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Abstract

To date, no investigation into the effect of device modelling upon circuit analysis has been com

pleted except in the case of piecewise linear representations. In this report a theoretical study of

analysis techniques which could exploit the properties of low-order piecewise polynomial model

descriptions is presented. The applicability is examined for analysis at both the nonlinear and

differential equation level. The only approach which appears to present hope for further speed

up, beyond direct exploitation of the ease in computing derivatives for the Jacobian matrix con

struction, is one allowing selective updating of the set of piecewise-polynomial circuit relations.

A-GLlji/LSl.
Professor A. Richa2r<T" Newton

Research Advis;



Acknowledgements

I would like to thank my research advisor, Prof. A. Richard Newton, whose drive finally

motivatedme to organise this material into acoherent whole. I also extendmy gratitutude to those

who persevered in reading this work and offering constructive criticism, namely Prof. Donald

Pederson, J. Mark Noworolski andJaijeet Roychowdhury.

Thanks, of course, are due also to some who may never read this report but whose

friendship and support are as critical to its creation as any technical discussions: Mark, Gary,

Adrian, Don, Richard, Abhijit, Eric, Dorothy, Sara, Nicola, Michelle, Lilia, Mum, Dad andToffa.

I would like to acknowledge the author of the spell check program because of the 4-b'

(British) option and the restauranteurs of North Side for providing sufficient variety for a year's

worth of lunches.

This work was supported in part by the Semiconductor Research Corporation under

contract number91-DC-008 and by the Digital Equipment Corporation. Theirsupport is gratefully

acknowledged.



Contents

List of Figures iii

1 Introduction 1

1.1 Formulating the Problem 1
1.2 Solving the Problem - Existing Approaches 2

1.2.1 The Hierarchy of a Circuit Simulator 2
1.2.2 Direct Methods 3

1.2.3 Relaxation Methods 5

1.3 Speeding Up the Analysis 9
1.3.1 At The Problem Level 9

1.3.2 At The Differential Equation Level 10
1.3.3 At The Non-Linear Equation Level 10
1.3.4 At The Linear Equation Level 12

1.4 The Reduced-Order Model 13

1.4.1 The Katzenelson Algorithm 14
1.4.2 The Low-Order Polynomial Model 17

1.5 Report Organization 17

2 The Nonlinear Equation Level (NL) 19
2.1 Formulating a Linear System ofEquations (NL.LE) 19

2.1.1 Application to Newton Raphson techniques 19
2.1.2 Generalizing the Katzenelson Algorithm 21

2.2 Solving Without the Need For Global Linearization (NL.DE) 26
2.2.1 The Explicit Solution 27
2.2.2 The Relaxation Approach 31

2.3 Practicality of Application to the NL Level 34

3 The Nonlinear, First Order Differential Equation Level (DE) 36
3.1 Formulating a System of Nonlinear Equations (DE.NL) 36

3.1.1 LMSMethods 36

3.1.2 Time Step Restriction 38
3.2 Solving Without Formulating Global System of Nonlinear Equations (NL.NL) . . 39

3.2.1 Decoupled LMS Methods 39



11

3.2.2 The Qosed-Form Solution to O.D.E's: 41

3.3 Practicality of Application to the DE Level 45

4 Conclusions: 46

Bibliography 48

A 50

A.1 Guaranteed Convergence of Katzenelson 50



Ill

List of Figures

1.1 Analysis Hierachy of a Circuit Simulator 2
1.2 CompanionModelfor Capacitors using TR 3
1.3 Illustrating NRfor a simple example 4
1.4 Waveform Relaxation applied to Ring Oscillator 8
1.5 Piecewise-Polynomial Modelling Schemes 11
1.6 Computation Timefor Direct Methods Approach-Resistive Network 13
1.7 Computation Timefor Direct Methods Approach - MOS Pass Gate Network ... 14

2.1 The Corner-Point Problem 20

2.2 Example Illustrating Possible Circuitous Nature ofthe Katzenelson Algorithm . . 22
2.3 Violation ofthe Single-Solution-per-Region Property 24
2.4 Using NR to find Plane ofIntersection with Solution Path 26
2.5 Simple Two Terminal Device Nonlinear Circuit 27
2.6 Series I Parallel Circuit Reduction 28

2.7 Dependence of Model DescriptionUponExplicitSolvability Property 29
2.8 Model and Local Approximation PolynomialDescriptions 30
2.9 CounterExampleto Moving in DirectionofInvalidSolution 33

3.1 Multiplier Construction Using Second Order Nonlinearities 37
3.2 Computing Restricted Time Stepfor Simple Circuit 38
3.3 Diagramatic RepresentationofStep in WR 40
3.4 DependenceofPolynomialDescription in Time uponTime-Steps ofLocal Nodes . 41
3.5 Simple Nonlinear Capacitor Example 43



Chapter 1

Introduction

Circuit simulation has been a critical part of integrated circuit (IC ) design since the

1970's. Beyond its use as a verification tool, circuit simulators have become essential to the

selectionand optimization of parameter values in predetermined topologies. They play such a key

rolein today's industry thatbeing ableto speedup the simulationprocessby even a small percentage

can translate to significant reductions in research and development expenditure.

This report contains an examination of the possibility of reducing the cost of simulation

by exploiting the relationship between low-orderpolynomialdescriptionsofcircuitelement models

and circuit analysistechniques. In particular the major focus is time-domain transientanalysis, the

most computationally expensive aspectof circuit simulation today. A thorough examination of the

applicability of reduced-order modelling ( ROM ) is presented for every level of the simulation

hierarchy.

1.1 Formulating the Problem

The circuit is represented in the form of a net-list which provides a description of the

interconnection of devices and input sources. Throughapplication of Kirchoff's Current / Voltage

Laws and the constitutive branchequations,a set of nonlinear first-order differential equations can

be extracted. Hence, the nonlineartime domain circuitsimulation problem can be reduced to rinding

the solution to the arbitrarilycomplex relationsof the form :

f(z(t),x(t),u(t)) = 0, 0<t<T (1.1)



where x(t) e &n is a vectorof nodevoltages and branch currents at time t, z(t) € &n is a vector

of time derivatives and u(t) € 9ftn is the vectorof inputsources at time t.

1.2 Solving the Problem - Existing Approaches

1.2.1 The Hierarchy of a Circuit Simulator

It is not possible to find closed-form solutions to the set of describing equations in the

general case. Hence, a nested iterative approach is taken [18] as shown in Figure 1.1.

DE

Problem

Non-Linear
First Order DE'a k*

DE.NL

NL
Non-Linear

Algebraic Eqns

NL.LE

LE
Simulataneous

Linear Equations

.* Linear

V Relaxation

Analysis technique which is not plausible in the case
of arbitrary model representation

Possibility of improving existing analysis technique
through exploitation of form of model descriptions

Analysis not affected by model representation

Figure 1.1: Analysis Hierachy of a Circuit Simulator

There are essentially two levels of reduction below the nonlinear, first-order differential

equation (DE) level. Toextract asetofnonlinearalgebraic equations from thedifferential equations,

integration methods are used, most commonly Linear Multistep ( LMS ) methods. In this way,



derivative-dependent elements such as capacitors are reduced to companion models depending only

on the independent variables at past points and those being computed at the present time point. For

example, SPICE defaults to the Trapezoidal Implicit Backwards Differentiation Formula (TR) [16]

[12]:

nn^=2Vn^~Vn-3in (1.2)
"n+l

For capacitors, the following relationship is obtained:

1C 1C
=> i„+i = t vn+\ - vn - i„ = Gn+ivn+i + Icn+l (1.3)

which generates the companion model as shown in Figure 1.2.

+

V
i

Trapazoidal
Rule

Figure 1.2: Companion Model for Capacitors using TR

Trapezoidal rule is used as it is the lowest-order A-stable method (stable only for stable

systems) which experience has shown to give good results for practical circuits [16].

1.2.2 Direct Methods

Direct methods are a set techniques used to solve the nonlinear (NL) equation level

problem. The nonlinear equations are reduced to the linear equation (LE) level which can be solved

explicitly. Each solution thus obtained is taken as a point to reformulate a set of linear equations

from the nonlinear ones thereby providing the basis for an iterative solution technique for the NL

equations.

Reduction of a set of NL equations of the form:

f'(x(tn),u(tn)) = 0, to<tn<T (1.4)

to a set of linear equations:

A\x\, = b\ ith iteration (1.5)

is achieved by Newton-Raphson (NR) techniques. That is, linearization is achieved by finding all

derivatives of the set of NL eequations at the initial guess or previous iteration position. This is the
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same approach that is taken to solve for the dc operatingconditions.

The formulation:

J(xi)**« = J(*i).*i -/(«i) (1.6)

where J(x*n) is the Jacobian at iteration i, given by taking the derivative of Equation 1.4 with

respect to allelementsof the vector x(tn), is illustrated in Figure 1.3 for a simple two-dimensional

example.

y = f(x)

Extension of tangent to curve
at initial point. [1]

•• x

Required Solution

Figure 1.3: Illustrating NR for a simple example

In this example, Point 1 corresponds to the initialguess. The intersection of the tangent

atthis pointwith the line y = 0 givesavalueof x\ from whichto beginthenext iteration. At Point

2, corresponding to this value of si, the tangent is computed and the computation repeated as for

Point 1. The procedure halts with answer a:,- after the change in the solutionbetween iterations,

\x{ - xt_i |,isless than some required error €, oraspecified upperbound onthenumberof iterations



is reached and the algorithm terminates with failure.

In practice, NR is generally damped by taking only a fraction of the step along the

derivative vector, this fraction being determined by enforcing the reduction of some appropriate

norm at each iteration. This implies that the path towards the solution along the nonlinearity is

morecloselyfollowed. Although for thesimple example abovethismayimplytakingmorestepsto

converge, in a higherdimensional space the betterpath approximation is generally found to reduce

computation time [16].

The solution to Equation 1.6 is usually computed after LU decomposition or Gaussian

Elimination on theJacobian Matrix has been performed [18]. These techniques areused to exploit

the sparsity of the Jacobian matrix.

1.2.3 Relaxation Methods

Relaxationmethods areiterativeapproaches generallyused as an alternativeto the solution

of a system of linear equations required for direct methods. Linear relaxation can, in fact, be used

to solve the set of linear equations in placeof solvingexactly. However, compared with efficient

sparse-matrix manipulation, this approach is often too complex to justify its use [13]. Direct

methods are also inherently morereliable. Consequently, linear relaxation is not presented further

here.

1.2.3.1 Relaxation at the Nonlinear Equation Level

At the nonlinear equationlevel, each iterationof a relaxationapproach involves the solu

tionofa setof decoupled NLequations. If exact solution of theNLequations was possible, theNL

Gauss-Jacobi (GJ) and NLGauss-Seidel (GS) relaxation methods could be expressed as:

Nonlinear Gauss-Jacobi:

repeat {

forallO* in N){

solve 9j{x\,..., xkj+\..., x%) =0for x)+1;
}

}

until ( ll**^"1 - ar*|| < €)



Nonlinear Gauss-Seidel:

repeat {

forallO in AT) {

solve 9j(xk+l,..., x*+l,..., xkN) = 0 for xk+l;

}

}

until (||a:fc+1 - xk\\ <e)

wherethe final statementconcerns errorbounds defining convergence. In fact,for aball sufficiently

small about the solution point, conditionsof convergence parallel those of relaxation in the linear

case [13]. That is, defining g'(x) as theJacobian of g(x) where g(£) = 0, and writing:

g'(x) = L(x) + D(x) + U(x) (1.7)

where £(£), U(£),D($) are the strict lower, upper and diagonal matrices respectively, construct

the matrices:

MGJ(x) = -D($)~l(L(x) + U(x)) (1.8)

and:

MGS(x) = -(D(x) + L(x))~lU(&) (1.9)

There exists a region of convergence for the method if the eigenvalues of the respective matrices

lie within theunitcircle. The rate of convergence is linear, incomparison toquadratic forthedirect

methods approach described in Section 1.2.2. [15]

WhencomputingX{, GS basedrelaxation uses the presentiterationapproximation for all

xj s.t. j < i whereas GJ uses theprevious approximation forall xj. GSconsequently takes fewer

iterations to convergence in mostcases but doesnot lenditselfto parallel evaluation as effectively

as the GJ methods [13].

Iterated Timing Analysis ( NL) Theconcept of iterated timing analysis (ITA) relies upon the

fact that the convergence properties described above andmoreover the rate of convergence is not

affected by using a single stepof Newton Raphson in place of solving the inner computation loop

exactly [15]. This vastly decreases required computation at each iteration, thereby improving

feasibility. This technique is exploited in the SPLICE program [14].

Throughthe construction of a signal-flow graph, required computation is further reduced

by decoupling the time-step interdependence. Changing nodes can schedule the relevant fanouts



for a future time-step rather than processing unnecessarily large blocks or the entire circuit at every

time-step.

Implementation of this technique has exhibited speedups of 10-200 times over conven

tional analog circuit simulators for large digital circuits [13].

One-Shot Timing Analysis (NL) Instead of iterating on the relaxation loop, in one-shot timing

analysis a single pass is made with the inner NR loop taken to convergence. Considering the

descriptions ofthe relaxation techniques given previously, this effectively implies that the property:

|| xk+l - xk ||< €isnot guaranteed tohold. As a result, the convergence and error properties of

the LMS method used to linearize the capacitors are not guaranteed. Most of these methods can be

shown to be non self-consistent [13].

Feedback loops introduce one step of timing error at each time-point as the relaxation

step is not iterated. To ensure that only feedback loop configurations induce timing error, efficient

use of the signal-flow graph becomes critical in determining equation processing order. For this

method the signal-flow graph is not just a tool for improving simulation time as for ITA. Also, the

Gauss-Seidel approach only considers the influenceof the upper triangular portion of the Jacobian

matrix, the Gauss-Jacobi considering only the diagonal. If the technique is not self-consistant,

accuracy of simulation cannot be improved by reducing the time-step. Consequently, for such

methods circuits with either tight feedback coupling or floating capacitors are not handled well.

The only known self-consistant one-shot timing analysis technique is thelmplicit-Implicit-

Explicitmethod [13]. Although it has been demonstrated useful in circuits with floating capacitors,

ITA has become the more practical choice [14].

One-shot timing analysis can obtain speedups of at least one order of magnitude over

iterated timing analysis in circuits where it is applicable.

1.2.3.2 Relaxation at the Differential Equation level

Waveform Relaxation ( DE ) Waveform Relaxation (WR) at the DE level deals with variables

in function spaces [21]. Intuitively, an equation in the set of as yet unsolved DE's is solved over all

time relative to the existing approximate solution over all time for variables on which it depends.

In an obvious extension of the NL relaxation case, GS-WR relies on the new variable solutions

already equated in the present iteration whereas GJ-WR does not. The iterations continue until all

of the computed waveforms change by less than a threshold amount as determined by the chosen
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metric. The choiceof time-step for solvingotherequations doesnot influence the present solution

aseachequation is considered separately overtime. This decoupling is the majoradvantage of this

approach.

In an actual implementation, blocks of the circuit (a subsetof the equations, rather than

a single one ) are considered simultaneously using a direct methods approach. Scheduling of

the blocks is used to improve simulation time. Similar to the use of signal-flow graphs in ITA,

scheduling is analgorithmic improvement ofWR and not a requirement for accuracy.

x(t) n

x(t) "

x(t) a

Initially, waveform at each node set to
zero over all time.

First Iteration

Second Iteration

Third Iteration

Figure 1.4: Waveform Relaxation applied to RingOscillator

As WR analyzes everyequation overalltime ateach iteration, the technique canbecome

wasteful incases of strong feedback. Considertheexample ofaring oscillatordepicted inFigure 1.4.

To reduceovercomputation, the time intervalcanbe windowed into sections,eachofwhich is iterated

to convergence before progressing to the next interval.

Withthese algorithmic practicalities, implementation of WR inRELAX has shown speed



up of an orderof magnitude over conventional simulators for MOSdigitalcircuits.

1.3 Speeding Up the Analysis

1.3.1 At The Problem Level

1.3.1.1 Restricting the Topological / Model Generality

The design of circuit-specific simulators is an important facet of the simulation problem.

For example, it is generally overkill to use a powerful analog circuit simulator, such as SPICE, on

digitalcircuitswith little analogbehaviour (little or no capacitive signalcoupling). The questions

to be answered by the results, such as correct logic functionality and delay times, do not demand the

high accuracy of waveforms achieved using analog simulators. Moreover, such a simulator takes

an excessivelylong time to analysea digital circuit as every transition from a 0 to a 1, or vice-versa,

requires very small time-steps.

In digital circuit analysis,devicemodelscan be much cruder than the approximatemodels

for analog circuits. This flexibility lendsitselfto efficient representation of models usinglow-order

polynomial sections (Ref. Section 1.3.3.2). Circuit-specific simulators such as CAzM [7] which

uses third-order spline modelling, have shown significant speedup over SPICE for digital MOS

circuits.

Computational reduction can be also achieved if the circuit can be shown to be a series-

parallel topology. For example, withoutthe presence of feedback loops, a signal-transition graph

can give an equation processing order such that no timing errors are incurred if one-shot timing

analysis is used.

Althoughsuch speedup techniques have value in their area of application, this project

is concerned withexaminingtechniques valuableto generalpurposesimulators. Reduction of the

circuit complexity will only be used as a tool for demonstrating that certain approaches do not

reduce the analysis timeof even a simplified problem. This servesto illustrate their inapplicability

to the general simulation problem.
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1.3.2 At The Differential Equation Level

1.3.2.1 Time Step Improvement

There has been a thorough examination of the problem of using higher-order integration

methods to increase the length of the time-step [12][16]. It was found that the extra computation

required at every time-point outweighed the time-step improvement. Moreover, if a method such

as Variable-Order Gear was used, a large portion of the computation time became devoted to

determiningthe time-stepsize and the requiredmethod-orderoptimally. As a result, the Trapezoidal

method was found to be the most efficient and is the LMS method presently used in SPICE.

This approach has been examined and found barren from the point of view of speedup

potential. The representation of the modelsusingreduced-order polynomialsectionsdoes not bring

this approach back intoconsideration as the timevariation of a DE solutionremains quite arbitrary

(Ref. Section 3.2.1). Consequently, time-step improvementis not a major focus of this investiga

tion.

1.3.3 At The Non-Linear Equation Level

1.3.2.2 Exploiting Latency

Speedup can be achieved by sectioning the circuit into minimally interconnected parti

tions, then assessingwhichof theseneed be processed at each time-step. In muchthe same wayas

a computer determines which sections of code to shift in and out of its cache memory, a block of

the circuitcanmade latent until it is 'called' forprocessing because oneof its controlling inputs is

changing. This speedup technique is not affected by modelrepresentation so is not considered.

1.3.2.3 Models of Known Low Order Representation

Instead of having a set of computationally complexequationsor empirically determined

data points, models can be represented as a set of low-order polynomials eachof which apply over

only a portion of the device characteristics. Piecewise-constant [20], linear (Katzenelson) [5] and

cubic simulators [7] have all been implemented, an example of each of these modelling schemes

for a diode-like characteristic is shown in Figure 1.5.

As the order is decreased,the regionof applicability of eachpolynomialsectiondecreases

butso toodoesthecomputation ateachiteration. Ineach implementation, thesemodelling schemes

have demonstrated speedup over SPICE for MOS digital circuits.
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v n v il

/

a) Original Function b) Piecewise Constant

v jl v a

c) Piecewise Linear d) Piecewise Cubic

Figure 1.5: Piecewise-Polynomial Modelling Schemes

Both the piecewise-constant and linear schemeshave analysis techniques which require

stepping from region to region until a solutionis found ( Ref. Section 1.4.1. ). Consequently, if

the model must be very accurate and regions are small, the simulator can become slow. This is

the reason for theirapplicability to digital circuit analysis wheremodellingerrors are not so tightly

bound.

On the otherhand, circuitanalysis techniques forconventional models can be applied to

the higher-order descriptions. Indeed, the third-order spline-fitted model approach of CAzM [7]

achieves its speedupover SPICE by evaluating the Jacobian matrix more rapidly. It is examining

the possibility of simplification at higher levels of the simulator hierarchy due to this modelling
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technique which forms the basis of this report.

Ohm's law does not hold for the piecewise-constant modelling as the description is not

continuous. Consequently, as higher-order schemes cannot easily be shown as an extension of

this approach, it willnot be examined further in thisreport. Certain properties of piecewise-linear

simulatortechniques arevery desirable soanexaminationhasbeen made astowhether thetechnique

canbegeneralized tohigher-ordermodelling. Tothisend, thetheKazenelson algorithm ispresented

in more detail later in this introduction.

1.3.4 At The Linear Equation Level

1.3.4.1 Better Sparse Matrix Manipulation

In the direct methods approach, computation time can be divided into derivation and

solution phases. Provided that the average degree of the nodes in the connectivity graph of the

circuitdoes not increase (in practice, the average degree has beenfoundto be about2.3 [14]), the

time required to set up the linearequation form is proportional to the numberof nodes. However,

using sparse matrix techniques, the solution phase increases as approximately n1,2, where n is the

node count [16].

Tobe satisfied that the search for the faster simulator should not just concentrate on the

improvementofsparse matrix manipulation, it isnecessary toshow that the solution phase does not

dominate computation time for reasonable sized circuits. The plots of Figure 1.6 and Figure 1.7

provide the required justification.

The graphs of Figure 1.6 were generated from repetitive block networks with two con

nections pernode fortheladder network, three for the delta (where the repititive block isa triangle

). The average is therefore close to that expected of practical circuits. Both resistive and MOS

pass gate circuits are shown in the results which illustrate the difference in run-times between an

old [16] and state-of-the-art sparse matrix package [11] inSPICE. Note that with the better sparse

matrixmanipulation, the dramatic run-time reduction is not noticeable overall circuitsizes. In fact,

over the range from 10 to 100nodes, there is little benefit despite the obvious improvement for

circuits ofmore than 1000 nodes. This suggests that the linear solution phase of the analysis isnot

dominant forsmall circuits. In fact, with thebettermatrix package, solutioncost only reaches about

50% ofthe setup cost atcircuit sizes of 104 nodes. In the range 1 -». 104, one percent speedup in
the derivation phase therefore results inat least 0.67 percent overall speedup, i.e. Forany circuits

in this size range, improvements in the speed of execution for the derivation phase translate to
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Figure 1.6: Computation Time for DirectMethods Approach- Resistive Network

significant savings in the overall run-time of the simulator. The aim of this research is to examine

the possibility for reduction of the complexityof this part of the simulation problem through the

use of low-order-polynomial model descriptions.

1.4 The Reduced-Order Model

Although this search for more efficient solutions to the circuit simulation problem is

concernedwith exploiting the properties oflow-orderrepresentations for circuitmodels, it does not

focus on the derivation and representation of suchmodels. Consequently, the following is a very

brief outlineof techniques used in existing reduced-order polynomialsimulators. This also serves
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as an illustration of the basic properties of these representations.
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1.4.1 The Katzenelson Algorithm

The Katzenelson algorithm [10] is a method for solving a circuit when the device models

are represented in piecewise-linearform (Ref. Figure 1.5 ). Each linear polynomial section only

applies over a restricted range as determined by required model accuracy. Consequently, for the

overall network, the relation domain is partitioned intoa set of polytopes ( regions ) within each

of which the circuitis described by a setof linearequations. Basing an iterative approach uponthe

solution of theseequations is equivalent to applying theNRtechnique. Unfortunately, as themodel

descriptions are not first-derivative-continuous, thereis no guarantee of convergence.
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In the Katzenelson approach, a set of linear equations are solved to give a point x*. The

setof linear equations are determined by theregion in which the present iteration solution, xk,lies.

If xm lies in the same region, then a solution has been found. Otherwise, the intersection of the

line from xk to a* with the present region boundary is taken as xk+l. The fundamental premise
upon which this approach is based is that the path described in the space X is the inverse image

of the straight line along vector f(xk) - y0l where f(x*) = f(x0) = y0 at the point of solution.

At each boundary-crossing, the progression towards or away from the desired solution f(xm) is

uniquelydetermined at the next step by the present positionprovided that it is not the comer point

of a polytope.

The efficiency of the algorithm is based upon the ability to determine easily these inter

section points andnot having to completely reconstruct the set of lineardescribing equations. To

do this, two important points have to be noted:

• The domain-space foracircuitasdescribed by the setof sparse tableau equationshasa lattice

structure. That is, region boundariesareorthogonaland parallel to axes-planes.

• The mapping must be continuous on every boundary.

The first fact implies that unless the vector passes through a comer point of the region,

intersection with the boundarycan be detected by tracing alongthe direction:

x'= xk + P(x* - xk) 0</?<l (1.10)

and stopping whenthe first elementof x' violates a inequality constraint for the region.

The second point is relevant to determining the modification to the Jacobian matrix re

quired ateachboundary crossing. Consider describing the polytoperegions asthe setofinequalities

in a;:

K = {x\CiX+gi>0} (1.11)

where C'i is a matrix, #, is a vector and thelinear mapping in each polytope is described as:

y = Akx + fk (1.12)

where Ak is a matrix and fk is a vector. Now, as every mapping must be continuous, at every

boundary where cjya: + gkj = 0, between regions k and j, the followingmust hold:

Akx + fk = Ajx + fj (1.13)
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Hence, there is only a rank-one update for Ak at every boundary crossing provided that the

intersection is not with a comer point of the region.

Moreover, it has been shown [4] that given:

• All Ak are non singular

• The solution curve hits no comers

• The determinant of Ak in every unbounded region is of the same sign and the solution path

starts from a point in an unbounded region such that || 3/0 II > M where M is the largest

attainable value of || y || in the boundedregions

• There does not exist multiple solutions in any individual polytope

then:

• No region except for the starting region can be reentered.

• Each bounded region entered by the solution curve must also be exited unless a solution xq

exists in that region.

• A solution xq will be found if one exists.

There have been examinations of how to improve the algorithm to handle the analysis

if the listed conditions do not hold [4]. Furthermore, techniques for computation of the boundary

crossings havebeengeneralized forthe case where the polytopes are not guaranteed to form alattice

stmcture [5]. This allowsapplication ofthe Katzenelson approach to morecompactcircuitequation

representations, such as modified nodal analysis. However, these results will not be presented in

detail here asthe modifications do not change the basic premise of the approach and consequently

arenot of fundamental importanceto the following study.

As the Katzenelson approach finds the solution by stepping from region to region, the

average size of the polygons relates directly to run-time. That is, a smooth trade off between

model accuracy and simulator speed can be achieved by varying the size of the piecewise linear

segments. Similarly, thereexists a tradeoffbetween memory requirements and precision. However,

the critical point to note about the method is that it only becomes viable because there is a well-

defined incremental change between the linear equation description whenmoving from one region

to an adjacent one. If the equations hadto be completelyreformulated at eachboundary crossing,

the accuracy which could be obtained for run-timescompetitive with SPICE-like simulatorswould

be far from sufficient.
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1.4.2 The Low-Order Polynomial Model

If the interpolation between data points is a polynomial of order greater than or equal

to two, the model description can be made first-derivative-continuous everywhere. Convergence

propertiesofthe standardNR type approaches areconsequently maintained as Lipshitz continuity is

satisfied. The derivative with respect to any of the dependent variables can be computed efficiently

directly from the known polynomial coefficients and variablevalues at the present iteration. With

the third-order modelling scheme presently used in simulators such as CAzM [7], this is the only

property of the representation which is exploited.

If the polynomial description is of odd order, then equal weighting is given to all end

point conditions. That is, the same amount of extra information is required at all end points. This

is not so for even-order modelling. Consider, for example, the parabola between two points - the

points plus the derivative at only one of them is required to fully specify the function. Odd-order

polynomial modelling is therefore usually favoured.

Increasing the order of the model representation generally decreases the number of re

gions required for a description within the same errorbounds. Consequently, although derivative

computation becomes more expensive, one would expect region boundaries are traversed less fre

quently on the average in an iterative procedure such as NR. This implies less calls to the stored

models to obtain new polynomial coefficients are required. However, much of the investigation

into the feasibilityof reduced-order-model simulators hasconcentrated on third-order interpolation,

such as that obtained using multi-dimensional splines. This is a consequence of the third-order

polynomials being the highest-orderpolynomials which can be solved explicitly in reasonable time

for an iterative algorithm.

1.5 Report Organization

The examination of applicability of polynomial modelling to analysis techniques is pre

sented in detail in the following two chapters. The first of these chapters investigates approaches

to solving the problem at the NL equation level, the second investigating the DE description.

Organizationof these chapters is correlated to the simulatorhierarchy detailed in Figure 1.1.

More concisely, the possibility of an improved technique for extraction of linear equa

tions, theoretical and practical arguments against generalization of the Katzenelson algorithm to

polynomial models other than linear, and the practicality of global explicit solutions or explicit
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solutions in relaxation techniques are examined in Chapter 2. In Chapter 3, NL circuit relations

are proven to be of the same order as device models even in the case of nonlinear capacitors. It

is shown that the model descriptions cannotprovideimproved estimates on LMS method accuracy

and stability, nor allow time-steps to be computed for solution to the next time-point to remain in

the present polytope. Closed-form solution techniques are proven impractical and the application

to WR is demonstrated to be of limited potential.

Each chapter closes with a summary of the applicability of reduced-order modelling at

that level of analysis. Final conclusions on the predicted usefulness of this modelling technique to

the speed-up of circuit simulators is presented in Chapter4.
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Chapter 2

The Nonlinear Equation Level (NL)

2.1 Formulating a Linear System of Equations (NL.LE)

At the Nonlinear Equation Level, the problem to be solved is that of finding a point

in &n which satisfies a set of relations where those relations are of known polynomial order in

hyperplane-bounded regions in the space. It is shown in Section 3.1.1 that the equations describing

any circuit will possess these required properties even ifnonlinear capacitors are present.

2.1.1 Application to Newton Raphson techniques

Existing reduced-order model (ROM) simulators exploit the ability to reconstruct the

Jacobian matrix quickly. However, this generally involves extracting the entire set of applicable

polynomial descriptions at every iteration from the model database. It will be shown that by using

the intersection ofthe NR vector with polytope boundaries the requirement for rapid memory access

can be reduced.

Techniques for finding the intersection point ofthe solution path with the polytope bound

aries in the Katzenelson algorithm may be used explicitly to find the intersection of the NR vector

with bounding planes. In the piecewise-linear approach the update to the Jacobian matrix is rank

one provided that the solution path, linear in each polytope,does not intersect a comer of the poly

tope. By analogy, if the NR vector passes through a single bounding plane, only one equation in

the set of polynomial branch equations need be modified. That is, crossing a bounding hyperplane

corresponds to violating a single regional constraint for an individual device given the present

polynomial descriptions for the entire circuit. Only the equations relating to that branch voltage /
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current need be updated.

Oneapproach whichexploits this property would be to stopatboundary crossings of the

NR vector, update the nonlinearequationdescription andbegin the next iterationthere. Unlike the

piecewise-linear approach, this would require the re-evaluation of the Jacobian at this point and

computationof the actual value of the function at the crossing (Ref. Figure 1.5). However, there

are major theoretical drawbacksto such a technique:

1. The analogy with the Katzenelson theorem is not complete ( Ref. Section 2.1.2 ), so this

approach can not guarantee the properties inherent in that method.

2. Althoughat first glance this may appear to be a form of damped NR, the step size is fixed

by model descriptions and the topological arrangement of the circuit, not by enforcing the

reduction of some suitable norm. This implies thateven if damping is applied to determine

anupperbound on the step length, rate of convergence properties of NR are not retained.

3. If the NR vector intersects a comer point, the algorithm is not guaranteed to cross all the

hyperplanes which form that comer ( Figure 2.1. ). Consequently, to update the set of

nonlinear equations, the NR vector at the boundary point must be examined to find which

region is about to be entered.

Stopping NR Vector at
Boundary in Linear KN

Vector

does not

necessarily
cross all

boundaries

at a corner

NR Vector

Continuity of NR Vector through Bounding Planes
for PiecewisePolynomialModelling Scheme

Figure 2.1: The Corner-Point Problem

Instead ofstopping attheboundary points, theconvergence conditions of Newton Raphson

can bemaintained by taking thesame step as determined for arbitrary model descriptions. However

the polytope boundaries crossed by the vector can be determined by using the same techniques

as exploited in the Katzenelson algorithm for intersections of vectors with hyperplanes. Once

these have been found, the explicit relation of these planes to individual device models can be
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exploited to update the set of nonlinear equations efficiently. Comers are no longer a problem as

the continuation of the NR vector is guaranteed to pass through all the planes which intersect at

that point, as illustrated in Figure 2.1. If the vector actually terminates on a plane or comer, the

set of equations derived for the present polytope ( without considering the final bounding plane

intersection) are valid as the device models are derivative continuous. The critical test as to whether

this method is practical is obviously the comparisonbetween the time to completely reconstructthe

Jacobian and that to compute the boundingplane intersectionsand update selectively.

2.1.2 Generalizing the Katzenelson Algorithm

The Katzenelson algorithm has found its niche in some existing simulators for the efficient

computation ofdc operating point under simplifiedmodel conditions. In particular, it has been found

useful on circuits for which standard Newton Raphson techniques don't converge in reasonable

time, if at all. As the Katzenelson algorithm utilizes circuit models based on piecewise-linear

representation, it is appropriate to examine whether some of the highly desirable properties of the

method can be maintained for a piecewise-polynomialmodelling scheme.

The following analysis of the applicabilityof such an approach is presented in two parts.

An examination of whether the Katzenelson approach for the piecewise-linear case has desirable

properties for transient computationconstitutesthe firstpart. In the second subsection the difficulty

of constructing an efficient theoretical parallel between piecewise-linear and piecewise-polynomial

approaches is presented. It is consequentlydemonstrated that a generalization of the Katzenelson

algorithm probably has little practical applicability even to finding dc operating points, let alone

speeding up transient analysis.

Application of Standard Katzenelson to Transient Computation

The most desirable property of the Katzenelson algorithm is its well-publicised ability to

find solutions in cases where more conventionalnumerical techniques fail [4] [5]. However, it is

importantto notea proofthat thealgorithm will find asolution(indeed, all solutions) reliesstrongly

upon the Jacobian determinants in the infiniteregions being all of the same sign [4], Futhermore,

the starting point of a path to the solution must be within an infinite region. Allowing arbitrary

models, the path can be quite circuitousdemonstrated by the example in Figure 2.2. By modifying

the starting position to be within a totally bounded region (region bounded in all dimensions), it

is straightforward to constmct a non-convergent path for this example. The algorithm can also be
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made to fail by denying the Jacobian determinant sign rule for the infinite regions. Consequently,

neithercondition can berelaxed iftheguarantee of finding anyexisting solution is tobemaintained.

f(x,w) =

x-3 x»S
6x + 32 4<x<5
2x -4"*=x<4
6x-32 -5<x«4
x + 3 x<-5

g (x, w) =

w-3 w »"6
-w + 9 3<w<6

2w -3 "*=w <3
-w-9 -6 -<w <-3

w + 3 w ^-6

Initial
Point

Figure 2.2: Example Illustrating Possible Circuitous Nature ofthe Katzenelson Algorithm

The"guaranteed solution" property of theKatzenelson Algorithm isof paramount impor

tance in any constructive argument for itsuse. If this property isnottrue for each time-point inthe

transient analysis, there is no theoretical justification for simulation with piecewise-linear models

having better convergence properties than simulation with standard models and NRtechniques.

For transient analysis, maintaining the guaranteed solution property by starting from an

unbounded region of the full circuit description at every time-point isclearly impractical. Each step

of the Katzenelson algorithm is determined by region boundaries and backtracking away from a

desired solution is allowed, soarate of convergence isnotdefinable. Consequently, thetermination

condition cannot bebased upon arate of convergence and must berelated explicitly to the number

ofregions examined before rinding asolution. To make this number practical, arestricted subspace

must be isolated which contains the solution to the next time-point. ( Adjacent regions outside

the restricted subspace can be assumed infinite and numerically modified provided continuity is
maintained.)
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Constmctionof a"predicted solutionsubspace" is anextremely difficult task,aspresented

inSection2.2.2. In fact, its sizecannotbecomputed norevenaccurately estimatedin sufficient time

for transient analysis purposes. The sizeof the subspace mustconsequently be an educated guess,

perhaps using a predictor extrapolationbased on a previous time-step and "distance-traversed-in-

space" relationship. Strongoverestimates would only result in very large execution times for the

Katzenelson algorithm at each time-step.

A major problem presented by this approach is whether the functions in the adjacent

regions outside the subspace can be manipulated in such a way that the infinite-region Jacobian

determinant property is satisfied for the subspace. It has been proven in Appendix A that for a

lattice stmcture solutionspace, continuityof thefunction ismaintained if andonlyif inevery region

infinite in the same direction of dimension xj, J£- is the same. Consider setting the derivatives in
the infinite regions in order to satisfy the Jacobian property. Obviously, the singlyinfinite regions

canbeanalysed first asonlyasingle columnofthematrix isfreetobealtered. Therequired property

of the singly infinite regions in eachdimension could be satisfied independently. However, by the

continuityargument, assigningderivativesfor just these regions fixes the derivatives for the entire

space. For example, consider the region infinite in all dimensions ( known to exist because of the

lattice stmcture). The entire Jacobian matrix in thisregion is a constmct of the assignments given

to derivatives in the singly infinite regions. The sign of the Jacobian determinant in this region

need not be the desired one as the required derivative computation in each dimension has been

uncorrelated. Consequently, the infinite dimensions cannot be considered independently which

makes this constmction impractical for transient analysis. From an extension of this argument, it

is clearly not possible to fix the infinite region derivatives progressively as the respective regions

are entered. In the caseof a non-lattice stmcture, attempting to satisfythe infinite regionJacobian

determinant sign property is even less practical.

The above presentation is true for a set ofpiecewise-linear continuous functions. The fact

that thesefunctions are generated from a set of circuitrelations and piecewise-linear devicemodels

does not reduce the complexity of the problem if an arbitrary interconnection of components is

allowed.

Generalization to Piecewise-Polynomial Models

A fully parallel development of a Katzenelson type algorithm for general piecewise-

polynomial device models is beyond thescope of thisinvestigation. However, a reasonably cursory
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analysis of the problem is sufficientto showthateven if suchtheory weredeveloped it would be of

little practical use.

In the piecewise-linear case, if a polytope with singular Jacobians or multiple solutions

doesnot exist, the path generated by the Katzenelson algorithm cannot reenter any region except

that in which it started. This property is used to determine a suitable run time given the number

of polytopes in the space and to detect cycling. In a polynomial modelling scheme of greater

than first-order, it is not possibleto ensure that less than one solutionexists per region by model

constmction. Furthermore, in a polytopethe Jacobian determinant can assume both positive and

negative sign. Examples to illustrate these pointsare shown in Figure 2.3.

a). Non - Monotonic Device

i 4

b). Monotonic Non-Linear Device:

I 4

Region of Single
Polynomial Description

V = E-IR

For the circuit illustrated, there are two
solutions (•) in region R of the device
model.

For a circuit topology of that shown above, there exists R such that
there are two solutions in R2 even though the original non-linear device
is monotonic.

Figure 2.3: Violation of theSingle-Solution-per-Region Property

Inthe partitioning schemechosen for thisexample, the functional description ofthemodel
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is monotonic and first derivative monotonic in each region. Violation of the single solution per

region property in this case implies that such a violation is possible for any chosen partitioning

scheme (it is not practical to assignmodel regionsdynamically according to device interconnection

in a circuit ). If device models are not overall monotonic, constmction of a counter-example is

trivial(firstexample). However,even in the caseofa fully monotonic model, if arbitrary controlled

sources are permitted the property can be denied (second example).

The existence of polytopes in which the sign of the Jacobian determinant is not unique

allows the solution pathto have multiple entry pointsinto thatregion. It is extremely time-consuming

to examine whether a region actually has this property ( Ref. Section 2.2.1 ). Consequently,

detection of cycling and determinationof run-time based on number of regions in the space is not

straightforward as for the piecewise-linear case. As demonstrated in the example, if circuitswere

designed to avoid this phenomena, it would requirethe exclusion ofarbitrarily connected controlled

sourcesandnon-monotonic device models. Circuitrestrictionsof this form help reduce the problem

to one which is well-conditioned even for standard NR analysis.

The uniquenessof the solutionpath(a mappingof alinear functionbetween previousand

present time-point conditions) is ensured as long as the Jacobian at any point is non-singular. This

is a basic result of bifurcation theory. In the piecewise-linear case, if the Jacobian is non-zero in

all polytopes, only crossingsof the regionboundaries can result in splitting the path. Furthermore,

the continuation is known to be unique if the path intersects a single plane face, even if the sign

of the determinant changes, as a regioncannot be reentered. It is consequently only possible that

a path splits at the intersection of that path with a polytope comer point. The perturbation theory

used in these cases to determine the directionof extension is greatly simplified as the analysisneed

only extend to examining each of the regionswhich share that comer. However,singularity points

for the Jacobian can exist inside polytopes through allowing piecewise-polynomial models. As

the determinant is continuous acrosshyperplanes, polytope boundaries are not explicitly relatedto

determining branching points of the solution path. In fact, fully generalized perturbation theory

must be used at any point of Jacobian singularity. This is certainly a significant computational

complexity increase over the piecewise-linear case.

Even if the Katzenelson algorithm could be generalized, its theoretical basis would rely

upon accuratelytracing the solution path. This path is not explicitly computable (Ref. Section 2.2

). This implies an iterative approach such as NR. To get an accurate path trace, NR could be used

with a very small increment along the linear path between last time-point and present time-point

conditions. This, however, defeats the purposeof the method as this approach is not dissimilar
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to using NR directly with very small time-steps. Alternatively, one might traverse a single NR

vector to its intersection with a polytopeboundary then attemptto find the correct intersection of

the solutionpath with this plane. This approach, however, is not valid for the following reasons:

• The region boundaries are not necessarily the critical points forpath splitting.

• Singularity points of theJacobian could be overlooked which would invalidate the theory on

which the algorithm is based.

• The planeof intersection of the NR vector andthe solutionpathneed not be correlated

(Ref. Figure2.4).

Consequently, theimplementation of ageneralized form of theKatzenelson theorem for piecewise-

polynomialmodels could not be competitive with existing simulators.

Polytope in a 3D
solution space

NR Vector from Initial Point
intersectsa different Bounding Plane
to the Solution Curve

Trace of Solution Curve

Figure 2.4: UsingNR tofindPlaneofIntersection with Solution Path

2.2 Solving Without the Need For Global Linearization (NL.DE)

Consider devicemodelsasrepresented by piecewise-low-order-polynomials of less than

third-order such that for the single-variable device, roots are explicitly computable in reasonable

time. The question thento be asked is whether this property can be exploited to avoid the Newton

Raphson linearization step. In the following analysis, the undesirably highcomplexity of such a

scheme isexposed for theeventherestricted case of all circuit elements being two-terminal devices.

It is easily demonstrated that for a set of polynomial equations extracted from a circuit

topology, theability to solve them simultaneously isaproperty which depends upon linearity. Take

theexample of Figure 2.5. The setof equations todescribe this arrangement are the following:
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a3(vi-^)3+a2(vi-V2)2+ai(vi-^)1-a3(^-'y3)3-02(v2-V3)2-tti(v2-'y3)1-^ =0 (2.1)
«3(^2 - v3)3 + a2(v2 - V3)2 + 01(^2 - V3)1 - a3v| - a2v| - a\v\ - —= 0 (2.2)

it

Given the source voltage E, find ^2,^3. Even if the branch voltages were taken as variables to avoid

multiplicative terms such as v\m„ aconvenient linear algebraic representation does not exist for this

case [8]. The only possible form is that in which the variable vector contains every branch voltage

raised to powers 1,2, and 3 as separate variables. The resulting removal of variable independence

prevents explicit solution of this system by any conventional means. Consequently, in general an

explicit solution for a node in a network can only be obtained after a series ofcircuit collapsing steps

(Section 2.2.1). The only other approach which avoids the requirement for global linearization is

one based upon relaxation techniques (Section 2.2.2).

2.2.1 The Explicit Solution

The incentive for investigating a network collapsing technique is illustrated in the exam

ples ofFigure 2.6. A single polynomial ofthe same order as the model descriptions can be extracted

for the cases of:

♦ a pure series connection of elements whose voltage characteristics are expressed as a poly

nomial of current.

• a pure parallel connection of elements whose current characteristics are expressed as a

polynomial of voltage.

This is essentially the basis of a series / parallel reductiontechnique for a graph of the circuit. Such

an approach would only be applicable to the restricted class ofseries / parallel networks, i.e. circuits

without feedback elements. However, this is the most basic form of network reduction. Its lack of
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practicality, presented in the next two subsections, illustrates that extracting explicitsolutions by

circuit reduction techniques has very limited potential.

a) Series Connection

t

JLj +
nj vi=pi(i)

v rn v2=pa(i)

E = vx+ v2+ v3

E = pi(i) + p2(i) + p3(i)

L i =>Explicitly Solvable for i

rff v3=p3(i)

b) Parallel Connection

QE33:
ii= Pi(v)

i2= Pz(v)

13= p3(v)

il+ i2+ i3= I

Pi(v) + p2(v) + p3(v) = I

=> Explicitly Solvable for v..

Figure 2.6: Series I Parallel Circuit Reduction

Single Low-Order Polynomial Models

To retain the ability to solve the network explicitly, the polynomials describing the

collapsed sections of circuit cannot beorder greater than three. This requirement explicitly relates

the desired model description (whether *= p*(v) or v = ^(i)) to the topology of the circuit. In

the case of parallelcombination the formerrepresentation is demanded whilea seriescombination

requires the latter. A simple example is sufficient to justify this necessity. Consider the series

combination of twoelements, onedevice with terminal voltage described asapolynomialof current

the other with current in terms of voltage ( Figure2.7).

Assume second-order polynomial models of the form:

i = a2V2 + aiV2 (2.3)
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Figure 2.7: Dependence ofModelDescriptionUponExplicitSolvabilityProperty

V2 = E- vi = b\i2 + b\i (2.4)

Collapsing thisnetworkcorresponds to substitutingthesecondrelation intothe first This produces a

fourth-order polynomial in i. The implicationof this resultis that to achieve independencebetween

model description and circuit topology, all devices musthave representations bothas i = j?(v) and

v = p*(i). In general, if i = p*(v) isagood match tocharacteristics this does not imply that there
exists agood polynomial description of the form v = p3 '̂), and viceversa.

(Consider v = i2 onthe interval [0,1] for which i = y/von [0,1]. )

Even theexistence of device models with polynomial descriptions i = j?{v) and

v = P3^) isnot sufficient toguarantee extraction of apolynomial for anode inthe network which
can be solved explicitly. Collapsing series elements produces a polynomial of voltage in terms

of current, parallel elements reduce to a polynomial of current in terms of voltage. However, the

placementofthese subcircuits inthe topology determines the requirement fori = j?(v)otv = j?(i)

for their collapsedrepresentation. The extraction of a polynomial of practically solvable order is

then dependentupon the constmction of an inverse low-orderpolynomial approximation. In fact,

rather than attempting to describe models in both forms, such a scheme would also be used at the

device level.

The equationsextracted through the use of local polynomial approximationsto describe

network sections are only applicable over a limited range. Consequently, even though results are

computed explicitly, any procedure using this technique would have to be iterative to guarantee

accuracy. The formulation of such an iterative algorithm implies that polynomial approximations

must remainvalid for all devices. This requirement can only be satisfied by computing a solution

for allnodes in the network attached to or controlling a nonlinearelement so that local polynomial

approximationscan be updated if required. That is, even if the simulation question being asked

required transient behaviour for only a few nodes of interest, in general the subset of nodes for
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which a solutionmust be computed is unlikely to be significantly smallerthan the set of all nodes.

Although the region of applicability would be improved, there is significantly greater complexity

in formulating a polynomial approximation over derivative determination (linearization). When

combined withthe generally low number of NRiterations required to converge at eachtime-point

of the transient analysis in practical cases, this suggests thatthe explicit solution approach would

be considerablymore computationallyexpensive.

Piecewise Continuous Low-Order Polynomial Models

In a practical simulator, the benefit of a piecewise-continuous polynomial modelling

scheme to the "explicitly solvable" approach is further reduced. This is a consequence of range of

applicability of the low-order polynomial description being a property of model constmction and

present iteration point. Consider thecurve of Figure 2.8. Thisdepicts the region of applicability of

a polynomial if a local approximation is made in comparison to the function extracted from model

representation. In this case, eventhough the device description may be of the desired form for the

topology ( v = p3(i) or i = p*(v)), the proximity of the iteration point to the region boundary
restricts the usefulness of the approximation.

V a
Extension of Polynomial
Approx for RI

...•••••••*"" Local Polynomial Approximation
«••**** about Initial Point

Original Model

Figure 2.8: ModelandLocalApproximation Polynomial Descriptions

A polynomial description applicable in one region is in no way guaranteed to be evena

close approximation when extended into adjacent regions. Consequently, ifasolutionpoint isfound

outside the present polytope through explicit use of the device polynomials, there is no generally

provable relation between that and the desired solution. In fact, such a result can not even be utilized
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to determine in which region the solution actually lies. This prevents formulation of an iterative

procedure from this basis.

It is not sufficient when checking the validity of a solution to examine only the results at

the desirednodes. If device polynomial descriptions areused directly for some elements, every node

controlling those elements must be computed. The validity of the final solution depends upon every

polynomial approximation used in the relevant collapsed subcircuits remaining valid. Furthermore,

nonlinearity prevents the use of superposition techniques. If the describing polynomial for a device

is invalid, all of the dependent collapsed subcircuitdescriptions must be recomputed from scratch.

The practical consequence of these results is that a low-order polynomial description

must be generated for the function about the present iteration point. The polynomial extracted

from the piecewise-polynomialdescriptions of the models does not have the desirable properties

of symmetry or bounded accuracy abouta point throughits construction. This does not permit the

formulation of aconvergentiterativeapproach using this form ofdevice description. Consequently,

a piecewise-continuous modelling scheme exploiting an explicit solution-property inhereted from

local-polynomial descriptions cannot offer speedup over standardNR linearization.

2.2.2 The Relaxation Approach

At the NL equation level, obtaining an advantageover standardrelaxation techniques for

networks with arbitrary device descriptions (otherthan through ease of linearization) depends upon

the ability to solve circuit relationsexplicitly. A set of polynomials of known order is closed under

additionso the set of equationsobtained from KCL and constitutive branchequations is the same

orderas the model representations. In fact, if all devices areexpressed with currenta polynomial

of voltage (except for voltage sources, voltage controlledvoltage sources (VCVS) and CCCS ),

the set of variables required to maintain a complete description of known order is the same as for

the MNA form after linearization. The principleof relaxation allows each equation to be taken

separately and analysed for a single variable with all other variables fixed as described in

Section 1.2.3. In this way, every equation is reduced to a single variable polynomial of less than

third-order which can be solved directly.

Techniques exploited to force better convergence of relaxation based approaches are

equally applicable regardless of the mathematical representation of the models. For example,

requiring capacitors to groundat each node to ensure diagonal dominance of the linearized matrix

can be used to improve convergence of all approaches. This is a consequence of the convergence
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within a region about a solution point being depending upon properties of the Jacobian matrix

(Ref. Section 1.2.3.). Convergence rates thus derived actually assume solution of the equations in

each iteration to within a small bounded error, except in the case of Iterated Timing Analysis.

The problem of ordering the equations in such a way as to optimize the number of

relaxation iterations is equivalent to those adopted in Gauss-Jacobi-Newton or Gauss-Seidel-Newton

approaches. Consequently, these ordering techniques are not examined further in this report.

Nonlinear Relaxation and Iterated Timing Analysis

The problem with this approach is clearly a consequence of the possibility of the solution

being outside the present polytope. For an arbitrary network, it is not generally possible to bound

the time-step and so ensure that the solution for the next time-point remains within the region

(Ref. Section 3.1.2. ). The model descriptions for all devices cannot be exploited outside their

region ofvalidity. Futhermore, an overall solution obtained outside this polytope cannot be utilized

to determine in which region the solution actually lies. (The reasons for this are similar to those

outlined in Section 2.2.1) However, as only a single nonlinear relation is numerically solved at a

time, it is possible to progressively update the set ofdescribing relations.

Even in the case of a single variable piecewise-polynomial relation, the solution of the

describing polynomial for the present region cannot suggest a direction towards a valid solution

outside the polytope. A counter example to moving in the direction ofan invalid solution is depicted

in Figure 2.9.

For the single variable piecewise-polynomial relation, the solution lies either to the left

or right of the present point. Furthermore, the length of the time-step has been determined such

that over that interval, a polynomial in time of the same order as the integration method used is

a sufficiently accurate description of the waveforms. For example, if the TR method is used, the

variation with time over each interval is a parabolic approximation. Given that variables can be

described as polynomialsof knownorder and that a single equation is being solved, it is appropriate

to ask whether in this particular case the time-step to a region boundary can be determined. The

approach would involve replacing the variable being solved by a boundary value, all other variables

by a second-order time description and then solving for t. The ability to do so would allow the

direction towards the solution to be determined.

Consider the form of the polynomial relation to be solved for current summation at a

node. It is constmcted from models described as i = j?(v). With respect to node voltages there
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may exist terms (e,- - e^)3 producing the products e]. If the node voltages can be expressed as
second-order polynomialsof time, a sixth-order polynomial in t canbe produced. Even restricting

the models to second-order, polynomials of greater than fourth-order (not explicitly solvable) are

readily constmctible. The presence of capacitors, linear ornonlinear (Ref. Section3.1.1 ) implies

that there can exist coefficient terms in the overall equation of the form p where h is the time-

step. To compute the time to the region boundary, h is replaced by t ( thereby maintaining a

valid description for TR step size less than h ). This has to be multiplied through to produce a

polynomial in t which could now be of fifth-order, e.g., t.fp2^))2 -• j£(t). The time-step to a

region boundary cannot be computed explicitly. Nevertheless, the time-stepcomputed was only to

be usedto determine whetherthedesired solutionisbeyondacertain boundary. Without anecessity

for accuracy, convergence of NR applied to this polynomial in time could similarly be used as

an indicator. Approaching a solution inside the time-step, ft, implies this boundary is crossed, a

solution outside implying the other is (assuming the presentregionhas been determined to contain

no solution). The direction towards the solution need only be determined once. Analysis would

proceed by progressively adjustingthe circuit-describing relations appropriate the to regionsin the

specified direction until a solutionis found. Practically, it may be found quickernot to constmct a

polynomial in time to determine direction. An alternative approach could involve just examining

the "left" adjacent region, then the "right", next left, next right and so on until a solution is found.

The usefulness of the explicit solution approach clearly depends upon the average time

required to compute avalid explicit solutionversusconvergenceof Newton Raphson. Standard NR
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techniques have shown adequate convergence in an average ofnot much more than three iterations.

Given the simplicity of extracting derivatives from polynomials, the computational complexity of

finding the roots of the third-order polynomials would be predictably larger than application of

standard NR. One should note that explicit solution of third-order polynomials involves radicals

which are frequently obtained through NR techniques in practical applications. The explicit solution

technique clearly becomes impractical if the average number of regions examined for an explicit

solution is somewhat greater than one.

The discussion of the computational trade-offbetween NR and explicit solution techniques

is, however, almost a moot point. The factor implying this is the proof that ITA has the same rate

of convergence as NL relaxation for an initial guess sufficiently close to the solution [15]. This

proof demonstrates that accurate solutions to the inner loop relations are not critical to relaxation

performance in transient analysis. ITA has also been shown to execute significantly faster than

full NL relaxation in practice, especially when selective trace techniques are also used [14]. This

is sufficient to essentially eliminate any need to experimentally examine the trade-off between

convergent NR and explicit solution techniques.

Timing Analysis

Timing analysis requires the accurate computation of the solutions to each equation

(Ref. Section 1.2.3.). The timecomplexityof finding thesesolutionsexplicitlyis exactlyequivalent

to that presented previously. However, in this case the trade-off between NR convergence and the

explicit solution method is crucial.

2.3 Practicality of Application to the NL Level

The applicability of low-order polynomial modelling has already been demonstrated at

the NL equation level. The increased ease of constructing of a set of linear equations is exploited

in existing simulators, such as CAzM.This approach might be improved further through selective

updatingof the set of nonlinearcircuit relations. Thorough investigation of sucha technique would

involveempiricalexamination of the trade-off in complexity between determining intersections of

NR vectors with polytope boundaries and full reconstruction of the Jacobianmatrix at every NR

iteration. Unfortunately this appears to be theonlyunexplored avenue whichoffers any promiseof

speed-up at the NL equation level. Possibilitiesfor improvingNL analysis through utilization of
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device descriptions have been examined in the application of a generalization of the Katzenelson

algorithm to transientanalysis, and the eliminationof the need for linearization. Both approaches

proved unfruitful.

Use of the Katzenelson algorithm in transient analysis does not maintain many of the

desirable properties of the techniqueeven in the caseof piecewise-linear device descriptions. For

example, it is impractical to manipulate infinite region derivatives to ensure that the method is

guaranteed to find an existing solution. Furthermore, if higher-order modelling is allowed, the

inability to exactly trace the solution path and the loss of the significance of region boundaries

(points of singularity for the Jacobian matrix being critical) prevents a generalization ofthemethod

being practical, even for dc analysis.

Knowledge that the circuit relationsarepolynomials of the same order as the models did

not prove valuable. As these polynomials are multi-variable in general, finding explicit solutions

to avoid application of NR involves either collapsing the circuit or use of relaxation techniques.

Collapsing is impractical as there isnoguarantee that the solution lies within thepresent polytope

( region of valid NL description) and circuit topology fixes requirement for the form of device/

subcircuit description ( v = p(i) or i = p(v)). In NL relaxation, as each equation is solved

as single-variable-dependent, thetrade-off between complexity of explicit solution techniques and

convergent NR is somewhat lessapparent. However, it hasbeenshownthatITA whichonlyuses a

single NRstep towards thesolutionoftheNLequations intheinnercomputational loop converges as

rapidly as NLrelaxation. There is therefore little justification in theadded complexity of obtaining

the exact result providedby explicit solutiontechniques.
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Chapter 3

The Nonlinear, First Order Differential

Equation Level (DE)

3.1 Formulating a System of Nonlinear Equations (DE.NL)

3.1.1 LMS Methods

Handling Nonlinear Capacitors

Many of the results of the previous chapter are derived assuming that the set of nonlinear

equations extracted from circuit relations are polynomials of order not greater than the model

descriptions. As a set of polynomials of known order is closed under addition, this assumption

is obviously true in the case of non-derivative-dependent nonlinear components. However, for

general circuit analysis such components may be present (the collector-emitter capacitance of a

BJT, for example ). It must therefore be shown that a representation exists for these elements

such that the known order property is maintained without a need for NR linearization. Any model

linearizationimpliesa need for iterativeconvergence even if solutions to the polynomialsresulting

from non-derivative-dependent components are found explicitly.

Consider a nonlinear capacitor represented in theform q = p3 (v), where qis charge. This

implies i = dy' j$ = g2{v)v' and after application ofthe TR integration method this becomes:

in+1 =(2""^"" -OsWi) =/3K+i) (3-D
Consequently, current at the present time-point, in+i, is a polynomial of the present-time-point
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voltage, vn+i, of the same order as the model. This is true regardless of the LMS method used.

Similarly, in the case of nonlinear inductors, a polynomial description of flux in termsof current,

4> = P3^)' should be used. These representations maintain the property ofknown polynomial order
for KCL and separatebranch equationsof the MNA representation.

Accuracy and Stability

Performance of integration methods used for solvingentirelyarbitrary differential equa

tions is assessed by their stability and accuracy when applied to exponential waveforms. For a

method ofnf/l-order accuracy, when applied to an exponential with a real exponent, the result is
exact for any truncation of the Taylor series expansion oftheexponential below the (n + 2)th term.

If the devicemodels are represented in piecewise-polynomial form, an examinationof whether the

generalityof the differentialequationshas been reducedis important. A positive result could allow

a moreproblem-specific definitionof accuracy andstability, therebyimprovingtime-step estimation

in circuit simulation.

A counterexample to disprove this proposal exists even ifmodels are restricted to second-

order polynomials and inputs vary linearly with time. A multipliercan be designed as shownin

Figure3.1 from basicop-amp analog adders andsecond-order nonlineardevices. Throughthe use

4AB

Square
Law
Devices

Figure 3.1: Multiplier Construction Using Second Order Nonlinearities

of multipliers, delaylinesandamplifiers, it is straight forward toconstructa circuitwhichgenerates

a truncated Taylorseries expansion (any order) for an exponential ( real or imaginary exponent)

given a linearly-time-varying input to the network. Numerical accuracy of an integration method

is determined by the dominant error term of the truncated series. Consequently, even in this over
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simplified case, the generality of the circuit waveforms has not been reduced significantly. This

implies that piecewise-polynomial modeUing cannot provide an insight into improved time-step

estimation.

3.1.2 Time Step Restriction

The problemwith an explicitsolutionapproach is the possibilitythat the solutionmay lie

outsidethe polytopeof validdescription ( Ref. Section 2.2.1 & 2.2.2). Consequently, theexistence

of an efficient analytical approach for bounding the time-step in orderto remain within the region

is desirable. Such a technique could be utilized to determine whether a solution should be found

explicitly or by using an iterative technique. (An iterativetechnique,such as NR, would be used

if the time-step required to remain within thepolytope is significantly smaller thanthatbounded by

integration method accuracy. )

The complexity of computing the maximum time-step, hn+\, needed to remain within

the present polytope is large for even simple circuits. Consider the diode/ capacitor example of

Figure 3.2. By utilizing the TR integration method:

in ii

- v„ +

*f
In

.....«••••

Region of
Single Poly.
Description

v„- E

Change
corresponding
to largest
Time - Step

jt not leaving
' present region.

- v,

Figure 3.2: Computing RestrictedTime Stepfor SimpleCircuit

Jn+\
Vn+i - Vn ,

= 2—-7 vL
hn+\

2C2C
=> *n+l = 7 vd ~

^n+l hn+1

To compute the time-step to the boundary, assign to vj a boundary value and substitute the corre

sponding value of in+i and an expression for source voltage variation (in terms of hn+i; that is,

time forwhich hn+l = 0 implies the previous time-point). This relation isthen solved forhn+\. A

(v„ - vs) - in

(3.2)

(3.3)
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result lessthanthetime-step bound foraccuracy oftheintegrationmethod implies thattheboundary

corresponding to the value of vd substituted will be crossed. Futhermore, the boundary value is

attained for that value of time-step. A result greater than the bound for accuracy implies that the

specified boundary is not crossed in this time-step. However, it gives no informationas to whether

the otherpolytope boundary is crossed. (Of course, in thiscase, if the time-step bounds are close,

crossing of the other boundary is unlikely. However, as the performance of the LMS method is not

guaranteed beyond the accuracy bound, this is a statisticallyvariable property. ) To be certain that

the solution lies within the polytope, all boundary conditions must be examined.

In the chosen example, if the source voltage variation is a polynomial variation of less

than third-order, the final expression can be solved explicitly. However, even using the fact that

within the time-step bound for accuracy all waveforms can be assigned a low-order polynomial

description, in general the resultantequationsare not solvableexplicitly (Ref. Section 2.2.2).

The time expressions obtained for the network would need to be solved by numerical

techniques. In an N dimensional space, up to 2N boundary conditions would need to be assessed.

Each boundary examination wouldbe of somewhat greatercomplexity than finding a NR solution

to the set of circuit relations for the present polytope. (The orderof the equations may be greater

than the order of model representations. ) Consequently, in general circuit simulation, it would

not be practically possible to determine a bound on hn+\ to ensure that the solution to the next

time-point lies within the present polytope.

3.2 Solving Without Formulating Global System ofNonlinear Equations

(NL.NL)

3.2.1 Decoupled LMS Methods

Waveform Relaxation (WR)

Insidean iteration of waveform relaxation, each circuit relationis solved separately over

a specified time interval. That is, a relation of the form:

/»(*(<)» *(<). «(*)) = 0. 0<t<T (3.4)

is solvedfor variable xn(t), all othervariables having specified variation for all

{t : 0 < t < T}. Essentially, each analysis of this form is equivalent to solving a node in a

multi-input, single-unknown circuitwhere all inputsare represented in piecewise-polynomial form
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( Ref. Figure 3.3 ). The construction of known waveforms as piecewise-polynomials is a con-

Wj. w2 w3

'V 'V ^

x is the unknown.

{Wi, ... ,Wn) set
of "known" waveforms
in piecewise polynomial
form.

Figure 3.3: Diagramatic RepresentationofStep in WR

sequence of the LMS method used. Between time-steps taken in the solution of each node, a

polynomial approximation of the sameorder as the LMS method is valid. (To completethe anal

ogy, a piecewise-polynomial representation of actual network inputswould be required. ) Clearly,

any advantage to be obtained as a consequence ofmodel representation will be seen in the tradeoff

between standard NR andanexplicit solution approach.

The problem of determining in which polytopethe solutionat the next time-pointlies is

similar to thatassociated with ITA (Ref. Section 2.2.2). Although the equation produced through

application of the LMS method canbe solvedexplicitly,(Ref. Section 3.1.1), a resultoutside the

valid region of description is not useful. Moreover, for an arbitrary node in the circuit, traversal

of a region boundary is more likely in WR analysis than for a step taken in ITA. (In ITA, the step

length is not necessarily determined by thevariation of the waveform being computed so it tends

to be shorter.) An examination of the complexity for determining boundary crossings is therefore

relevant.

Unlike ITA, a singlepolynomial to be solved for boundary conditions cannot necessarily

be constructed through the substitution of polynomial functions in time for the "fixed" variables.

(That is all variables other than xn(t) from Equation 3.4). As the time-step of adjacent waveforms

may notbe strongly correlated to thoseof the nodeorbranch beingexamined, several polynomial

sectionsmay have to be analysed(Ref. Figure 3.4). The constructionofthese sections fromthe time-

stepsof adjacent nodesreduces thecomputational independence of the waveform being examined.
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Figure 3.4: Dependence ofPolynomial Description in Time upon Time-Steps ofLocalNodes

Futhermore, analysis of each section for boundary crossings has the same time complexityas that

used to compute a single time-step of an equation in ITA.This reduced independenceof waveform

analysisand significantcomputationalcost of locatingboundarycrossingsmakes the determination

of thetime-step-to-boundary infeasible. If anexplicit solution is to be found, theapproach to takeis

that ofexaminingthe "left" adjacent region,"right" adjacent region, and so on until a valid solution

is found (Ref. Section 2.2.2). However, for eachregion a third-order polynomial must be solved.

This impliesthat an average of muchgreaterthanone polytope passed through per time-step will

bias computational complexity considerably in favour of standard NR.

Ofall the techniquesexaminedin this report,it is probablythe applicationof reduced-order

modellingto WRtechniquesfor whichthetrade-offbetweenexplicitsolutionandstandardnumerical

analysis is least well defined. However, as for any iterative technique taken to convergence, e.g.,

ITA , the demand for exact solutions on each iteration is significantly reduced. Implementation

of efficient Waveform-Newton simulators (in which only a single NR step is taken to define the

next time-point solution for a waveform of the present iteration ) has shown this to be true for

WR techniques [21]. Given that NR need not be executed to within the tight boundson accuracy

required for a global solutionat a time-point, the computational complexityof obtainingan exact

solution is not warranted.

3.2.2 The Closed-Form Solution to O.D.E's:

Extractingclosed-formsolutions to circuit relations is not possible in general. However,

the ability to determine such a solution eliminates the need to apply integration methods. It is
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consequently relevant to examine whether such a solution technique is plausible in the case of

reduced-order modelling.

One approach to constructing a closed-form solution is through the summation of a set

of basis functions. Impractical in general, this modelling scheme might be expected to allow

a reduced set of basis functions to be specified. Extraction of a finite basis set could permit

adequate approximation ofthe differential equation solutions through determination of the relevant

coefficients. The following discussion proves thenon-existence of asetof practical cardinality.

A setof basis functions is acomplete setof orthonormal functions, {<£„} whichis closed

under multiplication . For example, in the case of a periodic waveform of period T, the set of

functions: {exp(j2mr(^)t: n e N} is abasis [19] in that all such waveforms can be represented
as a Fourier Sum:

*(*)= E cnexp(j2nw(-)t) (3.5)
n=—oo

The completeness of the set implies that for any function, x(t% the restricted sum, £jLi cn<j>n
approaches x(t) uniformly.

i.e. For any e > 0,3Mr € Ns.t.Vm > Mx, \\x(t)- £™=i c„0„|| < e.

However, for arbitrary continuous functions (such as those produced in general simulation ), there

does not exist M independent of x(t) suchthat for allsuch functions the above relation holds.

If the simulator uses reduced-order models, then within thebounds of a polytope in the

solution space, the waveform description atanode can bea polynomial intimeof arbitrary order

( Ref. Section 3.1.1 ). A corollary of the Stone-Weierstrauss Theorem [17], a theorem from

elementary topology which relates the ability to uniformly approximate continuous functions by

elementsof a subalgebra in the space of continuous functions, states:

Every continuousfunction onaclosedboundedsetXin &n can beuniformlyapproximated
on X by a polynomial (in the co-ordinates)

This is equivalent to stating that the closure of the set of all polynomials is the set of

continuous functions over that interval. (In this case, the closed bounded interval is the time over

whichthe circuit functionality is to be examined. ) The argument for the non-existence of a basis

set of practical size proceeds by contradiction. Assume that there exists a finite subset, cardinality

M, of asetof basis functions, {<f>n(t)}> such that aweighted summation of elements of that subset

can be used to uniformly approximate any polynomial, p(t)t to within error §.

i.e. For any §>0,3M € Ns.t.\\p(t) - E^Li cn<f>n(t)\\ < |.
However, by corollary, for any continuous function f(t), there exists a polynomial p(t) such that



43

11/(0 " KOII < f. Hence, 3M € JVs.t.||/(i) - £ili cn<£n(i)|| < c. This implies that the this
finite subset of the basis could be used to approximate any continuous function uniformly. As

this subset is not closed under multiplication, it is not a subalgebra and this is a denial of the

Stone-Weierstrauss Theorem. Therefore, such a set does not exist.

The complexity of constructing a closed-form solution from a set of basis functions is

consequently no more difficultin the general case than for reduced-ordermodelling. If a closed-form

solution is to be extracted, it must be related to the polynomial form of the differential equations

explicitly.

Allowing Nonlinear Capacitors: Ingeneral,adifferential equation(generated by the summation

ofcurrents at a node) will be of the form:

PiM^p +Pi(n)^^- +..- +QiM +fc(t*) + +fi(t) +f2(t) + =0 (3.6)
where input sources are represented as polynomials in time, fi(t), and polynomials Pi(v),qi(v)

are extracted from model relations. Consider now the simple example depicted in Figure 3.5 of a

nonlinearcapacitorin series witha linearresistordrivenby avoltagesourceofpolynomialvariation.

For the above circuit, the describing relations are:

+ Vi -

l
CNL Q= P(V>

=> i = p'( v). v'

Figure 3.5: Simple NonlinearCapacitor Example

Gv2(t)-pl(vl).v[(t) = 0 (3.7)

*i(t) + V2(t)-g(t) = 0 (3.8)

where g(t) is a polynomial. Thisreduces to thesolution of a differential equation of the form:

This equationdoes not have a generalsolutionover all time. In fact, the only closed-formexpression

known for an arbitrary differential equation of the type:

«' =4^S (3.10)q{u,t)
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is that in the asymptotic limit which assumes one of the following forms:

u'(t) ~ atbe9W

u'(t) ~ a<6(/oflf(t))c

where g(t) is a polynomial and a, 6,c are constants [1]. This is clearly not a useful result as the

differential equations describing the circuit remain valid over a only a restricted time interval (until

polytope boundary is crossed). Furthermore, these asymptoticexpressions are not even guaranteed

to bound the solution close to time t = 0. Closed-formexpressions are consequently implausible if

nonlinear capacitors are not linearized.

All Capacitors Linear or Linearized: Linearization of nonlinearcapacitors in a network implies

that any closed-form solution is an approximation even within the polytope of valid description.

The linearization implies that the general circuit relation DE is reduced to:

ai^l +a2^^- +.... +ft(t>,) +fc(ife) + +/,(*) +f2(t) + =0 (3.11)
However, differential equations of the type:

du-^=KM) (3.12)

do not have closed-form solutionsunlessp(u, t) is linear in u. That is, a simple closed-formsolution

can only be found in the case of linearizationof all devices. Techniquessuch as quasilinearization

can be used to obtain closed-form upper and lower bounds on the solution to the nonlinear DE .

However,except in very particular situations,such as for the solution to the Riccati Equation :

^ =u2(t) +a(t) (3.13)
these bounds are neither simple to compute nor provably tight.

There isno evidencetosuggestthatageneral technique to finding aclosed-form expression

satisfyingthe type of DE's described above will ever be developed. However, even supposing it

were,sucha function woulddefinitely notbealow-order polynomial. Aniterativetechnique suchas

NR wouldbe required to determine whenthesolution crosses a regionboundary (for determination

of the region of applicability of the solution). Given the complexity of checking all boundary

conditions ( Ref. Section 2.2.2 & 3.1.2 ), such an approach could never compete with existing

simulators.
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3.3 Practicality of Application to the DE Level

The form of the model representation does not appear to have a significant effect upon

the solution techniques at the differential equation level. In the construction of NL equations,

the time-step cannot be bounded to ensure that the solution at the next time-point lies within

the present region. Futhermore, it is not possible to guarantee accuracy and stability with larger

time-steps in LMS methods even though differential equations are of a known form. Allowing

model representations in piecewise-polynomials of greater than first-order precludes closed-form

descriptions of waveform solutions. In fact, the modelling technique does not even permit the

construction of a smaller set of basis functions than would be used in general simulation. Both

the inability to reduce the set of basis functions and construct a more appropriate description for

LMS accuracy are a consequence of the fact that if second-order circuit elements are permitted,

waveforms of arbitrary polynomials in time can be generated.

It is only in its application to waveform relaxation thatthe known polynomial form of the

differential equations is even theoretically applicable. Afterextraction ofNL equations usingLMS

methods, a solution atthenext time-point could be found explicitly. However, unlikeits application

to NL relaxation, it is not practical to determine the direction towards a solution which is not in

the present region. Regions to the left and right of the present interval of validity ( as a polytope

is an interval in a single variable piecewise-polynomial relation ) must be checked exhaustively.

Giventhattheresults neednotbe veryexact(eachwaveform solution beingthebasis ofaniterative

procedure), little practical advantage over NR techniquesis expected.
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Chapter 4

Conclusions:

Low-order piecewise-continuous polynomialdevice modelling schemes should become

moreevident in the future development of circuit simulators. The decreasing costof memoryand

implementation of efficient data handling techniques have made the past trade-off between memory

space and simulator speed less significant. Simulators such as CAzM have clearly demonstrated

the speed-up potential in using a rapid tablelook-up approach as the basis for construction of the

Jacobian matrix. However, the benefit of this form of model representation appears to be almost

entirely restricted to this straightforward application.

In a piecewise-polynomial modelenvironment, the differential and nonlinear equations

produced can be shown to be of the same order as device representations. However, for anything

of higherorder than piecewise-linear, closed form solutions are not plausible. The set of basis

functions sufficient to describe generated waveforms is not a finite restriction on the set required

for simulation with arbitrary models. Futhermore, it is not possible to develop better accuracy

bounds on existing LMS method for the purpose of increasing time-step length. Explicit solution

techniques at the nonlinear equation level can not be used to obtain a general solution, even if all

models are a single polynomials. Use of the polynomial form of the relations to eliminate the need

for NR is only possible in relaxation techniques such as ITA orWR. In both these cases (but more

so for ITA than WR), the reduced need for exact solutions oneach iteration strongly suggests that

anytrade-off in time between finding explicit solutions and applying NR wouldnot be favourable.

There does notexista practical generalization of theKatzenelson algorithm from piecewise-linear

to piecewise-polynomial models even fordc analysis.

The only approach which appears to warrant further investigation through implementa

tion is a slight modification of existing piecewise-polynomial model simulators. Instead of fully
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reconstructing the Jacobian matrixat every iteration, it may be possible to reduce complexity by

updating thenonlinearcircuitequations selectively. Suchanupdating schemewouldbebasedon the

boundaries crossed by the NR vectorateach iteration. Overall, however, modelling schemes using

piecewise-polynomial modelsof greater than second order promise little help in the development

of improved nonlineartime-domaintransient circuitanalysis techniques.
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Appendix A

A.1 Guaranteed Convergence of Katzenelson

Much of justification for describing devices with piecewise linear models for transient

analysis is associated with theguarantee of finding a solution which theKatzenelson algorithm can

offer. However, as detailed in the introduction, this guarantee is onlyprovable in the case where

thedeterminants ofallJacobian matrices intheinfinite regions have thesame sign.

Thefollowing setoflemmas are used toconstruct aproofthattomaintain continuity over

region boundaries, adjustment of derivatives to satisfy the determinant sign property inthe singly

infinite regions alone is not sufficient to guarantee that property overall. Consequently, the task

of satisfying this property for a localised subset of the entire solution space at each time-point is

impractical. This severely reduces the desirability ofusing such a method intransient analysis
(Ref. sect. 2.1.2).

Uncorrelated adjustment of Jacobian matrix entries in singly infinite regions which are

unbounded in different dimensions is only plausible if those dimensions are orthogonal. Lattice

structure spaces aretherefore theonlytype under considerationhere, each dimension being anaxial

direction.

Lemma 1 Ifthere exist totally bounded regions1 thenfor each dimension ofthe space, there exists
at least one singly infinite region ofthat dimension. Furthermore, multiply infinite regions do not
share aface with a totally bounded region.

Proof: Consider a totally bounded region R in the space. Take a point x in R. As bounding
hyperplanes extend over the entire space and are mutually orthogonal, any vector Vj originating

A totally bounded region isdefined to beone such that any straight line within the region isof finite length.
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from x parallel to any axis, xj say, intersects only those planes perpendicular to xj. The solution

space is constructed from a circuit which is a finite combination of elements. Each element is

described by a model with a bounded region of validity so thespace of totally bounded regions in

thesolution space is itselftotally bounded. Consequently, vector Vj must eventually extend into a

region, Rj, infinite indimension Xj. As Risbounded inalldimensions and hyperplanes are infinite,

Rj is bounded in all dimensions except xj. ie. Rj is a singly infinite region. As xj is arbitrary, it

follows thatfor each dimension in thespace, there exists at leastonesingly infinite region of that

dimension. Bylatticestructure, if there exists a totally bounded face to region R', then R' is either

singly infinite or totally bounded. Thesecond partof thestatement follows bycontraposition. •

Lemma 2 Ifthere exists two singly infinite regions ofthe same dimension anddirection, R\ andRi,

then there exists apathfrom R\ toRi which traverses only singly infinite regions of that dimension

without passing through corners. Furthermore, all these regions share the same hyperplane with

the totallybounded regions.

Proof: Prove the second statement first. Suppose the totally bounded faces of Ri and Ri lie on

the hyperplanes K\ and K2 respectively. By the lattice structure, K\ and A'2 are infinite planes

perpendicular to the infinite dimension of R\ and R2, xj. Hence, K\ and K2 are parallel. If

K\ ¥" A'2, this implies that either Ii'i intersects R2 or A'2 intersects R\ contradicting the bounding
properties of theplanes. Hence,K\ - K2 - K sothere exists a single hyperplane bounding R\ and

R2. To prove the first statement, fix dimension a:,- ^ Xj. As R\ and R2 are singly infinite regions,

there exist planes: K\ai, Ku,.; K2ai, K2bi perpendicular to x, which bound R\ and R2 respectively.

Consequently, a set of hyperplanes:

{A', (A'lp K2l),..., (Kx,_vK2j_x), (Klj+V K2j+l),..., (KlN, K2tf)}
canbe chosen such thatthese setof planes bound a subspace containing R\ and R2. Thissubspace

is singly infinite in dimension Xj and so all regions within this subspace are also singly infinite,

by the second statement of the lemma. Construction of a pathfrom Ri to R2 through onlysingly

infinite regions withoutcrossingcornerpoints is nowtrivial, n

Lemma 3 Allsingly infinite regions of the same dimension and direction have the samefunctional

derivative in that axialdirection, ie. Allsingly infinite regions of the same dimension anddirection

share a common column in the Jacobian matrix.
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Proof: In each region, the piecewise linear property implies that §£ is constant. However, the
function is continuous over region boundaries so §£ is the same along any boundary parallel to
the xj axis. Hence, any two adjacent singlyinfinite regions of dimension xj have the samepartial

derivative in that direction. ByLemma 3, it is possible to tracea pathbetween anyregions R\ and

R2 singly infinite in the same direction and dimension xj which onlypasses through other singly

infinite regions of the same dimension. It follows thatall regions singly infinite in dimension xj

and of that direction have the same value of J^. •

Lemma 4 All regions infinite in a particular dimension and direction have the same functional

derivative along thataxis.

Proof: Consider thefact thata region unbounded in n dimensions canbe adjacent to only regions

of n —1, n and n + 1 infinite dimensionality. Consider region R infinite in orthogonal dimensions

Xi and xj. By Lemma 1, if there exist non-empty totally bounded regions in the space R must

be adjacent to regions singly infinite in thedimensions a:,- and Xj respectively. Consequently, by

continuity, the functional derivatives in R along the dimensions x,- and Xj are the same as for the

singly infinite regions. Now, in general, want to prove thatgiven a region R infinite in multiple

dimensions including some direction of xj, there exists a path starting in R not passing through

region corners which extends into regions singly infinite in the same direction of xj. Consider,

an n dimensional infinite region unbounded along axis xj mustshare a planar face with an n - 1

dimensional infinite region also unbounded in dimension Zj. If not,there existno totally bounded

regions. From a trivial extension of Lemma 2 and the previous statement, a pathwith the disired

properties can be constmcted. Consequently, using the same argument as for Lemma 3, it follows

that all regions infinite in dimension Xj and of that direction have the same value of |£. •

Lemma 5 Allow f^ to be changed in the regions singly infinite in dimension xj. The function
remains continuous over all space iffor all regions infinite in the xj dimension, §£• is the same as
for thesingly infinite regionsofthatdimension anddirection.

Proof: Consider regions infinite in dimension xj. Before changing f£, the function is known
to be continuous as the device models are continuous. Suppose §§• is changed to J£- in all such
regions. Hence for any x in these regions:
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fi(x)new =fi(x)0id +(^ - §^)Xj =fi{x)old +AXj
Hence, if: fi{xx)0id - fi{x2)old = 8,

=>• /t(^l)neu; ~ fi(x2)new = $+ 4(zij ~ £2>)
Hence, as A is finite zi —• x2,

=>• (/t(^l)neu; ~ /t(S2)neu/) ~» 0.

So by definition, /, remains continuous.

However, i is arbitrary so the statement is generally true. •

Theorem 1 Consider a lattice structure for a piecewise linear continuous function where the

derivatives in the infinite regions are to be altered. Continuity is maintained iff in every region

infinite in the same direction ofdimension xj, |£- is the same.

Proof: Direct result of Lemmas 4 and 5. O


