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Abstract

To date, no investigation into the effect of device modelling upon circuit analysis has been com-
pleted except in the case of piecewise linear representations. In this report a theoretical study of
analysis techniques which could exploit the properties of low-order piecewise polynomial model
descriptions is presented. The applicability is examined for analysis at both the nonlinear and
differential equation level. The only approach which appears to present hope for further speed-
up, beyond direct exploitation of the ease in computing derivatives for the Jacobian matrix con-

struction, is one allowing selective updating of the set of piecewise-polynomial circuit relations.
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Chapter 1

Introduction

Circuit simulation has been a critical part of integrated circuit ( IC ) design since the
1970’s. Beyond its use as a verification tool, circuit simulators have become essential to the
selection: and optimization of parameter values in predetermined topologies. They play such a key
role in today’s industry that being able to speed up the simulation process by even a small percentage
can translate to significant reductions in research and development expenditure.

This report contains an examination of the possibility of reducing the cost of simulation
by exploiting the relationship between low-order polynomial descriptions of circuit element models
and circuit analysis techniques. In particular the major focus is time-domain transient analysis, the
most computationally expensive aspect of circuit simulation today. A thorough examination of the
applicability of reduced-order modelling ( ROM ) is presentéd for every level of the simulation
hierarchy.

1.1 Formulating the Problem

The circuit is represented in the form of a net-list which provides a description of the
interconnection of devices and input sources. Through application of Kirchoff’s Current / Voltage
Laws and the constitutive branch equations, a set of nonlinear first-order differential equations can
be extracted. Hence, the nonlinear time domain circuit simulation problem can be reduced to finding
the solution to the arbitrarily complex relations of the form :

f(&(t), z(t),u(t)) = 0, 0<t<T (1.1)



where z(t) € R" is a vector of node voltages and branch currents at time ¢, z(t) € R is a vector
of time derivatives and u(t) € R™ is the vector of input sources at time ¢.

1.2 Solving the Problem - Existing Approaches

1.2.1 The Hierarchy of a Circuit Simulator

It is not possible to find closed-form solutions to the set of describing equations in the
general case. Hence, a nested iterative approach is taken [18] as shown in Figure 1.1.
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Figure 1.1: Analysis Hierachy of a Circuit Simulator

There are essentially two levels of reduction below the nonlinear, first-order differential
equation (DE) level. To extract a set of nonlinear algebraic equations from the differential equations,
integration methods are used, most commonly Linear Multistep ( LMS ) methods. In this way,



derivative-dependent elements such as capacitors are reduced to companion models depending only
on the independent variables at past points and those being computed at the present time point. For
example, SPICE defaults to the Trapezoidal Implicit Backwards Differentiation Formula (TR) [16]
[12]:

Uny1 — .
gy =2 — (1.2)
n+1
For capacitors, the following relationship is obtained:
. 2C 2C .
= lngl = Vn4l = 7—Un — tn = Gny1Vn41 + ICn.H (1.3)
hn+l hn+1

which generates the companion model as shown in Figure 1.2.

In+1 +
* ¢ L : n+l

n———- G

<
|

C n+l
Trapazoldal
Rule

Figure 1.2: Companion Model for Capacitors using TR

Trapezoidal rule is used as it is the lowest-order A-stable method ( stable only for stable
systems ) which experience has shown to give good results for practical circuits [16].

1.2.2 Direct Methods

Direct methods are a set techniques used to solve the nonlinear (NL) equation level
problem. The nonlinear equations are reduced to the linear equation (LE) level which can be solved
explicitly. Each solution thus obtained is taken as a point to reformulate a set of linear equations
from the nonlinear ones thereby providing the basis for an iterative solution technique for the NL
equations.

Reduction of a set of NL equations of the form:
Fl(2(ta),u(tn)) =0, %<t <T (1.4)

to a set of linear equations:
Algi = b it iteration (1.5)

is achieved by Newton-Raphson ( NR ) techniques. That is, linearization is achieved by finding all
derivatives of the set of NL eequations at the initial guess or previous iteration position. This is the



same approach that is taken to solve for the dc operating conditions.
The formulation:

(@) 2t = J(ah).ah — f(2h) (1.6)

where J(z%) is the Jacobian at iteration i, given by taking the derivative of Equation 1.4 with
respect to all elements of the vector (%, ), is illustrated in Figure 1.3 for a simple two-dimensional

example.

y |

y = £(x)

Extension of tangent to curve
at initial point. [1]

Required Solution

Figure 1.3: lllustrating NR for a simple example

In this example, Point 1 corresponds to the initial guess. The intersection of the tangent
at this point with the line y = 0 gives a value of z; from which to begin the next iteration. At Point
2, corresponding to this value of ), the tangent is computed and the computation repeated as for
Point 1. The procedure halts with answer z; after the change in the solution between iterations,

|z; — z;1], is less than some required error ¢, or a specified upper bound on the number of iterations



is reached and the algorithm terminates with failure.

In practice, NR is generally damped by taking only a fraction of the step along the
derivative vector, this fraction being determined by enforcing the reduction of some appropriate
norm at each iteration. This implies that the path towards the solution along the nonlinearity is
more closely followed. Although for the simple example above this may imply taking more steps to
converge, in a higher dimensional space the better path approximation is generally found to reduce
computation time [16].

The solution to Equation 1.6 is usually computed after LU decomposition or Gaussian
Elimination on the Jacobian Matrix has been performed [18). These techniques are used to exploit
the sparsity of the Jacobian matrix.

1.2.3 Relaxation Methods

Relaxation methods are iterative approaches generally used as an alternative to the solution
of a system of linear equations required for direct methods. Linear relaxation can, in fact, be used
to solve the set of linear equations in place of solving exactly. However, compared with efficient
sparse-matrix manipulation, this approach is often too complex to justify its use [13). Direct
methods are also inherently more reliable. Consequently, linear relaxation is not presented further
here.

1.2.3.1 Relaxation at the Nonlinear Equation Level

At the nonlinear equation level, each iteration of a relaxation approach involves the solu-
tion of a set of decoupled NL equations. If exact solution of the NL equations was possible, the NL
Gauss-Jacobi (GJ) and NL Gauss-Seidel (GS) relaxation methods could be expressed as:

Nonlinear Gauss-Jacobi:
repeat {
forall (j in N) {
k+1

solve g;(af, ..., z%

kY= k41,
i e @) = 0for 2T

}

until ([l*+ - 24| < €)



Nonlinear Gauss-Seidel:
repeat {
forall (j in N) {

k+1 k+1 k+1,
($1+ ,...,$j+ +

solve g; sy ZR) = O for zit,

}

until (||z*+! - z¥|| <€)

where the final statement concems error bounds defining convergence. In fact, for a ball sufficiently
small about the solution point, conditions of convergence parallel those of relaxation in the linear
case [13). That is, defining g’(#£) as the Jacobian of g(£) where g(£) = 0, and writing:

g'(8) = L(8)+ D(2) + U(%) (1.7)
where L(£), U(£), D(£) are the strict lower, upper and diagonal matrices respectively, construct
the matrices:

Mg;(2) = -D(8)~!(L(#) + U(#)) (1.8)
and:
Mgs(2) = ~(D(2) + L(2))"'U(#) (1.9)

There exists a region of convergence for the method if the eigenvalues of the respective matrices
lie within the unit circle. The rate of convergence is linear, in comparison to quadratic for the direct
methods approach described in Section 1.2.2. [15]

When computing z;, GS based relaxation uses the present iteration approximation for all
z; s.t. j < ¢ whereas GJ uses the previous approximation for all z;. GS consequently takes fewer
iterations to convergence in most cases but does not lend itself to parallel evaluation as effectively
as the GJ methods [13].

Iterated Timing Analysis (NL ) The concept of iterated timing analysis (ITA) relies upon the
fact that the convergence properties described above and moreover the rate of convergence is not
affected by using a single step of Newton Raphson in place of solving the inner computation lcop
exactly [15]. This vastly decreases required computation at each iteration, thereby improving
feasibility. This technique is exploited in the SPLICE program [14].

Through the construction of a signal-flow graph, required computation is further reduced
by decoupling the time-step interdependence. Changing nodes can schedule the relevant fanouts



for a future time-step rather than processing unnecessarily large blocks or the entire circuit at every
time-step.

Implementation of this technique has exhibited speedups of 10-200 times over conven-
tional analog circuit simulators for large digital circuits [13].

One-Shot Timing Analysis (NL ) Instead of iterating on the relaxation loop, in one-shot timing
analysis a single pass is made with the inner NR loop taken to convergence. Considering the
descriptions of the relaxation techniques given previously, this effectively implies that the property:
| z*+! — 2* ||< € is not guaranteed to hold. As a result, the convergence and error properties of
the LMS method used to linearize the capacitors are not guaranteed. Most of these methods can be
shown to be non self-consistent [13].

Feedback loops introduce one step of timing error at each time-point as the relaxation
step is not iterated. To ensure that only feedback loop configurations induce timing error, efficient
use of the signal-flow graph becomes critical in determining equation processing order. For this
method the signal-flow graph is not just a tool for improving simulation time as for ITA. Also, the
Gauss-Seidel approach only considers the influence of the upper triangular portion of the Jacobian
matrix, the Gauss-Jacobi considering only the diagonal. If the technique is not self-consistant,
accuracy of simulation cannot be improved by reducing the time-step. Consequently, for such
methods circuits with either tight feedback coupling or floating capacitors are not handled well.

The only known self-consistant one-shot timing analysis technique is the Implicit-Implicit-
Explicit method [13]. Although it has been demonstrated useful in circuits with floating capacitors,
ITA has become the more practical choice [14].

One-shot timing analysis can obtain speedups of at least one order of magnitude over
iterated timing analysis in circuits where it is applicable.

1.2.3.2 Relaxation at the Differential Equation level

Waveform Relaxation (DE) Waveform Relaxation (WR) at the DE level deals with variables
in function spaces [21]. Intuitively, an equation in the set of as yet unsolved DE’s is solved over all
time relative to the existing approximate solution over all time for variables on which it depends.
In an obvious extension of the NL relaxation case, GS-WR relies on the new variable solutions
already equated in the present iteration whereas GJ-WR does not. The iterations continue until all

of the computed waveforms change by less than a threshold amount as determined by the chosen



metric. The choice of time-step for solving other equations does not influence the present solution
as each equation is considered separately over time. This decoupling is the major advantage of this
approach.

In an actual implementation, blocks of the circuit ( a subset of the equations, rather than
a single one ) are considered simultaneously using a direct methods approach. Scheduling of
the blocks is used to improve simulation time. Similar to the use of signal-flow graphs in ITA,
scheduling is an algorithmic improvement of WR and not a requirement for accuracy.

x(t)
¢

o >

Initially, waveform at each node set to

zero over all time.
x(® A
First Iteration
—_— . t
x(®) 4
Second Iteration
t
x(t) /'
J ' Third Iteration
- — » t

Figure 1.4: Waveform Relaxation applied to Ring Oscillator

As WR analyzes every equation over all time at each iteration, the technique can become
wasteful in cases of strong feedback. Consider the example of a ring oscillator depicted in Figure 1.4.
To reduce overcomputation, the time interval can be windowed into sections, each of which is iterated
to convergence before progressing to the next interval.

With these algorithmic practicalities, implementation of WR in RELAX has shown speed



up of an order of magnitude over conventional simulators for MOS digital circuits.

1.3 Speeding Up the Analysis

13.1 At The Problem Level
1.3.1.1 Restricting the Topological / Model Generality

The design of circuit-specific simulators is an important facet of the simulation problem.
For example, it is generally overkill to use a powerful analog circuit simulator, such as SPICE, on
digital circuits with little analog behaviour ( little or no capacitive signal coupling ). The questions
to be answered by the results, such as correct logic functionality and delay times, do not demand the
high accuracy of waveforms achieved using analog simulators. Moreover, such a simulator takes
an excessively long time to analyse a digital circuit as every transition from a0 to a 1, or vice-versa,
requires very small time-steps.

In digital circuit analysis, device models can be much cruder than the approximate models
for analog circuits. This flexibility lends itself to efficient representation of models using low-order
polynomial sections ( Ref. Section 1.3.3.2 ). Circuit-specific simulators such as CAzM [7] which
uses third-order spline modelling, have shown significant speedup over SPICE for digital MOS
circuits.

Computational reduction can be also achieved if the circuit can be shown to be a series-
parallel topology. For example, without the presence of feedback loops, a signal-transition graph
can give an equation processing order such that no timing errors are incurred if one-shot timing
analysis is used.

Although such speedup techniques have value in their area of application, this project
is concemed with examining techniques valuable to general purpose simulators. Reduction of the
circuit complexity will only be used as a tool for demonstrating that certain approaches do not
reduce the analysis time of even a simplified problem. This serves to illustrate their inapplicability
to the general simulation problem.
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1.3.2 At The Differential Equation Level
1.3.2.1 Time Step Improvement

There has been a thorough examination of the problem of using higher-order integration
methods to increase the length of the time-step [12](16]. It was found that the extra computation
required at every time-point outweighed the time-step improvement. Moreover, if a method such
as Variable-Order Gear was used, a large portion of the computation time became devoted to
determining the time-step size and the required method-order optimally. As a result, the Trapezoidal
method was found to be the most efficient and is the LMS method presently used in SPICE.

This approach has been examined and found barren from the point of view of speedup
potential. The representation of the models using reduced-order polynomial sections does not bring
this approach back into consideration as the time variation of a DE solution remains quite arbitrary
(Ref. Section 3.2.1). Consequently, time-step improvement is not a major focus of this investiga-
tion.

1.3.3 At The Non-Linear Equation Level
1.3.2.2 Exploiting Latency

Speedup can be achieved by sectioning the circuit into minimally interconnected parti-
tions, then assessing which of these need be processed at each time-step. In much the same way as
a computer determines which sections of code to shift in and out of its cache memory, a block of
the circuit can made latent until it is ‘called’ for processing because one of its controlling inputs is

changing. This speedup technique is not affected by model representation so is not considered.

1.3.2.3 Models of Known Low Order Representation

Instead of having a set of computationally complex equations or empirically determined
data points, models can be represented as a set of low-order polynomials each of which apply over
only a portion of the device characteristics. Piecewise-constant [20], linear ( Katzenelson ) [5] and
cubic simulators [7] have all been implemented, an example of each of these modelling schemes
for a diode-like characteristic is shown in Figure 1.5.

As the order is decreased, the region of applicability of each polynomial section decreases
but so too does the computation at each iteration. In each implementation, these modelling schemes
have demonstrated speedup over SPICE for MOS digital circuits.
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va

a) Original Function b) Piecewise Constant

c) Piecewise Linear ~ d) Piecewise Cubic

Figure 1.5: Piecewise-Polynomial Modelling Schemes

Both the piecewise-constant and linear schemes have analysis techniques which require
stepping from region to region until a solution is found ( Ref. Section 1.4.1. ). Consequently, if
the model must be very accurate and regions are small, the simulator can become slow. This is
the reason for their applicability to digital circuit analysis where modelling errors are not so tightly
bound.

On the other hand, circuit analysis techniques for conventional models can be applied to
the higher-order descriptions. Indeed, the third-order spline-fitted model approach of CAzM [7]
achieves its speedup over SPICE by evaluating the Jacobian matrix more rapidly. It is examining
the possibility of simplification at higher levels of the simulator hierarchy due to this modelling
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technique which forms the basis of this report.

Ohm’s law does not hold for the piecewise-constant modelling as the description is not
continuous. Consequently, as higher-order schemes cannot easily be shown as an extension of
this approach, it will not be examined further in this report. Certain properties of piecewise-linear
simulator techniques are very desirable so an examination has been made as to whether the technique
can be generalized to higher-order modelling. To this end, the the Kazenelson algorithm is presented
in more detail later in this introduction.

1.3.4 At The Linear Equation Level
1.3.4.1 Better Sparse Matrix Manipulation

In the direct methods approach, computation time can be divided into derivation and
solution phases. Provided that the average degree of the nodes in the connectivity graph of the
circuit does not increase ( in practice, the average degree has been found to be about 2.3 [14] ), the
time required to set up the linear equation form is proportional to the number of nodes. However,
using sparse matrix techniques, the solution phase increases as approximately n!2, where n is the
node count [16]. |

To be satisfied that the search for the faster simulator should not just concentrate on the
improvement of sparse matrix manipulation, it is necessary to show that the solution phase does not
dominate computation time for reasonable sized circuits. The plots of Figure 1.6 and Figure 1.7
provide the required justification. ‘

The graphs of Figure 1.6 were generated from repetitive block networks with two con-
nections per node for the ladder network, three for the delta ( where the repititive block is a triangle
). The average is therefore close to that expected of practical circuits. Both resistive and MOS
pass gate circuits are shown in the results which illustrate the difference in run-times between an
old [16] and state-of-the-art sparse matrix package [11] in SPICE. Note that with the better sparse
matrix manipulation, the dramatic run-time reduction is not noticeable over all circuit sizes. In fact,
over the range from 10 to 100 nodes, there is little benefit despite the obvious improvement for
circuits of more than 1000 nodes. This suggests that theA linear solution phase of the analysis is not
dominant for small circuits. In fact, with the better matrix package, solution cost only reaches about
50% of the setup cost at circuit sizes of 10* nodes. In the range 1 — 10%, one percent speedup in
the derivation phase therefore results in at least 0.67 percent overall speedup. i.e. For any circuits

in this size range, improvements in the speed of execution for the derivation phase translate to
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Figure 1.6: Computation Time for Direct Methods Approach - Resistive Network

significant savings in the overall run-time of the simulator. The aim of this research is to examine

the possibility for reduction of the complexity of this part of the simulation problem through the

use of low-order-polynomial model descriptions.

1.4 The Reduced-Order Model

Although this search for more efficient solutions to the circuit simulation problem is

concemed with exploiting the properties of low-order representations for circuit models, it does not

focus on the derivation and representation of such models. Consequently, the following is a very
brief outline of techniques used in existing reduced-order polynomial simulators. This also serves



14
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Figure 1.7: Computation Time for Direct Methods Appfoach - MOS Pass Gate Network

as an illustration of the basic properties of these representations.

14.1 The Katzenelson Algorithm

The Katzenelson algorithm [10] is a method for solving a circuit when the device models
are represented in piecewise-linear form ( Ref. Figure 1.5 ). Each linear polynomial section only
applies over a restricted range as determined by required model accuracy. Consequently, for the
overall network, the relation domain is partitioned into a set of polytopes ( regions ) within each
of which the circuit is described by a set of linear equations. Basing an iterative approach upon the
solution of these equations is equivalent to applying the NR technique. Unfortunately, as the model

descriptions are not first-derivative-continuous, there is no guarantee of convergence.
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In the Katzenelson approach, a set of linear equations are solved to give a point z*. The
set of linear equations are determined by the region in which the present iteration solution, z*, lies.
If z* lies in the same region, then a solution has been found. Otherwise, the intersection of the
line from z* to z* with the present region boundary is taken as z*+!. The fundamental premise
upon which this approach is based is that the path described in the space X is the inverse image
of the straight line along vector f(z*) — yo, where f(z*) = f(zo) = o at the point of solution.
At each boundary-crossing, the progression towards or away from the desired solution f(z*) is
uniquely determined at the next step by the present position provided that it is not the corner point
of a polytope.

The efficiency of the algorithm is based upon the ability to determine easily these inter-
section points and not having to completely reconstruct the set of linear describing equations. To
do this, two important points have to be noted:

¢ The domain-space for a circuit as described by the set of sparse tableau equations has a lattice
structure. That is, region boundaries are orthogonal and parallel to axes-planes.

¢ The mapping must be continuous on every boundary.

The first fact implies that unless the vector passes through a comer point of the region,

intersection with the boundary can be detected by tracing along the direction:
d=2+p(="-2F) 0<p<1 (1.10)

and stopping when the first element of z’ violates a inequality constraint for the region.

The second point is relevant to determining the modification to the Jacobian matrix re-
quired at each boundary crossing. Consider describing the polytope regions as the set of inequalities
in x:

K = {z|Ciz + g; > 0} (1.11)

where C'; is a matrix, g; is a vector and the linear mapping in each polytope is described as:
y=Akz+ fi (1.12)

where Ay is a matrix and f is a vector. Now, as every mapping must be continuous, at every
boundary where ci;z + gi; = 0, between regions k and j, the following must hold:

Az + fr = Ajz + fj (1.13)
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Hence, there is only a rank-one update for A; at every boundary crossing provided that the
intersection is not with a comer point of the region.

Moreover, it has been shown [4] that given:

e All A are non singular
e The solution curve hits no corners

¢ The determinant of Ay in every unbounded region is of the same sign and the solution path
starts from a point in an unbounded region such that || ¥ ||> M where M is the largest
attainable value of || ¥ || in the bounded regions

¢ There does not exist multiple solutions in any individual polytope
then:

¢ No region except for the starting region can be reentered.

¢ Each bounded region entered by the solution curve must also be exited unless a solution z

exists in that region.

o A solution zq will be found if one exists.

There have been examinations of how to improve the algorithm to handle the analysis
if the listed conditions do not hold [4]. Furthermore, techniques for computation of the boundary
crossings have been generalized for the case where the polytopes are not guaranteed to form a lattice
structure [5]. This allows application of the Katzenelson approach to more compact circuit equation
representations, such as modified nodal analysis. However, these results will not be presented in
detail here as the modifications do not change the basic premise of the approach and consequently
are not of fundamental importance to the following study.

As the Katzenelson approach finds the solution by stepping from region to region, the
average size of the polygons relates directly to run-time. That is, a smooth trade off between
model accuracy and simulator speed can be achieved by varying the size of the piecewise linear
segments. Similarly, there exists a tradeoff between memory requirements and precision. However,
the critical point to note about the method is that it only becomes viable because there is a well-
defined incremental change between the linear equation description when moving from one region
to an adjacent one. If the equations had to be completely reformulated at each boundary crossing,
the accuracy which could be obtained for run-times competitive with SPICE-like simulators would
be far from sufficient.
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142 The Low-Order Polynomial Model

If the interpolation between data points is a polynomial of order greater than or equal
to two, the model description can be made first-derivative-continuous everywhere. Convergence
properties of the standard NR type approaches are consequently maintained as Lipshitz continuity is
satisfied. The derivative with respect to any of the dependent variables can be computed efficiently
directly from the known polynomial coefficients and variable values at the present iteration. With
the third-order modelling scheme presently used in simulators such as CAzM [7], this is the only
property of the representation which is exploited.

If the polynomial description is of odd order, then equal weighting is given to all end
point conditions. That is, the same amount of extra information is required at all end points. This
is not so for even-order modelling. Consider, for example, the parabola between two points - the
points plus the derivative at only one of them is required to fully specify the function. Odd-order
polynomial modelling is therefore usually favoured.

Increasing the order of the model representation generally decreases the number of re-
gions required for a description within the same error bounds. Consequently, although derivative
computation becomes more expensive, one would expect region boundaries are traversed less fre-
quently on the average in an iterative procedure such as NR. This implies less calls to the stored
models to obtain new polynomial coefficients are required. However, much of the investigation
into the feasibility of reduced-order-model simulators has concentrated on third-order interpolation,
such as that obtained using multi-dimensional splines. This is a consequence of the third-order
polynomials being the highest-order polynomials which can be solved explicitly in reasonable time
for an iterative algorithm.

1.5 Report Organization

The examination of applicability of polynomial modelling to analysis techniques is pre-
sented in detail in the following two chapters. The first of these chapters investigates approaches
to solving the problem at the NL equation level, the second investigating the DE description.
Organization of these chapters is correlated to the simulator hierarchy detailed in Figure 1.1.

More concisely, the possibility of an improved technique for extraction of linear equa-
tions, theoretical and practical arguments against generalization of the Katzenelson algorithm to
polynomial models other than linear, and the practicality of global explicit solutions or explicit
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solutions in relaxation techniques are examined in Chapter 2. In Chapter 3, NL circuit relations
are proven to be of the same order as device models even in the case of nonlinear capacitors. It
is shown that the model descriptions cannot provide improved estimates on LMS method accuracy
and stability, nor allow time-steps to be computed for solution to the next time-point to remain in
the present polytope. Closed-form solution techniques are proven impractical and the application
to WR is demonstrated to be of limited potential.

Each chapter closes with a summary of the applicability of reduced-order modelling at
that level of analysis. Final conclusions on the predicted usefulness of this modelling technique to
the speed-up of circuit simulators is presented in Chapter 4.
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Chapter 2

The Nonlinear Equation Level ( NL )

2.1 Formulating a Linear System of Equations (NL.LE)

At the Nonlinear Equation Level, the problem to be solved is that of finding a point
in 8" which satisfies a set of relations where those relations are of known polynomial order in
hyperplane-bounded regions in the space. It is shown in Section 3.1.1 that the equations describing

any circuit will possess these required properties even if nonlinear capacitors are present.

2.1.1 Application to Newton Raphson techniques

Existing reduced-order model (ROM) simulators exploit the ability to reconstruct the
Jacobian matrix quickly. However, this generally involves extracting the entire set of applicable
polynomial descriptions at every iteration from the model database. It will be shown that by using
the intersection of the NR vector with polytope boundaries the requirement for rapid memory access
can be reduced.

Techniques for finding the intersection point of the solution path with the polytope bound-
aries in the Katzenelson algorithm may be used explicitly to find the intersection of the NR vector
with bounding planes. In the piecewise-linear approach the update to the Jacobian matrix is rank
one provided that the solution path, linear in each polytope, does not intersect a comer of the poly-
tope. By analogy, if the NR vector passes through a single bounding plane, only one equation in
the set of polynomial branch equations need be modified. That is, crossing a bounding hyperplane
corresponds to violating a single regional constraint for an individual device given the present

polynomial descriptions for the entire circuit. Only the equations relating to that branch voltage /
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current need be updated.

One approach which exploits this property would be to stop at boundary crossings of the
NR vector, update the nonlinear equation description and begin the next iteration there. Unlike the
piecewise-linear approach, this would require the re-evaluation of the Jacobian at this point and
computation of the actual value of the function at the crossing ( Ref. Figure 1.5 ). However, there

are major theoretical drawbacks to such a technique:

1. The analogy with the Katzenelson theorem is not complete ( Ref. Section 2.1.2 ), so this
approach can not guarantee the properties inherent in that method.

2. Although at first glance this may appear to be a form of damped NR, the step size is fixed
by model descriptions and the topological arrangement of the circuit, not by enforcing the
reduction of some suitable norm. This implies that even if damping is applied to determine

an upper bound on the step length, rate of convergence properties of NR are not retained.

3. If the NR vector intersects a comer point, the algorithm is not guaranteed to cross all the
hyperplanes which form that comer ( Figure 2.1. ). Consequently, to update the set of
nonlinear equations, the NR vector at the boundary point must be examined to find which

region is about to be entered.
R2 NR Vector
Vector
3 does not R3
necessarily
cross all
R1 boundaries
at a corner
R4
Stopping NR Vector at Continuity of NR Vector through Bounding Planes
Boundary in Linear KN for Piecewise Polynomial Modelling Scheme

Figure 2.1: The Corner-Point Problem

Instead of stopping at the boundary points, the convergence conditions of Newton Raphson
can be maintained by taking the same step as determined for arbitrary model descriptions. However
the polytope boundaries crossed by the vector can be determined by using the same techniques
as exploited in the Katzenelson algorithm for intersections of vectors with hyperplanes. Once

these have been found, the explicit relation of these planes to individual device models can be
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exploited to update the set of nonlinear equations efficiently. Comers are no longer a problem as
the continuation of the NR vector is guaranteed to pass through all the planes which intersect at
that point, as illustrated in Figure 2.1. If the vector actually terminates on a plane or comer, the
set of equations derived for the present polytope ( without considering the final bounding plane
intersection) are valid as the device models are derivative continuous. The critical test as to whether
this method is practical is obviously the comparison between the time to completely reconstruct the

Jacobian and that to compute the bounding plane intersections and update selectively.

2.1.2  Generalizing the Katzenelson Algorithm

The Katzenelson algorithm has found its niche in some existing simulators for the efficient
computation of dc operating point under simplified model conditions. In particular, it has been found
useful on circuits for which standard Newton Raphson techniques don’t converge in reasonable
time, if at all. As the Katzenelson algorithm utilizes circuit models based on piecewise-linear
representation, it is appropriate to examine whether some of the highly desirable properties of the
method can be maintained for a piecewise-polynomial modelling scheme.

The following analysis of the applicability of such an approach is presented in two parts.
An examination of whether the Katzenelson approach for the piecewise-linear case has desirable
properties for transient computation constitutes the first part. In the second subsection the difficulty
of constructing an efficient theoretical parallel between piecewise-linear and piecewise-polynomial
approaches is presented. It is consequently demonstrated that a generalization of the Katzenelson
algorithm probably has little practical applicability even to finding dc operating points, let alone
speeding up transient analysis.

Application of Standard Katzenelson to Transient Computation

The most desirable property of the Katzenelson algorithm is its well-publicised ability to
find solutions in cases where more conventional numerical techniques fail [4] [5]. However, it is
important to note a proof that the algorithm will find a solution  indeed, all solutions ) relies strongly
upon the Jacobian determinants in the infinite regions being all of the same sign [4]. Futhermore,
the starting point of a path to the solution must be within an infinite region. Allowing arbitrary
models, the path can be quite circuitous demonstrated by the example in Figure 2.2. By modifying
the starting position to be within a totally bounded region (region bounded in all dimensions), it
is straightforward to construct a non-convergent path for this example. The algorithm can also be
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made to fail by denying the Jacobian determinant sign rule for the infinite regions. Consequently,

neither condition can be relaxed if the guarantee of finding any existing solution is to be maintained.
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Figure 2.2: Example Illustrating Possible Circuitous Nature of the Katzenelson Algorithm

The “guaranteed solution” property of the Katzenelson Algorithm is of paramount impor-
tance in any constructive argument for its use. If this property is not true for each time-point in the
transient analysis, there is no theoretical justification for simulation with piecewise-linear models
having better convergence properties than simulation with standard models and NR techniques.

For transient analysis, maintaining the guaranteed solution property by starting from an
unbounded region of the full circuit description at every time-point is clearly impractical. Each step
of the Katzenelson algorithm is determined by region boundaries and backtracking away from a
desired solution is allowed, so a rate of convergence is not definable. Consequently, the termination
condition cannot be based upon a rate of convergence and must be related explicitly to the number
of regions examined before finding a solution. To make this number practical, a restricted subspace
must be isolated which contains the solution to the next time-point. ( Adjacent regions outside
the restricted subspace can be assumed infinite and numerically modified provided continuity is

maintained. )
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Construction of a “predicted solution subspace” is an extremely difficult task, as presented
in Section 2.2.2. In fact, its size cannot be computed nor even accurately estimated in sufficient time
for transient analysis purposes. The size of the subspace must consequently be an educated guess,
perhaps using a predictor extrapolation based on a previous time-step and “distance-traversed-in-
space” relationship. Strong overestimates would only result in very large execution times for the
Katzenelson algorithm at each time-step.

A major problem presented by this approach is whether the functions in the adjacent
regions outside the subspace can be manipulated in such a way that the infinite-region Jacobian
determinant property is satisfied for the subspace. It has been proven in Appendix A that for a
lattice structure solution space, continuity of the function is maintained if and only if in every region
infinite in the same direction of dimension z;, ng; is the same. Consider setting the derivatives in
the infinite regions in order to satisfy the Jacobian property. Obviously, the singly infinite regions
can be analysed first as only a single column of the matrix is free to be altered. The required property
of the singly infinite regions in each dimension could be satisfied independently. However, by the
continuity argument, assigning derivatives for just these regions fixes the derivatives for the entire
space. For example, consider the region infinite in all dimensions ( known to exist because of the
lattice structure ). The entire Jacobian matrix in this region is a construct of the assignments given
to derivatives in the singly infinite regions. The sign of the Jacobian determinant in this region
need not be the desired one as the required derivative computation in each dimension has been
uncorrelated. Consequently, the infinite dimensions cannot be considered independently which
makes this construction impractical for transient analysis. From an extension of this argument, it
is clearly not possible to fix the infinite region derivatives progressively as the respective regions
are entered. In the case of a non-lattice structure, attempting to satisfy the infinite region Jacobian
determinant sign property is even less practical.

The above presentation is true for a set of piecewise-linear continuous functions. The fact
that these functions are generated from a set of circuit relations and piecewise-linear device models
does not reduce the complexity of the problem if an arbitrary interconnection of components is
allowed.

Generalization to Piecewise-Polynomial Models

A fully parallel development of a Katzenelson type algorithm for general piecewise-

polynomial device models is beyond the scope of this investigation. However, a reasonably cursory
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analysis of the problem is sufficient to show that even if such theory were developed it would be of
little practical use.

In the piecewise-linear case, if a polytope with singular Jacobians or multiple solutions
does not exist, the path generated by the Katzenelson algorithm can not reenter any region except
that in which it started. This property is used to determine a suitable run time given the number
of polytopes in the space and to detect cycling. In a polynomial modelling scheme of greater
than ﬁrst-order, it is not possible to ensure that less than one solution exists per region by model
construction. Furthermore, in a polytope the Jacobian determinant can assume both positive and

negative sign. Examples to illustrate these points are shown in Figure 2.3.

a). Non — Monotonic Device:

<& Region of Single
Polynomial Description

V=E-IR

R
-~ v + \'
+ R L
For the circuit illustrated , there are two
+ solutions (@) in region R of the device
model .
- \'/

b). Monotonic Non-Linear Device:
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For a circuit topology of that shown above, there exists R such that
there are two solutions in R2 even though the original non-lincar device
is monotonic .

Figure 2.3: Violation of the Single-Solution-per-Region Property

In the partitioning scheme chosen for this example, the functional description of the model
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is monotonic and first derivative monotonic in each region. Violation of the single solution per
region property in this case implies that such a violation is possible for any chosen partitioning
scheme (it is not practical to assign model regions dynamically according to device interconnection
in a circuit ). If device models are not overall monotonic, construction of a counter-example is
trivial (first example). However, even in the case of a fully monotonic model, if arbitrary controlled
sources are permitted the property can be denied ( second example ).

The existence of polytopes in which the sign of the Jacobian determinant is not unique
allows the solution path to have multiple entry points into that region. It is extremely time-consuming
to examine whether a region actually has this property ( Ref. Section 2.2.1 ). Consequently,
detection of cycling and determination of run-time based on number of regions in the space is not
straightforward as for the piecewise-linear case. As demonstrated in the example, if circuits were
designed to avoid this phenomena, it would require the exclusion of arbitrarily connected controlled
sources and non-monotonic device models. Circuit restrictions of this form help reduce the problem
to one which is well-conditioned even for standard NR analysis.

The uniqueness of the solution path ( a mapping of a linear function between previous and
present time-point conditions ) is ensured as long as the Jacobian at any point is non-singular. This
is a basic result of bifurcation theory. In the piecewise-linear case, if the Jacobian is non-zero in
all polytopes, only crossings of the region boundaries can result in splitting the path. Furthermore,
the continuation is known to be unique if the path intersects a single plane face, even if the sign
of the determinant changes, as a region cannot be reentered. It is consequently only possible that
a path splits at the intersection of that path with a polytope comer point. The perturbation theory
used in these cases to determine the direction of extension is greatly simplified as the analysis need
only extend to examining each of the regions which share that comer. However,singularity points
for the Jacobian can éxist inside polytopes through allowing piecewise-polynomial models. As
the determinant is continuous across hyperplanes, polytope boundaries are not explicitly related to
determining branching points of the solution path. In fact, fully generalized perturbation theory
must be used at any point of Jacobian singularity. This is certainly a significant computational
complexity increase over the piecewise-linear case.

Even if the Katzenelson algorithm could be generalized, its theoretical basis would rely
upon accurately tracing the solution path. This path is not explicitly computable ( Ref. Section 2.2
). This implies an iterative approach such as NR. To get an accurate path trace, NR could be used
with a very small increment along the linear path between last time-point and present time-point
conditions. This, however, defeats the purpose of the method as this approach is not dissimilar
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to using NR directly with very small time-steps. Alternatively, one might traverse a single NR
vector to its intersection with a polytope boundary then attempt to find the correct intersection of

the solution path with this plane. This approach, however, is not valid for the following reasons:
¢ The region boundaries are not necessarily the critical points for path splitting.

o Singularity points of the Jacobian could be overlooked which would invalidate the theory on
which the algorithm is based.

¢ The plane of intersection of the NR vector and the solution path need not be correlated
(Ref. Figure 24 ).

Consequently, the implementation of a generalized form of the Katzenelson theorem for piecewise-

polynomial models could not be competitive with existing simulators.
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Figure 2.4: Using NR to find Plane of Intersection with Solution Path

2.2 Solving Without the Need For Global Linearization (NL.DE)

Consider device models as represented by piecewise-low-order-polynomials of less than
third-order such that for the single-variable device, roots are explicitly computable in reasonable
time. The question then to be asked is whether this property can be exploited to avoid the Newton
Raphson linearization step. In the following analysis, the undesirably high complexity of such a
scheme is exposed for the even the restricted case of all circuit elements being two-terminal devices.

It is easily demonstrated that for a set of polynomial equations extracted from a circuit
topology, the ability to solve them simultaneously is a property which depends upon linearity. Take
the example of Figure 2.5. The set of equations to describe this arrangement are the following:
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Figure 2.5: Simple Two Terminal Device Nonlinear Circuit

as(vl—vz)3+az(vl—02)2+a1(vl—vz)l—as(vz—vs)s-az(‘vz—vs)z-al(vz—vs)l-% =0 (2.1)
az(vp — v3)3 + az(v; — 173)2 + ay(vy — 1)3)1 - a3v§ - a2v32 - alvgl, - % = (2.2)

Given the source voltage F, find v2, v3. Even if the branch voltages were taken as variables to avoid
multiplicative terms such as v3v3, a convenient linear algebraic representation does not exist for this
case [8]. The only possible form is that in which the variable vector contains every branch voltage
raised to powers 1, 2, and 3 as separate variables. The resulting removal of variable independence
prevents explicit solution of this system by any conventional means. Consequently, in general an
explicit solution for a node in a network can only be obtained after a series of circuit collapsing steps
(Section 2.2.1). The only other approach which avoids the requirement for global linearization is
one based upon relaxation techniques ( Section 2.2.2 ).

22,1 The Explicit Solution

The incentive for investigating a network collapsing technique is illustrated in the exam-
ples of Figure 2.6. A single polynomial of the same order as the model descriptions can be extracted
for the cases of:

¢ a pure series connection of elements whose voltage characteristics are expressed as a poly-
nomial of current.

¢ a pure parallel connection of elements whose current characteristics are expressed as a
polynomial of voltage.

This is essentially the basis of a series / parallel reduction technique for a graph of the circuit. Such
an approach would only be applicable to the restricted class of series / parallel networks, i.e. circuits

without feedback elements. However, this is the most basic form of network reduction. Its lack of
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practicality, presented in the next two subsections, illustrates that extracting explicit solutions by
circuit reduction techniques has very limited potential.

a) Series Connection

1
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b) Parallel Connection
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Figure 2.6: Series / Parallel Circuit Reduction

Single Low-Order Polynomial Models

To retain the ability to solve the network explicitly, the polynomials describing the
collapsed sections of circuit cannot be order greater than three. This requirement explicitly relates
the desired model description ( whether i = p*(v) or v = p3(4) ) to the topology of the circuit. In
the case of parallel combination the former representation is demanded while a series combination
requires the latter. A simple example is sufficient to justify this necessity. Consider the series
combination of two elements, one device with terminal voltage described as a polynomial of current
the other with current in terms of voltage ( Figure 2.7 ).

Assume second-order polynomial models of the form:

i= 003 + avy (2.3)
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Figure 2.7: Dependence of Model Description Upon Explicit Solvability Property

1)2=E—‘v1 =bli2+b1i (24)

Collapsing this network corresponds to substituting the second relation into the first. This produces a
fourth-order polynomial in <. The implication of this result is that to achieve independence between
model description and circuit topology, all devices must have representations both as i = p*(v) and
v = p*(4). In general, if i = p*(v) is a good match to characteristics this does not imply that there
exists a good polynomial description of the form v = p(4), and vice versa.

( Consider v = #2 on the interval [0, 1] for which i = \/von [0,1]. )

Even the existence of device models with polynomial descriptions ¢ = p*(v) and
v = p*(i) is not sufficient to guarantee extraction of a polynomial for a node in the network which
can be solved explicitly. Collapsing series elements produces a polynomial of voltage in terms
of current, parallel elements reduce to a polynomial of current in terms of voltage. However, the
placement of these subcircuits in the topology determines the reﬁuiremem fori = p*(v)orv = p*(i)
for their collapsed representation. The extraction of a polynomial of practically solvable order is
then dependent upon the construction of an inverse low-order polynomial approximation. In fact,
rather than attempting to describe models in both forms, such a scheme would also be used at the
device level.

The equations extracted through the use of local polynomial approximations to describe
network sections are only applicable over a limited range. Consequently, even though results are
computed explicitly, any procedure using this technique would have to be iterative to guarantee
accuracy. The formulation of such an iterative algorithm implies that polynomial approximations
must remain valid for all devices. This requirement can only be satisfied by computing a solution
for all nodes in the network attached to or controlling a nonlinear element so that local polynomial
approximations can be updated if required. That is, even if the simulation question being asked
required transient behaviour for only a few nodes of interest, in general the subset of nodes for



30

which a solution must be computed is unlikely to be significantly smaller than the set of all nodes.
Although the region of applicability would be improved, there is significantly greater complexity
in formulating a polynomial approximation over derivative determination ( linearization ). When
combined with the generally low number of NR iterations required to converge at each time-point
of the transient analysis in practical cases, this suggests that the explicit solution approach would

be considerably more computationally expensive.

Piecewise Continuous Low-Order Polynomial Models
In a practical simulator, the benefit of a piecewise-continuous polynomial modelling
scheme to the “explicitly solvable” approach is further reduced. This is a consequence of range of
applicability of the low-order polynomial description being a property of model construction and
present iteration point. Consider the curve of Figure 2.8. This depicts the region of applicability of
a polynomial if a local approximation is made in comparison to the function extracted from model
representation. In this case, even though the device description may be of the desired form for the
topology ( v = p*(é) or i = p3(v) ), the proximity of the iteration point to the region boundary

restricts the usefulness of the approximation.
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Figure 2.8: Model and Local Approximation Polynomial Descriptions

A polynomial description applicable in one region is in no way guaranteed to be even a
close approximation when extended into adjacent regions. Consequently, if a solution point is found
outside the present polytope through explicit use of the device polynomials, there is no generally
provable relation between that and the desired solution. In fact, such a result can not even be utilized
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to determine in which region the solution actually lies. This prevents formulation of an iterative
procedure from this basis.

It is not sufficient when checking the validity of a solution to examine only the results at
the desired nodes. If device polynomial descriptions are used directly for some elements, every node
controlling those elements must be computed. The validity of the final solution depends upon every
polynomial approximation used in the relevant collapsed subcircuits remaining valid. Furthermore,
nonlixiearity prevents the use of superposition techniques. If the describing polynomial for a device
is invalid, all of the dependent collapsed subcircuit descriptions must be recomputed from scratch.

The practical consequence of these results is that a low-order polynomial description
must be generated for the function about the present iteration point. The polynomial extracted
from the piecewise-polynomial descriptions of the models does not have the desirable properties
of symmetry or bounded accuracy about a point through its construction. This does not permit the
formulation of a convergent iterative approach using this form of device description. Consequently,
a piecewise-continuous modelling scheme exploiting an explicit solution-property inhereted from

local-polynomial descriptions cannot offer speedup over standard NR linearization.

2.2.2 The Relaxation Approach

At the NL equation level, obtaining an advantage over standard relaxation techniques for
networks with arbitrary device descriptions (other than through ease of linearization) depends upon
the ability to solve circuit relations explicitly. A set of polynomials of known order is closed under
addition so the set of equations obtained from KCL and constitutive branch equations is the same
order as the model representations. In fact, if all devices are expressed with current a polynomial
of voltage ( except for voltage sources, voltage controlled voltage sources (VCVS) and CCCS ),
the set of variables required to maintain a complete description of known order is the same as for
the MNA form after linearization. The principle of relaxation allows each equation to be taken
separately and analysed for a single variable with all other variables fixed as described in
Section 1.2.3. In this way, every equation is reduced to a single variable polynomial of less than
third-order which can be solved directly.

Techniques exploited to force better convergence of relaxation based approaches are
equally applicable regardless of the mathematical representation of the models. For example,
requiring capacitors to ground at each node to ensure diagonal dominance of the linearized matrix

can be used to improve convergence of all approaches. This is a consequence of the convergence
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within a region about a solution point being depending upon properties of the Jacobian matrix
(Ref. Section 1.2.3.). Convergence rates thus derived actually assume solution of the equations in
each iteration to within a small bounded error, except in the case of Iterated Timing Analysis.

The problem of ordering the equations in such a way as to optimize the number of
relaxation iterations is equivalent to those adopted in Gauss-Jacobi-Newton or Gauss-Seidel-Newton

approaches. Consequently, these ordering techniques are not examined further in this report.

Nonlinear Relaxation and Iterated Timing Analysis

The problem with this approach is clearly a consequence of the possibility of the solution
being outside the present polytope. For an arbitrary network, it is not generally possible to bound
the time-step and so ensure that the solution for the next time-point remains within the region
(Ref. Section 3.1.2. ). The model descriptions for all devices cannot be exploited outside their
region of validity. Futhermore, an overall solution obtained outside this polytope cannot be utilized
to determine in which region the solution actually lies. ( The reasons for this are similar to those
outlined in Section 2.2.1) However, as only a single nonlinear relation is numerically solved at a
time, it is possible to progressively update the set of describing relations.

Even in the case of a single variable piecewise-polynomial relation, the solution of the
describing polynomial for the present region cannot suggest a direction towards a valid solution
outside the polytope. A counter example to moving in the direction of an invalid solutionis depicted
in Figure 2.9.

For the single variable piecewise-polynomial relation, the solution lies either to the left
or right of the present point. Furthermore, the length of the time-step has been determined such
that over that interval, a polynomial in time of the same order as the integration method used is
a sufficiently accurate description of the waveforms. For example, if the TR method is used, the
variation with time over each interval is a parabolic approximation. Given that variables can be
described as polynomials of known order and that a single equation is being solved, it is appropriate
to ask whether in this particular case the time-step to a region boundary can be determined. The
approach would involve replacing the variable being solved by a boundary value, all other variables
by a second-order time description and then solving for z. The ability to do so would allow the
direction towards the solution to be determined.

Consider the form of the polynomial relation to be solved for current summation at a

node. It is constructed from models described as i = p*(v). With respect to node voltages there
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Figure 2.9: Counter Example to Moving in Direction of Invalid Solution

may exist terms (e; — e;)* producing the products €. If the node voltages can be expressed as
second-order polynomials of time, a sixth-order polynomial in ¢ can be produced. Even restricting
the models to second-order, polynomials of greater than fourth-order (not explicitly solvable) are
readily constructible. The presence of capacitors, linear or nonlinear ( Ref. Section 3.1.1 ) implies
that there can exist coefficient terms in the overall equation of the form £, where A is the time-
step. To compute the time to the region boundary, & is replaced by ¢ ( thereby maintaining a
valid description for TR step size less than % ). This has to be multiplied through to produce a
polynomial in ¢ which could now be of fifth-order, e.g., t.(p?(t))? — p°(t). The time-step to a
region boundary cannot be computed explicitly. Nevertheless, the time-step computed was only to
be used to determine whether the desired solution is beyond a certain boundary. Without a necessity
for accuracy, convergence of NR applied to this polynomial in time could similarly be used as
an indicator. Approaching a solution inside the time-step, h, implies this boundary is crossed, a
solution outside implying the other is ( assuming the present region has been determined to contain
no solution ). The direction towards the solution need only be determined once. Analysis would
proceed by progressively adjusting the circuit-describing relations appropriate the to regions in the
specified direction until a solution is found. Practically, it may be found quicker not to construct a
polynomial in time to determine direction. An alternative approach could involve just examining
the “left” adjacent region, then the “right”, next left, next right and so on until a solution is found.
The usefulness of the explicit solution approach clearly depends upon the average time
required to compute a valid explicit solution versus convergence of Newton Raphson. Standard NR
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techniques have shown adequate convergence in an average of not much more than three iterations.
Given the simplicity of extracting derivatives from polynomials, the computational complexity of
finding the roots of the third-order polynomials would be predictably larger than application of
standard NR. One should note that explicit solution of third-order polynomials involves radicals
which are frequently obtained through NR techniques in practical applications. The explicit solution
technique clearly becomes impractical if the average number of regions examined for an explicit
solution is somewhat greater than one.

The discussion of the computational trade-off between NR and explicit solution techniques
is, however, almost a moot point. The factor implying this is the proof that ITA has the same rate
of convergence as NL relaxation for an initial guess sufficiently close to the solution [15]. This
proof demonstrates that accurate solutions to the inner loop relations are not critical to relaxation
performance in transient analysis. ITA has also been shown to execute significantly faster than
full NL relaxation in practice, especially when selective trace techniques are also used [14]. This
is sufficient to essentially eliminate any need to experimentally examine the trade-off between
convergent NR and explicit solution techniques.

Timing Analysis

Timing analysis requires the accurate computation of the solutions to each equation
(Ref. Section 1.2.3.). The time complexity of finding these solutions explicitly is exactly equivalent
to that presented previously. However, in this case the trade-off between NR convergence and the

explicit solution method is crucial.

2.3 Practicality of Application to the NL Level

The applicability of low-order polynomial modelling has already been demonstrated at
the NL equation level. The increased ease of constructing of a set of linear equations is exploited
in existing simulators, such as CAzM. This approach might be improved further through selective
updating of the set of nonlinear circuit relations. Thorough investigation of such a technique would
involve empirical examination of the trade-off in complexity between determining intersections of
NR vectors with polytope boundaries and full reconstruction of the Jacobian matrix at every NR
iteration. Unfortunately this appears to be the only unexplored avenue which offers any promise of
speed-up at the NL equation level. Possibilities for improving NL analysis through utilization of
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device descriptions have been examined in the application of a generalization of the Katzenelson
algorithm to transient analysis, and the elimination of the need for linearization. Both approaches
proved unfruitful.

Use of the Katzenelson algorithm in transient analysis does not maintain many of the
desirable properties of the technique even in the case of piecewise-linear device descriptions. For
example, it is impractical to manipulate infinite region derivatives to ensure that the method is
guaranteed to find an existing solution. Furthermore, if higher-order modelling is allowed, the
inability to exactly trace the solution path and the loss of the significance of region boundaries
(points of singularity for the Jacobian matrix being critical) prevents a generalization of the method
being practical, even for dc analysis.

Knowledge that the circuit relations are polynomials of the same order as the models did
not prove valuable. As these polynomials are multi-variable in general, finding explicit solutions
to avoid application of NR involves either collapsing the circuit or use of relaxation techniques.
Collapsing is impractical as there is no guarantee that the solution lies within the present polytope
( region of valid NL description ) and circuit topology fixes requirement for the form of device/
subcircuit description ( v = p(i) or ¢ = p(v) ). In NL relaxation, as each equation is solved
as single-variable-dependent, the trade-off between complexity of explicit solution techniques and
convergent NR is somewhat less apparent. However, it has been shown that ITA which only uses a
single NR step towards the solution of the NL equations in the inner computational loop converges as
rapidly as NL relaxation. There is therefore little justification in the added complexity of obtaining
the exact result provided by explicit solution techniques.



36

Chapter 3

The Nonlinear, First Order Differential

Equation Level (DE)

3.1 Formulating a System of Nonlinear Equations (DE.NL)

3.1.1 LMS Methods
Handling Nonlinear Capacitors

Many of the results of the previous chapter are derived assuming that the set of nonlinear
equations extracted from circuit relations are polynomials of order not greater than the model
descriptions. As a set of polynomials of known order is closed under addition, this assumption
is obviously true in the case of non-derivative-dependent nonlinear components. However, for
general circuit analysis such components may be present ( the collector-emitter capacitance of a
BJT, for example ). It must therefore be shown that a representation exists for these elements
such that the known order property is maintained without a need for NR linearization. Any model
linearization implies a need for iterative convergence even if solutions to the polynomials resulting
from non-derivative-dependent components are found explicitly.

Consider a nonlinear capacitor represented in the form ¢ = p*(v), where g is charge. This

implies ¢ = d(”sv" % = g%(v)v’ and after application of the TR integration method this becomes:
) v, - v, '
it = Q=" — 0)¢%(vn11) = £ (vnn1) (3.1)
n

Consequently, current at the present time-point, i,4;, is a polynomial of the present-time-point
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voltage, vn41, of the same order as the model. This is true regardless of the LMS method used.
Similarly, in the case of nonlinear inductors, a polynomial description of flux in terms of current,
¢ = p*(i), should be used. These representations maintain the property of known polynomial order
for KCL and separate branch equations of the MNA representation.

Accuracy and Stability

Performance of integration methods used for solving entirely arbitrary differential equa-
tions is assessed by their stability and accuracy when applied to exponential waveforms. For a
method of n**-order accuracy, when applied to an exponential with a real exponent, the result is
exact for any truncation of the Taylor series expansion of the exponential below the (7 + 2)* term.
If the device models are represented in piecewise-polynomial form, an examination of whether the
generality of the differential equations has been reduced is important. A positive result could allow
amore problem-specific definition of accuracy and stability, thereby improving time-step estimation
in circuit simulation.

A counter example to disprove this proposal exists even if models are restricted to second-
order polynomials and inputs vary linearly with time. A multiplier can be designed as shown in
Figure 3.1 from basic op-amp analog adders and second-order nonlinear devices. Through the use

L

\/ \/ | i

I Devices

e
-

4 AB
Figure 3.1: Multiplier Construction Using Second Order Nonlinearities

of multipliers, delay lines and amplifiers, it is straight forward to construct a circuit which generates
a truncated Taylor series expansion ( any order ) for an exponential ( real or imaginary exponent )
given a linearly-time-varying input to the network. Numerical accuracy of an integration method

is determined by the dominant error term of the truncated series. Consequently, even in this over
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simplified case, the generality of the circuit waveforms has not been reduced significantly. This
implies that piecewise-polynomial modelling cannot provide an insight into improved time-step

estimation.

3.1.2 Time Step Restriction

The problem with an explicit solution approach is the possibility that the solution may lie
outside the polytope of valid description ( Ref. Section2.2.1 & 2.2.2). Consequently, the existence
of an efficient analytical approach for bounding the time-step in order to remain within the region
is desirable. Such a technique could be utilized to determine whether a solution should be found
explicitly or by using an iterative technique . ( An iterative technique, such as NR, would be used
if the time-step required to remain within the polytope is significantly smaller than that bounded by
integration method accuracy. )

The complexity of computing the maximum time-step, A,+1, needed to remain within
the present polytope is large for even simple circuits. Consider the diode / capacitor example of
Figure 3.2. By utilizing the TR integration method:

Region of

-
—<} Single Poly.

Description

ip

corresponding
to largest
Time - Step
not leaving
present region.

) <

Figure 3.2: Computing Restricted Time Step for Simple Circuit

vy = pUntl ~Un _ v, (3.2)
hn+l
. 2C 2C .
= gl = Vg — (vn — v5) — in (3.3)
hnt1 has

To compute the time-step to the boundary, assign to v4 a boundary value and substitute the corre-
sponding value of i,4+) and an expression for source voltage variation (in terms of A,1; that is,
time for which h,+; = 0 implies the previous time-point). This relation is then solved for An41. A
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result less than the time-step bound for accuracy of the integration method implies that the boundary
corresponding to the value of vy substituted will be crossed. Futhermore, the boundary value is
attained for that value of time-step. A result greater than the bound for accuracy implies that the
specified boundary is not crossed in this time-step. However, it gives no information as to whether
the other polytope boundary is crossed. ( Of course, in this case, if the time-step bounds are close,
crossing of the other boundary is unlikely. However, as the performance of the LMS method is not
guaranteed beyond the accuracy bound, this is a statistically variable property. ) To be certain that
the solution lies within the polytope, all boundary conditions must be examined.

In the chosen example, if the source voltage variation is a polynomial variation of less
than third-order, the final expression can be solved explicitly. However, even using the fact that
within the time-step bound for accuracy all waveforms can be assigned a low-order polynomial
description, in general the resultant equations are not solvable explicitly ( Ref. Section 2.2.2 ).

The time expressions obtained for the network would need to be solved by numerical
techniques. In an N dimensional space, up to 2N boundary conditions would need to be assessed.
Each boundary examination would be of somewhat greater complexity than finding a NR solution
to the set of circuit relations for the present polytope. ( The order of the equations may be greater
than the order of model representations. ) Consequently, in general circuit simulation, it would
not be practically possible to determine a bound on h,4; to ensure that the solution to the next
time-point lies within the present polytope.

3.2 Solving Without Formulating Global System of Nonlinear Equations
(NL.NL)

3.2.1 Decoupled LMS Methods

Waveform Relaxation (WR)

Inside an iteration of waveform relaxation, each circuit relation is solved separately over

a specified time interval. That is, a relation of the form:
fa(z(2),2(2),u(t)) = 0, 0<tT (34)

is solved for variable z,(t), all other variables having specified variation for all
{t : 0 < t < T}. Essentially, each analysis of this form is equivalent to solving a node in a

multi-input, single-unknown circuit where all inputs are represented in piecewise-polynomial form
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(Ref. Figure 3.3 ). The construction of known waveforms as piecewise-polynomials is a con-

Wl Wz W3
~N v NNV

* L] L] L]

x is the unknown,

{Wi1, ..., Wr} set

of "known" waveforms
in piecewise polynomial
form .

Wa-1 (P W,

Figure 3.3: Diagramatic Representation of Step in WR

sequence of the LMS method used. Between time-steps taken in the solution of each node, a
polynomial approximation of the same order as the LMS method is valid. ( To complete the anal-
ogy, a piecewise-polynomial representation of actual network inputs would be required. ) Clearly,
any advantage to be obtained as a consequence of model representation will be seen in the tradeoff
between standard NR and an explicit solution approach.

The problem of determining in which polytope the solution at the next time-point lies is
similar to that associated with ITA (Ref. Section 2.2.2 ). Although the equation produced through
application of the LMS method can be solved explicitly, ( Ref. Section 3.1.1 ), a result outside the
valid region of description is not useful. Moreover, for an arbitrary node in the circuit, traversal
of a region boundary is more likely in WR analysis than for a step taken in ITA. (In ITA, the step
length is not necessarily determined by the variation of the waveform being computed so it tends
to be shorter.) An examination of the complexity for determining boundary crossings is therefore
relevant.

Unlike ITA, a single polynomial to be solved for boundary conditions cannot necessarily
be constructed through the substitution of polynomial functions in time for the “fixed” variables.
(That is all variables other than z,,(¢) from Equation 3.4). As the time-step of adjacent waveforms
may not be strongly correlated to those of the node or branch being examined, several polynomial
sections may have to be analysed (Ref. Figure 3.4). The construction of these sections from the time-

steps of adjacent nodes reduces the computational independence of the waveform being examined.
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Figure 3.4: Dependence of Polynomial Description in Time upon Time-Steps of Local Nodes

Futhermore, analysis of each section for boundary crossings has the same time complexity as that
used to compute a single time-step of an equation in ITA. This reduced independence of waveform
analysis and significant computational cost of locating boundary crossings makes the determination
of the time-step-to-boundary infeasible. If an explicit solution is to be found, the approach to take is
that of examining the “left” adjacent region, “right” adjacent region, and so on until a valid solution
is found ( Ref. Section 2.2.2 ). However, for each region a third-order polynomial must be solved.
This' implies that an average of much greater than one polytope bassed through per time-step will
bias computational complexity considerably in favour of standard NR.

Of all the techniques examined in this report, it is probably the application of reduced-order
modelling to WR techniques for which the trade-off between explicit solution and standard numerical
analysis is least well defined. However, as for any iterative technique taken to convergence, e.g.,
ITA , the demand for exact solutions on each iteration is significantly reduced. Implementation
of efficient Waveform-Newton simulators ( in which only a single NR step is taken to define the
next time-point solution for a waveform of the present iteration ) has shown this to be true for
WR techniques [21]. Given that NR need not be executed to within the tight bounds on accuracy
required for a global solution at a time-point, the computational complexity of obtaining an exact
solution is not warranted. '

3.2.2 The Closed-Form Solution to O.D.E’s;

Extracting closed-form solutions to circuit relations is not possible in general. However,

the ability to determine such a solution eliminates the need to apply integration methods. It is
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consequently relevant to examine whether such a solution technique is plausible in the case of
reduced-order modelling.

One approach to constructing a closed-form solution is through the summation of a set
of basis functions. Impractical in general, this modelling scheme might be expected to allow
a reduced set of basis functions to be specified. Extraction of a finite basis set could permit
adequate approximation of the differential equation solutions through determination of the relevant
coefﬁéients. The following discussion proves the non-existence of a set of practical cardinality.

A set of basis functions is a complete set of orthonormal functions, {¢,} which is closed
under multiplication . For example, in the case of a periodic waveform of period T, the set of
functions: {ezp( j2n7r(—‘T~)t : n € N}is abasis [19] in that all such waveforms can be represented
as a Fourier Sum:

z(t) = f: cnea:p(j2n1r(%,-)t) (3.5)

n=—oco
The completeness of the set implies that for any function, z(t), the restricted sum, > ¢4,
approaches z(¢) uniformly.

i.e. Forany € > 0,3M; € Ns.t.Vm > M, ||2(t) — Xy cndnll < €

However, for arbitrary continuous functions ( such as those produced in general simulation ), there
does not exist M independent of z(t) such that for all such functions the above relation holds.

If the simulator uses reduced-order models, then within the bounds of a polytope in the
solution space, the waveform description at a node can be a polynomial in time of arbitrary order
( Ref. Section 3.1.1 ). A corollary of the Stone-Weierstrauss Theorem [17)], a theorem from
elementary topology which relates the ability to uniformly approximate continuous functions by
elements of a subalgebra in the space of continuous functions, states:

Every continuous function on a closed bounded set X in R™ can be uniformly approximated
on X by a polynomial ( in the co-ordinates )

This is equivalent to stating that the closure of the set of all polynomials is the set of
continuous functions over that interval. (In this case, the closed bounded interval is the time over
which the circuit functionality is to be examined. ) The argument for the non-existence of a basis
set of practical size proceeds by contradiction. Assume that there exists a finite subset, cardinality
M, of a set of basis functions, {¢n(t)}, such that a weighted summation of elements of that subset
can be used to uniformly approximate any polynomial, p(¢), to within error 5.
ie. Forany £ > 0,3M € Ns.t.||p(t) - M, cadn(t)|| < 5.

However, by corollary, for any continuous function f(t), there exists a polynomial p(t) such that
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l£(t) — p(¢)ll < 5. Hence, 3IM € Ns.t.||f(t) - Zn_l cndn()|| < e. This implies that the this
finite subset of the basis could be used to approximate any continuous function uniformly. As
this subset is not closed under multiplication, it is not a subalgebra and this is a denial of the
Stone-Weierstrauss Theorem. Therefore, such a set does not exist.

The complexity of constructing a closed-form solution from a set of basis functions is
consequently no more difficult in the general case than for reduced-order modelling. If a closed-form
solutidn is to be extracted, it must be related to the polynomial form of the differential equations
explicitly.

Allowing Nonlinear Capacitors: Ingeneral, adifferential equation ( generated by the summation
of currents at a node ) will be of the form:

2 ('”l) ——+ ot a(n) + @)+ ... + fit) + fo(t) + ... =0 (3.6)

where input sources are nepresented as polynomials in time, f;(t) , and polynomials p;(v), ¢:(v)
are extracted from model relations. Consider now the simple example depicted in Figure 3.5 of a
nonlinear capacitor in series with a linear resistor driven by a voltage source of polynomial variation.
For the above circuit, the describing relations are:

E=f() Vo, T Cyp - a=p(v)

=i=p(v)Vv

Figure 3.5: Simple Nonlinear Capacitor Example

Gug(t) - #'(v1).0}(t) = 0 (3.7)
v(t) + v2(t) - g(1) =0 (3.8)
where g(t) is a polynomial. This reduces to the solution of a differential equation of the form:
G(u(2) + g(t))
vi(t) = ———2 2227 39
l( ) P'(vl) ( )

This equation does not have a general solutionover all time. In fact, the only closed-form expression
known for an arbitrary differential equation of the type:

' _ p(u,t)

= @) (3.10)



is that in the asymptotic limit which assumes one of the following forms:

w'(t) ~ at’ed®
w/(t) ~ at(log(t))e

where g(t) is a polynomial and a, b, c are constants [1]. This is clearly not a useful result as the
differential equations describing the circuit remain valid over a only a restricted time interval (until
polytope boundary is crossed ). Furthermore, these asymptotic expressions are not even guaranteed
to bound the solution close to time ¢ = 0. Closed-form expressions are consequently implausible if

nonlinear capacitors are not linearized.

All Capacitors Linear or Linearized: Linearization of nonlinear capacitors in a network implies
that any closed-form solution is an approximation even within the polytope of valid description.
The linearization implies that the general circuit relation DE is reduced to:

ay dvc';t) + azdv;t(t) + et q(n) + ©(0) + ... + filt)+ () + .....=0 (3.11)

However, differential equations of the type:

& = p(u,t) (3.12)

do not have closed-form solutions unless p(w, t) is linearin ». That is, a simple closed-form solution
can only be found in the case of linearization of all devices. Techniques such as quasilinearization
can be used to obtain closed-form upper and lower bounds on the solution to the nonlinear DE .
However, except in very particular situations, such as for the solution to the Riccati Equation :

& = (1) + alt) (3.13)

these bounds are neither simple to compute nor provably tight.

There is no evidence to suggest that a general technique to finding a closed-form expression
satisfying the type of DE’s described above will ever be developed. However, even supposing it
were, such a function would definitely not be alow-order polynomial. An iterative technique such as
NR would be required to determine when the solution crosses a region boundary ( for determination
of the region of applicability of the solution ). Given the complexity of checking all boundary
conditions ( Ref. Section 2.2.2 & 3.1.2 ), such an approach could never compete with existing
simulators.
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3.3 Practicality of Application to the DE Level

The form of the model representation does not appear to have a significant effect upon
the solution techniques at the differential equation level. In the construction of NL equations,
the time-step cannot be bounded to ensure that the solution at the next time-point lies within
the present region. Futhermore, it is not possible to guarantee accuracy and stability with larger
time-steps in LMS methods even though differential equations are of a known form. Allowing
model representations in piecewise-polynomials of greater than first-order precludes closed-form
descriptions of waveform solutions. In fact, the modelling technique does not even permit the
construction of a smaller set of basis functions than would be used in general simulation. Both
the inability to reduce the set of basis functions and construct a more appropriate description for
LMS accuracy are a consequence of the fact that if second-order circuit elements are permitted,
waveforms of arbitrary polynomials in time can be generated.

It is only in its application to waveform relaxation that the known polynomial form of the
differential equations is even theoretically applicable. After extraction of NL equations using LMS
methods, a solution at the next time-point could be found explicitly. However, unlike its application
to NL relaxation, it is not practical to determine the direction towards a solution which is not in
the present region. Regions to the left and right of the present interval of validity ( as a polytope
is an interval in a single variable piecewise-polynomial relation ) must be checked exhaustively.
Given that the results need not be very exact ( each waveform solution being the basis of an iterative

procedure ), little practical advantage over NR techniques is expected.
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Chapter 4

Conclusions:

Low-order piecewise-continuous polynomial device modelling schemes should become
more evident in the future development of circuit simulators. The decreasing cost of memory and
implementation of efficient data handling techniques have made the past trade-off between memory
space and simulator speed less significant. Simulators such as CAzM have clearly demonstrated
the speed-up potential in using a rapid table look-up approach as the basis for construction of the
Jacobian matrix. However, the benefit of this form of model representation appears to be almost
entirely restricted to this straightforward application.

In a piecewise-polynomial model environment, the differential and nonlinear equations
produced can be shown to be of the same order as device representations. However, for anything
of higher order than piecewise-linear, closed form solutions are not plausible. The set of basis
functions sufficient to describe generated waveforms is not a finite restriction on the set required
for simulation with arbitrary models. Futhermore, it is not possible to develop better accuracy
bounds on existing LMS method for the purpose of increasing time-step length. Explicit solution
techniques at the nonlinear equation level can not be used to obtain a general solution, even if all
models are a single polynomials. Use of the polynomial form of the relations to eliminate the need
for NR is only possible in relaxation techniques such as ITA or WR. In both these cases ( but more
so for ITA than WR ), the reduced need for exact solutions on each iteration strongly suggests that
any trade-off in time between finding explicit solutions and applying NR would not be favourable.
There does not exist a practical generalization of the Katzenelson algorithm from piecewise-linear
to piecewise-polynomial models even for dc analysis.

The only approach which appears to warrant further investigation through implementa-
tion is a slight modification of existing piecewise-polynomial model simulators. Instead of fully
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reconstructing the Jacobian matrix at every iteration, it may be possible to reduce complexity by
updating the nonlinear circuit equations selectively. Such an updating scheme would be based on the
boundaries crossed by the NR vector at each iteration. Overall, however, modelling schemes using
piecewise-polynomial models of greater than second order promise little help in the development

of improved nonlinear time-domain transient circuit analysis techniques.
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Appendix A

A.1 Guaranteed Convergence of Katzenelson

Much of justification for describing devices with piecewise linear models for transient
analysis is associated with the guarantee of finding a solution which the Katzenelson algorithm can
offer. However, as detailed in the introduction, this guarantee is only provable in the case where
the determinants of all Jacobian matrices in the infinite regions have the same sign.

The following set of lemmas are used to construct a proof that to maintain continuity over
region boundaries, adjustment of derivatives to satisfy the determinant sign property in the singly
infinite regions alone is not sufficient to guarantee that property overall. Consequently, the task
of satisfying this property for a localised subset of the entire solution space at each time-point is
impractical. This severely reduces the desirability of using such a method in transient analysis
(Ref. sect. 2.1.2).

Uncorrelated adjustment of Jacobian matrix entries in singly infinite regions which are
unbounded in different dimensions is only plausible if those dimensions are orthogonal. Lattice
structure spaces are therefore the only type under consideration here, each dimension being an axial
direction.

Lemma 1 If there exist totally bounded regions ! then for each dimension of the space, there exists
at least one singly infinite region of that dimension. Furthermore, multiply infinite regions do not

share a face with a totally bounded region.

Proof: Consider a totally bounded region R in the space. Take a point z in R. As bounding

hyperplanes extend over the entire space and are mutually orthogonal, any vector v; originating

1A totally bounded region is defined to be one such that any straight line within the region is of finite length.
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from z parallel to any axis, z; say, intersects only those planes perpendicular to z;. The solution
space is constructed from a circuit which is a finite combination of elements. Each element is
described by a model with a bounded region of validity so the space of totally bounded regions in
the solution space is itself totally bounded. Consequently, vector v; must eventually extend into a
region, R;, infinite in dimension z;. As R is bounded in all dimensions and hyperplanes are infinite,
R; is bounded in all dimensions except z;. ie. R; is a singly infinite region. As z; is arbitrary, it
follows that for each dimension in the space, there exists at least one singly infinite region of that
dimension. By lattice structure, if there exists a totally bounded face to region R’, then R’ is either
singly infinite or totally bounded. The second part of the statement follows by contraposition. O

Lemma 2 [fthere exists two singly infinite regions of the same dimension and direction, Ry and R;,
then there exists a path from Ry to Ry which traverses only singly infinite regions of that dimension
without passing through corners. Furthermore, all these regions share the same hyperplane with
the totally bounded regions.

Proof: Prove the second statement first. Suppose the totally bounded faces of R; and R; lie on
the hyperplanes K and K respectively. By the lattice structure, K and K are infinite planes
perpendicular to the infinite dimension of R and R;, z;. Hence, K and K, are parallel. If
K\ # K, this implies that either K intersects R; or K, intersects R; contradicting the bounding
properties of the planes. Hence,K; = K> = K so there exists a single hyperplane bounding R, and
R;. To prove the first statement, fix dimension z; # z;. AsR; and R; are singly infinite regions,
there exist planes: Ko, K1s,; K24;, K25, perpendicular to z; which bound R; and R, respectively.
Consequently, a set of hyperplanes:

{K,(Kyy, K3)), ..., (Ky,_y, Ko, ), (K140 K241 )5 ooy (K15 K2)}

can be chosen such that these set of planes bound a subspace containing R and R,. This subspace
is singly infinite in dimension z; and so all regions within this subspace are also singly infinite,
by the second statement of the lemma. Construction of a path from R; to R, through only singly

infinite regions without crossing comer points is now trivial. O

Lemma 3 All singly infinite regions of the same dimension and direction have the same functional
derivative in that axial direction. ie. All singly infinite regions of the same dimension and direction

share a common column in the Jacobian matrix.
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Proof: In each region, the piecewise linear property implies that gfj‘_ is constant. However, the
function is continuous over region boundaries so -g—;% is the same along any boundary parallel to
the z; axis. Hence, any two adjacent singly infinite regions of dimension z; have the same partial
derivative in that direction. By Lemma 3, it is possible to trace a path between any regions R; and
R; singly infinite in the same direction and dimension z; which only passes through other singly
infinite regions of the same dimension . It follows that all regions singly infinite in dimension z;
and of that direction have the same value of g;%. o

Lemma 4 All regions infinite in a particular dimension and direction have the same functional
derivative along that axis.

Proof: Consider the fact that a region unbounded in n dimensions can be adjacent to only regions
of n — 1,7 and n + 1 infinite dimensionality. Consider region R infinite in orthogonal dimensions
z; and z;. By Lemma 1, if there exist non-empty totally bounded regions in the space R must
be adjacent to regions singly infinite in the dimensions z; and z; respectively. Consequently, by
continuity, the functional derivatives in R along the dimensions z; and « ; are the same as for the
singly infinite regions. Now, in general, want to prove that given a region R infinite in multiple
dimensions including some direction of z;, there exists a path starting in R not passing through
region comers which extends into regions singly infinite in the same direction of z;. Consider,
an n dimensional infinite region unbounded along axis z; must share a planar face with an n — 1
dimensional infinite region also unbounded in dimension z;. If not, there exist no totally bounded
regions. From a trivial extension of Lemma 2 and the previous statement, a path with the disired
properties can be constructed. Consequently, using the same argument as for Lemma 3, it follows

that all regions infinite in dimension z; and of that direction have the same value of g%. =

Lemma § Allow g} to be changed in the regions singly infinite in dimension z;. The function
7
remains continuous over all space if for all regions infinite in the z ; dimension, g& is the same as

Jor the singly infinite regions of that dimension and direction.

Proof: Consider regions infinite in dimension z;. Before changing ng;, the function is known

. '
to be continuous as the device models are continuous. Suppose g;% is changed to % in all such

regions. Hence for any z in these regions:



53

f@)new = fi(@ota + (55 = 8V = file)oia + Az;
Hence, if: fi(21)otd — fi(%2)o1d = 6,

= [i(@1)new = fi(22)new = 6 + A(z1; — 22;)

Hence, as A is finite z; — z2,

= (fi(z1)new = fi(%2)new) — 0.

So by definition, f; remains continuous.

However, ¢ is arbitrary so the statement is generally true. O

Theorem 1 Consider a lattice structure for a piecewise linear continuous function where the
derivatives in the infinite regions are to be altered. Continuity is maintained iff in every region

infinite in the same direction of dimension z;, ;g—xL; is the same.

Proof: Direct result of Lemmas 4 and 5. O



