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Abstract

The Afraimovich-Shilnikov theorem on two-dimensional torus breakdown is

formulated and used to carry out a detailed numerical investigation of the
bifurcation routes from the torus to chaos in the three-dimensional Chua's torus

circuit Three scenarios of transition to chaos due to torus breakdown take place in
this circuit in complete agreement with the theorem: (1) period-doubling bifurcations

of the phase-locked limit cycles, (2) saddle-node bifurcation in the presence of a

homoclinic structure, and (3) soft transition due to the loss of torus smoothness.
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^Introduction

The appearance of chaos following the breakdown of a two-dimensional torus is

a typical and interesting scenario of transitions to chaos. Ruelle and Takens1, and

later, Newhouse, Ruelle and Takens (NRT)2 had provided the seminal results on this

subject. Compared with the Landau-Hopf scenario3,4, the NRT-scenario specifies a

finite bifurcation sequence in the route to chaos: a stable equilibrium point (FP) =>

a stable limit cycle (LC) => a stable two-dimensional torus (T2) =» chaos:

FP => LC => T2 => Chaos (1)

The sequence of attractors (1) has been confirmed both by computer simulations

of many simple models and by physical experiments on Couette flow, hydrodynamical
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instabilities, etc. " . However, the NRT-scenario does not give a full description

of all possible bifurcation scenarios leading to the destruction of the torus T2. In

particular, it does not address the following questions. Does the ^-breakdown always

lead to chaos? If not, what additional conditions are required? What is the structure

of the resulting chaotic attractor?

Many authors have investigated the phenomena of ^-breakdown theoretically.

One such results which will be applied in this paper is a theorem by Afraimovich and

Shilnikov on two-dimensional tori breakdown18,19.

In this paper we will use a member of the Chua's circuit family, namely, the

Chua's torus circuit as a vehicle to illustrate the main bifurcation phenomena,

which cause transitions to chaos, as predicted in the Afraimovich-Shilnikov theorem.

Chua's torus circuit10 was chosen for the following reasons. The phase space



of the associated state equations has the dimension necessary for the transition T2 =>

Chaos. Moreover, the circuit is autonomous and the T^-attractor arises without any

external periodic excitations. Since the state equation is piecewise linear, some

important results can be obtained analytically. Besides, it would be interesting to

investigate whether the bifurcation scenarios predicted by the Afraimovich-Shilnikov

theorem, which was proved only for smooth dynamical systems, also occur in piecewise-

linear systems.

2.The Afraimovich-Shilnikov torus breakdown theorem

Consider the dynamical system:

x = F(xt[i) (2)

in KN, where Ate3. Here *elRN, |ielRK and F(x,\i) is assumed to be a sufficiently smooth

function of x and of the parameter \i. Let us suppose that a smooth attracting torus

i (|X0) exists in some region G of the state space of system (2) at |i=|x and assume

that the torus T2^) is formed by the closure of the flow of (2) originating from

the unique stable limit cycle T , the saddle-type limit cycle T' (which can be proved

to always exist), and the unstable manifold W" of T". Assume further that the

multiplier of the stable limit cycle T+ on the torus T2^) which has the smallest

absolute value is simple and real.

Consider a continuum set of continuous curves H={\i(s): \l => R=*RK} in the

parameter space RK of system (2), 0£s<l. Assume that at |i(0) a smooth stable torus

corresponding to \i(0)eH exists in the region G for system (2), but at jx(l) the torus

does not exist. Then the Afraimovich-Shilnikov theorem asserts the following three



distinct breakdown scenarios for the torus:

1. For some intermediate parameter value s, where 0<s <1, the torus exists, however,

either i[\i(s)] loses its smoothness due to the nonsmooth behavior of the unstable

manifold W1 in the vicinity of the stable limit cycle T for s>s, or the pair of

multipliers p of the stable limit cycle T becomes complex-conjugate inside the

unit circle at s=s .

2. There exists a value s, s*>s, such that the attracting torus J2^) no longer

exist for s>s. In this case, there are three possible routes leading to the

destruction of the torus:

A. At s=s, the stable limit cycle T (|i) loses its stability via some typical

scenarios in the bifurcation of periodic solutions.

B. A structurally unstable homoclinic trajectory of the saddle-type limit cycle

r"occurs due to the presence of a tangency between the stable manifild W* the an

unstable manifold W° of the saddle cycle.

C. At s=s the stable and the unstable (saddle type) limit cycles on the torus merge

into a saddle-node periodic solution and then disappear. The torus is nonsmooth at

the bifurcation parameter s=s .

Fig.l shows a sketch of the qualitative bifurcation diagram of phase-locking

on the torus I2 on the two-parameter |i -u. plane. The direction of the paths on the

parameter plane corresponding to routes A, B, and C of the Afraimovich-Shilnikov

theorem is shown in Fig.l.

The phase-locked region is formed by the two bifurcation curves /,

corresponding to the merging and annihilation of the saddle-type limit cycle T" and

the stable limit cycle T on the torus 7^). The phase-locked region originates from

the codimension-2 bifurcation point K on the bifurcation curve L. The curve /
r oo

corresponds to the bifurcation of a torus T2 spawned from a limit cycle r having a



pair of complex-conjugate multipliers on the unit circle.

Consider first the route PA of the diagram in Fig.l. The limit cycle T+

becomes unstable upon crossing the curve /, via one of the several possible

bifurcation routes. The torus T^n) does not exist above the curve /. A loss of

smoothness of the torus precedes the torus breakdown as we approach / from the lower

side. For example, the transition to chaos along the route PA can come from a period

doubling bifurcation process. If a new two-dimensional torus occurs from the cycle T+

on the curve /, which is possible in some systems10,11,16, then the above scenario

of torus breakdown will occur again.

Next, let us move along the route PB. The phenomenon of homoclinic tangency of

the stable and the unstable manifolds of the saddle cycle T" on T2^) takes place on

the bifurcation curve /,. In this case, the torus T2^) is destroyed, but the stable

cycle r remains as an attractor. A structurally stable homoclinic structure emerges

above the curve /, and between the curves / and /, but it is not an attractor. In
ft 1 2

this region the system (2) exhibits a metastable chaos having a finite life

time ' . A transition to a true dynamical chaos can be realized by moving along the

route PB . In this case a chaotic attractor emerges abruptly the moment we cross the

saddle-node bifurcation curve /. In this case, a subset of hyperbolic trajectories

is transformed into a chaotic attractor, and the stable limit cycle T+ disappears.

Finally, moving along the route PC results in a saddle-node bifurcation upon
»

crossing the curve /. Two cases can be realized here. Along the route PC a

transition from the phase-locked torus to an ergodic one (i.e., quasi-periodic

solution) takes place. Although the structure of the trajectories on I2 is changed

upon crossing /p in this case, the torus remains an attractor. If we cross the curve

/j in the region ChaoSj of the nonsmooth torus ^((i), then a transition to chaos

through intermittency will take place.



The formulation of the Afraimovich-Shilnikov theorem, the bifurcation diagram

of Fig.2, and the above remarks are all concerned with these bifurcation phenomena

which lead to the destruction of 7^(|li). It is obvious from Fig.l that the phenomena

associated with the transition I2 =^ Chaos can be investigated only by carrying out a

two-parameter analysis.

3.Computer-aided two-parameter analysis of Chua's torus circuit

Consider the following dimensionless form of Chua's torus circuit10:

ax

dr

-ot/(y-jt)

4y =
dr

-2-fiy-x)

dz

dr
Pv

(3)

The piecewise-linear function describing the nonlinear resistor (Chua's diode21) in

the circuit is described by:

M) = -^+o.5(a+fc)( 15+11 -15-i I) (4)

where as in reference 10, we choose the parameters

a = 0.07, b = 0.10 (5)



for comparison purposes.

We will use a computer to analyze the bifurcation phenomena of (3) over some

strategically selected region in the oc-p parameter plane.

First, a cycle VQ of system (3) which gives birth to a torus ^(a,^) will be
found. Then the torus bifurcation curve / will be obtained via a continuation

method. On this curve the pair of complex-conjugate multipliers of T lie on a unit

circle; namely, pl2= exp(+/(p), |p | = 1. There is a point K on the curve /0
corresponding to the phase-locked region having a rotation number 1:6. By finding a

stable limit cycle r+ on ^(afi) and by calculating the multipliers p(oc,p) under

various bifurcation conditions, we can construct the bifurcation diagram of system

(3) in the region of interest.

To identify the type of the attractors, we take a Poincare section on the

plane z=0 and calculate the corresponding power spectra 5(co) associated with the

variable x(t). To analyze the phenomenon occurring during the loss of torus

smoothness, we introduce additive sources of white noise into equation (3). The full

spectrum of Lyapunov exponents and the dimension D of the attractors were computed

for diagnosing of the phenomenon of homoclinic tangency (curve /).
h

4. Bifurcation diagram in the region with 1:6 rotation number

The bifurcation diagram for system (3) in the region corresponding to a

rotation number of 1:6 is shown in Fig.2. The curve / (a=l) corresponds to the

bifurcation which gives birth to the torus ^(ocP) associated with the limit cycle

rQ. This result was derived theoretically in reference 10. The two curves labelled /

are boundaries of the 1:6 phase-locked region and correspond to a saddle-node



bifurcation of the stable limit cycle, henceforth denoted by T+, on T^ocP). They

were calculated by imposing the condition p =+1. On the curve / one of the

multipliers pt of the cycle T+ is equal to -1. A "soft" period-doubling bifurcation
of the limit cycle T takes place on this curve. The curve ll corresponds to a

transition to chaos due to the period-doubling bifurcation of the limit cycle T+. On

the curve / a smooth transition into chaos resulting from the loss of smoothness of
cr v

the torus ^(o^P) is initiated. The bifurcation curve / in Fig.2 corresponds to a

homoclinic trajectory spawned by an intersection of the stable and the unstable

manifolds of the saddle-type limit cycle T". To the right of the curve /, the torus
h

^(a.p) does not exist.

There is some peculiarity in the birth of the torus ^(a.p) in the vicinity of

the bifurcation curve /0; namely, upon crossing the curve / (a=l) from the left to

the right in Fig.2 an ergodic torus is born abruptly, i.e. the associated waveform

x(t) suddenly changes from a periodic to a quasi-periodic function defined by two

independent and incommensurable frequencies co and co with finite amplitudes. The

phase portrait and the power spectrum of a typical torus 7^(a,P) near the curve /

are shown in Fig.3. The oscillation dynamics is nonlinear in principle even in the

vicinity of the torus birth curve /, as verified by the power spectrum of x(t).

Observe that besides the two basic frequencies co =0.05 and co =1.00, various harmonics
^ 1 2

mcOj and /ico2 and combination frequencies co =ma> ±n(0 are clearly seen in the spectrum

at least for n<3, m<6 (in Fig.3 only the part of the spectrum up to the second

harmonics of co2 is shown).

Observe that the phenomenon of an abrupt appearance of both quasi-periodic and

periodic oscillations is a typical property of piecewise-linear systems.

There is another peculiarity in the bifurcation diagram of system (3). As

shown in the diagram in Fig.2, the 1:6 phase-locked region does not originate from a



single point K, but rather over an interval [KJCX Such a situation can not take

place in smooth dynamical systems. Hence, this phenomenon is also a consequence of

the piecewise-linear nature of /(£) in (4). Figure 4 shows a typical picture

associated with a periodic limit cycle T having a Poincare rotation number of 1:6.

Observe that there are 6 points in the Poincare map corresponding the cross section

at z=0. Observe that only harmonics «co of the minimal frequency co =0.22 exist in the

power spectrum. The phase-locked condition is co =6co.

To investigate the main points of the Afraimovich-Shilnikov torus breakdown

theorem it is sufficient to investigate the dynamics of system (3) in the

neighborhood of the 1:6 phase-locked region.

5. Torus breakdown and routes of transition to chaos

Let us investigate in detail the evolution of the oscillatory regimes in

system (3) along the routes A,B,C predicted by the Afraimovich-Shilnikov theorem and

determine the conditions where chaos originates from a torus breakdown.

A. Torus breakdown due to the period-doubling bifurcation of phase-locked limit cycle

T on the torus i(a,$). Our computer simulation in Fig.2 shows that if we move along

the direction PA, we would cross the period-doubling bifurcation curve / of the

limit cycle T . The torus is destroyed on the curve I. This destruction is preceded

by a loss of smoothness as evidenced from the distortion of an invariant curve in the

Poincare map. The loss of smoothness is caused by oscillations of the unstable

separatrix of the saddle point as it approaches the stable node point. We should note



that a curve / exists in the phase-locked region at a very short distance from /

inside of the Arnold tongue,/ where the multipliers of cycle T change from real to

complex-conjugate on this curved. A rotation leads to the loss of smoothness, thereby

resulting in the destruction of the torus on the curve I. We shall come back to this

phenomenon in the next section.

The cascade of period-doubling bifurcations of the stable limit cycle T and

the transition to chaos occur above the curve /. But the route of period-doubling

sequence is finite in system (3), where the transition T => 2T => AT => Chaos takes

place (here T is the period of the limit cycle T ). Some results are presented in

Fig.5 to illustrate this transition. The Poincare sections and the corresponding

power spectra clearly show the typical scenario as we move and cross the curve /

transversally into the Chaos region. Observe that the finite number of period-

doubling bifurcations is not due to any computation difficulties, but is a genuine

phenomenon caused by the piecewise-linear character of the function fl£) in system

(3). The Lyapunov exponents in the Chaos region in the vicinity of curve Z1 in

Fig.2 for cc=23.06, P=2.25 are:

Li = +0.021, L2 = -0.00009, L^ = -0.200 (6)

This results in a corresponding value of the Lyapunov dimension D = 2.104.

B. Torus breakdown due to the appearance of a homoclinic trajectory of the saddle

-type limit cycle T~: the abrupt transition to chaos. Our goal here is to construct

*This curve is not plotted in Fig.2 because it practically coincides with the curve
/ inside the phase-locked region.
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the bifurcation curve corresponding to a tangency of the stable and the unstable

manifolds of the saddle-type limit cycle T~ on the torus. This problem can be solved

directly by calculating the unstable and the stable separatrices of the corresponding

saddle points in the Poincare section, as it was done, for example, in Ref.13.

However, this method is rather time consuming and we therefore devise a different

method. Our method consist of adding an additive source of white noise to Eq.(3);

namely,

-= -af(y-x)+ Ut)
dr l

- = -z-f(y-x) + Ut) (7)
dr 2

dz
- = Pv + Ut)
dr 3

where <£.(r)>=0, <£.(r)£.(r+T)>=D5(r-T).

Let us analyze the Poincare maps and the power spectra of the stable limit

cycles r in the phase-locked region under a small noise perturbation of intensity

D=0.01. This noise excitation causes the unstable manifolds to become visible ' .

Moreover, as a criterion for the existence of a homoclinic trajectory we can

calculate the condition which gives rise to a positive Lyapunov exponent of a

solution of the perturbed system (7)22. So, starting from the inside of the phase-

locked region and identifying the transition of the maximal Lyapunov exponent from a

negative to a positive value, it is possible to construct the curve /
h

22,23

i

Figure 6 shows the computed results for increasing values of the parameter a

inside the phase-locked region but in the vicinity of /. Using the calculated

11



maximal Lyapunov exponent, the curve / was obtained and plotted in the diagram of

Fig.2. Evidently, results of such computations depend, to some extent, on the noise

intensity £>. However, the results derived from this calculation can be used for a

qualitative interpretation of the dynamics.

Hence, the torus 7^(01$) does not exist in the region bounded by the curves /,

and /. It was destroyed because of the emergence of a stable homoclinic structure,

which is not a part of the attractor. The stable limit cycle T+ is the only attractor

here. Its Poincare section and power spectrum are shown in Fig.4. However, if we

leave this region in the direction B (see diagram of Fig.2), then the limit cycle T

merges with the limit cycle T' and disappears upon crossing the curve / thereby

giving birth to chaos abruptly in the region labelled Chaos. Fig.7 illustrates the

phenomenon of the abrupt appearance of chaos in this region. The result of our

computations illustrating the exit from the phase-locked region in the neighborhood

of corresponding points from Fig.6 are presented here. Hence, the abrupt transition

to chaos, corresponding to the scenario B* of the Afraimovich-Shilnikov theorem on

torus breakdown, also takes place in the system (3).

C. Torus breakdown due to the loss of smoothness: soft transition to chaos. In the

above scenarios A and B, the torus is destroyed before chaos is born. In case A, the

torus is destroyed on the curve / and the transition to chaos is connected with the

period doubling bifurcations of a stable limit cycle, which no longer lie on the

torus. In case B, the torus is destroyed on the curve I. The transition to chaos in

this case occurs by crossing the curve /, when the stable limit cycle r+ disappears,

and the homoclinic structure forms a quasi-attractor. In case C we have a different

situation. A direct transition 7^(a,p) => Chaos takes place here! The loss of

smoothness of the torus 7^(a,p) is a necessary condition for this direct transition.

12



As it is seen from the diagram in Fig.2, the bifurcation curve / starts near
h

a point as5.2, psO.38. For a<5 the torus exist. The torus ^(ocP) loses its

smoothness on its approach to the curve / inside of the 1:6 phase-locked region. The

exit from the 1:6 phase-locked region through the curve / leads to a soft transition

to chaos here. Figure 8 illustrates this mechanism. The exit from the 1:6 phase-

locked region near the homoclinic curve /, but below it, results in a "soft" birth
h

of Chaos2. Although the maximal Lyapunov exponent L>0 in this case, it is less than

the Lyapunov exponent in case B. The Poincare map of the attractor shown in Fig.8 is

displayed by an almost smooth invariant closed curve. The mechanism of destruction is

the loss of smoothness here.

As a final remark, although the transition from the phase-locked torus to an

ergodic one (the route C in the diagram of Fig.l) exists in the 1:6 phase-locked

region in Fig.2, it is not easy to pinpoint the exact parameters (a,p) for this

situation in practice. The reason is as follows. First, inside the 1:6 phase-locked

region the multipliers of the limit cycle T are complex-conjugate numbers

practically everywhere along the boundary of the tongue near the curve /. The

rotation of the invariant manifold of T" in the vicinity of T+ caused by the complex-

conjugate multipliers led to the loss of smoothness of the torus. Second, in view of

the location of the curve /, the critical curve I2 representing the boundary

between the ergodic torus and chaos is very near to the curve /, but is located

outside of the phase-locked region. Therefore, the probability of a transition from

the phase-locked region to chaos, or from the same regime into another phase-locked

region is very high (see the region near I2 in Fig.2).

6. Concluding remarks

13



The main result of this paper is as follows. All three mechanisms responsible

for the breakdown of the two-dimensional torus are realized in the autonomous three-

dimensional system (3) with piecewise-linear characteristics fl£). The first

mechanism is the destruction of the torus due to the loss of stability of the phase-

locked limit cycle T via period doubling on curve / (Fig.2). The second mechanism

is the destruction of the torus ^(a.p) caused by the effect of the homoclinic

tangency of the stable and the unstable manifolds of the saddle-type limit cycle T"

on the torus (the curve / in Fig.2). The third mechanism is the destruction of the
h

torus due to the loss of the smoothness on the curve / below the point of

intersection between the curves / and / (see route C in Fig.2).
h 1

All three routes to chaos are realized due to torus breakdown: (1) transition

via a cascade of period-doubling bifurcations (route A), (2) abrupt transition to

chaos in the homoclinic region via saddle-node bifurcation of the limit cycle T
»

(route B) and (3) soft transition to chaos due to the loss of torus smoothness

(route C).

These results give evidence that, at least from the experimental point of

view, all conclusions of the Afraimovich-Shilnikov theorem on torus breakdown proved

for smooth dynamical systems are also applicable to the piecewise-linear system (3).

The non-smoothness of the function fl£) in (3) generates some pecularities in the

system dynamics, which were identified here. However, these pecularities do not have

any significant influence on the basic aspects of the bifurcation phenomena.
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Figure captions

Fig.l. The qualitative illustration of bifurcations of the two-dimensional phase-

locked torus breakdown. The region of the torus regime is bounded by curves /, /
1 h

and l2 (the shaded region). Routes related to transitions to chaos on the parameter

plane are labelled A, B* and C.

Fig.2. The experimental bifurcation diagram of the system (3) illustrating the

Afraimovich-Shilnikov theorem: (a) the complete diagram, (b) the fragment of the
»

diagram for a<6, P<0.6. The curve / is related to the period-doubling bifurcation of

the phase-locked double cycle, [K ,K ] is the segment of the curve / related to the

resonance 1:6 on the torus. All other notations are the same as in Fig.l.

Fig.3. The torus r^ji) in the system (3) near its birth bifurcation and the power

spectrum calculated for the variable x(t).

Fig.4. The Poincare section and the power spectrum of the phase-locked cycle T+ on

the torus i Qi) in the phase-locked 1:6 region.

Fig.5.Transition to ChaoSj due to period-doubling bifurcations under motion in the

direction A of the bifurcation diagram of the system (3) (Fig.2,a).

Fig.6. Poincare sections and corresponding power spectra of the phase-locked cycle T+

of the system (3) in the presence of noise. Visualization of homoclinic structures.

Fig.7. An illustration of the abrupt transition to Chaos in the system (3) (route B'

in Fig.2,a).

Fig.8. An illustration of the soft transition to Chaos due to the loss of the torus
2

i (|i) smoothness (route C in Fig.2,b).
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