, while the final pole locations should be chosen to

achieve the desired convergence in the tail as in figure 2.8.

2.5 Summary

While the nested saturation solution to the bounded control problem is theoreti

cally appealing, its success as a practical design tool is yet to be established. Future work

will focus on applying the linear multivariable regulator theory of section 2.3.2 along the

the pole placement and performance ideas of sections 2.4.1 and 2.4.2 to the model of the

F8 aircraft studied in [Kapasouris et a/., 1988].
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In this chapter, we use the bounded controls of the previous chapter to generalize

the class ofminimum phase nonlinear systems that can be semi-globally stabilized. Previous

results can be found in the pioneering work of Byrnes and Isidori ([Byrnes and Isidori,

1991]) and of Sussmann and Kokotovic ([Sussmann and Kokotovic, 1991]). We prove and
demonstrate the success ofour algorithm and compare it to a competing algorithm [Lin and

Saberi, 1992a] that was motivated by our work. We also state a generalization of our work
by Lin and Saberi [Lin and Saberi, 1992b] which combines our approach with the general
results of Sontag and Yang [Sontag and Yang, 1991] of the previous chapter.

3.1 Introduction

This work is an extension of the semi-global stabilizability results of [Byrnes and
Isidori, 1991] and [Sussmann and Kokotovic, 1991] for multi-input minimum phase nonlinear



systems in the normal form:

fi = S

ft,- = «,-

y% = fi for i = l,...,m
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(3.1)

where the state x = (n^) € Rn and / is smooth with /(0,0,0) = 0. By minimum phase it

is meant that the equilibrium point n = 0 of

V= /(if, 0,0)

is globally asymptotically stable.

In the works of [Byrnes and Isidori, 1991] and [Sussmann and Kokotovic, 1991],
the standard semi-global stabilization problem is to find a family of linear feedbacks (ofthe

states £ only) with tunable gain parameters that allows for local asymptotic stability and

regulation to the origin for any initial condition in some (arbitrarily large) a priori bounded

set. As described in [Sussmann and Kokotovic, 1991], in general such a family ofgeneral
feedbacks can fail to exists due to peaking in the linear variables. Loosely, speaking, the

linear variables can get large before they get small, inducing instability in the nonlinear

dynamics. In [Byrnes and Isidori, 1991] the problem is seen as an undesirable reduction

of the domain of asymptotic stability of the nonlinear dynamics as a result of redefining

new outputs to add linear zeros in the left-half plane and by employing high gain output

feedback to the new output.

We will be able to achieve our extension by allowing our family of feedbacks to be

possibly nonlinear, again as a function of £ only. Our primary tool will be the bounded con

trols ofchapter 2 (see also [Teel, 1992a]) to eliminate peaking when possible. As motivating

examples, we consider two very similar examples in [Byrnes and Isidori, 1991] and [Suss

mann and Kokotovic, 1991] that serve as warnings that simple high gain linear feedbacks
will not always be able to solve the nonlinear semi-global stabilizability problem:

Example 3.1 (Example 8.2 of [Byrnes and Isidori, 1991]) Consider the system (in
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normal form (3.1))

rj = -(l-r?ft)r?

fi = 6 (3.2)

ft = u

Example 3.2 (Example 1.1 of [Sussmann and Kokotovic, 1991]) Consider the sys
tem (in normal form (3.1))

f) = -0.5(1 + (2)r,*

ft = ft (3.3)

£2 = u

Both examples are globally minimum phase. Our philosophy for semi-globally stabilizing
these systems can be summed up in the following heuristic argument that we make more
precise in the sequel. In each case, if the state ft were not a part of the system we would

choose a linear high-gain feedback function of ft alone to drive ft exponentially to the
origin. The necessary rate of decay would be determined by the initial stateof 77. In both
cases, if asymptotic regulation offt were not crucial, it would actually be sufficient to drive

ft exponentially to an arbitrarily small neighborhood ofthe origin. The rate ofdecay and
size of the neighborhood would be chosen based on the initial state of n. But this allows

us to reintroduce the state ft since it can be steered to the origin with an arbitrarily small
bounded "control" ft. In summary, for both examples, we will choose to drive ft arbitrarily
fast to an arbitrarily small control that will (slowly) drive ft to zero without destabilizing
the dynamics of 7?. The problem with the fully high gain approach of [Byrnes and Isidori,
1991] and [Sussmann and Kokotovic, 1991] is that they drive both ft,ft rapidly to the
origin. To drive ft fast requires peaking in ft. The peaking in ft destabilizes the original
zero dynamics. However, in the examples, the rate of convergence of ft is unimportant.

One interpretation ofour approach is that we are adding a (slow) asymptotically
stable nonlinear "zero" to the system by reducing the order of the linear subsystem by one.
Most importantly, the addition ofthis nonlinear zero still allows for asymptotic stability of
the new composite zero dynamics on arbitrarily large compact sets.

3.2 Problem Statement

We make the following definition to clarify the problem at hand:
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Definition 3.1 The system (3.1) is semi-globally stabilizable by state feedback if for any

compact set of initial conditions X there exists a smooth state feedback

u = a(ftr?) (3.4)

such that the equilibrium (0,0) of the closed-loop system (3.1), (3.4) is locally asymptotically
stable andX is contained in the domain of attraction of (0,0).

We will focus on generating feedbacks that depend only on the linear states ft (i.e. u =

We will be able to achieve semi-global stabilization for multi-input systems in the

following special normal form:

V = /0?.&. •••.<£) it€{l,...,rt + l}
fi = fi

(3.5)

fti = u

y% = fi for i = 1,..., m

where £.+1 = wt-. With respect to the outputs yi the system (3.5) is said to have vector
relative degree {rx,..., rm}. We define r = rx + ...+rm. We then havef 6 Rr and n 6 Rn"r.

We make the following standard assumption:

Assumption 3.1 The equilibrium pointn = 0 of the dynamics

r) = /(r?,0,...,0) (3.6)

ie. the zero dynamics of (3.5), are globally asymptotically stable.

The distinguishing feature ofthesystems in thespecial normal form of(3.5) is that
no more than one state in each of the m chains of integrators appears in the n dynamics.

Systems of the form (3.5) are more general than those in [Byrnes and Isidori, 1991] in that

the one state is not required to be the first state of the chain associated with yi, namely
£[. In the terminology of [Sussmann and Kokotovic, 1991], (0,.. .,0) is not necessarily an
achievable sequence of peaking exponents.
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3.3 Main Results

Our general approach for nonlinear systems in the form (3.5) is to redefine the
nonlinear subsystem to include the dynamics of £},.. .,Q,_x for i = 1,..., mand redefine
the ith output to be & = fj.. We also define the nonnegative constants f; = rt- - ji + 1. We
then have the following nonlinear system:

v = f(v,fa,'..,ym)
zx - z2

4-1 = Vi
3.7)

fi = fi

yi = fi for i = l,...,m

The vector relative degree with respect to the new outputs yt- is given by {fi,...,fm}.
Observe that some entries of the vector relative degree may in fact be zero. Define r =

h + •••+ fm. We now have £ € Rr" and z € Rr~r". With respect to the new outputs, it
is straightforward to see that the system is not minimum phase. We are now interested

in some further output redefinition that makes the system (3.7) minimum phase at least
on .sets U = V x Rr_f where V C Rn~r is any arbitrarily large compact set. This will be
sufficient since we are only interested in semi-global stabilizability.

Inpreparation for our choice ofoutput redefinition we establish the following result
for the system

V = /0?,Vifa,t),...,¥>m(wm,t))
z[ = 4

: (3.8)

4-i = *«(**) for «= l,...,m

Proposition 3.1 Assume the system (3.8) satisfies assumption 3.1. Then, given the com
pact set V C Rn-r, there exists a positive constant i/Q such that for any set of controls
{v,}£x that globally stabilizes z and is such that \vi\ < u0 and vt(0) = 0, and for any
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functions <pi(-,t) such that

lim^oo Vi(t) = 0 => lim^oo ipi(vi, t) = 0

\Vi\ < Vq =* \ipi(Vi,t)\ < Mvq

for some M > 0, the dynamics of (3.8) are asymptotically stable with basin of attraction
containing V XRr~f.

Proof. The local asymptotic stability is straightforward (see, forexample, [Byrnes

and Isidori, 1991, Lemma 4.2].) To determine the basin of attraction note that any state
z € Rr~r is driven to the origin by the assumption on v(z). Now consider initial conditions

n e V. We will demonstrate that 3u0 such that if |vt| < j/0 then the trajectories of n remain

bounded for all t > 0. Regulation to the origin then follows from the main theorem of

[Sontag, 1989] since z -* 0 as t -* oo by assumption, »,-(•) is smooth with ut(0) = 0 and

lim Vi(t) = 0 => lim (phi,t) = 0
t—*oo t—+oo

To this end consider a smooth positive definite and proper Lyapunov function

W:Rn-r^R

such that

rfP7(r?)./(7?,0)<0 (3.9)

for all nonzero n. The existence of such a Lyapunov function follows from assumption 3.1.
It then follows that

<M(v)'f(vMv*t))<0 (3.10)

for all ||v?(v,*)|| < KIMI) for soir*e continuous function u that is decreasing on [l,+oo).
(See [Sontag, 1990, Lemmas 3.1,3.2].) Now let cbe the largest value of Won the compact
set V and let ||t?|| < R Vq € {n : W(n) < c}. Such an R exists because W is proper. Then

R and the function u togetherwith the constant M determine a bound u0 and an additional
constant L < R such that

(W(ri).f(ri,ip(vtt))<0 (3.11)

for all L< \\n\\ < Rand all ||v|| < v0. Now, by assumption, n(0) € Vand hence 1^(0) < c.
Finally, since W is decreasing whenever W = c it follows that W(t) < c for all t > 0. This
in turn implies \\r)(t)\\ < R for all t > 0. D
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Remark. It is well known that such bounded controls Vi exist since any finite

length chain of integrators can be globally stabilized with an arbitrarily small control,

(see chapter 2, [Schmitendorf and Barmish, 1980], [Sontag and Sussmann, 1990], or [Teel,
1992a].)

We could now proceed with a standard output definition procedure choosing new

outputs as

Vi = m - Vi(z*)

In this case, the zero output dynamics would be given by (3.8) with (pi(vi,t) = u,-. The

drawback to this choice is that the procedure to generate the closed loop control involves

repeated differentiation of the necessarily complicated (see [Sussmann and Yang, 1991])

bounded controls vt-. Instead we choose a procedure that avoids this repeated differentia

tion. (This type of procedure has also been used with success in [Teel, 1992b] for certain

stabilization problems when the system is not initially minimum phase.) The outputs

chosen will depend on the feedback gains used and so will be saved for the last step.

We begin by choosing a high-gain feedback law to stabilize the dynamics of f in

(3.7). We also include the small bounded control y which will be instrumental in stabilizing
the zero dynamics. We choose

m= -Kfiaifii[ Kci^ +KfiVi (3.12)

where Vi(-) will be specified and K > 0.

Next, we make a linear coordinate change to move vt- so that it directly controls

the z% states. To do so, we begin by defining

Ci =^rrft (3.13)
Then the dynamics for Q are

ci = m
; (3.i4)

a = K(-cisci-...-ci,1G+v)

Recalling that

jt4-i=«=ci (3.15)



we define

3,-1 =<V^-1 +j(Ci,r-lCX +•••+CiiXQ_x +Cj)
It can then be shown that

d-i
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(3.16)

(3.17)

Likewise, we define z\ for k = 1,..., ji - 2 such that

^4 =4+i (3.18)
It is straightforward to show that this can be done in a way such that the transformation

between (C,z*) and (C,z*) is invertible.

We are now ready to define the appropriate outputs. To do so, we denote by At

the controllable canonical form matrix associated with the Hurwitz polynomial

sr.—i5r,+ct-,x5r'-1 + ...-|-ct|j

We also let d € Rlxr"1 and B{ € R*xl be such that

Q = 1 0 ••• 0

Bi = 0 0 ••• 1
T

Then we define the £th output to be

yi = deKAitC(0)

Observe that

2/t-w = fi = ci

= fcW + /o Ci^Mt-r)KBiVi(r)dT
= $i(t) + (pi(vut)

Finally, we have the nonlinear system

v = f(v>yi + <Pi{vut))

zx — z2

it = K{-*lfci-...-atlcf + vi)
yi = CieKA^C(Q) for i = l,...,m

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)
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To check the minimum phase property we must examine the system

V = f(ri,<pi(vi,t))
-*' _ -i
zx — z2

(3.24)

%-i = ««•

It is easy to show from (3.22) that the functions <pt- satisfy the requirements of proposition

3.1 with the constant M independent of the choice of K. Further, it is important to note

that K can be chosen to drive the outputs yi to zero exponentially with an arbitrarily fast

rate of decay without exhibiting peaking. We then have the following results.

Theorem 3.1 Assume the system (3.5) satisfies assumption 3.1. Then the system (3.5)
is semi-globally stabilized by the family offeedbacks (3.12). That is, (3.12) locally asymp
totically stabilizes (3.5) and for any compact set X of the state space (77, f) there exists a

Kx > 0 and ux > 0 such that, for all K > Kx and all globally asymptotically stabilizing
v(z) such that \\v(z)\\ < ux, the basin ofattraction for the closed-loop system (3.5),(3.12)
contains X.

Proof. The proofof this theorem follows from the proof of [Byrnes and Isidori,

1991, Theorem 7.2] together with proposition 3.1. Following the proof of Theorem 7.2 in
[Byrnes and Isidori, 1991], we can show that it is possible to choose Kin (3.23) large enough
such that the trajectories of77, z with exponentially decaying inputs converge to trajectories
ofthe undriven 77, z dynamics that take initial conditions insome compact set X determined

by X. Then applying proposition 3.1, given X, there exists i/Q sufficiently small such that
if v is chosen with \\v(z)\\ < i/0, all trajectories of7?,z that originate in the compact set X
are driven to zero. Finally, the states Cconverge to zero since they are the states ofa linear
system driven by bounded inputs that converge to zero. O

It is possible to slightly weaken the compact set restriction since the dynamics of

z are autonomous and globally asymptotically stable.

Corollary 3.1 Assume the system (3.5) satisfies assumption 3.1. Then the feedbacks (3.12)
locally asymptotically stabilizes the origin of (3.5) and, for all initial conditions in the set
Y = Xn x Rr_r x X$ where X„ C Rn~r is compact and X% c Rf is compact, there exists
Ky > 0 and vy > 0 such that, for all K > KY and all v(z) such that \\v(z)\\ < vy, the
basin of attraction for the closed-loop system (3.5), (3.12) contains Y.
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3.4 Examples

We return now to examples 3.1 and 3.2. Both examples have essentially the same

structure and are solved by the same family of feedbacks. To describe this class of feedbacks

we define the smooth function a : R —• R by

scr(s) > 0 for s^O

I r w (3'25)\o(s)\ < V

The semi-global stabilization problem for examples 3.1 and 3.2 are then solved by
the family of feedbacks

*= -K& +*(ft + jj7&)] (3.26)
parametrized by K, v > 0.

We give one further example to demonstrate the methods when j = r + 1.

Example 3.3 Consider the single-input system (in normal form (3.1))

t) = -77 + 7)2U

ft = ft (3.27)

ft = u

Given 77 € V where V C R compact, the family of feedbacks is specified by

u = -<r(cift + c2ft) (3.28)

where cx and c2 are chosen such that the dynamics of ft,ft are globally asymptotically
stable and where v is chosen such that

n> tfv (3.29)

for all 77 6 V.

3.5 Mention of Subsequent Results

An alternative approach to solving the semi-global stabilization problem for sys
tems in the special normal form of(3.5) has subsequently been proposed in [Lin and Saberi,
1992a]. In this work the authors proposed a fully linear solution by implementing very low
gain feedback to replace the bounded controls. The big selling point is that it is a linear
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solution that requires only onetuning parameter. (The time constant of the slow dynamics

is the inverse of the time constant of the fast dynamics.) The most obvious drawback to

this approach is that the convergence rateof the slow dynamics disappears as the size of the

compact set grows. This is contrasted with the nonlinear, bounded control approach where

arbitrary convergence in the tail can be achieved. In fact, we can use the methodology of

chapter 2 to tune the transient performance as well as the convergence in the tail.

On the other hand, in [Lin and Saberi, 1992b] these same authors recognized the

equation (3.7) to be a special case of a cascade of an asymptotically stable nonlinear system

with a right-invertible linear system with invariant zeros in the closed left-half plane. For

(3.7) the zeros are all located at s = 0. They then applied the general bounded control

results of [Sontag and Yang, 1991], which were mentioned in chapter 2, to achieve semi-
global stabilization for all such cascaded systems.

One further way to view all ofthese developments isto return to theoriginal normal

form [Byrnes and Isidori, 1991] (where the nonlinear dynamics were driven exclusively by
the states at the top of the intergrator chains.) By this wemean that we would now consider

the invariant zeros of the linear system in the cascade to be part of the nonlinear system.

With the results of this chapter and the ideas of [Lin and Saberi, 1992b] we see that the

minimum phase assumption of [Byrnes and Isidori, 1991] can be weakened. In fact, all

that is required of the 77 dynamics is that they can be asymptotically stabilized with an

arbitrarily small control. Unfortunately, this is a difficult condition to check except for

the cases considered in this chapter and in [Lin and Saberi, 1992b]. Further, under these
circumstances, semi-global stabilization will require explicit knowledge of the normal form
and (bounded) feedback of (some) of the 77 states.



Chapter 4

Using Saturation to Stabilize a

Class of Single-Input

Non-minimum Phase Nonlinear

Systems

41

In this chapter, we use the nested saturation technology of chapter 1 to globally
and semi-globally stabilize nonlinear systems that are not feedback linearizable and not

minimum phase. We solve the global and semi-global stabilization problem for systems
that apparently had no previous solution.

4.1 Introduction

We will consider partially linear single-input composite systems of the form

V = /(7?,z,u,*)

zx = z2

(4-1)

zn = u

where 77 e Rp and / is smooth with /(0,0,0,*) = 0 for all t > t0.

Interest in such systems has been driven by input-output linearization theory

[Isidori, 1989] which allows partial linearization for systems that cannot be full-state lin-
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earized. There have been many recent global stabilization results for such composite systems

( [Byrnes et a/., 1991], [Kokotovic and Sussmann, 1989], [Marino, 1988], [Praly et a/., 1991],
[Saberi et a/., 1990], [Sastry and Isidori, 1989], [Sontag, 1989], [Sussmann and Kokotovic,
1991]). In general these results either assume that the nonlinear subsystem is zero-input
asymptotically stable or that / depends only on 77 and zx. In the latter case it is also assumed

that a smooth "input" zx is known which globally stabilizes the nonlinear subsystem.

The approach presented in this chapter aims at globally (semi-globally) stabilizing

a subclass of systems described by (4.1) where the nonlinear subsystem is not zero-input

asymptotically stable and where / can depend on the complete state vector z as well as

the input u. We will rely heavily on the "converging input bounded state" property of

[Sontag, 1989] and incorporate the recent result for stabilizing a (linear) chain ofintegrators
with bounded controls described in chapter 2 (see also [Teel, 1992a]) to achieve nonlinear

stabilization. Interestingly, our designwillprovide intuition for determining coordinates and

a feedback that yield a composite system of the form (4.1) where the nonlinear subsystem

is zero-input globally asymptotically stable. More importantly, the approach outlined here

dependsonly on the general propertiesof the nonlinear terms and not on their explicit form.

Consequently, our approach is robust in the presence of a classof unmodeled nonlinear terms

and in the presence of unknown (possibly time-varying) bounded parameters.

The assumptions weimpose are not generic, but do allow us to handle systems that

do not satisfy the conditions of existing methods. In this sense, our method presents a spe

cialized tool intended to complement other existing methods in the nonlinear stabilization

toolbox.

Section4.2 begins this chapter by describing our algorithmfor a special subclass of

systemsknown as feedforward systems. We defer to an appendix discussion about geometric

conditions for generating this form. In section 4.3 we describe the general class of systems

for which our algorithm is applicable. Section 4.3.1 will define the general concepts used to

expand the result and will review the work of [Sontag, 1989] as it applies to our problem.

In section 4.3.2 we state our main results for global stabilization. The proof is also deferred

to an appendix. Section 4.3.3 contains our main results for semi-global stabilizability.

Finally, in section 4.4we provide examples for both global and semi-global stabilization. In

the global case, we show that our algorithm provides a solution to a previously unsolved

benchmark problem [Kokotovic et ai, 1991]. In the semi-global case, we show that our
algorithm provides a solution to the popular "ball and beam" example [Hauser et a/., 1992].
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To our knowledge, the only existing stabilizing solutions to this problem were local in

nature.

4.2 Feedforward Systems

To prepare for our general result, webegin by considering a special classof systems

for which the proof of our result is straightforward. We consider systems of the form:

xx = x2 + fi(x2,x3i...,xn,u,t)

x2 = x3 + /2(z3,..., xn,u,t)
. (4-2)

Xn = U+ fn(u,t)

where we require the functions /,'s to be continuous and

fi(xi+x,..., xn, w, t) = 0{x, u)2 i = 1,..., 71

The notation 0{x,u)2 is used to refer to functions that contain terms which are quadratic
and higher in (x,u). Because of this condition, together with the structure of (4.2), which

is in direct contrast to the feedback systems of [Kanellakopoulos et ai, 1991], we call these

systems higher order feedforward systems. These systems, in general, are not feedback

linearizable. For a discussion of geometric conditions for generating this normal form, see
appendix section 4.6.1.

Our nonlinear global stabilizability results rely on a recent linear result for stabi

lizing a chain of integrators using nested saturation functions with linear arguments [Teel,
1992a]. To that end, we repeat definition 2.1:

Definition 4.1 Given two constants 6 and e satisfying 0 < 6 < e, a function o : R —• R is
said to be a linear saturation if it is a continuous, nondecreasing function satisfying

1. cr(s) = s when \s\ < 8

2. \a(s)\ <e for alls € R.

The proof of the following theorem will be constructive, yielding a globally stabi
lizing control law.
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Theorem 4.1 (Feedforward Stabilizability) There exist linear functions Ti : Rn ->• R

for i = 1,..., n and a set of linear saturations {cr*}Ji=i suc^ ^at the control

U= -°n{Tn{x) + <Tn-X(Tn-X{x) + ••-+ <TX{TX{x))) •••)

globally asymptotically stabilizes the origin of (4.2).

Proof. The proof is very much like the proofof theorem 2.3 in chapter 2. We

begin by considering the linear coordinate transformation y = Tx which transforms the

Jacobian linearization of (4.2) into y = Ay + Bu where A and B are given by

A =

0 1

0 ••

0 ••

0 1

... o

B = (4.3)

1

The matrix T is upper triangular and hence T"1 is upper triangular. The zth row of the

matrix T defines the linear function Ti and yi = T,x. In transformed coordinates thesystem
(4.2) is given by

Vi - yi+i + '-' + yn + u + ^iTirfj

= 2/t+l + •••+ yn + u + (pi(yi+u ••-, 2/n, u,t)
(4.4)

where ¥?t(&+i,. .-,2/n,«,i) = 0(y,u)2 and is continuous. The functional dependence of (pi
follows from the triangular structure ofT and the functional dependence of/.

We now show that a set of linear saturations can be chosen such that the control

U= -<7n(yn + <7n-l(2/n-l + •••+ Ol(yX)) •••) (4.5)

globally asymptotically stabilizes the origin of (4.2). We begin by considering the evolution
of the state yn determined by

fa = u+ (pn(u,t) (4.6)

Consider the Lyapunov function Vn = y\ where the derivative ofVn is given by

Vn = -2yn[(Tn(yn + ^n-l(')) ~ Vn(«»*)l

Since (pn = 0(u)2, we have, for en sufficiently small,

M < €n => \ipn(u,t)\ < Cn€2n

(4.7)
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for some positive constant Cn which does not depend on e„. We then choose en (and hence
6n) sufficiently small such that

y-C„4>o
and then, given 6n, we require that €n-X be chosen such that

€n-i S -r
4

With these bounds and using (4.7), we can show that Vn < 0 for all yn t Qn = {yn ' 12/n I<
-f>}. In fact, V is negative and bounded away from zero since 6n and en-X are constants.

Consequently, yn enters Qn in finite time and remains in Qn thereafter. Furthermore, after

yn has entered Qn, the argument of on is bounded by

\yn + Crn-X(-)\<-± + €n-l <6n

Consequently, after yn enters Qn, an operates in its linear region. At this point, for 8n (and
hence \yn\) sufficiently small, the dynamics of yn are of an exponentially stable nonlinear

system perturbed by an input of magnitude bounded by en_x. A converse Lyapunov ar

gument can then be used to show that, for en_x sufficiently small, there exists some finite

time rn such that \yn(t)\ < anen-i and \u(t)\ < anen-i for some an > 0 and for all * > rn.

Now consider the evolution of the state yn-\. First, since ^n-i is continuous and

yn and u are bounded for all time, yn-X remains bounded for any finite time. After the

finite time rn, since an is now linear, the evolution of yn-X is given by

2/n-l = 2/n + U+ <£n-l(2/n,M) , v
/ (4-8)

= ~^n-l (2/n-l + ^n-2(')) + <Pn-l(yn,U,t)

Now the same argument as for yn can be used to show that, for en_x and en_2 sufficiently
small, there exists some finite time rn-X such that

\yn-l(t)\ < an-l^n-2

\Vn(t)\ < an-Xen-2

W*)l ^ an-i€n-2

for some an-X > 0 andfor all t > rn-X. In fact, this procedure can be continued until, after
some finite time rx, we are left with the system

fa = -2/1 + Vi(2/2,...,2/n,M)

fa = -2/1 -2/2 + ^2(2/3,..., 2/n, M)
: (4.9)

fa = -2/1 2/n + <Pn(u, t)
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Since (pi = 0(y, u)2 is higher order, and the Jacobian linearization is exponentially stable,

for ex (and hence ||2/(n)||) sufficiently small, we have exponential convergence to the origin.
D

4.3 General Results

4.3.1 Preliminaries

The results of the previous section can be extended for two reasons. First, con

cerning the <#'s, the important property was that <pi - 0(2/i+i,..., 2/n, w)2. If this property

can be retained while allowing (pi to depend on other states, the results will still hold.

Consequently, we make the following definition:

Definition 4.2 A function g : Rn x Rm -> R denoted g(v, w) is said to be higher order in
w uniformly in v if 3 positive constants e0,C such that Ve < e0,

IMI<* =>\g(v,w)\<Ce2 Vv€Rn

Secondly, regarding the class of saturation functions we are using, we could use the more
restrictive class of saturations given in definition 2.2 and take advantage of the fact that

outside ofsome neighborhood oftheorigin o is constant. For example, this property would
cause the extremal value of <7j_x to serve as a temporary, attractive set point for the state

2/j that is held by keeping the states yj+x,..., yn and the input u identically zero. We can

exploit this property toensure that t/j-x remains bounded for finite time while allowing even
more complicated functional dependence in (pj_x. To prepare for this we repeat definition
2.2:

Definition 4.3 Given two positive constants delta and e satisfying 06 < e a function a :
R-»• R is said to be a simple linear saturation if it is a continuous, nondecreasing function
satisfying

1. o(s) = s when \s\ < 6

2. s [a(s) - s] > 0 when \s\ < e

3. \a(s)\ = e when \s\ > e.
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Next recall the "converging input bounded state" results of [Sontag, 1989] extended to allow

for certain time-varying dynamics.

Consider a finite-dimensional composite nonlinear system

7)=/(77,S,*) (4.10)

x = g(x,t) (4.11)

where / and g are smooth and /(0,0,*) = 0 and g(0,t)=0 for all t > t0. Assume the

composite system has the following properties:

Property 4.1 The equilibrium point 77 = 0 of

V= f{V^t)

is uniformly globally asymptotically stable.

Property 4.2 The equilibrium x = 0 of (4-U) is uniformly globally asymptotically stable
and locally exponentially stable.

Property 4.3 For each bounded "control" x(-) on [<o,oo) with an exponentially decaying

tail (i.e. 3t>U, a>0 such that \\x(t)\\ < e-0^-1") for allt> r) and for each initial state
n0, the solution of (4-10) with n(to) = 770 exists for all t > to and is bounded uniformly in
t0.

Under these conditions there is the following result:

Theorem 4.2 ([Sontag, 1989]) Ifproperties 4.1, 4.2 and 4.3 are satisfied then the equi
librium (0,0) of (4.10),(4.11) is globally asymptotically stable.

4.3.2 Global Results

We now apply the approach of section 4.2 to single-input non-minimum phase
nonlinear systems of the form

^ = /(*?,*, M)
zx = z2

. (4-12)

zn = u
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where 77 6 Rp and / is continuous with /(0,0,0, t) = 0 for all t > t0.
The systems of this form that we globally stabilize are specified by two assump

tions. First we decompose the state vector 77:

77 =

where 77 e Rh and x e Rm. We write

77 = f(n,x,z,u,t)

x - g(n,x,z,u,t)

The 77 dynamics will correspond to the typical, zero-input asymptotically stable nonlinear

subsystem. The x dynamics will correspond to a system very similar to the higher order
feedforward systems of the previous section. It is these dynamics that make the composite

system non-minimum phase. To be more precise, we make the following assumptions:

Assumption 4.1 The dynamics of

77 = /(??, z,z,?V) (4.14)

with x(-),z(-),u(-) considered as "controls" satisfy property 4.1 and property 4.3.

Assumption 4.2 The dynamics of x have the form

ii = gi(n,x,z,u,t) = xi+x + hi{n,x,z,u,t) (4.15)

for i = 1,..., rn (xm+x := zx) where

1. hi is higher order in Xi,..., xm, z, u uniformly in 77, xx,..., at-_x, t.

2. hi{n,xx,....,zt-+1,0,.. .,0,*) = hf + h\ where

(a) hf is higher order in a;t+1 uniformly in 77, xx,..., zt-, t

(b) X{h\ < 0 for all n,xXj..., xi+ut.

3. 3e0 > 0 such that

hi(n,xx,..., xi-x, zt-, 0,..., 0, t) = 0

for all Xi satisfying \xi\ < e0.
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4. For each finite c > 0, 3e0 > 0 such that for all et- < e0 the dynamics of Xi sat

isfy property 4.3 with [coi{xi) + Xi+x],Xi+2,...,xm, z,u as "controls" uniformly in

77, xx,..., x^ t. The function <rt- is a simple saturation with positive constants £,-, et-.

Remarks.

1. Feedforward systems are a special class of systems that satisfy this assumption. For

other examples, see section 4.4.

2. The most difficult requirement to check in the above assumption is point 4. Sufficient

conditions to guarantee point 4 is satisfied are either

(a) The dynamics of Xi have the "bounded input bounded state" property uniformly

in 77,zx,...,:Et_x,i or

(b) hi defined by

hi := hi(rjt x, z, w, t)—

h(ri, xx,..., x^-coi, 0,..., 0, t)

can be bounded as

l^|<«x(|ci) + «2(ICI)W

where £ = (ccr; + Xi+X, xt+2, •••,xm, z,u)T and «,(•) are strictly increasing func
tions such that «t-(0) = 0 and for some k,e0 > 0 Ki(e) < ke for 0 < e < eG.

The latter requirement follows from a simple application of the Bellman-Gronwall

lemma.

Theorem 4.3 // assumptions 4.1 and 4.2 are satisfied, then there exists a control of the
form

u = Kz-am(Tm(x,z) + <jm_x(Tm-X(x,z)+

... + (7i(Ti(x,z)))...)

which globally asymptotically stabilizes the origin of (4.12) where Oi satisfies definition 4.2,
Ti is a linear function and the gains K are the coefficients of a Hurwitz polynomial.

Proof. See appendix section 4.6.2.

Remarks.
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1. Ti is the zth row of invertible matrix that transforms the coordinates (x, z) into (y, z)
where, in the transformed coordinates and subject to the control u = Kz + v, the new

dynamics are

y
_

'a 0 y
+

" B '
z 0 AK _ z . B* .

where A and B are given by (4.3), Ak is the canonical Hurwitz matrix associated

with the gains K and Bc is in controllable canonical form.

2. Aneasy consequence ofthis theorem isthatthesystem (4.12) can be globally stabilized

usinga bounded control. This follows by simply redefining the dynamics of x to include

the dynamics of z.

4.3.3 Semi-global Results

For the global results of section 4.3.2 we have ruled out unbounded dependence on

Xx,..., Xj_x in the x:- equation. However, if we employ the second bounded control strategy
ofchapter 2which stabilizes two states atatime rather than just one we can slightly weaken
this requirement. In doing so, we replace global stabilizability bysemi-global stabilizability.
By semi-global stabilizability we mean that, given initial conditions in a compact set X, we

can find a control that renders the origin of (4.12) locally asymptotically stable and with
basin of attraction that contains X. For a precise definition, see definition 3.1.

We replace assumption 4.2 by the following (recursive) assumption:

Assumption 4.3 Let i = m and consider the dynamics o/xt-:

1. if assumption 4.2 holds then leti = i-l.

2. otherwise, the dynamics o/xt_x,Xj have the form

where for j = i —1, %

xt_x = Xi + hi_x (77, x, 2, u,t)

Xi = xt+1 + hi(n, x, z, u, t)
(4.16)

(a) 1^--/ii(r?,xi,...,xt+x,0,...,0,01 <(|xt_x| +|xi| +1)|^|
where hj is continuous and higher order in xt+2,.. .,xm, z,u for bounded xi+x
uniformly in 77, xt,..., x,-, t.
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(b) i. |/it-i(*?,xx,...,xt-+i,0,...,0,t)| < (|xt-| + l)|/it-_i|

where hi-X is continuous and higher order in xt+1 uniformly in n,xx,..., Xi,t.

ii. hi(n, xx,..., xt+1,0,..., 0,t) depends only on xt+1 and is higher order.

(c) 3e0 > 0 such that

/ij(77,xx,...,xt_x,0,...,0,t) = 0

for all xt_x satisfying |x,_x| < e0.

Let i = i — 2.

Theorem 4.4 Ifassumptions 4.1 and 4-3 are satisfied, then there exists afamily ofcontrol
laws of the form

U = Kz-0rn(Tm(x,z) + (T1n_j(Tm-j{x,z)+

••. + <7i(Ti(x, *)))•••)

which semi-globally stabilizes the origin of (4-12) where ai satisfies definition 4.2, Ti is a
linear function and the gains K are the coefficients of a Hurwitz polynomial.

Proof. See appendix section 4.6.3.

Remarks.

1. In the control, j = 1 if point 1 of assumption 4.3 holds for i = m. Otherwise j = 2.

2. The family of semi-globally stabilizing control laws is parameterized by the absolute
bounds €i on the simple linear saturations <7t-.

3. Again, the system (4.12) can be semi-globally stabilized with a bounded control by
redefining the dynamics of x to include the dynamics of z as well.

4.4 Examples

4.4.1 Global stabilizability

Example 4.1 Our first example is the system

xx = x2 + B(t)x\

x2 = x3 (4.17)

x3 = u
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This system can be globally stabilized, using the methods of [Kokotovic and Sussmann,

1989], [Praly et ai, 1991], [Sontag, 1989] for example, in the case where the constant
parameter 6 is known. In the case where the parameter 0 is fixed but unknown, this system

can be locally stabilized using the adaptive method of [Kanellakopoulos et ai, 1991]. On

the other hand, our method is able to yield global asymptotic stability in the presence of

an unknown parameter 9 which can be time-varying as long as a bound on \6(t)\ is known.
Accordingly, assume |0(*)| < K. In the notation of section 4.3.2, we have

hx = 6(t)x\

and, hence, assumption 4.2 is satisfied. We choose

u = -x2 - x3 + v

where v will be specified to stabilize xx. We form the coordinate transformation

2/x = xx + x2 + x3

2/2 = x2

2/3 = x3

and we let v = -o(yx) where o is a linear saturation for some e, 6. This yields the closed
loop dynamics

fa = -*(2/i) + 0(02/2

fa = 2/3

£3 = -2/2 - 2/3 - o(yx)

We seethat the states y2, y3 have a bound proportional to e after some finite time r since a

is bounded by e. Further we see that yx is bounded for all finite time since its derivative is

bounded for all time. Next, we see that we can pick e small enough such that o dominates
0(02/! for all t > r. Hence, eventually aenters and remains in its linear region. Finally, if eis
small enough, all the states are close enough to the origin so that the exponential stability
of the linear approximation dominates the higher order terms and we have exponential
stability.

Example 4.2 This example has been mentioned in recent work as an unsolved problem,
both in the adaptive and known parameter context (see [Kokotovic et ai, 1991].)

xx = x2 + 0(Ox§

x2 = x3 (4.18)

x3 = u
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Again we allow $ to be time dependent but we will restrict it such that |0(O| < K. In the

notation of section 4.3.2, we have

hx = 9{t)x\

and assumption 4.2 is satisfied. The control is constructed in the same manner as in the

previous example. We choose

u = —X2 - x3 + v

where v will be specified to stabilize xx. We form the coordinate transformation

2/x = xx + x2 + x3

y2 = x2

2/3 = x3

Then we let v = —cr(yx) where a is a linear saturation for some e,6.

Remarks.

1. With 0 constant, the above example fails the well-known involutivity condition that

is required for the system to be full-state linearizable. However, it is interesting to

note that with the output

h(x) = x3+ x2 + <r(xx + x2)

the system is relative degree one with zero dynamics given by

xx = x2 + 0[x2 + a(xx + x2)]2

x2 = -x2 - <t(xx + x2)

In the coordinates yx = xx + x2,y2 = x2 these dynamics are given by

2/1 = -<r(2/i) + %2 + <7(2/i)]2
fa = -2/2 - <?(yi)

But we have shown that this system is globally asymptotically stable if a is a simple

saturation with sufficiently small 6, e.

2. It should also be noted that this system can be globally stabilized with the bounded

control

U= -<T3(X3 + (72(X2 + X3 + <7x(xx + 2X2 + X3)))

with each cr,- a simple saturation and €i,6i chosen appropriately.
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Example 4.3 We add to the complexity of the previous example by adding nonlinear terms

and an extra dimension. This is done to illustrate the kind of nonlinearities that are allowed

by assumption 4.2.

Xx = sin(x2) - xxx\ + xxx3 cos(u)

x2 = x3 -(- 0(0x4 + sm(xxt)xleu + u2
(4.19)

X3 = X4

X4 = u

In the notation of section 4.3.2, we have

hx = (sin(x2) —X2) —Xxxif + Xxx3 cos(w)

h2 = 9{t)x\ + sin(xxi)x§eu + u2

Since \9(t)\ < K and |sin(xxOI < 1, it is obvious that h2 is higher order in x2,x3,x4,u

uniformly in xx,t. Likewise hx is higher order in xx,X2,x3,x4,?i uniformly in t.

For point 2 of assumption 4.2,

h2(xx,x2,x3,0,0,t) = sin(xx0x3

/ix(xx,x2,0,0,0,0 = (sin(x2) - x2) - Xxx^

For h2, h\ = 0and h\ is higher order in x3 uniformly in x1?X2,t. For hx, h\ = -xxxl and
hence xxhx < 0 for all xx,t. Also hx is higher order in X2 uniformly in xx,t.

For point 3 of assumption 4.2,

Msi,x2,0,0,0,0 = 0

hi{xx, 0,0,0,0,0 = 0

And finally, for point 4 of assumption 4.2, both hx and h2 satisfy point (b) of the
second remark after assumption 4.2.

We choose

u = -x3 - x4 + v

We form the coordinate transformation

2/x = xx + 2x2 + 2x3 + x4

2/2 = x2 + x3 + x4

2/3 = x3

2/4 = x4

Then v = —cr2(y2 + ax(yx)) where <rt- is a simple linear saturation for some et-, S{ sufficiently
small.
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TlRW(WC)

Figure 4.1: Ball position and velocity

4.4.2 Semi-global stabilizability: the "ball and beam" example

Finally, we present a physical example to demonstrate the semi-global result.

Example 4.4 ("ball and beam") The dynamics for the "ball and beam" were derived

in [Hauser et ai, 1992]. After aglobally invertible nonlinear transformation between torque
and angular acceleration we have

Xx = X2

x2 = -G sm(x3) + xxx%

X3 = X4

x4 = u

(4.20)

where xx is the ball position, x2 is the ball velocity, x3 is the beam angle, and x4 is the

beam angular velocity. In the notation of section 4.3.3, we have

hi = 0

h2 = <3(x3 - sin(x3)) + xxx\

Assumption 4.3.2 is satisfied for hx,h2. We choose

u = —4x3 —4x4 + v
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Figure 4.2: Beam angle and angular velocity

We form the coordinate transformation

2/1 = -gxi - gx* + 5a;3 + *4

56

2/2 = -§x2+4x3 + x4

2/3 = x3

2/4 = x4

Then v = —o(yx + y2) where <r is a simple linear saturation for some e, 6. The value of

e, which parametrizes the family ofsemi-globally stabilizing control laws, will be inversely

proportional to the bound on the set ofinitial conditions. To demonstrate the capability of

such a control law we present, in figures 4.1 and 4.2, simulation results starting the beam

at a 90° angle and the ball at a position below the pivot of the beam. The function a was

chosen to be C° with S = e = 1.

4.5 Conclusion

We have proposed a globally (semi-globally) stabilizing control approach for a class

ofsingle-input nonlinear systems that is especially useful for systems that cannot be globally
full-state linearized. We employ saturation functions to systematically drive the state to
the origin. In certain instances our control approach can be used toglobally (semi-globally)
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stabilize a nonlinear system using a bounded control. An important feature of our approach

is that it is robust to unknown (possibly time-varying) parameters as well as unmodeled

nonlinear perturbations that satisfy certain general properties.

4.6 Appendix

4.6.1 Geometric Conditions for feedforward forms

We will use this section to discuss geometric conditions for transforming a general

single-input, nonlinear system into a feedforward system. Typically, the first thing that

is done when transforming a system into a chain of integrators with perturbations is to

decompose the nonlinear system into a piece that is feedback linearizable and a perturbation

piece. (For example, see references on pure feedback systems; [Kanellakopoulos et ai, 1991],

[Akhrif and Blankenship, 1988], and [Marino and Tomei, 1991].) We will proceed along
these lines. (Finding condition that are not decomposition dependent is, as far as we know,

an open problem.)

We will use the following example to show that the required decomposition is not

always the naive decomposition. Also, we will show that the procedure is more delicate

than a transformation to a pure feedback system.

Example 4.5 Consider the system

xx = x2 + xx + (xx + x2 + x3)2

x2 = x3
(4.21)

X3 = X4

X4 = U

It is easy to check that this system is not feedback linearizable. Can this system be trans

formed into a feedforward system? We propose the following feedback and coordinate

transformation:

zx = Xx

z2 = x2 + Xx
(4.22)

23 = x3 + X2 + Xx

z4 = x4 + x3 + x2 -I- Xx + (xx + x2 -I- x3)2

and

u = -z4 - 2z3z4 + v (4.23)



In the new coordinates we have

z\ - z2 + z\

z2 = z3 + z\

z3 - z4

z4 = v

Hence, we have successfully transformed the system into feedforward form. We have done

so by first decomposing the original nonlinear system as

X2 + Xx

x3

x4 + (xx + x2 + x3)2

0

/ =

and

A/ =

(xx + x2 + x3)2

0

-(xx + x2 + x3)2

0

The second step was to pick an output function that leads to a linearizing transformation
for the unperturbed system (f,g). We chose h(x) = xx. It needs to bepointed out that this
choice is a very delicate one. Infact, any function h(xx) with dh ^ 0can be used to exactly
linearized the unperturbed system. In general, however, these output function choices will
not lead to coordinates in which the system is a feedforward system. This problem is not
encountered in transforming to pure feedback systems because of the triangular feedback
structure.

As this discussion indicates, it is not trivial to find a useful decomposition of the
vector fields or the right output function on which to base a coordinate transformation. We

will not address these limitations here. Instead we will assume that a decomposition and
output function have been chosen, and we will give conditions to test whether the system
can be transformed into feedforward form.

Consider a single-input nonlinear system

9 =

A</ =

x = F(x,u,t)

where x € Rn. We assume the system has been decomposed as

* = f(x) + g(x)u+ A/(x, u,0
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(4.24)

(4.25)

(4.26)

(4.27)

(4.28)
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where the vector fields /, g satisfy conditions for exact feedback linearization. Further we

assume that an output function h{x) has been chosen which has relative degree n. We
assume that the linearizing feedback defined by

u = a(x) + /3(x)v (4.29)

where

P(X) = LgLn-lh(x)

is applied to (4.28). This yields the closed-loop system

(4.30)

* = /(*) + §(x)v + A/(x, v,t) (4.31)

where

f = f + 9*

9 = 9$ (4.32)

A/(x, v,t) = A/(x, a(x) + (3(x)v, t)

We now define the following codistributions:

W=span{dLnflh,..,, dLnf-{h}

for i = 1',..., n. Further, we define the following distributions

G* = {v GRn : (w*, v) = 0, Vw* € fi*} (4.33)

(ie., the annihilator ofQ\) We then have the following result.

Theorem 4.5 //

[Af,X]eGi+1 VX€G* (4.34)

then in the coordinates

zx = h(x), z2 = Lfh(x), ..., zn = Lnflh(x) (4.35)

the system (4-28) has the feedforward form of (4.2).

Proof. In coordinates

ft* = span{dzn,...,dzn-i} (4.36)



Hence, in coordinates

G< =span{±...>IJ—}
Therefore, condition (4.34) is equivalent to the condition

rA: a, . d d _[A/,^]€5pan{^-,...,^-}

for i = 1,..., n. This implies that

W\*)) =

/l(*2,...,*n,M)

f2{z3,...,Zn,V,t)

fn-l(Zn,V,t)

\ fn(v,t) J
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(4.37)

(4.38)

(4.39)

4.6.2 Proof of theorem 4.3

The proof is constructive and divides into three major parts. First we develop a

convenient linear coordinate change that will simplify our analysis. Then we develop how

the conditions of assumption 4.2 translate in the new coordinates. Finally, we show how
these conditions allow for a globally stabilizing control law.

Coordinate change

Our first step in developing our coordinate change is to choose the input as u =
Kz + v where the gains K are the coefficients of a Hurwitz polynomial. We then have

where

A =

0

V = f(n,x,z,u,t)

x = 9(v,x,z,u,t)

z = Az + Bv

0 0
' o"

.. 0 B =

0
0 1

1

«n

(4.40)

(4.41)
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The additional control v will be bounded and chosen to stabilize the x states. We proceed

to make a linear coordinate change to achieve a convenient form for our approach. We
choose

V = V

y = Txx + T2z (4.42)

z = z

where Ti and T2 are constructed below. For purposes of compact notation, we employ the
following selection operators:

and

Si : Rm+n -+ Rn

Si(w) = [wit...,wi+n-i\T

Pt. : Rm+n _> R

Pi(w) = Wi

Si is defined for i = 1,..., m and P,- is defined for i = 1,..., m + n. Both operate on the
concatenation of x and z:

w = [xT,zT]T

We choose y to have the following recursive construction:

ym = -KSm(w) + Pm+n(w)

Vm-i = ym - KSm-i(w) + Pm+n-i(w)

2/i = y2-KS!(w) + Pn+1{w)

It is apparent from this construction that 7\ has the form

Ti =

—^1 * * —1/ki * *

o *-. *••

*

Tr> =

...o

*

o ... 0 -*1. 0 ••• 0 -l/*i .

(4.43)

(Ti is invertible because kx < 0for Ato be Hurwitz.) In the new coordinates, the dynamics
of (4.40) are given by

fl = /W,Tfl(y-r25),5,«,t)

£ = 9{^%z,u,t) (4.44)
z = Az + Bv
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It is obvious that the dynamics of r\ satisfy assumption 4.1 with £(•), 5(«), u(-) as "controls".
For the dynamics of y we have

ii = ftO?,M,M)
= yi+i + --'+ ym+v + Z%iTUjhjfa Ti\y - T2z), z,u, t) (4.45)
= Vi+i + '- + ym + v + hi(fj,y,z,u,t)

We proceed to determine the relevant properties of hi.

Properties of Perturbation Terms

Define ym+i = -kii\. The following properties of hi follow from assumption 4.2:

1. hi is higher order in yi,...,ym,z,u uniformly in fy, ft,..., ft_x,t

2. hitf, yu •••, fc+i, 0,..., 0,t) = hi + h\ where

(a) hf is higher order in ft+i uniformly in r\, ft,..., ft,t

(b) for some e0, d> 0 and Vc < e0, ft/if < 0for all j?, ft,..., ft_x and |ft+i1 < e and
Iftl > de.

3. for some e0 > 0, /^(t/, »x, —, fc-i, ft,0,..., 0,t) = 0for all ft such that |ft| < e0.

4. 3e0 > 0such that for all <•; < e0 the dynamics of ft satisfy property 4.3 with [(Ji(ym) +
fc+i]» &+2, •••,ym, z, u as "controls" uniformly in ??, ft,..., ft,t The function <rt- is a
simple linear saturation with positive constants #t-,et-.

Consider point 1. For some e0 > 0 and any e < eQ assume that |fy| < e for
i = *,..., to and ||5|| < e, |w| < e. From Tf1 this implies, for some constant D, \xj\ < De
for j = «,...,m. Further ||z|| < e. By assumption 4.2.1 this implies, for some constants Cj,
\hj\ < Cj€2, j = i,..., to. Finally, from (4.45), for some constant C, \hi\ < Ce2.

Consider point 2. Decompose hi(f), ft,..., ft+i, 0,..., 0, t) as hi = X? + £J where

where /if and /if are defined by assumption 4.2.2. Consider point 2a above. Assume that
|ft+i| < e and y5 = 0 for j = i + 2,...,to and 5 = 0, u = 0. From Tf1 this implies
|zi+i| < De, Xj = 0 for j = t' + 2,...,to and * = 0. By assumption 4.2.2a this implies
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\hf | < Ce2. Further, assumption 4.2.3 implies hj = 0for j = i + 1,..., to. Hence, for some
constant C, \hf(f),ft,...,ft+1,0,...,0,t)\ < Ce2. Consider point 2b above. Again assume

|ft+i| < e and yj = 0 for j = i + 2,..., to and z = 0, u = 0. It follows that

yihhi{fi, 2/i, •••, »,-+i, 0,..., 0, t) = (TUixi +TUM1xi+i)TUihli
— T

From assumption 4.2.2.b it follows that ft/if < 0for |zt*| > | '̂'+1 xi+i| and all r), ft,..., ft^.
Consider point 3. For some e0 > 0 assume that |ft| < e0. Further, assume yj = 0

for j = i+ l,...,m and z = 0, u = 0. From Tf1 this implies, for some constant D,
\xi\ < De0 yj = 0for j = i + 1,..., to and z = 0. By assumption 4.2.3, for e0 small enough,
hj = 0 for j = i,..., to. Finally, from (4.45), fc,-(^, ft,..., ft_x, ft, 0,..., 0,*) = 0.

Consider point 4. Let [<7;(ft) + ft+i],ft+2,«. .,ftn, £,u converge to zero with

an exponential tail. From T^1, we have [-^-(r(ft) + xi+i],xi+2,.. .,xm, z,u converge
to zero with an exponential tail. Note that, for any bounded xi+i,...,xm,z and suffi

ciently large Xi, cr(ft) = a{x{). Since we are trying to establish the boundedness of xt-

we can, without loss of generality, assume |zt| is sufficiently large. Then we have that

[-JbT^O + JB«+i]» JC*+2, •••,xm, z,u converge to zero with an exponential tail. Hence, from
assumption 4.2.4, a;,- is bounded. Hence, by 2\, ft is bounded.

Stability Analysis

Throughout our analysis we will rely on lemmas taken from [Hahn, 1967] which

apply to the finite-dimensional unperturbed differential equation

x = f(x,t) (4.46)

with / satisfying certain smoothness assumptions and such that f(0,t) = 0 for t > t0, and
the perturbed differential equation

x = f(x,t) + g(x,t) (4.47)

Lemma 4.1 If the equilibrium of (446) is exponentially stable and if g{x,i) satisfies an
estimate g(x,t) = o(||z||) then the equilibrium of (4-47) is also exponentially stable, in fact
with the same exponent.

Lemma 4.2 Let the equilibrium of(446) be (locally) exponentially stable. Then (for suffi
ciently small \\x\\) there exists a Lyapunov function V(x,t) which satisfies estimates ofthe
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form

ai\\x\\2 < V(x,t)<a2\\x\\2

V < -a3\\x\\2 (4.48)

llgll < «4||«||
for certainpositive constants ai,a2,a$,a4.

Lemma 4.3 If the equilibrium of (44<>) is exponentially stable and if g{x,t) satisfies an
estimate \\g(x,t)\\ < e for e sufficiently small then for sufficiently small ||s(t0)||, ||z(*)||
satisfies an estimate of the form \\x(t)\\ < ae for allt > T for some T > t0 and for some
positive constant a which depends on ai,a2,a3,a4.

We now propose the following for the remaining control v:

v = -<rm(ym + om-\{ym-i + •••+ cri(ft))) •••) (4.49)

where Oi is a simple linear saturation for <St-,et- and we show that the values <5t-,e; can be
chosen to yield global asymptotic stability.

The first thing to observe is that, with all of the saturating limits removed, the

dynamics of (ft z) are ofan asymptotically stable linear system perturbed by higher order
terms. Hence, from lemma 4.1, for the system with the saturating limits removed, there

is an open neighborhood U C Rm+n of 0 such that if (y0,z0) € U then the equilibrium
(ft z) = (0,0) is exponentially stable. It follows that, if we can show from any initial
condition the states (ft z) enter and remain in a small neighborhood V c U in which the

functions <rt- for %- 1,..., to operate in their linear region, lemma 4.1 allows us to conclude

global asymptotic stability and local exponential stability for the dynamics of ft z with
the saturating limits included. Finally, by assumption 4.1 and theorem 4.2, the complete
composite system has (0,0,0) as a G.A.S. equilibrium.

We set out to establish that all of the states (ft z) can be steered to the set V in
finite time by judicious choice of Si, e^.

Observe that the dynamics ofz are given by anasymptotically stable linear system
perturbed by a small disturbance (with maximum absolute amplitude of em). Here the
estimates of lemma 4.2 apply globally. Hence lemma 4.3 applies for any initial condition
5(0). This leads to a bound \z{t)\ < aem for all t > Tm+1 for some Tm+l > t0. Observe
that \u(t)\ < aKem for all t > Tm+1 where aK depends on a and the feedback gains K. We
define am = max{a,aj(,k\a).
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With this bound on z we define ftn+i = —k\Z\ and proceed by induction showing

that given e;_i sufficiently small, 3e; sufficiently small such that if

l&+i(*)| < flfCt i = i,...,TO

ll*(*)ll < **
\u(t)\ < ai€i

for all t > Ti+i, then

Iyj(t) | < ai_x et_i j = i,...,m

ll*COII < 0,-iQ-i

foraUt>Ti>7;+i.

Assume that et- is chosen sufficiently small such that crt+1 operates in its linear

region for all t > Ti+i. (crm+i can be considered a globally linear function.) Consider the
dynamics for ft,..., ym, z after time Tt+i:

Hi = -<r% + hifa y, z, u, t)

&+i = -2/t+i - °i + h% ftz,u, t)
ft+2 = -yi+2 - ft+i - (*i + hi(fj, ft z, u,t) (4.50)

I = A? - 5(2/m + •••+ ft+i + (?i)

We show that, for et- sufficiently small ft becomes small and after some finite time

Ti > Tt+1 remains in a region such that oi is linear. Consider ft such that |ft| > et- + et-_!
and make the coordinate change

ft+i = ft+i + Oi

Vj = yj j = i + 2,..., to

z = z

Then the dynamics of ft, ft+1,..., ym, z are

yi = -Om(yi)-rhi(fi,y,z,u,t)

h+i = -ft+i + hi+i(fj, ft z, u,t)
JJi+2 = -yi+2 - ft+i +~hi+2{fi, ft z,u, t) (4.51)

I = Az - B(ym + •- + yi+l)
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since, when |ft| > et- + e^i,

oi =0

Mft) = <T»(ft + *t-l(-))

Observe that, for the dynamics of ft+i,.. .,ym,z, lemma 4.1 applies so that, for et- suffi

ciently small, yi+i,...,ym,z converge exponentially toward zero. Point 3 above is crucial

for the perturbations hj for j = i + 1,..., to to remain higher order in the ft+1,..., ym, z
coordinates. Note that, since the control is u = Kz - ym — ft+i, u also converges

exponentially toward zero. We assert that, for small enough e;, and with these "controls"

set to zero, the set M = {yi: |ft| < e; + et_i} is attractive. Further, since the dynamics of

ft satisfy property 2, by theorem 4.2, at some finite time T > Ti+i, yi will enter M.

Consider the dynamics of ft with the "controls" z,ym,..., ft+1, u set to zero:

ft = -^(ft) +^W,ft,...,ft,-^,0,...,0,i)
= -°i{yi) + k + h\

With regard to point 2 above we have |ft+i| = et-. Consider the time derivative of the

Lyapunov function Vi = yf along the trajectories of(4.52):

Vi = 2yi[-Vi(yi) + hf + M]
< 2|ft|[-ei + C1e? + C2e?]

(Note that the term yji] < 0for \ym\ > dem from point 2, and is uniformly higher order for
Iftnl < dei from point 1.) It follows that we must choose et- such that

€i - (Ct + C2)ef < 0

to insure that the set M is attractive with the controls ft+i,..., ym, z, u set to zero.

We show now that for et_i sufficiently small, ft enters and stays in a region where

at-(.) is linear. (Note that e0 = 0.) Again consider the dynamics offt beginning at the time
when ft enters M:

yi = -<7m(ft + <7,-_i) + hi(f},y,z, u,t) (4.53)

We take the derivative of the Lyapunov function Vi = y2 along the trajectories of (4.53)
and employ point 1 from above:

Vi = 2ft[-(7t(ft + <Jt-i) + <7t-(ft) - <7t-(ft) + hi]
< 2|ft|[-|at(ft)| + et_1 + (?<:?]
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First note that if et- - et_i - C3e2 > 0 then the set M is invariant. Second, observe that

given 6i,ei, if et_i satisfies
f. r Sj - C3e2
et-i <

then ft will enter the set Qi = {ft : |ft| < 6i+°3Ci }in finite time and remain in Qi thereafter.
With ft € Qi the argument of Oi is bounded by

|ft + *i-l| < |ft|+|«7t-l|
< ft+CV? ft-C3e?
- 2 "*" 2

< Si

Hence ffi(-) enters in finite time and thereafter remains in its linear region.

Note that after this finite time the dynamics of (ft,..., ym, z) are of an asymp

totically stable linear system perturbed by higher order terms as well as a perturbation of

maximum amplitude €,-_!• Combining lemma 4.1 and lemma 4.3, if et- is sufficiently small

(to start in a small neighborhood ofthe origin) then we can establish bounds |ft| < at_iet_i
for j = i,..., to and ||5|| < a;_iet-_i and |u| < a,-_ie,-_i for all t > Ti > Ti+i. D

4.6.3 Proof of theorem 4.4

Theproof is again constructive. We employ the same convenient coordinate change

as the the case of global stabilization. We will develop how the conditions of assumption

4.3 translate in these new coordinates. Most of the work then lies in showing how these

conditions allow for a semi-globally stabilizing class of control laws.

Coordinate change

As in the case forglobal stabilization we begin bychoosing the input asu = Kz+v

where the gains K are the coefficients of a Hurwitz polynomial. In addition, we add the

condition that the gains K are such that Re a(A) < -1 where A is defined in (4.41). The
coordinate change then proceeds in the same way as in the global case (see section 4.6.2.)
Once again we have

ft = &(»7ift5,M)

= ft+i + •••+ ftn +v + Ef=i TUjhj{fj, T^\y - T2z), z,u, t) (4.54)
= ft+i + '" + ym + v + hi(rj,y,z,u,t)

We proceed to determine the relevant properties of hi.
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Properties of Perturbation Terms

Define ft„+1 = -kizx. Next we establish the properties of hi that follow from

assumption 4.3. First observe that if assumption 4.3.1 applies to hi then the four points

established in section 4.6.2 apply. Otherwise we establish the following properties for hi
and /it-_i that follow from assumption 4.3.2:

for j = i- l,i

1.

\h - hj%yu- ••>ft+i,0,...,0,t)| < (Ift-il 4- |ft| + l)\hj\

where the function hj is bounded for bounded ft+1,..., ym, z,u and higher order in

ft+2, •••, ftn, z, u for bounded ft+i uniformly in r\, ft,..., ft, t.

2. (a)

|^t-i(^ft,...,ft+i,0,...,0,0l<(|2/i| + l)l^-i|

where /&;_! is higher order in ft+i uniformly in ft,...,ft, t and bounded for

bounded ft+i.

(b) hi{fi,yu..., ft+i,0,..., 0,t) depends only on ft+i. Further it is higher order in
ft+i and is bounded for bounded ft+i.

3. For some e0 > 0, hj(fj, ft,..., ft_l5 0,..., 0,t) = 0 for |ft_i| < e0.

Point 1follows from (4.54) byapply assumptions 4.3.2.a and4.2.1 to the appropri

ate termsin the summation that defines hj andthen using Tx to return to the y coordinates.

Consider point 2a. Assume ftt = 0 for k = i + 2,..., to and 5 = 0 and u = 0. From

T{~ this implies Xk = 0 for k = i + 2,..., to and z = 0. By assumption 4.3.2.b this implies
l^t-i| < (\xi\ + l)|&t-i| where /it-_i is higher order in jet-+1 uniformly in n, Xi,..., a:,-, t and is
bounded for bounded zt+i. Also hi is higher order in z,-+1 uniformly in n,xi,...,Xi,t and
bounded for bounded xi+i. Further, assumptions 4.3.2.C and 4.2.3 imply hk = 0 for k =
i + l,...,m. Hence, from (4.54) and 7\, |^_i(^,ft,. ..,ft+i,0,. ..,0,*)| < (|ft| + l)|^_x|
where h-i is higher order in ft+i uniformly in i?,ft,...,ft,i. Consider point 2b. Since
hk = 0 for k = i + 1,...,to, hi = T\uhi. Now hi depends only on jct-+1 and is higher
order in xi+i and bounded for bounded xi+l. Finally, since ft- = 0 for j = i + 2,..., to, it
follows that ft+1 = TUixi+1. Hence, /*tW,ft,...,ft+i,0,...,0,t) depends only on ft+1 and
is higher order in ft+i and bounded for bounded ft+x.
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Consider point 3. For some e0 > 0, assume that |ft_!| < e0 for some e0 > 0.

Further, assume ft = 0 for j = i,...,m and z = 0 and u = 0. From T} this implies

|x;_i| < e0/c for some constant c > 0 and yj = 0 for j = i,...,m and z = 0. Define

e0 = ce0. By assumptions 4.3.2.C and 4.2.3 this implies hj = 0 for j = i - 1,..., to. Finally,

from (4.54), /ijfeft,.. .,ft_2,ft-i,0,...,0,*) = 0for j = i-l,i.

Stability Analysis

Again we will rely on lemmas taken from [Hahn, 1967] which are stated in section

4.6.2. In addition will will use the following lemma in our proof.

Lemma 4.4 Consider the n-dimensional nonlinear system

x = f(x,t)

where \fi(x,t)\ < q{(t) + £J=1 a{j\xj\ for all t > t0. Define the constant matrix A by
Aij = aij. Consider the vectors

m = [M<)i,...,Mi)ir

**) =.[|ft(*)l,...,lfc(i)|]T.

Thenx(t) is bounded as

;(t) <eA^-toh(t0)+ [* eA(f-r)q(T)di
Jto

We begin by formulating a bounded control v to stabilize y using the following
algorithm:

1. let k = to and let v = -crm where am is a simple linear saturation for em,6m to be
specified.

2. if assumption 4.3.1 applies to hk then

(a) let the argument of ak be ft. + (Tk-i(') where Gk-\ is a simple linear saturation
for €k-i,Sk-i to be specified.

(b) let k=k-l

(c) return to step 2.

3. if assumption 4.3.2 applies to hk (and hence hk-i) then
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(a) let the argument of crfc be ftfe + ft_i + crfc_2(-) where <rk-2 is a simple linear
saturation for ek-2,6k-2 to be specified.

(b) let k=k-2

(c) return to step 2.

Weshowthat, given initial conditions in somebounded set X, the values ei,6i can be chosen

to yield asymptotic stability.

The proof proceeds in the same manner as the proof for global stabilizability.

Again we define ym+i = -kizi. In addition, we define k to be the largest index such

that assumption 4.3.2 applies to hi rather than assumption 4.3.1. It follows then from

the proof of the global result that, 3ej for j = k,..., to sufficiently small such that <tj for
j = k + 1,..., to operate in their linear region for all t > Tk+i (<rm+i can be considered as
a globally linear function.)

We now show that 3e* sufficiently small such that for ek-2 sufficiently small Gk

operates in its linear region for all t > Tk > Tk+i. (For k = 2, observe that ek-2 = 0.)

First, we know that u, z and ft for i = k+1,..., to are bounded for all t > 0. Then

since hk-\,hk are globally Lipschitz in ijk-uVk for bounded u,z, yi for i = k+ 1,..., to, 3R
which depends on the initial conditions offt(*0) for i = k- 1,..., to and z(tQ) and on et- for
i = k + 1,..., to such that for j = k —1, k

lft(Tfc+i)| < R.

Consider the dynamics for ftt_i,...,ym,z for t > Tk+i:

yk-i = fa- crk{yk-i + yk + crjt—2) + ~hk-i{fi, ft z,u, t)
ftk = -Ok{yk-i + ftk + Ok-2) + hk{fi,y,z,u,t)

2/fc+i = -yk+i -0k + h+i(ff, ft z, u, t) (4.55)

z = Az - B(ym + •••+ ftb+1 + ak)

Again from the proof ofglobal stabilizability we know that, for all t > Tjt+i,

IftWI < afc+ie*+i i = k + l,...,m

II^WII < afc+iejb+i

K*)l < afc+iejfe+i.
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Then, since hk-i,hk satisfy points 1 and 2 of section 4.6.3, the dynamics of ijk-i, ftt are of
a 2-dimensional nonlinear system satisfying the conditions of lemma 4.4 with

and

where

A =
C€*+i 1+ C€l+i

C^+i ^eJb+i

q(t) =
ek+i + Ce2k+1

mft+i + c4+i _
(since we will choose ek < ek+i.) A simple calculation using lemma 4.4 shows that for some

K depending on e^+i, for j = k - 1,k and Vt > Tk+i

|ft(t)| < RKe<t~T^)

* =c*Ui +^4+1(1 +^+1)

(4.56)

For convenience, we choose e^+i such that a < 0.5.

Now since the linear approximation at theorigin ofthe dynamics offtt+i,..., ym, z
has eigenvalues with real part less than or equal to -1, we can conclude from the lemmas
4.1 and 4.3 that

Ift+iWI < akek + ak+iek+ie-V-K+i) i = k,...,m
||*(*)|| < akek + afc+iefc+ie-('-T*+i)

\u(t)\ < akek + ak+iek+ie-^-Tk+^

foralH>Tfc+i.

We solve for the time tc such that, for all t > tt

Ift'+iWI <2akek i = k,...,m

ll*WII <2afcejb

\u(t)\ < 2akek

We find

afcCfc*c = Tk+i - In
afc+i^fc+i

Further, from (4.56), we determine a bound on ft(t) for Tk+i <t<teioTJ = k-l,kto be

|fc|<jtf(fS±i*±i).sj^
akek

(4.57)
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So then it remains to determine whether ek can be chosen sufficiently small such that a

small neighborhood of the origin is attractive for the dynamics

ftfe-i = ft - Vk(Vk-i + ft +°k-2) + h-i(t)
(4.58)

ft: = -<7fc(ft-l + ft + Ok-2) + hk(t)

from initial conditions such that

Iftl < Rck

for j = k - l,k and where hj satisfy the properties of section 4.6.3. To show that this is

possible we begin with the coordinate change

*i = ft-i + ft

*2 = ft

yielding the dynamics

xi = x2 - 2ak{xi+ <7jb_2) + /i(*)

^2 = -0k(xi + 0k-2) + /2OO

It can be shown that for j = 1,2

(4.59)

l/i-/i(^ft,.-.,ft+i,0,...,0)|<(|a;i| + |rc2| 4- (4.60)

where fj is higher order in ft+2,.--,ftn, z,« uniformly in ft,...,ft+i,t (since ftt+i is
bounded.) Further, it can be shown that

l/iW,ft,...,ft+i,0,...,0)|<(|x2|-|-l)i?e| (4.61)

and f2(fj, ft,..., ft+i, 0,..., 0) depends only on ftt+i and is higher order.

Observe that if \xi(U)\ >ek+ ek-2, then for all t > tb such that |a?i(*)| > ek + ek-2
we have

lft+i(*)l < ek + 2akeke-^-^

lft+2(*)| < 2afc€fce-(*-^) i = k,....,m

IIWII < 2W-(*-<>) (4'62)
\u(t)\ < 2akeke-(t-tb)

This follows from point 3ofsection 4.6.2. Hence, for t > tb and such that \xi(t)\ > ek +ek-2,

l/il < (k2|H-l)^ + (kil + k2| + l)^e-(*-*")
h = C + f2
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where C is a constant and

I/2I < (N + N + l)De2ke^-^
\C\ < Del

Then from (4.56) and (4.57), we have the bound

l/il < \x2\D4 + D*~>
\h\ < D4-«e-(i-«)c-'*) l •6)

These bounds on the nonlinear terms when |zi| > ek-\- ek-2 will play a crucial part in our

analysis.

The remainder of the proof consists of three points. Consider the set

Q = {(xi,x2) : |a?i| <ek + ek-2]

Point 1 will be to show that if x^Q g Qthen 3*c > tc which is finite such that xx(tc) 6 Q
and we establish a worst case value for |z2(tfc)|. Point 2 will be to consider the "Lyapunov-
like" function

W = -(x1-x2)2+-xl (4.64)

which we will demonstrate is uniformly decreasing when xi(t) € Q C\ Uc. Here U is a

neighborhood of the origin depending on €k-2 and such that Ok{xi + Ok-2) = xt + Ok-2
for all x\ € U. (Uc is the complement of U.) Point 3 will be to show that whenever the

trajectory leaves Q it returns to Q and when it does it returns at a lower energy level for
W.

For point 1, define the set

Qr = {(xux2): Xi > ek + ek-2}

and without loss ofgenerality assume xi(te) € Qr. We demonstrate that for ek sufficiently
small and for

2ek + De2~a < x2(t0) < RCk

3td > te such that Xifa) = xi(te) and further,

M*rf)| < x2(to)

In the set Qr the dynamics of (xi,x2) are given by

xi = X2-2ek + fi(t)
„ - / (4-65)

X2 = -€+C + /2(t)
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From the bounds on C and f2(t), x2 is monotonically decreasing for sufficiently small e*.

We now consider theforms of fu f2 which will maximize \x2(td)\. We do this by considering
the instantaneous slope of the trajectory in the (xi,x2) plane. The instantaneous slope is
given by

£2 -6* + C + /a(t)

Since x2 is monotonically decreasing, the actual trajectory will be bounded by two curves.

The outer curve is produced byflowing along the vector field that minimizes the magnitude

of the negative instantaneous slope (xi increasing) and maximizes the positive instanta

neous slope (xi decreasing.) The inner curve is produced by flowing along the vector field

that maximizes the magnitude of the negative instantaneous slopes and minimizes positive

instantaneous slopes. It is straightforwardto seethat, as longas \x2\ < Rtk, the outer curve

is generated by setting fi(t) = Del~a and

hit) ={ H-*e-{t-tb) *2(t) >2ek - De2.a
\ -0€2-e-<*-«»> x2{t) <2ek - De2.a

Likewise, the inner curve is generated by setting fi(t) = -De\~a and

Ut) =1 -ml~a^{t~th)) *2(t) >2ek +De2-a
\ De2k-ae-^-^) x2{t)<ek +De2-a

(The value of C is fixed as a function of ek.) The outer curve gives us a least upper bound

on |x2(*d)|. To compute this bound, we first calculate the time ti on the outer curve such

that x2(ti) = 2ek - De2k~a. The value ofx2(t) for tt < t < Ualong the outer curve is given

by x2(t) =x2(te) - (ek +C)t - ^^[e-t1-")* - 1] (4.67)
(We have temporarily reinitialized tc = 0 for convenience.) Thus, we have (implicitly)

i De2~aU=-^ZcMtc) - 2ek - Z3L-[e-l*-")** - 1] (4.68)

The value of xi(t) for tc < t < U along the outer curve is given by

xi(t) = xl(tc)j-±(ek-C)t2 +[x2(0)-2ek+^ +De2-a]t
(4.69)
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Thus, we have

xi(U) = x1(tc) +T^(x2(tc)-2ek +De2-°+°£l)2
_^^r^t:e-(i-)t,i2 _££iri_e:(i-.,tn (4-70)

2(Cfe-C)L l-cr e J (l-a)2^ e J

We now continue the flow beginning at the point (xi(ti),x2(ti)). Then for U < t < td the

flow along the outer curve is given by

*i(t) = x1(ti)^[x2(ti)-2€k +D^-a-?^e^l"a^]t-^(€k'-C)t2
-0^e-{1-Q)ti[e-{1-Q)t-l] (4-71)

x2(t) = x2(ti) - (ek - C)t +£^e-(i-«)*.[e-(i-")t _ i]
(We have reinitialized ti = 0for convenience.) We are now interested in determining x2(td)
where ^ is such that Xi(td) = xi(t0). Since we are interested in a worst case bound for

|x2(t(f)| and x2 is monotonically decreasing in the region we are considering, it suffices to

determine a least upper bound for td. We find that

1 / Df2~a ne2~aU<U +̂ -cfMU) - 2e* +D4~" +f^-Y +2(ek -C)0-^ (4.72)
Consequently, we can conclude that

x2(td) > 2ek - Dej-a - (x2(t0) - 2ek + De2'" + ^),2-a /_ ,., x o- , ^,2-a , &£-'

-^-C)^ (4.73)

It is readily apparent that e* can be chosen sufficiently small sothat |x2(^)| < |ar2(tc)| since

it was assumed that x2(tc) is positive. In fact, for later purposes it is important to note

that ek can be chosen sufficiently small so that x2(td) > -x2(to) + 3ek.

We continue now with point 1 and, without loss of generality, assume that the

trajectory of (xu x2) begins at the point (xi(td), x2(td)) = [RCk, -RCk). Again note that x2
is monotonically decreasing. In (4.63) we will assume a bound on \x2\ to be |x2| < aRCk (a
constant and independent ofek) and hence |/i| < aDe\~a. Then, since x2 is monotonically
decreasing from -RCk, if we can show that \x2(tc)\ < aRCk (where xi(tc) = ek + ek-2) then
this is a worst case bound on |z2(*c)|. To maximize |z2(*c)| we again flow along the outer
curve described previously. The flow is given by

*i(t) = x1(td) +[x2(td)-2ek +aDe2k-a-2£^]t-%(ek-C)t2
-W^[e-(1-a)t ~1] 2 (4.74)

x2{t) = x2(td)-(ek-C)t+^-[e-(1-°')t-l]
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In this instance, a worst case bound on tc is given by

tc <—ZTctt +y/b2 +2(ek-C)c] (4.75)
€k-C

where

6 = RCk - 2ek +aDe\-a - ^
Dc2~a

C = RCk + (i-a)2 ~ Cfc ~ ffc-2
Then |a;2(fc)| is bounded by

.2-a

a (4.76)

2-aDe il*2(*e)| <Rck +j^b+Jb2 +2(ek - C)c (4.77)

It is straightforward to see that, for ek sufficiently small, a worst case bound on \x2{tc)\ is
given by

|*2(*e)| < o.Rtk (4.78)

for a > 3.

We are now ready to move to point 2. Here we show that we can choose ek and

€jt_2 sufficiently small, such that for W defined by (4.64), W < 0 for all x e Q. Consider
W along the trajectories of (4.65):

W - (xi- z2)[£i - x2] + x2x2

= (xi - x2)[x2 - 2ok(x1 +ak_2) +/i(t) +<rk(xi +ak-2) - f2(t)] (4.79)
+X2[-(Tk(xi + (7fc_2) + f2(t)]

Recall that, in Q, we have the bounds (for j = 1,2):

l/j|<(N + N + i)£>4

Hence,

*F < -XiCTfc(a;i + ok_2) + a?ia;2 - a;2,

+(l*l| + l*2|)(N + |*2| + l)2?€j)
< -0.5z2 _ 0.5a;| - 0.5(zi - z2)2 + Xl(xx - ak{xx + crfc_2))

Jt{\xx\ + \x2\){\xl\ + \x2\^l)De2k
Consider the level set

W= i(/fc*_2)2
and define U to be the interior of this level set. On this level set, (a circle of radius 0ek in
the original yk_i,yk coordinates), it can be shown that

fck-2 < M < V20ek-2
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for i = 1,2. Also notice that for Xi € Q,

\xi - ok(xi + <7fc_2)| < efc_2

Consequently, we have on this level set

W < -0.5(j3ek.2)2 - 0.5(kpek.2)2 +k$e\_2 + (2kpek-2)(2k(3e+ l)De\

where A: 6 [1, \/2]. As a function of k we have

W < -[(.5/?2 - A(32De2k)k2 -(13 + 2pDe2k)k + .5p2]e2k_2

Then since k € [l,v^]» we can choose /?(/?> 2 is sufficient) such that ejt can be chosen
sufficiently small such that W < 0 on this level set. Since, for ek small enough, W is

bounded by a quadratic negative definite function plus a linear perturbation in Q, W < 0

in Q (1J7C. Notice also, for €jt_2 small enough, ok operates in its linear region for all x 6 U.

Finally, for point 3, we demonstrate that, for ek small enough, whenever the tra

jectory leaves Q it returns to Q at a lower energy level of W. We simply need to show that

this is true for \x2\ < aRtk where a comes from (4.78). We demonstrate that this follows

from the first part of point 1. We can consider trajectories that enter Qr from Q at some

time t0 without loss of generality. Consequently a?i(t0) = ek + ek_2. From the first part of

point 1, by incorporating the constant a intothe constant D perhaps further decreasing ek,

it follows that for each a?i(t0) € Qr and each aRCk > x2(t0) > 2ek + De2."" there exists a td
such that xi(td) = a?i(0) and

x2(td) > -x2(t0)+ Sek. (4.80)

Consider

W(td) - W(t0) =^(td) - x2{td))2 +x2(td)2] - i[(*i(t0) - *2(t0))2 - a:2(t0)2]
From (4.80) and the lower bound of a;2(to) we can conclude that

\[X2(td? - x2(t0)]2 <0.
Also from (4.80) the remaining terms are bounded as

[xi(td) - x2(td)]2 - Mt0) - x2(t0)]2 <[xi(to) +z2(t0) - 3e*]2 - [xi(to) - x2(t0)]2

< [x2(tQ - xi(to) -ek + 2ejfe_2]2 - [x2{tQ) - a?i(t0)]2
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If e&_2 < \ek then this quantity is also less than zero since x2(t0) > 2ek + De\~a and
x\(tQ) = ek + ejb_2.

The above three points demonstrate that xi,x2 eventually enter U where ak is

linear. So it follows that ftt_i, yk eventually enter a neighborhood of the origin where ok is

linear. The size of this neighborhood is determined by cjt_2. The remainder of the proof

follows by induction using either the global or semi-global result when appropriate. (Point
3 of section 4.6.3 is used to conclude (4.62) in the subsequent step of the induction.) D



Chapter 5

Beyond Linear Feedback for the

Nonlinear Regulator

79

In this chapter,we address the tracking problem for nonlinear systems. We demon

strate that, for small reference signals, solving the stabilization problem goes a long way

toward solving the tracking problem. The method for augmenting the stabilizing control to

achieve tracking comes directly from the nonlinear regulator theory developed by Byrnes

and Isidori ([Byrnes and Isidori, 1990]). We use the stabilizing control laws developed in
the previous chapters to achieve small signal tracking with large domains of attraction for

the associated class of systems. In point of fact, the systems of chapter 4 typically do not

have a well-defined relative degree, and hence, the results of [Grizzle et al, 1991] indicate

that exact tracking for an open set of trajectories is not possible. Nevertheless, combining

the regulator theory of [Byrnes and Isidori, 1990] with the control laws of the previous
chapter, we are able to achieve approximate tracking results that compare quite favorably

to the approximate linearization results of [Hauser et al, 1992] when comparing domains
of attraction and ability to achieve arbitrarily small tracking error.

5.1 Introduction

As in [Teel, 1991], we seek to expand the region of attraction of the zero-error
manifold of nonlinear regulator theory developed in [Byrnes and Isidori, 1990]. In [Teel,
1991], we approached this problem bydeforming the manifold so that the initial state ofthe
system started close to the deformed manifold and then allowed the deformed manifold to
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decay slowly to the zero-error manifold. We then used standard linear feedback to regulate
to this deformed manifold. For some systems this approach yielded dramatic improvements.
Nevertheless, the result was still inherently local. Afurther drawback to this approach was
that (approximate) knowledge of the initial state of the system was needed. Also, dynamic
states equal to the number of states of the system were added to the compensator.

In this paper, we seek to expand the region of attraction without deforming the
manifold. We propose replacing the standard linear feedback used to regulate to the man
ifold with nonlinear feedback based on global or semi-globally stabilizing control laws for
unperturbed systems. We show that this approach yields theoretical reasons for an increased

domain of attraction. We demonstrate an application of this approach using the frequently
studied "ball and beam" example presented in [Hauser et al., 1992]. For this example, we
choose the semi-globally stabilizing control law developed in the previous chapter.

5.2 Problem Statement

The task at hand is to achieve (perhaps approximate) tracking for the system

x = f(x) + g(x)u + p(x)w

y = h(x) (5J)
where x € Rn, u € Rm and w€ WC U* is a disturbance. As usual, / and the columns of
g and p are assumed to be smooth vector fields and h(x) is a smooth mapping on Rn. We
assume that the desired trajectory and the disturbance are generated by an autonomous,
Poisson stable exosystem

w = s(w)
(5.2)

yd = -q{w)

where s is a smooth vector field and q(w) is a smooth mapping defined on W. The Poisson
stability ofthe exosystem implies that the eigenvalues of the linear approximation of the
exosystem lie on the imaginary axis. For simplicity we assume that /(0) = 0, s(0) = 0,
h(0) = 0and g(0) = 0so that, for u= 0the composite system (5.1), (5.2) has an equilibrium
state (x,w) = (0,0) which yields zero tracking error.

We will focus on finding a state feedback u= a(x, w) that yields (perhaps approx
imate) tracking.
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5.3 The solution

As isstandard in nonlinear regulator theory (see [Byrnes and Isidori, 1990], [Huang

and Rugh, 1990b]) our starting point will be to assume that we can solve the following
partial differential and algebraic equations (at least approximately) for n(w) and c(w) which
characterize thezero-error manifold and thefeedforward that renders themanifold invariant,
respectively:

fe*(«0 = f(*(w)) +g(*(w))c(w) +p(ir(w))w
h(ir(w))+q(w) = 0

The standard nonlinear regulator solution is then to choose the feedback

(5.3)

u = c(w) + K[x - 7r(iy)] (5.4)

where K is a linear gain matrix that stabilizes the Jacobian linear approximation of (5.1).
This, of course, assumes that the linear approximation of (5.1) is stabilizable. For the
nonlinear regulator problem, thefeedback (5.4) solves the tracking problem for sufficiently
small (x(Q), w(Q)). We will retain the requirement that w(Q) is sufficiently small, but we
will allow x(Q) to be large.

Consider the system (5.1) disconnected from the exosystem:

x = f(x) + g(x)u (5.5)

Let u = (p(x), with (p(0) = 0, be a smooth control that renders the equilibrium x = 0

of (5.5) globally asymptotically stable and locally exponentially stable. We then have the
following result.

Theorem 5.1 3e0 such that for any e < e0, if \w(t)\ < e for all t > 0, then the control
u = c(w) + cp(x - x(w)) solves the nonlinear regulator problem with basin of attraction
containing the ball \x(Q)\ < k(\) for some class-K function «(•).

Proof. The proof uses the total stability result of Sontag [Sontag, 1990]. Define

F(x,w):=f(x) + g(x)[c(w) + (p(x-w(w))] + p(x)w (5.6)

Since c(0) = 0 and 7r(0) = 0, we have that x - F(x,0) is globally asymptotically stable.
Therefore, there exists a smooth, positive definite and proper Lyapunov function

V : Rn - R
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such that

dV(x)-F(x,0)<0

for all nonzero x. It then follows that

dV(x)-F(x,w)<0 (5.7)

for all |w| < 0(\x\) for some continuous function 0:R+ -> R+ such that 0(0) = 0 and that is
decreasing on [l,oo). (See [Sontag, 1990, Lemmas 3.1,3.2].) Then, for some e0 sufficiently
small and any e < e0, we can deduce from the function $(•) two class-K functions «i and
k2 such that

dV(x)-F(x,w)<0 (5.8)

for all a; € Rn satisfying

«i(<0 < M < k2(-) (5.9)

Since V is proper we can deduce a class-K function « such that every initial condition

satisfying |x(0)| < k(\) leads to a trajectory that is driven to some small neighborhood of
the origin. If e0 sufficiently small then for all e < e0 wehavereturned to the local nonlinear

regulator problem. Since, u - <p(x) is smooth and locally exponentially stabilizes theorigin
of(5.5) the linear approximation ofthe composite closed loop isin theform for which center

manifold theory applies. Since <p(Q) = 0, u= c(w) +<p(x-w(w)), and c(w) and ir(u>) satisfy
(5.3) and since <p is a locally exponential stabilizer, x = ic(w) is an attractive, invariant
manifold for the closed loop. Finally, also from (5.3), the tracking error approaches zero
asymptotically. •

Remark. Although we will not show it here, the results of the theorem extend

readily to the approximate regulator problem (where the manifold equation (5.3) is solved
up to some arbitrary order), and tothe use of semi-globally stabilizing controls (u = <p(x,p)
where the basin of attraction ofthe system (5.5) can be made arbitrarily large by choice of
P.)

5.4 Example: the "ball and beam"

We demonstrate the capabilities of this approach on the "ball and beam" exam

ple which has been studied with regard to approximate tracking in [Hauser et al, 1992],
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[Castillo, 1990], [Huang and Rugh, 1990a] and [Teel, 1991]. The dynamics of this system
can be modeled as

X\ = x2

x2 = xxx\-Gsm(xz)
X3 = x4 (5.10)

Xa = U

y = xi

where xi is ball position, x2 is ball velocity, a?3 is the angle of the beam, and xA is the

beam's angular velocity. (For a derivation of these equations, see [Hauser et al, 1992].)
For simplicity, we have normalized the acceleration due to gravity to be G - 1 in our

simulations. In chapter 4 it was shown that the control law

u = (p(x) = -4x3 - 4s4 - (7(2/! + y2) (5.11)

where

2/1 = -ix!-^x2 + 5x3 + XA
(5.12)

y2 = —̂ a;2 + 4ar3 + ar4

and o(') satisfies

1. o(s) = 5 for all \s\ < 6

2. \<t(s)\ = 6 for all \s\ > 6

for some 6 > 0 is an example ofa semi-globally stabilizing control law for (5.10). The basin
of attraction for x = 0 can be made arbitrarily large by making 6 arbitrarily small.

The task at hand is to cause the ball position xi to (at least almost) track a
sinusoid generated by the exosystem

ib\ — —\w2

w2 = Xwi (5.13)

q(w) = -wi

As seen in [Castillo, 1990] and [Huang and Rugh, 1990a] approximating the manifold to ei
ther first or third order yields nice approximate tracking results. A first order approximation
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Figure 5.1: Tracking Results for the "ball and beam"

to the mappings x = ir(w) and u = c(w) are given by

TTi(iy) = Wi

tt2(w) = -Xw2

7T4(w) = -^X3W2
c(w) = -^X4wi
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(5.14)

For simulation purposes, for the exosystem (5.13), we chose A = gj, wi(0) = 15 and
w2(0) = 0. Consequently, the task is for the ball position, xu to track 15 •cos(^t). We
choose the control

u = c(w) + (p(x - x(w)) (5.15)

with c(w) and w(w) specified in (5.14) and (p specified in (5.11). To demonstrate regulation
from a difficult initial condition, we choose the initial angle of the beam to be 90° and the

ball to be a position slightly below the pivot of the beam at xt = -1. We give the ball zero
initial velocity and the beam zero initial angular velocity. The results of the simulation are

demonstrated in figures 5.1, 5.2 and 5.3.
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Figure 5.3: Steady-state performance
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5.5 Conclusion

We have demonstrated that the useof nonlinear feedback in place of linear feedback

in the nonlinear regulator problem expands the domains of attraction when the nonlinear

feedback is known to be a global or semi-global stabilizer. This was done to show the

usefulness of studying stabilization problems independent of tracking problems. •



Chapter 6

Nonholonomic Control Systems:

From Steering to Stabilization

with Sinusoids
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In this chapter, weinvestigate the stabilizability of nonholonomic control systems.

Much of the work in this chapter is joint work with Richard Murray and Greg Walsh (see
[Teel et al, 1992]). After reviewing the general setting and discussing previous results, we
propose a new family of stabilizing control laws for a class of nonholonomic control systems.

We do so by combining previous open loop steering with sinusoids results in the literature

[Murray and Sastry, 1991a] with feedback.

6.1 Introduction

This paper focuses on the problem of point stabilization for a control system of
the form

m

x=^9i(x)ui x € Rn, (6.1)

where each # is a smooth vector field on Rn and the&'s are linearly independent for all x £
Rn. Systems of this form arise in the study ofmechanical systems with velocity constraints
and have received renewed attention as an example of strongly nonlinear systems. For such

systems, control methods based onlinearization cannot be applied and nonlinear techniques

must be utilized. We are particularly interested in the case where the nonlinear system (6.1)
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is completely controllable, corresponding to a set of maximally nonholonomic constraints

which do not restrict the stateofthe system to asubmanifold ofthe state space. See [Murray

and Sastry, 1990] for a more detailed derivation and motivation. We refer to a system with
these properties as a nonholonomic control system.

A fundamental problem in the study of nonholonomic control systems is the gen

eration of open-loop trajectories connecting two states. That is, given an initial state x0

and a final state xi, find an input u(t), t € [0,1] such that x(0) = x0 and x(l) = xx. Such
an input induces a feasible state trajectory which automatically satisfies the constraints on

the system. The condition for the existence of a path between two configurations is given
by Chow's theorem. We let [f,g] be the Lie bracket between two vector fields,

and define theinvolutive closure ofadistribution A as the closure ofA under Lie bracketing.
Briefly, Chow's theorem states that if the involutive closure of the distribution associated

with equation (6.1) spans Rn at each configuration, the system can be steered between

any two configurations. Initial work in constructing paths between configurations includes

[Jacobs et al, 1990, Laumond and Simeon, 1989], [Li and Canny, 1990], and [Lafferriere and
Sussmann, 1991, Sussmann and Liu, 1991], as well as [Murray and Sastry,-1990, Murray
and Sastry, 1991b]. In this paper we concentrate on a different problem: stabilization to a
point.

A control law u = k(x,t) stabilizes a point x0 6 Rn if x(t) -* x0 as t -• oo for all
initial conditions of the system. For a nonholonomic control system, the dependence of a

stabilizing control law on time is essential since the system (6.1) does not satisfy Brockett's
necessary condition for smooth stabilization [Brockett, 1983]. Hence there does not exist a

smooth static state feedback law which stabilizes the system to a point. Recent work by
Coron has shown that it is possible to stabilize anonholonomic system using time-varying
feedback [Coron, 1991]. Constructive approaches have been presented by Samson [Samson
and Ait-Abderrahim, 1991] and Pomet [Pomet, 1992]. In this paper we present some new
control laws for a specific class of systems, namely those in so-called chained form [Murray
and Sastry, 1991b]. These control laws are based on earlier work using sinusoids for open-
loop planning and have connections with the recent work in [Sussmann and Liu, 1991].
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Chained systems. We restrict attention to a special class of nonholonomic systems,

called chained systems [Murray and Sastry, 1991b]. Atwo-input system with a single chain
has the form:

£1 = n

6 = t>2

6 = &i>i

i* = 6* (6-2)

& = Zn-lVl.

This system is controllable using the input vector fields and Lie brackets ofthe form ad*02,

where ad/# is the iterated Lie bracket [/,[/,...,[/,g]...,]] (k copies of /).

Under some conditions, it is possible to convert a two-input nonholonomic system

into a system with the form of equation (6.2) using feedback transformations. Sufficient

conditions for doing this are presented in [Murray and Sastry, 1991b]. In particular, it can

be shown that under certain regularity conditions all two-input nonholonomic systems in R3

can be put into this form. More complicated examples of nonholonomic systems which are

locally feedback equivalent to a chained form include kinematic models of an automobile

and an automobile towing a trailer.

Chained systems can be steered between two arbitrary configurations using the
following algorithm.

Algorithm 1

1. Steer £i and f2 to their desired values.

2. For each &+2, k > 1, steer &+2 to its final value using vi = a sin*, v2 = 6cos Art,
where a and b satisfy

&«(*) -&+2(0) =y?p- •2x.
This algorithm uses n path segments to steer the system. It is also possible to steer the

system using a linear combination of sinusoidal terms at different frequencies by solving a
polynomial equation for the coefficients of the sinusoids.
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Power form. Related to chained form is a second canonical form which we refer to as

"power form":

X\ = U\

x2 — u2

£3 = X\U2

1 2 (6-3)Xa = ^X\U2

Like chained form, the control Lie algebra for this system is spanned by the input vector

fields and Lie products of the form adja02. The power form is related to the chained form
through a global coordinate transformation:

xi = fi

x2 = (2

X3 = -fa + fif2

X4 = f4-flf3 + *f12f2Itfr (6-4)

xn = (-irfn+Er^H-iy^fr'fi
The advantage of using power form over chained form is that given u\ and u2,

we can quickly solve for the motion ofany ofthe state variables using only the trajectory
of xi and the function u2. This canonical form also arises in the work of Grayson and
Grossman in the context of generating systems of vector fields which realize a nilpotent
control Lie algebra ofa given order [Grayson and Grossman, 1987]. It is also worthwhile to

note that this form satisfies some ofthe simplifying assumptions used by Pomet togenerate
controllers for more general nonholonomic control systems [Pomet, 1992].

In the sequel, we will restrict our results to those that apply to systems in chained
form or, equivalently, power form. The are several reasons for taking this action. Systems
which are inchained form characterize the fundamental difficulties ofnonholonomic systems
in a very simple and useful form. By understanding the geometry of controllers applied to
chained form, we hope to understand the geometry of controllers applied to more general
nonholonomic systems. This point ofview has been used very successfully by Sussmann,
who has shown how results applied to a "symbolic" representation of the control system
can be used to understand systems with a compatible control Lie algebra [Lafferriere and
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Sussmann, 1991]. Chained systems can be regarded as arealization of a class of "symbolic"
control systems with a particular Lie algebraic structure.

The goal of this paper is to present a class of control laws with strong geometric

intuition which asymptotically stabilize an arbitrary chained system with two inputs and

a single chain. We are optimistic that the stabilizing controllers presented here can be

extended to the more general case and that by understanding their action on a canonical

system we canunderstandtheir extension to systemswith a similar Liealgebraic structure.

6.2 Local Stabilization

Inthis section we propose aclass oflocally stabilizing inputs for (6.3). Tomotivate
our approach, we consider first the simplest such system:

X\ = U\

x2 - u2 (6.5)

X3 = X\U2

From the discussion of chained systems above, weknow that motionin the x3 direction can

be achieved using sinusoidal inputs u\ = asint and u2 = 6cost. Integrating the differential
equations over one period, the resulting motion is a closed curve in x\ and x2 and a net

motion of —(ab)ir in £3. This suggests that the following control law

U\ = —x\ —a;2sint
(6.6)

u2 = —X2 — X3 cos t

might be used to stabilize the system. The intuition is that if x3 is slowly varying then
the average motion (over one period) in the x3 coordinate can be approximated by setting
a= -&§, 6= -x3 which would give anet motion in x3 of -x%ir, i.e., x3 would converge to
zero.

To prove stability in amore rigorous fashion we make use ofcenter manifold theory

and averaging. For the purposes of the proof, we realize the time-varying feedback law by
augmenting the controller with an exosystem

wi = w2 u>i(0) = 0

w2 = -w\ iu2(0) = 1,
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and write the control law as

U\ = —Xi — X3W\

u2 = —x2 — x3w2.

The closed loop system (including exosystem) has a local center manifold given by

x\ = ni(x3,wi,w2)

x2 = ?r2(a:3, wi, w2),

which is approximately given by

*i = -2^3(^1 ~ w2)
7T2 = -\x3(wi +W2).

The dynamics ofthe system evaluated on the center manifold are (approximately) given by

x3 = --xl(wi - w2)2.

An averaging-like coordinate change can then be made to show that the complete system
is locally, asymptotically stable to the origin. For x3 small, the higher order nature of x%
plays the role of the small parameter e usually found in averaging results.

We now consider the stabilization ofan arbitrary system in power form. We begin
with a local result and extend the controller to provide global convergence in the next
section.

Theorem 6.1 Every pair of inputs

«i = ^i-(Ei=i2^+2)(sin(t)-cos(t))
U2 = -*2-E?=l W+2C08(jt)

with Cj > 0 locally asymptotically stabilizes the origin of (6.3).

Remark. The control law given in theorem 6.1 is a generalization ofthe simple
controller presented earlier. We have added a cosine term to ux to make theproof tractable.
It can be seen that, for the simple example, this extra term adds a term on the manifold of

zero average. Sinusoids at integrally related frequencies are used to generate motion in the

different bracket directions in such a way as to stabilize the system to the origin. We note
that the control law requires neither the use ofhigh-frequency sinusoids, such as those used
by Sussmann and Liu for open loop steering [Sussmann and Liu, 1991] (see also [Tilbury
et al, 1992]), nor does it require the use of a leading e coefficient as typically used when
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applying averaging techniques. Likewise, compared to the work of [Gurvits and Li, 1992],

even though we employ an averaging like analysis, we donot require high-frequency sinusoids

and we do not settle for stabilization to an arbitrarily small set. Furthermore, the weights
Cj can be adjusted to control the rate of convergence in the different coordinate directions

in a straightforward manner.

Proof of theorem 6.1. The proof of theorem 6.1 will require applications of center

manifold theory (see [Carr, 1981]), techniques used in averaging theory (see [Guckenheimer
and Holmes, 1983] or [Hale, 1969]) and a case specific Lyapunov result. Center manifold
theory does not apply directly to (6.3), (6.7) because the time-varying terms in (6.7) are
0(1). Nevertheless, we can demonstrate the following lemma regarding a class ofsystems
to which (6.3), (6.7) can be transformed. We use the notation of [Carr, 1981] so that
/ (0,0, w) refers to the partial derivative of / with respect to all variables and evaluated at
(y,z,w)= (0,0, w).

Lemma 6.1 ("Time-varying" Center Manifold) Consider the system

y = By + g(y,z,w)

z = Az+f(y,z,w)

w = Sw

(6.8)

with y e Rn, z € Rm, w € Rp and where the eigenvalues of B have negative real part
and the eigenvalues of A and S have zero real part. The functions f,g and h are C2 with
f(0,0, w) =0, /'(0,0, w) =0, g(0,0, w) =0, and g'(0,0, w) =0. Then, given M> 0, there
exists a center manifold for (6.8), y = h(z,w) for \w\ < M, \z\ < 6(M), for some 6 > 0
and dependent on M, where h is C2 and h(0, w) = 0, ti(Q, w) = 0.

Proof. See appendix.

To transform (6.3), (6.7) into a system for which lemma 6.1 applies, we begin by
defining n- 2linear oscillators which will generate the time-varying terms of (6.7). Let

Wi =
wxj 0 j

^2j J [-i o
We choose wij(0) = 0, w2j(0) = 1 so that wxi = sin(jt) and w2j = cos jt. Ifwe define the
vector

to =[ti>x ... ti;n_2 ]

Wij

w2j
= S3JW5 (6.9)
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we have

w = Sw (6.10)

where S is a block diagonal matrix with the jth. block given by Sjj. Next, partition the
original state space as

Xl

x2 2/i

_

y2

x3

• z

xn

x =

so that y € R2 and z € Rm with m= n- 2. For the closed loop system we have

2/i = ~2/i - wTDzTz

fa = -3/2 - wTCz
z = f(y,z,w)

w = Sw

(6.11)

(6.12)

where / is C2 with /(0,0,w) = 0 and f'(0,0,w) = 0. The matrix C € R2mx"» is block
diagonal with the jth block given by the column vector

Cjj — (6.13)

and D € R2m is given by
r T

D= [1 _l 0 ... o] (6.14)
We then make a coordinate change in y2 to eliminate the linear time-varying dependence
of z in the fa equation. We choose y2 = y2- zTE2w where n2 solves the matrix equation

n25 = -JTI2 - CT (6.15)

(The solution to this matrix equation always exists because the spectrum of S is disjoint
from the spectrum of /.) We then have

h = fo- zTE2w - zTTl2w

= -3/2 - zTCTw - zTJI2Sw - fT(y, z,w)Tl2w
= -2/2 + zTTL2w - fT(y, z,w)Tl2w
= -y2 + g2(y,z,w)
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where g2(0,0, w) = 0and g'2(0,0, w) =0. We make the same kind ofcoordinate change for
yx. We choose yx = yx —zTzJlxw where Hi solves the matrix equation

IlxS = -mx - DT (6.17)

We then have

y\ - fa- zTzILxw - 2zTzExw

= -3/1 - zTzDTw - zTzIlxSw - 2zTf(y, z,w)ILxw
= -2/i + zTzILxw - 2zTf(y,z,w)Tlxw
= -yi + gi(y,z,w)

where gx(0,0, w) = 0, ^(0,0, w) =0 and ^'(0,0, t/>) = 0.
Now, from lemma 6.1 there is a center manifold y = h(z, w),\z\ < 6, \w\ < M for

y = -Iy + g(y,z,w)

z = f(y,z,w) (6.19)

w = Sw

where h(0,w) =0 and h'(0,w) =0. In fact, since gx{0,0,w) =0, one can use an approx
imation theorem [Carr, 1981, theorem 3] or calculate to show that h[\0, w) = 0 (where
h= [hx,h2] ). Now it is sufficient to analyze the dynamics of the reduced system

w = Sw

Further, since h(0,w) = 0 and the dynamics of w are autonomous with \w(t)\ < M for
all *> 0 for some M > 0, it is sufficient to check the stability of z = 0 for the following
"time-varying" nonlinear differential equation:

ii = (hx + zTzllxw)(-h2 + wTSTri$z)

': (6.21)

** = ir(fci + *T*nlWH-/*2 + wTsTi$z)

First, because h(0, w) = 0, h'(Q, w) =0and Aj(0, to) =0we can write the dynamics ofz as

>i = (z^niw^^Sw +Of*)4
i2 = %(zTzExw)2{zTH2Sw) + 0(z)6

(6.22)

im = ^r(2rTzniw)m(zTn25'w) +0(^)2("l+l)
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Now we determine expressions for Hi and n2 to examine the explicit time dependence of

(6.22). From the block structure of 5 and C it follows that n2 also has a block structure

where the jth. block satisfies the matrix equation

It can be shown that

and, hence,

Thus we have
m • .2

wTSTUT2z =£ cj[-f- sm(jt) - -2— cos(jt))zj (6.23)
i=l l 'r J L~rj

Now from (6.17) it can be shown that

III =[0 1 0 ••• 0]

so that zTzUxw - zTz cos(t). We now consider the product

\{zTzuxw)\wTsT\i*z)
given by

•I / 771 >2 \^zTz cos(t))'' Ig qlj+jg sin(jt) - jL- cosUt)]Zjj (6.24)
Using the identity

cos(i) cos(kt) = -[cos((A: - l)t) + cos((& + l)t)]

n2j,^ = -m2j - cjj

n2ii =[ -t&cj -T&cj]

U2jjSjj =[ TipCj -j+pCj

21

it can be shown that
t

cos*'(*) =£ OLik cos([i - 2{k - l))t) (6.25)
Jb=l

where onk > 0 and t - ±+ 1 if i is even and *±! if %is odd.

At this point, we would like to apply averaging to the terms in (6.24) to conclude
asymptotic stability. However, since we are not using high frequency sinusoids and we do
not have exponential stability for the averaged system, general averaging results do not
apply. Nevertheless, a very specific averaging result which covers the class of systems we
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have can be asserted. We describe this result in the next two lemmas. The uniformly
higher order characteristic of our equations eliminates the need for a small parameter (or
alternatively, very high frequencies). We are able to find a case specific Lyapunov function
that demonstrates asymptotic stability in the presence ofsmall time-varying disturbances
without requiring exponential stability.

Lemma 6.2 ("Averaging" transformation) Consider the time-varying nonlinear
system

x = f(x,t) (6.26)

where f isofperiod T in t and is Cr and the ith entry ofthe vector f satisfies /,- = 0(x)2i+1.
Then there exists aCr local change ofcoordinates x = y+V(y,t) under which (6.26) becomes

2/ = /(3/) + /(3/i<) (6.27)

where f is the time average off and fi(y,t) = 0(y)2i+2 and of period T in t.

Proof. See appendix.

Lemma 6.3 (Case Specific Lyapunov result) Consider the system

y = f(y) + f(y,t) (6.28)

where y € Rn. If

\Mv,t)\<M\v\\*l*> (6.29)
for all y in some open neighborhood of the origin and

f(y) = Aij){y) (6.30)

where A is a square lower triangular matrix with an < 0 for i = l,...,n and

My) = yi\\y\\2i (6.31)

then the origin of (6.28) is locally asymptotically stable.

Proof. See appendix.

Now we make the coordinate transformation of lemma 6.2 to pull out the lowest

order terms on each line of equation (6.22) with nonzero average. Using (6.24) and (6.25)
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we can show that this transformation yields a system possessing the (triangular) structure
of the system in lemma 6.3. In fact, the aj/s of lemma 6.3 are given by

1 i2
ajj = -2]i-TTpajlCj

Since ctjX,Cj > 0, thelocal asymptotic stability ofthe origin of(6.3), (6.7) then follows from
lemma 6.3. •

6.3 Global Stabilization

In this section we propose a class of smooth, time-varying, globally stabilizing
inputs for (6.3). Near the origin these control laws will exactly match the locally stabilizing
control laws proposed in section 6.2. We introduce saturation functions in these control

laws to eliminate destabilizing effects that take place away from the origin.

Theorem 6.2 Given anypair of inputs

m = -xx-a((J2]-2x2j+2)k)2(sm(t)-cos(t))
U2 = -X2-^~2Cj(7{Xj+2)cOS(jt)

with cj > 0 and with a :R —• R a nondecreasing C3 function satisfying

1. a(s) = s when \s\ < 6

2. \o(s)\ < e for all s € R

(6.32)

for some 0 < S< e, 3e0 such that ife<e0 then the origin of (6.3) is globally asymptotically
stable.

Proof of theorem 6.2. The proof oftheorem 6.2 is very much in the spirit ofthe proof
oftheorem 6.1. We begin by defining the same oscillators as in (6.9) and we make the same
partition of the state space as in (6.11). For (6.3), (6.32) we have

2/i = -yi-wTDa(\\z\\)2
fa = -2/2 - wTCa(z)

(6-33)* = /(y»^w)

w = Sw
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where

*(*)= [*(*i) ••• o(zm)]
The matrices C and D are as defined in (6.13) and (6.14) respectively.

We make the coordinate change

fa = yi - <^(M\)2Tlxw

fa = 2/2 - vT(z)IL2w

where Hi and n2 satisfy (6.17) and (6.15) respectively.

We then have

*i = -fa-*<\\z\\)^M\-lzTf{y,z,w)nxw
= -fa + 9i(faz,w)

'h = -fa-fT{y,z,w)%TTL2w
= -fa + 92(y,z,w)

We now wish to show that given esufficiently small, there is a center manifold y = h(z, w),
z € Rm, \w\ < M for

y = -Iy + g(y,z,w)

* = f($,*,w) (6.35)

w = Sw

where h(Q, w) = 0 and ti(Q,w) = 0. To do so, following the proof of [Carr, 1981, theorem
l], we must show that given M > 0 and for e sufficiently small, there exists a continuous
function «(e) with «(0) = 0 such that

\f(V>z>w)\ + \g(y9 z,w)\ < €K(e)

\f(fa*,v>)-f(y\z,w')\ < K(€)(|y-y| +|*-*'| +|w-t»'|) (6.36)
\d(faz, w) - g(y,z,w)\ < «(e) (\y - y\ +\z-z\ +\w- to'|)

for all z,z 6 Rm, and all w, w € Rp with \w\, \w'\ < M and all y, y 6 Rn with \y\, \y\ < e.
It can be shown that / satisfies this relationship, since every dependence on z in / is as the

argument ofa saturation function bounded by e. Then, since / satisfies these relationships,
it follows from (6.34) that g also satisfies these relationships by noting that a is C3 and
hence its partials are bounded and |jt|tt| <bfor some positive constant 6.

Next we show that, for e sufficiently small, the manifold h(z,w) is globally at
tractive. First, observe that the dynamics of y are of an exponentially stable linear system
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perturbed by bounded disturbances of magnitude proportional to e. Consequently, after
some finite time y is contained in a ball of radius proportional to e. Then, by the nature

ofthe coordinate change from y to y, y is also contained in a ball ofradius proportional to
e. Now we know that the manifold is locally attractive, sofor e sufficiently small the e ball

is contained in the basin of attraction for h(z, w). Hence, the manifold h(z, w) is globally
attractive.

We will eventually establish that the dynamics

z = f(h(z, w) + (y - h(z, w)), z,w) (6.37)

have the "converging input bounded state" property of [Sontag, 1989] with e= y- h(z, w)
as input. Then, since h(0, w) = 0 it is sufficient to consider the dynamics of

z = f(h(z,w),z,w) (6.38)

For now, we simply consider the global stability property of (6.38). To do so, we begin by
establishing a bound on h(z, w). We follow the approximation ofcenter manifolds in [Carr,
1981]. As in [Carr, 1981], for functions <t>: Rn x W-*• R2 which are C1 in a neighborhood
of the origin we define the operator N to be

(N<f>)(z, w) =̂ /(#2, w), z, w) +̂ Sw+I(f>(z, w) - g(cf>(z, w), z, w)
where g is defined in (6.34). We choose to approximate h(z, w) by the function <f>(z, w) = 0.
We then have

(N(f>)(z,w)=-g(Q,z,w)

It follows from (6.34) and / that {N<f>)(z,w) = 0(<7(||2||)3) for all z € Rm and all w € Rp
with \w\ < M. We can then mimic the proof of[Carr, 1981, theorem 3] to establish that

\h(z,w) - <f>(z,w)\ = \h(z,w)\ = O(o(\\z\\)3) (6.39)

for all z £ Rm and all w € Rp with \w\ < M.

We are now ready to establish lemmas similar to lemmas 6.1 and 6.2 that apply
to the global stability problem.

Lemma 6.4 (Global "Averaging" transformation) Consider the nonlinear
time-varying system

x = f(x,t) (6.40)
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where f is of period T in t and is Cr and where the ith entry of the vector f satisfies

fi = 0(<r(||a;||)2*+1). If the e associated with the saturation function a is sufficiently small,

then there exists a Cr global change of coordinates x = y + V(y, t) under which (6.4O)
becomes

y = f(y) + f{y,t) (6.41)

where f is the time average of f and f is ofperiod T in t with fi{y,t) = 0((r(||^||)2*+2).

Proof. See appendix.

Lemma 6.5 (Global Case Specific Lyapunov result) Consider the system

y = f(y) + f{y,t) (6.42)

where y € Rn. //

l^(2/,*)l<A^(ll2/H)2(1+i) (6.43)

for all y € Rn and

f(y) = AiJ>(y) (6.44)

where A is a square lower triangular matrix with an < 0 for i = 1,..., n and

^(3/) = ^(2/.>(ll2/||)2,' (6.45)

then, for e sufficiently small, the origin of (6.42) is globally asymptotically stable.

Proof. See appendix.

Now using the expression for Hi and n2 from the proof of theorem 6.1 we can

show that these lemmas apply and thus the reduced dynamics are globally asymptotically

stable. It remains to verify that the z dynamics have the "converging input bounded state"

property of [Sontag, 1989]. Since / is bounded for bounded e, and hence z is bounded for
all finite time, it is sufficient to prove the following result:

Lemma 6.6 (Converging input bounded state) Under the conditions of lemma 6.5,
if the perturbation in the equation

y = f(y) + f(y>t) + p(t) (6.46)

satisfies \p(t)\ < v, then, for v sufficiently small, y satisfies \y(t)\ < G for allt>0 for some
G>0.
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Proof. See appendix.

Now the main theorem of [Sontag, 1989] provides global asymptotic stability for
the system (6.3), (6.32). D

It is also possible to deduce a locally stabilizing control law for (6.2) without using
the transformation to power form given in (6.4).

Corollary 6.1 Every pair of inputs

vi = "^-(E^^XsinW-cosW)
<>2 = -b-Z^i-iycjtjwcosiJt)

with Cj > 0 locally asymptotically stabilizes the origin of (6.2).

Proof of corollary 6.1. Let the transformation (6.4) that takes us from chain form to

power form be written as x = $(£) = T£+ $(£) where $(f) is higher order. Let vchain(-)
denote the controls given by (6.47) and let upower(-) denote the controls given by 6.7. Then

we have vchain(Z) = uvower(T-lx). For (6.2), (6.47) ifwe make the transformation x = $(f),
we have a power form system (6.3) with controls given by (6.7) plus higher order terms.
Now the proof is exactly equivalent to the proof of theorem 6.1 since the higher order

terms would simply contribute higher order terms on the manifold which were shown to be

unimportant. D

6.4 Example: an automobile

Our example system will be a simple kinematic model of an automobile as shown

in figure 1. This system is controllable using two levels of Lie Brackets. A derivation of

the kinematic equations may be found in [Murray and Sastry, 1990]. A sketch of the car is
found in Figure 6.1

x = cos(0)t*i

y — sin(0)ui

<f> = u2

L
B = -tan^ux ' (6.48)
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theta

Figure 6.1: Kinematic model of the car

where (x,y) is the position of the car in the plane, <f> is the angle of the front wheels with

respect to the car (or the steering wheel angle), 9 is the orientation of the car with respect

to some reference frame, and the constant L is the length of the wheel base. For simplicity,
we choose L = 1.

The following change of coordinates will put the car into power form coordinates,

locally:

Xi = x

x2 = sec3(#) tan(^)

x3 = zsec3(0)tan(0)- tan(0)

xa = y+ -x2 sec3((9) tan(^) - x tan(0)

with the following input transformation:

ux = v\ sec(0)

u2 = -Svi sec(0) sin2(<£) tan(0) + v2 cos3(0) cos2(<£)

The control law used for the simulation was:

vi = -Xl - a2 \Jx~l +x\\ (sin(i) - cos(t))
v2 - -x2 - ka(x3) cos(t) - ka(x4) cos(2i)

The gain k was chosen to be 2, and the e of the saturating function tr(-) was chosen to be
e = 0.5. The initial conditions chosen for these two simulations were (0, ±1,0,0). The plot
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-1.2.

Figure 6.2: Phase plane plot, x versus y, of the two simulations. Note the effects of the

saturation function on the limits of travel in the x direction.

demonstrates the effect using a saturation function. At first the error is large enough to
cause the saturation functions to limit the magnitude of the input sinusoids, hence limiting
the x and <f> travel of ofthe car. After the error drops sufficiently, the controls are no longer
saturated and the range of travel drops.

6.5 Summary and Discussion

We have presented a control law which globally asymptotically stabilizes a system

in power form. This control law uses sinusoids at integrally related frequencies to achieve

motion in bracketing directions and saturation functions to achieve globally convergence.
Convergence in the coordinate directions can be adjusted by setting the appropriate weights
in the control law. By making use of a feedback transformation to convert a nonholonomic

system into power form, we have applied this control law to a kinematic model of an

automobile.

The primary limitation of the control law presented here is that it can only be
applied to systems which are feedback equivalent to a system in power form. However, there

is strong evidence to suggest that control laws of this form can be extended to more general
nonholonomic systems by using an "extended system" such as that used by Sussmann and
co-workers [LarTerriere and Sussmann, 1991, Sussmann and Liu, 1991]. The generalization
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ofthe results presented here would be to systems which are controllable through the input
vector fields and Lie products of the form ad^2. Controllers for this same basic class of
systems can be found in the recent work of Pomet [Pomet, 1992]. The extension of the

ideas presented here to this more general situation is the subject of current research.

6.6 Appendix

6.6.1 Proof of lemma 6.1

The proof oflemma 6.1 mimics the proof of[Carr, 1981, theorem 1, pages 16-19].
Accordingly, let if) : R+ —> [0,1] be a C°° function with i/>(s) = 1 when s < 1 and ^(5) = 0
when s > 2. Then for e,M > 0 define F and G by

F(y,z,w) = /(y,*tf(JflW(Jgl))
G(y,z,w) = rt**tf(JfLW(igl))

We prove that, given M > 0, the system

y = By + G(y,z,w)

z = Az+F(y,z,w) (6.49)

w = Sw

has a center manifold y = h(z,w), z € Rm, w € Rp for e sufficiently small. Then since F
and G agree with / and g for all \z\ < e and for all |u;| < M, this proves the existence
of a local center manifold for (6.8). The existence of the global center manifold for (6.49)
can be demonstrated using the same contraction mapping calculations as in the proof of
[Carr, 1981, theorem l] since we can show, as was needed in [Carr, 1981], that there is a
continuous function «(c) with «(0) = 0 such that

\F(y,z,w)\ + \G{y,z,w)\ < e*{e)

\F{y,z,w)-F(y,z,w'\ < K(e)(\y-y\ +\z-z'\ +\w-w\)
\G(y,z,w)-G{y',z,w'\ < «(e) (\y- y'\ +\z- z\ +> -w'\)

for all *,*' € Rm, and all w,w € Rp and all y,y e Rn with |y|,|y'| < e. Following
[Carr, 1981], these inequalities yield a center manifold y = h(z, w) with h(Q, w) = 0 and
//(0, w) = 0. D
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6.6.2 Proof of lemma 6.2

The proof of this lemma follows closely the exposition of [Guckenheimer and

Holmes, 1983, pages 168-169]. We split f(x,t) as

f(x,t) = f{x) + f(x,t)

where / is the mean of / and / is its oscillating part. Now we make the coordinate change

x = y + V(y,t) (6.50)

where * will be specified. (We will show \P to be strictly higher order so that this is a valid

coordinate change locally.) Differentiating we have

[I +DyV]y +-j£=x= f(y +V) +f(y +yi t) (6.51)

Reorganizing we get

y=[1+ A^ni/fo +¥) +f(y +*,*)- ^] (6.52)
We now choose $ such that

(Since / has zero mean, <P is bounded as a function oftime.) This choice produces

y= [/ + A^rM/M + f(y + <M) - f(y, t)] (6.53)

Expanding with respect to \P we have

y = [I-DyV + 0(\\Dyn2)][f + Dyf* + 0(\\n2)]
= f(y) + f(y,t)

Now we check the order of /;. The first term we consider is the term

I[f(y+*,t)-f(y,t)]

It suffices to check the order of the ith. entry of

Dyf'V

Accordingly, the entries ofthe ith row ofDyf are oforder 2%. Further, since

(6.54)
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it follows that $,- is of order 1+ 2i in y. Hence, the lowest order in w is 3 (i=l) and the
product yields terms of order 2i + 3.

The final terms we need to consider axe given by DyiSN{y,t) where

Ni{y,t) = fi(y) + fi(y + ¥,*) - fi(y,t)

By assumption, we know that Ni(y, t) is of order 1 + 2i in y. Since ¥; is of order 1 + 2% it

follows that the entries of the ith row of DyV are oforder 2i. The lowest order in N(y,t)
is 3 (i = 1) and so the ith entry of DyVN(y,t) is of order 2% + 3. D

6.6.3 Proof of lemma 6.3

Consider the Lyapunov function

where the at's will be specified later. The derivative ofV along the trajectories of(6.28) is
given by

v = ESLi ojrf4"-**-1^*) + /*(».*)]
< E?=i«0?(""')+t^(l/)] +7ll»l|2(n+1)+1 '

where At- is the ith row of the matrix A and 7 is a constant that depends on <**,/?» for
%= 1,..., n. We claim that the at''s can be chosen such that

S(y) =£a0fn-i)+1A,V(») <-||J/||2("+1) (6.57)
t=l

This will give

V<-(l-<y\\y\\)\\y\\2W (6.58)

and hence asymptotic stability of the origin for \\y\\ sufficiently small. The proof of this

claim will involve an iterative process of completing squares, bookkeeping coefficients and
judiciously choosing the at-'s.

We begin by multiplying the ith. term (i = 1,..., n) in the summation S(y) by

f\M\2{n-i+1)
\\\y\\)

for I\y\1^0. This yields

S(y) =||y||2<"+1>|>jg^±aijVj] S||„||«»«>r(,) (6.59)
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Now we begin to complete squares by first considering the quadratic terms (i.e. those terms

generated by i = n in the summation). Doing so, we have

Here anj are positive constants that depend on ann,anj, and n. Now, by the definition of

IMl? w© have

y2n = \\v\\2-y2i-----y2n-i (e.ei)

and choosing

«n = -— (6.62)
"tina

we have
n-l 2(n-t)+l i n-1 / „. \2

rW <[g^jjJjapiS+iF E««»] -2+"« £ ani ^igjjj (6.63)
with the fine's appropriately redefined positive constants.

Now we consider the quartic terms generated by i = n —1 in the summation.

Again completing squares, and using the fact that

(yn-i\2(yk y^JVk V
V112/11J \\\y\\) -\\\y\\)

we have

2(n-»)+l / \ 2

*"(») < -2 +E?^2 ^ij^fpn^TTJ- £}=i <««] +<*»[E£i ani (fa) }
+an_1^=^ (tif)4 +<*«-. E?=f ^ (^)2

We now choose an_i sufficiently large so that

an-1^- IwJ+ nn,n-1 lisirJ - ~i (6-65)
In fact, we continue this process of completing squares and choosing at- large enough such

that all the terms involving y» are bounded by ^-. This can always be done because of
the triangular structure. Finally we have that

n-l x
T(y) < "2 +£ r < -1 (6.66)

From this we conclude that

S(y) < -||y||2(n+1) (6.67)

for \\y\\ ^ 0 and our claim is established. D

(6.64)
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6.6.4 Proof of lemma 6.4

The proof of this lemma is a virtual duplication of the proof of lemma 6.2. We

split / as before and make a similar coordinate change

x = y + V(y,t) (6.68)

This time we will establish that for e sufficiently small, this is a globally valid coordinate
transformation. In fact, we again pick

Tfe =/(»'*) (6.69)

Since fi(y,t) = 0(<r(|M|)2,+1) and a is C3 it Mows that * = 0(cr(\\y\\)2i+1) and DyV =
0(<7(\\y\\)2t). We can now use the same kind ofbookkeeping as in the proof oflemma 6.2
to establish the result.D

6.6.5 Proof of lemma 6.5

The proof of this lemma is a virtual duplication of the proof of lemma 6.3. This

time we start with the Lyapunov function

V=f^ai jVt a2^-^\s)ds (6.70)
»=i Jo

where the a,-'s will be specified. The derivative along the trajectories of(6.42) is given by

V = ZUai02(--^\yi)[fi(y) + fi(yit)]
< E?=i ort^2^-0+i(a..)A.^(y)] +T<T(||2/||)2(r1+i)+i ( • >

where Ai is the ith row of the matrix A and 7 is a constant that depends on at-,# for
i = 1,..., n. We claim that the at-'s can be chosen such that

S(y) =J2ai(T2^^+\yi)Ai^y) < -<7(||y||)*(»+i) (6.72)
tssl

This will give

F<-(1- T^(lbll)Mll2/||)2(n+1) (6.73)

and hence global asymptotic stability of the origin for e sufficiently small. To prove this
claim we now follow the proof of lemma 6.3, everywhere replacing \\y\\k by (r(||s/||)* and
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yi by a(yi)k. The only difficulty we have is that the equality (6.61) does not carry over.
However, it is sufficient to have the inequality

cr(yn)2 > e(\\y\\)2 - *(yx)2 - ... - o{yn-X)2 (6.74)

Completely squares and judiciously choosing the a;'s again produces the result. D

6.6.6 Proof of lemma 6.6

The proof of this lemma follows from the proof of lemma 6.5. We use the same

Lyapunov function V as in (6.70). From lemma 6.5 and from the nature of the partial

derivative of V with respect to y, we have, for e sufficiently small, that the derivative of V

along the trajectories of the perturbed system satisfies

V<-[l-7ff(||3,||)-7-^ML_l/W||J,||)2(n+l) (6.75)
Since we are simply trying to establish that y is bounded we can assume without loss of

generality that S2^1) < <7(||2/||)2<n+1) < e2(n+1). Therefore we see that if

i-^-Tj^^O (6.76)
then V < 0 for \y\ sufficiently large. Since V is proper, this implies that \y\ is bounded. We
see that, given e such that 1 - *ye > 0, (6.76) is satisfied for all v satisfying

£2(n+l)
u<(l- 7<0^r- (6.77)



Chapter 7

Recent Adaptive Control

Algorithms

Ill

In this chapter, we recast a recently developed adaptive stabilization algorithm

for pure-feedback form nonlinear systems into an error-based algorithm. This enlarges the
subset ofpure-feedback form nonlinear systems that can be stabilized globally (with respect
to the state of the system).

7.1 Introduction

Several recent nonlinear adaptive control algorithms have focused on stabilization

and tracking for systems that can be described in pure-feedback form. The development

of these algorithms were initiated in [Kanellakopoulos et ai, 1991] and have been refined

in [Krstic et al., 1991]. These schemes fall into the category of direct adaptive control in
that the parameter estimates are driven by the mismatch between the plant states and the

control objective (stabilization or tracking) for these states. These algorithms have not

been cast into an error-based or indirect framework. By indirect adaptive control we mean
that the parameter estimates are driven by the mismatch between the plant states and a

dynamic estimate of the plant states. For recent examples of this approach, see [Campion
and Bastin, 1990], [Pomet and Praly, 1989] and [Teel et al., 1991]. Anappealing feature of
the indirect approach is that parameter estimates that begin dose to the actual parameter
values remain close to the actual parameter values. This feature can play an important
role in the feasibility ofthe adaptive control algorithm. For instance, consider the following



112

academic example:

xx = x2 + 9x\

x2 = x3 (7.1)

x3 = u

This system is in pure-feedback form. For this system, the feasibility region of [Kanel-
lakopoulos et ai, 1991] is expressed as a set T = Bx x Be where Bx is an open set in R3
and Be is an open set in R such that

|l + fccj|>0 \fx€Bx V0 € B9

We see that one possible feasibility region is given by Bx = R3 and Be = R+ so that the

global stabilization problem is possible. However, the direct algorithms of [Kanellakopoulos
et ai, 1991] and [Krstic et ai, 1991] cannot guarantee that 6 remains in B9 unless the
initial state x(0) is suffitiently small. Reformulating the algorithm of [Kanellakopoulos et
ai, 1991] as an error-based algorithm will eliminate the restriction on the size of the initial
state.

7.2 The Class of Systems and Feasibility Regions

For simplidty, we will consider single-input systems of the form

xi = 0Tfx(xx,x2)
X2 = 9Tf2(xx,x2,x3)

: (7.2)

xn_i = eTfn.x(xx,...,xn)
*n = 0T[fn(x) + gn(x)u]

Here 9 € Rp x {1} is the vector of unknown parameters augmented to allow for terms that
are independent of the unknown parameters 9* € Rp. i.e.

9 =
9*

1

The vector gn € RP+1 is smooth and the smooth vectors /,- € Rp+1 are such that /t(0) =0.
Geometric conditions for transforming a general single-input nonlinear system into this
form (locally) generalize easily from the conditions in [Akhrif and Blankenship, 1988] and
[Kanellakopoulos et ai, 1991].
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We demonstrate our algorithm by solving the adaptive stabilization problem. (As

in [Kanellakopoulos et ai, 1991], the algorithm presented here naturally extends to the
tracking and multi-input problems.) Our algorithm is most powerful when the feasibility

region is global in the state x but (possibly) not global in the parameter 9. Consequently,

following [Kanellakopoulos et ai, 1991], we make the following definition:

Definition 7.1 Afeasibility region for the system (7.2) is any connected set T C Rp x {1}
such that

l^affe-l > 0 for f=l,...,n-l
\0T9n(x)\ > 0

for all xeUn and for all 9^T.

Remarks.

1. As noted in [Kanellakopoulos et ai, 1991], the sets T are connected sets where the

system is full-state linearizable.

2. It is important to note that feasibility regions are connected. For example, in the

case that p = 1 it may be true that the conditions of definition 1 are satisfied for all

0 ^ 0 x {1}. However T = (0X{1})C is not a feasibility region.

We now restrict the augmented parameter vector 9 € Rp X{1} so that our algorithm
remains feasible. To do so, let {S*e} be the collection of sets known to contain 9 and define

Se = nSJ. Further, let {&} be the collection offeasibility regions such that S$ C T* and
define T - \JFK (F is connected since 9 € Fj.)

Assumption 7.1 If T ^ Rp x {1} then we assume:

1. Ifp = l and T is unbounded, then clos(Se) C T

2. otherwise, Se CB^ x{1} CB{2r ^ x{1} CT where B{ret) CRp is aball of radius
r centered at some 9' € Rp.

Remark. We see that when the entire space Rp x {1} is not a feasibility region, we
restrict the possible values of the unknown parameter vector 9. In the case of one unknown

parameter, we do not necessarily restrict 9 to lie in a bounded set. For example, if T
= R+ X{1} then it is suffkient toknow that 9€ R+ x {1}. IfT - (0, +oo) x {1} then it is
sufficient to know that 9 € [e, +oo) x {1} for some e > 0.
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If p = 1 and T is bounded or if p > 1, we restrict 9 to lie in a bounded set. For

example, if T - R+ x R+ x {1}, then we require 9 to lie in some ball such that a ball of

twice the radius and centered at the same point is contained in T. The reason for this will

become clear in the stability proof.

7.3 The Stabilization Algorithm

We recast the basic algorithm of [Kanellakopoulos et ai, 1991] into an error-based
algorithm.

Step 0. Define zx —xx.

Step 1. The previous step gives

zx = 9Tfx(xx,x2) (7.3)

Now define

Z2 = 0xfi(xux2) (7.4)

where 9X is an estimate of9. Substituting (7.4) into (7.3) yields

ii = z2 + [9-9x]Tfx{xx,x2)
= Z2 + [9-9x]Twx(zx,z2,9x)

(We will demonstrate in the stability proof that assumption 1 ensures this algorithm is
feasible and hence the inverse relation between z2 and x2 is well-defined. We write wx as
a function of zx, z2 and 9X for completeness. When implementing this algorithm, it will be
easier to employ this function expressed in the original coordinates xx,x2.)

We choose the update law for 9X to be driven by the mismatch between the state

zx and a dynamic estimate of this state zx:

h = -<*i(zx - zx) + z2
(7.6)

9X - (zx-zx)wx(zx,z2,9x)

where ax > 0.

Step 2. The previous step gives

*2 = 0^29Tf2(xx,x2,x3) +9^9^fx(xx,x2)
+(zx - zx)u)({zx,z2,9x)fx(xx,x2) (7.7)

= 8TH\6772(*i, x2, x3) +9TiJ>x(zx, z2,9X) +Xi(*u *2, *i, 9X)

(7.5)
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Now define

Zz =^Ifof*^*1'*2' X3^+ ^^1(^1^2,9X) +xi(*i. *i, *i. ex) (7.8)
where 92 is an (independent) estimate of 9. Substituting (7.8) into (7.7) yields

z2 = z3 + [9 - 92]Tw2(zx, z2, z3, zx, 9X, 92) (7.9)

We choose the update law for 92 to be driven by the mismatch between the actual state z2
and a dynamic estimate of this state z2:

z2 = -a2(z2 - z2) + z3

h - (z2 - z2)w2(zx,z2,z3,zx,9x,92)
where a2 > 0.

Step i: i=3,.. .,n-l. The previous step gives

* = ^^•••Ci^T/^i,...,^+i)
+0TrPi(zx,...,Zi,zx,...,z^2,9x,...,9^x) (7.11)

+Xt(^i,...,^,^i,...,^-i^i,...,^-i)

Now define

«+i = ^t2"^lid-^0Tfi(xx,...,xi+1)
+9T4>i(zx,...,Zi,zx,...,Zi-2,9x,...,9i_x) (7.12)
+Xi(zu-"->Zi,zx,...,zi-X,9x,...,9i-X)

where §i is an (independent) estimate of 9. Substituting (7.12) into (7.11) yields

k = Zi+i + [0- 9i]TWi{zx,...,zi+x,zx,...,£;__!,9X,...,9i) (7.13)

We choose the update law for 9i to be driven by the mismatch between the state zt- and a
dynamic estimate of this state £,-:

Zi = -CLi(Zi - Zi) + Zi+X

9i = (zi-zi)wi(zx,...,zi+x,zx,...,zi-x,9x,...,9i)

where at- > 0.

Step n. The previous step gives

+9Tl/;n(zX,...,Zn,ZX,...,Zn^2,9X,...,9n.X) (7.15)
+Xn(zXi. .., Zn, ZX,..., 2n_i, 01,.. ., 0n_i)

(7.10)

(7.14)
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We choose the input

u= &-l[-9ll>n - Xn - kxzx -... - knzn] (7.16)

where ki are the coefficients of a Hurwitz polynomial and

and 0n is an (independent) estimate of 9. (We will demonstrate in the stability proof that

assumption 1 ensures the algorithm remains feasible and, hence, A-1 is well-defined.)
Substituting (7.16) into (7.15) yields

Zn = -kxzx-...-knzn + [9-9rfwn(zx,...,zn,zx,...,zn-X,^ (7.18)

We choose the update law for 9n to be driven by the mismatch between the state zn and a
dynamic estimate of this state zn:

zn = -a„(£n ~ *n) - kxzx - ... - knzn

0n = {Zn-Zn)wn(zX,...,Zn,ZX,...,Zn-X,9X,...,9n)

where an > 0.

Step n+1. Consider the set Se and T ofassumption 1. IfT = Rp x {1}, then
0,(0) can be chosen anywhere in Rp x {1}. Otherwise, ifp= 1 and T is unbounded then the

projection ofT onto Rhas either a well-defined least upper bound orgreatest lower bound,
but not both. Denote whichever is well-defined by /3. Finally, let 0,(0) be that point in the
closure ofS0 with the shortest distance to (/3,1) € RX{1}. IfT is bounded orp> 1 then
consider the ball B^y^ associated with Se as defined in assumption 1. Choose the initial
state of the parameter estimates as

ft(o) = (7.20)

This, together with x(0) completely defines *(0). Now choose the initial state of the state
estimates such that z(0) = 2(0).

Remarks.

1. It is clear that 0t,p+i(O) = 9P+X = 1. Consequently, updating 0ttP+1 is not necessary.
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2. It follows from the algorithm and the above remark that the dimension of the dynamic

adaptive compensator is np + n. The n additional states are due to estimating the

states dynamically to construct an error-based identifier. These additional states are

not found in the algorithm of [Kanellakopoulos et ai, 1991].

3. Because of the error-based scheme we are able to place the poles of the certainty
equivalence z dynamics arbitrarily with the Hurwitz polynomial coefficients ki.

4. Let f(x, 9) denote the drift vector field and g(x,9) denote the input vector field both

associated with (7.2) and let h(x) = xx. It follows from the algorithm that if

§i = 9, Zi = zi for i = l,...,ra (7.21)

then

zi = L)~(l,d)h(x)
and

u=(i5(M)X^)/t(x))-1[-%t,)/l(a:) - kxh(x) - ... - knLnf£e)h(x)]

The condition (7.21) is an equilibrium point of the identifier, independent of the value

of z. Consequently, if (7.21) is satisfied at t = 0 then the the control implemented for
t > 0 is an exact linearizing control.

5. As seen in step n+1, the selection of the initial value of 9 isnot arbitrary. It is selected
to ensure that the algorithm remains feasible.

7.4 Closed-loop Stability

In this section we prove the following theorem:

Theorem 7.1 (Adaptive Regulation) Under assumption 1, if the algorithm of section
7.3 is applied to the system (7.2), the resulting closed loop system is such that

Urn i = 0 (7.22)

for all x(0)€Rn.



Proof. The algorithm of section 7.3yields the following closed loop system:

zx = z2 + (9-9x)Twx

*n-l

Zn

ZX

Zn + (0-9n-l)TWn-X

-kxzx - ... - knzn + (9- 9n)Twn
-ax(zx - zx) + z2

*n-l = -an-l(Zn-l - *n-l) + Zn

Zn = -OCn(zn ~ Zn) - kXZX - ... - knZn

h = (zx - zx)wx

K = (Zn - Zn)wn

9=0

We make the following linear coordinate change:

e I -/ 0 0 z

z 0/00 z

* 0 0/-/ ii
9 0 0 0/ 9

The dynamics of (7.23) in the new coordinates become:

ei = -aici - <$wx

en = -dnen - <f%wn
<h = exwx

= enwn

z\ ^— z2 + axex + e2

Zn-1 = zn + an_ien_i + en

Zn = -kxzx - ... - knzn + anen - kxex

9 = 0

... — fcnen
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(7.23)

(7.24)

(7.25)
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We denote by Ak the controllable canonical form matrix corresponding to the Hurwitz

polynomial

sn + knsn~1 + ... + k2s + kx

We then choose P > 0 to satisfy

AlP + PAk =-/ (7.26)

To prove stability, we choose the following Lyapunov function candidate:

V=nlkeTe +£ fib)] +\zTPz+9T9 (7.27)
z i=i z

The derivative of V along the trajectories of (7.25) is given by

n

V= ME -*<%) - zTz + iTMe (7.28)
t=i

where M is a constant matrix independent of /z. It is obvious that 3fi > 0 such that V" < 0

for all e,i, <^, ^. This establishes the stability (i.s.L.) of the closed loop system.

We now focus on the dynamics of the identifier itself to verify that the proposed

algorithm is indeed feasible. The n identifier systems are given by

ei = -axex - <f>[rwx

4>i = exwx

en = -anen - <f>Twn

4>n = enwn

(7.29)

Consider the Lyapunov function candidate for the ith system of (7.29):

Vi=\(e2 +(i>f(l>i) (7.30)
The derivative for VJ along the trajectories of the ith system of (7.29) is given by

Vi = -cue2 (7.31)

Since Vi < 0 for all e»» ^t we can conclude that

Vi(t) < Vi(0) (7.32)



120

Since we have chosen it(0) such that e,(0) = 0 we can then conclude that

ll*(*)ll < ll*(0)|| (7.33)

We only need to consider the case when J7 ^ Rp x {1}. If p = 1 and T is unbounded,

we have chosen 0,(0) = (5,1) € clos(Se) for some s € R. Define Et = (-00,5] x {1} and

Fr = [s,+oo) x {1} and let E denote the one set, E\ or Er, that is contained in T. (One
and only one will satisfy this condition since T is unbounded but not R x {1}.) We then

have 9 € S$ C E C T. The choice of £-(0), the definition of E, the fact that 9 € E and

(7.33) imply 0t-(t) € E for all t > 0. Since E C T it follows that the proposed algorithm

is feasible. For p > 1 or T bounded, we have chosen 0,(0) such that ||0»(O)|| < r. Since

we know that 9€ Se CB^0l) x {1} it follows from (7.33) that §i(t) € B^rQl) x {1} for all
*> 0. Finally, since B^2r^ x {1} CT it follows that the proposed algorithm is feasible.

We now demonstrate asymptotic stability of the state x. First, from (7.31) it
follows that

L ]T<*,<5?<oo (7.34)
0 fef

Next, from the stability of the overall system (see (7.28)) it follows that et- is bounded.. With
this we are able to conclude that

lim ei = 0 (7.35)

Then a simple application of the Bellman-Gronwall lemma to the dynamics of z shows that

Hm2 = 0 (7.36)

From (7.35),(7.36) and (7.24) we conclude that

Umz = 0 (7.37)

Finally, from the algorithm of section 7.3, since /t(0) = 0 and from the definition of a

feasibility region, z is a global diffeomorphism of x without translation. Hence,

Hm x = 0 (7.38)

D.
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7.5 Conclusion

We have modified the nonlinear adaptive algorithm of [Kanellakopoulos et ai,
1991] to produce an error-based algorithm. This allows global stabilizability for a larger
subset of pure-feedback nonlinear systems. The algorithm was demonstrated on the single-
input stabilization problem but easily extends to the multi-input and tracking problems.
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Chapter 8

Conclusion

In this dissertation, we have investigated the stabilization and tracking problems

for several different classes of systems. We have focused on systems that fail to satisfy

differential geometric conditions for input-to-state linearizability under state feedback and

change of coordinates. We have attempted to emphasize that certain underlying structural

properties can stillbe exploited to yield systematic stabilizing (and tracking) algorithms. In

doing so, we have added some specialized, but potentially very useful, tools to the nonlinear

control toolbox. Foremost, we have demonstrated the power of introducing saturation in a

control law to overcome certain nonlinearities or actuator limitations. This notion led to

a solution to the global stabilization and small signal tracking problem for linear systems

subject to actuator constraints. Further, introducing saturation provided new global and
semi-global stabilizing and approximate tracking solutions for nonlinear systems in special

normal forms. This included the discussion of higher order feedforward forms and related
systems like "the ball and beam".

We hope that the developments of this dissertation will not remain simply of

theoretical interest. There is work ahead to test the usefulness of our algorithms, beyond

systems like the "ball and beam". It might also be possible to refine our algorithms to
achieve design specifications beyond the qualitative stability or tracking properties. Further,

we are inclined to believe that as we continue to study physical examples, other nonlinear

normal forms, ready to produce new design algorithms, will manifest themselves. The

problems of interest will be to identify useful underlying structures, to generate conditions
for recognizing these structures, to produce systematic control algorithms, and to convince
the control community of their usefulness.
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