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Abstract

A Markov-modulated Poisson process (MMPP) is a Poisson process whose rate is a

finite Markov chain. The Poisson process is a simple MMPP. An MMPP/M/1 queue is

a queue with MMPP arrivals, an infinite capacity, and a single exponential server.

We prove that the output of an MMPP/M/1 queue is not an MMPP process unless

the input is Poisson.

We derive this result by analyzing the structure of the nonlinear filter of the state

given the departure process of the queue.

The practical relevance of the result is that it rules out the existence ofsimple finite

descriptions of queueing networks with MMPP inputs.

Keywords : Queues, Output Processes, Nonlinear Filtering, Markov Modulated Poisson

Process.
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1 Introduction

MMPPs are flexible models of point processes. By suitably fitting parameters, we can

approximate many point processes by MMPPs. In addition to its flexibility, this class of

processes is closed under Bernoulli sampling and addition. Moreover, the invariant distri

bution of the MMPP/M/1 queue is easilyderived (see [3]). If the output of an MMPP/M/1

queue were an MMPP, then we could analyze MMPP/M/1 queues in tandem, trees of such

queues, and possibly more general topologies.

However, we show in this paper that the output of an MMPP/M/1 queue is not an

MMPP unless the input is Poisson (in which case, the output is also Poisson in steady-

state).

In fact, we prove a more general result. Define a Neuts process (referred to as an N

process) to be a process that counts specific transitions in a finite Markov chain. The class

of N processes is strictly larger than that of MMPP processes. We prove that the output of

an MMPP/M/1 queue is not an N process unless the input is Poisson. We could not prove,

although we suspect, that the output of an N/M/1 queue is not an N process unless the

input is Poisson.

Our Neuts processes are close relatives of the point processes studied by Marcel Neuts

(see e.g., [3]). These processes were also analyzed in [4].

Our negative result continues a series of such results on output processes (see [2]). We

use a method of analysis based on the nonlinear filtering equations of the state of the

queue given its output. Applications of nonlinear filtering theory in queueing theory were



elaborated in [1] and [4]. See also [5] for an introduction to these techniques.

The key idea of our proof is that if the output were an N process, then its stochastic

intensity could be expressed in terms of polynomials of bounded degree (by the Cayley-

Hamilton Theorem). We show that such a representation is not consistent with the actual

structure of the filter for and MMPP/M/1 queue unless it is an M/M/l queue.

2 Problem statement

2.1 General framework

Consider a continuous time Markov chain on a countable, but not finite, set X of states

with transition matrix Q.

Suppose that only the jumps occuring in a subset J of the whole possible transitions

are observed. Designate by tyt(k) the probability of being in state k at time t conditioned

by the observed jumps up to time t, and tyt the corresponding row-vector. Let Qj be the

transition matrix obtained by removing the observable transitions from matrix Q and QJ

the matrix such that QJ + Qj = Q. Note that ^t evolves in the hyperplane Hi such that

tM = 1.

The set of equations governing the evolution of *< is the following [5] :

—jr = ^tQj + At^t between observed jumps; (1)

\t = ¥fQJ.l; (2)

Vt+ = (At-)~l^t-QJ when a jumps occurs. (3)



This system of equations is equivalent to the following one, where v± stands for the

unnormalized probability vector :

dvt
—- = utQj between observed jumps;
at

ut+ = vt-QJ when a jumps occurs;

Designate by 0 < Ti < Ti < ... Tn < t the times of the observed jumps up to time t. Then

the general solution of these sets of equations is the following :

ut = v0eQJTiQJeQ^T>-T*K..eQ'(Tn-T"-^QJec>->(t-TJ-,

where the exponential is formally defined by

=0( = E
k=o

00 (Q^_

this last limit being defined with respect to the chosen topology on X, and assuming that

Q is a continuous operator (true for instance if Q entries are uniformly bounded).

Recall that a point process is characterized by its stochastic intensity. That is, the finite

dimensional distributions of the point process are completely specified by the stochastic

intensity of the process. For the process counting the jumps in J of the Markov chain, the

stochastic intensity is equal to

Xt := %QJ.l. (4)

We define a Neuts process (designated by N) as a process that counts transitions of a
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finite Markov chain. It is possible for a process counting transitions of an infinite Markov

chain to be statistically equivalent to a Neuts process. For instance, the output of a sta

tionary M/M/l queue is a Poisson process, which is a Neuts process since it counts all the

transitions in a 2-state Markov chain.

The point process that counts the transitions in J of the Markov chain with rate matrix

Q is a Neuts process if and only if there exists a finite-state Markov chain with rate Q', and

corresponding matrices Qji,Qj' such that

Vt€R+,VtQJ.l = y'tQJ'.l, (5)

i.e.,

VteR+,\t = AJ.

In (5),1stands for the vectors ofones ofthe proper dimension on both sides ofthe equation.

The existence of such a finite-state Markov chain would allow us to have a finite-dimensional

filter at hand for the computation ofthe expected output rate At, the computation ofwhich

a priori requires the calculation of the whole infinite conditional probability vector \Pf

2.2 Preliminary analysis

Necessary algebraic conditions for a Nprocess may befirst derived from the setofequations

(l)-(3) governing the evolution of#t- We prove the following two results in the Appendix:

Lemma 1 A necessary condition for 5 to hold is:

\fx > 0,Vy > 0, *t(Qj)x(QJ)y.l = %{Qj')x(QJ')y.l\ (6)

*t(QJ)y(Qj)x.i =%(QJ')y{Qj')x.i. (7)



Theorem 1 If (5) holds, then there exist two finite positive integers N\, ArM, two families of

complex numbers A;,i = 1,..., N\ and fyj = 1,..., Np with respective multiplicity orders

m(i) (m(j)) and two families of functions of time tipjq(t) andt'ipjq(t) such that

Nx m(t)-l N„ m(j)-l

uqj)vqu = E E E E w*)Af(pVf>,
t=l p=0 j=l g=0

Nx m(t)-l Mr "»(i)-l

*.Q5(0J)".i = EEEE <;„-,«Af(,"^('),
t'=l p=0 i=l g=0

luAere tfte exponent (p) ((q))stands for the p-th (q-th) derivative with respect to x (y).

It is difficult to deal with these matrix products for general partially observed Markov

chains (Qj, QJ). We now turn to the case of MMPP/M/1 queues.

3 The case of the MMPP/M/1 queue

We suppose now that our Markov chain represents an MMPP/M/1 queue. Following [3]

and [5], we consider an augmented Markov chain (ar,j/), where x stands for the number of

customers in the queue at time t and y € {1,..., Y} is the current state of the Markov chain

modulating the arrival rate. Thus (x,y) is a Markov chain with a countable number of

states. The augmented rate matrix of this Markov chain is the following:



Q =

where

An =

A2 =

Bo Aq 0 0

A2 At Ao 0 ... 0

0 A2 Ai A0 0 ...

0 0 '-. *-. ••. '-.

0
* /

(1) 0 .. . ... 0

0 A(2) .. . 0 0

0 0 *• . 0 0

0 0

0

fi 0

0 fi

0 0

0 0

0 ...

.. X(N) )
\

. ... 0

. 0 0

. 0 0

. "-. 0

. ... fi J
Bo = -Ao-rS;

Ai = -Aq -A2 + S.

We assume that the A(i) are strictly positive. In the above expressions, S is the transition

matrix of the input modulating Markov chain, which is assumed to be irreducible. We

assume that Q defines an irreducible and regular Markov chain. Necessary conditions for

the irreducibility property are that B0 and A\ are non singular [3].
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3.1 Stationary distribution

From the remark above, we know that this Markov chain has at most one invariant dis

tribution tJ/n, i.e, a probability vector satisfying ^oQ = 0. Following [3], we define the

row-vector ttx = [7r(a;, 1),..., 7r(&, Y)]. We look for a stationary distribution $ o such that:

7TX = KoRx t (8)

where R is a Y x Y non-negative matrix, i.e., for \Pn of the form ^o = [no, flo-ft,..., tto-R*, ...].

The balance equations then become

kq(-Aq + S) + t:qRA2 = 0; (9)

iroRkAo + xoRk+1(-Ao-A2 + S) + Tr0Rk+2A2 = 0 V& > 0. (10)

The second equation can be replaced by

A0 + R(-A0 - A2 + S)+ R2A2 = 0. (11)

We furthermore know from [3] that if such a solution exists then, since 5 is irreducible, all

the eigenvalues of R will lie stricly inside the unit circle (the spectral radius of R is such

that sp(R) < 1).



3.2 The main result

We investigate the departures from the MMPP/M/1 queue. The matrix QJ then reads

/

J _
QJ =

0 0 ... 0
\

A2 0 ... 0 0

0 A2 0 ... 0

0 0 '•• "•. *•
* /

Note that, since V0Q = 0 and Q = QJ + Qj, V0QJ = -V0Qj.

We now state the main theorem of the paper.

Theorem 2 The departure process of an MMPP/M/1/ queue is not an N process unless

the queue is a stationary M/M/l queue.

Proof:

The proof is based on the explicit computation of the terms Vo(QJ)vQj.l. A contra

diction is shown between their actual expression and the representation theorem stated

above.

Let us introduce the two following lemmas. The notation (M.v)i for a matrix M and a

vector v stands for the Y-dimensional subvector of vector M.v corresponding to x = i and

ly stands for the Y-dimensional vector of ones.

Lemma 2

v* > o (oj.i)o = (-Ao + stay - E(-A0*-g(-4> + sy.iY\ (12)

Vi > o(05.i)t- = (-fi)xiY- (13)

9



The proof of this lemma is given in the appendix.

Lemma 3

Vy > 0, Vt > 0, (*o(Q J)y)i = *oRi+V- (14)

The proofof this second lemma is straightforward from the form of QJ.

These twolemmas leadto the following expression for the terms a(y, x) = Wo(QJ)yQj.l:

(X \ oo

(_Ao + sf.iN - Y,(-p)x-q{-Ao + sy.iY +E-^W-^iy.
g=l / t=l

(15)

We know from the representation theorem that

Nx m(i)-l N» m(i)-l

«(!/>*)=E E E E wo)Af"V(,)- (i6)
t=l p=0 j=l g=0

Dividing equation (15) by the product ny(-fi)x and combining the result with equation

(16) we obtain:

J^i =̂ ^(z^r.ly_g(z^),.lyj+g^ny
Nx m(i)-l JVM m(i)-l . (p) , .

= E E E E wox^r (%r '•
t'=l p=0 j=l q=0 '" "

Note that, for x > 2 ,

("A° +,gf.ly - ^(-Ao +5)Uy =-E("^ +5)9-ly-

From then on we consider the difference "fctifi - Myj-3a

a(y,z+l) _ <*(y,s) _ ^.-Aq + 5
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We then obtain the following representation

Nx m(t)-l NM m(j)-la , o N* ro(«)-l JVM m(j)-l / x. (p) x. (p)\ ... /-x

,0*(z42±£)..ly =£ SEE W»)(V "<4>" (^)s
~'i i=l p=0 j=l ,=o \~lt f / P

(17)

We then sum up all these last equations over y. Since sp(R) < 1, we iind

Nx m(i)-l /N„ m{j)-l oo ... ()\ / x (p) x (p)>
NE E E E wo)Eer )(er+1 -e)a

t'=l p=0 \j=l g=:0 y=0

E E *p(o) (^-)*+1 -(-r ,
t=l p=0 \ ^ ^ /

iV„ m(j)-l oo

where Stp(0) =£ £ ^9(0)E(^)y
,7=1 g=0 y=0 ^

We now need the following lemma which is proved in the appendix:

Lemma 4

7T0(7 - R)-^ = 0.

Using this lemma, and the fact that S admits at most one stationary distribution *>, we

conclude that

iro(I-R)-1 = u,

where the proportionality constant is 1 because of the normalization on 7To.

Then, we get from the computation above that, for all x > 0 :

k^)m, =EE"1^(o)((^)-(p,-(^)^).
** t=l p=0 \ "^ ~^ /
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Since u.S = 0 and S.ly = 0 (S being stochastic):

«=*2±1y.iy =«%r.iY =e*A. (is)
» ^ i=i ^

This yields :

y \(i\ Nxm(i)-1 / . (p) . /p)\
v,>o,s^f =E E ^(o)((Ar+1U-(V').

t=l J* {=1 p=0 V "^ ~P J

For this to be true for all x > 0, since V{ > 0 for all i if 5 is irreducible, it must be that:

Nx > Y,

K = -A(«)jW<Y,

i.e., that the Y first A; are the opposite of the diagonal elements of matrix Aq.

But it is easy to see that these Y first A; must be eigenvalues of matrix -Aq -f- S because

of the equality (18).

Since the maximum number of distinct eigenvalues is Y (because Y precisely is the

dimensionality of this matrix), the -A(i) must be characteristic roots of M = -A0 + 5".

Comparing the traces of -AQ + S and - A0, we get that the trace of S has to be 0. This

gives us a contradiction since S is stochastic.

This concludes the proof. D

This proves that the output of an MMPP/M/1 queue is not an N process unless the

input is Poisson.
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4 Conclusion

This paper presents a negative result regarding the existence of finite-dimensional filters for

MMPP/M/1 queues. We conjecture that the result extends to N/PH/1 queues.
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5 Appendix

Proof of Lemma 1 :

The proof of this lemma is three-fold :

The first step is to show that:

v« >ov* >o ^'J^-1 - 'WPP*-*

The second step is to prove that:

V* > 0,Vy > 0,%Q*j(QJ)y.l = %Q*j,{QJ')y.l.

The third step is to combine the previous two to provethe lemma.

For the first step, we consider the derivatives of Xt = \P<.QJ.l, given the equations

(l)-(3) governing W* :

j2x

-£T = %Q2jQJ.l +Z\tVtQjQJ.l +2\h

It is easy to show by induction that ^ = VtQjQJA+ additional terms depending on

^tQjQJ-l, a= 0,..., x - 1. Consequently, equation (5) leads to

Vz > 0,VtQxjQJ.l = %Qxj,QJ'.\.

Since for all vector v,v.Q.l = 0, it follows that v.Q j.l = -v.QJ.l. Furthermore $t.l =

1 = *}.l. Therefore,

V*>0,¥tQ5.1 = ¥{Q5,.l.
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Considering the normalized probabilities vector after an undetermined number y of jumps,

we get, in the same vein:

This concludes the first step of the proof.

For the second step, we note that sincethe expected output rate must be the same after

an arbitrary number of jumps, it must be that

'tPtW-7)*-1.! t^W-7')*-1.!'

We define R% = ^^Sjy-'i1.! i aad R*t tne equivalent for the finite-state Markov chain. By

multiplying the previous equalities we obtain

t=0 t=0

so that, for all y (using *t.l = \PJ.1 = 1),

Vj/>0,^(gJ)M = lrJ(gJ>.l.

Since this equality istrue for all t, all the derivatives ofboth sides have tobeequal. However,

and from (l)-(3) it is easy to show by induction that <f**^g-,?>-1 = ^tQxj{QJ)y.\ plus

additional terms depending on ^tQqj(QJ)yA, q = 0,...,x - 1.

Therefore, the following equalities must hold:

V* > 0,Vy > 0,«rtQ5(QJ)U = %QxAQJ')y.\.
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This concludes the second step of the proof.

For the third step, we combine the equalities derived above:

Vx>0,Vy>0,%Q*j(QJ)y.l = 9'tQUQJ'y.l;

Consider the denominators ofthe second serie ofequalities. They should be equal by taking

x = 0 in the first serie of equalities. Consequently,

Vz > 0,Vy > 0,%(QJ)y(Qj)x.l = V't(QJ')y(Qj,)x.l,

and this ends the proof of the lemma. D

Proof of Theorem 1 :

We shall prove only the first set of equalities, the second being similar. Since QJt and

QJ are finite dimensional, of dimensionality No < oo, we may use the Cayley-Hamilton

theorem twice to get two finite families of coefficients afy f,..., aN°f and a° ,,..., a£°,and

such that:

Then, from the last lemma:

N0

x=0

No

y=0

No

EflQ,,*'Q5WJ)y.l = 0;
x=0

No

y=0
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Generalizing , Vp > 0, Vg > 0 :

No

T/aXQJ,VtQ?P(QJ)y+q.l = 0;
ar=0

No

YlayQJI%Qx+^QJ)y^.l = 0.
y=0

Designate by At- the roots of Qj, characteristic polynomial, their number by Nx and their

multiplicity order by m(i). Similarly, designate by \l j the roots of QJ' characteristic poly

nomial, their number by N^ and their multiplicity order by m(j). Then a general solution

of the above equations is

Nx m(i)-l

*tQxj(QJ)yA = E E «P«Afw;
t=l p=0

N„ m(j)-l

%Q%QJ)yA = E E *n(*Wi9).
j=l 9=0

For these equalites to be compatible, we must have

N„ m(j)-l

**(v) = E E *w(*Ww;
i=i 7=0

NA m(t)-l

*•(*) = E E <iw(«)AfW.
t=l p=0

From these relations we get

- Nx m(.)-l N^ m(i)-l

*t05«JM =E E E E ww^'.
t=l p=0 jf=l g=0

Proof of Lemma 3 :

Define e* = Qxj.l. After some elementary algebra, we get that (e*)* = [eg, ef, ef,..., ef]

with the following recursive equations:

ef = (-/xf.ly;
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ex = (-Ao + SJeJP-Moef-1.

It is easy to solve this triangular system for ej, and this yields :

eg =(-i4o +5)*.l+f^(-i4o +5)«-1il.0eJ-« =(-i4o+5r.ly-E(-/i)*-«(-i4o+5)«.ly
9=1 9=1

because ,9.1y = 0. D

Proof of Lemma 4 :

Consider equation (11):

Aq + R(-A0 - A2 + S) + R2A2 = 0.

It can be written

(-R(I - R)A2 + (J - R)AQ + RS = 0.

Equivalently:

(/ - R^Ril - R)A2 = A0 + (/ - fl)"1^.

Since, from [3], sp(R) < 1 it follows that

CO CO

£ RkR(I - R)A2 = A0 + E •Rfc+l5'
Ar=0 *=0

This yields the following intermediate result:

CO

Ao = fiR-^2 Rk+1S. (19)
Jk=0

Replacing in equation (9) we find

CO

fizoR = kq((jlR - J2 Rk+1S) - n0S.
Jfc=o
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Consequently,

which concludes the proof.

iroy£tRkS =0,
k=o
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