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J INTRODUCTION

Abstract

Traditionally, the minimum cycle time of a synchronous sequential circuit is ob
tained by computing the delay of the combinational logic of the circuit. This combi
national delay can underestimate the true minimum cycle time, especially when the
circuit has long false paths. In contrary, we define sequential delay of a synchronous
sequential circuit to include the effect of the memory elements in the circuit, so that
this definition gives the true minimum cycle time. We then give a condition under
which combinational delay is equal to the sequential delay, or the minimum cycle time.
Further, we formulate the problem of computing the exact minimum cycle time as a
mixed Boolean linear programming problem, and provide efficient algorithms to com
pute the exact minimum cycle time for three delay models. In the first delay model,
gate delays in a circuit are fixed constants; in the second delay model, gate delays vary
within bounded intervals with tracking coefficient €; in the third delay model, gate de
lays vary within bounded intervals independently. The complexities of the algorithms
for the three delay models range from the simplest for the first case and to the most
complex for the third case. In solving the mixed Boolean linear programming problem,
a lower bound updating technique is used to decrease the complexity of the problem
progressively. And the core computation of the problem is translated into the problems
of tautology checking, test generation, redundancy check, and SAT.

1 Introduction

Computing the minimum cycle times of synchronous sequential circuits accurately are in
dispensable in high speed digital design. All previous approaches treat this problem combi-
nationally: computing the delays of the combinational logic of the circuits as the minimum
cycle times. In these approaches, various definitions of delay are used; the definitions vary
in how the inputs are excited and what the states of the circuits are. Some examples of
definitions of delay are: delay by static sensitization, delay by dynamic sensitization (or 2
vector) [MB89] [DKM91], and floating delay [CD90]. It is known that delay by 2-vector
reflects more accurately the essence of delay in practical situations. In computing the delay
by 2-vector, the input to the circuit is a pair of vectors switching at t = 0, the latest time of
the last transition for all possible 2-vector inputs is the delay of the circuit. Hence, the delay
by 2-vector of the combinational logic of a synchronous sequential circuit is a good estimate
for the minimum cycle time. In this paper, we demonstrate that delays by 2-vector can un
derestimate the minimum cycle times, and give a condition under which delays by 2-vector
are the minimum cycle times. Then, we present our approach to compute the minimum
cycle times of synchronous sequential circuits. In our approach, we first give a definition of
sequential delay (or minimum cycle time), which takes into account the effect of the memory
elements as well as the combinational logic in the synchronous sequential circuits. Then,
we consider the problem of computing the minimum cycle time with bounded gate delays'.
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This problem is first formulated as amixed Boolean linear programming problem; then, we
present an efficient algorithm to solve the mixed Boolean linear programming problem. Our
solution is exact if all transitions of the synchronous sequential circuit (finite state machine)
are possible.

The organization of this paper is as follows. First, we introduce Timed Boolean Functions,
and apply them to modeling and circuit formulation. Second, we consider the relationship
between delay by 2-vector and minimum cycle time. We demonstrate the inadequacy of
defining minimum cycle time only in terms of the delays of combinational circuits; then we
define sequential delay to include the effect of memory elements so that the sequential delay
is equal to the minimum cycle time, and give a condition under which delay by 2-vector
is equal to the sequential delay. Finally, we compute the exact minimum cycle times of
synchronous sequential circuits with three delay models. In the first case, the gate delays are
fixed; in the second case, gate delays the circuit track with coefficient e; in the third case,
gate delays of the circuit can vary independently within bounded intervals.

2 Timed Boolean Function

Definition 1 1. A waveform space W is a collection of mappings f: Rh+ {0,1}. In
particular, the unit stepfunction U(t) is defined as follows:

' 1 ift> 0
U(t) = I 0 ift< 0

undefined t=0

2. A Timed Boolean Function (TBF) is defined recursively as follows.

• F(v) = v, v e W, is a Timed Boolean Function.

• // G : Wni i-» W, H : Wn* »-> W are Timed Boolean Functions, then, F=G,F =
G ' H,F = G + H are also Timed Boolean Functions.

Example 1 Let x, y 6 Wbe the waveforms shown in Figure 1(a) and 1(b); then the Timed
Boolean Function f(a,b)(t) = a(t —1) © b(t + 1) represents the waveform shown in Figure
1(c) if a=x, b=y.

Example 2 Interpolation with U(t). For any waveform w(t), there exists a Timed Boolean
Function J with only one timed Boolean variable such that w(t)=f(U)(t). That is, any wave
form can be generated by a single step function U(t). Let

w(t) = &,-; rt_! < t < t{, i=l,2,..., b{ £ {0,1}
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Figure 1: Representing Waveforms by TBF

f(U)(t) = '£bi-U(t-Ti-l)U(t-Ti)
i

represents the waveform w(t).

2.1 Modeling Timing Behavior with Timed Boolean Function

Before representing a circuit by a TBF, each component of the circuit needs to be modeled
by a TBF. In this section, we demonstrate the modeling capability of TBF's. It will be
shown that delay information can be directly incorporated into TBF's, in contrast to pre
vious approaches where delay information is kept separate from circuit representation. The
advantage is that temporal interactions among signals are easier to visualize. Here, we only
illustrate through examples the modeling process for some commonly encountered gates.

1. Gates characterized by a single delay for each input-output pair. The complex gate
shown in Figure 2(a) has three inputs; input xt- has a delay n to the output. This gate
is modeled with the TBF:

y(t) = x[(t - n) + x2(t - r2) + x3(t - r3).

2. Buffer with different rising and falling delays. Let rr and ts be the rising and falling
delays, respectively. If rr > rh then the buffer can be modeled as:

y(t) = X(t - Tr) •X(t - Tf).
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and if rr <rf, the buffer can be modeled as:

y(t) = X(t - Tr) + X(t - Tf).

3. Gates with different rising and falling delays for each input-output pair. Rising delay
is the delay when the output is rising, likewise for falling delay. Each input is modeled
by a buffer with different rising and falling delays; and the "functional block" assumes
zero delay. The overall TBF for the gate is obtained through the usual functional
composition. An example of an OR gate is shown in Figure 2(b). Input 1 has a rising
delay of 1 and a falling delay of 2, while input 2 has a rising delay of 4 and a falling
delay of 3. The buffer modeling input 1 is

xi{t-l) + xi(t-2).

The buffer modeling input 2 is represented by

x2(t - 4) •x2(t - 3).

Therefore, the OR gate is

xx{t - 1) + a?i(t - 2) + x2(t - 4) •x2(t - 3).

A common problem in digital circuit design is the pulse shrinkage or dilation. Pulse
shrinkage (dilation) effect occurs when a pulse passes through a chain of gates with
unequal rising and falling delays; the pulse width becomes narrower (wider) at the end
ofthe chain. With the above modeling technique, this pulse shrinkage or dilation effect
is captured.

4. Edge triggered D- flip flop with a common clock of period P. Let Q, D, d be the
output, the data input, and the delay of the flip flop, respectively; then the flip flop is
represented by

Q(t) =D(p *-d
P

where \x\ = the greatest integer not exceeding x.

Example 3 Assume the data input waveform D(t) is given, P=3, and d=2. We would
like to compute the output value at t=31. Since

W).i>(,.[«z*j)
we get Q(31)=D(27).
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Figure 2: Modeling With TBF

Synchronous transparent latch. Let Q,D,d be the output, data input, and delay of
the latch. Assume that the latch is transparent when the clock phase is positive, and
that the first part of a clock period P is negatively phased and has the duration Pl5
the second part is positively phased and has the duration P2. Thus, P1-\-P2 = P. The
latch is represented by

Q(t) = D[(l-a) t-d
P + a-(t-d)

If Pi >P2, a= [i^2p£j; and if Pl <p^ Q= ^-JWjmodP^
in the "latched" part of the clock cycle; a = 1if t - d\s\n the "transparent" part of
the clock cycle, (a mod b) is a - [fJ6, a > 0, b> 0.

+ 1. a = 0 if t-dis

Example 4 Let Px = 2,P2 = l,d = 0. At t = 16, a = [l^f^\ = 0, Q(16) =
^(LfJ3) = 0(15). It can be seen that at t = 16 the latch is in "latched" mode, as
calculated. At t = IS, a = [l^f^\ = if Q(i8) = £(18). It can be seen that at t = 16
the latch is in "transparent" mode, as calculated.

Note that the flip flops (edge triggered D-FF and transparent latch) are represented
without feedback; its memory effect is captured by the greatest integer function [x\.
Being able to characterize memory element enables TBF's to represent sequential cir
cuits with complete timing information.
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2.2 Synchronous Circuit Formulation With Timed Boolean Func
tion

Once all components of a circuit are represented by TBF's, the TBF for the circuit can
be derived by identifying the timed variables corresponding to the ports connected to the
same net. For synchronous sequential circuit, the combinational part of the circuit is first
formulated with TBF's, then composed with the TBF's for the memory elements to obtain
the TBF representation for the entire synchronous sequential circuit. We illustrate this with
an example.

Example 5 In Figure 3, the delay for each gate is shown inside the gate.
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Figure 3: A Synchronous Sequential Circuit

First, we formulate the combinational part of the circuit with TBF's. Each gate is rep
resented by a TBF, as follows.

g(t) = a(t) + b(t)
b(t) = /'(* - 2)
a(t) = c(t)d(t)e(t)
c(t) = f(t - 1.5)
d(t) = f'(t - 4)
e(t) = f(t-5)

We can also flatten above equations to a two level representation, asfollows.

a(t) = f(t-l.$)f'(t-4)f(t-5)
b(t) = f'(t - 2)
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Therefore,
g{t) = f(t - 1.5)/'(( - 4)/(* - 5) + /'(< - 2)

The TBF for the D flip flop is

/(0=»(lfl)
where r is the cycle time of the synchronous sequential circuit.

Now, compose the two set of TBF's to obtain:

9(t) =«?(L^J )</( L^J )g( L^J)+</'( L^J) (i)
This equation represents the complete functionality and timing information ofthe synchronous
sequential circuit shown in Figure 3.

Comments:

1. For combinational circuits, when each circuit component is represented by a TBF
having time argument of the form t - k{, ki is a constant, then the TBF for the circuit
has only the time arguments of the form t —ki.

2. The TBF's for synchronous sequential circuits with cycle time r can be derived sys
tematically as described below. Assume that all external inputs to the circuit are
synchronized to the clock as shown in Figure 4. The TBF's for the combinational logic
have the general form:

ViW = fi(*i(t ~ hi), -,xn(i - kin),Vl(t - kril), ...,i7/(i - kril)) (2)
We can treat v,'s as states of the circuit, hence,

Vi(t) = fi(xi(t ~ ki),.«, x,(t - hi,))

where k{j is the delay from ith flip flop's output to the jth flip flop's data input.
Incorporating the flip flops' TBF's, we obtain:

vM =fi(yi(ll ~kil ~d''M ».([*"*'• "*'•],-)
i T

».-(0 =/i(yi(L^Jr),...,y.(L^Jr) (3)
where du is the delay of the ith flip flop. yn+1,..., ys are the external inputs. Therefore,
hij = hj + dfj is the delay around the loop from the jth flip flop's input to the 2th flip
flop's input. Therefore,

T T
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Figure 4: Block Diagram of a Synchronous Sequential Circuit

10

Normalizing to r, the nth value of yi(t) is:

Vi(n) =fi(yx(n +L^J ),...,».(!• +L—J))
T T

2.3 Evaluating Timed Boolean Function on Input Waveforms

When properties of input waveforms are known, for instance, the times the input waveforms
switch, TBF's can be evaluated accordingly. Let us illustrate with an example.

Example 6 The TBF of the combinational logic of the circuit in Figure 3 is g(t) = f(t —
1.5)/'(* - 4)f{t - 5) + f'(t - 2). Because f(t) is the output of the D-flip flop, f(t) switches
at t = ...,—r, 0,t, ... Let f(n) be the Boolean value of f(t) for nr < t < (n + l)r. Assume



2 TIMED BOOLEAN FUNCTION 11

t = 3. We can evaluate g(t) for 0 < t < 3, as follows.

For 0 < i < 1, /(< - 1.5) = /(-l)
/(<-2) = /(-l)
/(< - 4) = /(-2)
f(t - 5) = /(-2)

7%«s, g{t) = /'(-l)
For 1 < t < 1.5, /(< - 1.5) = /(-l)

/(< - 2) = /(-l)
/(* - 4) = /(-l)
/(i - 5) = /(-2)

ra«s, 5(i) = /'(-l)
For 1.5 < << 2, S(i) = /(0)/'(-l)/(-2) + /'(-l)
For 2 < i < 3, o(i) = /'(0)

TAis quantizing effect is taken into account automatically by the TBF's of the flip flops. With
the flip flops' TBF's:

9(t) = g( m M l^J )g(m) +9'( [^J)
= s(mML¥J - i)s(L¥J -1) +*WJ)

/i is easy fo see <Aa< <Ae "break points" ford <t < 3 are /, i.5, 2. 7%us,

For 0 < i < 1, ff(-l)s'(-2)5(-2) + <,'(-l)
= s'(-i)

For 1 < << 1.5, 5(-l)ff'(-l)fl(-2) + g'(-l)
= 3'(-l)

For 1.5 <t < 2, S(0)fl'(-l)fl(-2) + s'(-l)
For2<<<3, s(0)fl'(-l)S(-l) + ff'(0)

= ff'(O)

This evaluation procedure is formalized as follows. Let

/(*,o=£n*«(sw(0)
* 3

be a TBF, and the waveform of x^ switch at times {rtjfc, &= 1,2,...}. Denote the value of
Xij(t) for Tijk < t < Tij(k+i) by a Boolean variable a?jj(A:);rt-j(_00),rt-i7-00 are fictitious transition
times at —oo, oo. Partition the time axis into intervals {//} by the end points of the intervals
{Qifinjk)}. For each interval //, there exists some k such that ##(//) C Lt^t^+^J.
Denote this k by k(l). Therefore, for t € //, x,j(#;(*)) = xi:i(k(l)). Hence,

/(*,*) = /(*) = £n*«W)),for <€ //,V/
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an ordinary Boolean function. In the above example, {rijk} = {3n : n is an integer}, end
points of the intervals {g^{rijk)} = {1 + 3n, 1.5 + 3n,2 + 3n : n is an integer}, {*(/)} =
{n if// C |3ra,3(n + l)J}.

2.4 Decision Diagram For Timed Boolean Function

TBF's have BDD decision diagrams. In this section, we consider the decision diagrams for
TBF's of the form as in equation (2) and of the form as in equation (3). The first type of
TBF's derives from combinational circuits, and the second type derives from synchronous
sequential circuits.

We first consider theTBF's ofcombinational circuits, For this type of TBF's, we consider
the inputs that are a pair of vectors switching at t=0. For other inputs, the following results
can be easily extended. In a TBF, we treat {&,} as binary variables. ibt- takes the value of
0, when t < fct-, otherwise, 1. A possible good variable ordering is to order &t's earlier than
those of normal Boolean variables.

To build a decision diagram for a TBF, we first insert all A;,'s into a binary tree. Hence,
the left branch of a k{ node represents the TBF for /<&,-, the right branch, the TBF for
t > k. Thus, as we traverse from the root of the ki tree down to a leave node, for each k
node we encounter, some timed variable(s) x(t - k) in the TBF become Boolean variables
either z(0+) or x(0"), depending right or left branch of the knode is taken. Therefore, when
we arrive a leave node, the TBF becomes an ordinary Boolean function, which will be called
the resolved Boolean function at the leave node.

When all &t's are inserted into a binary tree, to each leave node of this tree, we attach a
binary decision diagram of the resolved Boolean function at the leave node.

Example 7 Consider the combinational logic of the circuit in Figure 3,

g(t) = f(t - 1.5)/'(* - 4)/(* - 5) + f(t - 2) (4)

For t < 1.5,1.5 <t<2, g(t) = f'(0'); for 2 <t < 4,4 < t < 5,5 < t, g(t) = /'(0+).
Therefore, we get the decision diagram as shown in Figure 5(a). Reducing the decision
diagram, we get Figure 5(c), which is the TBF g(t) = f'(t-2). Hence, under 2-vector input,
equation (4) is equivalent to g(t) = f'(t - 2). In other words, the combinational logic in
Figure 3 behaves like an inverter with delay of2, under 2-vector inputs.

For TBF's of synchronous sequential circuits, we work in terms of modulo r. Referring
to equation (3), let t = r+ nr, h{j = h'{j + nnjT, where 0< r < r,0< h'{j < r. Without loss
of generality, we consider the case n = 0; so,

Vi(r) =Myiimar +l^-iijr), ...,T/S(mtsr +[—^Jr)
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'-A'.
Note that [-7*J € {-1,0}. Now, treat {h'{j} as binary variables, h'y takes the value of 0,
when r < h'^, otherwise, 1. Apossible good variable ordering is to order h'^s earlier than
that of normal Boolean variables. To build a decision diagram, first insert h'{'s into a binary
tree. When all h'^s are all inserted into a binary tree, to each leave node of the tree, we
attach the resolved binary decision diagram of that node.

Example 8 Take the TBF(l) from example 5, with t = 2.

9(t) =g(l^\ )g\L^J )g(L^j) +g'{ \^\)
Let t = r + nr, and n = 0,

r-1.5 r-19(r) =^(L-T-j2V(-2 •2+L-J2M-1 .2+L^J2) +</(-! •2+L^J2)
normalizing to t,

9(r) =*( L^j )g'(-2+L§J )<?(-! +L̂ )+ff't"1 +L^J)
equivalently,

*M =s( [~^] )g'(-2)g(-i +L^J)+fl'(-i)
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The decision diagram is therefore as shown in Figure 6. Along the the dashed path shown, we
have imposed the conditions: r < 1.5 and r < 1. Under these conditions, the TBF becomes:

9(r) = g(-l)g'(-2)g(-2)+g>(-l)
= 9\-l)

An interpretation of the diagram is that when we come to ah'{j node, the left branch represents
the TBF for r < h'ij} and the right branch represents the function for r > &(.. When the
encountered node is a Boolean variable, the usual BDD interpretation applies.

g*(-D gWg^+g'C-i)

g'(-2)+g'(-i) |

Figure 6: Decision Diagram of g([^J )g'(-2)g{ [-1 + ^lj) + g'(-\)

It can be seen that the decision diagrams described above are canonical. Two TBF's
having the same canonical decision diagram have the same timing behaviors.

3 2-vector Delay and Minimum Cycle Time

All previous methods of computing the minimum cycle times of synchronous circuits compute
the maximum delays of the combinational logic of the circuits, and treat these maximum
delays as the minimum cycle times. Of all different delays for combinational circuits, delay by
2-vector is a more realistic model for this situation. In computing the delay by 2-vector, the
input to the circuit is a pair of vectors switching at t=0, the timeof the latest last transition
for all possible input pairs is the delay of the circuit. In this section, by demonstrating that
delay by 2-vector can underestimate the minimum cycle time, we illustrate the inadequacy of
using the delay ofthe combinational logic ofa synchronous sequential circuit as the minimum
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cycle time for the synchronous sequential circuit; and give a condition under which the 2-
vector delay of the combinational logic of a synchronous circuit is the minimum cycle time
for the synchronous sequential circuit.

Example 9 Consider the synchronous sequential circuit shown in Figure 3. We first cal
culate the 2-vector delay of the combinational logic of the synchronous sequential circuit.
From example 7, the combinational logic of the synchronous sequential circuit behaves like
an inverter with delay of 2, under 2-vector inputs. This can also be seen by noting that all
pathes from node f to node a are not sensitizable by any pair of vectors; specifically, node a
stays at ZERO for any pair of vectors. Therefore, the effective circuit is an inverter of delay
2, i.e. gate g2. Therefore, the 2-vector delay of the combinational logic is 2.

The TBF of the synchronous sequential circuit is

att = nr,

9(t) =9( L^J r)g>( ll-i jr)g( l<-* jT) +«,<(^Jt)
T T T T

g(nr) =g(n +[-^-\ r)g'(n +[-ijr)g(n +[-^\ r) +g'(n +[-^\ r)
normalizing to r,

g(n) =g(n +L^J )g'(n +L^J )g(n +L^J) +<?'(" +L^J)
// we let the minimum cycle time be 2, then any cycle time greater than 2 should ensure
proper operations of the synchronous sequential circuit. For cycle time r = 2, n=l:

5(D =g(i +F^J)s'(i +b^JMi +L^J) +</'(! +L^J)
fl(l)=s(0M-l)3(-2)+5'(0)

For cycle time r —5, n=l:

g(l) =g(l +L^JtfU +tj-lW +L^J) +</U +L^J)
9(l)=9(0)g'(0)g(0)+g'(0)=g'(0)

which is not equal to g(l) = 5r(0)^(-l)p(-2) +^'(0). Therefore, the minimum cycle time is
greater than 2. Hence, the 2-vector delay underestimates the minimum cycle time. A reason
for this is that the pathes (from node f to node a) that are not sensitizable under 2 vectors
now become sensitizable under a string of vectors spaced at 2 units of time apart.
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In view of the above example, we want to define sequential delays, or the minimum cycle
times, of synchronous sequential circuits, not just in terms of the combinational logic, but
also in terms of the memory elements. If Ds is the minimum cycle time of a synchronous
sequential circuit, we require that the synchronous sequential circuit operate properly at any
cycle time r > D3.

Definition 2 Given a TBF y(t, r) for asynchronous sequential circuit, where r is the cycle
time, the sequential delay, or the minimum cycle time, is the minimum D3 such that

y{t,T) = y(t,Da),VT>D.

With the above definition, under what conditions will 2-vector delay be equal to the
minimum cycle time? Use the notations in Figure 4. Let

V(n) =f(yi(n +^J),...,*(» +F^J))
be a TBF of a synchronous sequential circuit, then the TBF for the combinational logic of
this circuit is

V(i) = f(yi(t-hn)t...,ya(t-hi9))

Assuming the delays of flip flops are included in the computation of 2-vector delay, the
maximum 2-vector delay is the minimum D2 such that

f(yi{t - ^i),...,y.(< - hi.) = f{yi(D2 - hn),...,ys(D2 - his)),Vt > D2

because D2 is latest time of the last transitions. The following theorem asserts that if the
2-vector delay D2 is at least \max(hij), where h^ is the loop delay from jth flip flop's input
to the ith flip's input, then D2 is equal to the minimum cycle time, Ds.

Theorem 1 Let D2 be the 2-vector delay of the combinational logic of a synchronous se
quential circuit, Ds, the minimum cycle time of the synchronous sequential circuit. If
D2 > \max(hij), then D2 = Ds.

Proof. Consider the variables in the TBF of the combinational logic.

Vi(t ~ hij) = y.-(0+) ^ yi(n - 1) if t> hij
Vi{* ~ hij) = y,-(0") = yi(n - 2) if t < h{j

And,

n+L-jKl =n- 1 if -1 <z|ii <0, equivalents, t>h{j >0
n+L^J =n- 2 if -2 <=f- <-1, equivalent^, t>^ >\
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Therefore, for t > \max{hij),

yi(n+lzjil) =yi(t-hij)
Because D2 is the minimum value such that

f(Vi(t - hu),..., y.(t - hiS)) = f(yi(D2 - hu), -., y.(D2 - hiB))Wt > D2

Hence, if D2 > ^max(hij), D2 is also the minimum value such that:

/(*(•» +L^J).-,*(» +F^J)) =/(».(•» +H^j),...,,,(„ +H^J))Vr >£2
T T L)2 D2

By definition, D2 is also the minimum cycle time of the synchronous sequential circuit. D
Comments:

1. Above result can be generated to delay by n-vectors, then the condition becomes: if
Dn > i max(A„), then Dn = Ds.

2. In example 3, \ max(/itj) = 2.5 and the 2-vector delay is 2, violating this condition.
Note that half of the difference of the longest and shortest topological delays is ±(5 -
1.5) = 1.75, less than the 2-vector delay, 2.

4 Computing the Minimum Cycle Time

4.1 Minimum Cycle Time for Fixed Delays

In this section, we compute the minimum cycle time for synchronous sequential circuits
with each gate's delay fixed at a constant. We assume the general TBF for a synchronous
sequential circuit is

V(n, t) =/(..., yi(n +L^iJ),...) =/(..., yi(n - *f.(r)),...)
where z{(t) = -^J, and that h{ > /i,+1. z{(t) changes values only at r = ^,m = 1.2,...
Specifically, z{(r) = 1,2,..., for r > hu h{ > r > ^,..., respectively. If the longest topological
delay is taken to be the minimum cycle time, Ds, as in many practices, then, for any cycle
time > Ds the synchronous sequential circuit will operate properly. This fact is confirmed by
noting that for any cycle time r > Ds, n+ |^J = n- 1, Vt; thus, /(..., yi(n + |^\l)i •••) =
/(...^•(n-l),...).

To find the minimum cycle time, we start with Ds = hi and decrease Ds until y(n,Ds)^
y(n, hi). Ify(n, r) is a constant, then, t/(n, Ds) = y(n, hi) for all D3. Therefore, need to find
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a lower bound on Ds. Alower bound of Ds is min(hi). This is because when r < min(hi),
z{(t) > 1; so all variables in y(n, Ds) have arguments < n- 1, while all variables in y(n, ki)
have arguments of n- 1; So, if y(n, Ds) = y(n, hi), D3 < min(hi), then j/(n, r) is a constant;
hence the minimum cycle time is zero; if y(n,r) is not a constant, then the minimum cycle
time > min(hi).

As r changes in the interval [/*i,min(/it)J, z{(t) changes values only a finite number of
times. Therefore, there are only finite number of points in the interval [humm(hi)] at which
the tautology y(n,r) = y(n, hi) needs to be checked.

In summary:
Algorithm for Minimum Cycle Time for Fixed Delays

1. Let D = {^ : ^ > min(hi),m = 1,2,...} be the set of time constants and their
harmonics above min(hi).

2. Sort D in decreasing order. Evaluate the inequality y(n, r) ^ y(n, hi) at the points of
D, starting with the first value. If r* is the first value at which the inequality holds,
then Ds = t* - A, where A is an arbitrarily small number.

Call this algorithm the zero order computation.
The following section computes the minimum cycle time when gate delays vary in inter

vals. First, we describe the delay model to be used.

4.2 Delay Model for Circuits with Tracking Delays
The delays of a manufactured circuit are very difficult to control, because the physical prop
erties that determine the delays, for example, oxide thickness, conductivity, and mobility,
are sensitive to fabrication parameters like lithography precision, diffusion temperature, and
etching rates, which are not precisely controlled. Therefore, delays of circuits from differ
ent wafers may differ substantially. However, gate delays within the same chip track well,
increasing or decreasing by about the same ratio; this is because of the miniature size of a
chip that physical properties ofthe devices on the chip are subject to the similar fabrication
conditions, and hence are closely matched. Although small, there is still local variations
among the gate delays on the same chip. Therefore, delay variations are mainly caused by
these two factors: global variation and local fluctuation. Let r be the delay ratio of a chip
with respect to a referenced chip, e, the local gate delay fluctuation within a chip. Then the
ith gate delay d{ G[r•</?(l - e), r •d?(l + e)], where <$ is the ith gate delay of the referenced
circuit. This bound on di is equivalent to:

di__%
d, d'"J "j

where d{ is the ith delay of a manufactured circuit, d'{, the ith delay of another instance of
the same circuit. A small e means gate delays track well.

<t
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Definition 3 We say that a manufacturing process has tracking coefficient e if the delays
associated with the gates of one circuit {di} and the delays associated with another manu
factured instance of the same circuit {dj} obey the inequality

di d[

*i
<e

If the delay of a gate is given in terms of

then

Similarly for df

dfn < di < d1?

dmxn Jmin

Jmtn

U3
J'mtn

<e

4.3 Minimum Cycle Time with Delay Tracking e
In practical situations, we assume the delay model discussed in the above section.

Definition 4 // all the timed variables in a TBF are of the form

x(t-J2diik) = x(t-hi)
k=l

where d{ is the ith gate's delay variable, {hi} are called the time constants of the TBF. £,d,
is called a delay sum. The set ofdelay sums that add up to k is denoted by [hi]. For example,
for di = l,d2 = M3 = 1, the TBF f(t) = x(t - dY) + x(t - d2) + x(t - d2 - d3) becomes
x{t - 1) +x(t - 2) +x(t - 3) which has time constants 1,2,3; and [1] = {^}, [2] = {d2}, [3] =
{d2 + dz}.

Because d{ varies randomly in the interval [rd?(l - e), rd%(l + e)], a time constant h{ in a
design may give rise \[hi\\ time constants in a manufactured circuit. In other words, process
variations modeled by e may cause each delay sum in [hi] to add up to a slightly different
time constant; and there are \[h{]\ such delay sums. The maximum difference of these delay
sums is e- hi. So a single time constant in a design becomes a band of time constants of
width e • hi.

We assume that for each component in the circuit the delay ofthe component is specified
by [d?tn,dfaxr, and ^ = p,Vi. Further, for simplicity, we also assume the following
definition of tracking coefficient e.
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Definition 5 A manufactured circuit's delays are scaled by a factor p with respect to a
reference circuit, with tracking coefficient e, ifthe ratios ofthe gate delays ofthe manufactured
circuit to those of the reference circuit are between p and p —e.

An example of therelationship between the time constants of a design and thetime constants
of a manufactured circuit of the design is shown in Figure 7. Inthe figure, output waveforms
ofa design and a manufactured circuit are plotted. The output of the manufactured circuit
is that of the design scaled by a factor r = |, and at the times of the time constants {r -ki},
appear groups of glitches due to manufacturing variations.

outputofi design

output o|idrmiljr=2/J

-•t

Figure 7: Splitting of Time Constants Into Bands

To compute the minimum cycle time for a synchronous sequential circuit with gate delays
varying in bounded intervals [dfn, d?ax] and tracking with coefficient e, we find a lower
bound on the minimum cycle time by considering the circuit in which every gate takes on
its maximum delay. Use the zero order computation to compute the minimum cycle time
for this circuit. This cycle time is a lower bound, and set it equal to D3.

Now, let the ith gate's delay vary in the interval [(p - e)d?ax,pd?ax], with p=l. We
want to enumerate all possible values of z{j{t). z{j{t) = -[^J A'j can vary in the interval
[(p - e)hi,phi]. The possible values can be calculated as follows. Plot the band of hi, i.e.
the interval [(p - e)/it-,p/t,], and draw vertical lines at t,2t,St,..., as in Figure 9. If interval
[mit, m2t], where mt- is a nonnegative integer, is the smallest interval that contains the band
of hi, then, it is easy to see that the possible values of Zij(t) are {mi +1,..., m2}. For example,
referring to Figure 9, [2t2, lt2] is the smallest interval that contains 53, thus, the possible
values of z3j(t2) are {3,..., 7}.
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Another way to enumerate the possible values of Zij(t) is to plot the band of hi and its
harmonics above D3, i.e. [(p - e)hi,phi], [(p - e)^,p^],... If te[(p- e)%,p%] for some m,
then, the possible values of zi5(t) = -[^1= {m,m+l}. Let C= {nij :t <E [(p~<0;£S ?£-]}>
If C ^ <f>, the possible values of Zij(t) is :

|J {mt-,mt + l}
miec

IiC = <j>, there exists a msuch that *<E [p^, (p - e)*j]; so zi5(t) = m+ 1. This method of
enumeration will be used in the following discussion.

Partition the t-axis by points {{p - e)^,p^ > D3,Vi,m = 1,2,...} In this case, p = 1.
Label the partitioned intervals from right to left by 7i,72,...

Definition 6 1. Let z(I) be the set of all possible values of z(t) = (zn(t),...,Zij(t),...),
fort £ I. A value a = (an, ...,aij,...) e z(I) is feasible if the following inequalities are
satisfiable:

(p - e)dmax < di < pdmax

equivalently,
(p - e)d?ax < di < pd?ax

K'-l)t< 2rf,0- <(<Tij)t

2. Let f(n - a) denote /(..., y{j(n - o^),...). An interval I is feasible if there exists a
feasible a € z(I) such that f(a) ^ f(n - 1).

Search the minimum cycle time in the intervals, starting from 7i. A lower bound of the
minimum cycle time is calculated in the first feasible interval. Symbolically, let 7/ be the
first feasible interval,

A lower bound of Ds = maxr(a),a Gz(If)

fin-cr)^f(n-l)

t(<t) = max 2

(p-e)dr*<di<pd'i'max
u, ^ JJU

d>_
k

(<Tij-l)i<Y,di>l> <(<m)t

Comments:
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1. For this linear programming problem to be meaningful, the strict inequality a < b
needs to be changed to a+ A < 6, where A is an arbitrarily small number. Hence, if
Ij = [r, s] is the first feasible interval, and if \r(at) - s\ < A, then a lower bound is s;
so other a € z(Ij) need not be considered.

2. In enumerating values of 2(7), some values of z(I) may have been considered in the
previous enumerations; therefore, only those not yet considered values in z{j(I) are
chosed.

Now continue decreasing the scaling factor puntil some bands above the lower bound D3
start to merge, and the position at which they merge is above D3. Let pi be the value of p
at which some bands > Ds start to merge at above Ds, and p2 < px, be the value of p at
which some other bands > D3 start to merge at above Ds. For p€ \pi,p2], the overlapping
ofthemerging bands forms new intervals, {7m}. If 7m is feasible, a lower bound ofminimum
cycle time is computed as follows:

D3 = maxr(a),(7 € z(Im)

f(n -a)± f(n - 1)

r(a) = max t

(p - e)dmax < di < pd?ax

Pl<P<P2

where a £ z(Im). Above procedure is repeated with decreasing p and increasing lower
bound D3, until all bands of time constant above D3 either do not merge or merge below Ds
when p equals p. Then the minimum cycle time of the circuit is D3.

In summary,

Algorithm for Computing Minimum Cycle Time with Tracking e:

1. Perform zero order computation on the circuit in which all gate delays take on their
respective maximum values to obtain a lower bound for the minimum cycle time, Ds.

2. Partition t-axis into intervals by points (1 - e)£,*j > Ds. Search for the first feasible
interval 7/ in the order of decreasing magnitude. The lower bound is updated as follows:

D3 = maxr(a),a € z(Ij)

f(n-a)^f(n-l)
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r(a) = max t

(p - e)dmax < di < pd?ax
n,

Steps (1) and (2) are called the first order computation.

3. Calculate p, at which some bands > D3 start to merge above Ds and p2 < px at which
some other bands > D3 start to merge above D3. For p e [pi,p2], the overlapping of
the merging bands forms new intervals. Starting from the greatest new band above
Ds, determine the first feasible 7m, and update D3 as follows.

Ds = maxt(ct),<t e z(Im)

f(n-a)^f(n-l)

r(a) = max t

(p- t)d?ax < di < pd?ax

Pi < p < P2

(o-ij-l^K^d^ <(aij)t
k

4. If all bands of time constant above D3 either do not merge or merge below D3 when
p= p, then, the minimum cycle time of the circuit = Ds; else, go to step 3.

4.4 Validating Condition For First Order Computation
In this section, we derive the conditions under which the first order computation gives
the minimum cycle time of the circuit. Suppose that we have performed the first order
computation to get a lower bound D3, and found that the bands of &i,...,6n > Ds are
infeasible, where b{ = ^, for some m. Since D3 is a lower bound, we will ignore the bands
< Ds and consider only the bands > Ds.

Definition 7 The disjoint succeeding band(s) ofband B(b{) = [(p - e)6t-,p6t] is the greatest
band(s) B(bj) = (p - e)bj,pbj], i.e. the greatest bjf satisfying:

1. bi > b

2. B(bi)f]B(bj) = <l>
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The lower bound from the first order computation is the true minimum cycle time if either
1) at p* > p, no bands and their disjoint succeeding bands > D3 merge, or 2) the bands
> D3 that merge at p > pmerge below D3. Let 7?(6t) be a disjoint succeeding band ofband
B(bj), then,

Condition 1) gives:

equivalently,

Conditions 2) gives:

at

(bj - bi) •p>bi-e

bj p

P* • hi < Dt

e

P =Y^Ti

at which bands of &,- and bj start to merge. Equivalently,

k bj ~ Ds

Therefore, the lower bound from the first order computation is the true minimum cycle time
of the circuit if at least one of the following conditions is true:

1.

bJ P

uj

bi bj - D3

Above conditions can be graphically illustrated in terms of the intervals between disjoint
succeeding bands, as shown below. Let /,- = 6; - b{. The validating conditions give:

1. fc<(f-l)-/t-

2. hi <^
'4 2

For a given &,, the validating values of /,- are the shaded area in Figure 8.
Comments:
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Figure 8: Valid Region For First Order Analysis

1. Figure 8 shows that the intervals between time constants and their harmonics should
be farther as the time constants get farther from the lower bound. The order of
magnitudes for valid intervals is illustrated in the following example.

Example 10 Let the tracking coefficient e= 1%, p= ~£ = 50%, Ds = 100, and the
ineffective bands of time constants above Ds be h4 = 102, ^3 = 104, h2 = 106, hi = 216.
So. the bands and harmonics above the lower bound are: h4 = 102, h3 = 104, h2 =
106, hi =216,^ = 108. Then, minimum of 1/bt-/b3 = 1/106- 1/108 = 1.75 x10"3 >
e/Ds = 10~3. Therefore, the first order computation gives the true delay ofcircuit. The
minimum cycle time of the circuit is therefore Ds = 100. Note the intervals between
the time constants and their harmonics are less than 2% of the time constants; hence,
the first order computation is valid even for very close time constants.

2. If the lower bound from the first order computation is not the true delay, then some
bands > Ds merge above Ds at p* > p. If willing to trade accuracy for speed, we
assume all merging bands at p* > p produce realizable transitions; hence, an upper
bound for the delay is p* •bm > Ds, where bm is the greatest band merged at p' > p.

3. Bands close together may be considered as a single band in first order analysis, so that
other bands are separated far enough for the first order computation to be valid.
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4.5 Computing Minimum Cylce Time of the General Case: Mixed
Boolean Linear Programming

In the general case, gate delays vary independently within the interval [dfin,dfax]. This
situation may rise from delays of chips on circuit boards, and delays of modules on multi-
module chips, in which the components are fabricated separately; so their delays are not
correlated. Computing the minimum cycle time can be formulated as a mixed Boolean
linear programming problem, as follows.

Minimum cycle time = max t

f(n - Zij(t)) &f /(» +h^J) ±/(„ - 1)
d?in < di < d?ax

where h{j =£?" dq. Let h}5 =J*? maxfy =£?' <^x, h% =££" mincty =Z?3 d$n,
hmin = minfc?. When t < hmin,Zij(t) > 1. So if f(n -Zij(t) = f(n - 1) at t < kmin, then
f(n-1) = 1or 0; then the minimum cycle time is 0. Therefore, iff(n-1) ^ a constant, the
minimum cycle time > hmin. Hence, the possible values of z{j(t) are - |.—jpH,..., 1. Denote
a value of z(t) = (zil(t),..., Zij(t),...) by a = (an,..., a{j,...). The problem of computing the
minimum cycle time becomes:

AfCT = max t(<t)

r(a) = maxtf

f(n -a)^ /(„ - 1)
Tlij

(tf,j - 1)* < ]T^,u <aijt
k *

dTin < di < d?ax

Example 11 Consider the TBF ofa synchronous sequential circuit,

1 < di < 1.5

1 < d2 < 2

l<d3<2

l<d4<3
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Normalizing to t,

f(z) = g(n - zi)g'(n - z2)g(n - z3) + g(n - z4)

where zi = -[=±-\, z2 = -[=^\, z3 = -[=^-\, zA = "L^J- /(n-1) =g(n-\)g'(n-
l)9(n ~ 1) +9'(n - 1) = g'(n - 1). hmin = l,h\ = 1.5,h\ =4,h\ = 5,h\ = 2. Therefore, the
possible values of zx,...,z4 are {-|=T\I = 2,1},{4,3,2,1},{5,4,3,2,1}, {2,1}, respectively.
Let ai = (1,4,3,1). Determine whether f(n - ax) ^ f(n - I), or, g(n - l)g'(n - 4)g(n -
3) +g'(n - 1) ^ g'(n - 1). If they are not equal, a lower bound for the minimum cycle time
is calculated from the following linear programming.

max t

0 < di < t

3t<d2 + d3< 4t

2t <d3-rd4< 3t

0 < d2 < t

l<di< 1.5

1 < d2 < 2

1 < d3 < 2

1 < d4 < 3

// the two Boolean functions are equal, pick another a and repeat above.

The result from above mixed Boolean linear programming is a lower bound of the mini
mum cycle time of the circuit. The minimum cycle time is the greatest lower bound of <r's.
The number of a's is exponential in the number of timed variables with different delay sums.
The number of timed variables can be reduced progressively in solving the mixed Boolean
linear programming problem, as discussed in the following section.

4.6 Solving Mixed Boolean Linear Programming

Observe that /T>Da(^r),/(i,r) restricted to r > D3, is no more complicated than f(t,r).
Because fr>D3(t^) is derived from f(t,r) by replacing x(n + |—^J) by x(n - 1) if h{ < D3.
For^example, f(t,r) = a(n + [-^\)b'(n + [~l\)c(n + [-^lY, then fT>2(t,T) = a(n +
(."JM71 ~ l)c(n - *); Hence, once a lower bound Ds is computed, f(t,r) is replaced by
fr>Dt(t,r).

Therefore, start with the first order computation to compute a lower bound Ds. The e
is set to be a small number < min | 6, - bj |, where 6t- = *£, for some m. Replace f(t,r) by
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fr>D3(t,r). Then, compute a lower bound for a a, update Ds, recompute fT>Ds(t,r), and
repeat for another a. Each time D3 is updated and fr>Da(t, t) is recomputed, timed variable
x(n + L-^J) with hi < D3 become ordinary Boolean variables x(n - 1); Hence, in order to
reduce most timed variables, early choices of a should have as many large components as
possible.

In summary,
Algorithm for Computing the Minimum Cycle Time of the General Case

1. Use first order computation to compute a lower bound Ds. The e is set to be a small
number < min | 6t- - bj |, where 6,- = &, for some m.

MCT = m&xT(a)

r(a) = max t

f(n -a)± f(n - 1)

(cTij-\)t<Y^dla <aijt
k k

d?in < d{ < d?ax

t>D3

Specifically,

(a) For a a, if f(n -- *) ^ f(n - 1), do:

r*(a) = max t
nij

(<Tij-l)t <Y^dla <ai}t
k

d?in < di < d?ax
t>Ds

If a is feasible, then D3 = t* and compute fT>Da(t,T). If f(n - a) = f(n - 1),
pick another a and repeat above linear programming.

(b) Determine the set of <r's for fT>Da(tiT)', if there are not yet considered <r's, go to
step (a); else the minimum cycle time is D3.
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4.7 Delay Specific Enumeration

In a TBF with n timed variables, there are many <j's. However, some values are impossible
due to constraints imposed by the minimum and maximum values of £»dni. Therefore,
taking into account of the specific values of delays reduces the number of a. For a given r,
the possible values of crt- are the possible values - [- ^\ni J can take with dfin < di < d^ax.
For instance, if r = 2, 2.2 < £;4,. < 6.8, then the possible values of a{ are {2,3,4}. The
possible values of a is then the Cartisian product of cr,.

The procedure for delay specific enumeration is as follows. Plot the ranges of the values
of delay sum of each timed variable; denote the range interval of the delay sum of timed
variable x{ by 5,. Draw veritical lines at t,2t, 3t,... At t, if [nut, m2t] is the smallest interval
containing Si, then, the possible values of z{(t) are {mi + 1,...,m2}, where mi,m2 are non-
negative integers. To find the minimum cycle time, decrease t from the maximum ofall delay
sums. As t decreases, the verical lines at t,2t, St,... move toward the origin accordingly. The
set of possible values of z{(t) changes only when the smallest 5,-containing interval [mrf, m2t]
changes to [m'J,m'2t'], where m[ ^ mx or m'2 ^ m2 or both. At each t, an a{ € z{(t) is
chosen.

Example 12 In Figure 9, there are 3 timed variables with distinct delay sums, 5t. The
shaded areas are the ranges ofSi = Ei<tw- At t = t1} Si C [2tuAti]; thus, {ai} = {3,4}.
S2 C [0<i,2<!]; thus, {ai} = {1,2}. S3 C [*!,3*i]; thus, {ax} = {2,3}. Similarly, at t = t2,
{ai} = {6,..,9},{<r2} = {2,...,5},{<r3} = {3, ..,7}.

An advantage of delay specific enumeration is that the <r's leading to a greater lower
bound can be clearly chosen in this scheme. This is beneficial because greatest upper bound
reduces the greatest number of timed variables.

Of course, a combination in delay specific enumeration still needs to be determined
feasible by linear programming.

5 Conclusion

In this paper, we defined sequential delay of a synchronous sequential circuit to include the
effect of the memory elements in the circuit, so that this definition gives the true minimum
cycle time. We then gave a condition under which combinational delay is equal to thesequen
tial delay, or the minimum cycle time. Further, we formulated the problem ofcomputing the
exact minimum cycle time as a mixed Boolean linear programming problem, and provided
efficient algorithms to compute the exact minimum cycle timefor three delay models. In the
first delay model, gate delays in a circuit are fixed constants; in the second delay model, gate
delays vary within bounded intervals with tracking coefficient e; in the third delay model,
gate delays vary within bounded intervals independently. The complexities ofthe algorithms
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Figure 9: Delay Specific Enumeration

for the three delay models are the simplest for the first case and the most complex for the
third case. In solving the mixed Boolean linear programming problem, a lower bound for the
minimum cycle time is updated during each iteration so that the complexity of the problem
is decreasing progressively. And the core computation of the problem is translated into the
problems of tautology checking, test generation, redundancy check, and SAT.
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