
Copyright © 1992, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profitor commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



SYNTHESIS OF SEQUENTIAL CIRCUITS

FOR VLSI DESIGN

by

Pranav N. Ashar

Memorandum No. UCB/ERL M92/62

5 June 1992



SYNTHESIS OF SEQUENTIAL CIRCUITS

FOR VLSI DESIGN

by

Pranav N. Ashar

Memorandum No. UCB/ERL M92/62

5 May 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Synthesis of Sequential Circuits for VLSI Design

Pranav N. Ashar

University of California Department of Electrical Engineering
Berkeley. California and Computer Science

Abstract

Synthesis of VLSI circuits involves transforming a specification of circuit behavior into a mask-level

layout which can be fabricated using VLSI manufacturing processes. Optimization strategies are

vital in VLSI synthesis in order to meet desired specifications. The first-order optimization criteria

in this process are typically all or a desired subset of area optimality, speed and testability. There

are several steps in the synthesis of mask-level layout descriptions from specifications of circuit

behavior. The steps involved in the transformation from the RT-level to a gate-level circuit are
collectively known as logic synthesis. VLSI circuits are sequential circuits, i.e. they contain memory
or storage elements, namely flip-flops or latches, as well as combinational (or switching) circuitry.
Considerable progress has been made in the understanding of combinational logic optimization in
the recent past. Consequently a large number ofuniversity and industrial CAD programs are now
available for the optimal logic synthesis ofcombinational circuits. The understanding ofsequential
circuit optimization, on the other hand, is considerably less mature. The presence of internal state
adds considerably to the complexity of the optimization problem. Synthesis tools are required to
automatically encode the symbolic internal states. This encoding determines the complexity and the
structure of the sequential circuit realizing the state machine, and therefore has a profound effect
on its area, testability and performance. Techniques for the optimal synthesis ofsequential circuits
are presented in this thesis. Algorithms are presented for finite-state-machine decomposition using
information available at the symbolic state graph level, for symbolic state graph extraction from
logic-level descriptions, for the synthesis of sequential circuits for enhanced testability under the
single and multiple stuck-at fault models, and for sequential logic verification. These algorithms
have been implemented in a sequential synthesis program called flames.

MJjLjLjm^
Prof. Arthur Richard jfewton

Thesis Committee Chairman



Acknowledgements

To Richard Newton I owe gratitude for having the confidence in me to take me on

as his graduate student, and for standing by me through the good times and the bad. At

various times, and on occasion all together, he has been my professional, philosophical and

emotional guide.

Much of my work was inspired by ideas that originated with Srinivas Devadas. He

has been both, a close research associate and an even closer personal friend. I have learnt a

great deal from him. But, most of all, it has been his example of single minded dedication

to work that I have tried to emulate. It has been a pleasure working with him.

The example set by Professors Robert Brayton, Donald Pederson and Alberto

Sangiovanni-Vincentelli in the CAD group has been inspiring. I have benefited enormously

by virtue of my association with them. Professors Robert Brayton, Jan Rabaey and Don

Glaser served on my qualifying exam committee, and Professors Robert Brayton and Don

Glaser are co-signees on my dissertation. I am grateful to them for sparing the time from
their busy schedules.

Kurt Keutzer, Tony Ma, Richard Rudell and Albert Wang, now all at Synopsys,

but at some time orthe other associated with the CAD group at Berkeley, have always been

forthcoming with useful advice, help and ideas. I also have had the opportunity to interact

with Tim Cheng at AT&T, Gary Hachtel and Fabio Somenzi at the University of Colorado,

Boulder, Jim Kukula visiting MIT from IBM, Wayne Wolfe at Princeton University, and
Ray Wei at Cadence.

My research was supported in part by financial assistance from the Defense Ad

vanced Research Projects Agency under contracts N00014-87-K-0825 and N00039-87-C-

0182, from AT&T Bell Laboratories and from Semiconductor Research Corporation, and

by equipment grants from Digital Equipment Corporation. Their support is gratefully ac
knowledged.

It is difficult to imagine a CAD group without Kia Cooper, Elise Mills and Flora

Oviedo. Their unquestioning help ensured that the graduate students could concentrate

on research. Brad Krebs, Mike Kiernan and Kurt Pires were instrumental in maintaining
the computing environment for the CAD group. I would like to thank them, in particular,

for taking the time to attend to my individual needs. Over the years, Brad has received

considerable help from the students in the group who have taken time off their own research



for the benefit of the community. Wendell Baker has always been magnanimous with his

time. The environment for software development created by David Harrison, Peter Moore,

Tom Quarles, Rick Rudell and Rick Spicklemier among others, tailored to meet the specific

needs of ourgroup, was instrumentalin making my programming tasks considerably simpler.

Also crucial to me were the TeX and Postscript based document preparation tools that

were maintained by Rick Spicklemier et al. And, a huge thanks to Richard Newton for

introducing all of us to Macintoshes, and to Brian Okrafka for handling the installation and

maintenance of software on them.

The four years at Berkeley would have been routine without the company of the

so many interesting, smart and diverse people that I had the opportunity to form close

personal and professional relationships with. I am grateful to them for giving me this

opportunity, and I hope, possibly in vain, that I contributed as much to them as they

did to me. Given the nature of graduate school, it is common to interact with people at

various stages of completion of their degrees. Over four years therefore, one can make an

extremely large number of friends. At the risk of missing out some names and making this

paragraph read like a roster of names, I would like to acknowledge the friendship, support

and advice I received over the years from Abhijit, Alan, Alex Gollu, Alex Saldanha, Albert,

Andrea, Arvind, Bill, Brian Lee, Brian Okrafka, Cho, Chuck, Cormac, Dev, Ellen, Gary,

Greg Whitcomb, Hamid, Herve', Jaijeet, Karti, Ken, Luciano, Mark, Mitch, Narendra,

Rajiv Ramaswami, Rajeev Murgai, Ramin, Rick McGeer, Rick Spicklemier, Rick Rudell,

Sharad, Srini, Theo, Tim Kam, Tiziano, Tom Quarles, Tom Shiple, Tony, Umakanta, Vijay,

Wayne, Wendell and Yoshi. Relationships with some were very special to me. I would like

to say to these people that I am indebted to them for life, and that the memories of the

times spent with them at Berkeley will always be with me, cherished forever and relived

again and again.

This dissertation is dedicated to my Parents, Rajni and Navin.



Contents

Acknowledgements i

Table of Contents iii

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Computer-Aided VLSI Design 1
1.2 The Synthesis Pipeline 2
1.3 Sequential Logic Synthesis 3
1.4 Early Work in Sequential Logic Synthesis 5
1.5 Recent Developments 6

1.5.1 State Encoding 6
1.5.2 Finite State Machine Decomposition 9
1.5.3 Sequential Resynthesis at the Logic-Level 9
1.5.4 FSM Verification 10
1.5.5 Sequential Synthesis for Testability 10

1.6 Overview of Dissertation 12

2 Basic Definitions and Concepts 14
2.1 Definition of Terminology 14

2.1.1 Two-Valued Logic 14
2.1.2 Multi-Valued Logic 15
2.1.3 Finite Automata 16
2.1.4 Testing 17

2.2 A Review of the Basic Concepts in State Encoding 18
2.2.1 Input Encoding Targeting Two-Level Logic 19
2.2.2 Output Encoding Targeting Two-Level Logic 21
2.2.3 Input-Output Encoding Targeting Two-Level Logic 26

in



CONTENTS iv

3 Algorithms for FSM Decomposition 28
3.1 Introduction 28

3.2 Basic Definitions 30

3.3 Exact Procedure for Two-Way General Decomposition 32
3.3.1 The Cost Function 32

3.3.2 Decomposition, Factorization and Partitioning 33
3.3.3 Generalized Prime Implicants, Prime Generation and Constrained

Covering 37
3.3.4 Correctness of the Exact Algorithm 41
3.3.5 Algorithm for Checking Encodability 43

3.4 Arbitrary Topologies 48
3.4.1 Cascade Decompositions 49
3.4.2 Parallel Decompositions 52
3.4.3 Arbitrary Decompositions 54
3.4.4 Exactness of the Decomposition Procedure 54

3.5 Heuristic Procedure for Two-Way General Decomposition 55
3.5.1 Overview 55

3.5.2 Minimization of Covers and Removal of Constraint Violations .... 56

3.5.3 Symbolic-expand 56
3.5.4 Symbolic-reduce 58

3.6 Relation to State Assignment 59
3.7 Results 59

3.8 Conclusions 64

4 Synthesis from Logic-Level Descriptions 66
4.1 Introduction 66

4.2 Implicit STGs 68
4.2.1 Implicit State-Enumeration 68
4.2.2 Implicit. State-Traversal 71

4.3 Optimization Strategies 72
4.3.1 Synthesis Results Using Implicit State-Enumeration 73

4.4 Conclusions 75

5 Irredundant Interacting Sequential Circuits 77
5.1 Introduction 77

5.1.1 Organization of the Chapter 78
5.2 A Review of Redundancies in Single Finite-State Machines 79

5.2.1 Eliminating Isomorph-SRFs 81
5.2.2 Eliminating Invalid-SRFs 81
5.2.3 Eliminating Equivalent-SRFs 82

5.3 Controllability and Observability Based Synthesis 84
5.3.1 Redundancies in a Cascade 84

5.3.2 Exploiting Don't-Care Inputs for the Driven Machine 86
5.3.3 Exploiting Don't-Care Outputs for the Driving Machine 92
5.3.4 State Minimization Under Don't-Care Sets 94



CONTENTS v

5.3.5 Boolean Relations 94

5.3.6 Associating Redundancies and Don't-Care Sets 95
5.3.7 A Synthesis Procedure for Irredundant Cascaded Machines 98

5.4 Generalization to Multiple Interacting Finite-State Machines 104
5.4.1 Generalization of Observability and Controllability Don't-Cares . . . 104

5.5 Invalidity and Conditional Compatibility Based Synthesis 105
5.5.1 Exploiting Compatibility Between States 106
5.5.2 Exploiting Invalidity of States and Edges 109
5.5.3 Preventing Isomorphism 110
5.5.4 Searching for Unreachability and Compatibility Ill
5.5.5 The Optimization Procedure 114
5.5.6 Completeness of the Algorithm 115

5.6 Results 116
5.7 Conclusions 118

6 Synthesis for Multiple-Fault Testability 120
6.1 Introduction 120
6.2 Synthesis Procedures for Nonscan Single-Fault Testability 121
6.3 Multiple-Faults in Combinational Circuits 123
6.4 Multiple-Faults in Sequential Circuits 124
6.5 Fully Multiple-Fault-Testable Sequential Circuits 125
6.6 Highly Multiple-Fault-Testable Sequential Circuits 127
6.7 Conclusions 130

7 Logic Verification Using General BDDs 132
7.1 Introduction 132
7.2 Basic Definitions 134

7.2.1 Binary Decision Diagrams 134
7.2.2 Binary Decision Diagram Operations 135

7.3 General BDDs 136
7.4 Satisfiability/Equivalence Checking Via Input Smoothing 137

7.4.1 Equivalence Checking 139
7.5 Input Smoothing in General Binary Decision Diagrams 139

7.5.1 A Branching Strategy for Smoothing Replicated Inputs 139
7.5.2 Smoothing by Addition of Extra Variables 141
7.5.3 Smoothing Inputs Using Circuit Transformations 141

7.6 Implicit State Space Traversal Using General BDDs 143
7.6.1 The Transition Relation Method 143
7.6.2 Using General Binary Decision Diagrams 144
7.6.3 Variant Methods 146

7.7 Replicating and Ordering Circuit Inputs 146
7.7.1 Replicating Inputs to a Multiplier 146
7.7.2 A General Algorithm to Replicate and Order Inputs 148

7.8 Results 150
7.8.1 Combinational Circuit Verification 150



CONTENTS vi

7.8.2 Sequential Circuit Traversal 153
7.9 Conclusions 154

8 Conclusions and Future Work 155

A FLAMES 159

A.l Introduction 159

A.2 Organization of flames 159
A.3 A Synthesis Strategy in flames 163

Bibliography 164



List of Figures

1.1 An example of a State Transition Graph (STG) 3

2.1 An example of a symbolic cover and its one-hot coded representation .... 15
2.2 A symbolic tabular representation of a finite-state machine 19
2.3 Codes satisfying input constraints 19
2.4 Two-level implementation of encoded finite-state machine 20
2.5 Example of the effects of dominance relationships 21
2.6 Example of the effects of disjunctive relationships 22
2.7 Merging cubes to form larger cubes 23

3.1 A STT representation of a finite-state machine 31
3.2 General decomposition topology 32
3.3 Examples of cube merging 38
3.4 An example of an input constraint violation 40
3.5 Example of a general decomposition 43
3.6 Encodabihty check graph for the decomposition in Figure 3.5 45
3.7 Adding a new edge 46
3.8 Topology for three-way cascade decomposition 48
3.9 An Example of a two-way cascade decomposition 50
3.10 Topology for three-way parallel decomposition 51
3.11 An example of a two-way parallel decomposition 52
3.12 An arbitrary decomposition topology 54

4.1 Implicit state-enumeration procedure 68
4.2 An example STG 70
4.3 STG for first output of Figure 5.2 71

5.1 A sequential circuit 79
5.2 Three types of sequential redundancies 80
5.3 An equivalent-SRF 33
5.4 Interacting finite-state machines 85
5.5 Input don't-care sequences 87
5.6 Conditional compatibility 91
5.7 Output expansion 92

Vll



LIST OF FIGURES viii

5.8 Output don't-care sequences 102
5.9 FSMs communicating via their present states 105
5.10 The state graphs of two fault-free interacting FSMs 106
5.11 A fault causing interchange of unconditionally compatible states 107
5.12 A fault causing interchange of conditionally compatible States 107
5.13 A fault causing corruption of only an unspecified edge 108
5.14 State graph of a decomposed machine in which isomorphism can occur . . . 110

6.1 A sequential circuit 122
6.2 A multiple fault in a two-level circuit 124

7.1 Relaxing the ordering constraint 136
7.2 Multiple instances of a variable along a BDD path 137
7.3 Example of input replication 138
7.4 Equivalence checking 139
7.5 A Sequential circuit and its transition relation 143
7.6 A 4 x 4 multiplier 147
7.7 A 4 x 4 multiplier with inputs replicated 148
7.8 Two versions of the adder-subtractor 149

7.9 An outline of the OBDD for ach32 152



List of Tables

3.1 Statistics of the encoded prototype machines 60
3.2 Results of the heuristic two-way decomposition algorithm 61
3.3 Comparison of literal counts of multilevel-logic implementations 63
3.4 Results of the exact decomposition algorithm 63

4.1 Results using implicit state enumeration 74
4.2 Results obtained by synthesizing from ISTGs 75

5.1 FuU testability via optimal synthesis of interacting sequential machines ... 117

7.1 Equivalence checking applied to combinational circuits not amenable to OBDD
representation 150

A.l Organization of flames 160

IX



Chapter 1

Introduction

1.1 Computer-Aided VLSI Design

Computer-Aided Design (CAD) of microelectronic circuits is concerned with the

development of computer programs for the automated design and manufacture of inte

grated electronic systems, with emphasis today on Very Large Scale Integrated (VLSI)

circuits. Automated VLSI design is referred to as VLSI synthesis. Synthesis of VLSI cir

cuits involves transforming a specification of circuit behavior into a mask-level layout which

can be fabricated using VLSI manufacturing processes, usually via a number of levels of

representation between abstract behavior and mask-level layout. Optimization strategies,

both manual and automatic, are vital in VLSI synthesis in order to meet required specifi

cations. However, the optimization problems encountered in VLSI synthesis are typically

NP-hard. Therefore, solutions to the optimization problems incorporate heuristic strate

gies, the development of which requires a thorough understanding of the problem at hand.

Thus, automatic optimization-based VLSI synthesis has evolved into a rich and exciting

area of research.

Direct application of synthesis in industry has been a significant driving force for

research in CAD. Simple marketing principles dictate that, other factors being equal, a

product available sooner would capture a larger share of the market and would remain

in use longer. The desire to reduce the time to design and manufacture has led to the

initial investment of considerable money and effort into the development of CAD tools

capable of producing designs competitive with the best manual designs. Today, constantly

shrinking geometries and increasingly reliable manufacturing processes have led to complex



CHAPTER 1. INTRODUCTION 2

systems being implemented on a single chip, making the use of CAD tools commonplace

and mandatory. In its turn, the rapid automation of the VLSI design phase has allowed

companies to keep pace with advances in other areas of VLSI Uke computer architecture

and manufacturing, leading to a symbiotic relationship. As a consequence of this rapid

development in VLSI technology, it is currently possible to produce application-specific

integrated circuits (ASICs), microprocessors and other types of circuits that contain millions

of transistors.

1.2 The Synthesis Pipeline

There are several steps in the synthesis of mask-level layout descriptions from spec

ifications of circuit behavior. Behavioral synthesis begins with a programming-language-like

description of the functionality and converts it to a register-transfer-level (RT-level) descrip

tion that implements the desired functionality. Among the issues involved at this stage are

the temporal scheduling of operations and the allocation of hardware. For instance, deci

sions regarding the number of arithmetic units in a digital signal processor are made in this

step.

The steps involved in the transformation from the RT-level to a gate-level circuit

are collectively known as logic synthesis. Switching and automata theory form the corner

stones of logic synthesis. Even though obtaining some gate-level circuit from a RT-level

description is straightforward, it is nontrivial to obtain a gate-level circuit that conforms to

the desired specifications. The first-order optimization criteria in this process are typically

all or a desired subset of area optimality, speed and testability.

Once the gate-level circuit has been obtained, mask-level layout is derived using

layout synthesis (physical design) tools. The physical design styles of choice are typically

gate array, sea-of-gates, standard-cell and programmable gate array. Programmable gate

array is popular for extremely rapid prototyping of designs. Standard-cell is the design style

of choice in mostly-custom designs like microprocessors, where only a portion of the chip

is synthesized automatically. Gate array and sea-of-gates offer superior performance and

integration density compared to programmable gate array and standard-cell design styles

and are chosen when the complete chip is synthesized automatically.



CHAPTER 1. INTRODUCTION

1/00

1/00 S2 •{ S3 woo

Figure 1.1: An example of a State Transition Graph (STG)

1.3 Sequential Logic Synthesis

Almost all VLSI circuits are sequential circuits, i.e. they contain memory or

storage elements in the form of flip-flops or latches as well as combinational (or switch

ing) circuitry. An RT-level description can be implemented using either synchronous or

asynchronous sequential logic. While asynchronous design has certain advantages, design

automation for the reliable asynchronous implementation of complex functionality is still

in its infancy. The synchronous design paradigm is followed throughout this thesis.

Considerable progress has been made in the understanding of combinational logic

optimization in the recent past and consequently a large number of university and industrial

CAD programs are now available for the optimal synthesis of combinational circuits [15,12,

55, 29]. These optimization programs produce results competitive with manually-designed

logic circuits. For a review of current combinational optimization techniques, the reader is

referred to [17, 19].

The understanding of sequential circuit optimization, on the other hand, is con

siderably less mature. The presence of internal state adds considerably to the complexity

of the optimization problem. While the primary inputs and outputs are typically binary

vectors at the RT-level, internal states are represented in symbolic form.

Sequential circuits are most often modeled using Finite-State Machines (FSMs).

A FSM is a mathematical model of a system (in our case, a switching circuit) with discrete

inputs, discrete outputs and and a finite number of internal configurations or states. The

state of a system completely summarizes the information concerning the past inputs to the

system that is needed to determine its behavior on subsequent inputs. It is convenient



CHAPTER 1. INTRODUCTION 4

to visualize a FSM as a directed graph with nodes representing the states and the edges
representing the transitions between states. Such a graph is known as a State Transition

Graph (STG). An edge in the STG is labeled by the input causing the transition and the

output asserted on the transition. A FSM can also be equivalently represented in tabular

form by a State Transition Table (STT), each row of which corresponds to an edge in

the STG. To deal with complexity, VLSI circuits are invariably specified in a hierarchical

fashion. Large sequential circuits are typically modeled by smaller, interacting FSMs.

Synthesis tools are required to encode the internal symbolic states of FSMs as

binary strings. This encoding determines the complexity and the structure of the sequential

circuit which realizes the FSM, and therefore has a profound effect on its area, testability

and performance. Stated differently, synthesis tools have the freedom of encoding states in

such a way that the design constraints are satisfied. The notion of structure is generally

associated with the manner in which a machine can be realized from an interconnection of

smaller component machines as well as with the functional interdependencies of its state

and output variables. It may be desirable, for example, to construct the circuit with the

minimum amount of logic, or to build it from an interconnection of smaller circuits to obtain

superior performance.

A second degree of freedom available to sequential synthesis tools is based on the

fact that the STG corresponding to a given functionality is not unique; transformations

to the STG like state splitting, state merging or STG partitioning enable moving from

one STG to another without changing the functionality. These transformations guide the

encoding of states in a particular direction, in many cases into directions that would not

have been taken otherwise. Such transformations are sometimes necessary to achieve the

desired objectives.

Research into such transformations is exactly what has motivated the work pre

sented in this thesis. In particular, transformations that guide the synthesis of intercon

nected FSMs have been investigated. Topics that have been covered under this general

guideline include FSM decomposition, state transition graph extraction, the use of don't-

cares in interacting sequential circuits, and the synthesis of interacting sequential circuits

for single and multiple fault testability.



CHAPTER 1. INTRODUCTION 5

1.4 Early Work in Sequential Logic Synthesis

Work in sequential logic synthesis dates back to the late '40s and '50s when discrete

off-the-shelf components (relays and vacuum tubes) were used. In the 1960's, small-scale

integrated circuits(SSI) became popular and much of the work in that period was motivated

by the need to reduce the number of latches in the circuit since that meant a reduction in

the number of relatively expensive chips on the circuit board. Also, since combinational

logic synthesis was still in its infancy, techniques for state encoding and FSM decomposition

were unable to target the combinational logic complexity of the sequential circuit effectively.

The minimization of the number of states in completely specified FSMs was first

investigated by Moore [88], Huffman [63, 64] and Mealy [84]. This work was later extended

to the reduction of states in incompletely specified machines by Ginsburg [53] and Unger [89].

An interesting technique for deriving maximal compatibles in state reduction using Boolean

algebra was reported in a short communication by Marcus [82].

The relationship between state encoding and the structure of the resulting se

quential circuit was first investigated in terms of the algebraic theory of partitions by

Hartmanis [58, 59] and later by Hartmanis and Stearns [102,60]. Contributions to machine-

structure theory werealsomade by Karp [65], Kohavi [68], Krohn and Rhodes [70], Yoeli [109,

110] and Zeiger [111]. The concept of state splitting to augment the possibilities of finding

desirable decompositions and state assignments was developed, among others, by Hartma

nis and Stearns [60], Zeiger [111] and Yoeli [109]. The book by Hennie [61] provides a lucid

and intuitive description of the above contributions.

State encoding was treated from a different point of view by Armstrong [2] and

Dolotta and McCluskey [43]. The procedure of Armstrong formulated the state encoding

problem asone of assigning codes so that prederived adjacency relationships between states

are satisfied in the Boolean domain. To a certain extent, the procedure of [2] inspired some

state assignment algorithms developed in recent work (e.g. Devadas et al [36]) for targeting

multilevel implementations.



CHAPTER 1. INTRODUCTION 6

1.5 Recent Developments

1.5.1 State Encoding

A number of significant new results have been obtained in the area of sequential

logic synthesis in the last five years (e.g. [36,86,87,96]). An important development in state

encoding was the step from predictive to exact approaches for state encoding targeting two-

level implementations. A fundamental result which made this possible was the establishment

of a link between the size of a minimized symbolic tabular representation of a FSM and

the maximum number of product terms required in a Programmable Logic Array (PLA)

implementing the same FSM after encoding the states in the work by De Micheli et al [86].

The approach followed in [86] involved a two-step process. In the first step, the STT of

the FSM is symbolically minimized using a two-levelmultiple-valued minimization program

like espresso-mv [94]. This minimization step generates constraints that the state codes

must satisfy if the PLA resulting from the encoding is to have as small or an equal number

of product terms as the minimized STT. Obtaining a state encoding that satisfies the

constraints forms the second step of the procedure. Since symbolic minimization by itself

cannot account for the interactions in the next-state plane of the encoded FSM, the approach

of [86] effectively approximated the state encoding problem as one of input encoding.

States appear both in the input and output planes of the PLA and therefore state

encoding is actually an input-output encoding problem. The interactions between product

terms in the next-state plane can occur either due to dominance or disjunctive relationships

between state codes. If the code for state s\ dominates the code for state S2, the input parts

of the cubes asserting the next-state S\ can be used as don't-cares in order to optimize the

cubes asserting the next-state 52• Similarly, if the code for state S\ is the disjunction of the

codes for states $2 and 63, the input part of the cubes that assert the next-state S\ can be

optimized using the input parts of the cubes asserting the next-states 62 and 53.

Work by De Micheli [85] was the first to take advantage of interactions between

product terms in the next-state plane. In particular, it attempted to maximize the cardinal

ity reductions due to dominance relationships between state codes by reducing the problem

to one of heuristically finding the order in which states should be encoded. Further under

standing of interactions in the output plane led to the work of Devadas and Newton [41]

in which a procedure was presented for encoding states to achieve the minimum product-

term count. By means of this procedure, relationships between codes arising due to the



CHAPTER 1. INTRODUCTION 7

interactions in the input plane and due to both dominance and disjunctive relationships in

the output plane can be handled simultaneously. The search for all possible relationships

and their effects is carried out by modifying the classical Quine-McCluskey [90, 83] prime

implicant generation and covering. The notion of Generalized Prime Implicants (GPIs) was

introduced in [41] for that purpose. GPIs correspond to a weaker form of primality than

conventional prime implicants in that for the same symbolic cover, the set of GPIs contains

the set of conventional prime implicants and is much larger than it. The advantage of GPIs

is that they allow interactions in the output plane to be handled formally. While the use

of GPIs leads to an exact procedure, their use is only viable for small FSM examples.

State encoding targetingmultilevel implementations is an even more difficult prob

lem. The main reason for this is that combinational optimization of multilevel circuits is

itself not an exact science. Even so, certain optimization strategies like common-factor

extraction are fundamental to multilevel optimization and a number of predictive state

encoding procedures have been proposed that maximize the gains due to these basic strate

gies. Devadas et al [36] proposed an algorithm for state encoding in which the likelihood

of finding common subexpressions and common cubes in the logic prior to optimization

is enhanced by minimizing the distance in the Boolean space between chosen states. A

variation on this approach was followed in subsequent work by other researchers [74, 107].

However, in [74], the emphasis was on the general encoding problem, including both inputs,

outputs and state variables, while the emphasis in [107] was on encoding for optimization

by kernel-based combinational optimization tools. Recently, attempts have been made to

extend the encoding paradigm followed for two-level circuits to multilevel circuits. In the

work of Malik et al [71], techniques were proposed for optimizing multilevel circuits with

multiple-valued input variables. As in the two-level case, these optimizations lead to con

straints on possible binary encodings for the multiple-valued variables that must be satisfied

if the effects of the optimizations are to be preserved after encoding.

One of the important steps in the encoding of symbolic states in a FSM is the

satisfaction of encoding constraints. In the most general case, these constraints consist of

both input and output constraints. In thecase ofinput constraints, one is given aconstraint
matrix, C, each column of which corresponds to a state and each row to a constraint. The

goal is to find an encoding matrix E where each row in E corresponds to the binary code

chosen for a state, such that the constraints implied by C are satisfied and the number of

columns in E is minimum. Satisfying the input constraints entails obtaining state codes



CHAPTER 1. INTRODUCTION 8

such that for each row in C the states present in the row form a face in the Boolean n-space

and the states absent from the row are excluded from that face. This problem is called the

face-embedding problem. Output constraints, on the other hand, force bitwise dominance

and disjunctive relationships between the state codes.

Finding a minimum-length encoding satisfyingthe constraints is an NP-hard prob

lem [95]. De Micheli et al [86] provided a number of results for reducing C without violating

the original set of constraints and proposed a row-based encoding algorithm. According to

this algorithm, E is constructed row by row with the invariant that the constraints cor

responding to the rows of C are not violated by the portion of E constructed thus far.

Columns are added to E when necessary. This algorithm was found to be effective only

for small examples. Column-based algorithms were proposed by De Micheli [85] and De

vadas et al [42]. In a column-based algorithm, E is constructed one column (one bit) at a

time. None of these algorithms guarantee a minimum-length encoding. The work by Villa

et al [106] includes an algorithm for obtaining the minimum length encoding satisfying all

input constraints. This work represents a refinement of the methods developed previously

[85, 86].

An alternate approach to constraint satisfaction uses the notion of dichotomies.

A dichotomy is defined as a disjoint two-block partition on a set, in our case the set of

states. The notion of dichotomies was first introduced for hazard-free state encoding of

asynchronous circuits by Tracey [105]. Dichotomies were revisited for constrained state

encoding by Ciesielski et al [108]. The main result of that work was to show that the

minimum number of bits required to encode a set of constraints is equal to the minimum

number of prime dichotomies required to cover all the seed dichotomies. An implementation

based on graph coloring was suggested for this approach. An alternate implementation of

the dichotomies approach based on prime generation and classical unate covering [93] was

done by Saldanha et al [95]. It was also shown in that work how output constraints could

be handled using dichotomies. In this case, the generation of primes was carried out using

the same approach as used by Marcus [82] for generating maximal compatibles in state

minimization.

In other work on constraint satisfaction [41], it was shown that if the encoding

length were known a priori, all constraints can be represented by Boolean equations. While

this idea is attractive in theory, a naive representation of all constraints involved as Boolean

equations can lead to an intractable satisfiability problem. Simulated annealing has also



CHAPTER 1. INTRODUCTION 9

been used successfully for constraint satisfaction [36, 74, 106].

1.5.2 Finite State Machine Decomposition

FSM decomposition can be used to obtain partitioned sequential circuits with

the desired interconnection topology. Sequential circuit partitioning can lead to improved

performance, testability and ease of floor-planning. Decomposition at the STG-level allows

a larger solution space to be searched for partitioning sequential circuits than techniques

that operate at the logic level. However, the drawbacks of the above approaches which

operate at the STG level is that it is difficult to accurately predict the effect of an operation

at the symbolic level on the cost of the resulting logic.

In recent work on FSM decomposition, Devadas and Newton [40] recognized that

many FSMs possess isomorphic subgraphs in their STGs. The implementation of mul

tiple instances of such isomorphic subgraphs (called factors in [40]) as a single separate

submachine distinct from the parent machine can lead to reduced area and improved per

formance. The authors also demonstrated that this decomposition approach leads to an

encoding strategy that takes advantage of some interactions in the next-state plane.

1.5.3 Sequential Resynthesis at the Logic-Level

The observation that significant gains could be accrued by optimizing certain se

quential circuits at the logic-level was made by Leiserson et al [72] for systolic arrays.

Systolic arrays are sequential circuits which are capable of operating at very high clock

frequencies because they are designed as highly pipelined structures with very little logic

between pipeline latches on any path in the network. This design methodology implies

that the number of latches is usually very large. Given an initial design, the problem of

retiming or relocating these latches so that the number of latches is minimized, with the

circuit still satisfying the clock frequency requirement and with the functionality of the

circuit remaining unchanged, was formulated as an integer programming problem in that

work. The work of Malik et al [79] extended the ability to retime latches to a larger class

of circuits. In that work, the general problem of state encoding was reduced to one of latch

retiming. While this notion is certainly attractive in theory, it was found that most sequen

tial circuits implementing control-type functions are not amenable to global optimization

by latch retiming because of the tight feedback paths they possess. The reason that latch



CHAPTER 1. INTRODUCTION 10

retiming was successful for systolic arrays was that most of the latches are used as pipeline

latches and very few of them are in unique feedback loops.

1.5.4 FSM Verification

In order to validate the complex transformations involved in logic synthesis, it is

important to be able to verify the equivalence of the input/output behavior of two imple

mentations of a FSM. Clearly, exhaustive enumeration of all sequences of states and edges

in the two implementations is not a viable proposition. In the work of Devadas et al [35],

implicit cube-enumeration was used to avoid exhaustive search. In this approach, the veri

fication is carried out as a two step process. A path is first enumerated on one of the FSMs,

with the primary input combinations on this path being cubes in general. This path is then

simulated on the second FSM to check if the same output sequence is produced as in the

first FSM. Podem-based [54] justification techniques are used for implicit cube-enumeration.

Ghosh et al [52] proposed a variation on [35] in which the next-state space as well as the

primary-input space is enumerated imphcitly. While this approach still basically involves a

depth-first search, some states can be visited together.

The recent work of Coudert et al [28] pioneered the use of characteristic-function-

based representations of sequential machines using binary decision diagrams, and the associ

ated techniques for range computation for application in FSM verification. The fundamental

contribution of this research was to illustrate that an implicit breadth-first traversal of the

state space is sufficient for FSM verification. This technology was improved considerably

in the work by Touati et al [104] leading to its application to, among other things, the

computation of equivalent states in sequential circuits [75].

1.5.5 Sequential Synthesis for Testability

Ensuring the correctness of chips leaving the fabrication line is universally recog

nized as a key area. The typical testing methodology involves applying a series of test-

vectors as inputs to the fabricated die and comparing the output produced against the

expected output. The die is deemed defective and discarded if even one of the outputs so

produced is different from the expected output. One of the reasons why defective die are

not detected by this process is that the defect only modifies redundant portions of the die.

Such a defect causes the functionality of the chip to remain unchanged leaving the fault



CHAPTER 1. INTRODUCTION 11

undetectable or redundant. The inability to detect die with redundant faults can lead to

erroneous conclusions about the quality of the fabrication process and the quality of the

masks. A circuit with no undetectable faults under a given fault model is said to be fully

testable under that fault model.

The intimate relationship of logic synthesis to the testability of combinational cir

cuits under the stuck-at-fault model has been known for some time [67, 14, 10, 56] and a

number of synthesis procedures have been proposed for realizing fully testable implementa

tions of combinational circuits [10, 56, 99]. An important contribution in that regard was

that of Bartlett et al [10] in which a link was established between combinational testability

and don't-care-based combinational logic optimization. In the work by Hachtel et al [57], a

procedure was proposed for the synthesis of fully multiple-fault testable multilevel circuits

based on the results of Kohavi [67] for multiple faults in two-level circuits.

However, since VLSI circuits in general are sequential circuits, they contain mem

ory or storage elements in addition to combinational circuitry. Many latches occupy feed

back paths that feed an output of the combinational portion of the circuit back into one

of its inputs. Such latches are usually neither directly observable nor controllable. In the

context of testing, this implies that for a sequential circuit to be fully testable it is not

sufficient for merely the combinational portion to be fully testable; rather, for a fault to

be detected, the fault effect must be propagated to those outputs that are observable, and

the fault must be excited from those inputs that are controllable. As a result, the testing

problem for sequential circuits is more complicated than in the combinational case.

A design-for-testability (DFT) engineering solution, called Scan Design [44]. can

be used to convert a sequential circuit testing problem to a combinational circuit testing

problem by making the latches directly accessible. In the IBM approach [44], the latches

are linked to form a serial shift register for scanning a set of values into and out of the

latches. In other approaches, parallel load/unload techniques are used (e.g. [91]). Given

the large number of latches in a typical chip, allowing parallel access to all the latches is

not feasible, so the usual approach followed today is to allow serial access to all the latches.

This approach involves tailoring the whole design around the testing methodology and the

special latches required. In addition, a performance penalty is involved because of the

complex nature of the latches. Another drawback associated with this approach is in the

large testing time required since each test vector must be scanned serially in and out, one

bit at a time.



CHAPTER 1. INTRODUCTION 12

In contrast to scan design, non-scan testing methodology involves testing sequen

tial circuits without necessarily making all the latches directly accessible. The non-scan

testing effort relies on the philosophy that logic present in a circuit plays a useful role only

if it has an effect on what is seen at the observable outputs, based on what is apphed at the

accessible inputs. Therefore, a fault in such logic should be testable without making the

latches accessible. In fact, if a fault cannot be tested in this manner, the associated logic is

redundant and should not have been used in the first place. In non-scan testing, a sequence

of test vectors has to be apphed in general to detect each fault. An important development

in non-scan sequential testing was the definition [39] of sequential redundancies with associ

ated don't-cares which, if used optimally, would result in a fully testable sequential circuit,

without direct access to any internal storage. Other techniques employing circuit parti

tioning accompanied by encoding constraints have been proposed for non-scan sequential

testability [38]. Techniques for partial scan in which a subset of latches is made scannable

have also been proposed (e.g. [1, 78]).

1.6 Overview of Dissertation

The goal of this work is to develop new techniques for the synthesis of sequential

logic circuits. The basic terminology used in the dissertation is defined in Chapter 2.

Chapter 2 also contains a detailed review of the basic concepts related to state encoding.

This review has been included to facilitate the understanding of Chapter 3.

In Chapter 3, a new approach to FSM decomposition is presented. By virtue of

this procedure, it is possible to target logic-level optimality of the partitioned sequential

circuit. For the cost function chosen, the algorithm presented in this chapter can be used

to obtain a decomposition with minimum cost. In many ways, state encoding and FSM

decomposition are two sides of the same coin. FSM decomposition can be viewed as a struc

tural transformation of the FSM that guides the subsequent steps of state encoding in the

desired direction. Based on this premise, one state encoding strategy involves decomposing

the FSM prior to performing the actual encoding. Variations on the decomposition strategy

proposed in Chapter 3 can be used for that purpose.

In a common design scenario, one is required to redesign a sequential circuit for

which a logic-level description is already available. In such a situation, it is necessary to

extract the STG efficiently from the logic-level description. In Chapter 4, a procedure



CHAPTER 1. INTRODUCTION 13

for extracting symbolic information from logic-level descriptions of sequential circuits is

presented. The novelty of this procedure lies in the fact that detection of some equivalent

states and detection of edges that can be combined in a two-level representation of the

STG is performed during the extraction process itself. As a result, this procedure avoids

having to extract an intermediate representation in which the fanout of equivalent states

and combinable edges are enumerated separately.

The work presented in Chapter 5 is concerned with the synthesis for testability of

sequential circuits represented asinteracting FSMs. In particular, procedures are presented

for synthesizing interacting sequential circuits that are sequentially non-scan single-fault

testable without any associated area penalty. In Chapter 6, a procedure is presented for

synthesizing multiple-fault-testable sequential circuits.

Verifying the equivalence of two logic circuits is crucial since the validity of com

plex logic transformations must be checked at all times. The work presented in Chapter 7

is concerned with techniques for using general Binary Decision Diagram (BDD) represen
tations for verifying combinational and sequential logic circuits. Unlike reduced, ordered

BDDs, general BDDs are not canonical but are much more compact.

Chapter 8 concludes the dissertation. Most of the ideas presented in this disser

tation have been implemented in the sequential synthesis system FLAMES. Implementation
details of flames are included as Appendix A.



Chapter 2

Basic Definitions and Concepts

Most of the terminology used in this dissertation is standard and in common use in

the synthesis and testing communities [69,17,19]. This chapter is devoted to the definition

of the nontrivial terminology and an elucidation of some of the basic concepts.

2.1 Definition of Terminology

2.1.1 Two-Valued Logic

A binary variable is a symbol representing a single coordinate of the Boolean

space (e.g. a). A literal is a variable or its negation (e.g. a or a). A cube is a set C of

literals such that x GC implies x $ C (e.g., {a,b,c} is a cube, and {a,a} is not a cube).

A cube (sometimes called a product term) represents the conjunction, i.e. the Boolean

product of its literals. The trivial cubes, written 0 and 1, represent the Boolean functions

0 and 1 respectively. An expression (also called a sum-of-products) is the disjunction,

i.e. a Boolean sum, /, of cubes. For example, {{a},{M}} is an expression consisting of

the two cubes {a} and {6,c}.

A cube may also be written as a bit vector on a set of variables with each bit

position representing a distinct variable. The values taken by each bit can be 1, 0 or 2

(don't-care), signifying the true form, negated form and non-existence respectively of the

variable corresponding to that position. A minterm is a cube with only 0 and 1 entries.

Cubes can be classified based on the number of 2 entries in the cube. A cube with k entries

or bits which take the value 2 is called a fc-cube. A minterm thus is a 0-cube. A cube

14



CHAPTER 2. BASIC DEFINITIONS AND CONCEPTS 15

1-00 (inpl, inp3) out3 100 1-00 101 001 100
111- (inpl, inp3) out3 on 111- 101 001 on
101- (inpl, inp2) out2 110 101- 110 010 110
1-01 (inpl, inp3) outl 101 1-01 101 100 101
0 (inpl)

(a)
outl 111 0 100

(b)
100 111

Figure 2.1: An example of a symbolic cover and its one-hot coded representation

c\ is said to cover (contain) another cube c^, if c\ evaluates to 1 for every minterm for

which C2 evaluates to 1. A super-cube of a set of cubes, ct-, is defined as the smallest

cube containing all the minterms contained in c,-. The on-set of a function / is the set of

minterms for which the function evaluates to 1, the off-set of / is the set of minterms for

which / evaluates to 0, and the don't-care set or the DC-set is the set of minterms for

which the value of the function is unspecified. An implicant of / is a cube that does not

contain any minterm in the off-set of /. A prime-implicant of / is an implicant which is

not contained by any other implicant of /.

2.1.2 Multi-Valued Logic

In general, a logic function may have symbolic (also known as multiple-valued)

input or output variables in addition to binary variables. Like binary variables, a symbolic

variable also represents a single coordinate, with the difference that a symbohc variable can

take a subset of values from a set, say Pi, that has a cardinality greater than two. Let A",

be a symbolic input variable for the function /, and let Si be a subset of Pt. Then A',-5'

represents the Boolean function

\ 1 if Xi 6Si
A",5, is called a literal of the variable A",-. The definition of a cube (product-term)
remains unchanged; it is the Boolean product of literals. A minterm or 0-cube is now defined

as the cube in which all variables take only a single value. A cube covers (contains) a
minterm if it evaluates to 1 for that minterm. A cube ci covers (contains) another cube C2 if

ci evaluates to 1 for all the minterms for which c2 evaluates to 1. When an output variable,

say Yj, is symbohc it implies that Yj can takea value from a set Pj,ofvalues when the input

is some minterm. A function in which some variables are symbohc is known as a symbolic



CHAPTER 2. BASIC DEFINITIONS AND CONCEPTS 16

cover. An example of a symbohc cover with one symbohc input and one symbolic output

is shown in Figure 2.1(a). In the example, the symbohc input variable takes values from

the set {inpl,inp2,inp3} while the symbohc output variable takes a value from the set

{outl,outl,outZ). A convenient method for representing a symbohc variable that can take

values from a set of cardinality n is to use an n-bit vector to depict a literal of that variable

such that each position in the vector corresponds to a specific element of the set. A 1 in a

position in the vector signifies the presence of an element in the literal while a 0 signifies the

absence. This method of representation is commonly known as one-hot. An example of a

one-hot representation for the symbohc cover of Figure 2.1(a) is shown in Figure 2.1(b).

2.1.3 Finite Automata

A Finite-State Machine is represented by its State Transition Graph (STG)

or equivalently, by its State Transition Table (STT). A STG is denoted by G(V, E,

W(E)), where Vis the set of vertices corresponding to the set of states S, where ||5|| is

the cardinality of the set of states of the FSM, E is the set of edges such that an edge (v,-,

vj) joins Vi to Vj if there is a primary input minterm that causes the FSM to evolve from

state Vi to state Vj, and W(E) is a set of labels attached to each edge, each label carrying

the information of the value of the input that caused the transition and the values of the

primary outputs corresponding to that transition. The input combination and present-

state corresponding to an edge, c, or a set of edges is (i, s), where i and s are cubes. The

fanin of a state, q is a set of edges and is denoted fanin(q). The fanout of a state q is

denoted fanout(q). The output and the fanout state of an edge (i, s) € E are o((i, s)) and

n((*\ $)) € S respectively. Given Ni inputs to a machine, 2Ni edges with minterm input

labels fan out from each state. A STG where the next-state and output labels for every

possible transition from every state are defined corresponds to a completely specified

machine. An incompletely specified machine is one where at least one transition edge

from some state is not specified.

A STT is a tabular representation of the FSM. Each row of the table corresponds

to a single edge in the STG. Conventionally, the left most columns in the table correspond

to the primary inputs and the right most columns to the primary outputs. The column

following the primary inputs is the present-state column and the column following that is

the next-state column.



CHAPTER 2. BASIC DEFINITIONS AND CONCEPTS 17

In all of the work reported here, a starting or initial state (also called the reset

state) is assumed to exist for a machine. Given a logic-level description of a sequential

machine with JV& flip-flops, 2Nb possible states exist in the machine. A state which can be

reached from the reset state via some input vector sequence is called a valid state (or a

reachable state). The corresponding input vector sequence is called the justification

sequence for that state. A state for which no justification sequence exists is called an

invalid state (or an unreachable state). Two states a and bare equivalent if the output

sequence produced starting from a is the same as the output sequence produced starting

from 6 for any input sequence.

A differentiating sequence for a pair of states q\, qi € Q of a machine M is

a sequence (or string) of input vectors such that the last vector produces different outputs

when the sequence is apphed to M, when M is initially in qx or when M is initially in

q2. Two states q\, q2 in a completely specified machine M are equivalent (written as

ft = ft) i if they do not possess a differentiating sequence. If two states q\, q2 in an

incompletely specified machine M do not possess a differentiating sequence, they are said
to be compatible (written as q\ 2 q2).

A State Transition Graph G\ is said to be isomorphic to another State Transition

Graph G2 if and only if they are identical except for a renaming of states.

2.1.4 Testing

Testing is concerned with the detection ofdefects (faults) on a chip. Test gener

ation is used to obtain a compact set ofinputs that can be apphed to the chip to detect the

presence of defects. Unless otherwise mentioned, the fault model assumed is the stuck-at

model. In the stuck-at fault-model, a defect forces one or more inputs/outputs ofa gate in
the circuit to constant zero or constant one. Ifa gate output or primary input has multiple
fanout, each fanout can be stuck-at a constant, independent of the other fanouts. In the

single-fault model, only one wire is affected at a time. In the multiple-fault model,
multiple wires are affected at the same time.

There are two kinds ofuntestable faults in a circuit. A fault is combinationally

testable if thereexists an input that can propagate the effect of the fault to the outputsof

the combinational logic. Otherwise, the fault is said to be combinationally redundant or

untestable. A finite-state machine is assumed to be implemented by combinational logic



CHAPTER 2. BASIC DEFINITIONS AND CONCEPTS 18

andfeedback registers. Tests aregenerated for faults in the combinational logic part. Afault

is said to be sequentially redundant or untestable if the fault is combinationally testable

and the effect of the fault cannot be propagated to a primary output by the apphcation of

a primary input sequence.

An edge in the STG of a machine is said to be corrupted by a fault if either the

fanout state or output label of this edgeis changed because of the existence of the fault. A

path in the STG is said to be corrupted if at least one edge in the path has been corrupted.

If a fault is propagated to the next-state lines of a machine, it results in a faulty

next-state, rather than a fault-free (or true) next-state. The fault is deemed to have pro

duced a faulty/fault-free state pair.

To detect a fault in a sequential machine, the machine has to be placed in a state

which can excite the fault and then the fault effect must be propagated to a primary out

put. These tasks are called state justification and fault excitation-and-propagation,

respectively.

A primitive gate in a logic network is called prime if none of its inputs can be

removed without causing the resulting circuit to be functionally different. The gate itself

is irredundant if its removal causes the resulting circuit to be functionally different. A

gate-level circuit is said to be prime if all the gates are prime and irredundant if all the

gates are irredundant. It can be shown that a gate-level circuit is prime and irredundant if

and only if it is 100% testable for all single stuck-at faults [10].

2.2 A Review of the Basic Concepts in State Encoding

A review of previous work in state encoding was presented in Chapter 1. To aid

the understanding of the material in Chapter 3, a more detailed review of recent work in

that area is presented here.

A finite-state machine is a logic function with symbohc inputs and outputs, with

the additional caveat that the same symbols appear in the input and output planes. There

fore, state encoding considered in its entirety is an input-output encoding problem and

it cannot be approximated by either a purely input encoding problem or a purely output

encoding problem.

The main difficulty in state encoding lies in the need to predict the effects of

the complicated logic optimization steps which follow the encoding process. A major con-



CHAPTER 2. BASIC DEFINITIONS AND CONCEPTS

Osl s21
lsl s40
0s2 s21

1 s2 si 1
0s3 s3 0
ls3 s40
0s4 s21
1 s4 si 1

(a)

0(sl,s2,s4) s21
I(s2,s4) sll
l(sl,s3) s40
0(s3) s3 0

(b)

Figure 2.2: A symbolic tabular representation of a finite-state machine

si = 001
s2 = 000
S3 = 011
s4 = 100

si

s2

/ /
js3

/
s4

19

(a) (b)

Figure 2.3: Codes satisfying input constraints

tribution in that regard was that of De Micheh et al [86] in which a new paradigm was

proposed for state encoding. It was suggested that state encoding be viewed as a two-step

process. In the first step, a tabular representation of the FSM is optimized at the symbolic

level. This optimization step generates constraints on the relationships between codes for

different states. In the second step, states are encoded in such a way the constraints are

satisfied. Satisfaction of the constraints guarantees that the optimizations at the symbolic-

level will be preserved in the Boolean domain. The accuracy with which optimization at

the symbolic-level can mimic optimizations in the Boolean domain is then a major issue.

2.2.1 Input Encoding Targeting Two-Level Logic

The initial effort in state encoding using the two-step paradigm was targeted to

ward obtaining optimal two-level implementations of encoded FSMs. A technique (imple

mented in the program ESPRESSO-mv [26] by Rudell et al) for minimizing two-level covers

with symbolic variables is known as symbolic or multiple-valued minimization [94].



CHAPTER 2. BASIC DEFINITIONS AND CONCEPTS 20

0-1- 0110
1—1 1000
1 —0 0011
0-0- 0001

Figure 2.4: Two-level implementation of encoded finite-state machine

An example tabular representation of a FSM is shown in Figure 2.2(a). A symbohc min

imization of this FSM leads to the cover shown in Figure 2.2(b). It can be seen that the

minimized cover is output-disjoint and all the reduction in the cardinality of the symbohc

cover is due to relationships in the input part, i.e. due to the fact that some states fan out

to the same next state for certain primary inputs.

The goal in deriving constraints from the minimized symbohc cover is to encode the

states in such a way that the cardinality of the resulting two-level Boolean implementation

is no greater than the cardinality of the minimized symbohc cover. A sufficient condition

that ensures the preservation of the cardinality of the symbohc cover 1during the transition

from the symbolic to the Boolean domain is to ensure that each multiple-valued input literal

in the minimized symbohc cover translates into a single cube in the Boolean domain. In

other words, given a multiple-valued literal, the states present in it should form a face in

the Boolean n-space in such a way that the face does not include the states absent from

the same multiple-valued literal. Such constraints are called face-embedding or input

constraints, and the process of obtaining these constraints and satisfying them is known as

input encoding.

Codes satisfying the face-embedding constraints imphed by the minimized sym

bolic cover of Figure 2.2(b) are shown in Figure 2.3(a). As can be seen in the figure,

three binary variables are required to satisfy the face-embedding constraints. Figure 2.3(b)

shows the location of these codes in the Boolean n-space and shows that they satisfy the

face-embedding constraints. The cover obtained after substitution of the state codes in the

symbohc coverand a two-level Boolean minimization is shown in Figure 2.4. While two-level

symbohc minimization by definition [94] can be used to explore all optimization possibihties

in the input plane, it is intrinsically incapable of optimizations involving a sharing of logic

among different next-state symbols. Since the work by De Micheh et al [86] obtained the

encoding constraints using two-level symbohc minimization, it effectively approximated the

Minimized using ESPRESSO-MV



CHAPTER 2. BASIC DEFINITIONS AND CONCEPTS 21

0001 si , _
00-0 s2 si=11 Q001 n
0011 s2 s2 =10 00— 10

(a) (b) (c)

Figure 2.5: Example of the effects of dominance relationships

state encoding problem as one of input encoding.

2.2.2 Output Encoding Targeting Two-Level Logic

There are two types of interactions in the next-state plane that lead to cardinahty

reductions in the minimized two-level Boolean cover. The first type involves the bitwise

dominance of the code of one state by the code of another. A binary vector Vi is said to

dominateanother binary vector v2 if in every bit that v2 has a 1, vl also has a 1. An example

is shown in Figure 2.5. A cover with a symbohc output part is shown in Figure 2.5(a) and

the codes for the symbols si and s2 are shown in Figure2.5(b). Since the code for the symbol

si dominates the code for 52, the input cubes asserting Si can be used as don't-cares in

order to reduce the cardinahty of the cover for s2, as shown in Figure 2.5(c). The use of

dominance constraints in state encoding was explored by De Micheh [85]. In that work,

the problem of exploiting the dominance constraints was reduced to one of heuristically

ordering the states. The ordering of states dictated the dominance relationships between

states. Satisfying these dominance relationships (which should not conflict) results in some

reduction of the overall cover cardinahty. The basic intuition used in the ordering was that

a next-state with a large cover be optimized under as large a don't-care set as possible.

A limitation of this approach is that minimum cardinahty cannot be guaranteed

because all possible dominance relations are not explored, nor is an optimum set selected.

A more basic shortcoming is that dominance relations arenot the only kind ofrelationships

between symbohc values that can be exploited. After a symbohc cover has been encoded,

it represents a multiple-output logic function and minimizing a multiple-output function

entails exploiting other sharing relationships rather than just the dominance relationship.

The second type of interaction in the next-state field has to do with disjunctive

relationships between state codes. A disjunction of two Boolean vectors is the bitwise-or

of the two vectors. If the code of a state, say S\ is equivalent to or is dominated by the

disjunction of the state codes of twoor more state variables, then the cardinahty of the cover



CHAPTER 2. BASIC DEFINITIONS AND CONCEPTS 22

101 si 1
100 s2 1
111 S3 1

(a) (b) (c)

Figure 2.6: Example of the effects of disjunctive relationships

for the next-state s\ can be reduced by using the on-sets of the covers for the codes of the

next-states involved in the disjunction. As an example, consider the cover in Figure 2.6(a)

with symbolic values in the output part. In Figure 2.6(b), the code for the symbol s\ is the

disjunction of the codes for symbols s2 and 33. The cardinahty of the cover of the on-set for

the symbol s\ is effectively zero. When the disjunctive relationship is absent as in the codes

shown in Figure 2.6(c), the cardinahty of the cover of the on-set of the symbol s\ is one.

Note that the reduction in the cardinality in Figure 2.6(b) is for the dominating state and

not the dominated state, and is therefore not due to the dominance relationships described

previously.

A method for exploring all possible dominance and disjunctive relationships im

phcitly but exhaustively was proposed by Devadas and Newton [41]. The basic approach

involved a modification of the prime-implicant generation and covering procedures funda

mental to two-level Boolean minimization [90, 83]. The definition of the notion of General

ized Prime Implicants (GPIs) was the key contribution in that regard.

Generalized Prime Implicants

GPIs correspond to a weaker form of primality than primes in the Boolean domain.

The basic idea in the use of GPIs is to mimic prime-implicant generation in the Boolean case.

Consider the two minterms in Figure 2.7(a). These minterms have three two-valued input

variables and three two valued output variables. Since these two minterms (or, 0-cubes)

are distance-1 from each other in the input part, they can be merged together to form a

1-cube, with the output part of the 1-cube being the bitwise conjunction of the output parts

of the individual 0-cubes. Now, if the output part had been symbohc for the two 0-cubes

as shown in Figure 2.7(b) (as would be the case for an output-encoding problem), the two

si = 00
s2 = 01
S3 = 11

si = 11
s2 = 01
s3 = 10

Codes Codes

1-1 00 1
100 01 1
111 11 1

10- 01 1
1-1 10 1

Minimized Cover Minimized Co



CHAPTER 2. BASIC DEFINITIONS AND CONCEPTS 23

001 101 . 001 si .
>-*- -01 001 J>—• -01 (sl,s2)

101 Oil ' 101 s2 '

(a) (b)

Figure 2.7: Merging cubes to form larger cubes

0-cubes would still be allowed to merge, with the output part of the 1-cube being the union

of the output parts of the 0-cubes. It is imphcitly understood that once the symbols are

encoded, the symbolic-output part that contains more than one symbol becomes the bitwise

conjunction of the codes of the symbols present in it. For example, in the 1-cube shown in

Figure 2.7(b), if the symbols s\ and s2 were given the codes 101 and 011, respectively, the

output part of the 1-cube with the symbols encoded would be 001.

Generation of all prime-implicants in the Boolean domain can be viewed concep

tually as the merging of fc-cubes to form (At + l)-cubes as shown in Figure 2.7(a), until no

new cubes are generated. The generation of (k + l)-cubes is accompanied by the removal

from the list of candidate primes of those fc-cubes that are covered by a (A: + l)-cube. When

two A'-cubes are merged, the output part of the (k -f l)-cube cannot dominate the output

parts of the A'-cubes it was derived from since it is the conjunction of the output parts of

the A'-cubes. Therefore, a (A: + l)-cube can cause the removal of a A:-cube only if the input

part of the (A* + l)-cube covers the input part of the A:-cube and the output part of the

A'-cube is the same as the output part of the (A: + l)-cube.

The generation of GPIs Mows exactly along the same lines. (A: + l)-cubes with

symbolic outputs are generated by merging A:-cubes as in Figure 2.7(b) until no new primes

can be generated. A (k+ l)-cube can remove a A:-cube only if the input part of the (A: + 1)-

cube covers the input part of the A:-cube and the symbohc output partsof the two cubes are

the same. The rule for removal of cubes has to be modified for the input-output encoding

problem in state encoding (cf Section 2.2.3). Given the procedure for generating GPIs, the

reason why GPIs correspond to a weaker form of primality than prime-implicants in the

Boolean domain is easy to see. In the Boolean domain, if the conjunction of the output

parts of a set of A:-cubes is all zeroes, then no (A: + l)-cube is generated from these fc-cubes.

In the presence of symbohcoutputs, however, since the codes for the symbols arenot known

a priori, all possible (A* + l)-cubes have to be generated including those that would have



CHAPTER 2. BASIC DEFINITIONS AND CONCEPTS 24

all zero output parts after the encoding of the symbols. Of course, if a cube contains all

possible symbols in the output part, it can be discarded.

Any selection of GPIs implies output constraints that have to be satisfied if the

encoded cover is to have the same cardinality as the selected set of GPIs. Unlike the

case of input encoding, an arbitrary selection of GPIs does not necessarily correspond to

satisfiable constraints. If the constraints are satisfiable, the selection of GPIs is said to be

encodable. However, a selection may not be encodable because of mutual conflicts between

the constraints corresponding to different GPIs in the selection.

Given a selection of GPIs, the basic constraint implied for each symbol (in this

case for st) is of the following type:

e(sd = U fH5;.*) C2-1)
k 3

where e(s) is the encoding for symbol s, k ranges over the GPIs that contain the symbol

Si in the output part, j ranges over the symbols in the output part of each such GPI, f|

corresponds to bitwise conjunction and (J to bitwise disjunction. For example, if two cubes,

one with the output part (si,s2,sz) and another with the output part (51,64) were the only

cubes in the selected set containing «i in the output part, the constraint for the symbol S\

would be e(s\) = e(si)C\e(s2)C\e(s3) \J e($i)ne(s4). This basic constraint encapsulates the

effects of both dominance and disjunctive relations. Given an arbitrary set of constraints,

dominance and disjunctive relations between the encodings must be derived so that satis

fying them satisfies the constraints. Dominance and disjunctive relationships may conflict

across a set of constraints. Consider the constraint e(si) = e(si) n e(s2) \J e(s\) D e(s3)

for e(si). There are three alternatives for satisfying this constraint:

1. e(si) C e{s2)

2. e(*i) C e(s3)

3. e(5j) C e(s2) U e(s3)

If one chooses to use the relationship e($i) C c(s2) and if another constraint requires that

e(s2) C e(s\) be used for satisfying it, then the selection of GPIs is not encodable.

If the length of the encoding is known a priori, the problem of checking for satisfi

ability of the constraints reduces to a Boolean satisfiabihty problem. For the case when the

encoding length is not known a priori, a constructive procedure for encodabihty checking



CHAPTER 2. BASIC DEFINITIONS AND CONCEPTS 25

was proposed [41]. In that procedure, one begins with a graph with no edges and whose

nodes correspond to the symbols to be encoded. Further, if a disjunctive relation is re

quired in which each element in the disjunction is the conjunction of multiple symbols (e.g.

e($i) C e(s2) n e(s3) (J e(^4)), nodes (called conjunctive nodes) are also added for each

conjunctive element in the disjunction. Edges are added to the graph whenever it is decided

to apply a certain relationship to satisfy a constraint. For example, a directed edge is added

from node 5i to node 52 if the satisfaction of some constraint requires that the code for s\

dominate the code for 52. Similarly, if the code for the symbol 5] is required to be equal

to the disjunction of the codes of the states {9,}, a directed edge is drawn from 5i to each

state in {<?,} and this set of edges is given a unique label. If the code for the symbol s\ is

required to be dominated by the disjunction of the codes of the states {(?»}, an undirected

edge is drawn from s\ to each state in {9,} and this set of edges is given a unique label.

The states {<?,•} in the last two cases are called siblings and the state si is called the parent.

Edges are similarly added in the graph for conjunctive nodes. The graph being constructed

is required to satisfy certain properties at every stage of the construction. For example:

• No edge can be added that creates a directed cycle.

• The sibhngs in a disjunctive relationship cannot have directed edges between them.

• The same set of sibhngs cannot have two different parent nodes.

• The parent, node in a disjunctive dominance relationship cannot dominate all its sib

hngs.

• The parent node in a disjunctive equality relationship cannot dominate a node that

dominates all the sibhngs.

If such a graph can be built with the edges corresponding each constraint added to it, the

selection of GPIs is encodable.

The problem of obtaining the minimum two-level representation of a function can

be reduced to one of finding the minimum number of prime-implicants covering all the

minterms. Since the number of primes is much lower than the total number of cubes,

this approach accompanied by efficient procedures for generating the primes leads to an

effective pruning of the search space in Boolean minimization. GPIs have a similar effect on

the search space in output encoding. It can be easily shown that the minimum-cardinality



CHAPTER 2. BASIC DEFINITIONS AND CONCEPTS 26

encodable symbohc cover can be made up of only GPIs. Thus, if one selects a minimum

set of GPIs that cover all the minterms and all the constraints corresponding to which are

satisfiable, one is guaranteed a minimum solution of the output encoding problem.

2.2.3 Input-Output Encoding Targeting Two-Level Logic

The state encoding problem is not merely a simple sum of the input and output

encoding problems. Since the same symbols appear in the present-state and the next-state

fields, state encoding requires the solution of input and output encoding problems that are

tightly coupled with each other.

An approach for combining the input and output encoding problems was suggested

by Devadas and Newton [41]. The approach is basically an extension of the approach for

exact output-encoding (cf Section 2.2.2) suggested in the same work.

In the input encoding problem, any set of input constraints is always satisfiable

by some encoding. The basic reason why the combined input-output encoding problem is

more difficult is that one can now no longer assume that any set of input constraints is

always satisfiable. The input constraints now have to be satisfied by the same encoding

that satisfies the output constraints.

The combination of the input and output encoding problems involves two basic

alterations to the output-encoding procedure. Firstly, the definition of GPIs is relaxed in

that a (A: + l)-cube is allowed to remove a A:-cube from the hst of candidate primes only

if it covers the A-cube, the symbohc-output parts of the two cubes are identical and the

symbolic-input parts of the two cubes are either the same or the symbolic-input part of the

(A'-f l)-cube contains all symbols. This allows all possible combinations of symbohc-input

literals and symbohc-output tags to be considered during the selection of the minimum

cover of GPIs. On the other hand, the relaxation in the definition of GPIs also increases

the total number of GPIs considerably.

The second alteration to the output encoding procedure is to add constraints that

check for cases that correspond to a conflict between the satisfaction of an input constraint

and an output constraint. A simple example that illustrates a conflict between input and

output constraints is the following. Consider three states 5i, 52 and 53. Assume that the

output constraints require that e(5i) dominates e(52) and that e(52) dominates e(53). Now

assume that the symbohc-input literal in one of the selected GPIs has states S\ and S3 in it



CHAPTER 2. BASIC DEFINITIONS AND CONCEPTS 27

and does not have state 52- In order to satisfy this input constraint, it is required to encode

states Si and 53 in such a way that the super-cube of e(s\) and 6(53) does not contain e(52).

But that is impossible because of the two dominance relationships involving s\, s2 and 53.

The dominance relationships imply that if e(s3) is different from e(s2) in a certain bit, it

is also different from e(s\) in the same bit. Therefore, that bit becomes a don't-care in

the super-cube. Similarly, if e(s\) is different from e(s2) in a certain bit, it is also different

from e(53) in the same bit. Again, that bit becomes a don't-care in the super-cube. There

fore, the input constraint can never be satisfied in conjunction with the two dominance

constraints. Similarly, the input constraint corresponding to the presence of all the sib

hngs of a disjunctive relationship in a symbohc-input hteral and the absence of the parent

can never be satisfied. The last constraint must be satisfied not only for the disjunctive

relationships implied directly, but also for the disjunctive relationships imphed by a prop

agation of other relationships. For example, the two relationships e(s\) = e(s2) U €(53)

and e(53) C e(s5) imply the disjunctive relationship e(si) C e(52) U e(s5). Similar

constraints can also be derived for disjunctive relationships that involve a disjunction of

conjunctions (c/Section 2.2.2) of state codes.

If the desired encoding length were known a priori, then as in the output encoding

case, checking for encodabihty in the input-output encoding case can also be reduced to

a Boolean satisfiability problem. In that case, input constraints would be described by

equations that require the code for each state absent from a symbohc-input hteral to be

different from the codes for every state present in the hteral in the bit. If the encoding

length is not known a priori, the same constructive procedure used in output encoding can

be used.

In the case of input-output encoding, as for exact output encoding, the minimum

cardinality symbolic cover need consist of only GPIs. Therefore, the input-output encoding

problem (hence the state encoding problem) targeting two-level logic can be solved exactly

by choosing the minimum cardinahty encodable selection of GPIs.



Chapter 3

Algorithms for FSM

Decomposition

3.1 Introduction

FSM decomposition is concerned with the implementation of a FSM as a set of

smaller interacting submachines. Such an implementation is desirable for a number of rea

sons. A partitioned sequential circuit usually leads to improved performance as a result

of a reduction in the longest path between latch inputs and outputs. This fact is partic

ularly true when the individual submachines are implemented as PLAs. It appears that

the primary interest in using decomposition tools in industry stems from a need to im

prove the performance of FSM controUers, which often dictates the required duration of

the system clock. FSM decomposition can be apphed directly when Programmable Gate

Arrays (PGAs) or Programmable Logic Devices (PLDs) are the target technology. Such

technologies are characterized by I/O or gate-limited blocks of logic and latches into which

the circuit must be mapped. In many cases, it is desirable for reasons of clock-skew mini

mization or simphfying the layout to distribute the control logic for a data path in such a

manner that the portions of the data path and control that interact closely are placed next

to each other. FSM decomposition can also be used for this purpose. Partitioning of the

logic implementing the FSM could result in simplified layout constraints resulting in smaller

chip area. In PLA-based FSMs, decomposition has the effect of partitioning the PLA that

implements the original FSM into smaller interacting PLAs that implement the individual

28



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 29

submachines. In such situations, an area reduction can be attributed to PLA partitioning.

Finally, it is not computationally feasible for current multilevel logic minimizers (e.g. M1S-

n [15]) to search all possible areaminimal solutions. In such cases, an initially-decomposed

FSM could correspond to a superior starting point for multilevel logic minimization.

It should be noted that performing the decomposition at the State Transition

Graph (STG) level where states are still symbohc, as against partitioning the logic after an

encoding of states in the original machine where a subsequent logic minimization has already

been performed, makes it possible to search a larger solution space for good decompositions.

The work presented in this chapter addresses the problem of the decomposition of sequential

machines into smaller interacting submachines, so as to optimize for area and achieve the

other desirable features hke improved performance of the resulting implementation.

Previous approaches (e.g. [40, 60]) to FSM decomposition used the number of

states and edges in the resulting submachines as their cost function. Given that the logic

implementation of a FSM is derived from its STG specification after state assignment and

intensive logic optimization, this cost function does not reflect the true complexity of the

eventual logic-level implementation and is, on occasion, far from accurate. In addition,

previous approaches are mainly heuristic in nature and offer hmited guarantees as to the

quality of the final solution.

The use of partition theory in state encoding and FSM decomposition was intro

duced by Hartmanis and Stearns [60]. The essential point presented in this chapter is to

show that state partitioning can be easily tiedin with recent results in stateencoding [86,41]

in order to target decompositions with logic-level optimahty. The contributions of the work

presented here include:

1. A formulation of the optimum two-way decomposition problem targeting two-level

logic as one of symbolic-output partitioning. The cost function associated with this

formulation is the total number of product terms in the minimized symbohc represen

tations of the submachines. This cost function is much closer to the final logic-level

complexity than the number of states/edges in the decomposition.

2. The development of an exact solution, under the formulation chosen above, to the

decomposition problem via a method of prime implicant generation and constrained

covering. The fact that the problem of two-way FSM decomposition is easier than

that of exact state assignment [41] is exploited here.



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 30

3. Previous work in decomposition targeted specific decomposition topologies. A conse

quence of the exact decomposition procedure is that two-way or multi-way, parallel,

cascade, general or arbitrary decomposition topologies can be targeted, simply by

changing the constraints in the covering step.

4. The development of a heuristic optimization strategy appUcable to large sized prob

lems. The heuristic procedure consists of an iterative optimization involving sym

bolic implicant expansion and reduction, modified from two-level Boolean minimiz-

ers. Reduction and expansion are performed on functions with symbohc, rather than

binary-valued outputs. Many different expansion/reduction heuristics have been im

plemented and evaluated under this global strategy.

Basic definitions relevant to this chapter are presented in Section 3.2. In Sec

tion 3.3, the decomposition problem is formulated as one of symbohc-output partitioning

and an exact procedure is given to solve it. Subsequently, the correctness of the procedure

is formaUy demonstrated. The extension of the exact decomposition procedure to arbi

trary topologies is presented in Section 3.4. A heuristic expand-reduce procedure, viable

for large size problems, is presented in Section 3.5. Section 3.6 briefly explains the relation

ship between FSM decomposition and state assignment. Experimental results on area and

performance optimization are presented in Section 3.7.

3.2 Basic Definitions

A partition ir on a set, S, is a coUection of disjoint subsets whose union is 5.

The disjoint subsets are called the groups or blocks of 7r. Consider for example a set S

- {s\,52,53,54,55}. 7T = {(51, 53), (52), (54, 55)} is said to be a partition on S. (si, 53),

(52) and (54, 55) are said to be the blocks of tt. Let 7Ti = {a,} and 7r2 = {bj}, where

a, and bj are blocks, be two partitions on S. The product of 7Ti and x2, denoted iri . -k2,

is defined as the partition it\ . n2 = {a,- Dbj}. The zero-partition on 5 is the partition

such that the cardinahty of aU groups is 1.

Given a State Transition Graph description of a desired terminal behavior, the

essence of the decomposition problem is to find two or more machines which, when in

terconnected in a prescribed way, have that terminal behavior. The individual machines

that make up the overall reaUzation are referred to as submachines. Each submachine



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 31

0sls31
1 si si 0
0 s2 s4 0
ls2sll
0 s3 s2 0
Is3s40
0s4s21
Is4s31

Figure 3.1: A STT representation of a finite-state machine

corresponds to a partition on the set of states, S. AU the states belonging to each block

of the partition in a submachine are given the same code in that submachine. Therefore,

there is no way of distinguishing between two states belonging to the same block in a sub

machine without recourse to information from other submachines. A block of states in a

partition effectively corresponds to a state in the submachine associated with that parti

tion. The prototype machine corresponds to the machine that was used to define the

terminal behavior to be realized. The term lumped machine is used sometimes to denote

an undecomposed implementation of the prototype machine. The machine that results as

a consequence of the decomposition is called the decomposed machine. The function

ality of the prototype machine is maintained in the decomposed machine if the partitions

associated with the decomposition are such that their product is the zero-partition.

As an example, consider the FSM shown in Figure 3.1. Let the two partitions on

5 be tti = {(si, s2), (53, 54)} and it2 — {(s\, 53), (52, 54)}. The product of these

two partitions, 7Ti . ir2, is the zero-partition {(s\), (s2), (53), (54)}. What that means

is that given one block of states from each of 7Ti and n2, the state corresponding to the

prototype machine is uniquely identified. Now assume that the output logic is implemented

only in the submachine corresponding to ir2. In that case, it can be verified from Figure 3.1

that in Submachine 1 (which only implements the next-state logic), there is no need for

information from Submachine 2 since the transitions between the blocks in Submachine 1

are independent of the block that Submachine 2 is in. A partition Uke it\ is called a closed

(or, preserved) partition. If a closed partition can be found, it means that the prototype

machine can be decomposed into a cascade of FSMs with the submachine corresponding to

the closed partition being the head machine. A parallel decomposition exists when closed

partitions can be found such that the product of these closed partitions is the zero-partition.

The concept of partitions can be generalized to covers [61, 60]. Covers differ from



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION

pi.
M

PO

I^hIzk-I

(a)

PI.

_

Ml

r*> -1

iPST
o-^U»

M2

1

i: —1
PS2

n

(b)

32

PO

Figure 3.2: General decomposition topology

partitions in that blocks in the same cover are aUowed to intersect. AUowing intersections

between blocks in the same cover effectively corresponds to sphtting states in the prototype

machine without changing functionahty and finding partitions on this new set of states.

The use of state sphtting aUows decompositions and state encodings with closed partitions

that would not exist otherwise.

3.3 Exact Procedure for Two-Way General Decomposition

General decompositions can havevarious topologies. The decomposition topology

of Figure 3.2(b) is the one considered in this chapter. In Figure 3.2(b),the original machine

M in Figure 3.2(a) has been decomposedinto two submachines, Mi and M2, interconnected

in the prescribed way. The output logic for the decomposed machine is distributed between

the two submachines, unhke the formulation of [40] where a logic block external to the sub-

machines was required to generate the primary outputs. The goal of this work is to provide

exact or near-exact solutions to the problem of two-way general decomposition targeting

two-level logic. An associated cost function close to the cost of the ultimate logic-level

implementation is also presented. Subsequently, an algorithm for finding a decomposition

that is optimum under the chosen formulation, is given.

3.3.1 The Cost Function

The cost function for a general decomposition can vary depending on the eventual

targeted implementation. Here, one is concerned with two-level implementations. The cost

function used allows the decomposition of the prototype machine into submachines such

that the sum of the areas of the two-level implementations of each submachine, after the



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 33

states in the submachine have been assigned codes, is less than or close to the area of the

two-level implementation of the prototype machine after state assignment. The area of the

two-level implementation of each submachine is always less than the area of the two-level

implementation of the prototype machine. It is also found that the cost, measured in terms

of the area of the standard-ceU layout of the logic, of the multilevel implementation of the

decomposed machine obtained using this cost function is almost always less than the cost

of the multilevel implementation of the prototype machine. This imphes that an optimal

decomposition targeting a two-level implementation is an acceptable decomposition for the

multilevel case.

Consider the submachines in Figure 3.2(b). Let the number of product terms in

the prototype machine, M, after one-hot coding and two-level Boolean minimization be P.

Let the number of product terms in the submachines M\ and M2 after one-hot coding and

two-level Boolean minimization be Pi and P2, respectively. A decomposition is deemed to

be optimum (optimal) in this formulation if Pi -f P2 is minimum (minimal). In the case

when no good decomposition can be found, Pi + P2 = P.

The area and performance of a PLA are closely related to each other. Since the

two-level area of each submachine obtained using this cost function is always less than the

two-level area of the prototype machine, and because the critical path of the decomposed

machine in the topology of Figure 3.2(b) is equivalent to the critical path of the larger of

the two submachines, the critical path of the decomposed machine in Figure 3.2(b) wiU be

smaller than the critical path of the prototype machine in the two-level implementation. To

optimize the critical path of the decomposed machine, the larger of the two submachines

should have as smaU an area as possible. One way of achieving this is to keep the sizes of

the submachines similar while minimizing the overaU area. Thus, a modified cost function

of the form Pi + P2 + a\\Pi - P2\\, in which an additional cost is attached to a difference

in the areas of the PLAs, characterizes the optimaUty of the decomposition with respect to

timing also, a is some empiricaUy determined constant.

3.3.2 Decomposition, Factorization and Partitioning

The formulation of the optimum decomposition problem is described in the sequel.

The first step is to obtain the initial symbohc covers representing the two submachines.

Given the initial State Transition Table (STT) (or equivalently, the STG) of machine M



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 34

with TV* states, si, .. s^, a new symboUc function L is constructed as foUows: The present-

state (PS) field in the STT is replaced by an JV-valued variable represented by an TV-bit

vector in which each bit is associated with the presence or the absence of a state. The

next-state (NS) field in M is split into two symboUc variables, i.e. s\ is spUt into symbohc

variables sa\ and 561, 52 is spUt into symboUc variables 502 and 562 and so on. The primary

input (PI) and primary output (PO) fields are unchanged. An example transformation is

shown below. The example has one primary input, two primary outputs and three states.

In the transformed symbohc cover, say L, the first column represents the primary input

as before, the second, third and fourth columns correspond to the three-valued variable

representing the present state. The fifth and sixth columns represent the partitioned next-

state field, and the seventh and eighth columns represent the primary outputs.

0 5i 52 10 —• 0 100 sa2 sb2 10

1 5i 53 01 —»• 1 100 5a3 563 01

0 52 5i 11 • 0 010 5Cti 56i 11

1 52 s3 10 —y 1 010 sa3 sb3 10

0 53 52 00 —• 0 001 sa2 sb2 00

1 s3 si 01 —• 1 001 sa\ 561 01

The next step is to obtain the symboUc covers for the submachines. The symbolic

cover, La, for Submachine a is obtained in the foUowing manner. For each row in L, there

is a corresponding row in La that has the same PI and PS fields as in L. The next-state

field in a row in La consists of the symbol sai from the partitioned next-state field in the

corresponding row in L. The symbohc cover, Lb,for Submachine b is obtained in a similar

manner, with the next-state field in a row of Lb being the symbol s6» from the corresponding

row in L. The primary outputs in L are partitioned between La and Lb- By partitioning

of the primary outputs, it is imphed that some of the primary outputs are now asserted in

the symboUc cover for Submachine a while the remaining primary outputs are asserted

in the symbohc cover for Submachine b. In the case when the primary outputs are also

symbohc and need to be encoded, they can also be symboUcaUy partitioned and treated

in the same manner as the next-state hnes. In the example shown below, all the primary

outputs in L are asserted in La (shown on the left) and no primary outputs are asserted in

Lb (shown on the right).



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 35

0 100 sa2 10 0 100 562

1 100 saz 01 1 100 563

0 010 5ai 11 0 010 561

1 010 sa3 10 1 010 563

0 001 sa2 00 0 001 562

1 001 sai 01 1 001 5&!

La Lb

La and Lb are identical to each other and to L, with the difference that some of the

fields in the next-state plane and output plane of L are asserted in La while the remaining

are asserted in Lb. La and Lb represent the initial symboUc covers of the two component

submachines that M is to be decomposed into. The column in La with the sa,'s represents

the next-state column for Submachine a, and the column in Lb with the s&;'s represents

the next-state column for Submachine b. The operations of Submachine a and Sub

machine b are mutuaUy dependent, with the communication between the submachines,

as can be seen in Figure 3.2(b), via the present-state lines of each submachine. While the

next-state field is partitioned in the above procedure, the present-state field, represented by

the multiple-valued variable, is dupUcated in La and Lb. As in L, the multiple-valued input

variable in La and Lb also represents states in the prototype machine. Since the state of

Submachine a and the state of Submachine b together uniquely determine the state of

the overall machine M and since a knowledge of the state of the overaU machine is sufficient

to determine the states of Submachine a and Submachine b, the multiple-valued input

variable in La and in Lb represents, imphcitly, the present-state of Submachine a as weU

as of Submachine b.

The symbolic-outputs in La and Lb are now represented by means of a one-

hot code (cf Section 3.2). Given the one-hot coded initial symboUc covers for the two

submachines, the goal is to minimize the sum of the cardinaUties of the two covers. To

achieve this goal, one can use the degree of freedom that since each submachine knows

its own present-state and the present-state of the other submachine, as long as two states

of the prototype machine have been given different codes in one of the submachines, it is

possible to distinguish between the two states in the decomposed machine. For example,

states 5i and 52 can be given the same code in Submachine a, i.e. e(sai) = e(sa2), as



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 36

long as it is possible to distinguish between the two states by means of the codes given
to them in the other submachine. Since the encoding is one-hot, two states, say sa,- and

saj or sbi and sbj, either have the same code or the bitwise intersection of their codes is

null. Thesymbohc output, in this case the next-state variable, is represented by sets, caUed

tags, of next-state symbols that have been given the same code. InitiaUy, when all states

have different codes, the symbohc-output tag for a cube consists ofonly a single next-state
symbol corresponding to the next-state asserted by the cube. When two states are given

the same code, the symbohc-output tags containing these two states are replaced by tags
that contain both next-state symbols. For example, when sai and 5aj are given the same

code, each occurrence of the symbohc-output tags (sai) and (saj) is replaced by the tag

(sai saj). A similar replacement is carried out when three states are given the same codes,
and so on.

Let the final cardinality of the minimized coverfor Submachine a be PG and that

for Submachine b be Pj>. Let the cardinality of the minimized cover for the prototype

machine, with the states one-hot coded, be P. Consider for iUustration the extreme case

where all the 5a,- aregiven the same code. To distinguish between the statesofthe prototype

machine in this case, ah the sbi have to be assigned distinct codes. Effectively, Submachine

a realizes the primary output logic of the prototype machine and Submachine b reaUzes

the next-state logic. As a result, Pa + Pb > P. In the other extreme case, if all the

5&, are given the same code, then Submachine b is not required at aU (i.e. Pb = 0)
since Submachine b does not assert any primary outputs, but all the sai must be given
different codes. Hence Pa = P.

Relationship to Partition Algebra

The problem, therefore, is to decide which states of the prototype machine should

be given the same code and the submachine in which they should be given the same code.

The states that are given the same code in a submachine belong to the same block in

the partition (cf Section 3.2) corresponding to that submachine. This problem is identical

to finding two or more partitions such that the sum of the cardinaUties of the minimized

symbohc covers of the submachines represented by these partitions is minimum and the

product of the partitions is the zero-partition.

A large number of choices is available in the states that can be given the same



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 37

codes. In order to avoid enumerating all the possibiUties, a formal procedure is required

that searches aU the possibiUties exhaustively, but impUcitly.

Relationship to Factorization

It was proposed in [40] that typical FSMs possess isomorphic or close to isomorphic

subgraphs in their STGs. It was suggested that identifying such isomorphic subgraphs and

implementing multiple instances of an isomorphic subgraph as a single separate submachine

distinct from the parent machine corresponds to an effective decomposition. The effect of

such a decomposition is to identify instances of similar functionality in the STG and to

encapsulate them into a single submachine; in other words identify subgraphs such that it is

advantageous to replace them with subroutine calls. This approach was called factorization

in [40] becauseof its obvious similarity to extracting common factors in combinational logic.

The ability to use subroutines has thus far been considered one of the major reasons why

designers choose to use the microcode-style implementation for FSM controUers. The work

in [40] shows that it is not necessary to resort to the microcode-style implementation in

order to benefit from subroutine extraction.

It can be shown that factorization is equivalent to identifying specific types of

partitions on the states in the prototype machine. In the ideal situation, the procedure

for decomposition proposed in this chapter should automaticaUy be able to identify such

partitions if they translate into lower logic-level complexity.

3.3.3 Generalized Prime Implicants, Prime Generation and Constrained

Covering

To solve an output encoding problem, one has to modify the prime impUcant

generation and covering strategies basic to Boolean minimization [41] (cf Section 2.2). The

decomposition problem is sUghtly different and simpler than the classical output encoding

problem since a one-hot coding has already been assumed; the only degree of freedom is in

giving the same code to some symboUc outputs.

Prime impUcants and covering are basic to two-level Boolean minimization because

of the fact that a minimum/minimal cardinaUty two-level cover can always be composed

of only prime implicants. In this manner, the two-level Boolean optimization problem is

reduced to a covering problem [83] which involves the selection of an optimum set of prime



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 38

1 001 sbi a

1 100 sb3 \ J> " 1 111 (sblsb3)
1 010 sb3 -^"^ l 0U <sblsb3> ^

(b)

Figure 3.3: Examples of cube merging

impUcants such that the functionality of the original specification is maintained. It is shown

in the sequel that it is possible to define a notion of primaUty in terms of generalized prime

implicants (GPIs) so that the decomposition of FSMs can also be formulated as a covering

problem on GPIs. As in two-level Boolean minimization, it can be shown that a minimum

cardinaUty solution can be made up exclusively of GPIs. By restricting the search for

the optimum solution to sets of GPIs, the exphcit, exhaustive enumeration of aU possible

combinations of cubes is avoided.

Given a symbohc cover witha multiple-valued input variable and a symbohc output

variable in addition to Boolean primary inputs and outputs, a GPI is defined as a cube that

(1) is not covered by a larger cube with either the same multiple-valued input hteral or a

multiple-valued input hteral with a one in every position, and (2) has the same symbohc-
output tag.

The procedure for generation ofGPIs is similar to the Quine-McCluskey procedure

with the additional tags corresponding to the symbohc output. Initially, all minterms have

tags corresponding to the next-state they assert. Larger cubes are generated by merging

smaller cubes. It is possible for two minterms with the same symbohc output tag to merge

to form a larger cube. An example of two minterms (belonging to the cover La shown

above), with the same symbohc-output tag, merging together is shown in Figure 3.3(a).
Cubes with different symbohc-output tags can also merge to form larger cubes. If a cube

that asserts a symbohc-output sai, merges with a cube asserting the symbohc output saj,
the symbohc-output tag of the resulting cube has both symbols sai and saj. An example
of this form of merging is shown in Figure 3.3(b). After larger cubes are generated in this

manner, cubes that are not GPIs can be removed from the set. When no larger cubes can

be generated, one has the set ofall GPIs. In the example in Figure 3.3(a), the larger cube

sa2 00



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 39

is not allowed to remove the cubes that it was obtained from because the multiple-valued

input hteral of the larger cube is not the same as that of the smaUer cubes. In Figure 3.3(b),

the cubes 1 Oil (561 563) and 1 101 (561 563) are removed because the cube 1 111 (561

sb3) covers them and has a '1' in every position of its multiple-valued input Uteral.

GPIs are generated in this manner for the two covers, La and Lb, separately. Given

the GPIs for La and for Lb, the next step is the selection of a subset of GPIs that covers aU

the minterms in the initial symboUc covers for the two submachines such that the cardinaUty

of the selected set is minimum. Subsequently, the states in the submachines are encoded

according to the choices of the states (made during the selection of GPIs) to be given the

same/different codes. The code for a state of the overaU machine is then the concatenation

of the codes of the corresponding states in the submachines. For example, the code for the

state 5i is the concatenation of the codes of the states 5ai and s&i. Once the states have

been encoded, the multiple-valued input Uteral of each GPI is replaced by the super-cube

containing the minterms corresponding to aU the states of the prototype machine present

in it. In addition, the symboUc-output tag of each GPI is replaced by the code given to the

states present in it (these states are given the same code). Once a GPI has been so modified,

it represents a cube in the two-level Boolean cover for the submachine to which it belongs.

A selection of GPIs is said to be encodable if, after the states of the submachines have been

encoded and the GPIs appropriately modified, the functionaUty represented by the resulting

logic is the same as that of the prototype machine. An encodable, minimum cardinaUty

selection of GPIs represents an upper bound on the number of product terms required in

a two-level Boolean cover reaUzing the decomposed machine. For reasons explained in the

sequel, an arbitrary selection of GPIs that covers all the minterms in the initial covers of

the two submachines is not necessarily encodable. Therefore, the covering problem, to be

solved for finding the optimum decomposition, is different from and more difficult than

the covering problem associated with classical Boolean minimization. Since the covering

procedure is constrained to those selections of GPIs that are legal (encodable), it is termed

the constrained covering problem.

It remains to clearly define how to constrain the selection of GPIs in order to

obtain encodable covers. To that end, the reasons that particular selections may not be

encodable are explained.



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 40

1 001 (sal sa2) 01
0 Oil (sal sa2) 00
0 010 (sal sa2) 11
1 010 (sa3) 10
1 100 (sa3) 01
0 110 (sal sa2) 10

1 111 (sblsb3)
- 010 (sblsb3)
0 101 (sb2)

Submachine fa' Submachine 'b'

Figure 3.4: An example of an input constraint violation

Encodabihty of a GPI Cover

If the selection of GPIs is such that the twostates of the prototype machine are not

given a different code in some submachine, it is impossible to distinguish between the two

states in the decomposed machine. If the two states are not equivalent, the functionary

of the decomposed machine obtained in this manner is different from that of the prototype

machine. Thus, a selection ofGPIs that results in the codes for some pairofnon-equivalent

states to be the same in both submachines is not encodable. Associated with this reason is

a constraint, termed the output constraint, that any encodable selection must satisfy; the

selection of GPIs should aUow any pair of states to have different codesin somesubmachine.

A second reason exists. As stated earher, the code for a state in the overaU machine

is a concatenation of the codes of the corresponding states in the submachines, e.g. the
code for state 5i is a concatenation of the codes for the states sax and s&i. After the

encoding ofstates, the multiple-valued input hteral ofeach GPIis replaced by a super-cube
that contains the minterms corresponding to the codes assigned to all the states of the
prototype machine present in that Uteral. A condition that the resulting cube must satisfy

in order not to alter the functionary ofthe prototype machine, is that the super-cube must

not contain the code of any state that is absent from the multiple-valued input Uteral. If

aU states had been given different codes in each submachine, then there always exists some
encoding that satisfies this requirement. But, in case some states are given the same code
in a submachine, it is possible that a GPI exists for which no encoding would satisfy the
requirement. The constraint on the selection of GPIs associated with this requirement is

termed an input constraint. While the input constraint encountered here is similar to that

in [86], there are some differences. This is best explained by means ofan example.



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 41

Consider the example, shown in Figure 3.4, which shows a selection of GPIs ob

tained from the initial covers La and Lb (cf Section 3.3.2). It can be verified that all

the minterms in La and in Lb are covered by this selection. It can also be verified that

no two states of the prototype machine have been given the same code in both subma

chines. However, this selection of GPIs is not encodable because of the presence of the

GPI 0 Oil (5ai sa2) 00 for Submachine a. The multiple-valued input hteral of this

GPI is Oil. No encoding of the states sai and 5&t- (and hence of the states s,-) can re

alize a super-cube that contains the codes of the states s2 and S3 but not 51. This is

because e(sai) = e(sa2) and e(s6i) = e(s&3). Therefore, the code for si is given by

e(5i) = (e(5fli) @ e(5&i)) = (e(sa2) @ e(sb3)y. Since the super-cube correspond

ing to the multiple-valued input hteral Oil contains the codes for both the states s2

(e(sa2) @e(5&2)) and 53 (e(5a3) @e(s&3)), it also contains the codes (e(sa2) @e(sb3))

and (e(5a3) <§) e(5&2)), and therefore the code for si. This implies that the minterm corre

sponding to the code for si is in a cube where it is disaUowed, resulting in the corruption

of the fanout edges of st, hence corrupting the functionary of the decomposed machine.

Note that this type of constraint is associated with the absenceof a state from the multiple-

valued input Uteral, hence the multiple-valued input Uteral of aU states does not generate

such a constraint.

3.3.4 Correctness of the Exact Algorithm

In this section, it is shown that the procedure formulated above does indeed realize

the minimum cardinality solution to the decomposition problem.

Lemma 3.3.1 The input and output constraints, stated in the previous section, are neces

sary and sufficient to ensure that the functionality of the decomposed machine is identical

to that of the prototype machine.

Proof. Necessity: If twonon-equivalent states, 5; and Sj ofthe prototypemachine are given

the same codes in both submachines, the decomposed machine is unable to distinguish them.

Hence, the functionality is not maintained. In addition, if the input constraint is violated,

as illustrated by the example in the previous section, a fanout edge of at least one of the

states is corrupted; consequently the functionahty of the resulting logic is corrupted.

'The <§• operator, as in (t @ji) denotes the concatenation oftwo strings, in this case i and j



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 42

Sufficiency: Assume the constraints are satisfied. Since the present-state fields of

the prototype machine are not split while obtaining La and Lb (cf Section 3.3.2), there is

a one-to-one correspondence between the present-state fields of the decomposed machine

and the present-state fields of the prototype machine. No fanout edge of any state is cor

rupted since all input constraints are satisfied. Also, the selection of GPIs is such that all

the minterms of La and Lb are covered. Therefore, the functionality of the submachines

considered separately is maintained. Since a primary output is asserted either in La or in

Lb, the functionality of the prototype machine with respect to the primary outputs is also

retained in the decomposed machine. Also, since the selection of GPIs is such that no two

nonequivalent states are assigned the samecodes in both the submachines, each pair of next

states asserted in the individual submachines for the same primary input and present state

combination is associated with a unique next-state in the prototype machine. Because the

functionality of La and Lb, considered individuaUy, is maintained, this unique next-state

is the same as the next-state produced by the prototype machine for the given primary

input and present-state combination. Hence, the functionality of the prototype machine

with respect to the next-state logic is also maintained. •

Lemma 3.3.2 A minimum cardinality encodable solution can be composed entirely of GPIs.

Proof. The proofis by contradiction. Assume that one has a minimum cardinahty solution

with a cube c2 that is not a GPI. Then by definition ofGPIs (cfSection 3.3.3), there exists

a GPI covering ci such that (1) it has the same tag as ci, (2) its multiple-valued input

part is either the same as that of ci or has a 1 in all its positions, (3) its binary-input

part covers the binary-input part of ci, and (4) its binary-output part covers the binary-

output of ci. Replacing Ci by the GPI does not change the functionality because all the

minterms covered by cx are also covered by the GPI. It does not change the encodabihty of

the solution because the symboUc-output tag of Ci is the same as that of the GPI, and the

multiple-valued input hteral of the GPI is either the same as that of ci or is all l's, thus

requiring no new encodabihty constraints to be satisfied. Hence, a minimum cardinality

solution made entirely of GPIs can always be obtained. •



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 43

0 si s2 1

1 Sl 33 1

0 s2 s3 0

1 s2 s4 0 0 1000 (sb2) 1

0 s3 s3 0 - 1000 (sal sa2 sa3) 1 1000 (sb3 sb4) 1

1 s3 s4 0 0 1111 (sal sa2 sa3) - 0110 (sb3 sb4) 0

0 s4 s2 1 - 0001 (sal sa2 sa3) 0 0001 (sb2) 1

1 s4 sl 1

ototype M/C

1 0110 (s4a)

Submachine 'a'

1 0001 (sbi)

Submachine 'b'

1

Figure 3.5: Example of a general decomposition

Theorem 3.3.1 The selection of a minimum cardinality encodable GPI cover for La and

Lb represents an exact solution, i.e. a minimum-cost solution to the decomposition problem,

under the chosen formulation.

Proof. The proof foUows from Lemmas 3.1 and 3.2. •

3.3.5 Algorithm for Checking Encodability

In this section, a procedure is iUustrated by means of which it can be checked

rapidly whether a given selection of GPIs is encodable. The example of the four state FSM

shown in Figure 3.5 is used to explain this procedure. Suppose that the selection of GPIs

shown in the covers for the submachines in Figure 3.5 has been made for this FSM. It is

now required to determine whether this selection of GPIs is encodable.

Checking Output Constraints

To check for output constraint violations, a labeled undirected graph, termed the

encodabihty graph, is constructed in which each vertex is associated with a state s,- in the

prototype machine and an edge occurs with label a from vertex st- to vertex Sj in the graph

if the states s, and Sj co-exist in the tag of some GPI in Submachine a. Similarly, there

is an edge with label 6 from vertex s, to vertex Sj if the states s» and Sj co-exist in the

tag of some GPI in Submachine b. The encodabihty graph corresponding to the selection

of GPIs in Figure 3.5 is shown in Figure 3.6. The states si, 52 and S3 occur in the same

output tag in the cover of Submachine a. Hence, there exist edges between vertices s\, s2

and 53 labeled a. Similarly, since states S3 and 54 occur in the same output tag in the cover



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 44

for Submachine b, there is an edge between the vertices S3 and 54 with label b in the

encodability check graph. If any s,-, Sj pair has edges with both labels a and 6, it implies

that the two states have been assigned the same code in both submachines and the selection

is invalid. The dotted edge with label bbetween states si and S2 in Figure 3.6 would have

existed and caused a constraint violation if the statessi and S2 had been assigned the same
code in Submachine b.

Since the attempt is to identify partitions [60] in the prototype machine and since

groups of states in a partition are disjoint, a transitivity constraint is imposed on the

encodabihty graph whereby if vertices s,- and Sj have an edge with label a between them

and vertices Sj and s* also have an edge with label a between them, then vertices s, and

Sk must also have an edge with label a between them. In terms of codes given to states,

this simply means that if states s,- and Sj are given the same code and Sj and s* are given
the same code in Submachine a, then st- and s* also should be given the same code in
Submachine a.

A clique is a subgraph such that each pair of its constituent vertices is connected

by edges with the same label. Figure 3.7 is an encodabihty graph for a decomposition in
which states si and s2 occur in the same output tagofSubmachine a. Ifa new edge with
label a is added between vertices si and s3, it becomes necessary to also add another edge
with label a between vertices s2 and S3 because ofthe transitivity requirement. As a result,

a clique with label a consisting of vertices si, s2 and 53 is formed. This implies that the
states s-[, 52 and s3 aU must occur in the sameoutput tag in Submachine a. A state that

is not given the same code as any other state forms a single-vertex clique. The encodabihty
graph is thus composed ofa set ofcUques satisfying the foUowing properties if the selection
of GPIs does not violate an output constraint:

• AU the edges in a particular cUque have only one type oflabel. Thus, a cUque can be
identified with a label. The vertices si, s2 and s3 form a clique with label a in the
graph of Figure 3.6.

• Two chques with the same label cannot have a vertex in common unless both the

chques are contained in a single larger clique. Let a clique with vertices st-, Sj and s*
and label a be denoted by (st- Sj sk)a. The cUques (si s2)Q and (s2 s3)a in Figure 3.6
have a vertex in common and have the same label, but, are contained in the larger
clique (si s2 s3)a. This property stems from the transitivity requirement.



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 45

Figure 3.6: EncodabiUty check graph for the decomposition in Figure 3.5

• Any two cliques with different labels can have, at most, one vertex in common. The

cliques (51 52 S3)a and (si s3)b in Figure 3.6 have different labels and only the vertex

53 in common. This property follows from the fact the no two states can be given the

same code in aU the submachines.

To check for an output constraint violation, only a single pass needs to be made

through the set of selected GPIs. For the output tag of each GPI encountered, the corre

sponding clique is constructed in the encodabiUty graph and it is checked if any of the three

properties above are not satisfied. Checking for the satisfaction of the properties requires

a constant number of Boolean operations, where the complexity of each Boolean operation

is of the order of the number of states in the prototype machine. If the properties are

satisfied, the clique is added to the encodabihty graph. Otherwise the selection of GPIs

is not encodable. Therefore, the complexity of checking for output constraint violations in

the encodabiUty check algorithm is of the order of some constant times the product of the

number of selected GPIs and some constant power of the number of states.

Checking Input Constraints

Once it has been verified that the selection of GPIs does not violate output con

straints, violations of constraints imposed by the multiple-valued input literals of the GPIs

(c/Section 3.3.3) are checked. Multiple-valued input literals with a 1 in aU the positions

represent input constraints that are triviaUy satisfied. Similarly, those multiple-valued in-



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 46

Figure 3.7: Adding a new edge

put literals with only a single 1 also do not represent constraints because its super-cube

contains only a single minterm and hence wiU not contain the code of a state absent from

the multiple-valued literal.

A selection of GPIs violates an input constraint if and only if there exists a

multiple-valued input hteral in one of the selected GPIs and a pair of chques (one an

«-clique and the other a 6-clique, cf Section 3.3.5)created by transitive closure on the a and

6 cUques in the encodabiUty graph such that the foUowing conditions are satisfied:

• The intersection of the two chques is non-nuU.

• The intersection of the two chques, i.e. the vertex common to the two chques, is a

state 5, such that 5, is absent from the multiple-valued input hteral.

• There is at least one state in each of the two chques that is also present in the

multiple-valued input literal.

It can be verified that these three requirements foUow directly from the basic reason for

input constraint violations (cf Section 3.3.3).

If the number of GPIs in the selectedset is G, the number of chques with label a

is Ca and the number of chques with label 6 is Cb, the number of checks required for input

constraint violations is G.Ca.Cb in the worst case since each pair of chques may have to be

checked for every GPI. Assume that there areN states in the prototype machine. If a cUque

is represented by an A'-bit vector, Uke a multiple-valued input Uteral (cf Section 3.3.2), in



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 47

which a 1 in a position corresponds to the presence of a vertex in the clique, a total of (3N (/?

is a constant) bitwise intersections are required for each of the G.Ca-Cb checks. Therefore,

the complexity of checking for input constraint violations is of the order of p.N.G.Ca.Cb- Ca

and Cb are always some fraction of G, and given the initial FSM specification, the number

of states, N, is a constant. The complexity of checking for input constraint violations is

therefore of the order of some constant power of G.

The procedure for checking for input constraint violations is speeded up signifi

cantly by the use of the foUowing pruning techniques that significantly reduce the search

space:

• Pairs of cUques that have a null intersection need not be considered.

• Any GPI with a multiple-valued input hteral in which only a single symbol is present

need not be considered.

• Any GPI with a multiple-valued input Uteral in which all symbols are present need

not be considered.

• Any GPI with a multiple-valued input literal that is contained within some clique

need not be considered.

• A GPI-clique pair need not be considered if the clique is disjoint from the multiple-

valued input hteral of the GPI.

• A GPI-clique pair need not be considered if the clique is contained within the multiple-

valued input hteral of the GPI.

Consider the example given in Figure 3.5. The GPIs - 1000 (sai sa2 sa3), -

0001 (sai sa2 sa3), 0 1000 (s&2) 1, 1 1000 (s63 s&4) 1, 0 0001 (s62) 1 and 1

0001 (s&i) 1 need not be considered for input constraint violation because aU of them have

only one state in their multiple-valued input literals. The GPI 0 1111 (sai sa2 sa3)

has a multiple-valued input hteral with aU the symbols present and therefore cannot cause

an input constraint violation. The chques (cf Section 3.3.5 for notation for chques) in the

encodabihty graph of Figure 3.6 are the foUowing: (si s2 s3)0, (s4)0, (53 s4)b, (si)b and

(52)6. The single vertex chques (s\)b and (S2H cannot violate constraints, and are therefore

not considered. Thus, a constraint violation canonly occurdue to the chques (si S2 S3)a and

(53 54)5. The intersection of these two chques is the state S3. Therefore, it is only necessary



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 48

PI

Figure 3.8: Topology for three-way cascade decomposition

to consider those GPIs for possibility of violation that have a multiple-valued input part

with the state s3 absent. None of the remaining GPIs satisfy that requirement. Therefore,

no violation of input constraints exists in the selected set of GPIs shown in Figure 3.5.

If neither the output constraint nor the multiple-valued-input constraint are vio

lated, a code is guaranteed to exist for the states such that the sum of the cardinalities of

the encoded two-level representations of the submachines is bounded by the total number

of selected GPIs. Such a selection is said to be encodable.

Relative Complexity of Encodabihty Checking

As has been shown in Sections 3.3.5 and 3.3.5, the complexity of checking for out

put and input constraint violations is polynomial in the number of selected GPIs. Covering

on the other hand is NP-complete in the total number of GPIs [47]. The bottle-neck in the

exact-decomposition procedure is therefore the covering procedure rather than encodabihty

checking.

The exact-decomposition algorithm can be extended to decomposition into multi

ple component machines and in general to arbitrary topologies. The reasons that this exact

algorithm may not be viable for a given problem are that the number of GPIs may be too

large and/or the covering problem may not be solvable in reasonable time. Therefore, a

heuristic procedure is required to solve the problem (cf Section 3.5).

3.4 Arbitrary Topologies

In this section, it is shown that by merely changing the encodabihty constraints,

it is possible to target the logic-level optimaUty of arbitrary topologies.



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 49

3.4.1 Cascade Decompositions

The topology for a three-way cascade decomposition is shown in Figure 3.8. The

characteristic property of cascade decompositions is that information flows in only one

direction. For example, a submachine in Figure 3.8 receives as input only the primary input

and the present state of the submachines to its left. The submachine that only receives as

input the primary inputs is caUed the head machine, and the submachine that receives as

input the present states of aU the submachines is called the tail machine. Given a prototype

machine, one can target such a topology by specifying the appropriate constraints on the

selection of GPIs. The initial partitioning along the next-state and primary output fields,

and the subsequent generation of GPIs is carried out in the same manner as in the case of

two-way general decomposition (cfSection 3.3.2). Imposing the foUowing constraints on the

covering procedure then ensures that the topology corresponds to a cascade decomposition:

1. The code of a state from the prototype machine should be different from the code of

any other state in at least one of the submachines. A selection of GPIs in which two

states are in the same output tag in aU the submachines is not encodable.

2. Say that Submachine a is a part of the cascade chain with submachines preceding

it and foUowing it. Assume that states si and 52 have not been distinguished by an

appropriate selection of GPIs in a submachine preceding Submachine a. If si and

52 are now given the same code in Submachine a, aU the next-state pairs for si

and 52 also must be given the same code in Submachine a. The head machine is

a special case because there are no submachines preceding it. In the head machine,

therefore, this constraint has to be satisfied for any pair of states that are given the

same code. Satisfying this constraint for the head machine corresponds to satisfying

the preserved partition [60] requirement for cascade decompositions.

3. The constraint on the multiple-valued input part of the GPIs is sUghtly different from

the case of general decomposition. Again, consider a submachine, say Submachine

a, that is a part of the cascade chain with submachines preceding it and foUowing it.

Let MVa be a multiple-valued input Uteral of a GPI for Submachine a. Assume that

state si is absent from MVa, and states S2 and 53 are present in MVa. The states 52

and 53 then must be distinguished from si either in Submachine a or in the same

submachine preceding Submachine a.



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 50

0 sl s3 1

1 sl sl 0

0 s2 s4 0

1 s2 sl 1

0 s3 s2 0

1 s3 s4 0

0 84 s2 1

1 s4 s3 1

0 1000 (sbi sb3) 1
1 1000 (sbi sb3) 0

1 1100 (sal sa2) 1 0101 (sbi sb3) 1
0 0011 (sal sa2) 0 0100 (sb2 sb4) 0
0 1100 (sa3 sa4) - 0010 (sb2 sb4) 0
1 0011 (sa3 sa4) 0 0001 (sb2 sb4) 1

Prototype M/C Head M/C Tail M/C

Figure 3.9: An Example of a two-way cascade decomposition

An example of a two-way cascade decomposition that does not violate any con

straint is shown in Figure 3.9. A selection of GPIs that constitutes the cascade decompo

sition is shown in the figure. It can be seen from the figure that in the head machine, the

states that have been given the same codes are contained in the same multiple-valued input

hteral and, consequently, have the same next-state fields. Thus, the second constraint is

not violated. It can be verified that the second constraint would have been violated, for

example, had states si and 52 been given the same code in the head machine but states

53 and 54 had been given different codes. It can also be verified that the third constraint

is not violated. It would have been violated, for example, had the GPI 0 0110 (s62

sb4) 0 been present in the cover for the tail machine because the state si, absent from the

multiple-valued input hteral of this GPI, does not have a code different from the codes of

states S2 and S3 in the same submachine.

As in the case of general two-way decomposition (cfSection 3.3.4), it can be shown

that the above constraints for decomposition into cascade chains are necessary and sufficient

to ensure that the decomposition has the same functionality as the prototype machine.

Lemma 3.4.1 The three constraints described in the above section are necessary and suf

ficient to ensure that a selection of GPIs satisfying them results in a cascade decomposition

that has the same functionality as the prototype machine.

Proof. The proof is similar to the proof for Lemma 3.3.1. Necessity: (1) If the decomposi

tion is such that two non-equivalent states are given the same code in aU the submachines,

the decomposed machine is not able to distinguish between them. Hence, the functionahty

is not maintained. (2) If the states that are given the same code in some submachine, say

Submachine a, were not given different codes in a submachine preceding Submachine



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 51

Ml

[_££ESIS^
M2

LES2-\ |«_3

M3

.Esa.s=3

Figure 3.10: Topology for three-way parallel decomposition

a, it is not possible for Submachine a to distinguish between. This is so because any

submachine receives present-state information only from the submachines that precede it.

Therefore, the next states and the outputs must be the same in Submachine a for these

two states for any primary input combination. (3) The third constraint is similar to the

input constraint in general decomposition, with the difference that the super-cube for a

multiple-valued input literal in a submachine consists only of its own present-state lines

and those from the preceding submachines. Say a GPI exists in Submachine a such that

a state which is absent from its multiple-valued input literal does not have different codes

from the states that are present in that multiple-valued input literal in Submachine a or

in some submachine preceding Submachine a. Then, any super-cube containing the codes

of the states present in the multiple-valued input part will also contain the code of the state

absent from it (as in the example in Section 3.3.5). Thus, the state absent from the multiple-

valued input part would assert an incorrect next state or primary output. Therefore, the

functionality of the machine would be changed. Sufficiency: If the constraints in this lemma

are satisfied, the constraints for general decomposition (which are weaker, cfLemma 3.3.1)

alsoget satisfied. Also, the constraints for generaldecomposition wereshown to be sufficient

to maintain functionality. Therefore, it follows that the constraints in this lemma are also

sufficient to maintain functionality. Also, if the second constraint is satisfied, each subma

chine only needs to know the present state ofthe submachines preceding it. Therefore, if the

second constraint is satisfied, the decomposition corresponds to a cascade decomposition. D



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 52

0 si s2 01

1 si S3 10

0 s2 si 00

1 s2 s4 11

0 s3 s4 11 o 1100 (sal sa2) 0 0 1010 (sb2 sb4) 1
1 s3 si 00 l 1100 (sa3 sa4) 1 1 1010 (sbl sb3) 0
0 s4 s3 10 0 0011 (sa3 sa4) 1 0 0101 (sbl sb3) 0
1 s4 s2 01 l 0011 (sal sa2) 0 1 0101 (sb2 sb4) 1

Prototype M/C Submachine 'a' Submachine 'b'

Figure 3.11: An example of a two-way parallel decomposition

3.4.2 Parallel Decompositions

The topology for a three-way parallel decomposition is shown in Figure 3.10. The

characteristic property of parallel decompositions is that all the submachines operate inde

pendently of each other. Thus, a submachine does not receive as input the present-state

lines of any other submachine. All the submachines are, therefore, similar to the head ma

chine of a cascade chain. Given a prototype machine, one can target such a topology by

specifying the appropriate constraints. The initial partitioning and the subsequent genera

tion of GPIs for a parallel decomposition is carried out in the same manner as in the case

of general decomposition (c/Section 3.3.2). The following constraints are then imposed on

the selection of the GPIs to ensure that a parallel decomposition is obtained:

1. The code for a state in the prototype machine should be different from the code for any-

other state in at least one of the submachines. A selection of GPIs in which two states

are in the same output tag in all the submachines is not encodable. This constraint

is identical to the corresponding constraint for general and cascade decompositions.

2. No submachine in a parallel decomposition receives as input the present state of any

of the other submachines. Therefore, states s\ and 52 can be given the same code in a

submachine only if, for each input, the primary output combination asserted by S\ is

the same as that asserted by 52• Also, as in the case of the head machine in a cascade

decomposition, if the states s\ and «2 are given the same code in a submachine, the

next-state pairs of si and 52 should also be given the same code. For example, assume

that for input i, the next state of $1 is S3, and the next state of 32 is 54. Then if $1

and «2 are given the same code, 53 and 54 should also be given the same code.



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 53

3. The third constraint is similar to the corresponding constraint in general and cascade

decompositions except that the state absent from the multiple-valued input literal has

to have a different code from all the states present in that multiple-valued input literal

in that same submachine.

An example of an encodable selection of GPIs resulting in a two-way parallel

decomposition is shownin Figure 3.11. Asin the caseof cascade and general decompositions,

a lemma can be stated regarding the necessity and sufficiency of the encodability constraints

for parallel decompositions.

Lemma 3.4.2 The three constraints described in the above section are necessary and suf

ficient to ensure that a selection of GPIs satisfying them results in a parallel decomposition

that has the same functionality as the prototype machine.

Proof. The proof is similar to the proof for Lemma 3.4.1. Necessity: (1) If the decomposi

tion is such that two non-equivalent states are given the same code in all the submachines,

the decomposed machine is not able to distinguish between them. Hence, the functionality

is not maintained. (2) If two states that are given the same code in some submachine, say

Submachine a, it is not possible for the submachine to distinguish between them because

the submachine does not know the state of any other submachine. Therefore, the next

states and the outputs must be the same in Submachine a for these two states for any

primary input combination in order to maintain functionality. (3) The necessity of the

third constraint is shown by an argument almost identical to the argument for the third

constraint for cascade decomposition. The difference is that since a submachine does not

have anyother submachines preceding it in parallel decomposition, the codes for two states

present in the multiple-valued input literal of a GPI in a submachine have to be different

from the code of a state absent from that literal in the same submachine in order to main

tain functionality. Sufficiency: If the constraints in this lemma are satisfied, the constraints

for general decomposition (which are weaker, cfLemma 3.3.1) also get satisfied. Also, the
constraints for general decomposition were shown to besufficient to maintain functionality.
Therefore, it follows that the constraints in this lemma are also sufficient to maintain func

tionality. Also, if the second constraint is satisfied, no submachine requires that any other
submachine precede it. Therefore, if the second constraint is satisfied, the decomposition
corresponds to a parallel decomposition. D



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 54

M2

Ml pJHZ>—1
M4

pkgJ
M3

PS4
o

3q=>_l

Figure 3.12: An arbitrary decomposition topology

3.4.3 Arbitrary Decompositions

An exampleof a topology that does not conform to any of the preceding topologies

is shown in Figure 3.12. It is possible to target such topologies also by suitably modifying

the covering constraints. The basic output constraint that any pair ofstates of the prototype

machine should have distinct codes in the decomposed machine remains unchanged. The

remaining constraints are dependent on the other submachines that a particular submachine

receives present-state information from. The type of constraints imposed are briefly illus

trated by means of the example topology in Figure 3.12. The constraints for submachine

Mi are the same as those for the head machine of a cascade chain. In the case of subma

chine A/2, if two states that have the same code in Mi, are given the same code in M2 also,

then all the next-state pairs of these two states should also be given the same codes in M2.

Similarly, if a state is absent from a multiple-valued input literal of M2l it should have a

different code from the states present in that multiple-valued literal in either Mi or M2. The

justification for this constraint is similar to that for cascade and parallel decompositions.

The constraints for M3 are identical to those for M2. The constraints for M4 are similar.

In general, it is possible to target any desired topology by formulating the decomposition

problem as a covering problem and suitably modifying the covering constraints.

3.4.4 Exactness of the Decomposition Procedure

Lemmas 3.4.1 and 3.4.2 for the cascade and parallel decomposition cases, respec

tively, are similar to Lemma 3.3.1 for the case of two-way general decomposition. Similar

lemmas can also be stated regarding the encodability constraints for arbitrary topologies.

These lemmas in conjunction with Lemma 3.3.2 show that the decomposition obtained



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 55

in this manner is actually the minimum cardinality solution. It should be noted that an

arbitrary decomposition topology with a series-parallel structure can also be obtained by

successive application of 2-way decomposition, except that no minimum cardinality guar

antee can be given.

3.5 Heuristic Procedure for Two-Way General Decomposi

tion

3.5.1 Overview

The basic iterative strategy that has been used successfully for the two-level

Boolean minimization problem appears promising for two-way general decomposition also.

The encodability requirements for the selected GPIs are defined in the same manner as for

the exact procedure (cfSection 3.3.3). But, instead of enumerating all the GPIs, one begins

with a set of GPIs corresponding to La and Lb (cf Section 3.3.2), and an attempt is made

to reduce their count, while maintaining the encodability of the GPI covers. Operations

similar to the reduce and expand operations of MINI [62] and ESPRESSO [18, 94] can be

performed in an effort to minimize the cover cardinalities.

The three basic steps in the iterative loop are given below in the order in which

they are carried out:

• Symbolic-reduce

• Symbolic-expand

• Minimize covers and remove input constraints

The cost function that is used for the iterative procedure is the same as that used for

the exact algorithm, namely, the sum of the cardinalities of the minimized one-hot coded

submachines. The steps of the iterative procedure are repeated until the cost of the solution,

given by this cost function, remains unchanged after a pass through the loop.

The symbolic-reduce and symbolic-expand steps attempt to modify the symbolic-

output tagsof the GPIswith the goal of reducing the cover cardinality. These two operations

were so named because of their obvious similarity to the reduce and expand steps in iterative

two-level Boolean minimization. The reduce and expand steps in Boolean minimization



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 56

attempt to modify the cubes making up the Boolean cover so that the possibility ofreducing
the cover cardinality after the irredundant step is increased. The steps ofthe basic iterative
loop are explained below.

3.5.2 Minimization of Covers and Removal of Constraint Violations

In the minimization step, which follows symbolic-expand, a two-level minimization

of the covers for both the submachines is carried out. This step incorporates all the cube-

merging that becomes possible as a result of the symbolic-expand. The cover produced as

a result of this minimization is termed the over-minimized cover because the minimization

is carried without taking into account violations of the input constraints, and therefore

may not be encodable. The conditions giving rise to such a violation were described in

Section 3.3.5. When a violation of a multiple-valued input constraint is detected, the GPI

with the constraint violation is split into two new cubes along the multiple-valued input

part so that the multiple-valued input part of the first new cube is contained entirely within

one of the two cliques (cf Section 3.3.5) and the multiple-valued input part of the second

new cube intersects only the remaining clique (does not intersect the other clique). This

method of splitting the cube is not unique but is effective because at least one of the new

cubes is devoid of any input constraint violations and the cardinality of the cover is only

increased by one. The end result of this unraveling of the multiple-valued input literals of

the GPIs is to make the over-minimized cover encodable.

3.5.3 Symbolic-expand

The goal of symbolic-expand is to increase the size of the output tags of GPIs (by

giving states in submachines the same codes) in order to maximize the possibility of cube

merging (cf Section 3.3.3). The sizes of the output tags are expanded until any further

expansion would result in the violation of an output constraint (cf Section 3.3.3).

The atomic operation in the expansion procedure inserts two states in the same

output tag of a GPI, checking while doing so that the output constraint is not violated.

This operation is carried out alternately between the two submachines. The state pair is

given a label corresponding to the submachine with which it is associated. The following

three non-trivial cases are possible when a state pair is selected for insertion:

• The state pair intersects no clique (cf Section 3.3.5) with the same label in the encod-



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 57

ability graph, or if it does intersect a clique, the clique has a different label and the

cardinality of the intersection equals one. In this case, a new clique is added to the

graph with the same label as the state pair.

• The state pair (a) intersects only one clique in the graph, (b) that clique has the same

label, and (c) the cardinality of that intersection is one. In this case, the state pair

is merged with that clique if the creation of the new clique (the label of the clique

is unchanged) is such that no output constraint is violated. Otherwise the state pair

cannot be inserted.

• The state pair intersects two cliques with the same label.The cardinality of each

intersection has to be one in this case because no output constraint is violated up to

the current point. In this case, the two cliques are merged into a single new clique
with the same label if the new clique does not violate an output constraint. If an

output constraint is violated upon merging, the state pair cannot be inserted.

The effectiveness of the expansion procedure depends a great deal on the order

in which the state pairs are inserted into the same tag. To maximize the possibilty of
cardinality reductions, state pairs can be heuristically ordered at the beginning of every
symbolic-expand. In order to arrive at a heuristic, it is necessary to analyze the effect of

giving a pair of states the same code in a submachine on the cardinality of the minimized

covers. Deciding to give the states si and s2 thesame code in Submachine a (by inserting

them in the same tag of a GPI) can affect the cardinality of the overall cover, after the
cover has been minimized, in the following two ways:

Firstly, cubes that asserted the next-state Si and cubes that asserted the next

state s2 in Submachine a may merge, making the total number of cubes that assert the

next states si and 52 smaller than before this expansion step. Thus, an expansion step can

lead to a reduction in the cardinality ofthe cover (in Submachine a or b) in which the
expansion is carried out. In order to maximize the above cardinality reductions, one could

assign large weights to those next-state pairs that have a large number ofcommon present
states, or that are asserted by a large number of common primaryinput combinations. The

state pairs would then be chosen for merging in the orderof decreasing weight.

Secondly, the insertion of a pair of states into the same output tag of a GPI

in Submachine a generates new input constraints for both Submachine a and b. To



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 58

make the cover encodable, the multiple-valued input parts are unraveled (cf Section 3.5.2),
thereby invalidating some ofthe merging ofcubes that occurred in the minimization step. It
is possible for theincrease in cardinality due to unraveling to be greater than the reduction
in cardinality due to minimization ifthe choice of the state pair is inappropriate. In such a

situation, the expansion step would, actually, lead to an increase in the overall cardinality
rather than a reduction.

The following heuristic can be used to minimize the increase in cardinality due to

unraveling. Large weights are given to present-state pairs that assert the same next states

and primary outputs2. Pairs ofstates are then chosen for merging in theorder ofdecreasing
weight. The basis for this heuristic is the following. Assume that states $i and 52 occur in

the same multiple-valued input part and state 53 is absent from it. The input constraint

arising from such a multiple-valued input part is that states s\ and s2 must be distinguished

from 53 in the same submachine. Now, in two-way decomposition, if s\ and 52 are given the

same code in a submachine, then the above input constraint is satisfied automatically if it

is ensured that si, s2 and 53 are given different codes in at least one submachine (i.e. the

output constraint is satisfied for s\, s2 and 53). Since the output constraints are satisfied

during the symbolic-expand step itself, no unraveling of the multiple-valued input part is

required and the cardinality does not increase. Since two states asserting the sameprimary

outputs and next states are likely to be in the same multiple-valued part in the minimized

cover frequently, the heuristic attempts to give a high priority to assigning such states the

same code.

3.5.4 Symbolic-reduce

Symbolic-reduce is essential to the iterative process for moving out of the local

minimum that it may have entered following the symbolic-expand and minimization steps.

The basic operation used by symbolic-reduce is to remove a state from the symbolic output

tags that it is contained in, while maintaining functionality. The following heuristic is

used for symbolic-reduce. The states selected for removal are those whose insertion in the

output tags of GPIs during the symbolic-expand generated new input constraints. Since

the input constraints are generated whenever there is non-null intersection between cliques

with different labels (cf Section 3.3.5), symbolic-reduce is carried out until the intersection

Such pairs of present states are likely to occur together in multiple-valued input parts frequently.



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 59

between every pair of cliques becomes null. Such a cover is said to be maximally reduced.

This formulation of the symbolic-reduce operation is order independent.

3.6 Relation to State Assignment

A state assignment algorithm for optimum two-level implementations was pre

sented in [41]. In that work, the problem of optimum state assignment was formulated as a

constrained covering problem similar to the formulation of decomposition presented in this

chapter. The difference in the application of constrained covering to decomposition and

state assignment lies in the step that checks for the encodability of a selected set of GPIs.

The goal of two-way decomposition is merely to find two partitions on the states where

each partition could consist of a number of blocks. Decomposition does not carry out the

complete encoding of the states, it merely 'preprocesses' the states so that the subsequent

state encoding applied on this preprocessed set of states will be guaranteed to realize the

decomposition with the desired topology. As a result, the constraints involved in two-way

decomposition are much simpler than the constraints that must be checked for optimum

state encoding, and the two-way decomposition problem is simpler than optimum state

encoding.

State encoding can be viewed as the problem of finding the optimal general de

composition of the prototype machine into as many submachines as there are state bits in

the final state encoding. Based on this premise, one approach to making state encoding

tractable for large problem sizes is to decompose the STG prior to the actual encoding.

The decomposition makes the subsequent encoding steps much more tractable. The goal

in such, and for that matter any, decomposition is not to compromise the optimality of the

final solution.

3.7 Results

The motivation for FSM decomposition was elucidated in some detail in Sec

tion 3.1. Based on the properties desired, the efficacy of a decomposition can be judged

from the following criteria:

• The sum of the areas of the two-level (multilevel) implementation of the encoded

submachines compared to that of the two-level (multilevel) implementation of the



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION

Example States PI PO One-Hot

Card.

Enc.

Bits

Enc.

Card.1

Two-level

Area1

bbara 10 4 2 34 4 24 528

bbsse 16 7 7 30 4 29 957

bbtas 5 2 2 16 3 8 120

beecount 7 3 4 12 3 10 190

dk27 7 1 2 10 3 9 117

dk512 15 1 3 21 4 20 340

ex4 14 6 9 21 4 15 465

fsl 67 8 1 583 7 119 4522

fstate 8 7 7 22 4 16 528

modulo12 12 1 1 24 4 12 180

sla 20 8 0 92 5 73 2263

scf 121 27 54 151 7 137 17947

scud 8 7 6 86 3 62 1798

styr 30 9 10 111 5 94 4042

tav 4 4 4 12 2 10 180

tbk 32 6 3 173 5 57 1710

60

1Using nova [106] for state assignment.

Table 3.1: Statistics of the encoded prototype machines

encoded prototype machine.

• The areas of the two-level (multilevel) implementation of each encoded submachine

compared to that of the two-level (multilevel) implementation of the encoded proto

type machine.

• The total number of inputs and outputs in each encoded submachine compared to the

number in the encoded prototype machine.

The heuristic procedure for optimal two-way general decomposition has been im

plemented in a program called HDECOM. The input to HDECOM is a Kiss-style [86] state

table description of the prototype machine. As output, HDECOM can produce either a fully

encoded decomposed machine or a decomposed machine in which the present-state inputs

to the submachines and their next-state outputs are symbolic. The heuristic algorithm in

HDECOM was tested on a number of examples obtained from the MCNC FSM benchmark

suite [76] and industrial sources. The statistics of the chosen examples are shown in Ta

ble 3.1. The first step in the decomposition process is to obtain the STG representations



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 61

Example States Area1 of

Decomposed M/C2
Area1 of Lumped Machine

Random3 KISS[86] NOVA[106]
bbara 4/3 360/180/540 649 650 528

bbsse 10/2 950/168/1118 1144 1053 957

bbtas 3/2 91/60/151 215 195 120

beecount 4/2 126/105/231 293 242 190

dk27 4/2 55/30/85 143 117 117

dk512 8/2 238/104/342 418 414 340

ex4 4/4 128/325/453 627 589 465

fsl 16/5 3430/1254/4684 6764 5510 4522

fstate 5/2 450/39/489 600 726 528

modulo12 6/2 117/44/161 180 225 180

sla 8/3 1246/616/1862 3108 2263 2263

scf 90/2 14832/3135/17967 21278 18760 17947

scud 4/2 1050/720/1770 2533 2698 1798

styr 16/2 3589/728/4317 5591 4186 4042

tav 2/2 75/75/150 198 180 180

tbk 16/2 1275/425/1700 6114 4410 1710

1Two-Level Area.

2Encoding for each submachine obtained using nova [106].
3Average random solution.
The first number in a column is the value for the first machine, the
second for the second machine and the third, if present, for the
overall decomposed machine

Table 3.2: Results of the heuristic two-way decomposition algorithm

of the submachines into which the prototype machine is decomposed. The second step in

volves the implementation of the individual submachines, i.e. an encoding of the states of

the submachines and a minimization of the resulting logic. In Table 3.2, the statistics of

the final two-level implementations for the decomposed machines are shown. The encoding

of the states of the submachines was obtained using nova [106]. Also shown in Table 3.2

are the areas of the logic-level implementations of the undecomposed prototype machines.

The logic-level implementations of the prototype machines were obtained using three dif

ferent state-encoding strategies: (1) Random Encoding (2) Kiss [86] and (3) nova [106].

nova is a second generation state encoding program that represents the state of the art in

heuristic encoding techniques targeting two-level implementations, nova typically produces

better results than Kiss. It can be observed from Table 3.2 that the overall area of the



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 62

decomposed machine is better than the area of the prototype machine implemented using

random encoding or using Kiss. It can also be observed that the implementation of the

decomposed machine compares favorably in area to the prototype machine encoded using

nova. Thus, the goal of decomposing FSMs and at the same time keeping a tab on the

cost of the resulting logic-level implementation has been achieved. In the decompositions

shown in Table 3.2, the individual submachines are generally much smaller in area than

the prototype machine, illustrating that at least in the case of two-level implementations,

a decomposition of the FSM translates directly into improved performance.

The proposed decomposition approach does not directly target either the area or

the performance of multilevel implementations. Therefore, it is not possible to claim that it

can be used to target area or performance optimality of multilevel implementations. Even

so, we find in many examples that the significantly smaller PLA areas of the submachines

result in the area-optimized multilevel-logic implementation of each submachine being much

smaller than that of the prototype machine. Reported in Tables 3.3 are the multilevel areas

for some examples. It can be seen that the multilevel area of the decomposed machine is

comparable to that of the best multilevel implementation of the prototype machine for these

examples, and that the area of each submachine is much smaller than that of the prototype

machine.

As an example, consider tbk which is a moderately sized FSM with 32 states. A

Kiss encoding of tbk requires a two-level area of 4410 units while a nova encoding requires

an area of 1710 units. When tbk is decomposed prior to the two-level implementation and

the submachines are then encoded using NOVA, the total two-level area required is 1700

units. The area of the individual submachines in this case is only 1275 and 425 units,

representing a reduction in area compared to the nova encoding of the prototype machine

by 2b% and 75%, respectively.

The exact algorithm for decomposition was also implemented and the results are

reported in Table 3.4. The same encoding strategies as used in the case of heuristic decom

position have been used to compare the implementations of the decomposed and prototype

FSMs. The exact algorithm is not viable for large problem instances because the number

of GPIs tends to be extremely large, resulting in excessive memory requirements and an

untractable covering problem.

Because the submachines in a decomposition could have common inputs, extra

routing area is required, over and above the PLA area. Typically, this extra area is small in



CHAPTER3.ALGORITHMSFORFSMDECOMPOSITION

ExampleLiteralsin

DecomposedM/C1
LiteralsinLumpedM/C1
NOVA[106]JEDI[74]

bbara37/26/635954

bbsse100/18/11810399

bbtas15/10/252222

beecount21/13/343233

dk2717/6/232522

dk51241/25/665350

ex431/26/575757

fstate39/20/5962-

modulol218/9/272222

sla176/59/235244130

scud101/97/198195-

tav12/13/252526

1AfteroptimizationusingthestandardscriptinMisII.
Thefirstnumberinacolumnisthevalueforthefirstmachine,the
secondforthesecondmachineandthethird,ifpresent,forthe
overalldecomposedmachine

Table3.3:Comparisonofliteralcountsofmultilevel-logicimplementations

63

ExampleStatesArea1of

DecomposedM/C2
Area1ofLumpedMachine

RandomKISS[86]NOVA[106]

contrived4/440/66/106108120108

shiftreg4/236/10/461327248

lion95/2112/5/117170136136

1Two-LevelArea.

2Encodingforeachsubmachineobtainedusingnova[106].
Thefirstnumberinacolumnisthevalueforthefirstmachine,the
secondforthesecondmachineandthethird,ifpresent,forthe
overalldecomposedmachine

Table3.4:Resultsoftheexactdecompositionalgorithm



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 64

comparison to the PLA areas and does not offset the area gain via decomposition. In addi

tion, a submachine may actually be independent of some of the primary input and present-

state lines, thus reducing the number of inputs required to be routed to that submachine.

An example of such a case would be a cascade decomposition in which the operation of the

head machine is completely independent of the present state of the tail machine.

Since the logic for a primary output or next-state line is entirely contained in a

single submachine, it is apparent that the decomposition does not add multiple levels of

logic between latch inputs and outputs. The effect of decomposition is therefore similar to

partitioning the set of primary outputs and next-state lines in the overall FSM into two

(or more in case of decomposition into multiple submachines) groups and implementing

the logic driving each group of primary output and next-state lines separately. Such a

partitioning of logic is termed vertical partitioning. In general, it is not necessary that

a good vertical partition should exist for an arbitrary implementation of a FSM. 3 The

decomposition procedure, on the other hand, ensures that a good vertical partition does

exist.

The results imply that a good decomposition targeting two-level area can be a

good decomposition for the multilevel case.

These results are significantly better, in general, than those obtained via factor

ization [40] due to a different problem formulation and the targeting of an improved cost
function.

3.8 Conclusions

Exact and heuristic algorithms for optimum and optimal two-way general decom

position of finite-state machines were proposed in this chapter. These algorithms are based

on a cost function that is more reflective of the cost of a logic-level implementation of the

decomposed machine than the cost function used by previous approaches to the decom

position problem. It was shown in the chapter the exact algorithm for optimum two-way

decomposition can be generalized to target arbitrary topologies. The heuristic algorithm

has been implemented in the program HDECOM.

Decomposition provides a method for simplifying the process of constraint gen-

Experimental results using vertical partitioning on FSMs encoded using the state assignment programs
Kiss and nova indicate that partitions that decrease overall machine area are not usually found.



CHAPTER 3. ALGORITHMS FOR FSM DECOMPOSITION 65

eration for state encoding. The complexity of the optimal constraint generation problem

for state encoding grows exponentially with the problem size. Decomposition by symbolic-

output partitioning provides a way of simplifying the constraint generation problem. Rather

than impose constraints on each bit of the code for every state (as would be done in state

encoding), decomposition allows constraints to be imposed on groups of bits at a time. The

actual encoding for each of these groups can subsequently be obtained in the second step.

The heuristics described in this chapter for generating the constraints to be imposed on

groups of bits are quite simple-minded. It is possible that combining factorization [40] with

symbolic-output partitioning can lead to superior results.



Chapter 4

Synthesis from Logic-Level

Descriptions

4.1 Introduction

Techniques for optimizing, verifying and testing FSMs have relied on the use of

State Transition Graph (STG) orStateTransition Table (STT) descriptions of the machines.

While the STG is an easily manipulable representation of behavior, VLSI sequential circuits,

consisting of large, interacting FSMs, can require astronomical amounts of memory and

CPU time to store and generate from logic-level descriptions of the machine.

The problem with conventional STG descriptions is twofold. First, the STG is

a flattened sum-of-products representation. A variety of VLSI sequential circuits have

combinational portions that require exponential amounts of storage in sum-of-products

form. The second, and the more severe problem, especially for controller-type circuits,

(which can be flattened to two-level logic quite easily) is that all states in the STG are

constrained to be minterm states, i.e. all state variables are set to 0/1 values in each state.

This implies that states in the sequential circuit that are equivalent have to be represented

by distinct minterms (or equivalently, by distinct symbols) in the STG.

The second restriction precludes the optimization of some sequential circuits, typ

ically those that are designed as interconnections of FSMs, because they tend to have a

large number of equivalent states. While the state minimized representation is small, the

conventional STG with equivalent states represented as mintermsis usually large. Thus, the

66



CHAPTER 4. SYNTHESIS FROM LOGIC-LEVEL DESCRIPTIONS 67

conventional STG is unsuitable as a symbolic representation that can be used for sequential

optimization. Obtaining a better representation is one of the problems addressed in this

chapter.

Previous attempts at solving this problem have relied on distributed-style STG

representations (e.g. [30]) and retiming-based algorithms (e.g. [79]). Unfortunately, to

perform global optimization, the approaches of [30] require, in the limit, information corre

sponding to the entire STG of the interacting set of FSMs, which grows rapidly with circuit

size. Sequential synthesis approaches like those in [79] that operate at the logic-level hold

promise as far as efficiency and accurate cost functions are concerned, but to date are also

lacking in global optimization capabilities.

It is shown in this chapter that it is possible to extract Implicit State Transition

Graphs (ISTGs) from logic-gate and flip-flop descriptions of sequential circuits that allow

equivalent states to be represented as cubes, and edges from different states merged into

a single edge, thereby decreasing significantly the CPU time and memory requirements of

the extraction process, and resulting in a manipulable symbolic representation.

Optimization algorithms based on ISTGs for FSMs described at the logic level are

proposed in this chapter. A sum-of-products representation is used for ISTGs because most

mature state assignment and decomposition strategies use such a representation. However,

the algorithms and ideas presented here can quite easily be modified to use alternate repre

sentations. Certain sequential circuits, notably ALUs interconnected with registers, are not

amenable to sequential logic optimization. While algorithms exist that can verify/test such

circuits, improving the performance of such circuits via re-encoding or re-decomposition

appears improbable. Selection strategies that focus on the control portions of a sequential

circuit, where the most room for sequential optimization exists, are a must for real-life chips.

The approaches presented here appear promising for global, sequential optimization of in

teracting FSM controllers. Experimental results using these techniques are also presented

in this chapter.



CHAPTER 4. SYNTHESIS FROM LOGIC-LEVEL DESCRIPTIONS 68

4.2 Implicit STGs

4.2.1 Implicit State-Enumeration

The implicit state-enumeration procedure is given in Figure 4.1 and is illustrated

with the help of a machine whose STG is shown in Figure 4.2. The state whose fanout edges

will be enumerated is denoted by S\. Initially, Si is the reset state of the machine (in this

example Si = 000). In general, Si can be minterm or a cube state. At first, Si is checked

to ensure that it is not in the path currently being enumerated. Following that, a PI vector

J (if possible, the largest cube) that produces a 1 or a 0 when concatenated with Si, for

each PO line in the machine is determined. This is performed by heuristically selecting a

stg_enumerate(Sj) {

/* Sj is the current state »/

if (Sj is in the current path)

return (TRUE);

Add 5] to current path ;

while (decisionjree != NULL) {

(S'i, flag) = set_outputs (Si);

if (flag)

/* Some state variables were set */

return (BACKTRACK);

flag2 = stg_enumerate(S'i);

if (flag2 == BACKTRACK) {

(S'i, flag) = set_more_inputs(Si);

if (flag)

/* Setting more inputs does not help •/
return (BACKTRACK);

else {

flag2 = stg_enumerate(5'i);

if (Aag2)

return (BACKTRACK);

}

}

Reassign last variable on decision tree a different value;

}
return (TRUE);

}

Figure 4.1: Implicit state-enumeration procedure

particular input and setting it to either a 1 or 0. This new input cube is then concatenated

with Si and intersected with the cubes in the ON and OFF-set of the PO lines. If the cube



CHAPTER 4. SYNTHESIS FROM LOGIC-LEVEL DESCRIPTIONS 69

intersects only the ON-set (OFF-set) the value of the corresponding PO line is 1 (0). If

the cube intersects both the ON and the OFF-set, then some more inputs are heuristically

selected and set to a value so that the new cube intersects only one of the sets. All inputs

that are set are stored in a decision tree. The next-state corresponding to this input vector

is determined by intersecting the same cube with the ON and OFF-set of every NS line. If

the cube intersects only the ON-set (OFF-set) the value of the corresponding NS line is 1

(0), else it is a don't care. The new state S'i is the fanout state of Si for the input 7. This

part of the procedure is implemented in the routine set-outputs. Having determined S'i,

enumeration proceeds by recursively calling the STG enumeration procedure. For example,

consider only the first output for the machine of Figure 4.2. Starting with Si = 000, and

selecting 7 = 0- sets the PO to 1 and S\ to 1-1. In the next step, starting with Si = 1—1,

setting 7 = 1- sets the PO to 1 and S'i to 01-. In this process, through two steps of the

enumeration procedure, four edges in the actual STG were enumerated.

Since Si can be a cube, some PS lines might have to be set in order to set all the

outputs to a known value. In doing so, one has to ensure that the resulting state is a valid

state. Whenever some PS lines (call them the required state variables) have to be set, the

procedure set.outputs sets a flag. This initiates backtracking, i.e. the procedure returns

to a state from where it is possible to set some more input variables to set the required

state variables. If the required state variables cannot be set without setting some other PS

variables, the procedure backtracks one more level and repeats the same step. Ultimately,

a state will be reached from which no more backtracking would be necessary. Forward

enumeration would then proceed from that state. Consider the example of Figure 4.2, this

time with both outputs. Starting with Si = 000, and selecting 7 = 0- sets the POs to 10

and S'i to 1 - 1. In the next step, with Si = 1 - 1, setting 7=1- sets the POs to 10 and

S'i to 01-. Now that Si = 01-, the second output cannot be set for the input 7=1-

without setting the third state variable. The procedure backtracks to the previous level

where Si = 1 - 1, and tries to set the third state variable in S'i by setting more inputs.

But, to do that the second state variable in Si would have to be set. Thus, the procedure

backtracks one more level where Si = 000, sets the input to 7 = 00, thereby getting the

fanout state to be S'i = 111. Forward enumeration can proceed from this new S\.

This procedure does not require all the next-state lines to be set to a known value.

Thus the fanout state of Si could be a cube and the state space is implicitly enumerated.

All possible fanout edges from a state are enumerated by changing values of input variables



CHAPTER 4. SYNTHESIS FROM LOGIC-LEVEL DESCRIPTIONS 70

Figure 4.2: An example STG

in the decision tree, as shown in Figure 4.1.

In the final STG, all cube states contain minterm states that are equivalent. For

example, consider Figure 4.2. The STG corresponding to the first output is shown in

Figure 4.3. The states (101,111),(010, Oil), and (100,110) areequivalent. The enumeration

procedure detects this equivalence and produces an STG with only 4 states and 6 edges.

Minterm enumeration of the state space would have resulted in an STG with 7 states and

12 edges. The resultant STG is therefore appropriately called an Implicit State Transition

Graph (ISTG).

ISTGs have two important characteristics. Firstly, some equivalent states are

merged into one state. Secondly, some transitions from two different states to the same

next state for a given primary input combination can be coalesced. This implies that some

minimization of the state space and some minimization of the symbolic cover is carried out

during the enumeration. The number of states and edges enumerated are reduced, thereby

speeding up the enumeration and producing more compact STGs.

The enumeration procedure uses cubes to represent transitions between states.

For certain circuits (ones involving arithmetic functions), using Binary Decision Diagrams

(BDDs) is morepractical [25]. In onepossible representation, a set of states is represented as

one BDD and all the edges between any pair of states as another single BDD. For machines

with a large number of primary inputs but a relatively smaller number of states, this BDD

based enumeration approach can generate a very compact STG.



CHAPTER 4. SYNTHESIS FROM LOGIC-LEVEL DESCRIPTIONS 71

/ PS NS 0

0- 000 1-11

1- 1-1 01- 1

— 01- 1-0 0

— 1-0 000 1

0- 1-1 01- 0

1- 000 110 0

Figure 4.3: STG for first output of Figure 5.2

4.2.2 Implicit State-Traversal

The traversal of a STG differs from its enumeration in that traversal does not

require explicit knowledge of the connectivity of states. STG traversal is typically carried

out to ascertain whether a certain property is satisfied by the STG. The problem of verifying

the equivalence of two FSMs can be viewed as one of traversing the STG of the product of

the two FSMs with the output of the product being the XNOR of the output of each FSM.

The property to be ascertained is whether the output on each edge in the product STG

is 1. A traversal algorithm for FSM verification using such an approach was presented in

[28]. The intent of this section is to show that the enumeration algorithm of the previous

section can be modified to traverse the STG of a FSM. This modification is illustrated with

an example. Consider the machine of Figure 4.2. Starting with Si = 000, the part of the

STG enumerated before a PS variable is required to be set is the following :

0- 000 1-1 10

0- 1-1 01- 10

0- 01- 100 01

— 100 000 11

The edge for the input 7 = 0- has been enumerated from state 01-, but on

setting the input 7 = 1- (as one would do in the next step of depth-first traversal), the

output cannot be set without setting the third state variable. Instead of backtracking, as

in enumeration, in this situation one can proceed forward. The third state variable is set

to a value, and checked to ensure that the resulting state is reachable from 1 — 1. The

reachability check is performed using the justification procedure of [50]. Note that unlike

in STG enumeration, the edges from states 010 and 011 for input 0— are coalesced into one

edge. Also, it was not necessary to split cube state 1 — 1.



CHAPTER 4. SYNTHESIS FROM LOGIC-LEVEL DESCRIPTIONS 72

4.3 Optimization Strategies

The optimization strategy proposed here begins from a logic-level description of

a sequential circuit. An attempt is made to extract the ISTG of the entire circuit for

subsequent re-encoding and re-decomposition. Depending on the size of the ISTG, different

options are exercised in the synthesis procedure.

Small number of states, small number of edges: If the ISTG of the entire circuit has

a small number of non-equivalent states (< 1,000) and a small number of edges (< 10,000),

then existing decomposition or state assignment programs [7, 36, 106] that operate on the

ISTG can be used for the global optimization of the circuit. It may happen that only certain

outputs in the circuit have small ISTGs. In that case, the alternate strategies given below

have to be followed for the remaining outputs.

Small number of states, large number of edges: If the ISTG of a particular output

has a small number of non-equivalent states (< 1,000), but a large number of edges (>

10,000), then it is not efficient to use decomposition programs like those in [7] and state

assignment programs like NOVA [106]. In this case, a dynamic state assignment strategy

that does not require storage of the entire ISTG is used. One pass is made through the

extraction process to determine the set of symbolic states in the circuit without storing the

edges in the ISTG in the process. In the second pass, given the symbolic state information,

the edges in the ISTG are inspected, one by one, to determine a good adjacency-based

coding for the states, much like the counting algorithms in mustang [36]. Again, one does

not require the storage of the entire set of edges. Once a new encoding for the states has

been constructed, an encoder and a decoder is added to the sequential circuit. For instance,

a state originally may have the code 10-1-1 and may be assigned the code 0000. The

combinational logic (that now includes the encoder and decoder) of the sequential circuit is

then optimized for area or performance using programs like mis-ii [15], potentially leading

to an improved implementation.

Large number of states, large number of edges: In this case, the number of the states

in the ISTG to be manipulated is reduced by attempting to find a good parallel, cascade, or

general decomposition of the circuit, in that order, by suitably choosing subsets of latches

that would form each component machine. Selecting any subset of latches corresponds to

identifying a submachine in some general decomposition. It is of interest to select a subset

of latches and outputs such that the submachines that are so created interact minimally.



CHAPTER 4. SYNTHESIS FROM LOGIC-LEVEL DESCRIPTIONS 73

Each of these submachines would have much fewer states than the original FSM, making it

possible to apply some of the techniques in Options (1) and (2) above for re-encoding.

4.3.1 Synthesis Results Using Implicit State-Enumeration

Some of the significant synthesis results are shown in Tables 4.1 and 4.2. The rela

tive size of the STG obtained via implicit state-enumeration to the size of the STG obtained

via explicit state enumeration is compared in Table 4.1. Data on the area and performance

improvements obtained as a consequence of sequential synthesis from a symbolic description

of the circuit is provided in Table 4.2.

In Tables 4.1 and 4.2, #1 is the number of primary inputs, #0 the number of

primary outputs, #L the total number of latches, and #G the number of gates. O/P #

indicates the output(s) being optimized. The following experiment was carried out: Given a

circuit, outputs were chosen as candidates for optimization. Using the algorithm described

in previous sections, the ISTG was extracted for these outputs. A new implementation was

then obtained for these outputs by performing state encooding and logic optimization. This

new implementation was compared against the original implementation of the logic feeding

just the selected outputs. For area comparisons, the new and old implementations were both

optimized usingarea optimization techniques in MIS-II [15]. Similarly, for delay comparisons,

the new and old implementations were both optimized using delay optimization techniques

in mis-ii. The area was measured using the factored-form literal count in mis-ii, and the

delays were measured using the "mapped" delay model in Mis-n.

The first example is a set of FSMs forming the controller of the Viterbi proces

sor [103]. As it happens, the description for the controller contains three parallel FSMs

asserting different sets of outputs, but which are driven by the same set of primary inputs.

After optimization however, this decomposition could not be identified via a topological

analysis. STGs of none of the outputs could be obtained using the program of [35]. How

ever, the ISTG for each output was obtained using the techniques described in Section 4.2.

Extracting the ISTG for any particular output, takes advantage of the inherent parallel

decomposition, i.e. the fact that that output is functionally dependent only on a subset

of the latches, and therefore, all the states with the same value in this subset of latches

are equivalent as far as this output is concerned. In a sense, the ISTG extraction method

attempts to extract the minimal amount of symbolic information necessary to be able to



CHAPTER 4. SYNTHESIS FROM LOGIC-LEVEL DESCRIPTIONS

CKT #1 #o #L #G o/p# Size ISTG Size STG

States Edges State* Edge*

viterbi 11 34 12 227 0-3 15 48 359 8421

4-7 8 159 136 6464

sbc 35 51 33 1011

11-121 6 70 * *

27-32 1 1 * *

481 6 190 * *

tic 3 6 21 162 0-51 34 865 * *

s344 9 11 15 160 4 258 569 * *

74

'*' Conventional STG could not be obtained. 1 Incorporating latch selection heuristics.

Table 4.1: Results using implicit state enumeration

optimize that particular output. In an initial pass, ISTGs were extracted for each output

separately. After this pass, the outputs that were dependent on the same set of latches (the

outputs that are asserted by the same component FSM in the parallel decomposition) were

clustered together and a single ISTG extracted for each such cluster.

The next two examples are large FSM controllers, sbc and tic. Conventional STG

descriptions for almost all outputs (considered individually) of either of these controllers

are not obtainable. Manipulable ISTG descriptions, on the other hand, could be obtained

for most of theseoutputs. In addition, the number ofoutputs for which manipulable ISTG

descriptions could be extracted was further increased by only re-encoding an appropriate

subset of latches. When it is required to re-encode a subset of latches, only the symbolic

information corresponding to that subset need be extracted. The latches not in the chosen

subset can be considered to be primary inputs.

Both the examples have inherent two-way cascade decompositions that can be

identified after cover extraction, but not via a topological analysis. After exploiting the

cascade decomposition in the case of sbc, about two-thirds of the outputs had a moder

ate number of states and edges and did not require further latch selection. However, the

remaining outputs either had too large a number of edges or states or both. In the case

of tic, once the inherent cascade decomposition had been identified, all the outputs could

easily be re-encoded using ISTGs. The final example, s344, is from the ISCAS Sequential
Testing Benchmark set.

Significant area and performance improvements were obtained on Viterbi and



CHAPTER 4. SYNTHESIS FROM LOGIC-LEVEL DESCRIPTIONS 75

CKT #1 #o #L #G o/p# Delay2
Init./Fin./Impr.

Area (literals)
Init./Fin./Impr.

viterbi 11 34 12 227 0-3 32/15.7/51% 321/69/78%
4-7 30.5/23.9/22% 319/85/73%

sbc 35 51 33 1011

11-121 11.8/10.5/11% 632/538/15%
27-32 19.5/0/100% 397/0/100%

481 12.4/9.6/23% 630/550/13%
tic 3 6 21 162 0-51 18.5/18.5/0% 161/161/0%
s344 9 11 15 160 4 20.7/20.7/0% 131/131/0%

1 Incorporating latch selection heuristics. 2 Using the mapped delay-model in MISII [15].

Table 4.2: Results obtained by synthesizing from ISTGs

sbc. As can be seen from the tables, the conventional STGs could not be obtained for any

of the outputs of sbc while some of the ISTGs for the same outputs are extremely compact.

For instance, for the reset state chosen, some of the outputs (27-32) became wires since all

states are equivalent. Using the algorithm of [35] to extract a conventional STG for outputs

27-32 would result in a STG with millions of equivalent states. Using state minimization

would eventually produce the same reduction, but such a method would require exorbitant

amounts of CPU time.

The ISTGs for the examples tic and s344 are much more compact than the cor

responding conventional STGs. However, for these examples re-encoding did not provide

any area or performance gain. A possible explanation is that on large ISTGs, encoding

programs like mustang [36] and nova [106] are either unable to find state assignments

that are comparable to the initial literal count, or do not complete in reasonable amounts

of CPU time. Experiments with alternate encoding strategies are currently in progress.

4.4 Conclusions

It appears that the size of sequential circuits for which current sequential logic

synthesis strategies are viable, can be increased significantly via the use of Implicit State

Transition Graphs (ISTGs). The focus here has been on a sum-of-products representation

for ISTGs, given that the most mature state assignment and decomposition strategies in use

today target and use such a representation. However, the algorithms and ideas presented

can be modified to use alternate representations of Boolean functions as a base.



CHAPTER 4. SYNTHESIS FROM LOGIC-LEVEL DESCRIPTIONS 76

Certain classes of sequential circuits, described usually at the logic-level, notably

ALUs interconnected with registers, are not amenable to sequential logic optimization.

While algorithms exist that can verify/test such circuits, improving the performance of

such circuits via re-encoding or re-decomposition appears improbable. Selection strategies

that can focus on the control portions of a logic-level sequential circuit, where the most

room for sequential optimization exists, are a must for large, real-life chips.

In particular, the approaches presented appear promising for global, sequential

optimization, such as re-encoding and re-decomposition, of interacting FSM controllers,

which individually may have compact STG specifications, but whose overall STGs are too

large. The overall STG typically has a large number of equivalent states and ISTGs allow

for efficient synthesis.



Chapter 5

Irredundant Interacting

Sequential Circuits

5.1 Introduction

The relation between logic synthesis and test generation is strong and is the focus

of recent research [37]. One relationship hinges on the simple observation that redundancy

in a logic circuit, corresponding to the absence of a test for an associated fault in the cir

cuit, is typically a product of a sub-optimal logic synthesis step. In the case of stuck-at

fault redundancies for instance, a redundant faulty line can be "replaced" with a constant

1 or 0, thereby reducing area without altering functionality. Thus, a "perfect" set of op

timization steps can preclude the occurrence of redundancies in a synthesized logic-level

implementation of a combinational or sequential circuit.

The relationship between combinational logic synthesis and combinational test

generation has been investigated previously [10, 14]. The work of [10] showed an intimate

relationship between don't-care conditions in a combinational network and stuck-at fault

redundancies in the circuit. An optimal synthesis procedure that exploited the complete

don't-care set, and which resulted in a fully testable combinational circuit was presented.

Sequential circuits are more complicated than combinational circuits. Sequential

logic synthesis includes the steps of state minimization, state assignment, retiming and

combinational logic optimization. Stuck-at faults in a non-scan sequential circuit may be

testable from a combinational point of view, but may be redundant in the non-scan circuit

77



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 78

due to limited observability and controllability of the memory elements. These faults are

termed sequentially redundant.

Constrained synthesis procedures that result in fully and easily testable finite-state

machines (FSMs) were presented in [38]. These procedures involve the addition of extra

logic to produce an easily testable machine. A different approach, taken in [39], defines a

complete don't-care set for the synthesis of FSMs represented by a single State Transition

Graph (STG) and provides an optimal synthesis procedure that results in a fully testable

sequential machine.

The work in [39] was restricted to single finite-state machines. Industrial chip

designs are typically composed of interacting finite-state machines. The types of possible

redundancies in interacting sequential circuits and their associated don't-care sets are more

complicated than in the single machine case.

The classification of sequential redundancies in interacting sequential circuits and

their removal is the focus of this chapter. An intuitively obvious classification of sequential

redundancies in interacting sequential circuits is based on the limited controllability and

observability of the intermediate lines by means of which the component FSMs communi

cate. In this chapter, a relationship is shown between sequential don't-cares corresponding

to sequences ofvectors that never occur at the inputs (outputs)ofthe driven (driving) FSM,

and certain classes of sequential redundancies. Methods ofexploiting sequential don't-cares

in cascaded circuits for area optimization were presented in [30]. These are extended for

application to testability-driven synthesis.

Subsequently, a specific, but frequently occurring class of interacting FSMs is

considered, where the individual FSMs communicate solely via their present states. For

this class ofcircuits, efficient algorithms that detect unreachability of states and edges, and

compatibility between states are devised. Further, it is shown that a uniform treatment of

arbitrary topologies of interacting FSMs is possible for such circuits.

Finally, experimental results are presented which indicate that these procedures

can synthesize fully testable medium-sized sequential circuits in reasonable CPU time.

5.1.1 Organization of the Chapter

The classification of redundancies in single finite-state machines is reviewed in

Section 5.2. The classification of sequential redundancies based on the limited controllabil-



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS

PI - Combinational

Logic

«-P0

PS NS
— Latches r~~

(a) (b)

79

Figure 5.1: A sequential circuit

ity and observability of the intermediate lines is presented in Section 5.3, and a synthesis

procedure that produces irredundant cascades is developed. The generalization of this syn

thesis procedure to multiple interacting FSMs is explored in Section 5.4. In Section 5.5,

efficient procedures for detecting unreachable states and compatible states in interacting

FSMs that communicate via their present state lines are presented. Based on these proce

dures, an algorithm for the synthesis of irredundant multiple interacting FSMs is presented.

Experimental results are presented in Section 5.6.

5.2 A Review of Redundancies in Single Finite-State Ma

chines

A sequential circuit M, comprised of a single FSM is shown in Figure 5.1(a). The

State Transition Graph corresponding to the circuit is shown in Figure 5.1(b). Redundant

faults in M may be combinationally redundant (CRFs) or sequentially redundant (SRFs).

SRFs can be classified into three categories.

1. Equivalent-SRF: The fault causes the interchange/creation 1 of equivalent states in

the STG.

2. Invalid-SRF: The fault does not corrupt any fanout edge of a valid state in the STG.

3. Isomorph-SRF: The fault results in a faulty machine that is isomorphic (i.e. a

machine which is different only w.r.t. the encoding of states) to the original machine.

1Replacement is included as a form of interchange.



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 80

(a) (b)

(c)

Figure 5.2: Three types of sequential redundancies

It is shown in [39] that no other kind of sequential redundancy can exist.

In Figure 5.1(b), states s2 and 54 are equivalent states. An equivalent-SRF in M

may produce the faulty STG of Figure 5.2(a), where the only corrupted edge (shown in

dotted lines) goes to s4 instead of si and does not change the terminal behavior of M. A

faulty STG corresponding to an invalid-SRF is shown in Figure 5.2(b). As can be seen,

only fanout edges from the invalid state 55 have been corrupted by the invalid-SRF. In

Figure 5.2(c), an isomorphic faulty machine which is equivalent to the true machine in all

respects but for the interchange of states 52 and 53, is shown.



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 81

5.2.1 Eliminating Isomorph-SRFs

It was shown in [39] that stuck-at faults in a sequential machine implemented by

a two-level combinational network cannot cause isomorphism. On the other hand, for a

sequential machine implemented by a multilevel network, stuck-at faults could conceivably

produce an isomorphic faulty STG. There are many ways of ensuring that isomorphism

does not occur in multilevel networks. Isomorphism due to a stuck-at fault is caused by

a sub-optimal state assignment. The faulty STG has a different encoding from the true

STG such that the new encoding corresponding to the isomorph/faulty STG represents a

better machine, i.e. one with the redundant line removed and hence with fewer literals.

Therefore, if a fault F in a sequential machine, M, causes isomorphism between any set

of states Q € 5a/, then we can find an encoding that results in a machine M' identical in

functionality to A/, where the combinational logic of M' has at least one less literal than

M.

A locally optimal state assignment across any given set of states can ensure that

isomorphism does not occur in multilevel circuits, across this set of states. If the assignment

is locally optimal across a set of states, it implies that the exchange of two or more state

codes within this set of states cannot produce a better logic implementation with fewer

lines. This in turn means that no fault can cause isomorphism within this set of states. It

is worthwhile to note that optimal state assignment corresponds to the optimal usage of

the don't-care that the actual code assigned to a particular state is not important as long

as that code is distinct from the codes assigned to other states.

As illustrated in [39] isomorphism can also be prevented by implementing the logic

for the FSM in two-level form or in algebraically factored multilevel form.

5.2.2 Eliminating Invalid-SRFs

The codes corresponding to invalid states can be used as don't-cares for all primary

input combinations during logic optimization. An invalid-SRF arises due to the sub-optimal

usage of these don't-cares. Making the combinational logic prime and irredundant under

this don't-care set ensures that invalid-SRFs wiU not exist. Primality and irredundancy

under a don't-care set guarantees the existence of a test vector outside the don't-care set

for every single stuck-at fault [10]. In the context of sequential circuits, this property implies

that there always exists a valid state that can propagate the effect of the fault to the next



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 82

state or primary output lines if the combinational logic is prime and irredundant under the

invalid state don't-care set.

Theorem 5.2.1 ; An invalid state in a State Transition Graph of a machine M is never

required to detect a fault if the combinational logic of M is made prime and irredundant

under the invalid state don't-care set.

Proof. See Lemma 4.3 and Theorem 4.5 of [39]. •

5.2.3 Eliminating Equivalent-SRFs

Equivalent-SRFs are related to redundant states in a sequential machine. Given a

reduced machine, a fault that corrupts a single edge into going to a faulty, but valid, state

cannot be redundant, since all states are differentiable. Thus, an initial state minimization

will preclude the occurrence of an SRF of the form shown in Figure 5.2(a). However, there

may be a case where the fault results in a faulty invalid next state that is equivalent to the

true next state. This is illustrated in Figure 5.3. Shown in Figure 5.3(a) is the state-minimal

STG of a fault-free machine which has been optimized under the invalid state don't-care set

(cf Section 5.2.2). The code for the invalid state 54 is used as a don't-care and consequently,

54 becomes equivalent to state 52 after logic minimization under this don't-care condition.

A fault could result in the scenario shown in Figure 5.3(b), where a single corrupted edge

whose true next state is 52 produces a faulty invalid next state, 54. The fault is redundant

because 54 is equivalent to 52. The reason this redundancy exists is that the don't-care

condition corresponding to the next state that the edge (0, 53) can fan out to has not been

exploited. Since states 54 and 52 are equivalent, one can specify n(0, 53) = (54, 52) and

not just 52. The next state that the edge (0, 53) actually fans out to is determined during

logic optimization. Assume, for instance, that the code of 54 is 10 and the code for 52 is

11. One can specify n(0, 53) = (10, 11) = 1—. In the sequel, such don't-cares will be

referred to as extended don't-cares.

The following procedure of repeated logic minimization (modified from [39]) guar

antees upon convergence that invalid-SRFs don't exist and that single edge corrupting and

certain kinds of multiple edge corrupting equivalent-SRFs don't exist. While the elimina

tion of all possible equivalent-SRFs can be guaranteed by the use of extended don't-cares

at Step A, these don't-cares are not required in practice to produce irredundant machines.



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 83

(a) (b)

Figure 5.3: An equivalent-SRF

In the following procedure, the routine extract-stg() extracts the entire State Transition

Graph from a logic-level implementation of a FSM. The routine optimizeQ produces a

prime and irredundant multilevel realization under a given don't-care set. The routine

extract-invalid-states() finds all the invalid states in a given logic-level implementa

tion of a FSM. FADC is the fanin don't-care set that corresponds to equivalent states,

q, vi, .. vx, ivi, .. ivy. The line corresponding to Step A specifies a degree of freedom

(don't-care condition) in that the fanin edges to q can be moved to any of the above states

without altering functionality. This degree of freedom cannot always be represented by

don't-cares. In general, Boolean relations [21] might be required to exploit it. IVDC is the

invalid state don't-care set. The optimization under IVDC is carried out separately from

the optimization under FADC because the set of invalid states is known only after FADC

has been used. The combinational logic of M' is made prime and irredundant under this

don't-care set to produce M".

eliminate-equivalent/invalid-SRFs( M ):
{

iter — 1 ;
do{

if ( iter = 1 ) G = extract-stg( M ) ;
else G = extract-stg( M" ) ;
FADC = $ /* pADC is empty initially */
foreach ( valid state q 6 G ) {

Find all valid states (vi, .. vx) = q ;
Find all invalid states (tvj, .. ivy) = q ;
A: FADC = FADC \ fanin(q) = (g, Vi, .. vx, ivi, .. ivy) ;

}



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 84

if ( iter ^ 1 ) M = M" ;
AT = optimize( M, FADC ) ;
jyDC = extract-invalid-states( M' ) ;
M" = optimize( M', IVDC ) ;
iter = iter + 1 ;

} while( M # M" ) ;

}

It can be proved that state minimization, a locally optimal state assignment and

the procedure eliminate-equivalent/invalid-SRFs() produces an irredundant sequential

machine (cf Theorem 4.7 in [39]).

5.3 Controllability and Observability Based Synthesis

The classification of redundancies presented in this section is based on two fun

damental premises. The first is that cascaded pairs of FSMs can be considered as building

blocks of arbitrary interacting sequential circuits. For example, the interacting sequential

circuit shown in Figure 5.4 can be considered to be composed of the cascade pairs A —• B,

B —• C and C —• A. The problem of removing redundancies from arbitrary sequential

circuits can then be formulated as one of iteratively removing redundancies from the con

stituent cascade pairs (cf Section 5.4). Based on this first premise, it is only necessary to

classify sequential redundancies for cascaded pairs of FSMs. The second premise is that

sequential redundancies in a cascade of two FSMs can be fully classified based on the lack

of controllability and observability by the two FSMs of the intermediate lines by means of

which they communicate.

In the following paragraphs, a classification of sequential redundancies in a cas

cade of two FSMs based on controllability and observability criteria is presented. Given

this classification, don't-care sets are associated with each of these forms of redundancy

and give a synthesis procedure that produces an irredundant cascade. In Section 5.4, the

generalization to multiple interacting circuits is described briefly.

5.3.1 Redundancies in a Cascade

Consider the cascade A —• B in Figure 5.4. A drives B via a set of latches LI.

For the purposes of the discussion here, it is assumed that none of the flip-flops in LI are



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 85

PO

PI
PO

Figure 5.4: Interacting finite-state machines

directly observable or controllable. In practice, a subset of the flip-flops may be observable

or controllable. B may receive primary inputs and/or A may assert primary outputs.

Redundancies in a cascade A —• B can be classified into four categories. INT

denotes the intermediate lines and F denotes a single stuck-at fault.

1. F 6 A that cannot propagate to the intermediate lines INT.

2. F € A that propagates to INT but not PO, the primary outputs of B.

3. F € B that does not propagate to PO, but would have if INT were completely

controllable.

4. F € B that does not propagate to PO and would not have even if INT were com

pletely controllable.

Theorem 5.3.1 ; Redundancies of Type 1, 2, 3 and 4 form a complete classification of

redundancies in a cascade A —• B.

Proof. Assume that F € A is redundant. Either F can be propagated to the outputs of A,

namely INT, or F cannot be propagated to INT. In the latter case, F is a redundancy of

Type 1. In the former case, F cannot be propagated to PO, else jF is testable. Therefore,

F is a redundancy of Type 2.

Similarly, assume that F € B is redundant. There are two possible cases; F be

comes testable if INT were made completely controllable or F is still redundant after INT

is made completely controllable. These two cases correspond to redundancies of Type 3 and

4. respectively. D



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 86

It is easy to see that redundancies ofType 1and 4 are associated with the single
machines A and B. If A and B are irredundant, these redundancies will not appear in a
cascade A —• B.

5.3.2 Exploiting Don't-Care Inputs for the Driven Machine

There are several don't-care conditions associated with the intermediate lines cor

responding to LI,which are inputs to B. Let the number ofintermediate/pipeline flip-flops
in II be N.

1. A may or may not assert all 2^ possible output combinations. If a certain binary
combination, ci never appears at II, then B can be made incompletely specified -

the transition edges corresponding to an input of ci need not be specified, for any

state of B. (It doesn't matter what happens when B receives the input ci)

2. A more general case of (1) is when a certain combination c2 never appears at II,

when B is in some set of states Qb € Sb- It does appear when B is in states other

than Qb- In this case, the states in Qb will have c2 unspecified. (If an edge on c2

exists in Qb, it can be removed)

3. A more complicated sequential don't-care is associated with vector sequences that

never appear at II. A does not produce all possible output sequences. This type of

don't-care does not have a straightforward interpretation. Unlike in the case of (1) or

(2), this don't-care cannot be accounted for directly by leaving edges in the STG of

B unspecified.

Both (1) and (2) can be easily exploited via the use of standard state minimization algo

rithms that handle incompletely specified machines [89]. However, exploiting don't-care

input sequences is more complicated.

In Figure 5.5, a cascade A —> B is shown in STG form. Each of the machines is

state minimal. Assuming that the starting states of the machines are q\ and si respectively,

each transition edge in B is irredundant, i.e. B makes every transition with appropriate

input sequences. However, A does not assert all possible output sequences. A don't-care

input sequence is shown below the graph of B. Such a don't-care sequence implies that



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 87

The sequence (11,11) is a dont care.

Figure 5.5: Input don't-care sequences

certain sequences of transitions will not be made by B. In the general case, there may exist

a set of don't-care sequences.

Unconditional Compatibility

Definition 5.3.1 : If all the differentiating sequences corresponding to a pair of states are

contained within a don't-care sequence set, then these states are deemed to be unconditionally

compatible under the don't care set.

The following procedure describes a general approach for identifying unconditional

compatibilities and unspecified edges:

exploit-input-dc( B):
{

LOOP1: foreach( state sb € Sb ) {
Find Qa, the set of states A can be in when B is in s0 ;
foreach( edge in B, e0 = (ib, s0) ) {

foreach( qa € Qa ) {
if( 3 ia | o(ia, qa) = %) go on to next edge e0 ;

}
}
Delete edge e0 ;

}
LOOP2: foreach( state pair si, s2 GSb ) {

Find Qai , the set of states A can be in when B is in si ;
Find Qa2i the set of states A can be in when B is in s2 ;
Qa\2 = Qai U Qa2 ;
foreach( differentiating sequence dsi2 of si, s2 ) {

if ( dsi2 can be produced starting from some state qa € Qai2 ) {



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 88

si and 52 are not unconditionally compatible ;
Go on to next state-pair ;

}
}
Si and s2 are unconditionally compatible ;

}
}

Theorem 5.3.2 ; The procedure exploit-input-dc^ finds all unspecified edges in machine

B and all unconditionalcompatibilities between states in machine B arising from don't-care

input sequences.

Proof. Assume that Machine B is in state s0. Machine A can be in the set of states

Qa when Machine B is in s0. An edge, corresponding to input i0, that fans out of state

Sb in Machine B is unspecified if A never produces the output i0 from the states in Qa>

L00P1 of exploit-input-dc() checks if the output i\, can be produced by Machine A from

the states in Qa- Since this check is performed for all edges that fan out of each state in

Machine B, all unspecified edges in Machine B are identified.

Two states in Machine B are unconditionally compatible if none of the differenti

ating sequences for the two states can be produced by Machine A. For each pair of states si

and 52 in Machine B, L00P2 of exploit-input-dc() checks if the differentiating sequence

for 5i and 52 can be produced by Machine A. When no differentiating sequence can be

produced, si and 52 are labeled unconditionally compatible. Since this check is performed

for all pairs of states in Machine B, all unconditional compatibilities are identified. D

In the example of Figure 5.5, states 5l and 52 are unconditionally compatible and

can therefore be merged under the don't-care set. One approach to exploiting input don't-

cares is to produce all differentiating sequences for every pair of states in B and checking

for containment in the input don't-care set. Pairs satisfying the containment condition can

be merged. Given a cascade, one needs to generate the set of sequences that the driving

machine in a cascade A —• B never asserts, so as to optimize the driven machine B. This

is done by generating don't-care sequences of increasing length, beginning from a length of

2. Starting from each valid state in A, all possible two-vector sequences are found. Single

vectors that don't occur are added to this set and the set is "complemented" to find the

two-vector sequences that don't occur. Next, all sequences of length 3 that A asserts are



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 89

found. The single-vector and two-vector don't-care sequences that are produced by A are

added to this set and the union is complemented to find the don't-care sequences of length

3 and so on, until no more don't-care sequences are found. It may be that a sequence of

vectors cannot be applied to B when B is in a particular set of states alone. In which

case, this sequence is a don't-care sequence for that particular set of states in B. This

information also can be extracted from the driving machine A and exploited to reduce the

number of states in B. Sequences can be stored as BDDs. Assume that width of each vector

in a sequence is w bits. If the longest sequence has a length of / vectors, the BDD used to

store the sequences has w.l inputs. The complement operations described above can then

be performed on this BDD.

The procedure described in the above paragraph has obvious limitations. Pri

marily, a pair of states may have a large number of differentiating sequences rendering

this strategy time consuming. In the worst case, every edge in the product of the driving

and driven machines has to be traversed. An efficient approach for minimizing the driven

machine taking advantage of unconditional compatibilities arising from input don't-care

sequences was described by Kim and Newborn [66]. The following procedure is followed in

that approach: In the first step, a machine, say Ma-, that accepts just the output sequences

that the driving machine can produce is constructed. The output on an edge in Ma is a 1

when the input sequence applied so far is a sequence that Ma accepts. The output is a 0

otherwise. In general, Ma has fewer states than the driving machine. A product machine

consisting of Ma and the driven machine is constructed such that the output of the product

machine is the Boolean and of the outputs of the driven machine and Ma- Since Ma has

fewer states than the driving machine, the product of Ma and the driven machine can be

much smaller than the product of the driving machine and the driven machine. It can be

shown that a state minimization of the product machine realizes that same machine that

would have been realized by minimizing the driven machine under the complete don't-care

set corresponding to the unconditional compatibilities. This formulation of the minimiza

tion problem for the driven machine does not require that the differentiating sequences in

the driven machine be computed explicitly and stored. Also, determining Ma is much easier

than finding all the sequences that the driving machine never produces.



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 90

Conditional Compatibility

While the procedure exploit-input-dc() finds all unconditional state compati

bilities under an input don't-care sequence set, it does not take into account conditional

compatibility between states in a driven machine.

Definition 5.3.2 : A state qi in a driven machine B of a cascade A —• B is conditionally

compatible to another state q2 € Sb under a don't-care sequence set and a set of fanin edges

Fj C fanin(qi) if on traversing any edge e 6 Fi and reaching qi, one cannot differentiate

between qi and q2 in B.

Like unconditional compatibility, conditional compatibility is also a product of the

constrained controllability of a driven machine B in a cascade A —• B. It arises because

traversing a particular edge in B may imply that certain edges in A have been traversed

and may imply a restriction on the set of states A can be in. Therefore, given that this edge

has been traversed in B, A may not be able to produce certain output sequences. These

output sequences that cannot be produced correspond to an input don't-care sequence set

to B which can result in compatibility of states in B under the condition that a certain

fanin edge is traversed in order to reach the states.

Consider the example in Figure 5.6 which shows a portion of the STG of a machine

B that is the driven machine in a cascade. i\ and t'2 are the two possible input symbols to

machine B. Assume that the sequence of inputs (fl, z'2) is an input don't-care sequence to

machine B. Also assume that the sequence (i2, i2) can be produced by machine A. It can

be seen from Figure 5.6 that the only differentiating vector for 5l and 52 is the input i2.

Therefore, if 5l is reached via input tl, then 5l cannot be differentiated from 52, since the

input il cannot be produced immediately after il has been produced. On the other hand,

if 5l is reached via input t'2, one can differentiate 5l from 52 since there is no restriction on

il being produced immediately after t'2.

Given a set of input don't-care sequences, conditional compatibility between any

pair of states can be determined. These compatibilities can then be exploited at the logic

level, though, unlike in the case of unconditional compatibility, the number of states in the

machine cannot be reduced. In the procedure below @ denotes the concatenation of the

vector i0 and the vector sequence rf5i2 to produce a longer vector sequence.

find-cond-compatibility( B, DC ):



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS

}

il/ol

Figure 5.6: Conditional compatibility

foreach( state pair si, s2 6 Sb ) {
foreach ( edge eb = (h, qb) such that n(ib, qb) = si or n(ib, qb) = s2) {

foreachf differentiating sequence dsi2 of si, s2) {
if ( DC does not contain ib @ dsi2 ) {

Si and 52 are not conditionally compatible under ej, and DC ;
Go on to the next fanin edge eb ;

}
5i and 52 are conditionally compatible under eb and DC ;

}
}

91

Theorem 5.3.3 ; The procedure find-cond-compatibility^ finds all conditional com

patibilities between states under a don't-care set DC.

Proof. Consider two states, si and 52 in the driven machine. Let the next state on edge

eb (with input t& and present state qb) in the driven machine be s\. The states si and 52

are conditionally compatible under e& if no sequence differentiating between 5i and 52 can

be produced by the driving machine given that the edge eb has been traversed in the driven

machine. That is, 5i and 52 are conditionally compatible under e& if the sequence formed

by concatenating ib and any differentiating sequence for 5i and 52 is never produced by the

driving machine. The find-cond-compatibility() procedure exhaustively goes through all

the pairs of states, and through every edge going to one of the two states to check if the

concatenation of the edge and some differentiating sequence for 5i and 52 is produced by

the driving machine. Therefore, the procedure finds all conditionally compatible states. D



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 92

M sal sa2 INT1
i2 sal sa3 INT2
i1 sa2 sal INT2
i2 sa2 sa3 INT1
M sa3 sal INT1
i2 sa3 sa2 INT1

INT1 qb1 qb2 outl
INT2 qb1 qb3 out2
INT1 qb2 qb2 out3
INT2 qb2 qb2 out3
INT1 qb3 qb2 out4
INT2 qb3 qb3 outl

B

Figure 5.7: Output expansion

5.3.3 Exploiting Don't-Care Outputs for the Driving Machine

The sequential don't-cares discussed thus far are a product of the constrained

controllability of the driven machine B in a cascade A —• B. There is another type of

don't-care that arises due to the constrained observability of the driving machine A.

Consider the individually state minimized tables of Figure 5.7. The intermediate

inputs/outputs have been given symbolic codes. Given that A feeds into B, it is quite

possible that for some transition edge ea € A, it does not matter if the output asserted

by this particular transition edge is, say, INTi or INTj. In fact, in Figure 5.7, the 3rd

transition edge in A can be either INTl or INT2, without changing the terminal behavior

of A —• B. This is a don't-care condition, called the single-vectoroutput don't care,on A's

outputs. It is quite possible that making use of these don't-cares can reduce the number of

states in A. In fact, if one replaced the output of the 3rd edge in A (Figure 5.7) by INTl

instead of INT2, one less state would be obtained after state minimization. (sa2 becomes

compatible to sa3).

A systematic procedure to detect this type of don't-care, proposed in [30], is de

scribed below. In this procedure, the output of each transition edge of A is expanded to

the set of all possible values that it can take while maintaining the terminal behavior of

A —• B. A transition edge ea in A is chosen. The set of states that B can be in when A

makes this transition is found. Given this set of states, the largest cube (or set of output

combinations) that covers the output of the edge and produces a unique next state or a

compatible set of next states, as well as a unique output when B is in anyone of the possible



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 93

states is found. This set of output combinations is called expout in the procedure below.

The output of ea, namely o(ea), is then expanded to the cube (or set of output combina

tions). The process is repeated for all edges in A. In the procedure below, n(ca, qb) is the

next state in B for the present state qb and all the inputs to B contained in ca. Similarly,

o(ca, qb) is the output in B for the present state qb and all the inputs to B contained in ca.

output-expansion-1( A, B ):
{

foreach ( edge ea € A ) {
expout = universe ;
foreach ( state qb € Sb ) {

if ( B can be in qb € Sb when A traverses edge ea ) {
Find the largest set of output combinations ca
such that ( ( cacontainso(ea) ) /\
( n(ca, qb) is unique or all equivalent states in B ) f\
( o(ca, qb) is unique ) ) ;
expout = expout f| ca ;

}
}
o(ea) = expout ;

}
}

Theorem 5.3.4 : The procedure output-expansion-1(9 finds all single-vector output

don't-cares for machine A, under the specified set of edges for machine B, in a cascade

A — B.

Proof. Assume that after using procedure output-expansion-1(), there is still an edge

ea € A that could be expanded to o(ea) Uou, without changing any of the other edges and

the functionality of A —• B. This expansion can only be possible if, for all states that B

can be in when ea is traversed in A, the next state in B on receiving ou is equivalent to

the next state on receiving o(ea) and ou makes B produce the same output. But, these are

exactly the two conditions that are checked in output-expansion-1() for every edge in A.

Therefore, o(ea) will have been expanded to o(ea) Uou at the end of output-expansion-

1(). D



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 94

5.3.4 State Minimization Under Don't-Care Sets

Classical state minimization algorithms must be enhanced in order to exploit in

put and output don't-cares. The procedure exploit-input-dc() allows the detection of

compatibility between states under an input sequence don't-care set. In order to exploit

arbitrary output don't-cares, state minimization algorithms have to be enhanced.

The state minimization procedure proposed in [89] can be used for incompletely

specified finite-state machines. In the state minimization procedure of [89], two states are

compatible if the output combinations that can be asserted by each pair of corresponding

fanout edges of the two states intersect. One can envision a situation where the possible

output combinations of the fanout edges of qi, q2 € Sm intersect leading to a compatibility

relation qi = q2, with similar compatibility relations q2 = 03 and qi =93. However, the

three-way intersection between the possible output combinations of the fanout edges of qi,

q2 and 93 may be null, implying that qi, q2 and 93 cannot be merged into a single state,

even though all the required pairwise compatibility relations exist. Assume that the outputs

that can be asserted for some input from states qi, q2 and q$ are (01, 10), (01, 11) and

(10, 11), respectively. The intersection of the first and second pairs is non-null, Similarly,

the intersection of the first and third, and the second and third pairs is also non-null. But,

the intersection of all the three sets of outputs is null. Therefore, even though the relations

</i — q2- q\ — <?31 and q2 = 93 could be true, the relation qi = q2 = 43 cannot be true.

If the possible output combinations can be represented as a single cube, then such

a situation will not occur, since the three-way intersection of a set of three cubes has to be

non-empty if the pairwise intersections are non-empty 2. But, in the case of multiple cubes

or Boolean expressions specifying the output combinations for fanout edges, an additional

check has to be performed during state minimization while selecting the compatibility pairs

to see if three or more sets of states can, in fact, be merged, preserving functionality. A

similar check has to be performed during logic minimization if one is specifying compatible

states as fanin don't-cares for transition edges.

5.3.5 Boolean Relations

In the synthesis of single FSMs, Boolean relations [21] may have to be exploited in

order to ensurefull testability [39]. Forinstance,in the procedureeliminate-equivalent/invalid-

2ln the example above, (01, 10) cannot be represented as a cube.



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 95

SRFs() of Section 5.2.3, the set of equivalent states, namely, (q, vi, .. vm, ivi, .. ivn) at

Step A may not be representable as a single cube, e.g. when q — 001 and vi = 010.

After using output-expansion-l() and performing state minimization, a set of

permissible output combinations is obtained for each edge. These permissible output com

binations may or may not have a cube representation —in general, they will be Boolean

expressions. The combinational logic specification has to be minimized under these Boolean

relations to ensure irredundancy. Similarly, the procedures exploit-input-dc() and find-

cond-compatibility() determine unconditional and conditional compatibilities between

states, and may result in Boolean relations that have to be exploited in the following com

binational logic optimization step (cf Section 5.3.7).

5.3.6 Associating Redundancies and Don't-Care Sets

In order to associate redundancies with don't-care sets, it is convenient to further

classify the redundancies of Type 2 and 3 that were defined in Section 5.3.1. In the general

case, A and B are incompletely specified machines.

Redundancies of Type 2

Redundancies of Type 2 can be classified as:

(a) F € A produces a intF ^ int (a faulty output not equal to the true output) for some

transition edge ea € A. Let Qb be the set of states that B can be in when A traverses

edge ea. intF is restricted to be an originally specified fanout edge for all the states

in Qb- It is required that intF move B either to the same next state as int does, or

moves B to a valid next state that is compatible to the true next state, produced by

int. Therefore, F is redundant.

(b) F € Aproduces an unspecified or invalid output intF for the states B can be in and
moves B into a valid or an invalid state that is compatible to the true state, resulting

in redundancy. B may be moved to an invalid state, since the fanout edge inv from

the state in B was originally unspecified.

(c) Aproduces a sequence offaulty outputs intlF,.. intNF instead ofintl, .. intN, such
that the first output moves B into an valid next state that is not compatible to the



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 96

true next state, but this state effectively becomes compatible to the true state due to

int2F, .. intNF.

(d) A produces a sequence offaulty outputs intlF,.. intNF instead of intl, .. intN, such

that the first output moves B into an invalid next state that is not compatible to the

true next state, but this state effectively becomes compatible to the true state due to

int2F, .. intNF.

Redundancies of Type 3

Redundancies of Type 3 can be classified as:

(a) F € B requires a transition edgein B that cannot be justified for excitation/propagation

to the primary output or next state lines of B. For a fault F € B to be detected, a

particular state </& € Sb and a particular INT combination, say inta may be required.

If A can never produce the output inta when B is in state qb, F is redundant.

(b) A transition edge that propagates F 6 B to the next state lines exists and the faulty

state produced is a valid state. The faulty/fault-free state pair in B possess a differen

tiating sequence (which constitutes part of a test sequence), but are unconditionally

compatible (cf Definition 5.3.1) under the input don't-care sequence set for machine

B.

(c) Same as (b) except that the faulty/fault-free state pair are conditionally compatible

(cf Definition 5.3.2).

(d) A transition edge that propagates F 6 B to the next state lines exists and the faulty

state produced is an invalid state. The faulty/fault-free state pair in B possess a

differentiating sequence but are unconditionally compatible under i?'s input don't-

care sequence set.

(e) Same as (d), except that the faulty/fault-free state pair are conditionally compatible.

Validity of the Classification

Theorem 5.3.5 ; The subclassification of redundancies of Type 2 and 3 is complete.



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 97

Proof. First, consider the classification of redundancies of Type 2. A fault F € A has

to be propagated to the outputs of A if it is a redundancy of Type 2. The fault may

produce a single faulty output that is not propagated through B or a sequence (length

> 1) of faulty outputs. These two cases correspond to redundancies of Type 2(a)-(b) and

2(c)-(d). If one is dealing with a single corrupted vector, then the faulty vector produced

may be an originally specified fanout edge for the states B can be in or the faulty vector

may be unspecified. These two cases correspond to 2(a) and 2(b), respectively. In the case

of output don't-care sequences that produce the same response from B, B may initially be

moved into a faulty valid state or a faulty invalid state that is not compatible with the true

state. This corresponds to redundancies of Type 2(c) and 2(d), respectively. If the faulty

state had been compatible with the true state, it corresponds to a redundancy of Type 2(a)

or 2(b).

Next, consider the classification of redundancies of Type 3. A fault F £ B requires

an initial vector for excitation/propagation to the next state lines or primary outputs of B.

If this vector cannot be justified, one has a redundancy of Type 3(a). If this vector can be

justified and the effect of the fault propagated to the primary outputs of B, F is testable,

hence this case is discarded. The other case is when F is propagated to the next state

lines and produces a faulty /fault-free state pair. If the states in this faulty/fault-free state

pair do not possess a differentiating sequence, then there is a redundancy of Type 4. If the

states in this faulty/fault-free state pair possess a differentiating sequence, but cannot be

differentiated to the primary outputs of B since A cannot produce that sequence, there is

a redundancy of Type 3(b)-(e). There are four possible cases of the faulty state being an

invalid/valid state that is unconditionally/conditionally compatible to the valid state. •

Redundancies 2(a) and 2(b)are associated with single-vector don't-care outputs of

A. If, for a given edge ea € A, the output o2 produces the same response from B as output

oi = o(ea), this means that the output o(e) can in fact be specified as o(e) = (o\, o2).

Of course, one may have multiple occurrences of faulty output vectors producing the same

responses for a fault F of Type 2(a) or 2(b).

Redundancies 2(c) and 2(d) are associated with don't-care output sequences of A

(c/Eqn. 5.1 in Section 5.3.7). Don't-care output sequences arise when a set of outputs can

be simultaneously replaced by another set of outputs without altering the functionality of



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 98

the machine.

Redundancy 3(a) is associated with the simple form of input don't-care described

in Section 5.3.2, where transition edges in B need not be specified. Redundancies 3(b)-(e)

are associated with don't-care input sequences to B. If, for instance, the edge —0/1 fanning

out to state si in the fault-free machine in Figure 5.5 was corrupted to state s2, there

is a redundancy of Type 3(b), since states si and s2 are unconditionally compatible (cf

Section 5.3.2) under the don't-care input sequence (11, 11). In Figure 5.6, if the fanin edge

il/ol to state si is corrupted to move to state 52 instead, there is a redundancy of Type

3(d), since si and s2 are conditionally compatible (cf Section 5.3.2) under the don't-care

input sequence (il, i2).

5.3.7 A Synthesis Procedure for Irredundant Cascaded Machines

Optimizing the Cascaded Machines

The procedure presented below represents a one-pass optimization for a cascade

and eliminates a large number of redundancies in a cascade.

optimize-cascade( A, B )
{

output-expansion-1 ( A, B ) ;
irredundant-1( A ) ;
exploit-input-dc ( B, DCA ) ;
irredundant-1( B ) ;

}

The synthesis procedure given above is now described in detail. A and B are

arbitrary, possibly incompletely specified State Transition Graphs. Using the procedure

output-expansion-l(), all the single-vector don't-care outputs for edges in A in A —• B

are found. The procedure irredundant-l() uses the techniques described in Section 5.2

to make a single machine irredundant in isolation. The initial state minimization in

irredundant-l() is augmented by the compatibility checking techniques of Section 5.3.4,

given the expanded machine A. The iterative procedure eliminate-equivalent/invalid-

SRFs() within irredundant-1() follows the state minimization process. The don't-care

set DCA, that corresponds to input vector sequences that never occur at the outputs of A,
is generated. The procedure exploit-input-dc() state minimizes B under this don't-care

set, exploiting all unconditional compatibilities between states.



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 99

Theorem 5.3.6 The procedure optimize-cascade^ produces a cascade A —• B that is

irredundant for all Type 1, Type 2(a), Type 3(a), Type 3(b) and Type 4 faults.

Proof. Type 1 and Type 4 faults cannot exist, since A and B are irredundant in isolation.

Consider a fault F € A. After the procedure exploit-input-dc() followed by state

minimization has been performed on B with a complete don't-care input sequence set, each

remaining (specified) edge in the machine B, can be justified, by some input sequence to A.

After B has been made prime and irredundant, one is guaranteed that at least one of the

originally specified edges is a test vector in the combinational sense for any fault F 6 B.

That is, there is a vector that excites and propagates F to the primary outputs of B or

the next state lines. This vector can be reached controlling A alone by Theorem 5.3.2.

Therefore, F cannot be a redundancy of Type 3(a).

Next, consider redundancies of Type 3(b). After the procedure exploit-input-

dc() has been used on B with a complete don't-care input sequence set, each pair of valid

states remaining in B possesses a differentiating sequence that is not in the don't-care input

sequence set. This is because during state minimization in exploit-input-dc(), any such

states will have been detected (cf Theorem 5.3.2). Therefore, F cannot be a redundancy

of Type 3(b). (However, valid state pairs in B may be conditionally compatible, and also

invalid next states that are unconditionally/conditionally compatible to the true (valid)

next state may be produced due to a fault F.)

Redundancies of Type 2(a) cannot exist because output expansion has been per

formed on A, using output-expansion-l() which finds all edge expansions that elicit the

same response from machine B. (cf Theorem 5.3.4). A fault F € A can be initially prop

agated to the outputs of A or the next state lines. If all test vectors for F propagate F to

the output lines of A alone and produce valid/specified faulty outputs (if even one vector

produces an invalid output, F cannot be a redundancy of Type 2(a)), then because all the

output don't-cares for each transition edge in A have been exploited, one is guaranteed

that at least one of the vectors (edges) corrupted by F will elicit a different response for

some state that B can be in. (By different response it is meant that B goes to a different

incompatible state or produces a different output). On the other hand, if F is propagated

to the next state lines of A alone, then a corrupted vector will exist such that it produces

a faulty state that can be differentiated from the true state under the output don't-care set.

The state minimization after output-expansion-1() and before irredundant-l() will ex-



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 100

ploit the output don't-care set to determine compatibilities between states. This means

there is a differentiating input vector sequence (to A) such that the final faulty output

necessarily elicits a different response from B or is an invalid/unspecified fanout edge for

the states B can be in. If F is propagated to both the outputs and the next state lines of

A, then for some test vector either the faulty output will directly elicit a different response

from B or the faulty /fault-free state pair will possess a differentiating sequence that even

tually elicits a different response from B. Thus, F is testable or is not a redundancy of

Type 2(a). State minimizing the machine B in irredundant-1() after using the procedure

exploit-input-dc() can change the output don't-cares for A to include unspecified outputs

(cf Section 5.3.7), but one is only concerned with specified outputs when dealing with re

dundancies of Type 2(a). D

Irredundant Cascades

Eliminating all forms of redundancies in a cascade requires a two-pass optimiza

tion. Since one begins from a STG specification, one initially has no knowledge as to the

compatibility between valid and invalid states in A or B. After one pass through the synthe

sis procedure, one can determine compatibilities between invalid and valid states in machine

B. This information is used to find additional output don't-cares for A, as described in the

sequel. In the second pass, one expands the outputs of A to include invalid/unspecified

outputs, using the above information. This, in turn, may introduce additional don't-

care input sequences to B. It should be noted that the procedures irredundant-l() and

irredundant-2() are themselves iterative procedures where optimization is carried out to

convergence (cf eliminate-equivalent/invalid-SRFs() in Section 5.2). In Section 5.5 a

more efficient single global optimization loop to convergence is presented, which performs

a single iteration in procedure irredundant-2().

irredundant-cascade( A, B ):
{

for( iter = 1; iter < 2; iter = iter -f-1 ) {
if ( iter = 1 ) output-expansion-1 ( A, B ) ;
else output-expansion-2 ( A, B ) ;
irredundant-1( A ) ;
exploit-input-dc ( B, DCA ) ;
find-cond-compatibility ( B, DCA ) ;



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 101

irredundant-2( B, DCA ) ;
}

}

The steps in irredundant-cascade() are now described in detail. The procedure

output-expansion-2() is an enhanced version of output-expansion-l(). There are two

enhancements corresponding to the don't-cares for Type 2(b) and Type 2(c)-(d) redundant

faults.

1. Given an optimized B, for each valid state, all the invalid states that are compatible

to this state are found. There might be a situation where, for a particular transition

edge in A, an output different from the edge's output places B in an invalid state

that is compatible to the true valid state. This output represents a don't-care for

the transition edge and is detected in output-expansion-2() ( but not in output-

expansion-l() ). There is also the simpler situation of A producing a faulty output

that was originally unspecified for the state(s) B is in, that moves B to the same

or compatible next state and produces the same output from B. The output of the

transition edge can be expanded to this unspecified combination.

2. Don't-care output sequences are detected for A. The detection of these sequences is

performed by checking if valid/invalid states in B, that are not compatible to valid

states and reached by faulty outputs from A, produce the same response in B due

to the corruption of other transition edges in A. The corrupted outputs represent a

don't-care output sequence for edges in A. A two-vector output don't-care sequence is

shown in the cascade of Figure 5.8 [73]. Assuming that the starting states of the two

machines are al and 61 respectively, the output of edges (1, a3) and (1, ab) cannot

be expanded via procedure output-expansion-l(). However, the functionality of

the cascade is maintained if o(l, a3) is replaced with output b while simultaneously

replacing o(l, ab) with output a. The choice in selecting outputs is summarized

below:

( o(l, a3), o(l, ab)) = (a,b) \/ (b,a) (5.1)

Current state minimizers and logic minimizers are restricted in their capability

to exploit don't-cares. Don't-care output sequences of the form of Eqn. 5.1 cannot be

optimally exploited, other than by exhaustive search. Note that these don't-cares cannot

be represented even by Boolean relations [21], discussed in Section 5.3.5.



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 102

Figure 5.8: Output don't-care sequences

The procedure irredundant-2() is also an enhancement on procedure irredundant-

Irredundant-2() uses eliminate-equivalent/invalid-SRFs() with an additional don't-

care set at Step A. At Step A, one has,

A: FADC | e€ fanin(q) = (q, vu .. vm, ivu .. ivn, niu .. nit) ; (5.2)

where vi, .. vm and tvi, .. ivn are valid and invalid states respectively, that are compatible

to q when B is viewed in isolation, i.e. deemed completely controllable, nil, .. nil are

states notcompatible to q when B is viewed in isolation, but conditionally or uncondition

ally compatible to q, given that the fanin edge e € fanin(q) is being traversed (and under

the don't-care set DCA). The detection of all possible unconditional and conditional com

patibilities is achieved by procedures exploit-input-dc() and find-cond-compatibility()
(c/Theorem 5.3.2 and Theorem 5.3.3). FADC ingeneral is represented by Boolean relations
as described in Section 5.3.5.

Theorem 5.3.7 The procedure irredundant-cascade(9 results in an irredundant cascade.

Proof. The procedure irredundant-cascadeQ is an enhanced version of the procedure

optimize-cascade() and the arguments that Type 1, Type 2(a), Type 3(a), Type 3(b) and
Type 4 faults are testable hold here as well. These redundancies are eliminated in the first

pass of the procedure.

It is now shown that possible redundancies of Types 2(b), 2(c)-(d) and 3(c)-(e)
are eliminated in the second pass.



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 103

The procedure output-expansion-2() uses the additional don't-care outputs for

A corresponding to the invalid or valid states in B that are compatible to valid states and

which are reached byfaulty outputs other than the specified fanout edges of Bz. Using these

don't-cares ensures that Type 2(b) redundancies don't exist. The argument is similar to the

argument of Theorem 5.3.1 for the Type 2(a) redundancy. A fault F € A will immediately

or eventually produce an invalid/unspecified output such that the invalid output elicits a

different response from B. If B is moved to a faulty invalid state one is guaranteed that the

invalid state is not compatible to the true state. Thus, F is testable or is not a redundancy

of Type 2(b).

Redundancies of Type 2(c)-(d) are associated with don't-care output sequences

for A. That is, it does not matter if A asserts one particular sequence or another due

to its constrained observability. If the don't-care sequences corresponding to Eqn. 5.1 are

exploited in the output expansion procedure, one is guaranteed that the corrupted sequence

does not elicit the same response as the true one from B.

Finally, redundancies of Type 3(c)-(e) are considered, namely, conditional com

patibilities between valid/valid state pairs, unconditional and conditional compatibilities

between invalid/valid state pairs in B. By Theorem 5.3.2, all unconditional compatibil

ities are detected in procedure exploit-input-dc(). By Theorem 5.3.3, all conditional

compatibilities are detected by procedure find-cond-compatibility(). The don't-care set

corresponding to Eqn. 5.2 in eliminate-equivalent/invalid-SRFs() will guarantee, after

B has been made prime and irredundant, that any faulty/faulty-free state pair that is pro

duced due to a fault F, regardless of whether the faulty state is valid or invalid, will possess

a differentiating sequence not in DCA. Also, this corrupted transition edge in B will not

be such that the faulty state is conditionally compatible to the true state under DCA (with

the restriction that the transition edge has been traversed in B). This means that the pair

can be differentiated from the inputs of A and F cannot be a redundancy of Type 3(c)-(e). •

This information can be obtained after the first pass.



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 104

5.4 Generalization to Multiple Interacting Finite-State Ma

chines

Multiple interacting finite-state machines are common in industrial chip designs. In

Figure 5.4, an example sequential circuit composed of three interacting finite-state machines

was shown. In Figure 5.4, there are not only local feedback loops for each machine, but

also a global feedback loop via latches II, L2 and 13. In Figure 5.9, a pair of mutually

interacting machines that communicate via their present states alone was shown. In the next

section, the issues involved in generalizing the optimal synthesis procedures of Section 5.3 to

multiple interacting circuits are described. In Section 5.5, it is indicated how the procedures

of Section 5.3 are applicable, in a uniform way, to multiple interacting circuits with arbitrary

topologies that communicate via their present states.

5.4.1 Generalization of Observability and Controllability Don't-Cares

The don't-care sets associated with any arbitrary set of interacting FSMs are

essentially the same as those in a cascade. At any given set of intermediate lines or flip-

flops that are not observable/controllable, there are don't-care input and output sequences.

An arbitrary set of interacting machines can be viewed as several occurrences of individual

cascades and we conjecture that the don't-care sets required for synthesizing irredundant

cascades can be used iteratively to eliminate all redundancies in the circuit.

In order to compute the input and output don't-care sequence set for an individual

FSM embedded in an network, one has to propagatedon't-care conditions from the primary

inputs and primary outputs. In particular, to compute the don't-care input sequences for

any machine, one has to go forward from the primary inputs to the machine. In order to

compute the don't-care outputs for any machine, one has to go backward from the primary

outputs to the machine.

The explicit propagation and computation of don't-care sequences of arbitrary

lengths can be memory and CPU-intensive. The next focus of attention will be on the

generalization of the invalidity and conditional equivalence detection algorithms developed

previously to multiple interacting circuits.



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 105

pfcB^rpE M4

.PO

PI.

Et^LJ

(a) (b)

Figure 5.9: FSMs communicating via their present states

5.5 Invalidity and Conditional Compatibility Based Syn

thesis

While the classification of redundancies in interacting sequential circuits presented

thus far has been complete, the optimization procedures that follow from the classification

have tended to be computationally intensive. Even though redundancy identification in

sequential circuits is by nature a difficult problem, a part of the reason for the computational

complexity of the proposed procedures can be ascribed to the relatively general nature of

the classification of redundancies.

In this section, we present an efficient synthesis algorithm where only a single

global optimization loop to convergence is required for fully testable cascades as well as in

terconnections of multiple FSMs with global feedback, rather than the double loop required

by the algorithms in Section 5.3.7. This improvement is brought about by the fact that

the algorithm is specifically suited to a class of interacting sequential circuits commonly

found in practice. Two examples of such topologies are shown in Figure 5.9. The sequential

circuit in Figure 5.9(a) consists of four interacting FSMs, while the circuit in Figure 5.9(b)

consists of two such FSMs. The salient feature of this class of circuits is that communi

cation between the FSMs is solely via their present states. This is the only requirement

imposed. Usually, an interacting sequential circuit that is to be made irredundant but does

not satisfy this property can be made to satisfy it by an appropriate repartitioning of the

combinational logic. Cascade and parallel interactions between submachines are special

cases of the interaction shown in Figure 5.9.

The algorithm is illustrated by means of the example of Figure 5.9(b). Shown

in Figure 5.10 are the fault-free STGs of the two interacting FSMs of Figure 5.9(b). Had



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS

oo )C j-QOAKX)^. 01
-00/010

Submachine 1 Submachine 2
State Output to Other Submachine

Primary Input n

\ 4
Sample Edge Label: LPJ> /Oil Start State: 00 00L^O/Oll

State Input from Other Submachine\
Primary Output

106

Figure 5.10: The state graphs of two fault-free interacting FSMs

the topology been a cascade, Mi —• M2, the state input to Mi from M2 would be all

don't-cares. The start stateof the overall interacting circuit is 00 00, which corresponds to
a start state of 00 for each individual FSM.

5.5.1 Exploiting Compatibility Between States

The definition of compatibility in this section is slightly different from the def

initions in Section 5.3.2 in that two states are considered compatible if there is never a

conflict between any pair of primary output sequences that can be generated starting from
the two states. The outputs asserted by a FSM that are only utilized to communicate with

other FSMs are not used to establish compatibility. As a result, pairs of states may be
compatible under this definition for an FSM embedded in a network even if they are not

compatible for the FSM considered in isolation. As in Section 5.3.2, compatibility may
either be conditional or unconditional.

A fault causing only an interchange of unconditionally compatible statesis redun

dant. An example of a pair of unconditionally equivalent states (e.g. states 00 and 01

of Submachine 2 in Figure 5.10) becoming a faulty/fault-free pair is shown in Figure 5.11.
EDGE 1, shown in dotted lines, has been corrupted to EDGE 2bythe fault. In Figure 5.12,



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS

Submachine 1
Start State: 00 00

-00/000

-00/010

Submachine 2

Figure 5.11: A fault causing interchange of unconditionally compatible states

Submachine 1
Start State: 00 00

-00/000

-00/010

Submachine 2

107

Figure 5.12: A fault causing interchange ofconditionally compatible States

states 10 and 01 of Submachine 2 are conditionally compatible under the fanin edge EDGE

1. Therefore, when EDGE 1 is corrupted to EDGE 2, one again has a redundant fault. Re

dundant faults due to state compatibilities are removed, as in Section 5.3.7, by optimizing

the logic under a fanin don't-care set.

What gains can be accrued as a result of the fact that the FSMs communicate

solely via their present states? The following lemma answers this in part:

Lemma 5.5.1 In an FSM network, if the only means of communication between the FSMs

is all their state variables and that there are no don't cares on the primary inputs, the

longest don't-care input sequence that does not contain any other don't-care sequences, for



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS

Submachine 1
Start State: 00 00

-00/000

-00/010

Submachine 2

108

.to

Figure 5.13: A fault causing corruption of only an unspecified edge

any machine, is of length two.

Proof. Since the intermediate lines between FSMs are all the present state lines, a don't-

care sequence corresponds to sequencesof states that don't occur. Invalid states correspond

to don't-care sequences of length one. Thus, don't-care sequences of length two, that do

not contain don't-care sequences of length one, can only consist of valid states. Say, that

si,s2 and 63 are states in a FSM, and that length-two sequences si —• s2 and s2 —> S3 are

care sequences. Then the sequence si -• s2 -* s3 has to be a care sequence. Hence, there

are no don't-care sequences of length three or more, that do not contain smaller don't-care

sequences. •

The tangible benefit of this property is that the algorithm that identifies condi

tional compatibility between states (cfSection 5.5.4) only has to search for compatibility

for every fanin edge traversed rather than for every fanin sequence traversed, as would be

the case otherwise. Since the don't-care sequences considered can at most beoflength two,
if two states are conditionally compatible under a fanin edge, e, it implies that there is
a set of length-two don't-care sequences such that e is the first vector in these don't-care

sequences, and that any edge that is the first vector of a sequence differentiating the two
states is the second vector of one of these length-two don't-care sequences.



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 109

5.5.2 Exploiting Invalidity of States and Edges

Given a starting state for the overall machine, certain states in an embedded FSM

may be unreachable and certain edges may never be traversed as a result of the limited

controllability of the inputs from the other FSMs to that FSM. A fault that only affects

such states or edges is sequentially redundant. An example is shown in Figure 5.13 of an

improperly exploited unspecified edge (EDGE 1) being the only edge that gets corrupted

(to EDGE 2). EDGE 1 is unspecified because Submachine 2 is never in state 10 when

Submachine 1 is state 10, given that the starting states of Submachines 1 and 2 are 00

and 00. respectively. Such redundancies are removed by optimizing the logic with the

unreachable states/untraversed edges used as input don't-cares.

It is interesting, and useful from the point of proving the completeness (cf Sec

tion 5.5.6) of the algorithm being described, to note the effect of exploiting the unreacha-

bility don't-cares for each individual embedded FSM on the overall sequential circuit. The

following lemma is useful in this regard:

Lemma 5.5.2 When each individual embedded FSM is prime and irredundant under its set

of input don't-cares corresponding to states belonging to it that are never reached and edges

belonging to it that are never traversed, and the communication between the FSMs is via

their present states, there always exists at least one justifiable state in the overall machine

that can be used to propagate the effect of a fault.

Proof. Consider an example of machines that communicate via their outputs, and not just

via the states. An unreachable state/unspecified edge in such a machine corresponds, in

general, to unreachable states and untraversed sequences of edges in embedded machines.

On the other hand, if the embedded machines communicate only via their present states, an

unreachable state/unspecified edge in the overall machine corresponds only to unreachable

states and untraversed single edgesin the embedded machines. When an embedded machine

is optimized under its set of input don't-cares corresponding to states belonging to it that

are never reached and edges belonging to it that are never traversed, any fault must affect

at least one edge in the embedded machine that can be traversed. Since an edge that can be

traversed in the embedded machine corresponds directly to a state in the overall machine

that is reachable, there exists at least one justifiable state in the overall machine that can

be used to propagate the effect of the fault. •



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS

Submachine 1
Start State: 00 00

-00/000

-00/010

Submachine 2

110

Figure 5.14: State graph of a decomposed machine in which isomorphism can occur

5.5.3 Preventing Isomorphism

A fault in the interacting sequential circuit that causes the STG of the overall

faulty sequential circuit to be isomorphic to the STG of the overall fault-free sequential

circuit is redundant (cf Section 5.2). It is shown in this section how such redundancies can

be avoided. Again, the fact that the communication between FSMs is via their present

states leads to useful properties. Classical isomorphism occurs when the codes for states

are interchanged without changing the outputs or next states on any of the edges fanning

out of the states. Isomorphism of this type can never occur in the classes of interactions

considered here because a portion of the outputs asserted by all the edges fanning out of a

state in an FSM is actually the code for the state itself. But isomorphism can still occur in

the overall machine if a group of states, 0, in the FSM within which an exchange of codes

occurs satisfies a certain property. The property to be satisfied is that the response of the

other FSMs in the clock cycles following the cycle in which an isomorphed edge has been

traversed, does not depend upon the specific state in 0 that the FSM is in. The states 00

and 01 in Submachine 2 in Figure 5.14 are not equivalent, but it is possible for anexchange

of the codes of these two states to cause isomorphism in the overall machine because the

response of Submachine 1 is independent of whether Submachine 2 is in state 00 or 01.

It is also possible that anexchange of codes (that does not change the functionality

of the sequential circuit as a whole) between a set of states occurs only for a subset of the

fanin to these states, leading to a redundancy. Consider Figure 5.14 again. States 01 and



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 111

10 in Submachine 2 are not equivalent, but the response ofSubmachine 1 is independent of
whether Submachine 2 is in state 01 when the fanin edge EDGE 1 was traversed or whether

it is in state 10 when the fanin edge EDGE 2 was traversed. Thus, isomorphism can occur

in the overall machine by an exchange of codes for the states 01 and 10 in Submachine 2

under the fanin EDGE 1 and EDGE 2. It should be noted that only the exchange of codes

between incompatible states is of significance in the case of isomorphism.

The following lemmais useful in preventing isomorphism in interacting sequential

circuits:

Lemma 5.5.3 If a fault can cause isomorphism in the STG of the overall machine, it also

causes isomorphism to occur in the STG of the embedded FSM in which it occurs.

Proof. The code for a state of the overall machine can be thought of as effectively consist

ing of subfields, each subfield corresponding to the code of a state in the FSM associated

with the subfield. An exchange of codes between states of the overall machine due to a

single fault in one machine must involve an exchange of a single subfield of the codes. Thus,

it is necessary for isomorphism to occur in a single embedded FSM for it to occur in the

overall machine. D

The don't-care associated with the above lemma is the choice of codes for states

in embedded machines. By virtue of this lemma, one only needs to prevent a stuck-at fault

from resulting in an isomorphism-causing (w.r.t. the overall machine) exchange of codes in

the machine in which the fault occurs. Such an exchange in each individual FSM is easily

prevented by using the techniques of Section 5.2.1.

5.5.4 Searching for Unreachability and Compatibility

In this section, the flavor ofalgorithms usedto identifyunreachable states/untraversed

edges and compatible states in mutually interacting machines is presented. The actual im

plementation of these procedures is more efficient.

The procedures described below use the fact that given an edge in Submachine 1,

one can easily find the corresponding edge in Submachine 2, and vice versa. For instance,

an edge in Submachine 1 may be (i @(gm2, qm3, .. qmN) @qmi)4, where i is the input

4The @ operator, as in (i @ q), represents a concatenation of the strings t and q.



CHAPTER 5. IRREDUNDANTINTERACTING SEQUENTIAL CIRCUITS 112

vector and qmtl is the state of Submacliine m*. The corresponding edge in Submachine 2,

for example, is then (i @(qmii gm3, .. qmN) @qm2).

traverse-edges() is a recursive procedure that traverses all the edges in the over

all FSM given the starting state for each FSM. Every edge in each submachine encountered

during the enumeration is marked. The set of edges that remain unmarked when traverse-

edges() is called is the set of edges in the overall FSM that are never traversed for the

specified starting state. Calling traverse-edgesQ exactly corresponds to traversing the

overall machine in a depth-first manner starting from the states supplied as argument.

Therefore, the efficiency of the procedure is the same as that of depth-first search. Initially,

traverse-edges() is called once, with the actual starting state of the overall machine as

argument, in order to find all the unreachable states and unreachable edges in each subma

chine. In the pseudo-code below, N is the total number of embedded FSMs. As in previous

sections, n( e ) denotes the next state that the edge e fans out to.

traverse-edges( qmi, .. qm., .. qmN ):

foreach( mx = m\ to mjsr ) {
foreach( unmarked fanout edge of qmx,emx = (i ®(qmii 9m2, .. qms^ 9mi+1,
»QmN) @9mJ {

Mark em, ;
q'mx = n( i @(gmi, qm2i .. qms^ qms+1, .. qmN) @qmx ) ;

}
traverse-edges( q'mi, .. q'mj, .. q'ms ) ;

Lemma 5.5.4 The procedure traverse-edges^ is complete in that if it is called for each
FSM, all unreachable states/untraversed edges are identified.

Proof. That traverse-edges() traverses all the traversable edges in the specified FSM is
obvious from analyzing the procedure. Therefore, if traverse-edges() is called once ini
tially, all the untraversable edges are identified. An unreachable state has fanout edges that
are all untraversable. Since all untraversable edges are identified, all unreachable states are
identified automatically. D

(t lfl(9m2, 9m3. .. qmK) @gm,) here is a concatenation of the strings »*, qm3, qm3 up to qm„ and the
string qmi.



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 113

The procedure traverse-edges-given-edge() shown below, finds all the traversable

edges, given the traversal ofsome edge, emj. traverse-edges-given-edge() is used within

a procedure that finds all conditionally compatible states.

traverse-edges-given-edge( emj = (i @{qmii 9m2i •• 9m.,_i5 9mi+i» ♦• qmN) @qm3) )'•
{

Unmark all edges ;
Mark emj ;
foreach( mx = mi to mjy ) {

q'mx = n( i @{qmi, qm7, .. qm^, 9mT+1, •• 9mN) @9m, ) ;
}
traverse-edges( q'm^ .. gj^, .. q'mN ) ;

}

Conditional compatibility is found using the procedure find-all-compatible-states()

given below. Gm denotes the STG of Submachine mj. Say that one is required to find all

the compatibilities in Submachine mj. The basic idea is to traverse a certain fanin edge,

say em and identify all the edges in Submachine mj that cannot be traversed as a result.

These untraversable edges are removed from Gmj to obtain G'm . By constructing G'mj,
one can use standard state minimization algorithms [89] to find conditional compatibilities.

Note that one merely needs to find all states compatible to the fanin state of edge emj to

find the fanin don't-care set (c/Eq. 5.2) for edge emj. Unlike in state minimization, one

does not require information as to the other compatibilities, nor does one have to select a

maximal compatible set.

find-all-compatible-states( Gmj, Gmi, Gm2 ,.. Gmj_j, Gmj+1,.. GmN ):
{

foreach( valid edge emj = (i @(gmi, gm2, .. ?mj_,, 9mJ+1. •• 9mN) @9m,) €
Gm,){
traverse-edges-given-edge( emj ) ;
G'm C Gm} with only marked edges ;
Find all states in G'm compatible to n( emj ) ;

}
}

Lemma 5.5.5 The procedure find-all-compatible-states() is complete in that it finds all

the conditionally and unconditionally compatible states for the embedded FSM specified as

argument.



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 114

Proof. According to Lemma 5.5.1 that it is sufficient to search for compatibility between

states only under the immediate fanin to the states. Also, it is apparent from the outline of

the procedure nnd-all-compatible-states() given above that possibility of compatibility

under all possible immediate fanin is searched for. States that are unconditionally compat

ible can be thought of as being conditionally compatible under all their immediate fanin.

Therefore, searching for all conditional compatibilities identifies all conditional as well as

unconditional compatibilities. •

5.5.5 The Optimization Procedure

The following optimization procedure ensures an irredundant set of interacting

circuits by applying the results of Sections 5.5.1 to 5.5.4.

1. State Encoding: The encoding for the individual FSMs is made locally optimal

for an arbitrary logic implementation, if possible. This involves exploring a certain

number of encodings. If a locally optimal encoding is not possible, the individual

FSMs are implemented in a two-level or algebraically factored multilevel network.

2. Logic Optimization: The logic for each FSM is optimized individually under the

invalid state and fanin don't-care set. This step is carried out repeatedly for every FSM

until convergence. Convergence is guaranteed because at every iteration, the logic of

any FSM can only decrease. The end result is a fully irredundant interconnection of

FSMs.

The pseudo-code for the repeated minimization algorithm is shown below. The algorithm

takes as argument the logic-level implementation, 5,-, of each submachine.

irredundant-interact( 5i, .. Sjv ):
{

iter = 1 ;
do{

foreach ( t = 1; i < N; i = i + 1 ) {
if ( iter = 1 ) Gi = extract-stg( Si ) ;
else Gi = extract-stg( S" ) ;

}
foreach ( t = 1; i < N; i = i + 1 ) {

foreach ( valid state q 6 Gi ) {



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 115

Find all valid states (t>i, .. vx) conditionally compatible to q ;
Find all invalid states (ivi, .. ivy) conditionally compatible to q ;
A: FADC | e € fanin(q) = (q, vi, .. vx, ivu •• ivy) ;

}
SI = optimize( St-, fA1*0 ) ;
TV = extract-unspecified-edges( 5,- ) ;
SV = optimize( S'i, IVDC ) ;

}
iter = iter + 1 ;

} while( 5, # 5j || 52 ?t S£ || .. SN # 5^ ) ;
}

The procedures extract-stg() and optimizeQ are the same as those of Section

5.2.3. The procedure extract-unspecified-edgesQ finds all the unreacliable states/untraversed

edges in an embedded by calling traverse-edges().

5.5.6 Completeness of the Algorithm

The completeness of the algorithm can be proved in two ways. One way is to

map the effects of the algorithm onto the redundancy classification of Section 5.3 and show

completeness. An alternate method involves treating the wholeinteracting sequential circuit

as a single FSM and using the single FSM theory (cf Section 5.2) for the purposes of the

proof. This is the method employed in the proof below.

Theorem 5.5.1 The algorithm irredundant-interact (9 renders an interacting sequential

circuit in which the communication between the individual FSMs is solely via their present

states fully irredundant.

Proof. The complete classification of sequential redundancies in single isolated FSMs was

reviewed in Section 5.2. For the purposes of this proof, if the whole interacting sequential

circuit s treated as a single isolated FSM, then proving the completeness of the algorithm

reduces to showing that applying the algorithm results in the prevention of any of the

redundancies described in Section 5.2 from occurring.

It was shown in Lemma 5.5.3 that isomorphism redundancies in the overall FSM

could only occur if isomorphism occurred in a single embedded FSM. It was shown in

Section 5.5.3 how isomorphism could be prevented in each individual FSM. Therefore, no

isomorphism-SRFs can occur in the overall FSM.



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 116

By virtue of Lemma 5.5.2, an invalid-SRF cannot occur in the overall FSM if

the don't-cares due to unreachable states/untraversed edges in each individual FSM have

been exploited during logic optimization. By Lemma 5.5.4, the procedure for searching for

unreachable states/untraversed edges presented in Section 5.5.4 is complete. Therefore, no

invalid-SRF can occur in the overall FSM.

Because a single fault can corrupt an edge in only one embedded FSM, not all

equivalent states in the overall FSM can cause an equivalent-SRF to occur in the overall

machine. Only those pairs of equivalent states in the overall machine that are formed from

the same states in all but one of the embedded FSMs can cause an equivalent-SRF in the

overall FSM. Effectively, an equivalent-SRF can occur in the overall FSM only due to com

patible states in the individual embedded FSMs. By Lemma 5.5.1 and Lemma 5.5.5 the

procedure used in Section 5.5.4 identifies all possible unconditionally/conditionally compat

ible states in each individual FSM. When these are exploited as described in Section 5.5.1,

no redundancy can exist due to compatible states in single embedded FSMs, and therefore

no equivalent-SRF can exist in the overall FSM.

Since the algorithm ensures that no sequential redundancy can exist in the over

all interacting sequential circuit considered as an single FSM, it produces an irredundant,

interacting sequential circuit. D

5.6 Results

Results based on the optimization procedures of Section 5.5 are presented. There

are two basic advantages in operating from a hierarchical or distributed representation of

sequential circuits:

1. The representation of the total behavior in terms of multiple interacting STGs is much

more compact than the STG of the overalllumped machine. This is primarily because

the state inputs to a Submachine A, from another Submachine B, need not be ex

plicitly enumerated as minterms, since these lines areeffectively primary inputs to A.

Similarly, if the present state lines from A feed B, these are allowed to be don't-cares

in the cubes in the STG of B. It has been shown in previous sections that a sequential

circuit can be made irredundant by carrying out a series of local operations on the



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 117

Example #L PI PO Literal Count CPU Time1 Mem.1 (Mb)
Initial Final Per Pass # Passes Distr. Flat

bbara 5 4 2 132 123 7 sec. 3 2.4 0.5

scf 8 27 54 1859 1859 31 min. 1 8.5 2.5

arbseq 9 6 8 650 650 22 min. 1 24.9 24.9

cascade.1 10 3 19 909 610 23 min. 3 8.5 82.0

tlc.12 10 3 5 185 134 82 min. 3 8.6 >150

tlc.34 11 11 6 780 173 117 min. 4 33.1 *

cascade.2 16 7 10 1584 1516 237 min. 2 74.1 *

cascade.3 16 27 54 2867 2302 717 min. 6 23.2 *

multiple.1 21 9 11 965 307 199 min. 4 41.8 *

multiple.2 32 27 64 4451 3818 954 min. 6 97.5 *

cascade.p 49 7 10 1584 1516 237 min. 2 74.1 *

multiple.p 64 27 64 4451 3818 954 min. 6 97.5 *

The final Fault-Coverage for all machines was close to 100%.
!0n a DECstation 3100 running Ultrix.
* : STG of the product machine could not be obtained due to memory constraints.

Table 5.1: Full testability via optimal synthesis of interacting sequential machines

interacting FSMs. Based on this observation, it has been possible to propose efficient

procedures for redundancy removal that can operate from a distributed representa

tion. Thus, even if it were possible to flatten the representation of the interacting

sequential circuit, there is no inherent necessity for doing so.

2. The number of states in each submachine is smaller than in the composite machine.

Fewer compatibility checks have to be carried out and the basic state minimization

procedure is faster when operating on each submachine separately.

The results of the optimization procedure operating on distributed representa

tions of circuits are presented in Table 5.1. The examples bbara and scf are FSMs from

the MCNC Logic Synthesis Workshop benchmark set [76]. The examples arbseq, tlc.12

and tlc.34 are industrial examples, of which tlc.12 and tlc.34 are cascades. Examples

cascade.* and multiple.* were obtained by interconnecting the MCNC benchmark set

FSMs in various ways.

In the final column of the table, the memory requirements of the proposed proce

dure are compared against a procedure operating on flattened representations of the same



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 118

circuits. The circuits following tlc.12 in Table 5.1 (tlc.34, cascade.2 ...) are large enough

that the STG of the overall flattened machine cannot be extracted. The circuit tlc.12 is of

moderate size. Even though the STG of the lumped machine can be extracted for it, it is too

large for state minimization to be viable. Thus, a full redundancy removal operating on the

flattened representation is not possible. When it is only required to enhance the testability

of the machines close to 100%, it is possible to handle machines with much larger numbers

of latches. It should be noted that even this is not possible via the conventional approach

of extracting the STG of the overall machine.

5.7 Conclusions

In this chapter, relationships between redundant logic and don't-care conditions in

interacting sequential circuits were explored. Redundancies in non-scan sequential circuits

may be testable from a combinational viewpoint, but may produce a faulty State Transition

Graph (STG) that is equivalent to the STG of the true machine.

A classification of redundant faults in sequential circuits composed of single or in

teracting finite-state machines was presented. Don't-care sets can be defined for each class

of redundancy and optimally exploiting these don't-care conditions results in the implicit

elimination of any such redundancies in a given circuit. It has been shown that interacting

sequential circuits can be made fully testable by carrying out a series of local operations

on a distributed-style specification of circuit behavior. While a general optimization proce

dure can be based on this classification, algorithms can be tailored for particular forms of

interaction between FSMs to improve efficiency.

Redundancy identification using sequential test generationalgorithmscan be viewed

as a competing approach to the don't-care exploitation. In the test generation approach,

in the worst case, the product of the fault-free and faulty machines have to be traversed

repeatedly for each redundant fault. Such repeated traversal corresponds to computing the

same information multiple times. When the machine has a large number of redundancies,

this approach can prove to be inefficient. On the other hand, don't-care exploitation re

quires a few traversals of the machine being synthesized for every pass of the synthesis loop.

Alarge number ofredundancies can be removed during each pass. The disadvantages ofthe

don't-care exploitation approach are that the logic optimization becomes complicated, and

that it is practically difficult to ensure 100% testability because of the difficulty in extract-



CHAPTER 5. IRREDUNDANT INTERACTING SEQUENTIAL CIRCUITS 119

ing and exploting the complicated don't-cares. Therefore, a viable approach to sequential

synthesis for test is to use the don't-care exploitation approach for initial synthesis, and

subsequently use test generation algorithms for removing the final few redundancies.



Chapter 6

Synthesis for Multiple-Fault

Testability

6.1 Introduction

While the single-fault model was adequate in detecting malfunctioning chips in

the past, the increasing density of components on integrated circuits has made the testing
of chips for the presence of multiple faults imperative [81].

Multiple faults are difficult to test for because of the sheer number of multiple-

fault conditions that are possible even for moderately sized circuits. Given a circuit with

7? wires, the total number of possible stuck-at multiple faults is 3n - 1. This number is

much larger than the 2n single stuck-at-fault conditions that are possible on the same

circuit. A large body of work has existed for a number of years for the test generation and

testability analysis of combinational circuits for multiple faults [67, 22, 77, 98]. But, the
large number of possible multiple faults has prevented the application of these methods to

all but extremely small circuits. In addition, the results in [67] are applicable only to two-

level circuits. Recent work has resulted in theoretical results that can predict the effects

of certain operations commonly used by multilevel logic optimization algorithms on the
multiple-fault testability of combinational circuits [56]. As a result, the effects of multiple

faults on combinational circuits are now understood well enough that synthesis techniques

have been proposed recently that can realize fully multiple-fault testable combinational

circuits without excessive area penalties [56, 33, 34].

120



CHAPTER 6. SYNTHESIS FOR MULTIPLE-FAULT TESTABILITY 121

The analysis of sequential circuits, which are made up of latches in addition to

combinational circuit elements, in the presence of multiple-fault conditions is a more difficult

task. Very little work has been done in this area in the past. Nonscan testing of sequential

circuits for the presence of multiple faults is complicated by the limited controllability and

observability of the combinational circuit implementing the next-state and primary output

logic. Multiple faults can exist that alter the functionality of the combinational portion of

the circuit without changing the sequential behavior. In this work, the effects of multiple

stuck-at faults on sequential circuits are analyzed. It is shown that the effects of multiple

stuck-at faults on the state graph of a sequentialcircuit can be much more dramatic than the

effects of single stuck-at faults. Based on the study of these effects, methods are proposed

for the synthesis of sequential circuits for full or high multiple-fault testability.

Synthesis-for-testability techniques for single-fault testability of sequential circuits

are reviewed briefly in Section 6.2. A review of previous work in the multiple-fault analysis

of combinational circuits is presented in Section 6.3. The effects that multiple stuck-at

faults can have on the state graph of a sequential circuit are presented in Section 6.4. In

Sections 6.5 and 6.6, procedures for the synthesis of fully and highly multiple-fault testable

sequential circuits are presented.

6.2 Synthesis Procedures for Nonscan Single-Fault Testa

bility

A number of synthesis procedures have been proposed recently for obtaining fully

single-fault testable non-scan sequential circuits [38, 39, 31]. Obtaining a fully single-fault

testable circuit requires the removal of all redundancies. A general model of a sequential

circuit 5, implementing a single FSMis shown in Figure 6.1(a). Gates in the combinational

network may be in the cone of the output logic, the next-state logic, or both. The State

Transition Graph corresponding to one such machine is shown in Figure 6.1(b).

Redundant faults in S may be combinationally redundant (CRFs) or sequentially

redundant (SRFs). Combinationally redundant CRFs can be eliminated via combinational

logic optimization alone [14, 10, 56]. Sequentially redundant faults can be classified into

three categories [39].

1. equivalent-state faults: The fault causes the interchange/creation of equivalent



CHAPTER 6. SYNTHESIS FOR MULTIPLE-FAULT TESTABILITY 122

PI - Cocnhl national

Logic

PS
1 , , . 1
1 Latches I"-

(")

Figure 6.1: A sequential circuit

states in the STG.

2. invalid-state faults: The fault does not corrupt any fanout edge of a valid state in

the STG, but does corrupt the fanout edge of an invalid state.

3. isomorphic faults: The fault results in a faulty machine that is isomorphic (with a

different encoding) to the original machine.

In [39], it was shown that any sequential redundancy must fall into one of these classifica

tions.

The removal of SRFs in the presence of single stuck-at faults can be done by the

use of two broad classes of synthesis procedures:

• Optimal synthesis procedures.

• Constrained synthesis procedures.

Optimal synthesis procedures [39] define a don't-care set corresponding to the redundancies

and optimize the combinational logic under that don't-care set. The attraction of such a

method is that full single-fault testability is achieved with no area penalty. Constrained

synthesis procedures [38] impose restrictions on the structure of the STG and the logic
implementing it so that redundancies do not occur. Typically, some area penalty is involved

with such methods. It is also possible to devise synthesis procedures that are neither

purely optimal synthesis procedures nor constrained procedures but possess the beneficial
properties of both [31].

Outlined below are brief descriptions of how the synthesis-for-testability proce

dures remove sequential redundancies. Invalid state SRFs are removed by the useofinvalid



CHAPTER 6. SYNTHESIS FOR MULTIPLE-FAULT TESTABILITY 123

states as don't-cares during logic optimization. They can also be removed by ensuring that

all the 2n (n being the encoding length) states in the sequential circuit are reachable. SRFs

due to isomorphism are removed either by a locally optimal state assignment or by ensuring

that the combinational logic is either implemented in two-levels or is algebraically optimized

starting from a two-level description. Equivalent-state SRFs are more complicated and a

number of methods have been proposed for removing them. One technique involves par

titioning the next-state logic so that the faulty and true next-states only differ in a single

bit [38]. State assignment can then be used to ensure that the codes for equivalent states

differ in at least two bits. Another method of avoiding equivalent-state SRFs is to optimize

the logic under an equivalent-state external don't-care set (or Boolean relations [16] in gen

eral) [39]. One problem with these methods is that a single fault could cause a faulty state

that was not equivalent to the true state in the fault-free machine to become equivalent to

the true state in the faulty machine. A way of getting around this problem is to realize

the next-state and output logic via different blocks. Another technique, proposed in [31],

is to ensure that that the logic implementing the FSM satisfies the property that if a fault

corrupts an edge to a different next-state, at least one sequence that distinguishes between

the true and faulty next-states remains uncorrupted.

6.3 Multiple-Faults in Combinational Circuits

It was shown in [67] that a 100% single-fault testable two-level single output com

binational circuit is also 100% multiple-fault testable. This result was extended in [56]

to multilevel single output circuits obtained via algebraic optimization techniques [20]. In

particular it was shown that for every multiple fault in the algebraically optimized circuit,

there is an equivalent multiple fault in the multiple-fault irredundant two-level circuit. A

corollary of this property of algebraically optimized circuits is that a complete multiple-fault

test set for a single output two-level circuit is also a complete multiple-fault test set for the

multilevel circuit obtained from it by algebraic optimization.

The basis for the results on the multiple-fault testability of sequential circuits in

this chapter is the following lemma which is a corollary of Theorem 2 in [67].

Lemma 6.3.1 For any multiple stuck-at fault in a two-level single output circuit, there

exists a single stuck-at fault such that the test set for the single fault is a subset of the test

set for the multiple fault.



CHAPTER 6. SYNTHESIS FOR MULTIPLE-FAULT TESTABILITY 124

sa-l

b O

/= ab + a'b'

Figure 6.2: A multiple fault in a two-level circuit

To ensure that a multiple output two-level or algebraically optimized circuit is

multiple-fault testable it is sufficient to ensure that the cone of every output is fully single-

fault testable on its own. Essentially, this requires the separate optimization of the logic

driving each output.

6.4 Multiple-Faults in Sequential Circuits

The effects that a multiple fault can cause in the STG of a FSM are similar to

the effects caused by a single fault. Again, the faulty STG may be isomorphic to the fault-

free STG, or the only edges corrupted may fan out of invalid states, or a true next-state

may be corrupted to an equivalent faulty next-state. While a fully multiple-fault testable

combinational portion of a fully single-fault testable sequential circuit is sufficient to ensure

high sequential testability, two basic problems are encountered in handling multiple faults.

While techniques similar to those used in the single-fault case can be used to

remove invalid state and equivalent state SRFs in the sequential circuit in the multiple-

fault case also, the techniques for removing isomorphism redundancies in the case of single

faults cannot be used in the multiple-fault case. It can be shown that if the combinational

logic in a sequential circuit is two-level or algebraically optimized multilevel, isomorphism

cannot occur due to a single fault [39] because all test vectors for any single fault in such

a circuit produce either a D or a D at some output, but never both. For isomorphism to

occur, the codes of state have to be exchanged and consequently there must exist a pair

of test vectors such that one of them produces a D and the other a ~D at some next-state

line. It is easily shown that this property is not true for two-level or algebraically optimized

circuits in the presence of multiple faults. Consider the example of the multiple fault in



CHAPTER 6. SYNTHESIS FOR MULTIPLE-FAULT TESTABILITY 125

the two-level circuit shown in Figure 6.2. When the minterm a'b is applied as a test vector,

a £ is produced at the output, whereas when the minterm a'b' is applied as a test vector

a D is produced at the output. A similar example can be illustrated for the case of an

algebraically optimized circuit also. Therefore, implementing the combinational logic as

two-level or algebraically optimized multilevel logic is no longer sufficient to prove that

isomorphism does not occur in the presence of multiple faults. 1 On the otherhand, it may

be argued that while the removal of isomorph SRFs in the presence of multiple faults is

important from the point of view of ensuring full testability, the multiple faults that cause

isomorphism in actual state graphs with a large number of outputs and state bits are rare

and do not reduce the multiple-fault coverage a great deal.

A second, and probably more important factor in making the problem of multiple-

fault testability of sequential circuits difficult is the extremely large number of multiple

faults. The large number of multiple faults makes the multiple-fault simulation of circuits

extremely difficult, if not impossible. Even though significant progress has been made

recently [77], only moderately sized combinational circuits can be multiple-fault simulated

currently. What this implies in the context of sequential circuits is that test generation for

multiple faults in sequential circuits is impossible. Therefore, any procedure that synthesizes

a sequential circuit for fuD multiple-fault testability without providing the multiple-fault test

set for the circuit is meaningless. To obtain the test set as a by-product of the synthesis,

further restrictions on the STG and its implementation become necessary. Well established

test generation procedures for single stuck-at faults areavailable today [78,50]. An approach

to obtaining the multiple-fault test set is to synthesize the FSM in such a manner that the

complete multiple-fault test set can be derived directly from the single-fault test set. This

approach is explored further in the sequel.

6.5 Fully Multiple-Fault-Testable Sequential Circuits

The results of [67] and [56] can be used to show that for a certain class of sequential

circuits, complete single-fault testability implies complete multiple-fault testability. Specif

ically, it can be shown that the set of test sequences for testing multiple faults in these

sequential circuits can be derived directly from the test sequences for single faults. It is

important to note that no explicit test generation is required for obtaining the multiple-

1However, it is conjectured that this is indeed sufficient.



CHAPTER 6. SYNTHESIS FOR MULTIPLE-FAULT TESTABILITY 126

fault test set for the sequential circuits synthesized in this manner. The following theorem

is a statement of a sufficient set of requirements on the class of FSMs and on the synthesis

procedure so that full multiple-fault coverage is obtained with the multiple-fault test set

generated as a by-product of the synthesis:

Theorem 6.5.1 In a combinationally multiple-fault testable two-level or algebraically opti

mized implementation of a FSM in which all next-state lines are outputs, one is guaranteed

that for any multiple fault there exists a single fault such that at least the sequence that can

be used for detecting that singlefault can also be used to detect the multiple fault.

Proof. The proof follows from Lemma 6.3.1 which relates the single and multiple-fault test

sets for combinational circuits. By Lemma 6.3.1 one is guaranteed that given a multiple

fault forced on the logic, at least one of the edges corrupted in the STG is also corrupted

when somesingle fault is forced on the logic. Say that the sequence T = {i'i@$i, i2@S2>...,

in@-sn} detects that single fault in the sequential circuit. Since all the next-state lines are

outputs and since T is a test sequence for the single fault, the edge in©sn is obviously

corrupted in the circuit with the single fault. Therefore, this edge is also corrupted by the

multiple fault. If the sequence T is applied in the presence of that multiple fault, one is

guaranteed that either the edge in@sn or some edge in T prior to it will be corrupted. In

either case, the multiple fault is detected. D

The following corollary follows directly from Theorem 6.5.1:

Corollary 6.5.1 A 100% single-fault testable sequential circuit with all the next-state lines

being the outputs and with the two-level oralgebraically optimized combinational logic 100%

multiple-fault testable is 100% multiple-fault testable with a test set that is equivalent to the
single-fault test set.

The above corollary can be proven for the case where all the present state lines

are primary outputs as well. While this synthesis procedure is interesting in that it relates

the single-fault testability of a certain class of FSMs to multiple-fault testability, arbitrary

FSMs cannot be transformed into FSMs in which next states are outputs. In the following

section, a synthesis procedure that removes the restriction that next-state be outputs at

the expense of a minor reduction in the multiple-fault coverage that can be guaranteed is
explored.



CHAPTER 6. SYNTHESIS FOR MULTIPLE-FAULT TESTABILITY 127

6.6 Highly Multiple-Fault-Testable Sequential Circuits

In this section, a synthesis procedure for obtaining high multiple-fault coverage in

sequential circuits is outlined.

Theorem 6.6.1 Consider a sequential circuit with the following properties. The next-state

logic and the primary output logic are realized by distinct blocks. The STG for the sequential

circuit has 2k states (k is the number of encoding bits or flip-flops), and any two states
have a different output for at least one input combination. The combinational logic blocks,

which are either two-level or algebraically optimized multilevel circuits, are fully testable for

multiple faults. If such a sequential circuit is fully testable for single faults, it is fully testable

for those multiple faults which are contained completely in either the next-state logic block

or the output logic block.

Proof. Consider a multiple fault m0 that is completely contained in the output logic block.

It is known that all single faults in the output logic block are fully testable. It is also known

from Lemma 6.3.1 that there exists a single fault such that if the output on edge i,-@s, is

corrupted by that single fault, it is also corrupted by m0. Since the state st- is justifiable

in the true machine and since the next-state logic block is untouched by m0, the state s, is

also justifiable in the machine with the multiple fault. Therefore, the sequential circuit is

fully testable for multiple faults contained entirely in the output logic block.

Now consider a multiple fault m„ contained entirely within the next-state logic

block. It is known that there exists a single fault such that all the edges corrupted as

a result of that single fault are also corrupted by mn. Say that the test sequence T =

{ii@5i,t*2@52 ,*'n@sU was used to detect the single fault. This implies that the next-
state was corrupted on the edge tn-i@5n_i, say from sn to s'n. The faulty state s'n was
distinguished from the true state by means of the input in.

There are two possibilities when the multiple fault mn is forced on the circuit.

The first is that only the edge in-i@sn-i in T is corrupted by mn (this is guaranteed by

Theorem 6.3.1). The justification sequence J = {ii@si,i2@S2>—>*n-i@sn_i} can then be

used to reach the state sn_i and the true next-state sn and the faulty next state s'^ can be
differentiated in a single cycle since the output logic block is not corrupted by the logic. But

since it is not known which state the edge 2n_i@sn_;i is corrupted to by mn, and because

multiple-fault simulation to find out the corrupted next-state is too time-consuming, one has



CHAPTER 6. SYNTHESIS FOR MULTIPLE-FAULT TESTABILITY 128

to attempt to distinguish between sn and all the possible corrupted next-states. Therefore,

in the case that only the edge in_i@s„_i in T is corrupted, a set of 2k - 1 test sequences is

required, in the worst case, to guarantee that the multiple fault mn is detected. TypicaUy,

a single vector can be used to differentiate sn and several other next-states.

The second possibility is that some edge prior to in_i@sn_i in T may have been

corrupted. In general one has to assume that any edge in T may have been corrupted, and

(since multiple-fault simulation is impossible) based on that assumption an attempt has to

be made to distinguish between the true next-state at the end of any edge and all the other

states in the STG. If that is done, the multiple fault mn is guaranteed to be detected. D

The STG in the above procedure is required to have 2k states so that a multiple

fault in the next-state logic block can only corrupt an edge to a valid state. The restriction

that an edge be corrupted only to a valid state is required because typically only the

outputs of valid states are specified. This restriction on the number of valid states can be

relaxed since the next-state and output logic blocks are implemented by distinct blocks.

The following synthesis procedure illustrates a method for realizing highly multiple-fault

testable sequential circuits:

1. The FSM is assumed to be one in which each pair of valid states assert a different

output for at least one input combination. If a pair does not satisfy this condition

and the STG is incompletely specified, edges are added to make the FSM satisfy the

property. If the STG is completely specified, a new input can be added to make the

STG unspecified and the necessary edges can then be added to make the FSM satisfy

the required property.

2. The states of the FSM are encoded for area optimality. The next-state and output

logic blocks are realized separately.

3. The output logic block (implemented in two-levels) is then optimized for area with the

invalid states used as don't-cares and the combinational logic is made fully multiple-

fault irredundant. Once the optimization of the output logic block is complete, the

largest set $ of invalid states is found such that each statein $ has a different output

for some input combination from every valid state.



CHAPTER 6. SYNTHESIS FOR MULTIPLE-FAULT TESTABILITY 129

4. Once the output logic has been minimized, the output asserted by every state for any

input combination is known exactly. The invalid states not in $ are located. Each of

the invalid states not in $ is made valid by using the edgesin the STG with unspecified

next-states. The primary outputs asserted on these edges are left unchanged. If no

edge with unspecified next-states is available, go back to Step 1, add an extra input

and repeat the entire procedure.

5. If this is the first pass through the procedure, go back to Step 1 with the new set of

valid and invalid states. If it is not the first pass, then go to Step 6 if $ is unchanged

from the previous pass. If $ is found to have changed, return to Step 1.

6. The next-state logic (implemented in two levels) is then optimized with the invalid

states in $ used as don't-cares, and the combinational logic is made multiple-fault
irredundant.

7. Multilevel representations are obtained for the output and next-state logic blocks by
algebraic optimization techniques.

Theorem 6.6.2 The procedure outlined above results in a sequential circuit that is fully
testable for multiple faults contained entirely in either the next-state or output logic blocks.

Proof. Since invalid states are used as don't-cares in the optimization of the output logic,
no invalid state is required as a test vector in order to test a multiple fault in the output

logic block. Therefore, since the output logic block is combinationally fully multiple-fault

irredundant, it is also sequentially fully multiple-fault irredundant.

At the end of the synthesis procedure, the only invalid states are those that have a

different output from every valid state for at least one input combination. A multiple fault

in the next-state block either corrupts an edge to a valid state (in which case the faulty and

true next-states can be distinguished in the manner explained in the proof ofTheorem 6.6.1)

or to an invalid state. Since the invalid state is guaranteed to be distinguishable from the

true state, the multiple fault is guaranteed to be detectable. D

The testing scenario under the above synthesis procedure is the following. Once

the synthesis procedure has completed, the single-fault test set for the sequential circuit is

obtained using STEED [50]. In addition, the primary input vectors that distinguish between



CHAPTER 6. SYNTHESIS FOR MULTIPLE-FAULT TESTABILITY 130

each pair of valid states and the primary input vectors that distinguish between each valid

state and eachinvalid state areobtained. In the worst case, the total number of such vectors

is NV(NV - l)/2 + NivNVi where Nv is the number of valid states and JV,„ is the number

of invalid states. The testing of the circuit is done in the following manner. For every test

sequence in the single-fault test set, the true next-state on every edge is known. Therefore,

after the application of every edge in a test sequence, all the primary input vectors that

distinguish between the true valid next-state and the other valid/invalid states are applied.

Essentially, this implies that each sub-sequence in a test sequence has to be applied 2^6 —1

times in the worst case, where Nb is the number of encoding bits. However, in practice, this

number is significantly less than 2Nb since one can differentiate a given state from several

other states with the same input vector. In this manner, at the expense of increased testing

time and a larger test set, one can ensure close to 100% multiple-fault coverage.

It remains to clearly define how close the fault coveragethat can be guaranteed by

this procedure is to 100% . One is guaranteed that the multiple faults contained entirely in

either the next-state or the primary output logic blocks are fully testable by this procedure.

Also detectable are those multiple faults spanning both logic blocks that are disjoint. A

disjoint multiple fault is a fault such that the part of the multiple fault in the output logic

block does not affect at least one edge that is used to distinguish between some true and

faulty next-state pair that arises as a result of the part of the multiple fault in the next-state

logic block. While it is conjectured that this would lead to 100% multiple-fault coverage

in practice, the conjecture cannot, unfortunately, be verified due to the inability to do

comprehensive multiple-fault simulation.

6.7 Conclusions

In this chapter, the property that for any multiple fault in a two-level or alge

braically optimized multilevel circuit there is a corresponding single fault such that all the

tests for the single fault are a subset of the tests for the multiple fault was exploited. Using

this property, synthesis procedures for fully and highly multiple-fault testable sequential

circuits were devised. The synthesis procedures are such that the test-set is generated as a

by-product and no explicit test generation is required.

While the synthesis procedure works for arbitrary FSMs, a synthesis procedure

that would obviate the need for pairs of states to be distinguishable in a single clock cycle



CHAPTER 6. SYNTHESIS FOR MULTIPLE-FAULT TESTABILITY 131

is definitely more desirable. Developing such a procedure is a topic for future research.



Chapter 7

Logic Verification Using General

BDDs

7.1 Introduction

Reduced, ordered Binary Decision Diagrams(OBDDs) [23] have gained widespread

use in the areasof combinational and sequential logic verification (e.g. [80, 28]) due to their

canonicality and easy manipulability.

Since OBDDs are a canonical form, verifying the equivalence of two combinational

logic functions involves selecting a commoninput ordering for the two circuits, constructing

OBDDs for each of the circuits, and checking to see if the two OBDDs are isomorphic.

Satisfiability checking simply corresponds to comparing the OBDD of a given circuit, under

any input ordering to the constant 0 OBDD.

Finding a good input ordering that produces OBDDs of manageable size is a

difficult problem, and has received considerable attention (e.g. [80, 46,11]). However, there

are classes of combinational circuits, notably multipliers, for which OBDDs, under any

possible input ordering, have a provably exponential size. Circuits, other than multipliers,

have been encountered where finding an input ordering to obtain an OBDD of manageable

size has not been possible thus far. In fact, it is quite easy to construct simple examples,

where OBDD sizes grow exponentially with the number of inputs to the example.

There has been some work in the generalization of BDDs to verify larger classes

of circuits. The method of Friedman [45] uses pBDDs which are BDDs where variables can

132



CHAPTER 7. LOGIC VERIFICATION USING GENERAL BDDS 133

appear in any order along a path from the root to a leaf. Equivalence checking for pBDDs

is NP-complete, and the CPU time required by his method appears to grow exponentially

in the order of the output bit that is verified in a multiplier. The method of Simonis [101]

uses constraint logic programming to verify classes of multipliers. It does not appear that

this method can be easily generalized to verify circuits that contain multipliers. Burch, in

[24], showed that the replication of inputs to a n x n multiplier to obtain a circuit with 2n2

inputs would result in an OBDD of 0(n3) size under a high-to-low input ordering. The work

of [24], however, requires that there be a correspondence between the replicated inputs of

the logic-level implementations of the circuits that are being checked for equivalence. This

is not generally possible in a synthesis scenario, where the logic may be restructured quite

dramatically.

In this chapter, it is shown how general BDDs, i.e. BDDs where input variables

are allowed to appear multiple times along any path in the BDD, can be used to check for

Boolean satisfiability. General BDDs areconstructed by replicating inputs in a given circuit

77 to obtain a new circuit n'. After choosing an appropriate ordering for the inputs to 77',

OBDD construction algorithms are used to obtain a general BDD for r).

The satisfiability checking strategy presented here is based on an input smoothing

operation on general BDDs. After all the inputs have been smoothed away, if the function

reduces to a constant 1, then it means that the original function was satisfiable. In order

to verify the equivalence of two functions, f\ and /2, f\ © h is checked for satisfiability.

Various ways of smoothing inputs in general BDDs are described. One input

smoothing strategy is based on cofactoring the general BDD with respect to cubes and

Oifing the results. This strategy has to be embellished in order not to be memory intensive.

A general depth-first branching strategy to smooth the inputs of a general BDD is presented.

Using this strategy, it is possible to trade off CPU time versus memory requirements. The

order of smoothing input variables is also important and has to be intelligently chosen. A

second strategy is based on a circuit transformational method, wherein a multiplexor-based

circuit derived from a BDD is modified, and a new BDD corresponding to the smoothed

function is reconstructed from the modified circuit.

It is shown how compact transition relations based on general BDD representa

tions can be constructed for sequential circuits, and use the general-BDD input smoothing

strategy to traverse the state space of a sequential machine. This state space traversal

technique can be used to verify different logic-level implementations of sequential circuits.



CHAPTER 7. LOGIC VERIFICATION USING GENERAL BDDS 134

General BDDs are not a canonical form and are a much more powerful represen

tation than OBDDs. For example, it has been shown that a general BDD of 0(n3) size

can be constructed for a n x n multiplier. Using general BDDs, it has been able to per

form equivalence checking on combinational logic implementations of the most significant

bit of a parallel 16 x 16 multiplier, a single output modified Achilles heel function and a

complex ALU, without requiring any additional information other than the given logic-level

descriptions. It was possible to traverse the 6tate space of sequential logic implementations

corresponding to a paraUel 16 x 16 multiplier, again without requiring any additional in

formation other than the given logic-level description. The memory requirements to verify

other classes of circuits is also dramatically reduced using general BDDs, as opposed to

OBDDs.

The basic notation used is described in Section 7.2. In Section 7.4, the basic

strategy for satisfiability checking and combinationallogicverification using general BDDsis

described. Input smoothing in general BDDs is treated in Section 7.5. State space traversal

using transition relations that are based on general BDDs is the subject of Section 7.6. Input

replication and ordering algorithms are presented in Section 7.7. Experimental results are

presented in Section 7.8.

7.2 Basic Definitions

7.2.1 Binary Decision Diagrams

The definition of reduced, ordered Binary Decision Diagrams as described in [23]

is presented below.

Definition 1: A Binary Decision Diagram is a rooted, directed graph with vertex set V

containing two types of vertices. A nonterminal vertex v has as attributes an argument

index index(v) € {1, •••, n} and two children low(v)> high(v) € V. A terminal vertex v

has as attribute a value value(v) € {0, 1}.

The correspondence between Binary Decision Diagrams and Boolean functions is

defined as follows:

Definition 2: A Binary Decision Diagram G having root vertex v denotes a function fv
defined recursively as:

1. If v is a terminal vertex:



CHAPTER 7. LOGIC VERIFICATION USING GENERAL BDDS 135

(a) If value(v) = 1, then fv = 1.

(b) If value(v) = 0, then fv = 0.

2. If v is a nonterminal vertex with index(v) —i, then /„ is the function:

fv(xi, •••, xn) = x~i -fiow(v)(xi, ••'> xn) + Xi >fhigh{v)(xu •••, xn)

x, is called the decision variable for vertex v.

The following additional properties are required in reduced, ordered Binary Deci

sion Diagrams:

1. In Definition 1, place the restriction that for any nonterminal vertex v, if low(v) is

also nonterminal, then one must have index(v) < index(low(v)). Similarly, if high(v)

is also nonterminal, then one must have index(v) < index(high(v)).

2. A reduced BDDis one in which low(v) ^ high(v) for any vertex v and no twosubgraphs

in the BDD are identical.

Note that Property 1 ensures that in any path from root to leaf in the BDD, a variable can

appear at most once. The above two properties result in reduced, ordered Binary Decision

Diagrams being a canonical form (OBDDs) [23].

7.2.2 Binary Decision Diagram Operations

Let / : Bn —• B be a Boolean function, and x = (xi,...,x^) a set of input

variables of /. The smoothing of / by x is defined as:

0XJ = i>X\ • • •"Xjt /

bx,J = JXi T JXi

where fa designates the cofactor [18] of / by the literal a.

The smoothing operator can be computed very efficiently on OBDDs. For details

the reader is referred to [28]. The concern here is with input smoothing on general BDDs,

which is more complicated.



CHAPTER 7. LOGIC VERIFICATION USING GENERAL BDDS

Out

I MUX V— C

f

In
<*)

Figure 7.1: Relaxing the ordering constraint

7.3 General BDDs

136

In General BDDs a variable is allowed to appear multiple times along a path from

the root of the BDD to the leaves. There are two basic reasons why this freedom leads to

a more compact representation. The two reasons are illustrated in this section by means of

examples.

A corollary of allowing a variable to appear multiple times along a path in the

BDD is that the ordering constraint does not exist any more. Therefore, the same set of

variables can appear in a different sequence along different paths in the BDD. Consider the

example shown in Figure 7.1. The output of the circuit in Figure 7.1(a) is equal to the

function / when the control input is 0, and is equal to the output of g when the control

input is 1. The functions / and g have common support. Say that / requires a completely

different variable ordering from the variable ordering required for g in order that the OBDD

size be polynomial for both / and g, and also that there is no single variable ordering that

would realize a reasonable sized OBDD for both / and g. In order to build an OBDD

for out, one has to effectively build the OBDD for both / and g under the same variable

ordering. Since that is not possible, an OBDD cannot be built for out. On the other hand,

when making a general BDD for the circuit, one has the freedom of choosing the ordering

for / independently of the ordering chosen for g. As a result, it is possible to make a general
BDD for out.

The second reason that general BDDs lead to compact representations has to do

specifically with the fact that a variable is allowed to appear multiple times along a path in



CHAPTER 7. LOGIC VERIFICATION USING GENERAL BDDS

Xj 1 ( 47 ' '

(a) (b)

Figure 7.2: Multiple instances of a variable along a BDD path

the BDD. Consider the example of the BDD fragment shown in Figure 7.2(a). The variable

xi appears twice along one of the paths in the BDD. The multiple instances of x\ in that

path are labeled x\\ and x\2> Focus attention on the node for variable x<i. This node is

reached from two other nodes in the BDD, viz from the node xu and the node X3. When

X2 is reached from node arn, the path from £2 to 14 is meaningless because in reaching £2

from xu, a decision has already been made to set xi to a 0. But, the same path (from xi

to x4 through £12) is required when x<i is reached from X3. If the node for £12 were not

present, then the node for x>i would have to be duplicated as shown in Figure 7.2(b). In

the BDD fragment shown here, a?2 is reached from only two other paths. In general, a node

could have very large fanin and not allowing a variable to appear multiple times could cause

a large amount of duplication of nodes.

137

7.4 Satisfiability/Equivalence Checking Via Input Smooth

ing

One is given a logic circuit / to check for satisfiability. Assume that one cannot

construct a manageable OBDD for /, due to memory or CPU time restrictions. The strategy

in such a caseis simple. The inputs to / arereplicated to obtain a different circuit /', keeping

track of what inputs to /' are derived from the same input to /. Replicating the inputs

to an example circuit is shown in Figure 7.3 where the input £3 in Figure 7.3(a) has been

replicated to £3,0 and 0:3,1 in Figure 7.3(b).

If enough inputs are replicated and a good ordering of replicated inputs is found,



CHAPTER 7. LOGIC VERIFICATION USING GENERAL BDDS 138

(a) (b)

Figure 7.3: Example of input replication

one can use OBDD construction algorithms [23] to construct an OBDD for /', which can

be viewed a general BDD, G, for the circuit / (if the replicated inputs are coalesced). Note

that the general BDD is not a canonical form for the function /. For example, function /

may not be satisfiable, but G may be quite large.

The inputs to /' can now be sequentially smoothed away. An input to /, say £,-,

is chosen. Assume that £,- has been replicated n times in /', and say the replicated inputs

correspond to £t>0, ..., £i,n-i- One has to smooth away the £t-,o, . •., £»,n-i inputs to /',

making sure that they have the same values (0 or 1). The smoothing of /' by £; (whose

replicated instances are £lto, ... xt'tn-i) is defined as:

S f — f _L ('
"XiJ J x;(o-:r.,i—JCi,n-i ' J Xi,o-«i,i'"a?.,n-i

Essentially, one is cofactoring /' with respect to the cube corresponding to all the £tj/s set

to 1, and with the cube corresponding to all the jc,-j's set to 0 and OR'ing the results.

As before one can define:

bxj — 6Xo •••Sxk-i f

to sequentially smooth away the k sets of inputs to /', corresponding to the distinct inputs
to/.

This smoothing strategy can use highly efficient OBDD manipulation algorithms.

If during the smoothing, or after smoothing away all the inputs, a constant 1 function

corresponding to Sxf is obtained, then it means that / is satisfiable. This is because an

input combination has been found that sets /' to a 1under the constraint that the replicated

inputs have the sameconsistent values. This in turn means that an input combination that

sets / to a 1 has been found. On the other hand, if a constant 0 is obtained function, then

it means that / was not satisfiable.



CHAPTER 7. LOGIC VERIFICATION USING GENERAL BDDS 139

il<0> o

il<n> o

i<0>

i<n>

i2<0> o

12<n> o

(a) (b)

Figure 7.4: Equivalence checking

7.4.1 Equivalence Checking

In order to check for the equivalence of two logic functions /i and /2, /i © fi is

constructed as shown in Figure 7.4(a). This composite function is treated as the / function

above, and the inputs are replicated as needed to construct a general BDD for /. The very

first step of replication will break up the inputs to /i and /2 so they have disjoint support

in /'. This is shown in Figure 7.4(b). This implies that if OBDDs were constructible for /i

and /2, a general BDD will be constructible for f\ %f2\ under an input ordering where the

(ordered) set of inputs to f\ is followed by the (ordered) set of inputs to /2'. Of course, if

OBDDs are constructible for /i and /2, there is no need to use general BDDs to verify the

equivalence of f\ and f2. The use of general BDDs, however, allows the further replication

of the inputs to // and /2' so a manageable-sized general BDD can be constructed for /',

even in the case where OBDDs cannot be constructed for f\ or /2.

7.5 Input Smoothing in General Binary Decision Diagrams

Algorithms for input smoothing in general BDDs are presented in this section.

7.5.1 A Branching Strategy for Smoothing Replicated Inputs

While input smoothing in an OBDD is not guaranteed to reduce the size of the

OBDD, efficient algorithms exist [104] that can smoothaway a set of inputs in an OBDD by

making a singlepass over the OBDD. Input smoothingin general BDDsis more complicated,

and can increase the size of the general BDD. If there are unreplicated inputs in the general



CHAPTER 7. LOGIC VERIFICATION USING GENERAL BDDS 140

BDD, then these are smoothed away first to obtain, in most cases, a smaller BDD, which

is then checked for satisfiability.

Experimental evidence indicates that given a set of inputs to be smoothed, (where

each input has been replicated), the order in which the inputs are smoothed can have a

significant effect on the resulting general BDD. Further, the size of a general BDD that is

obtained after smoothing away even a single set of replicated inputs can be substantially

larger than the original BDD. In general, a massive replication of inputs in a general BDD

makes smoothing more difficult. This is intuitive, since the smoothed BDD will be substan

tially different from the original general BDD. Therefore the general branching algorithm,

shown below, that operates in a depth-first manner was devised.

In the routine satisfiable(), G is the general BDD, and X is the set of inputs to

be smoothed away, so as to check for satisfiability. Each £,- € X consists of or,-,o» • • •» z»,n,

replicated inputs. This routine can be seen as an attempt to interleave two methods for

satisfiability checking, BDDs and SAT.

satisfiable( G, X ):

{
if(X = <f>){

if( G = 0 ) return(FALSE) ;
else if ( G = 1 ) retum(TRUE) ;

}
xp = select-input ( <?, X ) ;
Compute GXp = GXp0.Xpl ... Xpnp ;
Compute <% = GXpl5.Xp-i ... 5^ ;
if ( G' = bdd-or ( GXp, <%, paraml ) ) {

return ( satisflable( G', X - xp ) ) ;
}
else {

if ( satisfiable( GXp, X - xp ) ) return(TRUE) ;
else if ( satisfiable( <%, X - xp ) ) return(TRUE) ;
else return(FALSE) ;

}
}

The parameter paraml controls the amount of branching that can take place versus

the size of the smoothed BDDs, and can be set based on the amount of memory available.

During the bdd-or() operation the size of the resulting BDD is monitored, and if its

size exceeds paraml, the bdd-or() operation is terminated. If the bdd-or() has to be



CHAPTER 7. LOGIC VERIFICATION USING GENERAL BDDS 141

terminated, branching on the cofactors takes place. This ability to branch gives the general

BDD approach the capacity to trade off CPU time for memory usage.

The routine select-inputQ selects a set of replicated inputs in the general BDD

to be smoothed. Currently, a simple heuristic that has to do with the fraction of the general

BDD that is affected by the smoothing is used. Smoothing with respect to £,• only affects

the portion of the general BDD below £,,mt„, where £t-,mtn corresponds to the replicated

instance of £,- that has the lowest index (is closest to the root of the general BDD) among all

the replicated instances of £,. The input xp is selected such that £p,m,n has the maximum

index among all £t-,m,-n.

7.5.2 Smoothing by Addition of Extra Variables

One approach to avoiding a blowup during input variable smoothing is to defer

the computation of the OR in

until as late as possible. This can be done by recognizing that

Z>Xj Z>X,f = SXj(fXi0.XtJ...Xtn_1+fx^.x^...xr^Zi) = Sa ^(^'/xi.o-Xi.j—Xi.n-i + a'fxifi-XiJ—X,,„_l )

where a is the extra variable whose addition makes it possible to defer the computation of

the OR. Also, a is ordered sothat it becomes the root of the BDD for a•/xl(0xi,i-*i,n-i + s#

/fM)-rIj--xt,t,-i • The size of the BDD after £,- is smoothed using this method is bounded by

the sum of the sizes of the BDDs for /x,i0-xi,j...xiin_i and /x7j-x7r-xt,n-i ♦ The actual change

could be much lower than the sum of the sizes if there is a large amount of sharing of nodes

between the BDDs for /xi,0.xi|1...x<>n_1 and /x7^x7T-*7^=T-

7.5.3 Smoothing Inputs Using Circuit Transformations

In the case where unreplicated inputs exist in the general BDD, a strategy based

on circuit transformations (different from the algorithm of [104]) sometimes works much

better. This strategy is as follows: Given a general BDD, G, a multiplexor-based circuit

7/ corresponding to G is derived by replacing all nodes in G by 2-input multiplexors whose

control input is the decision variable corresponding to the node. In 77, all the multiplexors



CHAPTER 7. LOGIC VERIFICATION USING GENERAL BDDS 142

corresponding to the unreplicated inputs arereplaced by or 1 gates to obtain v/. Now, one

can choose an ordering for the remaining inputs to 77', (and coalesce replicated inputs if

necessary) to construct a new general BDD for n'.

In a general BDD, one cannot simply replace each node corresponding to an in

stance of a replicated input by an OR gate. Doing so may make paths in the general BDD

corresponding to conflicting values for different instances of a replicated variable sensitiz-

able in the derived circuit, thus destroying functionality. However, a replicated input which

does not appear more than once along any path in the general BDD can be smoothed away

by replacing all its nodes by or gates in the derived circuit.

In the case of replicated inputs appearing several times along a path, the following

strategy can be used. Assume one has a general BDD G, and the input £,- has been

replicated k times, the replicated instances being £,-,o, £»,i, ..., zt-tjb—1 - It is now desired

to transform G into G' so that all paths in G' that correspond to conflicting values for the

different instances of the replicated variable £,- have zero-terminal vertices. Other than this

modification, G' has the same functionality as G. One first obtains G\ from G by making

all the paths in G that correspond to a zero value for any of the replicated instances of

Xi have zero-terminal vertices. Similarly, G2 is obtained from G by making all the paths

in G that correspond to a one value for any of the replicated instances of £,- have zero-

terminal vertices. The OR of GI and G2 satisfies the property required of G'. One can now

obtain a circuit from G' by replacing all the nodes in the G' corresponding to the replicated

instances of the variable £,• by or gates and all the other nodes by 2-input multiplexors.

The replicated primary input £,- has effectively been smoothed away in this derived circuit.

A (possibly general) BDD can now be constructed from the derived circuit after picking an

ordering for the remaining variables.

This technique can perform significantly better than a straightforward smoothing

algorithm because of the degree of freedom in choosing a different ordering for the general

BDD of 77'. For example, assume that the variable x (with / being the function associated

with its BDD node) is being smoothed. Straightforward smoothing within the BDD forces

the BDD for fx + fx to be constructed under a global variable-ordering that is suitable for

/x and fx but not necessarily for fx + fx, leading to a much larger BDD after smoothing.

The use of complemented nodes [13] in a BDD makes this transformation slightly more complicated.
A process of pushing the inversions all the way back to the terminal vertices while deriving the circuit is
necessary, and the derived circuit can be twice as large as the original BDD.



CHAPTER 7. LOGIC VERIFICATION USING GENERAL BDDS 143

(a) (b)

Figure 7.5: A Sequential circuit and its transition relation

While this problem is usually not encountered in the case where no replicated inputs are

present, it assumes great significance when they are.

7.6 Implicit State Space Traversal Using General BDDs

Verifying the equivalence of two sequential machines, A and B, involves traversing

the state space of the product machine, A x B. An efficient approach to sequential machine

state space traversal using ordered Binary Decision Diagrams (OBDDs) was presented in [25,

28]. The use of a transition relation allowed the implicit breadth-first enumeration of states

in a sequential machine, enabling the state traversal of circuits of significant size. Building

the transition relation is often the bottleneck in this class of approaches - under an OBDD

representation it is sometimes not possible to build the transition relation, even if OBDD

representations of the combinational logic of the sequential machine are of manageable size.

In this section, after first reviewing the transition relation method, it is shown how

general BDDs can be used to traverse the state space of a sequential machine.

7.6.1 The Transition Relation Method

A sequential circuit is shown in Figure 7.5(a). The next state fines ns7,-, 0 < i < N

are functions of the pzjt, 0 < k < M and the psj, 0 < j < N. The transition relation

A(pi, ps, ns) is a single-output Boolean function shown in Figure 7.5(b). It is a function

that is a 1 if and only if a primary input pi, a present state ps and a pseudo next state ns

are applied such that the next state ns' produced by the primary input and present state



CHAPTER 7. LOGIC VERIFICATION USING GENERAL BDDS 144

is equal to the pseudo next state ns.

Assume one has a set of states Si and one wishes to compute the set of states

5t-+i that are reachable in one clock cycle from 5,-. The operations performed on A are as

follows:

1. Smooth away the pi variables from A(pi, ps, ns) to obtain A'(ps, ns).

2. A" = A'(ps, ns) n Si(ps), i.e. intersect the transition relation with the given present

states. It may improveefficiency to intersect A' with 5,(7is), i.e. A" = A'(ps, ns) n Si(ps)

fl Si(ns). One is not interested in reaching the Si(ns) states again, since it is known

that they are reachable. The support of the Si(ps) lines is changed to be the pseudo

next state lines, in order to obtain Si(ns).

3. Smooth away the ps variables from A"(7is) to obtain 5,+i(ns). i = i + 1. Go to Step

2.

Since smoothing in OBDDs generally reduces the size of the OBDD, if the transition relation

is constructible, one can typically traverse the entire state space of the sequential machine.

The entire state space is traversed when at some iteration », 5n = 5n+i, or no new state is

encountered at some iteration.

7.6.2 Using General Binary Decision Diagrams

One can use general BDDs to perform an efficient state traversal of sequential

circuits. For certain classes of circuits OBDDs may not be constructible for some next

state lines under any ordering of the primary input and present state variables. In other

circuits, it may not be possible to construct OBDDs for all the next state lines using the

same ordering of the primary input and present state variables. Further, since the function

A tends to be very complex, even if OBDD representations are available for the next state

lines, an OBDD representation for A may not be constructible.

The use of general BDDs leads to the following useful property. Given general

BDDs of the next state lines, one can always construct a general BDD for A because the

primary inputs and present state lines can be replicated across the different next state

functions, ns'i, 0 < t < N. The size of the general BDD corresponding to the product

of the N xnor's of the pseudo next-state lines with the associated next state functions is

then of the order of the sum of the sizes of the general BDDs corresponding to the various



CHAPTER 7. LOGIC VERIFICATION USING GENERAL BDDS 145

ns'i = ns,-, 0 < i < N, given an appropriate variable ordering for the replicated inputs.

However, as mentioned earlier, such massive replication of inputs should be used with

caution since it can make the smoothing operation on general BDDs more time consuming.

Typically, a moderate replication of inputs across the next state lines results in a manageable

general-BDD representation of the A function on which input smoothing can be performed.

The above strategy of replicating inputs across the next state lines, proves useful when

OBDD representations can be constructed for the next state lines, but the A function is

too large for efficient state traversal.

The fact that the pseudo next state lines are unreplicated and the present state

lines replicated is handled in the following manner in Step 2 of the traversal algorithm above.

At Step 2, one has to intersect an OBDD representation of 5,(ps) (either obtained from the

previous iteration by a change of variables from ns to ps, or given as a reset state), with the

A'(ps, ns) general BDD, wherein the ps lines may have been replicated. This is trivially

accomplished by implicitly expanding the support of the 5,(ps) OBDD to the ps support

of the general BDD for A'(ps, ns). For example, consider a circuit with three ps lines,

ps0, psi and ps2. Assume that an OBDD representation of the states 100, 010 in S\[ps) is

given. Also assume that each of the ps lines has been replicated twice in A'(ps, ns), under

the ordering psi,0, ps2,o, JMi.i, P$3,o> ps2,i, P53,i- By expanding the support of Si(ps),

one will effectively have obtained the states 10-0 , 01-0 in general BDD form.

These states can now be intersected with A'(ps, ns). Note that one are only interested in

the states 10100, 010010. However, during the smoothing of the replicated ps lines in Step

3. the constraint that pstto == ps«,i> 1 < f < 3 will be imposed.

Once the general BDD for the transition relation has been obtained, the input

smoothing algorithms described in the previous sections for replicated and unreplicated in

puts can be used to traverse the machine. In some cases building the complete transition

relation even in the form of a general BDD may not be feasible or may require excessive

replication (making the smoothing of the replicated variables cumbersome). In such situ

ations, techniques similar to those described in [104] for avoiding the explicit construction

of the transition relation and for smoothing variables as early as possible can be applied.



CHAPTER 7. LOGIC VERIFICATION USING GENERAL BDDS 146

7.6.3 Variant Methods

It is possible that OBDDs are constructible for each next state line and/or primary

output of a sequential circuit under different orderings of each output, but not under the

restriction that the same ordering be used for each output. Further, even if OBDDs are

constructible under the same ordering for each of the next state lines, the transition relation

may be too large to construct. In either of these cases, the following method to construct

a general BDD for the transition relation is viable.

1. Construct OBDDs under possibly different orderings for each next state line ns'i, 0 <

i<N.

2. Find a compatible ordering for all the ns',-, by replicating pi or ps lines across the

3. Compute the transition relation A(pi, ps, ns) as a general BDD under the compatible

ordering.

Finding a compatible ordering simply corresponds to replicating inputs whenever

there is a conflict in the ordering of any set of inputs across the next state lines. Replication

can be kept to a minimum by only considering major conflicts between the ordering of sets of

inputs, and disregarding minor interchanges in input orders. For instance, consider the lines

ns'i and ns'2, which have as inputs pi'i, pi*2 and psi, ps2. Assumethat the optimal order for

ns\ is pi*!, psi, ps2, pi2, and that for ns'2 ispi2, P«i, ps2i ph- One can obtain a compatible

ordering for the two lines by replicating pii, and obtaining two lines ptlto and pi'14. The

compatible ordering is p*i,o, psi, PS2, pi2i Ph,i- ns'i will have pii.o, p*2> /«i> Vs2 as its

support and 7is;2 will havep*i,i, pz-2, psi, ps2 as its support. The size of the ns\ general

BDDs will be the same as the size of the OBDDs under an optimal ordering. Further, one

can manipulate these general BDDs simultaneously; for instance, one can and these general

BDDs to compute the transition relation.

7.7 Replicating and Ordering Circuit Inputs

7.7.1 Replicating Inputs to a Multiplier

First the replication strategy for a n x n parallel multiplier presented in [24] is

reviewed. It was shown there that replicating each of the 2n inputs n times could result in



CHAPTER 7. LOGIC VERIFICATION USING GENERAL BDDS 147

Figure 7.6: A 4 x 4 multiplier

a general BDD of 0(n3) size under a particular input ordering.

The original multiplier and the replicated-input multiplier are shown in Figure 7.6

and Figure 7.7 respectively.

Burch [24] verifies multipliers by replicating the inputs to the two given multipliers

77?! and m2 in a certain way, to obtain mi' and 7712'. He then constructs OBDDs for m\ and

m2. Verification entails checking for isomorphism between the general BDDs, and therefore

an exact correspondence needs to be established between the replicated inputs of multiplier

77?!' and the replicated inputs to multiplier 7*12'. This correspondence can, typically, only

be established if m\ and 7712 initially have a constrained and similar structure.

There is no need of a correspondence between replicated inputs in the general-

BDD approach - one can use different replications for the m\ and 7712 functions, and one

only needs to keep track during replication of what replicated inputs correspond to the

original inputs (information needed during smoothing). This approach does not depend on

the canonical nature of the OBDDs, it merely uses efficient OBDD manipulation algorithms

to check mi © 77i2 for satisfiability. It should be noted that it is not necessary need to find

exactly the same replication of Figure 7.7, nor exactly the high-to-low ordering that was

used in [24]. Finding a reasonably close replication and ordering will result in a general

BDD of manageable size, though it may not be of 0(n3) size.



CHAPTER 7. LOGIC VERIFICATION USING GENERAL BDDS

"* a2

Couc —ftX—a3

sum

Full Adder

9 X3,0 Y2,0

X0,3 . X0,2

XI, 0

X0,1• X0,3 . X0,2 - XO,* .

3 $ 3 3
. Y3,l [J*2'1 f*1'1 ptO.l /
L Xl,3 Xl,2 T XI,! T XI,

1? F ]P IP<8 © <# © o

X0,0

X0,0

20'

148

Figure 7.7: A4x4 multiplier with inputs replicated

7.7.2 A General Algorithm to Replicate and Order Inputs

In many cases, OBDDs are completely different structurally and much larger than

the circuit itself. In such cases, the use of appropriately constructed general BDDs can lead

to graphs that are significantly smaller than the OBDDs and are structurally closer to the

circuit.

The goal of attempting to make the BDD-based circuit structurally as close to

the given circuit as possible guides the replication and ordering of the inputs. This is best

illustrated with an example. Consider the adder-subtractor circuit shown in Figure 7.8.

Figure 7.8(a) shows an area-inefficient implementation in which two distinct blocks are used

for addition and subtraction. The desired output is then selected by the output multiplexor

based on the value of the ADSB line. This is exactly the structure of the OBDD that

would be obtained if the ADSB input were at the root of the OBDD. The area-optimum

implementation of the adder-subtractor on the other hand is shown in Figure 7.8(b). This

circuit is much smaller and structurally quite different from the circuit in Figure 7.8(a). A

general BDD whose structure is close to that of Figure 7.8(b) can be derived in the following

manner:

1. ADSB is replicated n times, where n is the bit-width. The replicated ADSB lines

are labeled so that ADSB< t > corresponds to the fanout path from ADSB that is



CHAPTER 7. LOGIC VERIFICATION USING GENERAL BDDS 149

S<b-l-.0>

A<n-1>

A<n-1:0> B<B-1:0> ADSB

AD8B<0>

(a)

B<1> A<i> B<0> ADSB<0>

Figure 7.8: Two versions of the adder-subtractor

xoR'ed with B< i > in Figure 7.8(b).

2. An OBDD isconstructed with theordering B< n-1 >, ADSB< n-1 >, A< n-1 >,

B< n-2 >, ADSB< ti-2 >, A< n-2 >, • •, B< 0 >, ADSB< 0 >, A< 0 >. As

a result of the replication, each bit-slice of the adder-subtractor in the general BDD

has the ADSB input available to it (just like the optimal logic-level implementation

of the adder-subtractor). Hence, the general BDD with the ADSB input replicated
will have the same structure as the circuit of Figure 7.8(b).

The example of the adder-subtractor circuit leads us to a general procedure for

replicating and ordering inputs. To begin with, a possibly area-optimized version of the

circuit is obtained to guide the replication. In the optimized circuit, an input with a large
depth (where depth is defined as the number ofgates between the input and the primary
output) and which fans out multiple times so that each fanout path is used at different

depths in the circuit is a good candidate for replication (The ADSB input in the adder-

subtractor satisfies these requirements). Such an input is replicated as many times as it

fans out. Once all inputs deemed to be good candidates are replicated, either the ordering
strategy of [80] or some other strategy dependent on the circuit structure can be used to

construct the OBDD. When a large numberof inputs have been replicated, the circuit tends

to assume the form described in Lemma 1 of [80] wherein the output / can be expressed as



CHAPTER 7. LOGIC VERIFICATION USING GENERAL BDDS 150

EX #1 #o Output
Verified

GBDD OBDD

Time1 BDD Size Time1 OBDD Size

ach32 69 1 Output # 1 61s 7073 exc exc

ach32-p 64 1 Output # 1 118s 1 exc exc

add-shift32 69 32 Output # 31 123s 10721 exc exc

Output # 15 80s 5089 exc exc

mult8-addl6 32 16 Output # 15 10m 180125 exc exc

mult 16 32 64 Output # 31 533m 15246 exc exc

Output # 15 25h 3894 exc exc

1 On a DECstation 5000/200. exc implies that the limits were exceeded.

Table 7.1: Equivalence checking applied to combinational circuits not amenable to OBDD

representation

/ = 9{fu gi(f2, g2(—9k-i(fk, A+i)...))) and each fi has a support that is disjoint from

the others. In such a case, the optimum ordering for / is the concatenation of the optimum

orderings for the /,'s. The orderings for the /,'s can either be concatenated in the order

from k + 1 to 1 or from 1 to A: + 1 depending on the circuit.

The above strategy works weD for parallel multipliers also. Each reconvergence of

a primary input is easily detected in a given logic-level implementation and the input can

then be replicated.

7.8 Results

7.8.1 Combinational Circuit Verification

The viability of the general-BDD approach for equivalence checking of combi

national circuits is illustrated by the results shown in Table 7.1 for four examples. The

significance of the results lies in that a canonical representation in the form of an OBDD

could not be obtained for any of the three functions and that none of the three circuits are

collapsible into two levels of logic. Therefore, the general-BDD approach is the only viable

approach known to us for verifying these circuits, without requiring additional information

other than the given logic-level descriptions.

In Table 7.1, #1 and #0 correspond to the total number of inputs and outputs

in the circuits, respectively. Output Verified corresponds to the index of the output for



CHAPTER 7. LOGIC VERIFICATION USING GENERAL BDDS 151

which equivalence checking data is provided in the table. The CPU time (Time) involved

in the equivalence checking is provided in the table. The CPU time includes the time for

creating the general BDD as well as for smoothing the variables. The size (in terms of

the number of nodes in the graph) of the general BDD corresponding to the xor of the

two functions being verified is provided under the column BDD Size. The equivalence

checking was performed on a DECstation 5000/200. The system was configured with 120

Mb of main memory and 325 Mb of swap space.

ach32 in Table 7.1 is a single-output modified 32-bit Achilles-heel function. The

following equation describes the circuit. / = muxo • mux\ • mux2 • muxz • mux^ • /o +

muxo • mux\ • mux2 • mux$ • muxl • f\ + ... + muxo • muxi • mux2 • mux$ • mux4 • /31

where the /, are defined as follows:

/o = x0 . y0 + xi . yi •• • + ar3i . 7y31
31

/i,l <i <31 = II (X3 + ViU+i) modulo 31))
3 = 0

It can be shown that the best ordering for constructing an OBDD for / would require the

mux signals to appear at the root of the OBDD. The children of the subgraph made by the

mux signals would then be the OBDDs for the various /,-, as shown in Figure 7.9. Different

/, require different variable orderings in order to achieve non-exponential OBDD sizes. For

example, /0 requires that all the Xj and yj be adjacent in the ordering, while fa requires

that all the Xj and j/(j- + 7) moduio 31 be adjacent. It doesn't seem that any ordering exists

that results in viable OBDDs for all the /,- at the same time. 2 Since building an OBDD for

/ entails building OBDDs for all the /,- under the same variable ordering, it is not possible

to build an OBDD for / for large n. This was verified for n = 32 using the BDD package

in mis-ii [15], using several different orderings. The replication of inputs and the variable

ordering for creating the general BDDs were both done automatically for this example. It

is possible to verify this circuit in about a minute. Note that / has been chosen so that

neither / nor / is collapsible to a two-level sum-of-products representation. ach32-p is the

same as ach32 except that the various /,• are XOR'ed instead of being multiplexed. While it

was not possible to verify twoinstances ofach32-p using OBDDs, verification using general

BDDs required about 2 minutes.

2The proof for the conjecture that any OBDD would be exponential in size with respect to the number
of inputs to the /( is under development.



CHAPTER 7. LOGIC VERIFICATION USING GENERAL BDDS 152

11111

Figure 7.9: An outline of the OBDD for ach32

The second circuit in Table 7.1 is add-shift32. This circuit is similar in nature to

ach32 in that it basically performs one of 32 functions based on the mux control signals.

The output of the circuit is equal to the arithmetic addition of the input A and the input

B rotated by an amount given by the mux signals. For reasons similar to those for ach32,

an OBDD cannot be built for this circuit. Also, this circuit is not collapsible to two-levels

of logic. The automatic replication and smoothing strategies, on the other hand, are able

to perform equivalence checking for the most complex output in 2 minutes. The remaining

outputs all required fewer times.

mult8-addl6 is a cascade of an 8-bit multiplier and a 16-bit adder, with the

outputs of the multiplier feeding one set of inputs to the adder. It was not possible to build

the OBDD for the most significant output of this circuit using the OBDD package in mis-ii.

On the other hand, using the strategy of replicating inputs across the cone for each output of

the multiplier, it was possible to make the general BDD for the most significant output of the

circuit and subsequentaly check for equivalence using the smoothing techniques described

in this chapter in of about 10 minutes.

The next circuits for which verification was attempted were parallel combinational

multipliers. Multipliers are a class of commonly occurring circuits that have long defied

attempts at equivalence checking. Multipliers are probably some of the most difficult circuits

to verify because of the tremendous reconvergent fanout present (both internally and at the

primary inputs) and the fact that each x input interacts non-trivially with all the y inputs

and vice versa. The 12-bit multiplier is complex enough that equivalence checking cannot

be performed for most of the higher order outputs using OBDDs. Using the general-BDD



CHAPTER 7. LOGIC VERIFICATION USING GENERAL BDDS 153

approach, on the other hand, it has been possible to perform equivalence checking on all

the outputs of a 12-bit multiplier in finite amounts of time. In making the general BDD for

the xor circuit for verifying the equivalence of two multipliers (c/Section 7.4.1), each input

to each of the two n bit multiplier was replicated n times. This results in a circuit with An2

inputs, and makes smoothing difficult. It has been possible to verify the most significant bit

of a 16x 16multiplier (mult16 in Table 7.1)using the branching algorithm (c/Section 7.5)

in about 8 CPU hours. However, it is estimated that the branching algorithm would require

25 hours of CPU time to verify the middle output (Output 15). I believe the reason for this

failure is the massive initial replication of the input variables. A reasonable general-BDD

representations for a multiplier wherein a smaller amount of input replication is done is

under investigation.

7.8.2 Sequential Circuit Traversal

Theviability ofthe general-BDD approach hasbeen shown for state-space traversal

in sequential circuits by means of two examples that are notable in the fact that transition

relations cannot be constructed for them using OBDDs. Both the examples chosen are

simple to traverse, primarily because they are arithmetic circuits. While the choice of such

examples illustrates that the conventional approaches for state-space traversal are liable to

fail even for examples that are simple to traverse, the choice also allowed us to illustrate

the efficacy of the general-BDD approach while work on fully automating the general-BDD-

based traversal algorithm is still in progress.
r

The first example was derived from the add-shift32 in Section 7.8.1 by feeding

back the 32 outputs to one of the inputs. The resulting sequential circuit is simple to

traverse since all states are reachable in a single cycle from any initial state. That is, the

transition relation becomes a tautology after the primary inputs are smoothed away. Using

the general-BDD approach, it was possible to construct the general BDD for the transition

relation (with the present state variables of the circuit replicated). It was then possible

to smooth the primary inputs away to show that every state was reachable from every

other state in a single cycle. The same conclusion could not have been reached using the

techniques of [104] since the transition relation for this sequential circuit cannot be built

using OBDDs.

The second example was derived from a 16-bit multiplier by feeding the most



CHAPTER 7. LOGIC VERIFICATION USING GENERAL BDDS 154

significant 16 outputs back to one set of inputs. If the reset state is now chosen to be the

state that has the decimal value 1, then all the states will be reachable in the first cycle.

In other words, the BDD representing the set of states reached after the first cycle will

be a tautology. Again, this conclusion cannot be arrived at using any of the techniques of

[104] since the transition relation for this sequential circuit cannot be built using OBDDs.

While it was possible to build the transition relation for this circuit using general BDDs,

it was found that smoothing the primary inputs was a problem because of the massive

replication involved. Therefore, rather that build the transition relation explicitly, the

technique suggested in [104] of first AN Ding the transition functions for the next state lines

(cf Figure 7.5(b)) with the general BDD for the initial state before taking the product was

applied. The resulting general BDD is greatly simplified and allows us to conclude that all

the states are reachable from the given reset state in the first cycle.

7.9 Conclusions

It has been shown in this chapter that a representation of logic functions, namely

general Binary Decision Diagrams (BDDs), can be used in conjunction with efficient ordered

Binary Decision Diagram (OBDD) manipulation algorithms, to check the satisfiability of,

and verify combinational and sequential logic circuits that were not verifiable using previ

ous techniques. In particular, it has been possible to verify large and complex arithmetic

functions, for which sum-of-products or OBDD representations could not be constructed.

Future work will address improving the efficiency of the input smoothing operation

on general BDDs, and the replication/ordering of inputs.



Chapter 8

Conclusions and Future Work

The focus of this dissertation has been on the investigation of logic synthesis

techniques targeting optimal implementations of interacting sequential circuits. A number

of aspects of the synthesis problem were addressed.

Algorithms for FSM decomposition [7, 5] were described in Chapter 3. The main

point of these algorithms was to show that state partitioning can be easily tied in with

recent results in state encoding [86, 41] in order to target FSM decompositions with logic-

level optimality. While good results were obtained using these algorithms, thereis scope for

improving certain aspects. In particular, it is possible that combining factorization [40] with

symbolic-output partitioning for deriving the decompositions can lead to superior results.

This approach is currently being investigated.

The procedures presented in Chapter 3 and most other current sequential synthesis

procedures require some form of state transition graph representation to operate from.

Recognizing that, procedures for efficient state transition graph extraction from logic-level

descriptions [8] were described in Chapter 4. Using these procedures, it is possible to increase

the size of the sequential circuits for which current sequential logic synthesis strategies are

viable.

While a large number of synthesis programs available today use either a STG

representation or a two-level multiple-valued representation, it is clear that a number of

synthesis operations can also be performed while operating on a BDD-based characteristic-

function representation [28]. For many of these operations, it is never necessary to resort

to either a STG or two-level representation of the machine, i.e., it is never necessary to

explicitly consider each individual state separately (sets of states are represented implicitly

155



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 156

by Boolean equations). It is for such operations that the BDD-based characteristic-function

representation clearly subsumes the other two. The BDD-based characteristic-function

representation is attractive because it is practical even for controllers that contain some

arithmetic circuitry, and therefore for a much larger class of circuits. One of the important

avenues for further research in sequential synthesis that can lead to a significant increase

in the size of FSMs for which sequential optimization is practical is to investigate the

extent to which the BDD-based characteristic-function representation can be used to address

synthesis problems. At any level of abstraction, the ability to simulate at that level is the

key (a necessary condition) for being able to synthesize at that level. The fact that the BDD-

based characteristic-function representations are viable for traversing FSMs was presented

in [104]. The application of BDD-based characteristic-function representations for detecting

equivalent-state pairs was illustrated in [75]. It remains to be seen whether the BDD-based

characteristic-function representation can be used effectively for FSM decomposition and

state encoding.

There are two major problems with synthesizing from symbolic descriptions of se

quential circuits. The first is that the cost function is dependent on the particular synthesis

methodology that will be used at the combinational-level after encoding. The second, as de

scribed above, is the fact that the fanout of each state may have to be explicitly enumerated

to achieve any useful optimizations. Given that the number of states is exponential in the

number of latches, this fact aloneis sufficient to make synthesis from symbolic descriptions

impractical for large circuits. One approach is to use retiming and resynthesis to optimize

the sequential circuit at the logic level [79]. Unfortunately, the techniques proposed so far

have been ineffective in being able to realize substantial optimizations on controller-type

sequential circuits. A possible alternative approach to sequential synthesis at the logic-level

is the following. The circuit to be optimized canbe considered as a set of interacting sequen

tial circuits, partitioned so that the logic to be optimized lies in one of the subcircuits. The

circuits are assumed to interact through their present states. Strong division [19, 42] can

now be used to re-encode a set of wires that feed the subcircuit to be optimized at the same

time. The decoding logic block can then be appropriately substituted into the necessary

subcircuits to maintain functionality. While this is guaranteed to improve the performance

of the subcircuits from which the logic was extracted, the effect of the resubstitution is not

very deterministic. It may be worth pursuing this approach further.

It is desirable that a logic-level implementation of a sequential circuit be highly



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 157

testable. In case the initial implementation is not testable to the desired degree, synthesis

procedures can be applied that make it highly testable. If an implementation was realized

as a network of interacting sequential circuits (possibly using the algorithms presented in

Chapter 3), it may be necessary to maintain the original structure for various reasons while

applying the synthesis-for-test procedures. To that effect, procedures [6] were presented in

Chapter 5 for synthesizing non-scanirredundant interacting sequential circuits. By virtue of

these procedures, it is possible to generate don't-cares for each component submachine based

on its interaction with the environment, and subsequently to optimize each submachine

under its don't-care set, thereby maintaining the overall structure.

In recent work, it was shown that functional-level information at the register trans

fer level could be used to simplify the test generation and synthesis for test problems for

sequential [51]. These algorithms will be incorporated into flames in the near future.

Computing sequential don't cares is just one half of the synthesis for test problem. The

other half has to do with exploiting them optimally during combinational optimization.

Image computation methods, originally developed for FSM verification [28], have recently

been used for computing local don't-cares in multilevel combinational circuits [97]. These

techniques havemade it possible to use external don't-cares effectively for multilevel circuits

without having to first collapse the circuit, thereby making the exploitation of sequential

don't-cares practical. Chips for which pure non-scan testing is impractical, the partial scan

approach where selected latches are made scannable, should be investigated.

The increasing density of transistors on chips has limited the effectiveness of the

simple-minded single stuck-at fault model. An alternative approach is to use the multiple

stuck-at fault model. The main problem with the multiple stuck-at fault model is the sheer

number of fault combinations that must be considered. Synthesis procedures [4] were pre

sented in Chapter 6 for obtaining highly multiple-stuck-at-fault-testable sequential circuits,

with the multiple-fault test set generated as a by-product of the synthesis procedure. While

the synthesis procedure works for arbitrary FSMs, a synthesis procedure that would obviate

the need for pairs of states to be distinguishable in a single clock cycle is definitely more

desirable. Developing such a procedure is a topic for future research.

An alternative comprehensive fault model for digital circuits is the delay-fault

model. It has been shown [33] that the path-delay-fault model subsumes the single and

multiple stuck-at fault models. In recent work, practical synthesis approaches have been

proposed for obtaining fully-testable robustly path-delay-fault testable combinational cir-



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 158

cuits [3,32]. Unfortunately, thereare a number of problems with extendingthese approaches

to sequential circuits. Special techniques must be used even under standard scan because of

the requirement that two vectors be applied to test each fault [27]. It is possible to augment

the scan registers so that they store pairs of bits at a time, but only at the expense of an

area penalty in the form of larger registers. Delay-test generation for sequential circuits

without making the registers scannable is obviously an even more difficult problem since a

sequence of inputs that contains a pair of vectors which excites the delay fault has to be

applied. The remaining portion of the sequence then has to propagate the fault effect to the

primary outputs. With increasing transistor density, the path-delay-fault model is bound

to become increasingly necessary. Test generation and synthesis for test for delay faults for

sequential circuits is therefore a worthwhile research topic.

Logic verification is key if the complex transformations involved in sequential syn

thesis are to be validated. It was shown in Chapter 7 that a compact representation of

logic functions, namely the general Binary Decision Diagram, can be used in conjunction

with efficient ordered Binary Decision Diagram (OBDD) manipulation algorithms to check

for satisfiability, and to verify larger combinational and sequential logic circuits than previ

ously possible [9]. In particular, it has been possible to verify large and complex arithmetic

functions for which sum-of-products or OBDD representations could not be constructed.

Also, using this approach it has been possible to traverse FSMs for which the conventional

OBDD-based characteristic-function representation could not be obtained.

A synthesis system called FLAMES has been developed which incorporates some of

the algorithms described in this dissertation, some algorithms described in the dissertation

of Abhijit Ghosh [48], and other algorithms commonly used in sequential synthesis. From

the start, flames was designed as a sequential synthesis system that would be able to

manipulate networks of interacting sequential circuits. The organization and the main

features of flames are described in Appendix A.



Appendix A

FLAMES

A.l Introduction

flames is a program intended to provide a framework for experimenting with

algorithms for manipulating interacting synchronous sequential circuits. It represents an

integration of various algorithms for sequential synthesis and test developed by Srinivas De-

vadas, Abhijit Ghosh, Tony Ma and myself since 1987. The MIS-II system for combinational

logic synthesis developed in the CAD group at Berkeley provided a good starting point for

flames. There were many reasons why starting with mis-ii as the core was attractive. In

many ways, mis-ii represents a well engineered, modular piece of software designed with

the goal of making the incremental addition of new packages easy. Additionally, given that

mis-ii is a system for combinational logic synthesis, it already contains all the basic data-

structures and the core algorithms necessary for manipulating multi-level combinational

circuits, making the addition of sequential synthesis algorithms that much easier. Details

of the organization of MIS-II can be found in Richard Rudell's doctoral dissertation [92].

A parallel effort in the development of a sequential synthesis system at Berkeley is the sis

(Sequential Interactive Synthesis) system [100]. Some of the initial work done in terms of

deciding the organization of sis was instrumental in making the task of developing flames

considerably easier.

A.2 Organization of flames

The modularity of mis-ii manifests itself in the form of the relative mutual inde

pendence of the core packages and the clean functional interface to each of them. It has

159



APPENDIX A. FLAMES 160

Package Author Lines Description

assign P. Ashar, S. Devadas 1700 State encoding
cube.enum A. Ghosh, P. Ashar 2440 ISTG extraction, minimization
dbfs A. Ghosh 2890 BDD-based implicit FSM traversal
fdecom S. Devadas, P. Ashar 2005 Subroutine extraction in FSMs

gbdd P. Ashar 1500 General-BDD manipulation
hdecom P. Ashar, J. Kukula 1785 FSM decomposition by GPIs
latch E. M. Sentovich, K. J. Singh 135 Latch data structure

steed A. Ghosh 2000 Sequential test generation
subnetwork P. Ashar 790 Interacting FSM framework

Table A.l: Organization of flames

been attempted to maintain the same philosophy for each of the packages added in flames.

The various packages added in FLAMES with their authors and size are shown in Table A.l.

The size of a package is the approximate number of lines of code (computed by counting

the number of semi-colons in the .c files) in the package. The organization of flames is

described in this section.

flames is written in the C language on top of mis-ii. The basic data structure in

mis-ii for representing a circuit is the network structure. In the typical situation, all the

attributes of a circuit can be accessed given a pointer to the network structure for that

circuit. Gates in the circuit are represented by the node data structure, and the set of nodes

in a circuit is maintained as a linked list attached to the network structure. The basic data

structures for representing combinational logic circuits and the source code for maintaining

them are in the network, node and espresso packages. The reading and writing of Boolean

networks is handled by the io package, blif (Berkeley Logic Interchange Format), Berkeley

pla and eqntott equation format are the supported I/O formats. The command, io, main

and network packages in MIS-II had to be modified in FLAMES.

Sequential behavior was incorporated in FLAMES by associating latches with the

network inputs corresponding to present state lines and network outputs corresponding to

next state lines. This was done by the addition of the latch package that was developed

for sis. The latch input and latch output (which are both node structures), and the initial

and current states of a latch are stored as attributes in the latch structure. Pointers to

latch structures in a network are stored in a linked list attached to the network structure.

All the latch input and the corresponding latch pointer pairs, and the latch output and

corresponding latch pointer pairs are stored in a hash table attached to the network



APPENDIX A. FLAMES 161

structure.

Many sequential synthesis algorithms require a State Transition Table (STT) or

State Transition Graph (STG) representation. It was decided to use an ESPRESSO-type two-

level cover as the symbolic representation of the sequential circuit. The two-level cover and

other attributes associated with the STG, including the start-state information and the code

for each symbolic state, are stored in a structure attached to network. The maintenance

the two-level STT representation for the network is done by the cube_enum package.

The io package had to be modified in order to read in and write out sequential

circuits. STT representations of FSMs in the Berkeley Kiss format can be read in and

written out. For logic-level representations, the same modified BLIF representation as used

for sis was utilized. The presence of a latch in the circuit is indicated by the .latch keyword

followed in sequence by the name of the input to the latch, the output to the latch and the

initial state of the latch.

The major thrust of FLAMES was to allow sequential circuit partitioning and the

manipulation of networks of FSMs. The next step in flames was therefore, the incorpora

tion of the framework which would allow that. This was done by modifying the command

line interpreter in mis-ii so that multiple networks could be handled. A record of all the

networks currently in a mis-ii session is maintained by means of linked list attached to each

network. At any time in a flames session, there is a single active network. Unless a com

mand in flames allows the networkon which it is to operate to be named, it operateson the

active network by default. Each network has a flag attached to it which indicates whether

it is active. Obviously, only one network can have its active flag turned on at any time. It

is possible to switch context to the network of choice by means of the activate_network

command in which the network of choice is specified by its name. The names of all the

networks in the current flames session can be obtained using the print_network_names

command. The -a option in the print_network_names command gives the name of the

current active network. The source code for this framework is in the subnetwork package;

whenever networks are transformed, created, or removed, the record keeping is done by

the subnetwork package. Each subnetwork has an unambiguous parent network, and the

parent of the root network is the null network. It is up to the user to interpret the hierarchy

of subcircuits. Recursive partitioning is supported, and whenever a network is partitioned,

the subcircuits generated are considered to be the children of the original circuit. Whenever

a network is freed, all its children are also freed. The available commands for manipulating



APPENDIX A. FLAMES 162

sets of networks are merge.networks, copy.network, free_network, subtractJietwork

and extract-interface, mergejietworks combines the named networks into a single net

work, subtractJietwork creates a new network by removing a subnetwork from another,

extract-interface extracts the portion of the subnetwork (corresponding to the logic feed

ing the next state lines) that is used by (communicates with) other named networks. This is

useful for maintaining the overall functionality of the interacting FSMs when the encoding

of a single FSM is changed independently of the other FSMs.

Networks of FSMs can be obtained in a number of ways. Multiple networks can

be read in in the same FLAMES session. The parent of a network being read in is specified

by the .parent keyword in the input file. If the parent is not specified, the root network

is the default parent. Once read in, a circuit can be partitioned using one of a number of

partitioning commands. One way is by extracting the sequential/combinational functional

cone of the output/next state lines desired in each subcircuit. This facility is useful for

extracting out the logic corresponding to, for example, outputs that lie on the critical path

or outputs whose logic is difficult to test. This technique is also useful for automatically

finding cascade/parallel decompositions corresponding to the current encoding. Partitioning

can also be performed using the FSM decomposition algorithms implemented in the hdecom

package.

A number of sequential circuit manipulation algorithms have been incorporated

into flames. As mentioned, algorithms for FSM decomposition described in Chapter 3 have

been implemented in the hdecom package. FSM decomposition algorithms based on subrou

tine extraction [40] have been implemented in the f decom package. A state minimization

program based on cube-based FSM enumeration has been included in the cube_enum pack

age. Algorithms for FSM traversal and verification, including implicit breadth-first traversal

algorithms [104] and depth-first/breadth-first algorithms [49] have been implemented in the

dbf s package. State encoding algorithms including a MUSTANG-type algorithm, a Kiss-type

algorithm and a decomposition-based state encoding algorithm have been implemented in

the assign package. Test generation and redundancy removal algorithms for sequential

circuits [50] have been implemented in the steed package. The general BDD generation

and manipulation algorithms described in Chapter 7 have been implemented in the gbdd

package.



APPENDIX A. FLAMES 163

A.3 A Synthesis Strategy in FLAMES

In the typical synthesis/re-synthesis scenario, a sequential circuit or a set of in

teracting sequential circuits is read into FLAMES for optimization. The logic that needs to

be optimized is identified by first identifying, for example, the critical paths or the diffi

cult to test faults in the circuit. The sequential circuit is then partitioned accordingly and

the symbolic representation for the subcircuits to be optimized is extracted. The various

sequential and combinational optimization strategies are then applied to achieve the de

sired specifications. Finally, the optimized circuit is verified against the original circuit for
equivalence.



Bibliography

[1] V. Agrawal and K. Cheng. A complete solution to the partial scan problem. In

Proceedings of the International Test Conference, pages 44-51, September 1987.

[2] D. B. Armstrong. A programmed algorithm for assigning internal codes to sequential

machines. In IRE Transactions on Electron Computers, volume EC-11, pages 466-

472, August 1962.

[3] P. Ashar, S. Devadas, and K. Keutzer. Testability properties of multilevel logic net

works derived from binary decision diagrams. In Proceedings of the Santa Cruz Con

ference on Advanced Research in VLSI, pages 35-54, March 1991.

[4] P. Ashar, S. Devadas, and A. R. Newton. Multiple fault testable sequential circuits.

In Proceedings of the International Symposium on Circuits and Systems, pages 3118-

3121, May 1990.

[5] P. Ashar, S. Devadas, and A. R. Newton. A unified approach to the decomposi

tion and re-decomposition of sequential machines. In Proceedings of the 27th Design

Automation Conference, pages 601-606, June 1990.

[6] P. Ashar, S. Devadas, and A. R. Newton. Irredundant interacting sequential machines

via optimal logic synthesis. In IEEE Transactions on CAD, volume 10, pages311-325,

March 1991.

[7] P. Ashar, S. Devadas, and A. R. Newton. Optimum and heuristic algorithms for

an approach to finite state machine decomposition. In IEEE Transactions on CAD,

volume 10, pages 296-310, March 1991.

164



BIBLIOGRAPHY 165

[8] P. Ashar, A. Ghosh, S. Devadas, and A. R. Newton. Implicit State Transition Graphs:

Applications to logic synthesis and test. In Proceedings of the IEEE International

Conference on Computer Aided Design, pages 84-87, November 1990.

[9] P. Ashar, A. Ghosh, S. Devadas, and A. R. Newton. Combinational and sequential

logic verification using general binary decision diagrams. In International Workshop

on Logic Synthesis, May 1991.

[10] K. Bartlett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby, C. R. Morrison, R. L.

Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang. Multi-level logic minimization

using implicit don't cares. In IEEE Transactions on CAD, volume 7, pages 723-740,

June 1988.

[11] C. L. Berman. Ordered Binary Decision Diagrams and Circuit Structure. In Proceed

ings of the International Conference on Computer Desgin, pages 392-395, October

1989.

[12] D. Bostick, G. Hachtel, R. Jacoby, M. Lightner, P. Moceyunas, C. Morrison, and

D. Ravenscroft. The Boulder optimal logic design system. In Proceedings of the

IEEE International Conference on Computer Aided Design, pages 62-65, November

1987.

[13] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient implementation of a BDD

package. In Proceedings of the 27th Design Automation Conference, pages 40-45,

June 1990.

[14] D. Brand. Redundancy and don't cares in logic synthesis. In IEEE Transactions on

Computers, volume C-32, pages 947-952, October 1983.

[15] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. MIS: A multiple-

level logic optimization system. In IEEE Transactions on CAD, volume 6, pages

1062-1081, November 1987.

[16] R. Brayton and F. Somenzi. Boolean relations. In International Workshop on Logic
Synthesis, May 1989.



BIBLIOGRAPHY 166

[17] R. K. Brayton, G. D. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli. Logic

Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, Boston,

Massachusetts, 1984.

[18] R. K. Brayton, G. D. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli. Logic

Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, 1984.

[19] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli. Multilevel logic

synthesis. In Proceedings of the IEEE, volume 78, pages 264-300, February 1990.

[20] R. K. Brayton and C. McMullen. The decomposition and facorization of Boolean

expressions. In Proceedings of the International Symposium on Circuits and Systems,

pages 49-54, Rome, May 1982.

[21] R. K. Brayton and F. Somenzi. Boolean relations and the incomplete specification

of logic networks. In IFIP International Conference on Very Large Scale Integration,

pages 231-240, August 1989.

[22] M. A. Breuer and A. D. Friedman. Diagnosis and Reliable Design of Digital Systems.

Computer Science Press, 1976.

[23] R. Bryant. Graph-based algorithms for Boolean function manipulation. In IEEE

Transactions on Computers, volume C-35, pages 677-691, August 1986.

[24] J. Burch. Using bdds to verify multipliers. In Proceedings of 1991 International

Workshop on Formal Methods in VLSI Design, January 1991.

[25] J. Burch, E. Clarke, K. McMillan, and D. Dill. Sequential circuit verification using

symbolic model checking. In Proceedings of the 27th Design Automation Conference,

pages 46-51, June 1990.

[26] A. Casotto, editor. Oct Tools Distribution 5.0. Electronics Research Laboratory,

University of California, Berkeley, March 1991.

[27] K-T. Cheng, S. Devadas, and K. Keutzer. Robust delay-fault test generation and

synthesis for testability under a standard scan design methodology. In Proceedings of

the 28th Design Automation Conference, June 1991. 80-86.



BIBLIOGRAPHY 167

[28] 0. Coudert, C. Berthet, and J. C. Madre. Verification of sequential machines using

functional Boolean vectors. In IFIP Conference, November 1989.

[29] J. Darringer, D. Brand, J. Gerbi, W. Joyner, and L. Trevillyan. LSS: A system for

production logic synthesis. IBM J. Res. Develop., 28(5):537-545, September 1984.

[30] S. Devadas. Approaches to multi-level sequential logic synthesis. In Proceedings of

the 26th Design Automation Conference, pages 270-276, June 1989.

[31] S. Devadas and K. Keutzer. Boolean minimization and algebraic factorization proce

dures for fully testable sequential machines. In Proceedings of the IEEE International

Conference on Computer Aided Design, pages 208-211, November 1989.

[32] S. Devadas and K. Keutzer. Design ofintegrated circuits fully testable for delay faults

and multifaults. In Proceedings of the International Test Conference, pages 284-293,

October 1990.

[33] S. Devadas and K. Keutzer. Necessary and sufficient conditions for robust delay fault

testability. In Proceedings of the Sixth M.I.T. Conference on Advanced Research in

VLSI, pages 221-238, April 1990.

[34] S. Devadas, K. Keutzer, and S. Malik. A synthesis-based approach to test genera

tion and compaction for multifaults. In Proceedings of the 28th Design Automation

Conference, pages 359-365, June 1991.

[35] S. Devadas, H-K. T. Ma, and A. R. Newton. On the verification ofsequential machines

at differing levels of abstraction. In IEEE Transactions on CAD, volume 7, pages

713-722, June 1988.

[36] S. Devadas, H-K. T. Ma, A. R. Newton, and A. Sangiovanni-Vincentelli. MUSTANG:

State assignment of finite state machines targeting multi-level logic implementations.

In IEEE Transactions on CAD, volume 7, pages 1290-1300, December 1988.

[37] S. Devadas, H-K. T. Ma, A. R. Newton, and A. Sangiovanni-Vincentelli. Optimal

logic synthesis and testability: Two faces of the same coin. In Proceedings of the

International Test Conference, pages 3-13, September 1988.



BIBLIOGRAPHY 168

[38] S. Devadas, H-K. T. Ma, A. R. Newton, and A. Sangiovanni-Vincentelli. A synthesis

and optimization procedure for fully and easily testable sequential machines. In IEEE

Transactions on CAD, volume 8, pages 1100-1107, October 1989.

[39] S. Devadas, H-K. T. Ma, A. R. Newton, and A. Sangiovanni-Vincentelli. Irredundant

sequential machines via optimal logic synthesis. In IEEE Transactions on CAD,

volume 9, pages 8-18, January 1990.

[40] S. Devadas and A. R. Newton. Decomposition and factorization of sequential finite

state machines. In IEEE Transactions on CAD, volume 8, pages 1206-1217, Novem

ber 1989.

[41] S. Devadasand A. R. Newton. Exact algorithms foroutput encoding, state assignment

and four-level Boolean minimization. In Proceedings of the Twenty Third Hawaii

International Conference on the System Sciences, volume I, pages 387-396, January

1990.

[42] S. Devadas, A. R. Wang, A. R. Newton, and A. Sangiovanni-Vincentelli. Boolean

decomposition in multi-level logic optimization. In Journal of Solid State Circuits,

pages 399-408, April 1989.

[43] T. A. Dolotta and E. J. McCluskey. The coding of internal states of sequential ma

chines. In IEEE Transactions on Electronic Computers, volume EC-13, pages 549-

562, October 1964.

[44] E. B. Eichelberger and T. W. Williams. A logic design structure for LSI testability.

In Proceedings of the 14th Design Automation Conference, pages 462-468, June 1977.

[45] S. Friedman. Data Structures for Formal Verification of Circuit Designs. PhD thesis,

Princeton University, January 1990. Technical Report CS-TR-236-90.

[46] M. Fujita, H. Fujisawa, and N. Kawato. Evaluation and improvements of boolean

comparison method based on binary decision diagrams. In Proceedings of the IEEE

International Conference on Computer Aided Design, pages 2-5, November 1988.

[47] M.R. Garey and D.S. Johnson. Computers and Intractability, A Guide to the Theory

of NP-Completeness. W.H. Freeman, New York, second edition, 1979.



BIBLIOGRAPHY 169

[48] A. Ghosh. Techniques for testing and verification of sequential circuits. PhD thesis,

University of California, Berkeley, 1991.

[49] A. Ghosh and S. Devadas. A Mixed Depth-First/Breadth-First Traversal Technique

for Sequential Logic Verification. In International Workshop on LogicSynthesis, May

1991.

[50] A. Ghosh, S. Devadas, and A. R. Newton. Test generation for highly sequential

circuits. In Proceedings of the IEEE International Conference on Computer Aided

Design, pages 362-365, November 1989.

[51] A. Ghosh, S. Devadas, and A. R. Newton. Sequential test generation at the register

transfer and logic levels. In Proceedings of the 27th Design Automation Conference,

pages 580-586, June 1990.

[52] A. Ghosh, S. Devadas, and A. R. Newton. Verification of interacting sequential cir

cuits. In Proceedingsof the 27th Design Automation Conference, pages 213-219, June

1990.

[53] S. Ginsburg. A synthesis technique for minimal state sequential machines. In IRE

Transactions on Electronic Computers, volume EC-8, pages 13-24, March 1959.

[54] P. Goel. An implicit enumeration algorithm to generate tests for combinational logic

circuits. In IEEE Transactions on Computers, volume C-30, pages 215-222, March

1981.

[55] D. Gregory, K. Bartlett, A. de Geus, and G. Hachtel. Socrates: A system for auto

matically synthesizing and optimizing combinational logic. In Proceedings of the 23rd

Design Automation Conference, pages 79-85, June 1986.

[56] G. D. Hachtel, R. M. Jacoby, K. Keutzer, and C. R. Morrison. On the properties of

algebraic transformations and the multifault testability of multilevel logic. In Proceed

ings of the IEEE International Conference on ComputerAided Design,pages422-425,

November 1989.

[57] G. D. Hachtel, R. M. Jacoby, K. Keutzer, and C. R. Morrison. On the relationship

between area optimization and multifault testabilty of multilevel logic. In Proceedings

of the International Workshop on Logic Synthesis, June 1989.



BIBLIOGRAPHY 170

[58] J. Hartmanis. Symbolic analysis of a decomposition of information processing. In

Inform. Control, volume 3, pages 154-178, June 1960.

[59] J. Hartmanis. On the state assignment problem for sequential machines I. In IRE

Transactions on Electronic Computers, pages 157-165, June 1961.

[60] J. Hartmanis and R. E. Stearns. Algebraic Structure Theory of Sequential Machines.

Prentice-Hall, Englewood Cliffs, N. J., 1966.

[61] F. C. Hennie. Finite-State Models for Logical Machines. Wiley, New York, New York,

1968.

[62] S. J. Hong, R. G. Cain, and D. L. Ostapko. MINI: A heuristic approach for logic

minimization. In IBM journal of Research and Development, volume 18, pages 443-

458, September 1974.

[63] D. A. Huffman. The synthesis of sequential switching circuits. In J. Franklin Institute,

volume 257, no. 3, pages 161-190,1954.

[64] D. A. Huffman. The synthesis of sequential switching circuits. In J. Franklin Institute,
volume 257, no. 4, pages 275-303,1954.

[65] R. M. Karp. Some techniques for the state assignment of synchronous sequential

machines. In IEEE Transactions on Electron Computers, volume EC-13, pages 507-

518, October 1964.

[66] J. Kim and M. M. Newborn. The simplification of sequential machines with input

restrictions. In IEEE Transactions on Computers, volume C-20, pages 1440-1443,

December 1972.

[67] I. Kohavi and Z. Kohavi. Detection ofmultiple faults in combinational logic networks.

In IEEE Transactions on Computers, volume C-21, pages 556-568, June 1972.

[68] Z. Kohavi. Secondary state assignment for sequential machines. In IEEE Transactions

on Electron Computers, volume EC-13, pages 193-203, June 1964.

[69] Z. Kohavi. Switching and Finite Automata Theory. McGraw-Hill Book Company,

New York, New York, second edition, 1978.



BIBLIOGRAPHY 171

[70] K. Krohn and J. Rhodes. Algebraic theory of machines. In Proceedings Symposium

on Mathematical Theory of Automata. Polytechnic Press, N.Y., 1962.

[71] L. Lavagno, S. Malik, R. Brayton, and A. Sangiovanni-Vincentelli. MIS-MV: Opti

mization of multi-level logic with multiple-valued inputs. In Proceedings of the IEEE

International Conference on Computer Aided Design, pages 560-563, November 1990.

[72] C. E. Leiserson, F. M. Rose, and J. B. Saxe. Optimizing synchronous circuitry by

retiming. In Proceedings of Third CalTech Conference on VLSI, March 1983.

[73] B. Lin. July 1989. Personal communication.

[74] B. Lin and A. R. Newton. Synthesis of multiple-level logic from symbolic high-level

description languages. In IFIP International Conference on Very Large Scale Inte

gration, pages 187-196, August 1989.

[75] B. Lin, H. Touati, and A. R. Newton. Don't care minimization of multi-level sequential

networks. In Proceedings of the IEEE International Conference on Computer Aided

Design, pages 414-417, November 1990.

[76] R. Lisanke, editor. FSM Benchmark Suite. Microelectronics Center of North Carolina,

Research Triangle Park, North Carolina, 1987.

[77] H-K. T. Ma. Technologies for Logic Validation of Digital Circuits. PhD thesis, Uni

versity of California, Berkeley, 1989.

[78] H-K. T. Ma, S. Devadas, A. R. Newton, and A. Sangiovanni-Vincentelli. Test genera

tion for sequential circuits. In IEEE Transactionson CAD, pages 1081-1093, October

1988.

[79] S. Malik, E. M. Sentovich, R. Brayton, and A. Sangiovanni-Vincentelli. Retiming and

resynthesis: Optimizing sequential circuits using combinational techniques. In IEEE

Transactions on CAD, volume 10, pages 74-84, January 1991.

[80] S. Malik, A. R. Wang, R. Brayton, and A. Sangiovanni-Vincentelli. Logic Verification

using Binary Decision Diagrams in a Logic Synthesis Environment. In Proceedings of

the IEEE International Conference on Computer Aided Design, pages 6-9, November

1988.



BIBLIOGRAPHY 172

[81] W. Maly. Realistic fault modelling for VLSI testing. In Proceedings of the 24th Design

Automation Conference, pages 173-180, June 1987.

[82] M. P. Marcus. Derving maximal compatibles using Boolean algebra. In IBM Journal,

pages 537-538, November 1964.

[83] E. J. McCluskey. Minimization of Boolean functions. Bell Lab. Technical Journal,

35, Nov. 1956.

[84] G. H. Mealy. A method of synthesizing sequential circuits. In Bell System Tech. J.,

volume 34, pages 1045-1079, September 1955.

[85] G. De Michefi. Symbolic design of combinational and sequential logic circuits im

plemented by two-level macros. In IEEE Transactions on CAD, volume 5, pages

597-616, September 1986.

[86] G. De Michefi, R. K. Brayton, and A. Sangiovanni-Vincentelli. Optimal state as

signment of finite state machines. In IEEE Transactions on CAD, volume 4, pages

269-285, July 1985.

[87] G. De Michefi, A. Sangiovanni-Vincentelli, and T. Villa. Computer-aided synthesis of

PLA-based finite state machines. In Proceedings of the IEEE International Conference

on Computer Aided Design, pages 154-156, November 1983.

[88] E. F. Moore. Gedanken-experiments on sequential machines. In Automata Studies,

pages 129-153. Princeton University Press, Princeton, N.J., 1956.

[89] M. C. Paull and S. H. Unger. Minimizing the number of states in incompletely

specified sequential circuits. In IRE Transactions on Electronic Computers, volume

EC-8, pages 356-357, September 1959.

[90] W. V. Quine. A way to simplify truth functions. Am. Math, monthly, 62, Nov. 1955.

[91] S. M. Reddy and R. Dandapani. Scan design using standard flip-flops. In IEEE

Design and Test of Computers, volume 4, pages 52-54, February 1987.

[92] R. Rudell. Logic Synthesis for VLSI Design. PhD thesis, University of California,

Berkeley, 1989.



BIBLIOGRAPHY 173

[93] R. Rudell and A. Sangiovanni-Vincentelli. Exact minimization ofmutiple-valued func

tions for PL A optimization. In Proceedings of the IEEE International Conference on

Computer Aided Design, pages 352-355,1986.

[94] R. Rudell and A. Sangiovanni-Vincentelli. Multiple-valued minimization for PLA

optimization. In IEEE Transactions on CAD, volume 6, pages 727-751, September

1987.

[95] A. Saldanha, T. Villa, R. K. Brayton, and A. Sangiovanni-Vincentelli. A framework

for satisfying input and output constraints. In Proceedings of the 28th Design Au

tomation Conference, pages 170-175, June 1991.

[96] G. Saucier, M. C. Depaulet, and P. Sicard. ASYL: A rule-based system for con

troller synthesis. In IEEE Transactions on CAD, volume CAD-6, pages 1088-1097,

November 1987.

[97] H. Savoj, R. K. Brayton, and H. J. Touati. Use of image computation techniques in

extracting local don't cares and network optimization. In International Workshop on

Logic Synthesis, May 1991.

[98] D. Scherz and G. Metze. A new representation for faults in combinational digital

circuits. In IEEE Transactions on Computers, August 1972.

[99] M. Schulz and E. Auth. Advanced automatic test patten generation and redundancy

identification techniques. Proceedings of the 18th International Symposium on Fault-

Tolerant Computing, June 1988.

[100] E. M. Sentovich. SIS: An interactive system for the synthesis of sequential logic

circuits. 1991. Unpublished document.

[101] H. Simonis. Formal verification of multipliers. In Proceedings of 1991 International

Workshop on Formal Methods in VLSI Design, January 1991.

[102] R. E. Stearns and J. Hartmanis. On the state assignment problem for sequential

machines II. In IRE Transactions on Electronic Computers, pages 593-604, December

1961.

[103] A. Stolzle. A VLSI wordprocessing subsystem for a real time large vocabulary con

tinuous speech recognition system. In MS Thesis, September 1989.



BIBLIOGRAPHY 174

[104] H. Touati, H. Savoj, B. Lin R. K. Brayton, and A. Sangiovanni-Vincentelli. Implicit

state enumeration of finite state machines using BDDs. In Proceedings of the IEEE

International Conference on Computer Aided Design, pages 130-133, November 1990.

[105] J. H. Tracey. Internal state assignment for asynchronous sequential machines. In IRE

Transactions on Electronic Computers, pages 551-560, August 1966.

[106] T. Villa and A. Sangiovanni-Vincentelli. NOVA: State assignment of finite state

machines for optimal two-level logic implementations. In IEEE Transactions on CAD,

volume 9, pages 905-924, September 1990.

[107] W. Wolf, K. Keutzer, and J. Akella. A kernel finding state assignment algorithm for

multi-level logic. In Proceedings of the 25th Design Automation Conference, pages

433-438, June 1988.

[108] S. Yang and M. Ciesielski. On the relationship between input encoding and logic

minimization. In Proceedings of the Twenty Third Hawaii International Conference

on the System Sciences, volume I, pages 377-386, January 1990.

[109] M. Yoefi. The cascade decomposition of sequential machines. In IRE Transactions

Electronic Computers, volume EC-10, pages 587-592, April 1961.

[110] M. Yoefi. Cascade parallel decomposition of sequentialmachines. In IRE Transactions

on Electronic Computers, volume EC-12, pages 322-324, June 1963.

[Ill] H. P. Zeiger. Loop-free Synthesis of Finite-State Machines. PhD thesis, Massachusetts

Institute of Technology, Cambridge, 1964.



vitunic® ic.Berkeley.EDU

Printer queue: Ips20a
Started: Wed May 27 13:31:07 1992

Digital Equipment Corporation

ULT«V

stdin

PrintServer 20



2.60

2.40

2.20

2.00

1.80

1.60

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00

-0.20

-0.40

-0.60

-0.80

-1.00

10.55 10.60

X Graph

10.65 10.70 10.75 10.80 10.85

diffs

diffs

Xxl0(



kennish@kabuki.berkeley.edu

nerd_report

Printer queue: Ips20a
Started: Wed May 2713:40:22 1992

Digital Equipment Corporation

ULTHV PrintServer 20



A Quantitative Measure of Differential Social Abilities:
Nerd Test Results *

Linda A. Kamas

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

Abstract

This report investigates and documents the percent
nerdity of a sample of 51 subjects from the Electrical
Engineering and Computer Science graduate student
community at the University of California at Berke
ley.

1 Introduction

It has been postulated that those whose chosen av
ocation is in an area such as Electrical Engineering
(EE) and Computer Science (CS) tend to have cer
tain differential social abilities. This differential set

of social abilities is often termed "nerdity" and thus,
he or she who posesses such qualities is often termed
a '*nerd." This term has gonein and out of style over
time with both positive and negative connotations;
the positive connotations being that one is particu
larly adept at using a computer or has other, usually
technical, knowledge; the negative being that one
will neglect one's hygiene, underdevelop other in
terpersonal skills and and de-emphasize verbal skills
and thus speak in long and convoluted sentences in
exchange for the time invested in developing techni
cal knowledge.

In order to quantify these qualities, a "Nerd Test"
(see Appendix A) was developed by engineers at

'This work has been supported by cooperation of the
'Happy Hour" group.

MIT, a reputed nerd Mecca. This report documents
the results of applying this test to those in the Berke
ley EECS graduate community and the reactions of
some respondents.

2 Experimental Procedures

The Nerd Test was distributed through the "Happy
Hour" mailing list, a list of over 100 people in the
Berkeley EECS community who are at least inter
ested in knowing about a social activity at least once
a week. Given the description of subjects, this is ad
mittedly a non-random sampling of the department
and could result in a skewed data set. However, since
there is no similar previous data, this simple proce
dure will at least give some insight. (And besides,
sociologists do this all the time, except they only
survey their friends and sometimes they don't even
keep data. They then write a report based on their
feelingsabout the results. Often, a major USA news
paper hears about the results and it gets printed.)

The interpretation of questions could result in a
tolerance of about plus or minus 3 points. In partic
ular, it was not clear whether to count the Star Trek
movies as episodes. Also, some respondents were not
sure exactly what a rhetorical question was.

Results were received by electronic mail and in
person over a period of approximately three weeks
starting on April 2, 1992.

It is not known how many respondents printed



out the test and tabulated by paper, but at least
two respondents were documented to have taken and
tabulated their scores by computer. One, whom we
will call by the fictitious name "Henryc" to protect
his identity, responded as follows.

Results from nerd test taken, 19 July 1991.
After answering "yes" or "no" to each ques
tion.

% grep "* yes" nerd | wc -w
48

And I have confirmed that grepping for
"no" gives me 52.

One respondent, whom we will fictitiously call
"Kennish" made the following guidelines:

The central committee on tests and social

graces has determined that the minimum
acceptable score for an EE major is 14, and
that of a respectable EE major is 25. Fur
thermore, the committee requests that any
one scoring over 90 seek help.

3 Experimental Results

With the data obtained from 51 respondents, (see
Appendix B), we have the following statistical re
sults:

average: 47.69
median: 49

standard deviation: 9.98

range: 32 to 72.

However, those tested in a social setting (party) pro
vided by one of the Happy Hour founders had the
following statistical results:

average: 43.82
median: 40

standard deviation: 9.81

range: 32 to 71

compared to those not polled in a social setting:

average: 50.89
median: 51

standard deviation: 9.11

range: 32 to 72,

with the standard definitions of average, median,
and standard deviation [1]. One respondent in the
social setting, who was thought to have received an
excessively low score, 25, was audited and was found
to have had an actual score of 33. This implies that
perhaps the difference in statistical data from those
in a social setting could be attributed to environ
mental social pressures causing one to answer "no"
to borderline questions more frequently than respon
dents being tested elsewhere. It is also possible that
the group of respondents who would actually engage
in social activity such as a party would have lower
nerd scores. Also, respondents exhibited a certain
amount of denial about their nerdiness, which could
affect scores from those tested in all settings.

As a reference, the average of 21 respondents at
the Carnegie-Mellon University graduate psychology
department was 35 with a range from 20 to 51. How
ever, the CMU Nerd Test distributor comments:

We're having great fun assessing the nerdi
ness of the psych, dept. However, we've
concluded that this test only taps the
techno-geek aspects of nerdiness.

There were 6 respondents who were not in the CMU
group and not in the EECS community. Their aver
age score was 23.33

s

4J

4

3J

3

15

2

1-S

UCB EECS Chads

i
40 SO 60 70 tO 90 lOO

Wwd PmccDtU—

Figure 1: All EECS Grads Tested



UCB EECS Grids Polled at Po^y

Figure 2: EECS Grads Tested in a Social Setting

4 Conclusions

The 51 subjects from the Electrical Engineering
and Computer Science graduate community at UC
Berkeley had an insignificantly higher nerd score
average (47.69) than the graduate psychology de
partment at Carnegie-Mellon University (35) and a
slightly higher average than the others tested that
were not in the EECS community (23.33). This im
plies that nerd-like tendencies are only slightly more
prevalent in the EECS department. However, other
factors, such as denial about nerdiness could have
caused respondents to report an artificially lower
score.

A The Nerd Test

Score one point for each YES. The score is%nerdity.
1) Have you ever used a computer? If the answer is
no, try taking the Baker House Purity Test.
2) Have you ever programmed a computer?
3) Have you ever built a computer?
4) Done #2 continuously for more than four hours?
5) Done #2 continuously for more than eight hours?
6) ? (For those non-MIT students out there, this
translates as, "Do/did you major in electrical engi
neering or computer science?")
7) Do you wear glasses?
8) Are your glasses broken (e.g. taped)?
9) Is your vision worse than 20/40?
10) Worse than 20/80?

11) Are you legally blind?
12) Have you ever asked a question in lecture?
13) Have you ever answered a question in lecture?
14) Have you ever corrected a professor?
15) Have you ever answered a rhetorical question?
16) Do you sit in the front row?
17) Do you take notes in more than one color?
18) Have you ever worn a calculator?
19) Do you read science fiction?
20) Have you ever used a microscope?
21) Have you ever used a telescope?
22) Have you ever used an oscilloscope?
23) Is your weight less than your IQ?
24) Have you ever done #2 on Friday, Saturday, and
Sunday of the same weekend?
25) Have you ever done #2 past 4 am?
26) Have you ever done #2 with someone of the ap
propriate (either or both, your choice) sex (besides
your consultant)?
27) Have you ever done #2 for money?
28) Do you have a Rubik's Cube?
29) Can you solve it?
30) Without the book?
31) Without looking?
32) Do you have acne?
33) Do you have greasy hair?
34) Are you unaware of it?
35) Have you ever bought anything from Radio
Shack?

36) From Heathkit?
37) Do you know trigonometry?
38) Do you know calculus?
39) Do you know Maxwell's Equations?
40) Do you have them on a t-shirt?
41) Have you ever dissected anything?
42) Do you know pi past five decimal places?
43) Do you know e past five decimal places?
44) Do you own more than $ 500 in electronics (ex
cluding stereo)?
45) More than $ 1000?
46) More than $ 2500?
47) Have you ever built more than $ 2500 worth of
electronics?

48) Have you ever watched Dr. Who?
49) More than three times in the same night?



50) Have you ever read The Hitchhiker's Guide to
the Galaxy'?
51) Was your SAT math score more than 300 points
higher than your verbal?
52) Have you ever done homework on a Friday night?
53) Have you ever pulled an all-nighter?
54) Have you ever redesigned a major household ap
pliance?

55) Have you ever played a computer game?
56) Done #55 in the last three months?
57) Done #55 in the last three weeks?
58) Have you ever written a computer game?
59) Are your pants too short?
60) Do your socks mismatch?
61) Have you used a chemistry set?
62) After the age of 13?
63) Have you ever played D & D (or any other role-
playing game)?
64) Since high school?
65) Have you ever entered a science fair?
66) Did you win?
67) Do you own a digital watch?
68) Does it play music?
69) Does it have a calculator?
70) Have you ever used a rare earth element?
71) Do you own a CRC?
72) Do you own a CRT?
73) Do you know RPN?
74) Do you own a laser (over 1 raw)?
75) Were you ever on a chess team?
76) A debate team?
77) Do you know more than three programminglan
guages?
78) More than eight?
79) Have you ever made a technical joke?
80) Did no one get it?
81) Can you name more than ten Star Trek episodes?
82) Are you socially inept?
83) Do you own a pencil case?
84) Do you wear it?
85) Do you know Schrodinger's Equation?
86) Have you ever solved it?
87) Have you ever used the word "asymptotic"?
88) Can you count in binary?
89) Have you ever broken into a computer system?

90) A government system?
91) Have you ever changed your bank account?
92) Changed someone else's?
93) Done #92 for money?
94) Have you ever inhaled helium?
95) Do you know the Latin name for the fruit fly?
96) Do you own anything that is radio controlled?
97) Have you ever interpolated?
98) Have you ever extrapolated?
99) Have you ever used a modem?
100) Have you ever reached sexual climax while do
ing #2?

B Raw Data

Percent Nerdity of EECS grads:

Malik Audeh 39#
Steve Burgett 50
Tim Callahan 39#
Ben Bonham 44#
Bart Bombay 35#
Lisa Buckman 33# *
Ed Chang 50
Henry Chang 55**
Phyllis Chang 38#
Lennard Chen 42#
Cormac Conroy 48#
Mike Daumer 35#
Allen Downey 40#
Eric Felt 50

John Gamelin 38#
Heather Harkness 39

Soren Hein 48

Kevin Heppell 55#
Timothy Hu 72
Anna Ison 32#
Gary Jones 48
Gani Jusuf 60

Alan Kamas 55

Linda Kamas 54

Peter Kennedy 49#
John Kohl 62#
John Krick 35#
Josh Lack 38#



Sherry Lee
Chris Lennard

Ethan Miller

Danny Miranda
Robert Neff

Ken Nishimura

Mark Noworolowski

Fred Obermeier

Bruce Parnas

Ruth Rosenholtz

Steven Scole

Ben Sheng
Henry Sheng
Costas Spanos
Susan Streisand

Kiran Thakare

Dawn Tilbury
Greg Uehara
Greg Walsh
Andrew Wang
Todd Weigandt
Denise Wolf

Wayne Wonchaba
Others:

Peter Beerel

Greta Gize

Betty Kamas
Chuck Kamas

CMU Psych Dept.
Eleen Kamas

Rafi Laufer

Lisa Nathanson

Hieu Nguyen
Dave Ofelt

Pora Park

Eric Taylor

35

53***

54

49

48

52

53

70

37#
54#
51

43

51

50

44

71#
35

32

55

64

40 #
47

55 #

****

****: Answered "yes" to question 100.
++: Has immediate family or is married to an

engineer.

References

[1] C. W. Helstrom, Probability and Stochastic Pro
cesses for Engineers. MacMillan Publishing Co.,
1984.

44 (Stanford Grad)
22 (B.A. Psych)
21 (B.A. Psych)++
61 (BSEE)
35 (the average of 21 respondents)
36 (B.A. Psych, B.A. Math)++
25 (Math Grad)
15 (B.A. Psych)
37 (Math Grad, but did B.S. in EE)
49 (Stanford Grad) .
20 (B.A. Honors, Rhetoric)++
36 (BSEE)

#: Polled at party
*: Received 25 before getting audited.
**: "To my horror, I scored 7 points more than I

did just 9 months ago."
***: "He puts his pencils in a tennis ball can case,

does that count as a pencil case? I did see him wear
ing it in his pocket today. And I did ask him, "Is
that a tennis ball can case in your pocket, or aie you
just...**


	ERL-92-62 (1 of 3)
	ERL-92-62 (2 of 3)
	ERL-92-62 (3 of 3)

