
Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or partof this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires priorspecific permission.

94720

A STRONGLY POLYNOMIAL ALGORITHM

FOR APPROXIMATE CONVEX OPTIMIZATION

WITH COMBINATORIAL CONSTRAINTS

AND RESOURCE ALLOCATION

by

Eric J. Friedman

friedman@IEOR.Berkeley.EDU

Memorandum No. UCB/ERL/IGCT M92/6

15 January 1992

(Revised 12 October 1992)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A STRONGLY POLYNOMIAL ALGORITHM

FOR APPROXIMATE CONVEX OPTIMIZATION

WITH COMBINATORIAL CONSTRAINTS

AND RESOURCE ALLOCATION

by

Eric J. Friedman

friedman@ffiOR.Berkeley.EDU

Memorandum No. UCB/ERL/IGCT M92/6

15 January 1992

(Revised 12 October 1992)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

We present a strongly polynomial algorithm for approximate convex programming with com
binatorial constraints, which for any v always finds a solution with relative error less than
v and is polynomial in 1/v. Additionally, this algorithm allows us to calculate approximate
solutions for convex objective functions over any convex feasible region for which the solu
tion for linear objective functions can be solved in strongly polynomial time. This is then
specialized to obtain an efficient algorithm for solving generalized multi-resource allocation
problems with externalities.

KEYWORDS: Strongly Polynomial Algorithms, Convex Programming, Resource Allo
cation, Ellipsoid Algorithms.

This research has been funded by National Science Foundation Grant IRI-8902813.

1 Introduction

The complexity of algorithms for linear and combinatorial problems has been well studied.
However, results for nonlinear problems have been sparse. In [12] Nemirovsky and Yudin
develop a theory of complexity for nonlinear optimization and construct several polynomial
algorithms for approximate convex optimization. Basedon these ideas we develop algorithms
for convex problems utilizing algorithms for solving the related linear problems. Specifically,
in this paper we describe a strongly polynomial algorithm for convex programming with
combinatorial constraints. This is related to the result of Tardos [14] that linear programming
with combinatorial constraints is strongly polynomial. Since the exact optimizer of a convex
program may have an infinite encoding length, we define ai/- accurate solution in a scale
invariant manner, and show that our algorithm has a running time that depends linearly on
log l/i/.

This algorithm can be applied to any convex optimization problem in which the linear
problem can be solved in strongly polynomial time. This shows that strong polynomiality
of any linear problem over a convex set implies strong polynomiality of the related convex
program. In general we can show the following. Assume that we are given a linear optimiza
tion problem min{/(x) = c*x \ x GG}, where G is a bounded convex set, that can be solved
in time T(G) independent of c. Then the extension to the case where f(x) is an arbitrary
convex function can be solved to accuracy v in

0(2nT(G) + n2(n2 + T.(G))log(n/i/))

elementary operations, where T8(G) is the time required to find a separating hyperplane for
G. (Note Ta(G) < T(G).) Thus we see that convex optimization is 'not much harder' than
linear optimization.

Finally, we specialize this to obtain an algorithm for allocating r resources with exter
nalities and polymatroidal constraints which runs in

0((rn)4\og(rn/u))
elementary operations.

2 Oracles

Since arbitrary convex functions are permitted weassume that there exists anoracle through
which an algorithm can learn about the objective function. Given a point x GG, the oracle
allows us to compute both U(x) and asupporting hyperplane to U(x) at x in 0(n) elementary
operations. In the case where U(x) is differentiable the problem of computing a supporting
hyperplane is equivalent to that of finding VU(x). For the remainder of this paperwe assume
that U(x) is differentiable. The extension to the nondifferentiable case is straightforward.

3 v —Accuracy

Consider the convex program
min/(x) s.t. x 6 G,

where / is a convex function and G is a bounded convex set in lZn. As the optimal solution
need not be rational (or even algebraic), it cannot be computed by any finite algorithm.
Thus it is necessary to consider approximate solutions.

It is important that this method of approximation be scale invariant; that is, the accuracy
of a solution should not change under affine transformations of / or TV1. For example, let
Xmin denote the optimal solution and x^i the solution found by our algorithm. Define a
measure of approximation to be \f(xout) —f(xmin)\» Then an algorithm that guarantees any
finite accuracy in a fixed number of steps necessarily guarantees arbitrary accuracy in the
same number of steps, since we can rescale f(x) —> af(x). If we solve af(x) to accuracy e
then we have solved f(x) to accuracy e/a for a arbitrarily large. A similar argument can be
made if we measure accuracy in terms of coordinates. Thus it is important to normalize the
accuracy in some manner.

We consider two natural scale-invariant error measures. The first is the distance from

the approximate solution to the actual solution in terms of coordinates, such as

/ \ \Kout •Cmin

e(l) = p(G) '
where p(G) is the radius of G. The second measures the distance in terms of the solution
value such as

..(~\ _ l/(gwit) ~* /mini
™X)"" If . _ f . I 'IJmin j mm I

where /„,,-„ is the minimum and fmax the maximum of f(x) over P. Note that in both cases
the measure is invariant under affine transformations.

The first measure e(x) is related to the one used in [7, 6], where polynomial results are
obtained for convex separable functions. These results can be traced to the existence of
a proximity result between exact solutions and solutions restricted to a lattice. However,
these results are not true for nonseparable functions. In fact it is easy to show that no
polynomial (or even exponential) algorithm can guarantee accuracy in coordinates for general
nonseparable functions.

The second measure u(x) is very natural when the goal of the optimization truly is to
maximize some function. The goal of an algorithm in this case is to do as well as possible
when measured in terms of the objective value. This measurealso provides a good framework
for studying the complexity issues in nonlinear optimization.

Thus, following Nemirovsky and Yudin [12], we define the error of a proposed solution
x to be v(x). An algorithm is defined to be v —accurate if it finds a feasible solution Xout
satisfying v(xout) < v for any problem. We therefore consider an algorithm to be polynomial
if it is polynomial in 1/u.

Finally, we note that if f(x) is given as a polynomial of degree at most d then our
algorithm is truly polynomial (but not strongly polynomial) in the encoding length of the
problem when the accuracy is measured in terms of the absolute error |/(aw) —/min|» since
in this case we can explicitly bound both the maximum and minimum of f(x) over G in a
polynomial of the encoding length.

4 Strong Polynomiality and Tardos' Algorithm

The concept of strong polynomiality is especially natural in the context of nonlinear opti
mization. Following [5] we say that an algorithm is strongly polynomial if it is:

• natural - it uses a polynomial number of elementary mathematical operations.

• polynomial - when applied to rational input, the algorithm is polynomial in the size
of the input.

The first condition implies that the algorithm is polynomial in the number of real arith
metic operations, independent of the size of the numbers in the input. The second implies
that when the input is rational the running time of the algorithm on a Turing machine is
polynomial. When the first condition is satisfied the second condition reduces to showing
that all intermediate results occurring during the calculation have size1 that is polynomially
bounded in the size of the input.

We use the term natural because it seems natural for an algorithm that solves a continuous
optimization over TZn to be written in terms of elementary operations and not depend on
the size of the input. Thus in this sense all known polynomial algorithms for general linear
programming axe unnatural because their running time depends on the size of the input.
For example, Khachian's algorithm [10] uses the ellipsoid method to test for feasibility of a
polytope. However, the number of iterations and the size of the numbers required depend
on the encoding length of the polytope.

In [14], Tardos constructs a strongly polynomial algorithm for solving min{c*x | Ax < b}
assuming that A is combinatorial. A matrix A is combinatorial if its encoding length is
polynomially bounded in its dimension. Examples include network matrices and any matrix
for which all elements are bounded.

Since Tardos' algorithm will be used as a subroutine in our algorithm, we denote the time
required to solve a combinatorial linear program T(n,m,A), where A is an n x m matrix
whose largest subdeterminant is bounded by A.

5 The Algorithm

We consider the convex program

min{/(x) | Ax < &},

where f(x) is a differentiable convex function, A a combinatorial matrix, and 6 a rational
vector. We define the feasible region G = {x\ Ax < &}, and assume that G is bounded2.

1We define the size of a number to be the number of bits required to represent it. For example if x
is an integer then size(x) = flog2(x + 1)"| + 1. We will also use the floating point representation. Other
representations can be useful as well. For example, the concept of height can be used to define linear
programming over subrings of the reals as in [1].

2If G is unbounded then the solution of the convex program could be arbitrarily large or unbounded. If
we assume that it is bounded and add the size of the solution to our measure of the problem size then we
could still get results similar to those with a bounded feasible region.

If we assume that G is a body (i.e. has full dimension), then a direct application of the
ellipsoid algorithm would give us a polynomial algorithm, but not a strongly polynomial one.
However, in the case where G is not a body the ellipsoid algorithm would not work because
the running time of the algorithm depends on the volume ratio between G and the initial
bounding ellipsoid. This ratio is zero when G is not a body and depends on the encoding
length of A and 6 when G is a body.

The main feature of our method is the construction of a bounding ellipsoid which has a
volume ratio of

0(n3*/2),

independent of 6, when projected onto the linear subspace containing G. The ellipsoid
algorithm is then applied to the problem in the linear subspace to find the minimum.

By construction, our algorithm is polynomial in the number of exact arithmetic oper
ations. However, it requires some care to show that it is polynomial when given rational
input.

The algorithm is:

I. Construct an ellipsoid E and a linear subspace S such that G C E C S and

n3">*\G\s > \E\S,

where | • \s is the natural Euclidean volume in 5.

A) Construct a linear subspace S and a parallelepiped P such that G C P c S and

n"\G\s > \P\S.

B) Construct an ellipsoid E C 5 such that P C E and

n"/2|P|s > \E\s-

II. Run the ellipsoid method in the linear subspace S using E as the initial ellipsoid.

We will show that the first step requires <9(nT(n,m, A)) operations, where T(n,m, A)
is the running time of a strongly polynomial algorithm for LP. The second step requires
<9(n2log(n/i/)) iterations, where each iteration takes 0(n2 + nm) operations3.

Thus the total running time for the algorithm is:

0(nT(n, m, A) + n3(n + m) log(n/i/)),

which is independent of f(x) and b.

3Note that we cannot assume that m < n as in linear programming.

5.1 Constructing a Bounding Ellipsoid

In this subsection we describe step I of our algorithm in detail. Let G be a convex body and

Q(c) = argminfc^ | x € G}.

Then step I of our algorithm computes a set of vectors which span the smallest linear
subspace containing G and finds an ellipsoid E in this linear subspace satisfying G C E.
This ellipsoid will have at most n3"/2 times more volume than G in 5. This applies to a
convex body described by combinatorial linear constraints by using Tardos' algorithm. It
also applies to any convex set for which the linear problem is solvable in strongly polynomial
time and the encoding length of Q(c) is independent of c. We will assume that such an
algorithm exists for our problem.

The ellipsoid is computed in two steps. Step IA iteratively bounds the polytope between
pairs of hyperplanes. Each pair defines an upper and lower bound for the polytope in a
specific direction. The key idea used is that every new pair is chosen to be orthogonal to the
currently known directions of the polytope. This procedure guarantees that null directions
of the polytope will be found.

Step IA:

1. Set 5 = 0.

2. For i = 1 to n

(a) Compute a a such that Vj < i cjr,- = 0. (This can be done by Gaussian
elimination and choosing the free components of c,- to be 1.)

(b) Compute xf = <3(±ct).
(c) Set af = c\xf.

i. then r,- = xf - xt~, and S = S U{rt},
ii. otherwise let rt- = sgn(ci), where sgn(xu x2,..., xn) = (sgn(xi), sgn(x2),..., sgn(xn)).

3. Reorder so that S = {r1? r2,..., rk}. (Reorder the af's and the xf's the similarly.)

4. Let P = {x | Vi, aj < c\x < af}.

5. Set S - Lin(rur2,...,rfc), where Lin(rur2,...,rk) = {x\ x = X£=1 ajrj, a; 6 11}.

Note that step (2a) just computes a vector orthogonal to 5 in a manner that is obviously
strongly polynomial. Also (2dii) computes a simple vector r,- such that r]a > 0.

Theorem 1 The above algorithm (step IA) constructs a parallelepiped P and a subspace S
such that

nn\G\s > n\\G\s > \P\s-

Proof: Define 5,- = £tn(ri, r2,..., r,), P,- = PnS,- and G,- = GflS,-. (These are the projections
of 5, P, and G onto the current S at step i.) We will prove by induction that

\Gj\sj > \Gj-i\sj-x
\Pj\sj "ilPi-ils,./

This will suffice as \Pi\ = |Gi|. Note that

af —aj
\pj\sj = \Pj-i\sj-i—7=f=^-7

which follows from the elementary formula volume(parallelepiped) = base * height.
Now let G'j = ConvexHull(Gj-Uxf). By convexity G\ C G,. Since GJ is a (generalized)

cone we compute

IGWs^^-As^^^-
JyJc)cJ

by using volume(cone in j dimensions) = base * height/j.
Thus we see that G(satisfies the inductive hypothesis, and noting |G(|sf < \Gi\sf com

pletes the proof. •

Now we transform into coordinates aligned with the r,'s, which makes P into a cube. We
then enclose the cube within a sphere.

Step IB:

1. Let C* = [ci,c2,...,c*],

2 2 2
C = Diag(— -, — ,..., — ~p)c->

aj-at aZ-a2 of - ak

and

a-l 2 ' 2 '*"' 2 '"

2. Define y = Cx + d, yielding Ps = {y\ Vi < fc, -1 < yi < 1}.

3. Define ME = Diag(l/n, 1/n,..., 1/n) and £ = {y| j/^e!/ < 1}. Thus E is the sphere
of radius y/n centered at the origin.

4. Now transform back into the original coordinates x. The volume ratio is preserved by
this transformation so we have found the desired ellipsoid, since linear transformations
of a sphere create an ellipsoid.

Theorem 2 The ellipsoid E constructed in step IB satisfies

\E\s < nnf2\P\s.

Proof: In y coordinates Ps is a box of volume 2n. The sphere of radius y/n has volume less
than (2y/n)n because it is contained in a box with sides of length 2y/n. •

Combining steps IA and IB gives us the desired bound.

Theorem 3 The ellipsoid constructed in step IB satisfies

\E\s < n3"/2|G|s.

The number of operations in the above algorithm is polynomial in the number of ele
mentary operations and the sizes of numbers that occur during the running of the algorithm
are polynomially bounded in the size of the input, thus proving strong polynomiality. This
is because the only operations we use involve solving for Q(c) , and Gaussian elimination.
The size of the xf's is polynomially bounded in L and independent of c,-'s. Prom Gaussian
elimination on matrices containing r, we obtain c,-'s that are polynomially bounded.

5.2 The Ellipsoid Method

The final step (II) of our algorithm is the application of the ellipsoid method in the new
(y) coordinates to our problem. The ellipsoid method was developed by Nemirovsky and
Yudin [12] based on an idea of Levin [11]. It is most well known from its use by Khachian
[10] to prove the polynomiality of linear programming. However, its original purpose was
for convex programming. While it is useful theoretically for LP it does not seem to be of
practical value; however, it may actually be useful for convex programming.4

In this section we describe the ellipsoid method for our problem. First we need some
facts about ellipsoids. (See, e.g. [13]). An ellipsoid is the set

E(M,m) = [x\(x - m)^M-l(x - m) < 1}.

Given a vector u, define the set

E{M,m,v) = E(M,m) n {x\ v*x > 0} C E(M',m'),

where

\E(M\m')\ < \E(Mim)\2-1Mn+1\
and

n2-V n + 1 ctMc J
1 Mc

m = m .

n + 1 VctMc

The ellipsoid algorithm runs as follows:

Step II— The Ellipsoid Algorithm:

4Ecker and Kupferschmid have done numerical studies [2, 3] showing that the ellipsoid method is very
robust compared to other standard methods. It is also quite efficient for finding lowaccuracy solutions and
is very simple to implement (i.e. 61 lines of FORTRAN code.)

1. Given GC E(Mo1mo). Let N = |4n2log jM, u0 = 0, uotif = oo, and iOTt = 0.

2. For i = 1 to N

(a) If m,-_i € G

i. then

A. Let a = V/(m,_i).
B. If /(mj_i < iw) then vout = /(m,_i) and xout = m,_i.

ii. otherwise let c,_i define a separating hyperplane to G. (i.e. let c,_i be a row
of A associated with one of the violated inequalities of Am,_i < 6.)

(b) Calculate M,-, m,- such that ^(Mj-^m.-i,^.!) C 2?(Mj,m,-) as above.

3. Output xout and vout.

Theorem 4 27ie ellipsoid algorithm terminates with xout such that i/(£out) < v in N =
4n2 log J iieratt07is.

The proof canbe found in [12]. Briefly each iteration of the algorithm reduces the volumeof
the current ellipsoid by 2-1/2^n+1^. The current ellipsoid is guaranteed to contain all points
better than the current best (vout) by step (4). The algorithm continues until the current
ellipsoid has vn less volume than the original feasible region. From this we can derive the
number of iterations required. This volume reduction guarantees that there exist z, y £ G,
not in the final ellipsoid, which satisfy y = (1 —v)xmin + vz. By the construction of the
ellipsoid we know that umin < f(y), and by convexity wehave f(y) < (l-i/)/(imm) +i//W.
Noting that f(z) < fmax we obtain the desired bound on accuracy.

Note that the square root in the algorithm could cause the encoding length of the numbers
to become very large or even infinite. We can avoid this problem by using a standard
argument as in [13]. Represent a number as a P-bit binary integer multiplied by an integral
power of 2. Thus if x is a real number and x our representation then \x —x\ < 2~p. Now
choose a slightly larger ellipsoid at each iteration. This will slow our convergence slightly,
doubling the number of iterations. However by choosing P sufficientlylarge we can guarantee
the required accuracy. Thus all gradients can be computed in floating point arithmetic.

At first it may seem odd that ellipsoid algorithm for our problem is strongly polynomial
while it is only polynomial when applied to linear programming. This can be reconciled by
noting that the ellipsoid algorithm for linear programming must reduce the volume of the
initial ellipsoid by 0(2~2nL). In our case we chose our initial ellipsoid so that the algorithm
only needs to reduce it by 0((u/n)n) which is independent of L.

6 Multi-Resource Allocation with Externalities

The allocation of resources to consumers or processors is an important problem in economics
[8] and distributed computing [4]. In the case of a single resource without externalities there
has been much progress in the development of efficient algorithms [6, 9]. In [6] Hochbaum
designs an algorithm that solves the single resource allocation problem efficiently, where the

accuracy is defined in terms of coordinates. However, this measure of accuracy is not useful
for extending her results to the multi-resource allocation problem, as we noted earlier. Thus,
there have been no complexity results, that we know of, for the multi-resource allocation
problem with externalities.

Here we show how these problems can be solved in strongly polynomial time. Then we
show how to solve the generalized problem with polymatroidal constraints.

The multi-resource allocation problem with externalities can be written as:

n

max J^ Ui(x], x],..., xr{, A1, A2,..., Ar)

s.t.

Vt € {1,2,... ,n}, j e {1,2,... ,r} 0 < xf, 0 < A' < bj

VjG{l,2,...,r} X>J'<A''

where t/,(xj, x2,..., xf, A1, A2,..., Ar) is concave, non-decreasing in xj, and non-increasing
in A'.

We can transform this into a standard form by defining yj = x\/bj and setting yj = 1—AJ.
This gives a problem that is easier to analyze:

n

max]T Ui{y},yf,... ,#, 1- yj, 1- y2,..., 1- yr0)

s.t.

Vie{0,l,...,n}, JG{l,2,...,r}0<y/

Vj e {1,2,...,r} £>/<!.
t=0

This is just a special case of convex programming with combinatorial constraints, where
we can explicitly calculate an initial ellipsoid, thus removing the need to use Tardos' algo
rithm and speeding up the procedure.

Note that the feasible region is a body G with \G\ = 2~rn. It is contained in the unit
square centered at xc = {l/rn,l/rn,... ,1/rn}. Now the initial ellipsoid is the sphere of
radius y/fn centered at xc. This sphere S satisfies

22rn(rn)rn/2|G| > |5|.

Applying the ellipsoid method to this leads to an algorithm that takes

0((rn)4 log ^)
elementary operations which is strongly polynomial.

The generalized multi-resource allocation problem can also be solved within this frame
work. The generalized multi-allocation problem in standard form is:

n

max £ Ui(y},y2,..., y[, yj, y2,..., yj)
i=l

S.t.

Vie {0,1,...,n}, j€ {1,2,...,r}lj<yi

Vj€{l,2,...,r} £y/<l
t=0

Vj g {1,2,... ,r} A6 ff £ t,/ < fc(A),
t'€E

where /J's are given lower bounds, and <j>j(-) is a submodular function. Let H C 2^1,2,",n^
where H = {Ai, A2,..., Am}. We allow # to be one of three possibilities. Either H is a
partition of {1,2,...,n}, or it consists of nested subsets Si C 52... C Sm C {1,2,...,n},
or it is tree constrained. Tree constrained implies that the sets 5,- can be placed in a tree
where a set is a child of a node only if it is a subset of the set at that node. These classes
are discussed in detail in [6].

The importance of polymatroidal constraints is that they allow the separable problem to
be solved by the greedy algorithm. (However, the nonseparable problem is not solvable by
the greedy algorithm in general.)

Since the problem with linear constraints is separable we can apply the greedy algorithm
very efficiently. We can solve the linear problem in 0((rn)2) strongly polynomial time. In
this case T(G) = 0((rra)2), so the running time of the algorithm is

0((rn)4log^),
as in the simple case.

Note that the form of the objective function does not affect the running time of the
algorithm. Thus this algorithm will work for any convex function with any of the three
types of polymatroidal constraints.

7 Conclusions

We have shown that v —accurate convex programming over linear constraints is not much
harder than linear programming. This can be seen as a generalization of Hochbaum and
Shanthikumar's result that "Convex Separable Optimization is Not Much Harder than Linear
Optimization" [7].

We believe that the application of ideas from computational complexity should apply
generally to convex optimization, and that the generalization of more results from linear
programming to convex programming with linear (and perhaps convex) constraints would
be invaluable in better understanding the roots of computational complexity.

10

8 Acknowledgements

I would like to thank Ross Baldick, Dorit Hochbaum, and Adam Landsberg, Henrik Lenstra,
and Shmuel Oren for useful conversations.

References

[1] I. Adler and P. A. Beling. Polynomial algorithms for linear programming over the
algebraic numbers. Preliminary Draft, 1991.

[2] J.G. Ecker and J. Kupfershmid. The ellipsoid algorithm for nonlinear programming.
Mathematical Programming, 27:83-106, 1983.

[3] J.G. Ecker and J. Kupfershmid. A computational comparison of the ellipsoid algortihm
with several nonlinear programming algorithms. SIAM J. Control and Optimization,
23:657-74, 1985.

[4] D. W. Ferguson, C. Nikolau, , and Y. Yemini. Microeconomic algorithms for load bal
ancing in distributed computer systems. Proceedings of the 8th International Conference
on Distributed Computing Systems, 1988.

[5] M. Grotschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Combinatorial
Optimization. Springer-Verlag, Berlin, 1988.

[6] D. S. Hochbaum. Lower and upper bounds for the allocation problem and other non
linear optimization problems. Manuscript, School of Business Administration and In
dustrial Engineering and Operations Research, University of California, Berkeley, CA
94720. September 1989, Revised December 1990.

[7] D. S. Hochbaum and J. G. Shanthikumar. Convex separable optimization is not much
harder than linear optimization. Journal of the ACM, 37(4):843-862, October 1990.

[8] L. Hurwicz. The design of mechanisms for resource allocation. The American Economic
Review, pages 1-30, May 1973.

[9] T. Ibaraki and N. Katoh. Resource Allocation Problems: Algorithmic Approaches. MIT
Press, 1988.

[10] L.G. Khachian. A polynomial algorithm for Unear programming. Soviet Math. Doklady,
20:191^, 1979.

[11] A. Yu Levin. On an algorithm for minimizing convex functions. Soviet Maths, 1:286-90,
1965.

[12] A.S. Nemirovsky and D.B. Yudin. Problem Complexity and Method Efficiency in Opti
mization. Wiley, New York, 1983.

11

[13] C. H. Papadimitriou and K. Steightz. Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall, Inc., Englewood CHffs, New Jersey, 1982.

[14] E. Tardos. A strongly polynomial algorithm to solve combinatorial linear programs.
Operations Research, 34(2):250-256, March-April 1986.

12

