
Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DESIGN AND EVALUATION OF DIRECTORY-BASED

CACHE COHERENCE SYSTEMS

by

Brian Walter O'Krafka

Memorandum No. UCB/ERL M92/4

6 January 1992

DESIGN AND EVALUATION OF DIRECTORY-BASED

CACHE COHERENCE SYSTEMS

by

Brian Walter O'Krafka

Memorandum No. UCB/ERL M92/4

6 January 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

DESIGN AND EVALUATION OF DIRECTORY-BASED

CACHE COHERENCE SYSTEMS

by

Brian Walter O'Krafka

Memorandum No. UCB/ERL M92/4

6 January 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Design and Evaluation of Directory-Based Cache Coherence Systems
Brian Walter O'Krafka

Department of Electrical Engineering and Computer Sciences,

University of California, Berkeley.

Abstract

A cache coherence scheme is acritical part ofashared memory multiprocessor because itrelieves
the programmer of the burden of moving shared data among local and remote memories. In this
dissertation several new techniques are described for implementing and evaluating the performance
ofcache-coherent multiprocessors. The first contribution ofthis work is ageneralization ofshared
bus stack simulation techniques that supports directory-based cache coherence schemes. This is
desirable because stack simulation permits the evaluation ofmultiple cache sizes in asingle sim
ulation run. Results are presented for three benchmark programs, three directory methods, and
multiple cache, block and multiprocessor sizes. The results quantify the tradeoffs between network
traffic and miss ratio that are possible by varying the number ofupdates in acompetitive direc
tory scheme. These results extend previous studies ofshared bus architectures by accounting for
point-to-point network traffic and larger numbers of processors. Asecond contribution is an ap
proximation technique for analyzing interconnection networks as open, acyclic networks of finite
queues. The technique combines the algorithms used in the Bell Laboratories Queueing Network
Analyzer with aknown algorithm for approximating the effect of finite buffers. The combined al

gorithm permits analysis ofqueueing networks with hundreds ofqueues and is applicable to abroad
class ofinterconnection network, including hypercubes, meshes, tori and Delta networks. Using
traffic estimates from cache simulations, this analysis technique isapplied to anumberofalternative
networks. Good cache and network performance requires good synchronization support. The latter
part of this dissertation describes several efficient implementations of fetch&op synchronization
primitives. The implementations are suitable for hardware or software, and can be easily modified
to supportmultiprefix operations.

Professor A. Richard"Newton

Dissertation Committee Chairman

Acknowledgements

Writing this dissertation has been an intensely arduous yet intensely rewarding experi
ence. Many of the rewards have been due to interactions with some extremely talented people. My
advisor, Professor Richard Newton, gave me the resources and motivation to study multiprocessor

memorysystems. Richard's advisorship has taught me alotabout independent research and creative

thought, for which I amthankful. The othermembers ofmy dissertation committee, Professor Ab-

hiram Ranade and Professor Ronald Wolff, provided valuable comments that improved this work.

Their participation is gratefully acknowledged. I also received technical support from several stu

dents in the Computer Science Division. Mike Carlton was a source of good ideas about cache

coherence and simulation. M. T. Raghunath gave me an education in multiprocessor networks.

Bob Boothe provided helpwith benchmark validation. The helpof all three is greatly appreciated.

Others provided moral support and friendship. Mark Beardslee, Brian Lee and Gregg

Whitcombendured my griping during manylunchhours and coffeebreaks. Wendell Baker, Abhijit

Ghosh and Chuck Kring relieved the monotony of focussed research by participating in numerous

discussions on cold fusion, Republican politics and other diverse topics. I am deeply grateful for

the opportunity to work with these fellow students.

This dissertation would not have been completed without the support of my family. The

energy and enthusiasm ofmy wife, Audrey, were frequent sources of encouragement. My daughters

Anne and Catherine added an extra dimension to my life that has relieved much of the tension of

graduate study. Theirarrival intoour family willbe themostmemorable part of my experiences at

Berkeley. Anne, Catherine, Audrey and I all received a great deal of support from our parents in

Canada, for which we are grateful.

This work wassupportedinpart by theNatural Sciences and Engineering Research Coun

cilof Canada, Digital EquipmentCorporation, and theDefense Advanced Research Projects Agency

(under contract N00039-C-87-0182). Their support is gratefully acknowledged.

Ill

Contents

Tableof Contents 3

List of Figures 4

List of Tables 5

1 Introduction 1
1.1 TheGoal: Cost-Effective Acceleration ofEngineering Applications 1
1.2 Multiprocessor Systems 2

1.2.1 ProgrammingParadigms 3
1.2.2 Architectures 5

1.3 MultiprocessorCache Coherence 7
1.3.1 Formal Notions of Cache Coherence 7
1.3.2 Cache CoherenceStrategies 10
1.3.3 Performance Evaluation of Cache Coherence Strategies 12

1.4 Organization of the Dissertation 16
1.5 Contributions 17

2 Directory-based Cache Coherence Strategies 18
2.1 Overview lg
2.2 The Censier and Feautrier Directory Scheme 18
2.3 EfficientDirectory Implementations 20

2.3.1 Schemes thatRestrict ListLength 21
2.3.2 Schemes thatReduce ListGranularity 21
2.3.3 Schemes that Store Lists Per Cache Block 22

2.4 Conclusions 24

3 Workload Characterization 26
3.1 Overview 26
3.2 Previous Work 26
3.3 Stack Simulation of Directory Methods 32

3.3.1 Introduction 32
3.3.2 Multiprocessor Stack Simulation 34
3.3.3 Protocols 45

IV

3.3.4 StackSimulation of Directory-based Coherence Protocols 45
3.4 Evaluating Competitive Directory Methods 49
3.5 SimulationMethodology 50

3.5.1 Metrics 51
3.5.2 Simulated Architecture 51
3.5.3 Benchmarks 54

3.6 Numerical Results 56
3.6.1 Misses and Traffic 56
3.6.2 Performance of the Competitive Protocol 62
3.6.3 Coherence Traffic Versus Multiprocessor Size 69
3.6.4 Synchronization Behavior 69

3.7 Conclusions 73

Network Performance Analysis 74
4.1 Overview 74

4.2 Previous Work 74

4.2.1 Network Design 75
4.2.2 Performance Analysis ViaSimulation andStochastic Modelling 81
4.2.3 Performance AnalysisViaFormal Properties 85
4.2.4 Focus of this Research 86

4.3 An AnalyticModellingTechnique 86
4.3.1 Overview 86

4.3.2 The Queueing Network Analyzer 87
4.3.3 Altiok and Perros* Finite Buffer Approximation 94
4.3.4 Merging the Algorithms 98
4.3.5 Two Moment Approximations of Blocking Distributions 100
4.3.6 Iterating QNA and the Finite BufferAlgorithm 102
4.3.7 Virtual Cut-through Flow Control 103
4.3.8 Virtual Channels 105

4.3.9 Convergence and Computational Complexity 107
4.4 Numerical Results 108

4.4.1 Methodology 108
4.4.2 Results 110

4.5 Processor Utilizationof CachingSchemes 119
4.5.1 Methodology 119
4.5.2 Numerical Results 121

4.6 Conclusion 123

Synchronization 125
5.1 Overview 125

5.2 Previous Work 125

5.2.1 Overview . . . , 125

5.2.2 Read, Write and Fetch&ops 129
5.2.3 Lock Implementations 129
5.2.4 Barrier Implementations 131

5.2.5 Implementation of Multiprefix Operations 132
5.2.6 Combining 135
5.2.7 Summary 137

5.3 Efficient Implementation of Dynamic Combining 137
5.3.1 EfficientDynamic Combining in Hardware 138
5.3.2 EfficientDynamic Combining in Software 142
5.3.3 Modifications to Support StaticCombining 146

5.4 Conclusions 147

6 Conclusions and Future Work 149
6.1 Conclusions 149
6.2 Future Work 151

Bibliography 152

A Geometric Queue Models 165
A.1 GEO+l*/GEO+l/l/N Queue Model 165
A.2 GE02+l*/GEO+l/l/N Queue Model 169
A.3 Distributionof the Minimum of TwoGE02+1 RandomVariables 173

B Queueing Models for Specific Interconnection Networks 175
B.l Notes for All Models 175
B.2 Unidirectional Three Dimensional Torus 175
B.3 Bidirectional Three Dimensional Torus 177
B.4 Three Dimensional Mesh 177
B.5 Hypercube 177
B.6 Radix-2 Delta 177
B.7 Radix-4 Delta 183
B.8 Radix-8 Delta 183

VI

List of Figures

1.1 Components of a Multiprocessor System 2
1.2 Basic Multiprocessor Organization: Distributed Main Memory 5
1.3 Basic MultiprocessorOrganization: "Dance-Hall" Arrangement 6
1.4 The Restrictiveness of Strong Ordering 8

2.1 Tags for Basic Censier and Feautrier Protocol 19
2.2 Small Tag Fields 22
2.3 Decentralized Linked List Directory 23
2.4 Centralized Linked List Directory 24
2.5 Memory-Mapped Linked List Scheme 25

3.1 The Ping/Cling Locality Model 30
3.2 The Write-run Model 31
3.3 Uniprocessor Stack Simulation 33
3.4 MOESI States 35

3.5 Stack Algorithm for MOESI Protocols 42
3.6 Multiprocessor Stack Simulation 43

3.7 Write Routine for Invalidation Protocol 44

3.8 Write Routine for Update Protocol 44
3.9 Write Routine for Competitive Protocol 46
3.10 CountingInvalidations When a Block is Dirty 48
3.11 The Update-run Model 49
3.12 Cumulative Distribution ofUpdate-run Length 51
3.13 Fraction ofUpdates thatOccurat fc'th Position in anUpdate-ran 52
3.14 Miss Ratios for Invalidation Protocol 57
3.15 Traffic for Invalidation Protocol 58

3.16 Miss Ratios for Update Protocol 59
3.17 Traffic for Update Protocol 59
3.18 Miss Ratios for Competitive Protocol 60
3.19 Traffic for Competitive Protocol 61
3.20 Comparison of Miss Ratios for All Protocols 62
3.21 Comparison ofTraffic (Volume) for All Protocols 63
3.22 Miss Ratios Versus Self-InvalidationThreshold (VERF) 63

Vll

3.23 Traffic Versus Self-Invalidation Threshold (VERF) 64
3.24 Miss Ratios Versus Self-Invalidation Threshold (LOCUS) 65
3.25 Traffic Versus Self-InvalidationThreshold (LOCUS) 66
3.26 Miss Ratios Versus Self-Invalidation Threshold (UGRAY) 67
3.27 Traffic Versus Self-InvalidationThreshold (UGRAY) 68
3.28 Copies PerInval Versus Multiprocessor Size 70
3.29 Copies PerUpdate VersusMultiprocessor Size 71
3.30 Copies PerUpdate Versus Multiprocessor Size 72

4.1 Structure of a Network Switch 75
4.2 Unidirectional k-ary n-cube Network 76
4.3 Bidirectional k-ary n-cube Network 77
4.4 k-ary n-dimensional Mesh 77
4.5 Recursive Structure of DeltaNetworks 78
4.6 Packet-switching Terminology 79
4.7 A Network Switch with Virtual Channels 80
4.8 Virtual Channels and Sub-channels 82
4.9 Queueing Model of a DeltaNetwork 88
4.10 Superposition, Departures and Splitting of Point Processes 89
4.11 Summary of QNA Algorithm 94
4.12 Coxian Representation of Adjusted Service Distribution 97
4.13 CoxianRepresentation of Blocking Delay 98
4.14 Summary of Finite Buffer Algorithm 99
4.15 Combining QNA and the Finite Buffer Algorithm 104
4.16 Arrivals in BufferQueue Analysis Bypass theUpstream Channel Queue 105
4.17 Blocking Delay Distributionwith Virtual Channels 106
4.18 Multiple Virtual Channels Approximated as One 108
4.19 Simplified Model of Direct k-ary n-cube Under Uniform Load 110
4.20 Simplified Model of a Delta Network Under Uniform Load Ill
4.21 3-DTorus Network Performance (5 Flits/Packet) 112
4.22 3-DTorus Network Performance (10 Flits/Packet) 112
4.23 3-D Bidirectional TorusNetwork Performance (5 Flits/Packet) 113
4.24 3-D BidireaionalTorus Network Performance (10 Flits/Packet) 113
4.25 3-D Mesh Network Performance (5 Flits/Packet) 114
4.26 3-D Mesh Network Performance (10 Flits/Packet) 114
4.27 Hypercube Network Performance (5 Flits/Packet) 115
4.28 Hypercube Network Performance (10 Flits/Packet) 115
4.29 Radix-2 Delta Network Performance (5 Flits/Packet) 116
4.30 Radix-2 DeltaNetwork Performance (10 Flits/Packet) 116
4.31 Radix-4 DeltaNetwork Performance (5 Flits/Packet) 117
4.32 Radix-4 DeltaNetwork Performance (10 Flits/Packet) 117
4.33 Radix-8 DeltaNetwork Performance (5 Flits/Packet) 118
4.34 Radix-8 DeltaNetwork Performance (10 Flits/Packet) 118
4.35 Algorithm for Estimating Processor Utilization with Non-Zero Network Delay . . 120

Vlll

5.1 Example ofaMultiprefix Operation 128
5.2 Pseudo-code for Combining Barrier Algorithm 133
5.3 Combining Switch Architecture 139
5.4 Combining Table Architecture 140
5.5 Software Combining Algorithm: fetch&op Routine for Leaves 144
5.6 Software Combining Algorithm: Interrapt Handler for Interior Nodes 145
5.7 Software Combining Algorithm: Interrapt Handler forRoot 146

B.l Queueing Model of a Unidirectional 3-D Torus Network 176
B.2 Queueing Model of a Bidirectional 3-D Toras Network 177
B.3 Queueing Model of a Hypercube Network 179
B.4 Queueing Model of Radix-2 Delta Network 182
B.5 Queueing Model of Radix-4 Delta Network 183
B.6 Queueing Model of Radix-8 Delta Network 184

IX

List of Tables

1.1 Analytic Models 14
1.2 Analytic Models (continued) 15

3.1 Trace-driven Multiprocessor Cache Studies 27
3.2 Trace-driven Multiprocessor Cache Studies (continued) 28
3.3 Common Multiprocessor Benchmarks 29
3.4 MOESI Cache Responses to Processor Requests 37
3.5 MOESI Cache Responses to Network Requests 38
3.6 A Simple MOESI Invalidation Protocol 39
3.7 A Simple MOESI Update Protocol (Write-thru) 39
3.8 Transaction Types 53
3.9 Transaction Formats 53

3.10 Benchmark Characteristics 55

3.11 Steady-State Statistics 56

4.1 Published Network Performance Studies 83

4.2 Published Network Performance Studies (continued) 84
4.3 Processor Utilizations for VERF, 4 Byte Path 122
4.4 Estimated Traffic Increases for Large Multiprocessors 123

B.l Routing Parameters for 3-D Torus 176
B.2 Routing Parameters for Bidirectional 3-D Torus 178
B.3 Routing Parameters for a Hypercube 180
B.4 Routing Parameters for a Hypercube (continued) 181

Chapter 1

Introduction

1.1 The Goal: Cost-Effective Acceleration of Engineering Applications

In this dissertation techniques are described for the design and evaluationof directory-

based cache coherence schemes for large, shared memory multiprocessors. "Large" here implies

a machine composed of several hundred uniprocessors, each with the power of a state-of-the-art

workstation. The main goal is to show that directory-based coherence strategies are feasible and

desirable for machines of this scale, and that their implementation complexity is modest

Although impressive gains continue to be made in uniprocessor performance, multipro

cessors remain an important research area for many reasons. One reason is that faster computers

enable new problems to be solved and more design optionsto be explored. Anotherreason is that

the computing requirements of many engineering problems continueto growat leastas fast as the

number of compute cycles thatbecome available. As anexample, advances in integrated circuit

densities demand computer aided design (CAD)toolsthatsupport design problems thatgrow atthe

same rate asuniprocessor MIPS ratings. Faster CAD programs also reduce thetime to getaproduct

to market, which is crucial for many products.

In thischapter, the state ofmultiprocessor design is reviewed, with a focus on open prob

lems in scalable cache coherence. It begins with a broad review of the main components of a

multiprocessor system: programming paradigms and architectures. The reviewshowswhy shared

memory isadesirable architectural abstraction for avariety of programming models. Unfortunately,

idealshared memorieswith unlimitedconcurrent access must be approximated using collectionsof

single-ported memories interconnected by a network. It is therefore attractive to provide a cache

memory at each processor to avoid costly data transfers across the network. If multiple cached

copies of shared-writeable data are permitted, some mechanism must ensure that the processors see

acoherent viewof memory: this isthe cache coherence problem. Anintroduction tomultiprocessor

cache coherence is provided in Section 1.3, withanemphasis onissues thatare notwellunderstood.

The specific problems addressed in thiswork are listed in the final section, along with a summary

of the contributions and an outline of the dissertation.

1.2 Multiprocessor Systems

A multiprocessor system is a layered set of abstract machines, with higher level abstrac

tions layered above lower level abstractions (Figure 1.1). The highest level abstractions are im-

Increasing
Abstraction

Example:

Standard Cell Placement

Programming Model 1 Monitors

Programming Model 2 Locks, Barriers

Software

Programming Model m test&set. Assembly Language

Machine Architecture 1 MIMD, Shared Memory, Dance-Hall

Machine Architecture 2 Pipelined Processors, Caches

Hardware

Machine Architecture n CMOS Gate Arrays

Layers of Abstract Machines

Figure 1.1: Components of a Multiprocessor System

plemented in software, and provide programming models with which a programmer can solve a

problem. The lower levels are hardware implementations of more primitive parallel machines; the

topmost architecture furnishes a platform on which higherlevelprogramming models are built A

typical set of layers would be a monitor-based programming language [AS83] implemented on a

cache-coherent "dance-hall" architecture (processors and memories on opposite sides of a multi

stage network) implemented in CMOS using pipelined network elements. Therole of a multipro

cessor architect is to devise machine architectures that are sufficientiy abstract to simplify imple

mentation of the software layers, and sufficiently simple topermit a fast, cost-effective implemen

tation. The state ofmultiprocessor design is reviewed inthis section by examining programming
paradigms and machine architectures in greater detail. The purpose of the review is to show that

cache coherent, shared memory architectures make good platforms for implementing awide variety
of programming models.

1.2.1 Programming Paradigms

Good programming paradigms simplify the task of writing parallel programs. The broad

variety of computational problems has resulted in a broad variety of programming paradigms,
including: functional and logic programming, data-parallel programming, parallel loops, shared

memory, and message passing [AS83, BST89, CG89, Hud89, Sha89].

Thefunctional and logic programming models belong to the larger class of declarative

programming models, in which computations are described solely via single assignment expres
sions [Hud89]. Functional languages are based on function application, while logic programs are

composed of relations. Prohibiting multiple assignments tovariables is equivalent to prohibiting

side effects, which makes declarative languages suitable for formal analysis. It also fosters a pro
gramming style that exposes more parallelism than imperative languages. In spite of these advan

tages the use of declarative languages has been minimal. This has been due to the lack of good

compilers and the fact that these languages make asignificant departure from traditional imperative

languages. Recent improvements incompilation techniques and attempts at standardizing a gen

eral purpose functional language (Haskell [HW88]) may result in greater interest in this class of

language in the future. Declarative programming models are the mostabstraa in thatallnotions of

a multiprocessor implementation-multiple processes running on distinct processors, an intercon

nection network, distributed memory-are completely avoided.

Inthedataparallel (orcollection-oriented [SB91]) model, parallelism isexpressed asthe

application of operations to large collections of data. Forexample, an addition operation could be

applied to a collection of pairs of numbers to add twovectors, or it couldbe applied in treefashion

to find the sum of a list of numbers. This computational model is surprisingly useful given its

simplicity, and iscommon inmany languages for massively parallel computers [SB91]. Collection-

oriented constructs are typically embedded inexisting languages such as C, FORTRAN, and Lisp.

They are also anatural componentof functional languages. Like the declarative model, data-parallel

programming models abstract the most cumbersome implementation issues. The implementation

of multiple processes ondistinct processors isusually abstracted inamore restrictive way, however,

by assuming a single flow of control (single instruction stream, multipledata stream (SIMD)).

Parallel loopsis a programming paradigm thatisoften usedin parallelizing scientific ap

plications (usually written inFORTRAN) [D+88, A+88b]. Inthismodel, loops with few dependen

cies among iterations are distributed among multiple processors for parallel execution. Typically,

most or all of the parallelization is performed automatically, so the notions of multiple processes,

interprocess communication, and distributed memory are abstracted.

The shared memory programming model provides the programmer with a set of pro

cesses that can issue reads and writes to a globally shared memory, such that any number of reads

and writes to distinctaddresses can be performed simultaneously [May90]. Variations in the way

in which simultaneousreads and writes to the sameaddress are resolvedcreate a family of shared

memory models. In the most restrictive model, exclusive read/exclusive write (EREW), simul

taneous accesses to the same address are not allowed. In the least restrictive model, concurrent

read/concurrent write (CRCW), the accesses are performed simultaneously, with the effect of the

writes beingthe sameas if they were serialized. Basic read and writeprimitives canbe augmented

with more sophisticated access instructions such asfetch&op [KRS86]. A fetch&op instruction

with target address addr and value v causes the contents of addr, say x, to be replaced with x

op v, and returns x. Simultaneous fetch&op instructions with the same targetaddress are satisfied

concurrently, with the results corresponding to some arbitrary serialization. Concurrent fetch&op

instructions canbe viewed asperforming adata parallel operation in whichacollection ofnumbers,

the v's, are operated on andallpartial results are collected. The shared memory model abstracts the

implementation of a physical multiprocessor memory. Unlikethe preceding programming models,

multiple interacting processes are anexplicit part of the shared memory paradigm.

The message passing programming model [Hoa78] is the least abstract model because

it makes explicitthe notionof a collection of distinct processes operating on distinct, distributed

memories and interacting through a network. Like the data-parallel and shared memory models,

message passing primitives areusually embedded in traditional imperative languages.

1.2.2 Architectures

At some level a programming model must be implementedon an abstract machine sup

porteddirecdy in hardware. Virtually all hardware architectures share the basic structureof Figure

1.2or Figure 1.3: collections of serialprocessing elements and memories interconnected by a net

work. The most basic programming model supported by this hardware is the message passing

model, in which processes running on different processing elements communicate by messages

through thenetwork. Thisbasic architecture canbeaugmented withadditional hardware tosupport

higher level programming abstractions. Shared memory can be approximated withhardware that

maps a global shared address space onto multiple physical memories. Dataparallel computation

can be supported by forcing all processing elements to execute a singleinstruction stream in lock-

step [Hil85]. Data flow computation can be supported by adding complex associative memories

[AN87, GKW85].

Processor jjg*-

Figure 1.2: BasicMultiprocessor Organization: Distributed Main Memory

Since a particular programming paradigm is best-suitedto a particular class of problem,

it is desirable to support as many paradigms as possibleon a single architecture. Very specialized

hardware, however, is often useful for only a single programming model. The most obvious exam

ple is the complex hardware provided in traditional data flowcomputers. Data parallel architectures

like the ConnectionMachine are an extremeexample in which the hardware supportsonly a single

instruction stream.

Specialized hardware is often not necessary for good performance. There is growing evi

dence that higher level programming models can be efficiently emulated on much simpler architec-

Processor

Physical
Memory

Figure 1.3: Basic Multiprocessor Organization: "Dance-Hall" Arrangement

tures. For example, reasonably efficient techniques have been published for compiling functional,

logic programming, data parallel, and parallel loopcomputations onto shared memory and, in some

cases, message passingarchitectures [Hud89, Sha89, SB91, H+91, D+88]. The Monsoon data-flow

architecture is an interesting attemptto support data-flow computation at a much lower level than

previous generation data-flow architectures (MIT Tagged Token Machine and Manchester Data-

Flow Machine). Instead of providing complex tokenmatching hardware, Monsoonefficientlysup

ports a multithreaded abstract machine in which conventional uniprocessors are augmented with

hardware to permitefficient context switches of very lightweight processes (or threads). Recent

work suggeststhat even this may not be necessary [C+91].

It therefore seems unnecessary to go far beyond a shared memory or message passing

architecture to support a broad varietyof programming models. There are good reasons, however,

to provide hardware support for shared memory. One is that the shared memory programming

model is much less cumbersome than message passing for many applications. This includes the

implementation of operating systems,debuggers, and higher level programming models. Another

reason is thatemulatingshared memory onamessagepassing architecture hasahighcostthatcannot

be avoidedwithout hardware support This is because multipleemulationinstructions must be used

for each shared access in the shared memory program, and many shared memory programs issue

frequent shared accesses [DR+87, EK88]. Furthermore, shared memory programs exhibiting good

speedups (or,equivalently, highprocessorutilization) have few free cyclesavailable foremulation.

There are many open research issues concerning thedesign of a shared memory for hun

dreds or thousands of processors. One of themost important is the provision of cache memories

at each processor. A cache at each processor permits many memory accesses to be satisfied lo

cally by buffering data asitis referenced. Unlike uniprocessor systems, however, a multiprocessor

with caches requires a mechanism to ensure that multiple cached copies of the same data remain

coherent. The design and evaluation of a particular class ofcoherence schemes isthe topic ofthis

dissertation. The following section reviews previous work incache coherence ingreater detail.

1.3 Multiprocessor Cache Coherence

There are numerous ways to ensure that multiple cached copies of data are consistent.

In fact, there are numerous ways in which the notion of "coherent" can be interpreted. The most

common interpretations are presented inthe following section. Techniques for enforcing these co

herence standards are reviewed inSection 1.3.2. The final part ofthis section summarizes previous

work inevaluating multiprocessor cache performance. The discussions inthese sections identify

problems in directory-based cache coherence that are addressed in this dissertation.

1.3.1 Formal Notions of Cache Coherence

A set of multiprocessor caches is often defined to be coherent if the value returned on a

LOAD instruction is always thevalue written bythe latest STORE instruction with thesame address

[CF78]. This definition isunsatisfactory for two reasons. First, it is ambiguous with respect to the

temporal occurrence of LOAD'S and STORE'S. When is a LOAD or a STORE determined to have

taken place: when initiated by a processor, processed by a cache controller, or propagated to all

cached copies? The second reason is that the definition is based on a notion of processors issuing

and completing shared references in lock-step. This isoverly restrictive because it requires allpro

cessors to observe the sameinterleaving of all references from all processors. This restrictiveness

severely reduces the amount of pipelining andreordering thatcan be applied to shared references,

witha subsequent loss in performance. Toillustrate this, consider a processor that issues STORE

A followed by STORE B (cpu 1 in Figure 1.4). Assume that STORE'S are considered complete

8

once theyhave been propagated to all copies. If the addressed memory locations reside indifferent

memory banks on the other side of a complex network, they may be propagated to copies outof

order if STOREA is delayed. If this occurs, it is possible for another processor toobserve STORE

A before the STORE B, whichviolates thedefinition. The moststraightforward implementation of

thisdefinition, then, requires each processor reference tobe completed atthe mainmemorybefore

a new reference can be issued.

Issues:

/^~7\ STORE A
[cpul) sjore B

-X-

Store A

master copy of A

bank 1

Main Memory

Observes:

/ \ CPU 1 STORE B
(cpu2) CPU 1 STORE A

t

Update B

Network

master copy of B

bank 2

Figure 1.4: The Restrictiveness of Strong Ordering

The above definition of coherence is closely related to Lamport's sequential consistency.

A multiprocessor is sequentially consistent if "the result of any execution is the same as if the

operations of all the processors were executed in some sequential order, andthe operations ofeach

individual processor appear in the order specified by its program [Lam79]." The simplest way to

implement sequential consistency is that described above, in which each processor issues LOAD'S

and STORE'S in program order and ensures that all copies are updated (or invalidated) for each

reference beforeissuing thenext [SD87]. Accesses inamultiprocessorthatsatisfytheserestrictions

are said to be strongly ordered. More complex implementations of sequential consistency have

been proposed [AH90, A+89], but it isunclear whether significant improvements in performance

are possible.

The restrictiveness of sequential consistency can be relaxed by using a weaker notion of

coherence that exploits some knowledge about how synchronization is performed inthe program

ming paradigms of interest. These weaker notions of coherency are, in decreasing restrictiveness:

1. processor consistency

2. weak consistency

3. release consistency

A multiprocessor isprocessor consistent if"the result of anyexecution is the same asif

the operations of each individual processor appear inthe sequential order specified by its program

[Goo89]." This relaxes the requirement ofstrong ordering that the same interleaving ofall processor

references is observed by all processors. It exploits the fact most synchronization algorithms de

signed using sequential consistency still perform correctiy under processor consistency. Programs

can beconstructed, however, that behave differemly under sequential and processor consistency.

A multiprocessoris weakly consistent if [D+86]:

1. accesses to global synchronizing variables are strongly ordered;

2. no access to asynchronizing variable is issued in a processor before all previous global data

accesses have been performed;

3. noaccess to global data is issued by aprocessor before aprevious access to asynchronizing

variable has been performed.

Synchronizing variables are variables that are used in synchronization operations, such as locks,

barriers, test-and-set, and fetch-and-add. Weak consistency exploits the fact that mostparallel pro

grams donotperform synchronization using LOAD and STOREaccesses to the shared memory, but

use special synchronization primitives corresponding to the operations just listed. Access to mutu

allyexclusivedata canonly be acquired by references to synchronization variables, so intervening

references can be pipelined as long as they are not initiated until the last synchronization access

completes, andas long asthey are completed beforethe next synchronization access is initiated.

10

Release consistency isan optimization ofweak consistency requiring a further classifica
tion of synchronization accesses into acquire accesses and release accesses. These aredescribed in
[GGH91] as follows:

An acquire synchronization access (e.g., a lock operation or a process spinning for
a flag to be set) is performed to gain access to a set of shared locations. A release
synchronization access (e.g., anunlock operation oraprocess setting a flag) grants this
permission.

With this differentiation, it is not necessary to impose Condition 2 of weak consistency on an ac
quire, or Condition 3 on a release.

The relative performance of these consistency models wasexamined in [GGH91] using

simulations of three parallel applications on a small number of processors (16). The studyshowed

that all three weak consistency models provide substantial benefits over a strongly ordered sys

tem. Weak consistency and release consistency performed similarly, and provided performance

only marginallybetter than processor consistency. These resultsare intuitivefor weak and release

consistency since synchronization references tend to be infrequent, so the time spent waiting for

outstandingaccesses to complete at synchronization pointsshouldbe minimal.

1.3.2 Cache Coherence Strategies

In the previous section several definitions of coherence were described. In this section

strategies for enforcing thesestandards are presented. The strategies fall into threeclasses:

1. software methods;

2. snoopingbus protocols;

3. directorymethods;

In software methods, a compiler manages thecache using special cache control instruc

tions. Thesimplest class of software methods requires a programmer toexplicitly identify shared-

writeable dataso thatit will notbe cached. Thepenalty forthis simplicity is a significant increase

in average memory access time and network traffic [ON90]. More sophisticated software meth

odsuse compile-time analysis to identify certain parallel programming constructs and insert cache

management instructions. Typical instructions include cache-flush, selective invalidation, cache-

bypass, and main memory update. Two types of programming construct are typically recognized:

critical sections [Smi85] and parallel loops [CV90].

11

In critical section schemes, the compiler ensures that all data modified within a critical

section is reflected in mainmemory when the critical section is left This is typically done with

cache invalidation or update instructions atevery point where a process leaves a critical section. If

invalidations are used, all modified cache blocks are written back to main memory.

Most work on software methods has focussed on parallel DO-loops, usually in thecon

text ofparallelizing FORTRAN compilers [CV90]. These schemesaresimilarto the critical section

technique described above, except that coherence instructions are placed atthe end of loops. The

best loop and critical section schemes use sophisticated compiler analysis to perform selective in

validation [CV88, CKM88].

Software schemes have the advantage of requiring minimal hardware support. This is

offset bythe disadvantages of known techniques. The most significant is that many engineering
applications are not easily coded inaFORTRAN-like programming model because they make ex

tensive use of pointer-based data structures; for these applications parallelized loops are not appli
cable. The critical section schemes are more suitable, butthey must be very conservative to deal

with arbitrary pointer use. Furthermore, some of the more sophisticated software methods require
substantial hardware support for selective invalidation [CV90]. Unfortunately, relatively little is

known about the relative performance of software and hardware coherence techniques. Some com

parisons have been reported in[OA89, MB90], but all of these focus onparallelized loops.

Snooping bus protocols exploit the broadcast capability of a shared bus, whichenables

each cache toefficiently monitor and disseminate shared access information. Many snooping bus

protocols have been proposed and implemented; agood summary is in [AB86]. Unfortunately, the

number of high performance processors that can reside on a bus is limited. Attempts have been

made to extend snooping busprotocols to larger numbers of processors using collections of busses

interconnected inhierarchies [Wil87, MA89,1*90], and multidimensionalmeshes [GW88]. These

extensions have the disadvantages that they are network-specific and rely onbroadcasting for some

steps intheir protocol. Some are also extremely complex. No results have been published compar

ing the performance of extended snooping bus schemes with alternative coherence strategies.

Directory-based coherence protocols rely on a (conceptually) centralized set of "book

keeping" information,the directory, which maintainsthe statusofall cached shared-writeable data.

The directory maintains for each block of main memory alistof thecaches withcopies. Cache ac

cesses that affectdirectory state and/or other caches are required to consult the directory to ensure

that the directory andother cached copies remain consistent.

12

One ofthe earliest directory schemes, due toCensier and Feautrier [CF78], implemented

thecopy listsusing bit vectors. With thisorganization, thedirectory can be interleaved with the

main memory to get sufficient bandwidth. The main disadvantage of this scheme is the high cost

of implementing bitvectors at eachmain memory block fora large number of processors. Several

techniques for reducing theoverhead havebeenproposed. Archibald andBaer[AB84] suggest the

use of only a single cache identifierper main memory block, and the use of broadcasts when more

thana singlecopy is required. Agarwal et. al. [A+88a] generalize this to theirDiriB and DWiNB

schemes. In a DiriB scheme, i cache identifiers are provided for each block, and broadcasting is

used when the number of copies exceeds i. The DinNB scheme is similar to DiriB, except that

instead of resorting to broadcasting, identifier memory is "recycled" by invalidating older copies.

A number of techniques have recently been proposed for reducing directory overhead without the

performance penalties of the DiriB and DhiNB schemes. These techniques, including one de

veloped as part of this research, are described in Chapter 2.

Directory methods are attractive because they apply to a broad class of interconnection

network, are conceptually straightforward, and do not require broadcasts. The main disadvantage

of early directory methods, efficient implementation of the directory, can now be overcome with

the techniques described in Chapter 2. A secondary disadvantage of directory schemes is that a

directory controller can become a bottleneck if many copies of a block must be invalidated or

updated on a shared write. There is a growing amount of empirical evidence, however, to suggest

thatthis is nota problem in practice [WG89a, ON90, C+90,SWG91]. Results in Chapter3confirm

this.

1.3.3 Performance Evaluation of Cache Coherence Strategies

A cache coherence strategy is effective only if its overhead does not outweigh its ben

efit. Overhead in coherence schemes takes the form of extra network traffic, stolen cache cycles,

stolen main memory cycles, and extra cache misses due to invalidations. The overhead of com

peting schemes can be estimated with several performanceevaluationtechniques: analyticmodels,

simulation with synthetic workloads, and trace driven simulation.

Analyticmodels are desirable because of their simplicity, reducedcomputationalrequire

ments, and the insight they provide. Most analytic models ofmultiprocessor caches take a relatively

small numberof parameters representing the workload and simulated architecture, and produce esti

mates ofmaximum speedup and the frequencies ofvarious coherence operations. Typical workload

13

parameters include miss ratios for shared and local data, the fraction of references to shared data,

the fraction of writes to shared data, and the average number of copies of shared data. Common

architectural parameters include network path width, cache block size, and memory latencies. The

structure of most analytic models is as follows:

1. Estimate the relative frequency of various network transactions (messages that are issued by
a processor into the interconnection network).

2. Estimate the arrival rate of network traffic byassuming some network delay.

3. Use the arrival rates toestimate the actual network delay with some congestion model.

4. If the estimated network delay does not match the assumed network delay, return to Step 2,
and repeat the process untilconvergence is reached.

The main differences in models are in the number of workload and architectural parameters, the
algorithm used to estimate the frequency of transactions in Step 1, and the congestion model in

Step 3. Tables 1.1 and 1.2 categorize some published analytic models according to these criteria.

There are several common techniques for estimating the frequency of various network

transactions. The simplest istosimply guess some values, orderive them algebraically from more

fundamental parameters. Anothertechnique isto construct astochastic model ofprogram behavior

and either solve it directly or simulate it. Both of these methods must be validated against real

programs to verify their accuracy. The most common way to do this is trace-driven simulation.

Traces can be acquired during an execution ofaprogram on aparticular parallel machine, or they
can begenerated during the cache simulation bysimulating the processors.

There are many ways to estimate network congestion. The simplest is to use a known

model forthe networkof interest Published network models thatcould be usedhereare reviewed

inChapter 4. Unfortunately, most known models do not account for several important behavioral

features. Network congestion can also be estimated with an "application specific" model. These

are usuallyconstructed as anetworkofqueuesor a stochastic Petri net, both of which canbe solved

using standard techniques [ABC86]. A third way to estimate network congestion isbysimulation.

Asthe tables show, only a few models have been validated against real parallel programs.

It is difficult to make believable cache design choices using models that have not beenvalidated

against real parallel programs, so most models inTables 1.1 and 1.2 are of limited use. In particular,

recent cache studies using reference traces from real parallel programs indicate that most early

Table 1.1: Analytic Models

Model Network a Determination of

Transaction

Frequency

Congestion Model Notes

[V+88] bus algebraic closed queueing
network (MVA6)

block on write,

continuous time,

not validated

with traces

[VJS89] hierarchical

bus

algebraic closed queueing
network (MVA)

block on write,

continuous time,

not validated

with traces

[VH86] bus algebraic generalized timed
Petri nets

block on write,

continuous time,

not validated

with traces

[LV88a] multicube algebraic closed queueing
network (MVA)

continuous time,

not validated

with traces

[NP85] multistage algebraic Kruskal/Snir

[KS83],
simulation

RP3 model [P+85],
software coherence,

not validated

with traces

[OA89] multistage,
bus,

crossbar

algebraic open and closed
queueing networks

continuous time,

validation against
4 cpu traces

°N/A means not applicable.
6MVA denotesMeanValue Analysis [ABC86].

14

15

Table 1.2: Analytic Models (continued)

Model Network a Determination of

Transaction

Frequency

Congestion Model Notes

[Dub85] N/A algebraic N/A not validated

with traces

[DB82] N/A Markov chain N/A not validated

with traces

[YBL89] packet-switched
bus

Markov chain open and closed
queueing networks
(MVA6)

not validated

with traces

[YF82] non-blocking algebraic open and closed
queueing networks
(custom solution)

not validated

with traces,

block on write

[Pat82] circuit switched

delta or crossbar

algebraic known models not validated

with traces,

ignores coherence

[BD81] crossbar algebraic closed queueing
network

(custom solution)

not validated

with traces

[PP84] bus algebraic customized

bus model

not validated

with traces

[A+85] bus algebraic stochastic

Petri nets

not validated

with traces,

continuous time

[AB86] N/A simulation of

synthetic workload
N/A not validated

with traces

aN/A means not applicable.
bMVA denotes Mean Value Analysis [ABC86].

16

cache models were overly pessimistic in their assumptions about reference locality and contention

for shared data [EK88].

Calibration with real programs can take place at Step 1 as described above, or can be

applied to the entire modeling process withdetailed simulations of the entire multiprocessor. As

mentioned, the most common technique for validating models is trace-driven simulation. A de

tailed comparison of trace-driven multiprocessor studies is deferred to Chapter 3. The comparison

shows, however, that most studies on directory-based coherence focus on invalidation protocols,

most consider relatively small numbers of processors (32 or fewer), and few consider the impact

of alternative interconnectionnetworks. There is a need to investigatedifferent directory protocols

and a-wider variety of interconnection networks. There is also a need to consider machines with

largernumbers of processors. One of the reasonsexisting work has had a narrow focus is the high

cost ofdetailed multiprocessor simulation. More efficient techniques areneeded to reduce this cost.

1.4 Organization of the Dissertation

This dissertation builds upon existing work on directory-basedcache coherence by devel

oping more efficient techniques for performanceevaluationandby applying them to a broaderclass

of architectures. The overall performancemethodology is basedon thatdescribed in Section 1.3.3,

in which the workload is characterized and iteratively appliedto a network model. The dissertation

is organized as follows.

In Chapter 2 a more detailed description of cache coherence strategies is provided. The

strategies are suitable for multiprocessors with hundreds of processing elements, with a focus on

simple andefficient directory-based techniques. A new efficient directory implementationis intro

duced.

A trace-driven analysis of directory-based coherence schemesis presented in Chapter 3.

An efficient stack simulation technique is used that permits multiple cache sizes to be evaluated

in a single simulation run. Quantitative data for invalidation, update and competitive directory

protocolsare presented. In addition, anew technique is introducedthat permitsefficient evaluation

of a spectrum of competitive protocols. These techniques are applied to threebenchmark programs

for several cache, block and multiprocessorsizes.

The results in Chapter 3 are obtained under the assumption of zero miss penalty. The

impact of non-zero miss penalties are considered in Chapter4, which presents a comparisonof a

broadclassof interconnection network. The comparison is basedon new, efficient analyticmodels.

17

The results in Chapter 3 are obtained with the additional assumption of ideal synchro

nization support for locks and barriers. This assumption is justified in Chapter 5, in whichknown

synchronization techniques are reviewed. Several newtechniques are presented for the implemen

tationof fetch&op and barrier primitives in a broad classof interconnection network.

Chapter 6 concludes with a summary of important results and a discussion of future re

search issues.

1.5 Contributions

The contributions of this work are:

1. A detailed study of directory-based cache coherence schemes using execution driven sim

ulation ofseveral benchmark programs. This study provides quantitative comparison data

for update, invalidation, and competitive directory protocols. An efficient stack simulation

technique is used that permits data for multiplecache sizes to be obtained in one simulation

ran. Efficient ways of storing aglobal directory are developed and compared using newand

previously published results.

2. Efficient analytic modelsforevaluating a broadclass ofpacket-switched interconnection net

works. Theclass includes hypercubes, indirect binary cubes, meshes, and k-ary n-cubes. The

techniques are used tocompare themostpromising interconnection networks using workload

data obtained from the cache study in 1.

3. An implementation technique for incorporating fetch&op primitives in the kxk cross-bar

switches usedto buildmeshes, Deltanetworks, k-ary n-cubes, andmany other networks.

18

Chapter 2

Directory-based Cache Coherence

Strategies

2.1 Overview

This chapter is a review of directory-based coherence schemes that are suitable for ma

chines with hundreds or thousands of processors. It begins with a detailed description of the Censier

and Feautrier directory scheme, from which most of the other schemes are derived. As mentioned

in the introduction, the main weakness of this scheme is the excessive amount of memory required

to implement the directory. A secondary weakness is that directory controllers may be locked out

for long periods of time when largenumbers of invalidationsor updates must be issued. All of the

schemes described in this chapter overcome the firstweakness, and a few attempt to overcome the

second. One of the refined schemes is a contribution of this dissertation.

The goal of the chapter is to show that hardware coherence techniques exist that are of

reasonable complexity and require a reasonableamount ofhardware for implementation. The con

tributionof this chapteris the "tag cache" directory implementation.

2.2 The Censier and Feautrier Directory Scheme

In this scheme physical memory is divided into blocks of fixed size. Each block ofmain

memory is associated with a directory entry (or tag) containing JV presence bits where N is the

number of processors in the system, a single bit indicating whether or not the block is modified,

and a lock bit (Figure 2.1). The bit vector implement a list of all cached copies. Using the notation

CACHE: Block Tag:
i 1*

valid bit

modified bit

J '
i

MAIN MEMORY: Block Tag: L M . | -|n

lock bit J
i

Cache Bits

Figure 2.1: Tags for Basic Censier and Feautrier Protocol

19

of [AB84], a block is always in one of these three states:

1. ABSENT:nocache holds acopy(all cache bitsin the directory entryare 0, and the modified

bit is 0; lock bit is 0);

2. PRESENT: one ormorecaches holdcopies, and the block is unmodified (one or morecache

bits in the directory entry are 1, andthe modified bit is 0; lock bit is 0);

3. PRESENTM: exactiy onecache hasa copyand it is modified (exacdy onecache bit is 1and

modified bit is 1; lock bit is 0);

4. LOCKED: anoperation on thisblock is currently in progress flock bit is 1);

In like manner, each cache blockis associated witha cache directory entry consisting of

a valid bit anda modified bit (Figure 2.1). Cache blocksmay be in one of these states:

1. INVALID: the contents of the cache block are invalid (valid bit is 0);

2. VALID: the contents of the cache block are validandunmodified (validbit is 1andmodified

bit is 0);

3. VALIDM: the contents of the cache block arevalid and modified (valid bit is 1 and modified

bit is 1). This state implies that this cache has the only valid copy of the block in the entire

multiprocessor.

The coherence protocol is defined by the actions taken by cache and memory controllers

for each combination ofprocessor request, cache blockstate, and mainmemorystate. If aprocessor

issues a read and the local cache block of the data is valid, no main memory access is needed and

20

the data is read from the cache. If a block for the referenced data does not exist, ablock must be

assigned and itsold data displaced to main memory. The missed reference is then handled as if

the block was invalid: aread transaction is issued to the main memory. If the main memory block

is in an unmodified state, the block contents are returned to the requesting memory controller. If

the main memory block ismodified, the block contents are read from the single "owning" cache,

written to main memory, and forwarded to the requester. In all of these cases thecache and main

memory entries have their states updated to VALID and PRESENT, respectively.

When a processor issues a write, it can onlybe satisfied locally ifthe local cache blockis

VALIDM. If thelocal cache state is VALID, an invalidate transaction is sent to themain memory

which, if other caches have copies (ie: mainmemory state is PRESENT or PRESENTM), issues

invalidations to them. If the local cache misses or the block is invalid, the controller issues an

invalidate-fetch transaction to themain memory. A fetch is required here so that the portion of the

block untouched by the write is made valid. The mainmemory sends invalidations to caches with

copies. If the block is modified, the mainmemory also fetches the current data, updates itself, and

forwards the data to the requester. The states of cache and main memory blocks are updated to

VALIDM and PRESENTM, respectively.

The mainmemoryis always notified of blockreplacements so thatthe appropriate cache

bit is cleared. If a cache replaces a VALIDM block, the block must be written back and the main

memory state changed to ABSENT.

The Censier and Feautrier scheme is well-suited to large multiprocessors because it does

not depend on the use of broadcasts (and hence does not depend on a particular network), and

permits themainmemoryand itsdirectory tobeinterleaved. Although thecommunicationoverhead

could be excessive if many blocks reside in many caches, the scheme's greatest drawback is the

severe memoryoverhead introduced by the large number of cache bits in the main memory tags.

As an example, a system with 100 processors requires a 102 bittag, dictating ablocksizeinexcess

of 125 bytes for tag overhead to beless than 10%. Systems built using this consistency scheme are

noteasilyexpanded because the taglength is dependent on the number of processors.

2.3 Efficient Directory Implementations

The severe memory overhead of the basic Censier and Feautrierscheme can be overcome

in many ways. The techniques fall into three categories:

21

1. Restrict the length of the copy lists.

2. Reduce the granularity ofthe copy lists: have each cache identifier refer to a group ofcaches
rather than a single cache.

3. Use a hierarchical directory.

4. Store the copy lists percache block rather than permain memory block.

2.3.1 Schemes that Restrict List Length

It hasbeen empirically observed forinvalidation protocols thata small number of cache

identifiers are sufficient most ofthe time [A+88a]. The most basic list reduction scheme exploits
this by providing only a single cache identifier per main memory block. When more than a single
copy is required broadcasts are used [AB84]. Agarwal et. al. generalize this totheir DiriB and

DiriNB schemes [A+88a]. In a DiriB scheme, i cache identifiers are provided for each block,
and broadcasting is used when the number of copies exceeds i. The DiriNB scheme is similar

to DiriB, except that instead ofresorting to broadcasting, identifier memory is "recycled" by in
validating older copies. Although directory overhead is reduced, for small block sizes it is still

considerable. Forexample, one tenbitcache identifier creates 7.8% overhead fora 16B block size.

The performance ofthese schemes has been evaluated using trace-driven simulation in[C*"90]. The
results indicate that a full directory permits up to twice the processor utilization than a DiriNB

scheme with i < 4. This is largely because ofcontention for synchronization variables. With var

ioussoftware optimizations, the performance with limited identifiers comeswithin 10 % of a full

directory scheme.

[CKA91] describes avariation ofthe above schemes called a limitless directory. Alimit
less directory isa DiriNB scheme modified so that directory overflows interrupt the local proces
sor, which maintains long directory entries inlocal main memory.

2.3.2 Schemes that Reduce List Granularity

Weber and Gupta propose theuse of directory entries of a single size, butfurther reduce

tagoverhead withtheuseofcoarse vectors andmulticast invalidations [G+90b]. [BH89] describes

a similar idea, and discusses a particular implementation of a multistage interconnection network

that supports efficient multicast operations; this multicast optimization is similar to one proposed

byStenstrom [Ste89] forhisdecentralized linked listprotocol (described in Section 2.3.3 below).

22

2.3.3 Schemes that Store Lists Per Cache Block

Another way to reduce directory overhead is to exploit the fact that tags are needed to

record the locations of only those blocksresidingin caches. Since the total numberof cache blocks

is typically much smaller than the total number ofmain memory blocks, tagoverhead can begready

reduced. For example, a 64 processor machine with 32 kilobyte caches and 32 megabytes of dis

tributed mainmemory requires only 1.6megabytes of fulllengthtags(assuming theyare 100bitsin

length), to storedirectory information for the 64 x 32K -=-16 = 128Kcache blocks. Alternatively,

25 megabytes of full length tags are needed if one tag is provided per main memory block.

In one class of these schemes [ON90, LY90, Ste89] copy lists are stored in associative

memories accessed by block address. The scheme described in [ON90] was proposed as part of

this research. In this scheme, two tag caches of different tag sizes are provided at each bank of the

distributed main memory: a large cache with small tags capable ofholding the identifiers ofa small

number of cached copies (Figure 2.2), and a small cache with full-sized tags (Figure 2.1).

SMALL TAG: Tag:

lock bit

modified bit

L K1 1 ••• K

J Cache ID'S

(logN bits each)

Figure 2.2: Small Tag Fields

The coherence protocol for this scheme is similar to the basic Censier and Feautrier pro

tocol with the exception that tags must be allocated from a tag cache as needed; when no tags are

free, a cached block must be invalidated and its tag re-allocated. When a block is first referenced,

it is allocated a small tag. When the number of copies of a block exceed the number of copies

supported by the small tags, a large tag is allocated and the small tag is freed. A least-recendy-used

(LRU) replacement strategy may be used to select tags for re-allocation.

Similar schemes were independendy published in [G+90b] and [Ste89]. In [G+90b] a

tag cache is called a sparsedirectory. Insteadof using two tag sizes, the scheme in [G+90b] uses

copy lists with coarse granularity, as described in Section 2.3.2. The scheme described in [Ste89]

differs from the other two in that full size directory tags are kept at the caches insteadof the main

memory. The main memory, however, stores a cache identifier with each block to point to the cache

with valid directory data.

The complexity of storing lists as bit vectors in associative tables is gready reduced by

23

using linked lists. These can be organized in a centralized or decentralized fashion. Decentralized

linked listschemes include theScalable Coherent Interface protocol [IEE90] andtheStanford linked

list protocol [T+90]. In these schemes tag overhead is reduced by storing single identifier tags at
the caches and maintaining copy information in distributed linked lists (Figure 2.3). As in the

[Ste89] scheme, the main memory holds a pointer to the head of the copy list for each block. In

the basic protocol, invalidations are performed by having each member of the list invalidate their

copy and remove themselves from the list (at the main memory). This isdone serially, so the time

to perform j invalidations takes the time of 2j network transactions. In contrast, the centralized

directory schemes issue invalidations serially at the controller, but they can traverse the network

and be processed in parallel. Optional variations ofthe SCI protocol have been proposed to reduce
serialization, but they require complicated checks to avoid dangling list segments.

Cache Cache Cache

data next »• data next *t data I next

Network

data head

Figure 2.3: Decentralized Linked List Directory

The performance problem ofsimple decentralized schemes and the complexity ofhigher

performance decentralized linked list schemes canbe overcome by centralizing the linked lists at

24

~« .. :« n vom «mn»<! listentries in an associative table,the memory controllers [SH91a]. T*e scheme m[LY90] stores hst entnes

I—e! linked list scheme due to lSH91b]. Here links ate stored in aspectal memory and
I^^ryl-inmemo^ntroue,^^^^^^Z
large, however, that this should be rare.

data head pointer cache id next

[93 t
•nL 42 T«-i

J- 17 "n
^ 1 •*

r 5

Link Memory

Data Memory

Figure 2.4: Centralized Linked List Directory

—directo^^^^^^

r^rrrreri;^

2.4 Conclusions

Full directories can be effciently consuucted using tag caches or linked lists, without
Full oirecioncb co. rentralized linked list schemesoroadcastingorlimitingOtenumberofcached cop.es ofablock. Thece~ avoid

arememostauracUvebecausemeydonotne^^
thecomplicationsofdecentra^^^Ustschemeisespeciauyattractivebecauseofitslowimplementauoncost. asltghtlymo
controller and several additional registers.

MAP OF MAIN MEMORY

DATA

DIRECTORY

OF CACHE ID'S

Status Pointer

Block of Data

ID Pointer

ID Pointer

ID Pointer

ID Pointer

Translation Look-Aside Buffer

Physical
Address

Virtual
Address

Free Links

Figure 2.5: Memory-Mapped Linked List Scheme

25

26

Chapter 3

Workload Characterization

3.1 Overview

Workload characterization using references from benchmark programs has been exten

sivelyused for uniprocessor cache studies [Smi82] and more recendy for multiprocessor caching

schemes [AG88, SA88, WG89b, ON90]. This chapter begins with a review of previous work.

Following this, known stacksimulation techniques are extended to support the evaluation of direc

tory methods. These techniques are applied to three benchmark programs to evaluate invalidation,

update and competitive directory protocols. An additional technique is described that is used to

evaluate numerous competitive schemes from the results of a single simulation run of an update

protocol.

The goal of the chapter is to showthat directory-based cache coherence is very effective

at reducing average memory access time and network traffic. The contributions of this chapter

are: extensions to a stack simulation algorithm that support directory schemes, an algorithm for

determining competitive protocol performance from anupdate protocol simulation, and quantitative

performance data for three benchmark programs.

3.2 Previous Work

Manyrecent studiespresent empirical data onmultiprocessorperformance based ontraces

of parallel programs (Tables 3.1 and 3.2); some of the benchmarks used in these studies are de

scribed in Table3.3. The tablesshow thatall studies of directory methodswith non-busnetworks

consider invalidation protocols only, and most consider 32 or fewer processors. The MIT and

27

Table 3.1: Trace-driven Multiprocessor Cache Studies

Study Focus Benchmark

Set

Number

ofProcs.

Notes

[G+83c] Ultracomputer,
software coherence

Fortran programs:
parallelloops

up to 256 multistage network,
execution-driven

[ASK85] Cedar,

software coherence

Fortran kernels:

parallelloops
32 multistage network,

execution-driven
[EK88]
[EK89b]
[EK89a]

snooping bus
protocols

Eggers
(Table 3.3)

5 to 12 shared bus,

trace-driven

[A+88a] directory methods
(invalidation)

Mach

(Table 3.3)
4 shared bus,

trace-driven

[DR+87] Cedar,

software coherence

Fortran kernels,

parallel loops
8 multistage network,

execution-driven
[SA88] directory methods

(invalidation)
Mach

(Table 3.3)
4 shared bus,

trace-driven

[AG88] ping/cling
sharing model

Mach

(Table 3.3)
4 ideal network,

trace-driven

[C+89] hierarchical directory
scheme

Mach

(Table 3.3)
4 tree of busses,

trace-driven

[WG89b] analysis ofdirectory
invalidation patterns

Stanford 1

(Table 3.3)
4 to 32 ideal network,

trace-driven

[G+90bl sparse directories
(invalidation)

Stanford 1,

Stanford2

(Table 3.3)

4 to 64 ideal network,
trace-driven

28

Table 3.2: Trace-driven MultiprocessorCache Studies (continued)

Study Focus Benchmark

Set

Number

ofProcs.

Notes

[SWG911 sparse directories
(invalidation)

Stanfordl,
Stanford2

(Table 3.3)

4 to 64 ideal network,

trace-driven

[GGH911 coherence model

comparison
Stanfordl

(Table 3.3)
16 constant network

delay, execution-driven

[C+90] directory schemes,
(invalidation)

MIT

(Table 3.3)
32 to 64 multistage network,

trace-driven

[CKA91] Limidess directories

(invalidation)
MIT

(Table 3.3)

64 multistage network,
trace-driven

[LY90] software coherence

with directory
(invalidation)

Lilja
(Table 3.3)

32 multistage network,
execution-driven

[AG901 ping/cling sharing
model

Mach

(Table 3.3)
4 ideal network,

trace-driven

[Wil87] hierarchical directory
(invalidation)

3 C programs 16 bus hierarchy,
trace-driven

[L+87] software coherence Fortran kernels,

parallel loops
32 multistage network,

execution-driven

29

Table 3.3: Common Multiprocessor Benchmarks

Benchmark Program Language a Parallelism Data Refs
Set Per Proc.

(thousands)
Mach POPS: rule-based language ? ? 380

THOR: logic simulator C ? 442
LocusRoute: VLSI router C ? 419

Eggers TOPOPT: PLA folder c 6/8 101
VERIFY: logic verifier c 11/12 96
SPICE: circuit simulator ? ? 114

CELL: VLSI placement c 6/8 141

Stanfordl Maxflow: max. flow in graph c ? 281

SA-TSP: traveling salesman problem c 7 238
MP3D: particle simulator c 52/64 173
THOR: logic simulator c 16/64 223
LocusRoute: VLSI router c 48/64 214

Stanford2 Ocean: eddy current simulation Fortran 84/96 9

Water: water molecule simulation C 44/48 9

Cholesky: cholesky factorization C 22/64 ?

MIT FFT Fortran 7 68
Weather Fortran 12/32 283
Simple Fortran 7.3/16 422
Speech Lisp 7 1846

Lilja arc3d: fluid flow Fortran 7 206
flo52: transonic flow pastairfoil Fortran ? 313
trfd: quantum mechanics Fortran 7 184

simple24: heat flow Fortran ? 133

pic: electrodynamics Fortran 7 274

linpack: 125x125 matrix Fortran 7 313

a"?" denotes unpublished.
bdoes not includeinstruction references.

30

Stanford benchmark sets include traces of 64 processor systems, butonlythree of these are for C

programs with reasonable parallelism. The only trace-driven analyses of update and competitive

protocols are [EK88, Egg91, A+88a], which study shared bus architectures with 12 or fewer pro

cessors. By focussing on shared bus architectures, these studies do not adequately measure the

coherence traffic thatwould occurwith point-to-point networks.

There are alsodifferences in the goals of previous studies. Most are comparisons of aver

age memory access time and network traffic for very specific architectures. [WG89b] enumerates

classesof coherence patterns and relates them to benchmark programs. [AG90] and [Egg91] con

sider simpler, more abstract models of program behaviorbased on what [AG90] calls processor

locality. Processor locality is the degree to which data is referenced by a processorwithout inter

vening references by other processors; data that is referenced many times by a processor before a

reference by another processor exhibits high processor locality (which is desirable in a coherent

caching scheme). It is quantified with the ping/cling [AG90] and write-run [Egg91] models. In

stead of examining the stream of data references issued by each processor,these models consider

the stream of references to each data block, focussing on the identity of the processor associated

with each reference. The ping/cling model is illustrated in Figure 3.1. Aping is defined as a refer-

Stream of Processors Referencing a Particular Block:

clings

u
processor:

•L Www V
Time

n

pings

T T

Figure 3.1: The Ping/Cling Locality Model

ence to a block in which the processordiffers from that of the previous reference; here the datahas

"bounced" or pinged to another processor, requiring some coherence action. A cling occurs when a

block is immediately re-referenced by the same processor. Good processorlocality is indicated by

a largeratioofclings to pings. Programs with good processorlocality are said to exhibit sequential

sharing, and perform well with an invalidation protocol. Alternatively, programs with a largeratio

of pings to clings are saidto Q^hibitfine-grained sharing, suggestingthe use ofan update protocol.

The write-run sharing model is a special case of the ping/cling model (Figure 3.2). A

write-run is defined as a sequence of writes by a particular processorwith no intervening references

Stream of Processors Referencing a Particular Block (r:read, w: write):

external re-reads

1 I I I I I
processor: 3 1 1 2 3 3 3 1 2 2 4 4 4 4 3 3 1

read/write: r r w r w w r r r w r w r w w w r

•»

length:

Time

31

write-runs

Figure 3.2: The Write-run Model

by another processon the write-run begins with awrite and ends with a read or write by another

processor. Write-runs therefore begin and end with particular types of pings, and are made up of

a particular type of cling. A sequence of write-runs may be separated by sequences of reads by
a setof processors, called external reads. The first read by another processor after a write-run is

called an external re-read. The behavior of update and invalidation protocols can be measured

using components of the write-run model:

• Invalidations in a shared-bus invalidation protocol: number of write-runs (ie. thenumber of

writes that ping).

• Invalidation missesin an invalidation protocol: number of external re-reads (ie. the number

of reads that ping).

• Unnecessary updates in a shared-bus update protocol: length of a write-run (ie. thenumber

of writes that cling to a processor).

The ping/cling and write-run models provide aconvenient framework for understanding

the reference behavior of parallel programs. The write-run model is also sufficiendy detailed to

permit acomparison of snooping update and invalidation protocols using data from onesimulation

run [Egg91l. Although the basicping/cling and write-run models includemeasures of the number

of invalidation or update requests issued from the cache at which a write is made, they do not

provide ameasure of thenumber of other cached copies that mustbe invalidated orupdated. This

is important inevaluating directory-based coherence schemes, where invalidations and updates are

not performed in a single operation.

The results in thischapter build uponprevious work in four ways:

32

1. By investigating abroader class ofprotocols, including invalidation, update and competitive.

2. By applying efficient stack simulation techniques to the evaluation ofdirectory schemes.

3. By supplementing the write-run and ping/cling performance models with the notion of an

update-run: a stream of updates received by a cache block between local accesses, update-

runs quantify point-to-point coherence traffic and permit a comparison of a spectrum ofcom

petitive protocols using data from a single simulation run.

4. By considering largernumbers of processors (64 and greater).

This work also avoids somesecondary problems withexisting studies. First, ideal synchronization

support is assumed so that coherence effects are not skewed. This is important because excess

traffic and missesdue to naivebarrieror lock implementations can producemisleading results. For

example, results in [C+90] show that theuse of a tournament barrier instead of a simple counting

barrierl substantially reduces traffic and average access time. Another secondary problem that is

avoidedis a lackof parallelismin the benchmarks. As shownin Table3.3, manyof the benchmarks

used in previous studies have an unknownor poor amount of parallelism. All of the benchmarks

used in thischapterexhibitgood processorutilization for at least 64 processors.

3.3 Stack Simulation of Directory Methods

3.3.1 Introduction

Stack simulation is a technique for simulating caches of multiplesizes in a single pass

over a reference trace. They significandy reduce the amountof time required to simulate a set of

alternative caches. In this sectionstack simulation algorithms for singleprocessorand shared bus

multiprocessors are reviewed . The section begins witha discussion of somecachedesign policies

that must be restricted for stack algorithmsto apply.

All cache designs must specifypolicies for the selectionof a block for replacement, the

selection of what to fetch and when, and what should be done with write references [Smi821. A

replacement policy specifies how a block is selected for evictionwhen a newly referenced block

is brought in. Common replacement policies include least recently used(LRU), first-in-first-out

(FIFO) and random, fetch policies determine when blocks of data are brought into the cache.

'Thesebarrier implementations are described in Section 5.2.4.

33

The most common fetch policy is demand fetch, in which blocks are brought into the cache only

whenthey are first referenced. A moreaggressive fetch policyis demand prefetch, in whichone or

more blocks following the referenced block are also loaded on acache miss. A cache write policy

determines what takes place in response to a write hit or miss. A write-through cache updates its

copyand main memory oneach write; acopy-back orwrite-back cache updates main memory only

whena written (ordirty) block is replaced. When a write miss occurs in a write-through cache, the

cache canload the referenced block (write allocate) or justupdate mainmemory.

With certain restrictions, multiplesizes of a particular cache design canbe simulated in

a single pass of a reference trace using stack simulation. Stack simulation exploits the inclusion

property of certain replacement and fetch policies, which ensures that the contents of a cache of a

particular size are included in all largercaches. In the basic scheme [MGST70], the hit ratios for

all cachesizes can be found in one pass of the reference trace by storingblock addresses in a stack

suchthat allblocks in a cache of size C are represented by the top C stackentries (Figure 3.3). To

Reference Stack

most
recently
used

block b1

block b2

•••

REGION 1

Cache Size 1

REGION 2

rCache Size 2

REGION 3

[Cache Size 3

Figure 3.3: Uniprocessor Stack Simulation

keep trackof the numberofhits, a hit counteris associated with each positionin the stack. On each

reference, the corresponding block is located in the stack (at level C) and moved to the top (since

34

it must now reside inall cache sizes), and the hit counter is incremented at the position where the

block was found. The blocks that were inpositions 1through C-1 are now rearranged (ina manner

depending onthe replacement policy) tomake room for the referenced block atposition 1. Because

of inclusion, a hit at level C represents a hit in allcaches of size C or greater. Thehit ratio fora

cache ofsize C is simply the sum of hits for all stack positions from 1to C. The stack algorithm

can only beapplied tocaches with stack replacement policies and a restricted setof fetch policies.

Stack replacement policies satisfy the constraint that the selection criteria for a replaced block must

be independent of cache size. The simplest and most common stack replacement policy is least

recently used (LRU); in a stack simulation with an LRU replacement policy, the rearrangement of

block addresses issimply a downward shift. Fetch policies that donot violate the inclusion property

include demand fetch and demand prefetch.

The hit counters need not be maintained for each block. If the number of cache sizes of

interest is much smaller than thestack size, memory canbe saved byassociating counters with the

regionsof blocks defined by the cache sizes.

Thesimple scheme justoutlined is restricted to a single block size, single processor, and

full associativity. Extensions havebeenpublished tosupport multilevel cache hierarchies [Gec74],

multiple block sizes and associativities [TS71, ST72], and the collection ofother statistics in addi

tion to miss ratios [TS891. Extensions have also been published to support operations other than

read and write, such as deletions and cache flushing [TS89]. Efficient non-stack simulation algo

rithms have been developed for supporting certain important cache designs for which inclusion

does not hold [HS89]. The restriction of a single processor has been relaxed by extensions that

supportshared bus and file systemcaching systems[Tho87]. These extensions are the focus of the

following section.

3.3.2 Multiprocessor Stack Simulation

The multiprocessor stack simulation algorithm used in Section 3.6 is based on work by

Thompson [Tho871, who developed a stack simulation algorithm for the MOESI [SS86] class of

coherence protocols. The MOESI class of protocols includes most published shared bus coher

ence schemes, and, withthemodifications in Section 3.3.4, isalso applicable to thethree directory

schemes considered in this dissertation.

The MOESI protocol classderives itsnamefrom the five statesa cached blockmay take

(Figure 3.4):

35

Invalid

Figure 3.4: MOESI States

• Modified: this is the only cachedcopy and it is dirty.

• Owned: there are2 or more cachedcopies, andthis copy is dirty.

• Exclusive: this is the only cachedcopy and it is not dirty.

• Shared: other caches may have copies, andthis copy is not dirty.

• Invalid: this copy is invalid.

The MOESI protocols are described in Tables 3.4 and 3.5 (taken from [Tho87]), which

show cache actionsin response to processor requests andnetwork (bus) requests, respectively. Re

sponses are shownin one of two forms. "X, action" meanschange the block state to X andperform

"action". "Shared?: X/Y, action" means perform"action" and set the block state to X if the block

is shared, and Y if unshared. Transactions of the form Shared?:0/M can be replaced by O, and

transactions of the form Shared?:S/E canbe replaced by S. The network transactions specified in

Table 3.4 are as follows:

1. nothing: do nothing.

2. read block: fetch a copy of the block (to read).

3. write block: write back a copy of the block to main memory. Keep the local copy.

4. displaceblock: writeback amodifiedcopy of the block to main memory. Invalidate the local

copy.

36

5. notify: notify the main memory of a flush.

6. inval: invalidateallother copies of the block.

7. update: update all other copies of the block.

8. read block and inval: fetch a copyof theblock (to write) and invalidate all other copies of

the block.

9. readblockandupdate: fetch a copy of the block (to write)andupdate allothercopiesof the

block.

10. read, write: perform a separate cpu read (to bring the data into the cache) followed by a

separate cpu write.

write-thru denotes a request that is issued by a write-through cache; no cache denotes that it is

requested by a processor without a cache.

The network transactions specified in Table 3.5 are as follows:

1. nothing: do nothing.

2. forward: forward acopy of the block to the requesting cachewithoutupdatingmainmemory.

3. forward & update memory: forward a copy of the block to the requesting cache and update

main memory.

4. update copy: update the local cached copy.

The original MOESI definition specifies bus signals for each bus transaction. Tables 3.4 and 3.5

abstract this because the protocols are also applicable to directory schemes using general inter

connection networks. In the context of a shared bus, all caches observe the network transactions,

including those without copies (or, equivalently,copies that are invalid), sharabilitycan therefore

be determined by a wired-OR sharing line (SL in the MOESI specification), and the bus ensures

that allcoherence actions for a particular processor reference are satisfied atomically. In the context

of a general interconnectionnetwork and directory-based coherence, the directory protocolwould

ensure that only those caches that need to respond to a network transaction are accessed; atomicity

would be enforced, and sharability determined, via the directory.

Table 3.4: MOESI Cache Responses to Processor Requests

Cache State Proce

Read

ssor Request
Write

M (Modified) M, nothing M, nothing

0 (Owned) 0, nothing {4} Shared?:0/M, update
{5} M, inval

E (Exclusive) E, nothing M, nothing

S (Shareable) S, nothing {6} Shared?: 0/M, update
{7} M, inval
{8} S, update(write-thru)
{9} S, inval(write-thru)

I (Invalid) {1} Shared?: S/E, read block
{2} S, read block (write-thru)
{3} I, read block (no cache)

{10} M, readblock & inval
{ll}read,write
{12} I, inval (no-cache,write-thru)
{13} I, update (no-cache,write-thru)
{14} read,write (write-thru)

Cache State Processor Requ<
Pass

(Push & Keep)

;st

Flush

(Push & Discard)
M (Modified) E, write block I, displace block

0 (Owned) {15} Shared?: S/E, write block
{16} S, writeblock

I, displace block

E (Exclusive) — I, notify

S (Shareable) _ I, notify

I (Invalid) _
—

37

Table 3.5: MOESI Cache Responses to Network Requests

Network Request Cache State

M (Modified) 0 (Owned)
Read Block or {19} 0, forward {17} 0, forward
Write Block {20} S, forward & update {18} S, forward & update

memory memory

Read Block & Inval or {21} I, forward I, forward
Inval or {22} I, forward & update
Read Block & Inval memory

(Write-thru)

Read Block (No Cache) or M, forward Shared? 0/M, forward
Displace Block

Read Block & Update or - {23} S, update copy
Update or {24} I, nothing
Read Block & Update
(Write-thru)

Inval (Write-thru) or M, forward 0, forward
Inval (No Cache)

Update (Write-thru) or M, update copy 0, update copy
Update (No Cache)

Network Request
E (Exclusive)

Cache State

S (Sharable) I (Invalid)
Read Block or

Write Block

S, nothing S, nothing I, nothing

Read Block & Inval or

Inval or

Read Block & Inval

(Write-thru)

I, nothing I, nothing I, nothing

Read Block (No Cache) or
Displace Block

E, nothing S, nothing I, nothing

Read Block & Update or
Update or
Read Block & Update
(Write-thru)

{25} S, update copy
{26} I, nothing

I, nothing

Inval (Write-thru) or
Inval (No Cache)

I, nothing I, nothing I, nothing

Update (Write-thru) or
Update (No Cache)

{29} E, update copy
{30} I, nothing

{27} S, update copy
{28} I, nothing

I, nothing

38

Table 3.6: A Simple MOESI Invalidation Protocol

Cache State

Read

Processor Request
Write Flush

(Push & Discard)
M (Modified) M, nothing M, nothing I, displace block
S (Shareable) S, nothing {7} M, inval I, notify
I (Invalid) {1}S, read block {10} M, read block & inval -

Network Request Cache Stat

M (Modified)
e

S (Sharable) I (Invalid)
Read Block {20} S, forward & update memory S, nothing I, nothing
Read Block

& Inval

Inval

{22} I, forward & update memory I, nothing I, nothing

Displace Block I, nothing S, nothing I, nothing

Table 3.7: A Simple MOESI Update Protocol (Write-thru)

Cache State

Read

Processor Request
Write Flush

(Push & Discard)
S (Shareable) S, nothing {8} S, update I, notify
I (Invalid) {2} S, read block {14} read.write -

Network Request Cache Stat

S (Sharable)
e

I (Invalid)
Read Block S, nothing I, nothing
Read Block

& Update
Update

{25} S, update copy I, nothing

Displace Block S, nothing I, nothing

39

40

Since the MOESI protocols represent aclass, there are alternative actions for many states.

Tables 3.6and 3.7 show thealternatives used in simple invalidation and update protocols (these are

two of the directory methods examined in Section 3.3.3).

The multiprocessor stack simulation algorithm isbased onthe following assumptions:

1. Reference streams are synchronized: the interleaving references from different processors is

independent of cache size. This assumption permits one-pass analysis of a multiprocessor

reference stream without considering low-level timing details that cause different temporal

behavior for different cache sizes. It is unrealistic because it is equivalent to assuming zero

miss penalty. The results should still be useful, however, because thenetwork delays in a

symmetric multiprocessor should perturb each reference stream in a similar way, so relative

orderings should notchange substantially. Furthermore, thesimulated ordering is an example

of at least one correct execution of the program. This assumption has been made in other

simulationstudies, including [C+90, OA89, SWG91].

2. Protocol actions are consistently applied on a blockbasis. If a particular rule from Table 3.5

is used for block i during a read miss, it must always be applied to block i under the same

situation. This restriction still permits differentprotocols to be used fordifferent blocks.

3. The stack position of a block in a particular cache cannot be changed by external cache ac

tions, with the exception of invalidations. This is reasonable because "the fact that another

cache is using ablock maybe reason to discard ablock, butnever a reason to want to keepit

[Tho87]."

4. All caches in the multiprocessor arethe same size.

The following description ofThompson's stack simulation algorithm is restricted to the

subsetof MOESI states required by the directory schemesof interest: the M, S and I states-those

required by the directory protocols described in Section3.3.3. These three statescanbe determined

using the following state variables associated with each cacheblock: the valid level v, and, if the

block is dirty, its dirty level d, and the identity of the sole cache containing the dirty copy DC.

The valid level v, of block i is the smallest cache size for which block i is valid; this is implicitiy

maintained as the stack position of the block. If the block is not valid in any cache, v, = oo. The

dirty level d, is the smallest cache size for which block i is dirty. If the blockis not dirty in any

cache, d, = oo. The block may be valid in smaller caches, but it is only dirty in caches of size d,

and larger. The situation where v, < d,- arises in write-back caches when a dirty block is pushed

41

from a small cache and later read again, butnot written. In the MOESI protocols a block can be

dirty in only one cache at a time, so DC and di neednot be stored for each copy of a block. The

state of block i in a particular cache j of size C is determined by examining v„ DC and d,:

• M: Vi < C, j = DC and u, >= d,

• S: vi < C and (j' ^ DC or 0' = DC and v, < d,)).

• I: Vi > C.

The stack algorithm for MOESI protocolsinvolving only the M, S and I statesis shown in

Figures 3.5 and 3.6. It is assumed that the reference streams from all N processors areinterleaved

into a single traceoflength nre/, in amannerthat is consistentwith the synchronizationconstraints

of the program. Furthermore, for each reference the state of allcopies of ablock is updated atomi

cally. Reference i in the interleaved trace furnishes ablock address fig, the type of reference actiorii,

and the identity of the cache, ct, at which the access is made.

Oneachprocessor reference, the referenced block is located inthe stackof theappropriate

cache to determine its validlevel, v^ If the block is dirty, the identity of the solecache containing

the copy, DC, is found, alongwith the dirty level d,. If the referenced cache happensto be DC, a

check ismadeto see ifanywrite-backs haveoccurred. This is indicated by thevalidlevel exceeding

the dirty level; since a block cannot be dirty in cache sizes for which it is not valid, all cache sizes

between d, and y, must have flushed the block. These flush operations are recorded by a call to the

"Statistics" routineof the form: Statistics(fype,/r0m, to, lowjsize, high^size). This routine records

a network transaction of type type from processor/rom to processor to for cache sizes in the range

lowMze to high^size. The remaining simulation steps are reference-specific. If the reference is a

read, the block must be fetched for all cache sizes for which it is invalid. If the block is dirty in

another cache, it must be retrieved from thatcachebefore being forwarded to the referenced cache.

Pass references require mainmemory to be updated only if the local copy (if any) is dirty. Flush

references require main memory to be updated if the local copy is dirty, and the local copy to be

invalidated.

If the referenceis a write, the simulationsteps are protocol-specific. Figure 3.7 shows the

steps taken for the simple invalidation protocol of Table 3.6. Here the block must be fetched (for

writing) by all cache sizes for which it is invalid. If the block is dirty in anothercache, it must be

retrieved from that cache, and that copy invalidated. If the block is not dirty in anothercache, all

other copies are invalidated. The actions for the simple update protocol (Figure 3.8 and Table 3.7)

for(i = ltonre/,){

b = block address for reference i
action = action for reference t

c = cache identifier for reference i

vc = position of6, in stack c
DC = sole cachecontaining dirtycopy of 6, (if any)
d =dirty level for blockincache DC (if applicable)
m = main memory bank containing6.

if (c == DC) {I* if cache holds dirty block */
if (d < ve) {/* recordwritebacks *l

Statistics(WRITEBLOCK, c, m, d, vc);
d= vc;

)
}

switch (action) {
case READ:

Statistics(READBLOCK, c, m, 1, wc);
if (rules {7} or{10} used) {/* ifinvalidation protocol *l

if (DC £ ooand DC £ c) {/* j/Wocfc dirry, ge/copy from owner */
Statistics(RETRIEVE_BLOCK_TO_READ, m, DC, d, oo);
d = oo;

}
}

case WRITE:

WriteRoutineO; /* protocoldependent */

case PASS:

if (c == DC andd ^ oo) { /* writetacit //dirry */
Statistics(WRITEBLOCK, c, m, d, oo);
d = oo;

}

case FLUSH:

if (i == DC andd ^ oo) {/* write fcic* i/d/rry */
Statistics(WRITEBLOCK, c, m, d, oo);
d = oo;

}
vc = oo; /* invalidatelocal copy */

}
update stack c;

Figure 3.5: Stack Algorithm for MOESI Protocols

42

Directory

Block 5

Block 99

Block 31

Reference Stack

For Cache 1

* 99

Reference Stack

For Cache 2

Reference Stack

For Cache 3

i

•l

5

99

99

31 31

REGION 1

Cache Size 1

REGION 2

Cache Size 2

REGION 3

Cache Size 3

43

Figure 3.6: Multiprocessor Stack Simulation

are similar, except othercached copies are updated instead of invalidated, andit is not possible for

a block to be dirty in any cache.

In the basic uniprocessor stack algorithm, the number of hits for all cache sizes was effi

ciently maintained usingcounters for each stackregion. Since the number of hitsobeys inclusion,

thenumberof hits for allcaches containing thereferenced blockcan be maintained by incrementing

just one counter perreference. Other cache statistics canbe efficiendy collected usingcounts that

obey inclusion. For each of these statistics, the number of events in a cache of size C is the sum of

counts for each of the stack regionscontainedby that cache. These statisticsinclude:

1. block writes (write-backs): count the number of avoided write-backs [Tho871. This is done

by incrementing anavoidedwrite-backs counter for thestackregion containing thedirty level

of a written block. Since an avoided write-back in a cache of size C must also be an avoided

write-back in all largercaches, the count obeys inclusion.

2. block reads (fetches): theseare misses, whichare determined by counting thenumberofhits.

The number ofmisses is then the numberof reads and writes minus the numberofhits. These

may be furtherdistinguished by the type of reference causing the fetch: reador write. This is

useful because extra actions (invalidations or updates) are required for block fetches caused

Statistics(READ_BLOCK_TO-WRITE, c, m, 1, vc);

if(d^oo and Z>C^c){
Statistics(RETRffiVE3LOCKjrO-WRITE, m, DC, d, oo);
d = oo;

}
for {i | Vj±oc,j±DC,j±c}{

Statistics(INVALIDATE, m, j, vjt oo);
vj = oo;

}DC = c;
d = 0;

Figure 3.7: Write Routine for Invalidation Protocol

Statistics(READ_BLOCK_UPDATE, c, m, 1, vc);

fOT{j\ Jv^OO,j?c}{
Statistics(UPDATE, m, j, vj, oo);

}

Figure 3.8: Write Routine for Update Protocol

44

45

by writes.

3. write-throughs (to main memory): This is just the total numberof writes.

Stack simulation is desirable only if the added complexity does not defeat the benefit

of analyzing multiple cache sizes simultaneously. Empirical results in [Tho87] show that a stack

simulation takesabout 15% more timeto runthana non-stack simulation of a singlecachesize, so

the net benefit is substantial. Similar overhead was observed for the simulations used in this work.

3.3.3 Protocols

The directory protocolsconsidered in thischapter are variations ofCensier and Feautrier's

scheme [CF78]. The first, denotedINVAL, is Censierand Feautrier's invalidation protocol with

out variation. The second, UPDATE, is Censier and Feautrier's scheme modified so that writes

to shared writeable data send updates to all othercached copies. Like INVAL, UPDATE requires

the maintenanceof copy lists at the main memory. Unlike INVAL, we assume that writes to shared

writeable datawrite through thecache. Update requests aretherefore issued to themainmemory on

each shared write. This is the simplest implementation of an UPDATE protocol, andoptimizations

may reduce the amountof write-through traffic. Simulation results, however, suggest that update

traffic from the mainmemory to cached copies dominates write-through traffic, so any traffic re

duction with a write-back scheme would be minimal. The third coherence scheme, COMPk, is a

competitiveprotocol in which updates are issued to cached copies until an invalidationcriterion is

satisfied,at which point the copy is invalidated. In COMPk the invalidationcriterion is checked at

each cache by counting, for each cache block, the number of updates received between references

by the localcpu. Whenthe numberof updates reaches a threshold, k, the cache invalidates itscopy.

By varying k from 1 to oo, a set of protocols withbehaviorranging from that of INVAL to that of

UPDATE can be constructed. COMPk is similarto the bus-based competitive protocoldescribed

in [K+86]. Like UPDATE, weassume write-through caches for shared-writeable data.

3.3.4 Stack Simulation of Directory-based Coherence Protocols

Thompson's stack simulation algorithm assumes an idealized shared bus architecture with

zero miss penalty. Withthe same assumptions, the same algorithmcan be used for directory-based

coherence protocols that fall intothe MOESI class. The invalidation andupdateprotocols described

in Section 3.3.3 correspond to the MOESIprotocols in Tables 3.6 and 3.7 in the previous section,

46

and hence can beevaluated using stack simulation. In this section it is shown that the competitive

protocol can also be evaluated with stack simulation. It is also shown how simulation statistics

peculiar to directory schemes can be efficiendy collected.

On first inspection, the competitive protocol falls outside of the MOESI class because

self-invalidations (flushes) are initiated based on feedback from thecoherence system: thenumber

of updates since thelast processor reference. It is still as a MOESI protocol, however, because the

self-invalidation criterion obeys inclusion: thenumber of updates observed by block i in a cache

of size C is the same as the number observed by block i in a cache of size C + 1. This can be

shownby induction. At the beginning of a simulation it is trivially true since no blocks are valid.

Assumeit is valid at time t. Consider the actions that modify the update count for a block: a local

reference or an update from the network. On a local reference the update count is set to zero for

all cache sizes, soinclusion is preserved. An update from thenetwork increments theupdate count

for all cache sizes in which the block is valid. If the count does not exceed the self-invalidation

threshold, inclusion is preserved. If it does exceed the threshold, the block becomes invalid in all

cache sizes so inclusion is still preserved. The self-invalidation criteria therefore obeys inclusion,

so the competitive protocol can be simulated as a MOESI protocol, with modifications to support

update counts. An extra variable, updatesc, mustbe maintained per cached blockto store update

counts. updatesc for block 6 must be set to zero for each reference to 6 at cache c. The write

routine for the competitive protocol is shown in Figure 3.9. It is identical to the routine for the

update protocol, withtheexception that theupdate counters of cached copies mustbe incremented

as theyare updated. Whenan update count exceeds theself-invalidation threshold, thecached copy

is invalidated.

Statistics(READ.BLOCK-UPDATE, c, m, 1, vc);

for{i| vj ? oo, j?c}{
Statistics(UPDATE, m, j, vj, oo);
updates j = updatesj -f 1;
if {updatesj > k) {

invalidate copy;

}
}

Figure 3.9: Write Routine for Competitive Protocol

47

Because directory schemes issue invalidations or updates on apoint-to-point basis, there
are a number of of additionaltraffic statisticsthat areof interest. These are:

1. invalidations (to main memory): These can be found by counting the number of write hits

tomodified blocks. Thiscount obeys inclusion because validity is inclusive and dirtiness is

inclusive. The number of invalidation requests sent to main memory (that do NOT require a

block to be fetched) is then thenumber of unqualified write hitsminus thenumber of write

hits to modified blocks.

2. retrievals (from caches with dirtycopies): since dirtiness is inclusive, these canbe counted

direcdy. The retrieval count corresponding to region d in cache DC is incremented.

3. invalidations (to caches): These can be counted direcdy since an invalidation in a cache of

size C impliesaninvalidation in alllarger caches. When a block is invalidated in the stack for

cache j, the invalidation count for that position instack j is incremented. This statistic only

applies toblocks that are not dirty inany cache. If ablock is dirty insome cache, itmay be

possible for theblock tobeclean for some sizes and dirty for others. This arises when vc < d,

which arises in write-back caches when a dirty blockis pushed from a small cache and later

read again, but notwritten. Invalidations for sizes vc to d can be counted using the retrieval

count (Item 2 above) plus an additional count of dirty invalidations ateach stack region i,

denoted dinvi. Whenever aretrieval ismade from cache DC, the dirty invalidation counter

for region vc is incremented. Unfortunately, the dirty invalidation count does not provide

the number of dirty invalidations directly. This is because the count of dirty invalidations

does not obey inclusion: sizes vc to d receive invalidations, while sizes d to oo receives

retrievals. The following discussion shows that thenumber of dirty invalidations to cache of

sizeC is just the sum of dinvi - r, for all inclusive stack regions i, where r, is thecount of

retrievals at region i. To see this, consider Figure 3.10. Assume that separate counters for

dinvi and r, are maintained for each shared reference j. Denote these counters dinv] and r{,
respectively. Figure 3.10 shows, for aparticular cache, dinvj and r{ for each stack region.
Consider asingle reference, say 1. Itisclear that the number of dirty invalidations for region

k is £;=i(dmi;/ - rj). The total number of dirty invalidations dinv, due to all references,
is just

nre/j Jfc

dinv = ^2 ^(dinvi - r{) (3.1)
j=\ i=i

But

and

therefore:

most
recently
used

"re/« k k

5^ J2dinvi =]£ dinvi
J=l 1=1 1=1

«re/* k k

i=l i=i i=i

dinv =^/(dinvi —r,)
i=l

Reference Stack
Ref 1 Ref 2 Ref 3

dc r dc r dc r

block b1

block b2
REGION 1

Cache Size 1
.,..., uaaMMMaMaaM

REGION 2

Cache Size 2

REGION 3

Cache Size 3

10 0 0 0 0

0 0 11 10

0 1 0 0 0 1

dc: count of dirty Invalidations
r: count of retrievals

48

(3.2)

(3.3)

(3.4)

Figure 3.10: Counting Invalidations When a Block is Dirty

4. updates (to caches): These can be counted direcdy since updates must obey inclusioa An

update to a block in stack i causes the update count for the corresponding stack region to be

incremented.

One additional metric is collected for the competitiveprotocol: the number ofself-invalidations

at each cache. Since update counts are inclusive, the count of self-invalidations is also inclusive,

so it can be counted direcdy.

49

3.4 Evaluating Competitive Directory Methods

In this section it is shown how the results of a single UPDATE simulation can be used

to find the performance of COMPk for different threshold values. The technique is based on the

cumulative distribution of the number of updates between references at a cache (Figure 3.11). Be

cause of its similarity to the notion of a write-run, an uninterrupted series of external updates to a

cache block is called an update-run. Update-runs supplement the ping/cling and write-run models

by measuring the number of copies of a block involved in invalidations and updates. Given the

distribution of update-run lengths, it is possible to determine the fraction of references that would

be misses if cached copies were invalidated every kupdates (with no intervening references bythe

corresponding cpu). Similarly, the fraction of update traffic attributed to updates occurring at the

j 'thposition inan update-run permits adetermination of the number of updates that would not take
place for a given k.

Stream of Processors Referencing a Particular Block(r: read, w:write):

external updates for copy at processor 3

J I I \
processor: 3 1 1 2 3 3 3 1 2 2 4 4 4 4 3 3 1

read/write: r r w r w w r r r w r w r W w w r

length:

update-runs

Time

Figure 3.11: The Update-run Model

Figure 3.12 shows a typical plotof the normalized cumulative distribution of the number

of references (to shared writeable data) for which k updates were observed since thelast reference

to the same block by the same cpu. Let the fraction of references finding k intervening updates

be r(k). References with zero intervening updates are not included. Let rc(k) be the cumulative

version of r(k): rc(k) equals the fraction ofreferences finding kor fewer intervening updates. r{k)
and rc(k) are obtained from asingle simulation of the UPDATE protocol. Figure 3.13 shows the

fraction of update transactions (from main memory tocaches) that occur atthe Ar'th position inan

update-run. Let the fraction of updates that occur in the fc'th position be u(k). u(k) is related to

r(k) by the equation:

u(k) =
Eg, ir(i)

(3.5)

50

Let uc(k) bethe cumulative version of u{k).

The performance ofCOMPk for threshold k is found byadjusting the miss ratio and traffic

of UPDATE toaccount for the extra misses and fewer update transactions:

extrajmisses = refs * fng(\ - r(k - 1)) (3.6)

updatesjavoided = mupdates* (1 - u{k)) (3.7)

where:

• refs is the number of references to shared writeable data.

• mupdates is thenumber of MUPDATE transactions received by the cache witha full update

protocol.

• /„, is the fraction of references that have oneormore updates since thelastreference to the

same block.

The extra misses are the numberof data references with update-runs of length k or greater: any

cache block that receives morethan k - 1 updates is invalidated. The number of updates avoided

is the fraction of updates (in a full update scheme) corresponding to positions k+ 1orgreater in an

update-run.

Because they donotaccount forchanges inreplacement behavior caused by self-invalidations,

these formulae are exactonly forinfinitecaches. Furthermore, ifr(k) andu(k) are determined from

a subsetof a program trace, they must be adjusted to account for the following end effects:

1. Portions ofupdate-runs thatoccurprior to the start of steady-state. This data canbe obtained

from the transient portion of the trace during which steady-state is established.

2. Updates to blocks that are not re-referenced in the sampled time interval. The effect of these

on u(k) canbe found by scanning the caches at the end of the simulation.

Numerical results for this technique are presented in Section 3.6.2.

3.5 Simulation Methodology

The stacksimulation techniques ofSection3.3wereapplied to threebenchmark programs

to obtain miss ratios and network traffic for the INVAL, UPDATE and COMPk coherence schemes.

In this section the metrics, simulated architecture, and benchmark programs are described.

3.5.1 Metrics

CumulaHvt Distribution

1.00-

0.90-

0.80-

0.70.

0.60-

0.50-

0.40-

0.30-

0.20-

0.10-

0.00-

0.00 10.00

Ungth

20.00

of Updtt«-run: k

30.00 40.00

Figure 3.12: Cumulative Distribution of Update-run Length

51

The metricsof the comparison are cache miss ratio and networktraffic. Miss ratios in

clude misses due to references to shared writeable and non-shared-writeable data; they do not in
clude instruction misses. Miss ratios reported in Section 3.6.1 are the average ofthe miss ratios for
all simulated processors.

Network traffic isgiven inbytes ofdata sent into the network by a cache controller, nor

malized by the number of instructions referenced at that cache. Cache controllers communicate

with main memory banks using transactions composed oftwo point-to-point network messages: a
request and a response. Tables 3.8 and 3.9show the transaction types and their sizes foreach coher

ence scheme. Traffic values in Section 3.6.1 are the average of the traffic values for all simulated
processors.

3.5.2 Simulated Architecture

Thedifferent coherence schemes were compared using instruction-level simulations of a

multiprocessor architecture withseparate instruction and data caches, and an idealized mainmem-

Updates that Occur at Position k In an Updats-run

1.00-

0.90-

0.80-

0.70-

0.60-

0.50-

0.40-

0.30-

0.20-

0.10-

0.00-

0.00 10.00 20.00 30.00

Position in Updata-run: k

40.00

Figure3.13: Fraction of Updates that Occurat fc'th Positionin anUpdate-run

52

Table 3.8: Transaction Types

Namea Description
R

I

eque

U

Fo

;st

C

rma

Ac

I

:kno

U

wledge
C

CPUREAD get shared block to read 1 1 1 5 5 5

CPUWRITE get shared block to write 1 3 3 5 5 5

CPUUNSHARED get unshared block 1 1 1 5 5 5

DISPLACE displace clean block 1 1 1 4 4 4

WRITEBACK displace dirty block 2 2 2 4 4 4

INVAL invalidate copies 1 „ _ 4 ^ —

UPDATE update copies . 3 3 — 4 4

LOCK lock 1 1 1 4 4 4

UNLOCK unlock 1 1 1 4 4 4

BARRIER wait at barrier 1 1 1 4 4 4

MREAD get cache copy to read 4 _ _ 5 „ —

MWRITE get cache copy to write 4 _ _ 5 _ —

MINVAL invalidate cache copy 4 _ m 4 ^ m

MUPDATE update cache copy - 6 6 - 4 4

"•ramactions beginning with "M" are from main memory tocaches; all others are from caches to main memory
"I: INVAL, U: UPDATE, C: COMPk; numbers correspond to formats inTable 3.9

Table 3.9: Transaction Formats

Number Format Size (bits)a
1 (trans)(addr)(src)(dest) 92

2 (trans)(addr)(src)(dest)(block) 124,220,604
3 (trans)(addr)(src)(dest)(word) 124

4 (trans)(addr)(src) 82

5 (trans)(addr)(src)(block) 114,210,594

6 (trans)(addr)(src)(word) 114

53

'assuming: (trans) is 8 bits, (addr) is 64bits, (src) and (dest) are 10bits,(word) is 32 bits,(block) is 32, 128 or512
bits

54

ory. An accurate model of the MIPS R2000 cpu was used todrive the two level memory hierarchy.

The cpumodel accurately modeled pipelining and interlocks inthe integer and floating point arith

metic units. Themain memory was "ideal" inthat itwas assumed tohave zero latency and presented

no serialization to simultaneous accesses by multiple processors. Thisassumption was required by

the stack simulation algorithm.

Synchronizationoperations were restricted to operationson locks and barriers. The ideal

mainmemoryprovidedsupport for the high-levelsynchronizationoperationsLOCKQock_variable),

UNLOCKQockjvariable) and WAIT_BARRIER(barrier_variable). Locks and barriers were han

dled by appropriately stalling processes at the main memory and maintaining queues of stalled

process identifiers for each lock and barrier. The main memory incurred no serialization delay for

simultaneous queueing operations; delay was incurred, however, for processes waiting in queue

for access to a lock or for the completion of a barrier. This particular synchronization model was

used so that cache performance would not be biased by poor synchronization support. These ideal

assumptions are justified by the detailed discussion of synchronization techniques in Chapter 5.

When measuring network traffic, it was assumed that the main memory was interleaved

and distributed among the processors. It was also assumed that one cache controller and one mem

ory bank shared a network port. Any transactions issued from a block of main memory was thus

counted with transactions issued from its respective cache controller. Interleaving was performed

using bit selection on the lowest order bits of a block address.

Since all memory references were satisfied in one cache cycle, independent of whether

there was a hit or miss, the system under study was sequentially consistent The results should also

apply, however, to multiprocessors with weaker coherence standards.

64 processors were used for all simulations. It was assumed that for each benchmark that

the entire program could reside in main memory.

The simulated caches were fully associative with LRU replacement, using demand fetch

with fetch-on-write, and write-back (except for writes to shared writeable data in UPDATE and

COMPk, which were write-through).

3.5.3 Benchmarks

Table 3.10 shows some characteristics of the benchmarks used in the comparison. The

three benchmarks are:

1. VERF: a program that checks the equivalence of two Boolean networks;

55

Table 3.10: Benchmark Characteristics

Benchmark Instruction a

References

Data References b

Shared Non-shared

% Writes

(Shared)
Utilization Data Memoryc

Touched

verf 2,070,000 332,000 219,000 7.01% 69% 609kB

ugray 3,540,000 359,000 956,000 1.33% 89% 2.27MB

locus 10,600,000 399,000 3,330,000 7.2% 98% 1.76MB

per cpu

6percpu
ctouched by all processors

2. LOCUS: a router for standard cell layouts;

3. UGRAY: a ray tracer,

The reference counts of Table 3.10 areon a per childbasis, and only include references

after steady-state 2was reached. Furthermore, all results in Section 3.6.1 are for steady-state be

havior. The caches were considered to be in steady-state whenone of the following conditions was

met:

1. The average working set is loaded. Here the size of the working set is defined asthe minimum

cache size for which the average steady-statemiss ratio is within 10%of that observed for an

infinite cache.

2. The average amountof valid data percache is greater than or equal to the maximum cache

size of interest

Steady-state forVERF was reached using condition 2. Steady-state for UGRAY andLOCUS was

reached using condition 1. This is shownin Table 3.11, which shows the average numberof valid

blocks in a cache when steady-state was established. The results are for 64 processors and the

INVAL protocol; results for the other protocols are similar. The table also shows the size of the

"working set" for each benchmark. For UGRAY and LOCUS the working set was loaded at the

start of steady-state. VERF exhibitedmuch poorer locality, with a working set larger than256kB.

However, the caches in all VERF simulations had at least64kB of valid data at the start of steady-

state.

'̂Steady-state" cache statistics do not include the effects of loading an empty cache: the cache isloaded at the begin
ning of the simulation.

Table 3.11: Steady-State Statistics

Benchmark Block Valid Data "Working Set" ° Miss Ratio

Size (at start of Cold Warm

steady state) % %

VERF 16B 79kB 00 7.05 5.47

VERF 32B 115kB 00 7.17 6.04

VERF 64B 156kB 00 7.77 6.86

UGRAY 16B 53kB 32kB 2.33 0.586

UGRAY 32B 61kB 32kB 1.36 0.509

UGRAY 64B 76kB 32kB 0.870 0.468

LOCUS 16B 34kB 32kB 1.07 0.486

LOCUS 32B 38kB 32kB 0.789 0.316

LOCUS 64B 43kB 32kB 0.616 0.217

56

"Minimum cachesize for which steady-state miss ratio is within 10%of infinite cachemiss ratio.

The last two columns of Table 3.11 show cold and warm miss ratios (for all data refer

ences). These show thelarge impact of a coldstart3.

3.6 Numerical Results

The first part of this section compares the UPDATE, INVAL and COMPk coherence

schemes for a variety of cache andline sizes. The results arepresented in five subsections. The first

three examine the three coherence schemes individually. The last two subsections compare their

relative performance and examine the effectof varying the invalidation threshold in the competi

tive protocol. The synchronization behavior of the benchmarks is described in the last partof this

section.

3.6.1 Misses and Traffic

Invalidation Protocol

Figures 3.14 and 3.15 show miss ratios and traffic as a function of block and cache size

for the invalidation protocol. The UGRAY and LOCUS benchmarks have very good locality of

reference atevensmall cache sizes, soincreasing theblock sizehas a more pronounced reduction in

missesthan increasing cachesize. Increasing the blocksize to 64 bytesfor a 16kB cache, however,

'Coldstart" cache statistics include the effectsof loading anemptycache.

57

causes a sharp increase in misses due to cache pollution 4. The VERF benchmark has muchless

locality of reference and exhibits larger reductions in misses as cache size is increased, but suffers

from cache pollution and an increase ininvalidation misses when theblocksizeisincreased beyond

4 bytes.

Forallbenchmarks traffic falls gradually as cache size is increased. The trends fordiffer

entblocksizes, however, are different for each benchmark. For VERF, traffic consistendy increases

with increasing block size, due to increases in miss ratio caused by cache pollution and increased

invalidation traffic. For LOCUS, traffic consistendy decreases as block sizeisdecreased, indicating

that most of the extra data fetched on a miss is eventually used. Traffic for UGRAY falls as block

size increases from 4 to 16 bytes, but rises as block size is further increased to 64 bytes. For the

16kB cache this is due to cache pollution, as observed in the plot of miss ratios. For larger cache

sizes traffic rises because the reduction in misses isnot sufficient tooffset the higher cost of fetching
64B blocks.

Min R«fo

1«-01 -

1*-02 -

Block 8izt: 4B 16B 648 4B 168 648 4B 16B 648 48 16B 64B

CcctwSbt: 16kB 32kB 64kB Infinite

Figure 3.14: Miss Ratios for Invalidation Protocol

4Atsome size, ablock becomes so large that more useful data isreplaced than isbrought in, and the number ofmisses
increases. In suchasituation, unused data is said to"pollute" thecache.

Update Protocol

Bytes/Instruction

UOJUV

<. k<
V H

LOCUS

BleckSin: 4B16B 648 4B16B64B 4B16B 648 4816B 648

CactwSb*: 16kB 32kB 64kB Infinite

Figure 3.15: Traffic for Invalidation Protocol

58

Miss ratios for the update protocol (Figure 3.16) follow trends similar to those of the in

validation protocol, with values up to 5 times smaller. An exception occurs, however, for the VERF

benchmark with an infinite cache, in which increasingblock size reduces misses substantially. This

is expected since cache pollution cannot occur in an infinite cache and misses due to false sharing

5cannot occur using the update protocol (since noinvalidations take place).

Traffic for the update protocol (Figure 3.17) follows a similar trend only for the VERF

benchmark. This is because the fractionof update traffic is considerablyhigher than the fraction of

invalidationtrafficobserved forthe invalidationprotocol. Forthe LOCUS benchmark, the relation

ship between traffic andblock size reversesascache size increases, showing how the contributionof

update traffic dominates in large caches. The contribution of update traffic in the UGRAY bench

mark remains about the same as cache size increases. As observed for the invalidation scheme,

cache pollution causes the sharp increase in traffic for UGRAY with a 16kB cache and 64B block.

sFalse sharing occurs when two ormore processors concurrently access unrelated data items that have been put inthe
same cacheblock. Although the processorsarenot sharingdata, the coherencesystem actsas if they arebecausesharing
is determined on a block basis. False sharing causesunnecessary invalidations andupdatetraffic.

Mm Ratio

1«-01 -

Block Size: 48 168 648 4B16B648 48168 648 4B168 648

Cache Size: IGkB 32kB 64kB Infinite

Figure 3.16: Miss Ratios forUpdate Protocol

Bytealnstruetion

1O+00 -

Block Size: 48 16B 648 48 16B 648 48 168 648 48 16B 64B

Cache Size: 16kB 32kB 64kB Infinite

Figure 3.17: Traffic for Update Protocol

59

60

Competitive Protocol

As expected, results for thecompetitive protocol (Figures 3.18 and 3.19) follow trends

that are a mix of those observed for theother protocols. These results are for a self-invalidation

threshold of 8. Missratios andtraffic values liebetween those of INVAL andUPDATE. Missratios

follow the trends of the other schemes with the exception ofVERF with an infinite cache. Here the

miss ratio declines as block size increases from 4B to 16B,as observed for the UPDATE scheme.

As block size is increased further to 64B, the numberof self-invalidations rises and the miss ratio

increases, as observed for the INVAL scheme.

Traffic for COMPk also follows trends thatare a composite of the behavior of INVAL

and UPDATE. VERF follows the same trends with values between those of INVALand UPDATE.

Traffic forLOCUS decreases from 4Bto 16B block sizes, and rises from 16B to64B block sizes, as

observed forINVAL. The presence ofupdates, however, causes the changes tobeless severe since

the numberof misses is substantially reduced. The results for UGRAY showthat, as block size is

increased, a reductionin update traffic reverses the increase in trafficobserved for UPDATE.

Use Ratio

1*-01

6

2

VERF / V "

1t-02 UGRAY
e e •

••'• •• \ *
e

6 - V \ \ \

\ \e \v
2

•

\

.0CU8 *

•A
\ • -

•

Block Size: 48 16B 64B 48 16B 64B 4B 16B 64B 48 16B 648

Cache Size: 16kB 32kB 64KB Infinite

Figure 3.18: Miss Ratios for Competitive Protocol

Bytes/Instruction

2-

1.6-

7-

6-

2-

1.6-

VERF

• UQRAY

••••♦

L0CU8

:•*-*

*> -i
Block Size: 4B 16B 648 48 16B 648 48 168 648 48 168 648

Cache Size: 16kB 32kB 64kB Infinite

Figure 3.19: Traffic for Competitive Protocol

61

Comparison

Figures 3.20 and 3.21 show therelative theperformance of theschemes assuming a64kB

cache. In almost all cases UPDATE provides areduction inmiss ratio atthe expense of an increase

in traffic. COMPk results are roughly the average of those for UPDATE and INVAL, although in

a couple of examples (VERF, 64B block and UGRAY, 64B block) COMPk has the least amount

of traffic. UPDATE and COMPk improve miss ratios the most for large block sizes, which is

expected since false sharingincreases with block size and causes an increase in invalidation misses

for INVAL.

With a64Bblocksize,which isdesirable tominimizedirectory overhead, theincreases in

traffic for using UPDATE over INVAL are 31% forVERF, 0% for UGRAY and 282% for LOCUS.

The corresponding increases for using COMPk are -5% for VERF, 18% for UGRAY and 56%

for LOCUS. By using UPDATE/COMPk in place of INVAL, miss ratios improve by 19%/15%,

74%/57% and 66%/17% for VERF, UGRAY and LOCUS, respectively.

Since all of the miss ratios for UGRAY and LOCUS are less than 1%, reducing them

should have little impact on the average number of cycles per instruction. VERF exhibits much

higher missratios, and theupdate schemes provide significant reductions for cache sizeslargerthan

62

64KB. The benefit ofUPDATE and COMPk may therefore be substantial. Absolute multiprocessor
performance is considered in detail in Section 4.5, which considers the impact ofnetwork delay on
processor utilization.

1«-03-

MVAL UPDATE INVAL UPDATE INVAL UPDATE

COUP! COUP! COUPS

Figure 3.20: Comparison of Miss Ratios for All Protocols

3.6.2 Performance of the Competitive Protocol

Figures 3.22 to 3.27 show miss ratios and traffic for the three benchmarks with infinite

caches and three block sizes: 16B, 32B and 64B. Point results for INVAL,COMP8 and UPDATEare

shown for reference. As k -• oo,miss ratios and traffic converge to those measured for UPDATE.

As k -> 1, the miss ratios converge to those measured for INVAL. The miss ratios converge be

cause a COMP1 scheme invalidates blocks onthe first update. Traffic does notconverge, however,

because the INVAL protocol sometimes requires blocks to be retrieved from caches withmodified

copies. The INVAL protocol is also write-back, while COMP1 is write-through.

The figures show thatmostof thereduction in miss ratio is achieved by k « 10, at which

pointtraffic has increased to about the average of that forUPDATE andINVAL.

BytMAnttwcton

9

2

VERF M

*s
_

1**00

5

/ -

2
-

*

X
•-.•••

»

/»
UORAV •

y
-

10-01 * LOCUS
-

INVAL UPDATE INVAL UPDATE INVAL UPDATE

COMPO COUPS COMPt

4B Stock 168 Block MB Block

Figure 3.21: Comparison ofTraffic (Volume) for All Protocols

Miss Ratios for SELFINVAL Schsme—VERF Benchmark

.-3
Miss Ratio x 10

70.00

65.00

60.00

55.00

50.00

45.00

40.00

35.00

30.00

25.00

20.00

15.00

10.00

0.00

I I I
•

1

1 1

- \ —

_ J INVAL

V- \
~ V- \
_ \\ \64B

V N
-

\\ \ COMP8
\ \ \

16BNjk Ns

- UPDATE • -

1 1 1
•

1 1
30.0010.00 20.00

k

40.00

Figure 3.22: Miss Ratios Versus Self-Invalidation Threshold (VERF)

63

Traffic for SELFtNVAL Scheme—VERF Bonchmark

Traffic (Bytas/lnstruction)

8.00

7.00

6.00

5.00

4.00

3.00

2.00

1.00

I I I I 1
O

-

UPDATE

-

—
-

-

64B ^~~

COMP8 ^'"

-"""""" O -

INVAL

y

..-0''

32B

e
-

"•-•'" IHi *~

J I 1 1 1
0.00 10.00 20.00 30.00

k

40.00

Figure 3.23: Traffic Versus Self-Invalidation Threshold (VERF)

64

Miss Ratios for SELFtNVAL Scheme—LOCUS Bonchmark

-3
Miss Ratio x 10

5.00 J 1 1 1 1 _

4.50

•
\
1

—

4.00 1 INVAL
1

-

3.50
I
1
1

—

3.00
•

1
1

-

2.50

•\COMP8
-

2.00

s^; "*-^.^ 16B UPDATE"

1.50 ^^# •

1.00
V"""--... 32B

I

64B "

1 1

0.50 • -

1 1
20.00

k

30.000.00 10.00 40.00

Figure 3.24: Miss Ratios Versus Self-Invalidation Threshold (LOCUS)

65

Traffic for SELRNVAL Scheme—LOCUS Benchmark

Traffic (Bytes/Instruction)

1 I 1 1 1
O

0.40

UPDATE e

0.35
o -

0.30

0.25

COMP8 ^^J^ -"""" L.—

•° •' "x^64B

0.20 /
-

0.15

o

8
i

INVAL

1 1 1 1
0.00 10.00 20.00 30.00 40.00

Figure 3.25: Traffic Versus Self-InvalidationThreshold (LOCUS)

66

Miss Ratios for SELFtNVAL Scheme—UGRAY Benchmark

.-3Miss Ratio x 10'

Figure 3.26: Miss Ratios Versus Self-Invalidation Threshold (UGRAY)

67

Traffic for SELFtNVAL Scheme—UGRAY Benchmark

Traffic (Bytes/Instruction)

0.24

1 1 1

I
1

_ 1
I
I

I I

0.22

1
_ 1

I
—

0.20

1
1

; 1

•\s4B

UPDATE *
•

0.18 '; \

0.16 \\32B .^^"^

0.14

« 16B

INVAL
-

0.12 •

"I I I I I "

0.00 10.00 20.00

k

30.00 40.00

Figure 3.27: Traffic Versus Self-Invalidation Threshold (UGRAY)

68

69

3.6.3 Coherence Traffic Versus Multiprocessor Size

If the size of a multiprocessor is increased, theaverage number of cached copies should

also increase if an application has enough parallelism to exploit the processors. This results in

an increase in coherence traffic. If the increase is large, the scalability of a directory protocol

can be severely limited. Figures 3.28 to 3.30show the average number of cached copies versus

multiprocessor size for the three protocols. Thenumber of copies is the average observed for an

invalidation or update request from a cache. The plots show that, to first order, the number of

copies grows linearly with the number of processors. As expected, the average number of copies

for UPDATE and COMPk are much higher than for INVAL. They are sufficiently high that both

UPDATE and COMPk are only appropriate formultiprocessors with 100orfewer processors. These

results were limitedto 128processors, so it is possible thatquitedifferentbehaviorcouldoccur for

larger machines.

3.6.4 Synchronization Behavior

The cache simulatorwas instrumented to collectcongestioninformationfor lock and bar

rier operations. Inthe simulations noserialization delay was incurred foraccess tosynchronization

variables; only serialization due to mutual exclusion was modeled.

Alock was considered toexhibit high contention if the average length ofitswaiting queue

(as observed by an arriving process) exceeded one. The simulations showed that only a few locks

experienced heavy congestion, and those that did were readily identifiable because they guarded a

frequently used shared data structure. Only 1 of 85 locks in VERFand 2 of 82 locks in LOCUS

exhibited mean queue lengths inexcess ofone (UGRAY did not use locks). Inboth programs the

mutually exclusive operation built with these locks could be more efficiently implemented using a

fetch&op operationwithcombining.

Nobenchmark made frequent use of barriers, soany barrier congestion was of little con

sequence.

Since the numberofsimulated processors was relatively small, and the computation gran

ularity was large, hardware implementations of locks and barriers are notjustified for the bench

marks considered here. The congestion observed for a few locks could beavoided byfetch&op with

combining, buttheimprovement inoverall performance would probably beminimal. These obser

vations are notsurprising because VERF, UGRAY and LOCUS were written toperform efficiently

with weak synchronization support

COPIES PER
INVALIDATION

I

2J2Q-

2.00-

1.80-

1.60-

1.40-

1.20-

1.00-

0.80-

0.60-

0.40-

0.20-

0.00Ll

COPIES PER INVAUDATION

VS

NUMBER OF PROCESSORS

1 1 r

ugray 32B block /

verf32B block

locus 32B block

16 32 64 128

NUMBER OF PROCESSORS

Id

256

Figure 3.28: Copies Per Inval Versus MultiprocessorSize

70

COPIES PER
UPDATE

COPIES PER UPDATE (COMPETTTIVE)

VS

NUMBER OP PROCESSORS

7.00 _l I I 1 1 l_

6.00 -

verf32Bblock y

I

/

-

5.00

1

-

4.00
!

-

ugray 32B block

-3.00
J 1

2.00
1 locus 32B block -

1.00

I

1 .-••**'"

1 1 1 1 1

16 32 64 128 256

NUMBER OF PROCESSORS

Figure 3.29: Copies Per Update Versus Multiprocessor Size

71

COPIES PER
UPDATE

COPIES PER UPDATE(FULLUPDATE)

VS

NUMBER OF PROCESSORS

16.00

I I I

vert 32B block

I I I

14.00 /

12.00 /

10.00 /

8.00

/ ugray 32B block

6.00 /

4.00
,---'*'

-

,' ..••'' locus 32B block

2.00 _..,-'• -

0.00 -I I l I I I-

16 32 64 128 256

NUMBER OF PROCESSORS

Figure 3.30: Copies Per Update Versus Multiprocessor Size

72

73

3.7 Conclusions

In this chapter it has been shown howan efficient stack simulation algorithm for shared-

buscoherence protocols can be extended to simulate directory-based coherence schemes. The al

gorithm substantially reduces the cost of multiprocessor simulation by permitting multiple cache
sizes to be analyzed in a single run,

The stack algorithm was applied toupdate, invalidate and competitive directory protocols

for three benchmark programs. The competitive scheme, denoted COMPk, isasimple one inwhich

cache blocks thatdraw inexcessofk updates betweenreferences are invalidated. COMPkwith k =

8 was simulated, andresults for othervaluesof k was found from data obtained from simulations

of the update protocol. COMPk performance was determined using a count of update-runs: the

number of external updates to a cached block between local references. This metric extends the

notions of ping/cling and write-run introduced inother locality models.

The simulations show that the update and competitive protocols can reduce overall miss

ratios byuptoa factor of 3. The reduction inmisses comes atthe expense ofacomparable increase

in network traffic. Two of the benchmarks, LOCUS and UGRAY, exhibited overall miss ratios of

1%orless for 64kB orgreater cache sizes. Consequently, the improvement incycles per instruction

due to a reduced miss ratio would probably be small. The other benchmark, VERF, had much

poorer locality of reference and showed miss ratios between 5 and 10% for 64kB or greater cache

sizes. The improvement in cycles per instruction attainable by an update scheme would probably
be appreciable only for cache sizesof 128kB or greater.

Estimates ofCOMPk performance for values ofk from 1to 40indicate that abroad range
of miss ratio/traffic tradeoffs are possible by varying k from 1, in which COMPk is similar to an

invalidation protocol, to 10, at which mostof the attainable miss ratio reduction is achieved but

traffic is still less than that of a full update scheme. This suggests that a good choice for k lies
between 4 and 10.

74

Chapter 4

Network Performance Analysis

4.1 Overview

The stack simulationtechniquesof Chapter 3 require the assumption that the cachemiss

penalty (network latency) is zero. This was adequate for estimating miss ratios and traffic, but

not for determining average memory access time or, equivalently, processor utilization. In this

chapter an analytic modelling technique is presented that permits rapid estimation of the latency

and throughput of a broad class of multiprocessor interconnection networks, including k-ary n-

cubes, Delta networks, and multidimensional meshes. The relative performance of these networks

and the accuracy of the technique are shown via extensive numerical results that are compared to

simulation data. In Section 4.5 these results are combined with the cache performance data of

Chapter3 to estimate processorutilization for several protocols on severalnetworks.

In this chapter it is shown that relatively simple interconnection networks can provide

good performance for the workloads of interest. The contributionsare a powerful analytic mod

elling technique for multiprocessor networks, and a quantitative comparison of a broad number of

alternatives.

4.2 Previous Work

There is a huge literature on the subject of multiprocessor network design and perfor

mance analysis, with recent surveys in [RF87, Sie85, DJ81a, Fen81]. This work can be roughly

classified into three categories:

1. network design

75

2. performance analysis via stochasticmodels and simulation

3. performance analysis via formal properties of specific designs

This section summarizes previous work according to these categories. It concludes with

a discussion of the networks considered in this research, and the rationale for their selection.

4.2.1 Network Design

Multiprocessor interconnection networks canbeclassified according to topology, switch

ing technique, flow control scheme and routing algorithm. Virtually all networks of interest are

constructed of jxk cross-bar switches, possibly augmented withbufferqueues atthe inputs and/or

outputs (Figure 4.1). A network topology isdefined by the sizeof the basic switching elements and

Input Buffers

Crossbar Switch

Output
Channels

Figure 4.1: Structure of a Network Switch

the way in which they are connected. Much of the literature on interconnection networks concerns

different topologies and their properties; surveys are in [Fen81, Sie85, RF87]. Three of the most

common topologies are k-ary n-cubes, k-ary n-dimensional meshes, and Delta networks. These

topologies are the focus of the numerical results in Section 4.4.

k-ary n-cubes (Figure 4.2) are n-dimensional toroidal meshes with k processors per di

mension. Processor locations are denoted by n digitradix k numbers. The neighbors ofaprocessor

(the other processors to which it is connected) are those withlocations in which oneof the n digits

differsby one. This class of networkincludes rings (k-ary 1-cubes) and hypercubes (2-ary n-cubes).

k-aryn-cubes for which k > 2 canbe further distinguished by whetheror not two links in opposite

76

directions are provided ateach connection (Figure 4.3). Providing two links reduces the minimum

latency by about a factor of 2, increases themaximum bandwidth, and supports the combining of

synchronization references, as described in Chapter 5.

k=3, n=2

Figure 4.2: Unidirectional k-ary n-cube Network

k-ary n-dimensionalmeshes (Figure 4.4) are k-ary n-cubes with the "end-around" con

nections removed. End-around connectionsarethose between processors whose dissimilarlocation

digits are 0 andk-\. With end-around connections removed, two links mustbe provided foreach

connection.

Delta networks [Pat81] are a class of multistage network that includes many common

subclasses, including Omega networks and indirect binary cubes [Law75, Pea77]; they are also

closely related to the more general class of Banyan networks [GL73]. Delta networks are con

structedof n stages of axb crossbar switches, connected in a recursive manner illustrated in Figure

4.5 (taken from [TRH89]). A one stage Deltanetwork is simply a single axb switch. An I-stage

Delta network isconstructed from a L-1 stage Delta networks connected to anewcolumn of b1-1

switches. The interconnections are subjectto the restriction that all inputsto a particular switch at

stage L must come from the same crossbar output at stage L - 1. Ann stage network therefore

has an inputs and bn outputs, which aredesignated by n-digit radix-aand n-digit radix-6 numbers,

respectively. By construction,Deltanetworks provideaunique pathbetween eachof the inputs and

77

k=3, n=2

Figure 4.3: Bidirectional k-ary n-cube Network

k=3, n=2

Figure4.4: k-ary n-dimensional Mesh

78

outputs, facilitating digit-controlled routing. In digit-controlled routing, a packet atstage t of the

network is sentout the switchoutputcorresponding to the tth digitof the destination address. This

simple, decentralized routingstrategy is an attractive feature of Deltanetworks.

1

(L-1) Level
Delta Network

1

1 1
1 Level
Delta Network
(a x b Crossbar)

1

1

•

N. /
.

\ XX / a b
a*(L-1)

LEVEL L-1 LEVELL

Figure 4.5: Recursive Structure of Delta Networks

Interconnection schemes are further classified as single stage or multi-stage. A network

topology is single stage if each cross-bar switch is directly connected to at least one processing

element. A network topology is multi-stage if it is not single stage, k-ary n-cubes and k-ary n-

dimensionalmeshes aretherefore single stage, and Deltanetworks aremultistage.

There are two common networkswitching techniques: circuit-switchingand packet-switching.

In a circuit-switchednetwork, a complete path from source to destination is established and held

forthe entiretime during which a packetis transferred. Messages in apacket-switched networkare

buffered at the switches, so only partial paths are established and held. Circuit-switched networks

are attractive where low latency is desired and the required bandwidth is low. Packet-switched

networks are desirable when high bandwidth is required, because the buffering at switches per-

79

mits the network tobepipelined. Packet-switched networks are also desirable when thecombining

synchronization technique (described in Section 1.2.2) mustbe supported.

With a packet-switching scheme, there are three common ways in which packets can

be buffered: store-and-forward, virtual cut-through and wormhole. Figure 4.6 introduces some

terminology (due to [DS87]) used todescribe the buffering strategies. Messages are broken upinto

packets, which are the smallest blocks of data for which routing information ismaintained, packets

are composed of flits, which are the smallest blocks of data for which flow control is maintained.

flits are composed of phits, which are the sizeof thephysical channels connecting theswitches.

flit

phit i phit I phit

.ts .tr .-s
£Z sz s:
Q. a. CL

Physical Channel

packet

Switch

Figure 4.6: Packet-switching Terminology

Inastore-and-forwardpacket-switching scheme,completepacketsare bufferedatswitches

suchthat transmission to the next switch cannot begin untilthe complete packet has beenreceived

and stored. In a virtual cut-through packet-switching scheme, the latency seen by a packet at a

switch is reduced by permittingthe packet to be transmitted to the next switch after the first flit is

received. In both schemes, a packet can be forwarded only if the destination switch has enough

buffers for an entire packet wormhole packet-switching is similar tocut-through, butonlyrequires

the allocation ofenoughbuffer space fora single flit before forwarding a packet.

Regardless of the buffermanagement (flow control) schemethatis used,networkperfor

mance can be substantially improved by breaking buffer queues into multiple virtual channels at

each physical input or output port in a switch [Dal90c]. This technique is effective at reducing a

component of blocking delay illustrated in Figure 4.1. Figure 4.1 shows a typical switch imple-

80

mentation with one buffer per input. If a first-in first-out (FIFO) queueing discipline isused at the

input queues, acustomer at the head of the queue can block other customers that, if they were at

thehead, would notbe blocked. Figure 4.1 shows an example of such a situation. Here customer

1(destined for output 1) isblocked because customer 2 at the other queue has been granted access

to output 1. Customer 3, however, is destined for output 2, and could be sent to output 2 during

this switch cycle if itcould bypass customer 1. Simulation studies have shown that this phenomena

can significantly reduce themaximum throughput of the switch [Dal90c, TF88]. Figure 4.7shows

how congestion of this nature can be avoided by adding passing lanes [Dal90c] at the outputs or

inputs. These extra lanes are denoted virtual channels. Adding extra lanes reduces the frequency

with which the contention illustrated in Figure 4.1 occurs. The cost ofextra lanes is extra intercon

nectwithin the switch; the size of the cross-bar switch can remain the same, witheach input port

multiplexed among its virtualchannelqueues [Dal90c].

Buffer Queues Channel Queues

y* Virtual Channels

r^s1
1

3

2
2

Crossbar Switch
vj

Figure 4.7: A Network Switch with Virtual Channels

A thirdcharacteristic of a network is routing algorithm, forwhich there are two classes:

oblivious and adaptive. An oblivious routing scheme is one in which the route taken by a packet

is determined solelyby the packet's source and destination. An adaptive routing scheme usesthe

source and destination plus knowledge about thestate of thenetwork, such asthenumberof packets

81

inbuffers, oblivious routing schemes are simpler than adaptive schemes and ensure in-order trans

mission of packets between two processing elements. By exploiting extra knowledge about the

network, however, adaptive schemes offer potentially better performance. The extra performance

has a cost: stable, deadlock-free adaptive routing schemes are generally more difficult to design

and analyze. Itisalso more difficult todesign combining schemes that work with adaptive routing
algorithms.

The network models inthis chapter are restricted tooblivious routing. Examples ofobliv

ious routing algorithms include:

1. digit routing in Delta networks, as described above.

2. e-cube routing ([SB77]): The e-cube routing algorithm isanoblivious routing algorithm for

binary hypercubes. Let N be the number of processing elements in the system. Each of

the N switches in a hypercube has 1 + log N output links, where links 0 to log N - 1 go

to other switches and link logN goes to the processing element at that switch. In e-cube

routing, a packet with destination datswitch i issent to the output link corresponding to the

most significant bit thatdiffers between i andd; if no bitsdiffer, the packet has reached its

destination. Since the algorithm does notdepend on the state of the network, it is oblivious.

3. Routing in k-ary n-cubes ([DS87]): Routing in k-ary n-cubes is a generalization of e-cube

routing. Here routing is performed inorder ofdecreasing dimension (k- 1,k- 2,...1,0)by

comparing the kdigits ofthe radix-/: addresses ofthe packet destination and switch. Apacket

withdestination dat switch i is sentalongthehighestdimension at whichdand i differ, when

d = t, the packet has arrived atits destination. To prevent deadlock, the buffers for each input

at a switch must be divided into two virtual channels to prevent cyclic dependencies among

buffers at different switches. Virtualchannel 0 is taken when d < i, and channel 1 otherwise.

k-ary n-cubes require virtual channels for both deadlock avoidance and congestion re

duction. For clarity,channels used to prevent deadlock will be referred to as virtualchannels, and

channels used to reduce congestion will be referred toas sub-channels (Figure 4.8). AsFigure 4.8

shows, a virtual channel may be made up of several sub-channels.

4.2.2 Performance Analysis Via Simulation and Stochastic Modelling

Until recently, few examples of large scale multiprocessors or programs existed, so per

formance analysis of multiprocessor networks was typically done using synthetic workloads. With

Buffer Queues Channel Queues

-i

1 1^ j Virtual Channels

a
1

l(/\ >

J Crossbar Switch
o

2

1 ouD—cnanneis

J

Figure 4.8: Virtual Channels and Sub-channels

82

Table 4.1: Published Network Performance Studies

Study Network Technique Features

Kruskal/Snir Delta Probabilistic Infinite buffers,
[KS83] Analysis Optimistic Switch Model,

Store-and-forward

Dias/Jump Delta Probabilistic Single buffers.
[DJ81b] Analysis Various Switch Models,

Store-and-forward
Jenq Delta Probabilistic Single buffers,
[Jen83] Analysis FIFO Buffering

Store-and-forward

Yoonet. al. Delta Probabilistic Multiple buffers,
[YLL90] Analysis FIFO Buffering,

Store-and-forward
Kruskal et. al. Delta Probabilistic Waiting Time Distribution,
[KSW88] Analysis Optimistic Switch Model,

Infinite Buffers,

Store-and-forward

Labarta et. al. Delta Open Queueing Multiple buffers,
[LDC89] Network FIFO Buffering,

Store-and-forward

83

asufficiently simple workload, exact or approximate analysis using stochastic models is possible.

Tables 4.1 and 4.2 summarize some commonly referenced network performance studies, indicating

analysis technique and special features. Topical workload assumptions are:

1. uniform traffic

2. one flit per packet

3. infinite buffers

4. synchronous switching

5. geometric arrivals

The mostcommon analysis technique is to assume an arrival process independent of network state

and use an approximate discrete time Markov model.

Some studies have considered extensions of thebasic assumptions. Models of Delta net

works, k-ary n-cubes, and hypercubes with finite buffers have been studied in [DJ81b, ABC^89,

Table 4.2: Published Network Performance Studies (continued)

Study Network Technique Features

Marsan et. al.

[ABC+89]
Delta Generalized

Stochastic

Petri nets

Multiple buffers,
FIFO Buffering,
Virtual Cut-through

TheimereL al.

[TRH89]
Delta Probabilistic

Analysis
Single buffers,
FIFO Buffering,
Store-and-forward

Patel/Hanison

[PH88]
Delta Probabilistic

Analysis
Hot-spot Traffic,
Infinite Buffers,

FIFO Queueing,
Store-and-forward

Reed et al.

[RF87]
Single Stage Closed Queueing

Networks

Infinite buffers,

FIFO Buffering,
Store-and-forward

Born et. al.

[BK88]
Single Stage Probabilistic

Analysis
Zero delay channels,
Infinite Buffers,

Store-and-forward

Abraham et. al.

[AP89]
Hypercube Probabilistic

Analysis
FIFO Queueing,
Finite Buffers,

Store-and-forward

Dally
[Dal90b]

k-ary n-cubes Probabilistic

Analysis
FIFO Queueing,
Wormhole Routing

84

85

LDC89, YLL90, Dal90b, AP89]. Hot-spot traffic isconsidered in [PH88] for cross-bar, multiple-

bus, and Delta networks. Multi-flit packets with virtual cut-through are considered in [ABCf89]

for Delta networks with finite buffers. As Tables 4.1 and 4.2 show, few results have been published

for models considering the simultaneous impact of finite buffers, and multi-flit packets. Another

problem with existing work is the use of different timing models for switches. Results in [DJ81b]

illustrate the significant variations in network performance that can result from different switch

models.

4.2.3 Performance Analysis Via Formal Properties

The stochastic models of the previous section make extremely simplistic assumptions

about the temporal and spacial characteristics ofpacket transmission. With more knowledge about

the communication patterns of an intended workload, stronger statements can sometimes be made

about network performance. Such results have been published forspecific problems in linear al

gebra, graph theory, sorting and other areas [QD84, B+84, Joh90]. Unfortunately, the engineering

applications forwhich thisresearch isaddressed donottypically permitexploitationoftheseresults.

Otherformal results have beenpublished concerning efficientemulation ofanidealshared

memory on realizable networks. A recent result by Ranade [RBJ88] shows how to efficiently em

ulate a concurrent read, concurrent write shared memory in time logarithmic inthe number of pro

cessors. Unfortunately, the emulation algorithm has several implementation problems if coherent

caches are provided:

1. It is unclear how combining canbe performed oncacheable data. One straightforward solu

tion is to only perform combining for fetch&op accesses, and mark fetch&op variables un

cacheable; unfortunately, the formal properties of the algorithm would notnecessarily hold.

Actual performance of such an scheme could still be good if most contention occurred on

fetch&op variables (intuitively, this would be expected).

2. It isassumed thatshared memory accesses are issued synchronously. With modern processing

elements, however, the timeto access localcachememory is oneor two orders of magnitude

less than the time to access memory across a network; thus the synchronous network "cy

cle time" is considerably greater thanthe processor cycle time. Ranade describes a way to

emulate asynchronous references on a synchronous network by issuing "dummy"packets at

regular intervals, but this consumes extra network bandwidth.

86

3. Block fetches are generally more time consuming than reads, writes or fetch&op's. This

could adversely affect the network "cycle time".

Furthermore, it is theoretically unclear whether ad hoccombining schemes in multiprocessors with

asynchronous references is less effective [G+83c]. These schemes are described in Section 5.2.6.

4.2.4 Focus of this Research

Despitemany known networkdesignsand performancestudies, it is still difficultto select

the "best" network for a cache coherent shared memory multiprocessor. This is because existing

results do not adequately deal with the combinedeffects of multiple flitpackets, finite buffers, and

sophisticated buffering schemes, or do so only for a very narrow class of network. The rest of

thischapterpresents a modelling technique thatovercomes theseproblems, permitting a relatively

broad class of networks to be studied analytically. The most promisingnetworks can be selected

using these efficient analytic methods and subjected to detailed simulation.

As mentioned previously, the networks considered are:

1. k-ary n-cubes

2. k-ary n-dimensional meshes

3. Delta networks

These were chosen because they represent the most common networks addressed in the literature

and examples of each class have been implementedin real machines. We further assume packet-

switching, oblivious routing and virtual cut-through flow control. Packet-switching is assumed

because it increases bandwidthand permits combining. Oblivious routingis assumed because it is

easier to analyze andensuresin-orderpackettransmission between twopoints. Virtual cut-through

flow control is assumed because it iseasiertomodel thanwormholing, andrequires onlya moderate

increase in the number of buffers. Despite the focus on these classes of networks, the analysis

techniques should be applicable to others.

4.3 An Analytic Modelling Technique

4.3.1 Overview

This section describes a modelling technique that permits any network that can be de

scribed as an interconnected set of jxk switches to be analyzed in a uniform way. The technique

87

isbased ona combination ofalgorithms used inthe Bell Laboratories Queueing Network Analyzer

[Whi83, SW89] and inthefinite buffer approximation technique ofAltiok andPerros [AP87]. These

algorithms are combined and augmented with techniques tomodel synchronous timing, virtual cut-

through flow control, and virtual channels.

The use of queueing models as a basis fornetwork analyis is attractive because thereare

many published techniques formodelling a wide variety of features. Inparticular, open networks of

GI/G/l/nl queues possess many ofthe modelling features required in the analysis ofinterconnection
networks. Figure 4.9 shows how a Delta network can be modelled as an open network of finite

queues. In this model, a customer completing service is held at the server until its destination

queue has a free buffer. Thequeues corresponding to physical channels have queue limit1and are

necessary tomodel thetiming restriction thatonly oneflit cancross a physical channel pernetwork

cycle; they are included in the network only to impose a blocking delay on the buffer queues at

theswitch inputs. The service delay encountered at thechannel queues mustbededucted from the

final overall latency calculation. This basic queueing model can be extended to modelvirtual-cut

through of multi-flit packets, and the effect of having multiple virtual channels at a switch input
(see Section 4.3.4).

4.3.2 The Queueing Network Analyzer

The Bell Laboratories Queueing Network Analyzer (QNA) [Whi83] is a program for

analyzing open networks of GI/G/m queueswiththe following restrictions:

1. first-come, first-served (FCFS) queueing discipline

2. renewal external arrivals

3. nolimits onthe number of customers inthenetwork or at individual queues

4. continuous time service and interarrival distributions

The following discussion is restricted to single server queues, which are sufficient for the network

models of interest.

^I/G/l/n is an example of acommonly used notation for classifying queues. The general form of the notation is
"A/S/m/n", where:"A"denotes the interarrival distribution, "S" denotesthe servicedistribution, "m" denotes thenumber
of servers, and "n" denotes themaximum number of customers allowed in thequeue. GI denotes renewal arrivals and
G denotes a general service distribution. Other common distributions are M and C, denoting exponential and Coxian
distributions, respectively.

Buffer Channel
Queues Crossbar Queues

1

Figure 4.9: Queueing Model of a Delta Network

88

QNA supports two different routingmodels: Markovian and deterministic. WithMarko-

vian routing, allcustomersbelong to a singleclass. After completingservice atqueue i, acustomer

proceeds to queue j with fixed probability q^, independentof its previous history. With deter

ministic routing, each customer belongs to a class with a deterministicroute through the network.

Customers are not permitted to change class.

Since efficient techniques do not exist for analyzingthis class ofnetwork, QNA uses ap

proximationtechniques. QNA uses ^parametricdecomposition algorithm, in which the arrival pro

cesses at each queue are determined globally, and congestion measures determined locally, queue-

by-queue. There are three approximations that form the basis of the QNA algorithm. The first is

the representation of service andinterarrival distributions using only two parameters: the mean and

squared coefficient ofvariation. The secondis the approximation ofgeneral pointarrival anddepar

ture processes as renewal processes; in a general point process, the random variables representing

interarrivals are not necessarily independent, as they are in a renewal process. The third approx

imationis a set of linearexpressions that determine the two moment representations of the point

processes resulting from the superposition and splittingof general point processes, and departures

from a queue (Figure 4.10).

Many other approximation techniques have been proposed to analyze open networks of

queues with similar features [CS78, Dal90a, Per89, GM88, Per90, KX89, Kue79, Bel82, TMH80,

89

External Arrivals

Superposition Departures Splitting

Figure 4.10: Superposition, Departures and Splitting of Point Processes

Aky88, Tak89]. The QNA approach is attractive because it provides a general framework that is

easily extended to handle new features and approximations. Since it uses linear equations for its

global analysis, it is veryefficient and convergence to a single solution is guaranteed.

There are four steps to the QNA algorithm:

1. For deterministic routing, the multiple customer classes are coalesced into asingle aggregate

customer class with Markovian routing.

2. Two-moment interarrival distributions for each queue in the network are determined using a
global analysis.

3. Congestion ateach queue isestimated using GI/G/m approximation formulae.

4. Individual congestion measures are combined to estimate overall network performance.

The following terminology is used to describe thealgorithm. Let:

• n denote the number of queues in the network.

• A, denote the meanarrival rate atqueue i.

• c^ denote the squared coefficient ofvariation ofthe interarrival distribution at queue i.

• Aq, denote the meanrate of external arrivals atqueue i.

90

• qij denote the probability that acustomer leaving queue i proceeds to queue j.

• //, denote the mean service rate at queue i. n = ± isthe mean service time at queue i.

• Pi = w denote the utilization at queue i.

• cj, denote the squared coefficient ofvariation ofthe service distribution at queue i.

• c\ denote the squared coefficient ofvariation ofthe interdeparture distribution at queue i.

Aggregation of Multiple Customer Classes

Multiple customer classes are treated approximately by transforming themultiple classes

and routes into an equivalent single class withMarkovian routing; this simplifies steps 2 and 3 of

the algorithm. Assume that there are r customer classes with the following parameters for each

route k:

• the number ofnodes on the route, n*

t theexternal arrival rate of theclass, Xk

• the squared coefficient of variation of the external arrival process, c\

• the list of 71* nodes visitedon the route, denoted nkj

• the listof njt service times for each step of theroute, denoted Tkj

• the list ofnjt service variability parameters for each step ofthe route, denoted cjfcj-

A single aggregate customer class is determined by finding, for each queue j, values of

^Qj. cqj. tj and c\j that account for all routes that pass through the queue. Aoj, the aggregate rate
of external arrivals, is the sum of arrival rates of allclasses whose routes start at queue j:

A0j= £ k (4.1)
{fc:nfcl=i}

The aggregate variability ofexternal arrivals, q^, is determined using asuperposition approxima
tion that is described in the discussion of Equations (4.10) to (4.14) below:

<& =(l-«i) +«; E ^ (4-2)

91

where wj is determined using Equation (4.13).

The mean, aggregate service time for queue j, tj, is a weighted average of the service

times for allcustomerclasses thatpass through queue j:

t _ Efe=lS{/:nfcf=j}Vfc/

The weights are the fraction of customers corresponding to each route. Aj is the sum of the flow

rates of all routes passingthrough the queue:

n

^ =*.o+X>t-fc (4.4)
k=\

Xij is the flow rate from queue i to queue j:

*tf = £ ** (4-5)
{k,l:nkl=itNki+i=j}

and A,o is the rate at which customersleave queue i.

A,o= £ ** (4.6)
{k:*iknk =»'}

Aggregate service variability, cJJt is found using aweighted average of the second mo
ments of the servicedistributions foreachclass passing through queue j:

2 _ Sfc=l £{/:nfct=j} Vfc/(c?fc/ +1) 2 ,A -x
caj ~ 2\. ~T3 V*JtTjAj

This corresponds to amixture of the service distributions for each route passing through thequeue.

Here r^{clkl +1) is the second moment corresponding to the squared coefficient ofvariability c\kl.
The terms r^ and tJ2 convert the weighted average ofsecond moments, which is itself asecond
moment, to a squared coefficient of variability.

Markovian routing parameters g.j for the aggregate class are determined by considering

the flow of allcustomers through each queue i (denoted A,), and the flow of customers from queue

i to all other queues (denoted Xij):

lij =̂ (4.8)
Determination of Interarrival Distributions

As mentioned, an interarrival distribution is represented using only a mean and squared

coefficient ofvariation. The mean arrival rates atallqueuesarerelated by the ratebalanceequations:

92

Aj = Aoi + I>tftf (4.9)
•=i

The relationship among arrival variabilities are related by linear equations for superpo

sition, departures and splitting (Figure 4.10). The superposition formula is derived as the convex

combination of two different superpositionapproximations:

<Zj = wAj +(1 - v>j)c2pj (4.10)

where c\j is an asymptotic renewal approximation [Whi82] and c2Pi is aPoisson approximation.

•=o AJ

c2Pj = 1 (4.12)

wj = [\+4(1-Pj)2(vj-\))-1 (4.13)

•S =lh¥)2]~l (4.14)
i=o *i

Ci in Equation (4.11) is the variability ofthe fanin stream from queue i. c\j is aweighted sum ofthe
variabilities of the fanin customer streams, cpj is the variability of asuperposition of Poisson fanin

streams, which is itself Poisson. The origin of the weighting factor wj is described in [Whi83].

The departure approximation is basedon Marshall's formula forinterdeparture variability

[Mar68] combined with an estimate of waitingtime at the queue:

<& = 1+ (1 - p})(c2ai - 1) +p2(max{c2si, 0.2} - 1) (4.15)

The splitting approximation is the exact formula obtained for random splittingof a re

newal process [Whi83]:

c} = Pic2 + 1- pi (4.16)

where cf is the variability of i\h stream after splitting, p, is the probability that an arrival goes to

stream i, and c2 is the variability of the arrival process before splitting.

Since allofthe variability approximationsarelinearwith known coefficients, the resulting

system of equations is:

Cai =aj +ECaAi (4.17)
1=1

93

where:
n

aj = 1+Wj{(p0jC2oj - 1) +5>,j[(l - qij) +fcjP?x,]} (4.18)
i=l

z, = l +(max{cj„0.2}-l) (4.19)

wj is determined using Eqn. (4.13), and

bij = WjPijqij(1- p2) (4.20)

Congestion Approximations

Once the arrival rates and variabilities are known for each queue inthe network, the delay

atqueue i is found using avariation of theKraemer and Langenbach-Belz approximation [KLB76]:

EWi =rjP^rt^g
2(1 -Pi) y J

where:

9= { P' c"+<* (4.22
1 A > 1'at —

EWi here does not include service time. The average number in queue is found using

Little's law. Estimates of other congestion measures, such as the variance of the waiting time and

number in queue, can be found using formulae in [Whi83].

Total Network Performance Estimation

Total network performance iscomputed bycombining the congestion measures calculated

for each queue. The average number ofcustomers in system isthe sum of the average number of
customers at each queue:

EN=J2ENi (4.23)
The average latency for an aggregate customer is the sum of the average latency at each queue,
weighted by the probability that an aggregate customer passes through thequeue:

n

ET=Y<ETi (4.24)
i=l

where

ETi = (A,/A0)(rl- + EW{) (4.25)

94

Ao = J2** (4.26)
*=i

Expected latency forcustomers ofa particular class it is determined by:

^ =D^+S) (4.27)
t=i

Overall variabilities and other metrics can estimatedas described in [Whi83].

Figure 4.11 summarizes the QNA algorithm.

if (multiplecustomer classes) {
/* approximate with a single class (Equations (4.1) to (4.8)) */

}

/* find arrival rates (Eqn. (4.9)) */
solve the set of equations:

A> = A0j + E"=1 XiQijj j = 1,..., n

/* find arrival variability (Eqns. (4.10) to (4.16)) */
solve the set of equations:

,2
Ajc2Aj = aj + 2JL, c2Aibij, j = 1,..., n

I*find local congestion measures (Eqn. (421)) */
forO'= l,...,n){

EW. =wjgffih

}

I*find overall network performance */
EN = E?=i ENi
ET = E?=i ETt

Rgure 4.11: Summary of QNA Algorithm

4.3.3 Altiok and Perros' Finite Buffer Approximation

The QNA algorithm does not model the effect of finite buffers at queues. Finite buffer

effects, however, are important in interconnection networks because they determine congestion at

95

physical channels and affect the bandwidth saturation point. This section describes a technique for

modelling finite buffer effects due to Altiok and Perros [AP87]; Section 4.3.4 describes how the

technique is incorporated into the QNA framework.

The Altiok and Perros algorithm applies to networks of finite queues with these restric

tions:

1. A single customer class with Markovian routing.

2. One server per queue.

3. An open queueing network.

4. Exponential, first-come first-served service.

5. The queueing network is acyclic to prevent deadlock. If cycleswerepermitted, cyclicdepen

dencies would exist on buffers.

6. Poisson extemal arrivals.

7. transfer blocking: in a transfer blocking model customersblock after they receive service.

Blocking occurs if a customer's destinationqueue is full. When blocked, a customer remains

at the server of the source queue and no othercustomers may be served until it proceeds to

its destination.

8. Customers thatblock for the same destination queueare transferred to the destination in first-

come first-served order. Simultaneous blockings are resolved randomly.

9. External arrivals only occur at infinite queues. Modifications of the algorithm to deal with

finite input queues are described in [AP87].

Consider an open, acyclic network of finite queues (such asthe Delta network in Figure

4.9). Let:

• Ni be the queue limit for queue i, includinga customerin service.

• irij(k) be the probability that a customer leaving queue i for queue j finds k customers at

queue j.

• faniiii be the fanin at queue i.

96

• TTi(k) be the probability that acustomer from any fanin queue finds kcustomers at queue i.

The fundamental idea of the Altiok and Perros algorithm istoanalyze the acyclic network

from outputs toinputs, determining for each queue the distribution ofthe blocking time itintroduces

for each of its fanin queues. The service times of the fanin queues are then adjusted toaccount for

this blocking time, and the process is repeated. The precise algorithm isas follows:

1. Determine the valuesof A, by solvingthe rate equations:

n

Xj = Arjj +J2 A«9«i' j = 1,..., n (4.28)
i=l

2. Levelize the acyclic networic and perform the following steps on all queues in decreasing

orderof level (ie. from outputs to inputs).

3. Adjustthe service distribution to account for blocking delays at fanout queues. The adjusted

distribution is illustrated in Figure 4.12. The branches correspond to the different routes

a customermay take upon completing service. The blocking delay boxes correspond to the

Coxian [Wol89] representations ofblocking delay duetothedownstream queues, whichhave

already been calculated. The adjusted distribution is itself a Coxian distribution.

4. For finite queues, determine the distribution of blocking delay thatthe queuewill contribute

to its fanin queues:

(a) Find the effective external arrival rate A; at the finite queue, such that the actual rateof

customers serviced is A,, by solving the equation:

*=T^m ^
ffi(Ni) is the fraction of customers that find the queue full and are hence refused ser

vice. iTi(Ni) is a function of the effective arrival rate A,, so Equation (4.29) is solved

by iteration. 7r,(JVt) is calculated by analyzing anM/C/l/JV; + fanirti queuemodel us

ing matrix geometric techniques [Neu81]. The queue limit is augmented by fanini to

account for Assumption 8 above that blocked queues areunblocked in first-come first-

served order. Poisson arrivals are assumed, and a Coxian distribution is used to model

the service distribution (which has been adjusted to account for downstream blocking

delays in Step 3).

(b) Assume x^ = ttj for all fanin queues i.

97

(c) Approximate the distribution ofblocking delay due tothis queue as inFigure 4.13. With

probability 7rt(JV,), an arriving customer finds the queue full and no other customers

blocked, so it remains blocked for the remaining time of the customer in service. Since

exponential service is assumed, the remaining service time has the same distribution

as a complete service time. With probability irt-(JV,- + m), an arriving customer finds

the queue full and m customers blocked. The customer now remains blocked for m

full service times, plus the remaining service time of the customer in service. With

probability 1- Em=on' *•W + "0 an arriving customer is notblocked atall.

The size of the Coxian representations of adjusted service distributions grows rapidly,

with acorresponding increase incomputational complexity. This can be reduced byapproximating

the complex Coxian representations by simpler ones with alimited number of phases [PS89].

This algorithm ismost accurate when the arrival rates at queue fanins are not excessively

unbalanced. Unbalanced streams are treated inaccurately because of the approximation of Jiy(Jfe)
by TTj(k) (at Step 4(c)). This is inaccurate because customers in a very heavy arrival stream are

unlikely to encounter ablocked customer from alight arrival stream, but customers from the light

stream are very likely to encounter a blocked customer from the heavy stream.

Si

Service Dist.
at Queue i

Bj

Blocking Dist.
at Queue j

Bm

Blocking Dist.
at Queue m

Figure 4.12: Coxian Representation of AdjustedService Distribution

Figure 4.14 summarizes the finite buffer algorithm.

queue i not full

1 service delay

queue full, "^
1 waiting

queue full,
2 waiting

Service Dist.
at Queue i

(Equilibrium)

Service Dist.
at Queue i

(Equilibrium)

Service Dist.
at Queue i

2 service delays

queue full,
all other fanins (Equilibrium)
waiting •

Service Dist.
at Queue i

Service Dist.
at Queue i

fanin service delays

Figure 4.13: CoxianRepresentation of Blocking Delay

4.3.4 Merging the Algorithms

98

The finite buffer algorithm of Section 4.3.3 is incompatible with QNA because it uses

complex Coxian distributions instead of two-momentapproximations, and because it assumes ex

ponential service and Poisson arrivals at all queues. Furthermore, the basic QNA and finite buffer

algorithmsdo not account for virtual cut-throughbufferingand the use of virtual channels. Section

4.3.5 describes how the incompatibilityof Coxiandistributions and exponential service is resolved

by using two-moment representations for the blocking and service distributions (at Steps 3 and

4); this modification has the benefit of significantly reducing the computational complexity of the

algorithm.

The assumptionofPoisson arrivals is relaxedby usingtwo momentapproximationsof in

terarrival distributions, determined with QNA. QNA and the finite buffer algorithm must be applied

in an iterative loop, however, because of a cyclic dependency: QNA requires service parameters to

determine arrival parameters, and the finite buffer algorithm uses arrival parameters to determine

service parameters. Section 4.3.6 describes the iteration algorithm.

Effects of virtual cut-through buffering and virtual channels can be modelled with tech

niques described in Sections 4.3.7 and 4.3.8.

/* solve rate equations */
A> = X0j + £?=i A,9,j, j = 1,...,n

levelize the network;

for each queue j in decreasing order of level {

adjust service distribution to include blocking
at downstream queues (Figure4.12);

/* determine blockingdelay *l
k=l;
A, = A,-;

repeat {
find Xi(Ni) by analyzing M/C/l/iV, + fanirii queue with Aj1"1 arrival rate;

k = k + 1;

}

until (A*^y"' <0.01);

construct Coxian distribution of blocking delay of thisqueue
on fanin queues (Figure4.13);

Figure 4.14: Summary of Finite BufferAlgorithm

99

100

4.3.5 Two Moment Approximations of BlockingDistributions

Simplification of Coxian blocking distributions to two moment representations is easily

done by consideringCoxian representations (Figures4.12 and 4.13) as sums and mixturesof a set

of independent random variables. A sum of random variables A" and Y with distributions fx and

fy is a random variable Z = X + Y with distribution /, = fx <g> fy, where ® denotes convolution

[Wol89]. A mixture of X and Y has distribution sfx + (1 - s)fy, where s is a mixing parameter

between 0 and 1. If a mixture of A' and Y is denoted M(syA, Y), the distributionsof Figures 4.12

and 4.13 can be represented as:

Si + M(q& Bj, M(qiky Bm,...)...) (4.30)

and

MdrdNi), Sf, M(7n{Ni + 1), Sf, M(*i(Ni + 2), Sf + 25,-,...)...) (4.31)

5, is a random variable with the service distribution at queue i. Sf is a random variable with the

distribution of a remaining service time, as viewed by a blocked packet.

It is straightforward to find the mean and second moment of the sum and mixture of two

or more independent random variables:

E(X + Y) = E(X) + E(Y) (4.32)

£(M(A,Y,s)) = sE(X)+(\ - s)E(Y) (4.33)

E({X + Y)2) = Var(X + Y) + E2(X + V) = Var(A) + Far(y) + £?2(A + Y) (4.34)

E((M(s,A,Y))2) = sE(A2) + (1 - *)J5(Y2) (4.35)

The second moment can then be used to determine the squared coefficient of variation: c2 =

E{Z2) - 1. Equations (4.32) through (4.35) can be repeatedly applied to service and blocking

distributions to obtain two moment approximations.

In Section 4.3.3 blocking probabilities at a queue were found directly from a matrix geo

metric analysis of M/C/l/N queues. With two moment approximations of service and interarrival

distributions a simpler technique can be used: blocking probabilitiescan be determined by fitting

simple distributions to the moments and solving the resulting queue model. The distributions used

here are:

101

• GEO+1(p): thedistribution corresponding to the random variable 1+X, whereX isarandom

variable with a geometric distribution with parameter p (used when the squared coefficient

of variability is less than or equal to 1).

• GE02+l(pi,p2i s): the distribution corresponding to the random variable 1 + A, where A

isdistributed as amixture of two geometric distributions, with parameters p\, pi and mixing

parameter s (when the squared coefficient ofvariabilityis greater than 1).

In both cases oneis added toensure aminimum interarrival timeof one. Technically, GEO+1 (p) is

adegenerate case of GE02+1 (GEO+l(p) is equivalent to GE02+l(p, p,0.5), GE02+l(p,0,1.0),

GEO2+l(0, p,0), etc.). Discrete timedistributions are used because theyare more appropriate for

synchronous interconnection networks.

A random variable A with distribution GEO+1(p) has first and second moments:

E(X) =i (4.36)

E\X) =̂ (4.37)
A random variable A with distribution GE02+l(pi, P2,s) has first and second moments:

E(X) = 1+ E(Z) (4.38)

2 _ E(Z2) - E2(Z)
E{X)" \+2E(Z) +EHZ) (4'39)

E(Z) =1+si—Si +s2^Sl (4.40)
P\ P2

where

Pi P\P2 p$
(4.41)

A random variable A with moments E(X) and E(X2) can be fitted to a GEO+1 or GE02+1

distribution by substituting E(X) and E(X 2) into Equations (4.36) and (4.37) orEquations (4.38)
through (4.41) and solving for the appropriate parameters.

A GE02+1 fc/GEO+ 1/1/N queue istherefore used inplace ofthe M/C/l/N queue inFigure

4.14. The GE02+l*/GEO+1/1/N queue has kGE02+1 arrival streams, asingle GEO+1 server, and

queuelimit N. Multipleinputstreams are modelledbecause it is possible formultiplecustomers to

arrive simultaneously in a discrete time system; this is not the case in the continuous time models

of the QNA and finite buffer algorithms. By accounting for the arrival ratesof each stream, these

102

discrete time superposition techniques overcome the weakness of the original Altiok and Perros

algorithm whenmodeling the superposition of streams with very different rates. A GEO+1 distri

bution is used for the service distributionbecause it was observed that service distributions, even

after adjustment for blocking delay, exhibit squared coefficients of variation close to 1; using a

GEO+1 distribution instead of a GE02+1 distribution reduces the number of states in the discrete

time Markov chain by a factor of 2.

The GE02+1VGEO+1/1/N queue is analyzed by constructing a discrete time Markov

chain andsolving forsteady-state transition rates [Wol89]. Thesteady statetransition rates are then

used to determine blocking probabilities andcongestion at the queue. Appendix A describes this

analysis.

Unfortunately, thenumber of states in thediscrete time Markov chain(nB = 2k(N + 1))

grows exponentially with k. Computation time canbereduced byusing theGE02+l*/GEO+1/1/N

modelonlywhenk is smallGess thanor equalto three). For largervaluesof k, arrivalsare modeled

using GEO+1 distributions, requiring a Markov chain withonly na = N + 1 states. This should

not impact accuracy significantly because the regularity (coefficient of variation) of the aggregate

arrival process should increase with the number of streams [Wol89], making the impact of inter

arrival variability less important. Appendix A describes the analysis of the GEO+l*/GEO+1/1/N

queue.

With discrete timemodels, thedistribution of remaining service timeSf, as observed by

a blockedpacket, can be approximated by the following twomoments:

E(Sf) =1+Ei^zl (4.42)
E(Sf2) = E(Sf) (4.43)

Thisassumes that adjusted service times are almost deterministic (ie. they have lowvariability).

Equation(4.42)accounts for the fact that in a discrete timesystem a customerthatblockswillblock

for at least one time unit.

4.3.6 Iterating QNA and the Finite Buffer Algorithm

The cyclic dependency betweenQNAandthe finite bufferalgorithms can be resolved by

combining them in an iterative manner:

1. Usingunadjusted servicedistributions, applyQNAtothenetwork to get ratesandvariabilities

of interarrivals at each queue.

103

2. Apply the modified finite buffer algorithm to adjust the service distributions.

3. Re-apply QNA to find the interarrivalrates and variabilities for the adjusted service distribu

tions.

4. Repeat steps 2 and 3 until the service and interarrivaldistributions converge.

5. Calculate network performance measures.

More formally, let:

• rf and c2j0 be the mean and squared coefficient ofvariation of the initial, unadjusted service
distribution at queue i.

• rf and c]ik be the mean and squared coefficient ofvariation ofthe adjusted service distribution

at queue i for iteration k of the algorithm.

• A* and c2ik be the mean and squared coefficient ofvariation ofthe interarrival distribution at
queue i for iteration k of the algorithm.

• Aji = max{S—J— :i= \,...N,k= 1,...},

• A*2 =maxt^/'*-1' :i= 1,...JV, k=1,...},

• A$ =max{^-i:i=l,...iv-, fc =l,...},

• M =max{c2a'*~frfc-n :i= 1,...JV, k= 1,...}.
AJ, A£2, Aj and A22 are the maximum relative changes, between iterations, oftheir respective
service and interarrival parameters; they are used as the convergence criteria. Figure 4.15 shows

the algorithm.

4.3.7 Virtual Cut-through Flow Control

In QNAandthe finite bufferalgorithm it is assumed thatcustomers donot proceed to the

next queue until service is completed. With virtual cut-through, however, a packet is forwarded

after the first flit is served, assuming its destination has sufficient buffer space and the required

physical channel is free. The server is still occupied for the time corresponding to a full packet.

Thiseffectcan be modelled by altering the way in which the delayin queue ETj is calculated:

ET*0 = ET; - (b - I) (4.44)

k = 0

repeat {

k = k + 1

apply QNA (Figure 4.11) to find A* and c2,* for i = 1,..., N

apply finite buffer algorithm (Figure4.14) to find
rf and c2aik for i = 1,..., N

A* =maxr*~^~1 :i= 1,...JV, *=1,...
A^2=maxc',fc"j,(,t-|> :t= 1,...JV, Jfc=l,...
A* =max^p-: i=1....JV, X; =1,...
A* =maxc««*"^*-») :i - l,...JV, Jb= 1,...

C« Caik

}
until ((A* < 0.01) and (A*2 < 0.01) and (Aj < 0.01) and (A*2 < 0.01))

calculate network performance measures (Eqns. (4.23) to (4.27))

Figure 4.15: Combining QNA and the Finite Buffer Algorithm

104

105

where ETfc and ETj are the queueing delays (including service) with and without virtual cut-

through buffering,and 6 is the numberof flits per packet.

With virtual cut-through, blockingbehavior is slightly different from that of the Altiok

and Perros model. This is because channel queues never block: buffer queuesensure that destina

tion buffer queues have sufficient buffer space (for an entire packet) before sending a packet to a

channel queue. Blocking delay caused byfull buffer queues is incurred at upstream buffer queues,

notchannel queues. Theblocking calculation forbuffer queues is therefore performed using arrival

processes that come from the upstream buffer queues (Figure 4.16). Thedetermination of conges

tion measures (I and w)atbuffer queues is also made using arrival processes from upstream buffer

queues. It was found thatusing thesingle arrival process from a channel queue was notaccurate.

Upstream
Buffer
Queues

Upstream
Channel

Buffer queues are analyzed
using arrival streams from
upstream buffer queues

Figure 4.16: Arrivals in Buffer Queue Analysis Bypass the Upstream Channel Queue

4.3.8 Virtual Channels

Adding virtual channels toinput buffers (Figure 4.7) improves performance bypermitting

unblocked customers in the middleof a queueto pass blockedcustomers at the front Since this is a

non-FIFO queueing discipline, the estimate for blocking delay ata server inSection 4.3.3 (Figures

4.12 and 4.13) no longer applies.

Figure 4.17 illustrates a blocking delay distribution that accounts for virtual channel

buffering. Like Figure 4.12, Figure 4.17 enumerates all possible situations that can arise when

a customer leaves a buffer queue with n„c virtual channels. The different situations are determined

by the number of customers in queue at the time of departure (denoted k), the number of distinct

destinations of the k customers (denoted i), the particularset of i destinations that are chosen, and

bythe probability that all i of these destinations block. The rectangular boxes depict the delay ex

perienced byasetofcustomers blocking ata setofdestinations. With virtual channels, if any ofthe

Service
Dist.

ail destinations block

Blocking
Dist

/"A
at least one destination
does not block

Branches: k customers i distinct destinations are
in queue destinations {d1 di}

106

Figure4.17: Blocking Delay Distributionwith Virtual Channels

k customers in queue is destined for an unblocked destination, no blockingoccurs- all customers

block only if all destinations are full. All destinations are full with probability

P(alljiestsjull)= J[pbdj

where pbdj is the probability that anarrival finds destination dj full (see Figure 4.13):

(4.45)

/anin^-l

Pbdj= £ *dj(Ni+J) (4.46)

One of thekcustomers canproceed whenoneormore of thedestinations becomes free; theblocking

delay B is therefore the minimum of the blocking delaysexperienced at the i distinctdestinations:

B = min{Bdi,...,Bdk} (4.47)

Bdj hasthe blocking distribution seenatdestination d3 (determined asin Section 4.3.3 and Figure

4.13). The distribution of B is found by fitting Bdx,..., Bdk to amixture of geometries and finding

the two moments of their minimum (see Appendix A).

The branching probabilities in Figure 4.17 are calculated as follows. P(fc customers) is

calculated directly from the Markov chainanalysis of thebuffer queue in the finite buffer algorithm

(Figure 4.14). This, however, introduces acyclicdependency because the Markov analysis requires

that the service time be adjusted for downstream blocking delay. Fortunately, since the algorithm

is iterative, P(fc customers) can be estimated using the Markov analysisof the previous iteration.

For the initial iteration, it is assumed (optimistically) that P(fc customers) = 1 for k = 1, and zero

forfc > 1.

P(i destinations) andP(dests = {du •••, <**}) are calculated togetheras:

k * kP(i dests)P(dests = {du...,dk}) = £
(ii •*) \ ,,!

(4.48)

107

where the summation is for all tuples (i\,..., ik) such that £> ij = kand ij > 0 for j = 1,..., k.
The summation tuples account for the different ways that i distinct destinations canbeassigned to

A* customers. The total number of branches nbranche8 for which all destinations block is:

nvc

nbranche* =]££(.) (4.49)

= 2>«<V (4.50)
fc=l

= ^t.'ai'.,,'mi is a multinomial coefficient, corresponding to a term in
*1» • • • ?*m /

the expression (ari + x2 + ... + xm)k. The summation in 4.49 is for all m-tuples (t'i,..., im)

such that YJf *i = k and *i ^ 0 for.; = 1,..., m. Equation (4.49) is a sum of the number of

ways that k customers can besent to m destinations, for allpossible values of k. Equation (4.50)

follows from thefact thatthesecond summation inEquation (4.49) isequivalent to themultinomial

(1 + 1+ ... + 1)* with mones. Clearly, n&ranc/.e* grows quickly as kincreases. Fortunately, kis
small for most multiprocessor network models.

Like Figure 4.12, Figure 4.17corresponds toa mixture of blocking delays, eachof which

is approximated bytwo moments. As before, this mixture is reduced toa two moment approxima

tion byrepeatedly applying Equations (4.32) to(4.35). Theresult isanapproximation ofthe service

time at the switch input, augmented byan estimate ofblocking delay, and the rest of the queueing

analysis in Figure 4.15 remains unchanged.

Asdiscussed in Section 4.2.1, some networks require virtual channels to prevent dead

lock, and have thebuffer organization ofFigure 4.8. This buffer organization is approximated asin

Figure 4.18. Here twoormore virtual channels (with a uniform numberofsub-channels) ismodeled

as one virtual channel with the same number of sub-channels.

4.3.9 Convergence and Computational Complexity

There are two iterations in the algorithm (Figure 4.15), for which convergence is not

necessarily guaranteed. Furthermore, convergence does notnecessarily guarantee aunique solution.

Unfortunately, the combined complexity of finite buffers, two-moment approximations, and the

othernetwork features makes a formal analysis ofconvergence properties difficult. Forthenetworks

analyzed in Section 4.4, however, convergence of both innerand outerloops typically occurred in

ten or fewer iterations, unlessthe network was heavily saturated. This was true for networksizes

108

Simplified Model

o o

Figure 4.18: Multiple Virtual Channels Approximated asOne

ranging from 10 to 10000 queues. When the algorithm did converge, the result was always close

to a simulation result.

Since the number of iterations in bothloops is only weakly dependent on network size,

the approximate computational complexity is the cost of performing the outer loop, multiplied by

aconstant. The Markov analysis in the innerloop(the finite bufferalgorithm) requires the solution

of a sparse systemof linear equations for eachqueue. The numberofvariables is N + k + 1 for the

GEO+l*/GEO/l/N queue model, and2*(JV +k+1) for the GE02+l*/GEO/l/N queue model (see
Appendix A); since the GE02+*/GEO/l/N model isonly used for k less than four, the number of

equations is approximately O(N). Thecost of solving asparse system of N equations isdependent

on the pattern of non-zero coefficients in each problem instance. A rule-of-thumb, however, is

that a typical sparse system of N equations can be solved in 0(JVL3) operations [SV81]. The

number of blockingcases considered in the virtual channel modelis exponential in the number of

fanouts. This is usually a small integer, however, so the Markov analysis should dominate. Each

outer iteration requires the solution of anadditional two setslinear equations of size n forthe QNA

algorithm, where n is the numberof queues. The total complexity of the algorithm is therefore

0(nN13 + n13), inwhich the first term isusually dominant

4.4 Numerical Results

4.4.1 Methodology

In this sectionthe modellingtechnique of Section 4.3 is validated against simulation data

for k-aryn-cubes, Delta networks, and meshes. The following assumptions are made:

1. All switches operate synchronously.

109

2. The switch model of Figure 4.7isassumed for all networks. Inthismodel packets are buffered

attheinputs by oneormore virtual channels per input, and virtual cut-through flow control is

used. Virtual channel queues for the same input share a single port to the crossbar network.

With virtual cut-through, once a physical channel is assigned to a packet, it is dedicated to

the packet for a number of network cycles corresponding to the length of the packet in flits.

Only one flit may be passed overa physical channel per network cycle. A physical channel

can be assigned to a packet only if thereceiving end has space for theentire packet.

3. Bufferqueues without external arrivals have aqueue limitof 4 packets. Bufferqueues with

extemal arrivalshave no queue limit.

4. Cycle times are identical for all networks.

5. Processing elements issue packets into the network using GEO+1 interarrival distributions.

In the GEO+1 distribution, a packet is injected into the network with probability p on each

clockcycle. This corresponds to aninput rate of p flits/cycle pernetwork port.

6. A uniform spacial distribution is used for determining the destination of a packet when it is

generated. With a uniform distribution, the probability that a packet is sent to processor i is

^y, where N is the number ofprocessors and i can be any value between 1and N except
the identity of the processorissuing the packet

7. If two ormore customers arrive at the same destination queue simultaneously, the blocking

order is random.

8. All packets have the same number of flits.

Section 4.2.1 describes the interconnection topologies for the particular networks con

sidered here. Routing parameters are determined by aggregating the different customer classes

corresponding to all combinations of source and destination. Since oblivious routing is assumed

in each of thenetworks of interest, each class has aunique route determined by oneof the routing

algorithms in Section4.2.1. Since destinations are selected uniformly,the arrival rate foreachclass

is -jfe. Input queues use the virtual channel queueing discipline. Channel queues use the FIFO

queueing discipline. As mentioned previously, channel queues are put in the network only for de

termining theblockingdelaythey incuron inputqueues; the servicetime forthe channel queuesare

therefore not included in the network delay calculation. A buffer queue with two or more virtual

110

channels, each with k sub-channels, ismodelled asa buffer queue with one virtual channel with k
sub-channels.

Queueing models forsymmetric networks (k-ary n-cubes and Delta networks) with a uni

form workload can besimplified byconsidering the minimal representative portion ofthe network.

In a k-ary n-cube, the arrival processes at each switch are stochastically identical from switch to

switch, sothe queueing model can be reduced tothat ofasingle switch with direct feedback (Figure

4.19). In a Delta network, the arrival processes for switches in each horizontal slice are identical,

so the model can be reduced to a single slice (Figure 4.20). Both of these simplifications intro

duce cyclic dependencies among buffers. Tobreak the cycles it is assumed that thatbuffer queues

never fill. Channel queues therefore never block, and only channel queues contribute blocking de

lay to buffer queues. This approximation is accurate forthe networks of interest when four or more

buffers are provided perbuffer queue. Furtherdetails onthe queueing models forspecific networks

are provided in Appendix B.

From Processor To Processor

Figure 4.19: Simplified Model of Direct k-ary n-cube Under Uniform Load

4.4.2 Results

Figures4.21 to 4.34 showplotsof latency versus arrival rate, as predicted by the analytic

model, for torus (k = 3), bidirectional torus (k = 3), mesh (k = 3), hypercube, and radix 4 and 8

Deltanetworks. Results are shown for 5 and 10flit packet sizes. Simulation points are alsoshown

Ill

Figure 4.20: Simplified Model of a Delta Network Under Uniform Load

to indicate the accuracy of the model. Vertical lines indicate the saturation points predicted by the

model; simulation points along the upper horizontal border indicate the saturation points predicted

by the simulator. As the plots show, predicted latencies are usually within 5% of simulated values

until heavy saturation (latency exceeds ten times the minimum) occurs. The predicted saturation

points also corresponded well with simulation results.

As expected, the hypercube and Delta networks (Figures 4.27 to 4.34) exhibit the best

performance: saturation bandwidth is independent of thenumber of processors. This results from

the fact that the utilization of physical channels (channel queues inFigure 4.7) isindependent of the

number of processors [RF87]. The cost for this performance, however, is greater implementation

cost: more complex interconnections, logiV* more switches for themultistage network, and larger

switches for thedirect network. For all networks, the saturation bandwidth (in flits/cycle) remains

the same as the numberof flits/packet changes, but latency rises faster because long packets occupy

channels for longer periods of time. The torus networkexhibits very low saturation bandwidth for

large machines, even for small packet sizes. Adding two links between neighboring processors in

creases the saturation point by a factor of 2.5. For agivenpath width,aunidirectional toroidal mesh

requires twice the numberofinterconnections through anodeto embed the end-around connections

[DS87]. The mesh results show that the extra interconnections are better used as back-links in a

mesh, since this increases the saturation pointby a factor of 2.

All of these results assume that a main memory and cache controller share a single net

work port. Saturation bandwidth could possibly be increased by adding moreports. This and other

alternatives could be easily investigated using the same modeling technique.

Lueaey
Torus: 5 Flit Messages

i * . ; •
• i i • 8PTOC*

1)0.00 . j _ '64Proci

140.00 .* i / •SlfftSi"
130.00 1 ; ;

-

HoWPwci"

120.00

1

-

110.00 i » •

100.00
1 i .'

90.00 » ; :
-

80.00
1 • .'

70.00

r ' •i :
-

60.00
1 .

50.00

40.00

' •' /III

- :• / y
-

30.00

20.00

10.00

*/ j y

— *'* ~^^ •

0.00
i i i i i i

FHtRift
aoo

Figure 4.21: 3-D Torus Network Performance (5 Flits/Packet)

Laeacy
Torus: 10 Flit Messages

I i 1. ! 1
♦i . | •.' •

i i i BProc*

150.00 '64 KW

140.00

i t •
i • .

- "Slfftw"

130.00
• i •

-

^<5b^"rtoei"

120.00 - • i •
i > •

-

110.00 r ' •' «
1 • .'

-

100.00
i • •

-

90.00
-

80.00 »• / i•» > /

70.00 ;: 4 .
60.00 • • / /
30.00 » f- i 1
40.00 - /// /
30.00

20.00

t i t / i

10.00
*^^^^

0.00

• i i i i i Flit Raid

Figure 4.22: 3-D Torus Network Performance (10 Flits/Packet)

112

Lttocy
Bitorus: 5 Flit Messages

i i i ;i . : 1 i 8 Pfocs

80.00 • ,. [• .• • — *64Pract

73.00
i •

• :
i i

-

•5lfft»"
70.00

• : -
nowpwS"

63.00 • i
-

60.00 / i -

33.00 / / -

30.00 i »
/ -

43.00
i , ;

i ' ! -

40.00 : 1 / 1 -
33.00

30.00 <' / / •/ -

23.00

20.00

13.00

10.00

3.00

/ / y /
A / y ./ -

0.00
—L 1 I I i Flu Rub
aoo 0.20 0.60

Figure 4.23: 3-D Bidirectional Torus Network Performance (5 Flits/Packet)

Lticacy

80.00

73.00

70.00

63.00

60.00

33.00

30.00

43.00

40.00

33.00

30.00

23.00

moo

13.00

10.00

3.00

0.00

Bitorus: 10 Flit Messages

i ~i r— i—

».
i

<

I SProci

'MPtocs
•

>
i ; •fKHoci"

i i

i / •SlfPToa--

ii

i

i

>

< /
*16WPtixi~'

iii

i
i

i
i

m

I

!

• /

i
l J / i

/ 1 •/

/ , / -

/ > j

' / ' _

/ / /
/ » • /

'* / /
/ 4

<' / / «')
/ > .

' / " .'
* * »'

ss s •

<'s .-• ^s
~ *~*' .♦*"" _---*^ . ^

~ r"—"~~" ~~~— -

• i i i I » ' ""
aoo O20 1.00

Figure 4.24: 3-D Bidirectional Torus Network Performance (10 Flits/Packet)

113

Latency
5 Flit Messages: Mesh

1 l 1 i i ••-r- 8 Ptocc

100.00
- * 1 • . • • T " ' 64 Proa

93.00 -
1 i j

-
*i«Pto«""

90.00

83.00

-

1

•

i • •

_ "5lfftwi'-
noTxTProS"'

80.00 - 1
i j I -

73.00 -

1

1
i < j -

70.00 -

i
i • j -

63.00 -

1 i « j -

60.00 - ; ; [f -

33.00
1 1

1 1 / -

30.00 I ; • -

43.00 •i «

i ; :
-

40.00

33.00

30.00

23.00

i t
i »

/
j •!

-

20.00

13.00

10.00

5.00

-

i i 1

0.00
| i i Phi Rub

O40 0l60

Figure 4.25: 3-D Mesh Network Performance (5 Flits/Packet)

Ltieaey
10 Flit Messages: Mesh

Figure 4.26: 3-D Mesh Network Performance (10 Flits/Packet)

114

iMcscy

30.00

28.00

26.00

24.00

22.00

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

aoo

Hypercube: 5 Flit Messages

• 1 1 "T T-]— 1 'Stow
'iAhoa

• *f»Pnw"
J "SlfftSa--

1 loVPreei"
$!
i\

~ / #1

'''.'1
~ • /«•' j

• / '•' j
— / f § J

• /».' /
' '•"/— / / / /

' » ' 1
* ' ' /

~ * / •' /

/// / 1

*'*Sy'' y /
'''***** S ' / -

• ••*"^^^^^^^ m ^^^^^

^1_. till 1 -
FblRui

aoo aso 1.00

Figure 4.27: Hypercube NetworkPerformance (5 Flits/Packet)

Hypercube: 10 Flit Messages

0.20 a40 aso
Flit Rue

Figure 4.28: Hypercube Network Performance (10 Flits/Packet)

115

Limey
Min2:5 Flit Messages

i i I li T— SProci

100.00 64 Proa

93.00 / - TMfKSci"

90.00 "™ • * _

83.00 /
80.00 /
73.00 -

70.00 / -

63.00 ,' -

60.00 / -

33.00 / -

50.00

43.00
/ "/ -

40.00 / -

33.00

3aoo : / / J -

23.00 .•****' / J -

20.00

13.00 : ^--^x/^^/ -

10.00 • *''''^i~~~*,~^*^^^*****y''^ -

3.00 - ~—-—*—— ~

0.00

i i i i i • Flit Rub
0.20

Figure 4.29: Radix-2 Delta Network Performance (5 Flits/Packet)

Ltlcacy
MId2: 10 Flit Messages

I 1 1 r—j t
— \ . / 1

1

. -

8Preci

100.00

93.00

90.00 / / -

83.00 — * • / -

80.00
• /

-

73.00 / -

70.00 / -

63.00 / -

60.00 / -

33.00 ill -

30.00 / 1 -

43.00 / 1 -

4aoo / 1 -

33.00 / 7 -

30.00 y / -

23.00 / y -

20.00 •**'"' / y -

13.00 «****"* ^y* ^s* -

iaoo - '''\^^'^— -

3.00 - ^!--—•— -

0.00
1 1 1 1 1 Flii Rub

O20

Figure 4.30: Radix-2 Delta Network Performance (10 Flits/Packet)

116

Min4:5 Flit Messages

Figure 4.31: Radix-4 Delta Network Performance (5 Flits/Packet)

Lucacy
Min4:10 Flit Messages

1 1 1 i '/ /
' ' /l

1 • 1 ~

• -

liProo
30.00 '64 Proa

43.00

i

t
«

•
/ /

*J«Pioa""
loSfPree."

40.00

i

m
i

/ / "

33.00
i •

-

30.00

i
i

i
i

4)

-

23.00

i
* I

• /

20.00

• •

i ;
i «

i I
t }

' 4 /
" 4 /

-

13.00

10.00
"~

'J /
4 4 /

* .'• /

4 y s y

3.00
-

0.00
"• i " 1 1 1 "

Flit Rub
0.60 1.00

Figure 4.32: Radix-4 Delta Network Performance (10 Flits/Packet)

117

I itfTrfy
Min8:5 Flit Messages

1 1 -I 1— i i 8 Plow

40.00 '44 Proa
38.00 •Jfjptoa ••

36.00 i

34.00 j
32.00 ;
30.00 /
28.00 ;

26.00 /
24.00 /

22.00 -

20.00 / J -

18.00 / 1
16.00

14.00
: / }\

12.00 / / -

10.00 / y j -

8.00

6.00 : sC^ J -

4.00

ZOO \^^^^ -

aoo -1 i i i i i *
0.20 0.40 0.60 1.00

Figure 4.33: Radix-8 Delta Network Performance (5 Flits/Packet)

Liieocy
Min8:10 Flit Messages

1 1 1 i 3 1 i SPtoa

80.00 'Ufna

73.00 -

•5HKom"

70.00
-

63.00

60.00

33.00
-

30.00

43.00

40.00
«. i

33.00 / /

30.00 / /

23.00
/• j

20.00 /
/ / 1 •

13.00

iaoo

3.00
»»***

/^.

i

•^^

• • i

0.00
1 1 FBI Rub

0.60 080

Figure 4.34: Radix-8 Delta Network Performance (10 Flits/Packet)

118

119

4.5 Processor Utilization of Caching Schemes

4.5.1 Methodology

The impactof networklatencyon processor utilization (or, equivalently, memory access

time) can be taken into account using the modeling paradigm outlined in Section 1.3.3. In this

paradigm, network-independent cache simulations are used to estimate arrival rates, and network

modelsprovide the latency with which a cache miss is processed. This, however, alters the arrival

rate that was initially assumed, so a new arrival rate is estimated and the process is iterated until

theassumed arrival rate corresponds to thearrival rate adjusted formiss latency. Themiss latency

can then be used to estimate the time during which a processor is stalled on a read miss, which

corresponds to a decrease in utilization.

Figure 4.35 summarizes the algorithm. The input parameters are:

• nrm is the average number of read misses, per processor, in the cache simulation;

• husy is the average number of cycles during the cache simulation in which a processor is

busy (ie. not waiting for a lock or barrier);

• taim is the total number of cycles of the cache simulation;

• frm = nrm/tbusy is the average number of misses per busycycle;

• ntrans is the average number of network transactionsissued by a cache;

• Ubaae is the average processor utilization assuming zero network latency;

• Xbaae = ntran8/tbU8y is the rate at which network transactions arrive at a network port, as

suming zero network latency;

• njuto is theaveragenumberof flits per transaction; It isdetermined usingthecachesimulation

results and the transaction sizes in Tables 3.8 and 3.9.

• Tdir is the time to process a network transaction at its destination;

The following are calculated:

• Unet is the average processor utilization, accounting for network latency;

• Anet is therate at which network transactions arrive at a network port,accounting fornetwork

latency;

120

• TnetiXnetiTifiit,) is the average network latency (one way) for the specified arrival rate and
packet size;

• Tirana isthe total time toprocess anetwork transaction, including two network traversals and

processing at its destination;

It is assumed thatwritemissesare buffered, so acache stalls onlyon read misses.

i = 0;

repeat {

Ttrana = 2 * T„et(A{„.t, 71//,*,) + Tdir\

i = i + 1;

\i _ Am,,.
net ~ H/rmTtran/

}until (An«trA?Ki <o.01)

Unet = l+jJK UTrt. '1 '^taie/fm •* Irani

Figure 4.35: Algorithm for Estimating Processor Utilization withNon-Zero Network Delay

The expression for Xnet is the simplified form of:

net ~" ft fl -I- f T ^ ^ ^tbuay\l • Jrm-Ltrana)

The expression for Unet is derived as follows:

tbuayUnct = ""» (4.52)
laim T **rm-*tran«

_ *«t'm
•j I *6my f /p
1 ' *..-_ Jrm-Ltrana

• •tin

(4.53)

14.77 f T (4'54)1 T ^baatJrm-*- trans

(4.55)

121

4.5.2 Numerical Results

Table 4.3 shows utilization estimates forthe mostdemanding benchmark, VERF, for sev

eral different network and protocol configurations. It is assumed that Tdir = 20 cycles, network

paths are four bytes wide, and caches are infinite. The networks considered are a unidirectional

3-Dtorus, a bidirectional 3-D torus(bitorus), a hypercube, and a 3-D mesh. Since Deltanetworks

have performance thatis similar to a hypercube, they areomitted for brevity. Table 4.3 also shows

the fraction of total network bandwidth used by the benchmark. The network saturation point is

defined here as the load at whichdelay is ten times the minimum.

For a 16byte block size all four networks provide reasonable utilizations (58 to 68 %).

The UPDATE and COMP8 protocols improve utilization by 5 to 10 %atthe expense ofup to50%

more traffic. In all cases a large fraction (30% to 100%)of available network bandwidth is used.

Traffic increases sharply for a 64 byte block size, and causes the torus network to saturate for all

protocols. UPDATE and COMP8 improve utilizations by 10to 15 %,butrequire upto 100 %more

traffic. With a 64 byte block size, the UPDATE and COMP8 protocols cause themesh network to

saturate anduseup mostof theavailable bandwidth of the hypercube andbidirectional torus. These

protocols are therefore only appropriate for smaller block sizes.

The table shows that coherent caches reduce the sensitivity of processor utilization to

network latency. The UPDATE results, inparticular, show that latency can beincreased bya faaor

of 5 with a reduction in utilization of only 15%. This insensitivity explains why utilizations for

different networks donot vary appreciably for networks operating below their saturation points. It

also explains why utilizations arerelatively insensitive tothe number of flits perpacket. Ofthefour

networks, the mesh offers a good compromise between implementation cost and performance.

Network performance formultiprocessors with more than 64processors canbeestimated

by scalingnetwork traffic by the anticipated increase in coherence traffic. Resultsin Section 3.6.3

suggest that the frequency of cache invalidations (updates) grows linearly with the number ofpro

cessors. The traffic for an N processor system relative to a 64 processor system can therefore be

found by scaling the invalidatioiVupdate traffic for the 64processor system byincrease inmachine
size. Let:

• r,v be the ratio of traffic forthe N processor system relative to the64 processor system.

• /64 bethe fraction oftraffic in the 64 processor system due to invalidations orupdates (from
main memory to cache).

Table4.3: Processor Utilizations forVERF,4 Byte Path

Network Xnet Networic Delay Atlfft a

A«a(
Utilization

(flits/cycle) (cycles) (%)

IDEAL, 64B Block, 5 flits/packet
Ideal 0.151 0.0 0.0 75

INVAL,! 6B Block, 5 flits/packet
Torus 0.224 55.9 0.45 58

Bitorus 0.249 36.0 0.29 63

Hyper 0.252 33.8 0.29 64

Mesh 0.244 39.6 0.34 62

INVAL, 64B Block, 10 flits/packet
Torus 0.450 26.2 1.00 65

Bitorus 0.458 48.1 0.54 59

Hyper 0.473 42.3 0.54 60

Mesh 0.440 55.5 0.61 57

UPDATE, 16B Block, 5 flits/packet
Torus 0.344 61.0 0.69 64

Bitorus 0.371 35.4 0.43 68

Hyper 0.374 33.2 0.43 69

Mesh 0.367 39.2 0.51 68

UPDATE, 64B Block, 5 flits/packet
Torus 0.50 819 1.00 39

Bitorus 0.86 222 1.00 60

Hyper 0.87 222 1.00 60

Mesh 0.72 407 1.00 51

COMP8,16B Block, 5 flits/ packet
Torus 0.279 50.3 0.56 64

Bitorus 0.296 33.3 0.34 68

Hyper 0.298 31.8 0.34 68

Mesh 0.293 36.3 0.41 67

COMP8,64B Block, 5 flits/packet
Torus 0.500 214 1.00 53

Bitorus 0.707 56.4 0.82 67

Hyper 0.724 46.3 0.83 68

Mesh 0.720 48.7 1.00 68

'A,at is the arrival rate at which network delay is ten times the minimum (light load)delay.

122

Table 4.4: Estimated Traffic Increases for Large Multiprocessors

N Protocol 16B Block 64B Block

/©4 ?N /« ?N

128 INVAL 0.0640 1.06 0.0445 1.05

128 UPDATE 0.482 1.48 0.675 1.68

128 COMP8 0.394 1.39 0.608 1.61

256 INVAL 0.0640 1.19 0.0445 1.13

256 UPDATE 0.482 2.45 0.675 3.03

256 COMP8 0.394 2.18 0.608 2.82

512 INVAL 0.0640 1.45 0.0445 1.31

512 UPDATE 0.482 4.37 0.675 5.73

512 COMP8 0.394 3.76 0.608 5.26

1024 INVAL 0.0640 1.96 0.0445 1.67

1024 UPDATE 0.482 8.23 0.675 11.13

1024 COMP8 0.394 6.91 0.608 10.12

The increase in traffic is then:

N?N = (l~/64) +/64^

123

(4.56)

(4.57)

Table 4.4 shows estimated traffic increases for 128, 256, 512 and 1024 processors. It shows that

the UPDATE and COMP8 protocols are only appropriate for 128 processors or less. Traffic for

theINVALprotocol, however, rises slowly enough that lower dimension networks withsufficiently

wide paths shouldprovide good support for up to 1024 processors.

4.6 Conclusion

In this chapter analytic techniques were presented for estimating the performance of a

broad class of multiprocessor interconnection networks with realistic features: finite buffers, vir

tual channel queueing discipline, and virtual cut-through flow control. Numerical comparisons

with simulation results showed that predicted values are usually within 5% of simulation values

untilheavy saturation is reached (latency exceeds ten times the minimum). The predicted satura

tionpoints also corresponded well with simulation results. The final section examined the impact

of network performance on processor utilization in a cache coherent multiprocessor. The results

suggest that, with an invalidation protocol and sufficientlywide paths, goodutilization canbe ob

tained for a numberof different networks for machines with up to 1000 processors. The mesh

124

network is particularly attractive because of itslowimplementation cost The update and competi

tive protocols are only appropriate for small block sizes and machines withup to acouple hundred

processors.

125

Chapter 5

Synchronization

5.1 Overview

Synchronization support is tied to the design ofa cache coherence scheme, because poor

implementations of synchronization primitives can negate muchof the benefitof coherentcaches.

The availability of coherent caches can also permit more efficient implementations of synchro

nization primitives, such as locks and barriers [BD86, IEE90, L+90]. This chapter begins with a

review ofpublished implementation techniques forthe following hardware-supported synchroniza

tion primitives: fetch&op, locks, barriers, and multiprefix operations. Anew technique isdescribed

for implementing fetch&op, barrier, andmultiprefix operations in hardware or software. The hard

ware versionapplies to single or multistage networks constructed of jxk crossbarswitches.

Thegoal of thischapter is to show thatsophisticated synchronization support ispossible

in hardware or software using straightforward techniques of moderate complexity.

5.2 Previous Work

5.2.1 Overview

Some common hardware-supported synchronization primitives in shared memory multi

processors, in order of increasing functionality, are [Sto87, RBJ88]

1. read and write

2. fetch&op

126

3. locks

4. barriers

5. multiprefixoperations

The simplest primitives are the read and write instructions provided "for free" on all

shared memory multiprocessors. Many of the first synchronization algorithms were based on read

and write instructions because early high-level languages did not provide access tomore powerful

read-modify-write instructions [Sto87]. These algorithms, however, relied on the assumption that

multiple reference streams are sequentially consistent: accesses by each process are performed in

program order, asobserved by any of the multiple processes. Although thisassumption is reason

able for multiprogramming operating systems running onsingle processors, it severely impacts the

performance of cache coherent multiprocessors; this was addressed in Chapter 1.

fetch&op instructions are the most common class of synchronization primitive, and in

clude test-and-set, compare-and-swap and fetch-and-add [Sto87]. A fetch&op instruction takes

two arguments: addr, the address of a shared variable, and val, a value to be used in the speci

fied operation, fetch&op applies "op" to val and the contents of addr, stores the result in addr,

and returns the contents of addr prior to performing the operation. This is all done atomically.

test-and-set, compare-and-swap, and fetch&add are common examples of fetch&op primitives. In

test-and-set, "op" is"set the contents of addr to one", and val is unused. In compare-and-swap,

the contents of addr is compared with val; if equal, they are swapped, otherwise the contents of

addr are unchanged. In fetch&add, val is added to the contents of addr. Machines that support

fetch&op instructions include: IBM 370 (compare-and-swap, test-and-set) [Sto87], Sequent Sym

metry (test&set) [LT88], IBMRP3 (fetch&add) [P+ 85], NYU Ultracomputer (fetch&add) [G+ 83c],

and Cedar (various fetch&op) [G+83a].

locks provide a mechanism by which processes can gain exclusive access to shared data.

Mutual exclusion isenforced by associating alock with each collection of mutually exclusive data.

Processes mustacquire thelockbefore accessing the protected data, and mustrelease it when they

are finished. Whenalockis acquired, aprocess has exclusive access to thecritical section, and any

other process attempting to acquire the lock stalls untilthe former process releases it.

barriers provide amechanism by which multiple processes ensure that theyhave reached

the same pointin a program before proceeding. Barriers are typically used to ensure that results

of onestepof acomputation, a parallel loopfor example, are complete before proceeding withthe

next step.

127

multiprefix operations are muchhigher level operations that can be exploited in certain

parallel algorithms [RBJ88]. Multiprefix operations are defined on a set of I value lists:

[huh2i""thnl]

VLulnL2i~-ilLnL] (5.1)

It is assumed that:

1. There is at most one value stored per processor.

2. Processors are assigned distinct identifiers between 0 and N - 1, where N is the number of

processors.

3. Let proc(lij) denote the processor holding value Uj of list i. Values in a list i are ordered by

processor identifiers such that proc(Uj) < proc(l^j+i)).

Given an associative binary function F, a multiprefix operation computes a second set of L lists:

[r-n = /ll,ri2 = f(/l2,ni)»---»»,ini =f(/ln,»»,l(n1-l))]

[ru = hi,rnL2 = F{lnL2,rLl),..., rLnt = -F(/Ln1.,»,L(nL-i))] (5.2)

where r,j is stored in processor proc(Uj). This can be generalized by permitting adifferent binary

function to be used for each list [Ran89]. Figure 5.1 shows a simple example of a multiprefix

operation in which the minimum values in two lists are found.

Relatively few algorithms have been published thatexploit the full powerof multiprefix

operations. Multiprefix operations, however, subsume manyotherless powerfulprimitives, includ

ing scans [Ble89], fetch&op [G+83b], and Hillis' 0 operation [Hil85].

The following example illustrates the usefulness of this class of synchronization opera

tion. This example uses the 0 operation and is taken from Hillis* dissertation on the Connection

Machine [Hil85]. 0 operations can be thought of as a weaker form of the multiprefix operation

in which the application of the binary function F is not constrained to processor order, and inter

mediate results are not returned. Considerthe problem of finding the minimum pathbetween two

vertices in a graph:

Processor:
Value:

Result:

Eg: Determine the minimum for 2 lists of numbers

LIST1 LIST 2

Figure 5.1: Example of a Multiprefix Operation

Given a set of vertices, V, and a set of edges E = V x V, find the length k of the
shortest path between two distinct vertices a and 6.

128

Hillisdescribes the following parallel algorithm for solvingthe problem:

1. Label all vertices with+00.

2. Label vertex a with 0.

3. Label every vertex, except a, with 1 plusthe minimum of the labels of all neighboring ver

tices.

4. Repeat the previous step until the label of b is finite. The label of b is the desired result

The heart of the algorithm is Step 3. It can be directly implemented as a 0 operation with F =

min(x, y) and a set of value lists, one per vertex, containing the labels of neighboring vertices.

For many large graphs of interest, the average value of k for a randomly selected pairof vertices

is a small integer. An efficient parallel implementationof the 0 operation can therefore provide

considerable speedup over a serial solution.

The remainderof this section reviews published hardware and software implementations

for these synchronization primitives.

129

5.2.2 Read, Write and Fetch&ops

Atomic reads and writes areprovided "forfree" ona sequentially consistent shared mem

ory multiprocessor. This isnot the case for weakly consistent multiprocessors, where the ordering

ofread and write operations are relaxed to improve performance. In a weakly consistent multipro
cessoratomic reads andwrites mustbe implemented as special synchronization instructions so that

stricter ordering is enforced.

The most common way to implement atomic reads, writes or fetch&op instructions in

a weakly coherent multiprocessor is to mark the corresponding synchronization variables as non

cacheable and build main memory controllers that support atomic read, write and fetch&op transac

tions. Since synchronization variables are uncached, only one copy ofeach exists inthe system, and

atomicity is easily enforced by the memory controller that contains the variable. This simple im

plementation serializes concurrent synchronization accesses. Higher performance canbe achieved

using a technique called combining. Since combining isalso applicable tobarriers and multiprefix
operations, a discussion of it is deferred to Section 5.2.6.

5.2.3 Lock Implementations

Efficient locks can beimplemented insoftware using lower level fetch&op instructions.

The most effective technique is the MCS algorithm [MCS91], in which all spinning is done on

local variables and minimal memory is required. The simplest version of the MCS algorithm is

constructed using fetch&store and compare&swap primitives. The fundamental idea of the MCS

algorithm is tomaintain adistributed linked listofwaiting processors, with thehead ofthe listkept

ina shared lock structure; this isanalogous tothe distributed linked listdirectory inFigure 2.3. All

of the links other than the root are stored locally at the processors that are waiting. If a processor

issues a lock request, it allocates a local link structure and appends itself to the listpointed to by

theshared lockstructure. When a processor issues an unlock request, it grants thelockto thenext

processor on the list and deallocate itslocal link. Details about how the list is updated atomically

and abouthow spinningis performed locallyare in [MCS91].

The MCS lock algorithm has the following properties:

1. It scales well.

2. It only requires space proportional to thenumber of processors that contend for a lock; this

may be as high as O(N) but would typicallybe to 0(1).

130

3. Itrequires the least amount of network traffic of all known software lock algorithms.

4. If a compare&swap primitive is available, it ensures that a lock is granted in FIFO order,

guaranteeing fairness.

5. The time to access a free lock by a single processor is within a factor of two of the fastest

algorithm.

Several techniques have been published onthe implementation of locks completely in

hardware [L+90, BD86, G+89, IEE90]. They are similar to the MCS algorithm in that a list is

maintained of all processors waiting oh a lock. The first class of hardware techniques maintains

adistributed linked list using cache lines as link entries [IEE90]. The algorithm isessentially the

same astheMCS algorithm, exceptthatit is implemented entirely inhardware. Thisclass ofscheme

is well suited to cache coherent multiprocessors employing distributed linked lists to store cache

directory information (Section 2.3.3). Although the published schemes allusecache linesaslinks,

they could be easily modified to use local (non-cache) memory.

The second class of hardware techniques maintains acentralized listatthemain memory

controller corresponding to the lock address [L+90]. These techniques typically exploit the hard

ware required by directory methods thatmaintain centralized directory information (Section 2.3.3).

If directories are implemented aslinked lists, thelockalgorithm isessentially thesame as theMCS

algorithm except thelinks are all keptat one memory controller. If directories are implemented as

bit vectors, process identifiers are kept as sets and FIFO information is lost.

Care mustbe taken with lock implementations thatexploitcache coherence hardware to

ensure that listinformation isnotlostwhencache lines are displaced ordirectory entries re-used. If

cache lines holding lock links are"locked" in a set-associativecache, a deadlock situationcan arise

when all the entries-ofa set are assigned to lock link structures; if this situation arises and a cache

miss occurs on a block thatmaps to the same set, special action must be taken to ensure thatthe

processor doesnotdeadlockandthatlist information is preserved. A similarsituation canarise in a

centralized linked-list directory scheme, in which there isusually alimited supply oflink structures

that is subject to exhaustion. Since thisis a (hopefully) rare situation, lock operations that find no

free links canbe forced to retryuntil a link becomesavailable.

Empirical results in [MCS91] indicate thatthere is little performance to be gained with

hardware implementations of locks, so they are desirable only if the extra hardware cost is very

small. For multiprocessors with linked list cache coherence schemes, the added cost is a slightly

more complex statemachine in the memory or cachecontrollers, so the extra cost is minimal.

131

5.2.4 Barrier Implementations

Likelocks, barriers canbeefficiently implemented insoftware using fetch&op primitives.

The tree barrier of Mellor-Crummey and Scott is representative of the most efficient algorithms

[MCS91]. The tree barrier algorithm minimizes network contention bycombining barrier requests

in software. Each process is mapped to a node in a tree. When a process arrives at a barrier, it

waits until allof itschildren arrive at thebarrier andthenindicates its arrival to itsparent. When all

processes have arrived, the root initiateswakeupby issuing"wake-up calls" to its children. When

wakened, children wake up theirchildren and the process repeats until all processes are resumed.

Thedetailed algorithm features a numberoflow-level optimizations thataredescribed in [MCS91].

The tree barrieralgorithm has the following properties:

1. It has a critical path of length OQog N).

2. It only requires space proportional to thenumber of processors thatmeet at the barrier.

3. It requires 0(N) network traffic, theminimum possible.

4. All spinning is performed on local variables.

Hardware barrier implementations have beenpublished in [HRS88b, Hos89, GS89]. In

[Hos89], all processors are connected to a large AND gate that asserts a barrier signal when all

processers arrive at a barrier. When the barrier signal is asserted all processes are simultaneously

wakened andexecutioncontinues. This scheme severely restricts the numberof barriersthata mul

tiprocessor can support atone time. The schemes in [HRS88b, GS89] implement barriers using a

synchronization busconnected to all processors. Bymultiplexing the bus, a moderate number of

separate barriers can be supported. Barrier algorithms based on fetch&op can also beconsidered

hardware implementations because they rely on special combining hardware [AG89]. Combining

hardware permitsconcurrent synchronization accesses to thesameaddressto be satisfied simultane

ously (oralmost simultaneously). A detailed discussion of combining is in Section 5.2.6. Pseudo

code for a combining barrier is shown in Figure 5.2. It uses fetch&increment, fetch&decrement

and fetch&no-op 1operations. When a process arrives at a barrier it increments or decrements the

arrival count based on its local sense flag (forefficiency, thesense flag obviates the need to reini

tialize the arrival count after each barrer). If, based on the arrival count, the process is the last to

arrive, it clears or sets the global arrival flag. If the process is not the lastto arrive, it repeatedly

1fetch&no-op is just aread operation that can becombined.

132

reads the global arrival flag until it indicates that all processes have arrived. With a combining net

work, the minimum time toperform the barrier operation isonly two round trip network crossings,

independent of thenumber of processors. In spite of itslow latency, a great dealof network traffic

is generated as the processors spin on the wake-up flag. Section 5.3.3, however, shows how the

polling traffic can be eliminated by making simple modifications to a particular implementation of

a combining network.

The AND gate and bus barrier schemes permit barrier operations in tens of processor

cycles, which is considerably faster than the best software algorithms. Barrier implementations

that rely on a combining network can perform a barrier operation in a minimum of 2 round-trip

network crossings. If a multistage network is used, this is log N fewer crossings than required by

a good software scheme. If a single stage network is used, the performance improvement is less

because the software combining tree can be mapped onto the network of processors to minimize

the number of "hops" between tree nodes.

5.2.5 Implementation of Multiprefix Operations

Implementations of multiprefix operations are considerably more complex than barrier

or lock algorithms because of the order in which the binary function F must be applied. Efficient

hardware and software implementations have been published in [Ran87] and [Coh90], respectively.

The hardware scheme in [Ran87] employs randomization to construct an algorithm with

time and space complexity 0(log N) and O(N), respectively, on a butterflynetwork with a modest

amount of combining hardware. Although it is described in the context of special purpose combin

ing hardware, it can also be completely implemented in software using the techniques of Section

5.3.2. The algorithm is easily generalized to networks other than the butterfly.

The software multiprefix algorithm in [Coh90] requires only basic communication facil

ities among processors. It assumes a binary hypercube interconnection network, but can be gener

alized to other networks. The algorithm is complicated, and a detailed description of it is beyond

the scope of this summary. Time complexity is 0(logiV" -I- Tsort(S, S)), where 5 is the length

of the largest list of values, and Tsort(M, P) is the time to sort M items on P processors with a

given multiprocessornetwork. Space complexityis O(N).

Although the time complexity ofboth algorithmsis the same, the software scheme is prob

ably less efficient by a large constant factor. The hardware scheme scheme can also be pipelined,

permitting multiprefix operations to be applied at a much higher rate.

/* globally shared barrier structure */
shared structure {

/* nprocsinitializedto #procs. arrivingat barrier *l
int nprocs;
int sense = 0;
int count = 0;
boolean all_arrived = FALSE;

} BARRIER;

/* barrier code */

void barrier(bar)
BARRIER bar,

{
local int count;

if (bar.sense = 0) {
count = fetch&inc(bar.count);
if (count == bar.nprocs) {

bar.all_arrived = TRUE;

}
else {

while (fetch&nop(bar.all-arrived) == FALSE) {
/* do nothing */

}
bar.sense = 1;

}
}
else {

count = fetch&dec(bar.count);
if (count = 0){

bar.aU-arrived = FALSE;

}
else{

while (fetch&nop(bar.all-arrived) == TRUE) {
/* do nothing */

}
bansense = 0;

}
}

Figure 5.2: Pseudo-code for Combining Barrier Algorithm

133

134

0 operations are an important subset ofmultiprefix operations that can be implemented
with fetch&op. This is because 0 operations do not impose an ordering constraint on the application

ofthe binary function F. The implementation requires adistinct synchronization address a, for each

of the Lvalue lists (Eqn. 5.1). The contents of a, are initialized to /,i. A 0 operation with function

F is performed by having all processors proc{Uj), j ^ 1, issue fetch&F{ai, /,>). The result for
list i is then the contents of a,.

The use of fetch&op within a 0 operation provides a good example of where the high

bandwidth of ahardware combining scheme can beexploited. Thisexample considers howpipelined

fetch&op's can be be usedto emulate avery large data parallel computer (many thousands of pro

cessors) on a much smaller shared memory machine(several hundred processors). Emulation re

quires thatthe thousands ofvirtual processors bemapped ontoseveral hundred physical processors.

Given this mapping, the 0 operation can be performed by having eachphysical processor execute

the following:

/* issuefetch&op'sfor all emulated processors*/

for (all Uj on this processor) {
deferred_fetch&F(a,, Uj, address-of.result);

}

/* wait for fetch&op's to complete */
fence;

Each physical processor seriallyissues fetch&op accesses for each of the list elements mapped to

it. With pipelinedcombining hardware, the fetch&op's can be issued at a very high rate. This can

only be done, however, if processors can defer access to the results. The particular deferred access

mechanisms used here are:

• A deferred access fetch&op primitive, which does not force the processor to wait for the

result. The deferred fetch&op primitive requires an extra operand: a pointer to the memory

location in which the result is placed.

• A fence instruction, which forces the processor to stall until all outstanding references are

completed. This requires the processor to maintain a count of outstanding accesses. Fence

instructions have been suggested elsewhere for similar synchronization functions [B+85,

G+90a].

135

Assuming thatmost of the fetch&op operands and results reside in the local cache, most loop ac

cesses (except the fetch&op's) will be satisfied locally. At theend of the loopthe fence operation

stallsthe processorwhile the final fetch&op completes. Witha sufficiently large numberof virtual

processors, the stall time should be small compared to loop time, and good utilization should be

achieved. Good hardware support forfetch&op primitives provides a powerful waytoemulate data

parallel computation.

5.2.6 Combining

In someprogramming models, simultaneous accesses to the samelocationare performed

concurrently, with the same result as if they were performed in some arbitrary serial order. This

powerful abstraction is known as combining, and can be used to construct efficient parallel algo

rithms, including parallel queues, 0 operations, iteration assignment in parallel loops, and barriers

[AG89]. Because of fanout restrictions, the combining abstraction can onlybe approximated in an

implementation. In the simplest implementation, n concurrent fetch&op's are performed in serial

order, requiring0{ n) time. If the "op" in fetch&op is associative, however, the timecan be reduced

to0(log n) byreordering thelinear dependencies ofa serial orderintoa tree. Implementations that

use thistechnique are said to support combining. Two or more fetch&op accesses thatgenerate an

intermediate value are said to be combined.

Combining can be performed in hardware or software. Oneof the first combining imple

mentations was developed for the multistage network in the NYU Ultracomputer [G+83c]. This

implementation exploited the fact that simultaneous accesses to the same address pass through a

tree of switching elements, withthe rootat the memory bankholding the addressed data. The tree

of switching elements provides a natural way to reorder a serial application of the simultaneous

accesses. Hardware within each switch detects two or more simultaneous accesses to the same lo

cation, andgenerates an intermediate result. Toreduce network traffic, the switch forwards a single

access with the intermediate operand, and retains a record of the accesses that are combined. When

a result for the intermediate access is returned, it is split into returnvalues for each of the combined

accesses. Variationsof this combiningschemehave been published in [1*85, SB77, TR88, R+90].

Thetreebarrierdescribed inSection 5.2.4 isanexample ofcombining in software. Otherexamples

are in [G+89, PCYL87].

There are twocommoncombining situations withspecialproperties that can be exploited

in an implementation. The first is combining in the context of a synchronous reference model. In

136

a synchronous reference model, processors issue shared accesses in lock-step. Several algorithms

havebeen published thatexploitthis synchrony to provide provably efficientcombining [Ran87].

These efficient combining schemes can also beused inanasynchronous reference model by emulat

ingasynchronous accesses. Emulation, however, introduces overhead that can reduce performance.

This was discussed in Section 4.2.3.

A second important combining situation arises in barrier and 0 algorithms based on

fetch&op primitives. In barrier and 0 operations, a known set of processors issue fetch&op ac

cesses to the same address in synchrony. We denote such fetch&op accesses as static fetch&op

accesses, fetch&op accesses that do not statisfy these restrictions are dynamic, static fetch&op

accesses can be exploited in efficient combining implementations [Ran87], which we call static

combining schemes. Alternatively, implementations supporting dynamic fetch&op accesses are

called dynamic combining schemes. The software and hardwarebarrier schemes in Section 5.2.4

are examples of static combining. Section 5.3.3 analogous waysto support multiprefix operations.

Most published hardware combining schemes support dynamic combining with asyn

chronous references. In its full generality, hardware implementations of asynchronous combining

are very expensive, somost publishedimplementations restrict thenumberandtype ofsimultaneous

combining operations that can take place. [SSG89] and [HRS88a] show how fetch&increment and

fetch&decrement can be combined efficiently usingaglobalsynchronization bus. [R+90] describes

anefficient implementation of read combining. [TR88] and [LV88b] describe efficientcombining

schemes fornetworks with bit-wide datapaths. Published implementations of combininghardware

for networkswith wide paths and less restrictive operations havebeenvery expensive; [PN85] es

timated that a combining switch for a multistage network would require 6 to 24 times as much

hardware as comparable non-combining network. Combining with synchronous references can

be implemented efficiently, but synchronizing processor references has a potential performance

penalty.

Hardware combining support is attractive for two reasons. The first is that latency of

a combining operation can probably be reduced by a factor of 2 or more over a software imple

mentation. The second is that a software implementation cannot be pipelined; the bandwidth of

combining hardware is therefore higherbecause of reduced latency and pipelining. It is likely that

combining hardware canbe sufficiently pipelined to permit fetch&op requests to be accepted by a

switch every 2 cpu cycles, with a processinglatency of 20 or less (see [Joh90] and the combining

implementationdescribed in Section 5.3). A software implementation of either algorithm (using

techniques described in Section 5.3.2) would probably require at least 40 cycles per fetch&op, and

137

could not be pipelined. A hardware scheme would therefore increase bandwidth by an order of

magnitude.

5.2.7 Summary

Someform of synchronous or asynchronous combining is necessary in softwareor hard

ware to construct many scalable parallel algorithms. In particular, static combining is useful for

implementing efficient barriers and multiprefix operations, and dynamic combining is useful for

implementing efficient parallel queues. Combining in hardware is attractive because of the much

higherbandwidthitoffers. A provablyefficientalgorithm isknownfor implementingdynamiccom

biningin hardware for a synchronous reference model(or,usingthe techniques of Section5.3.2, in

software). Although the algorithm can be modified to emulate combining with asynchronous ref

erences, there is a potentialperformance penalty. On the otherhand,dynamiccombining hardware

can be easily modified to support static combining. One approach is described in Section 5.3.3.

Section5.3 describes a dynamic combining implementation that should require far less hardware

than conjectured in [PN85]. Furthermore, there seemsto be no reason why the performanceof the

implementation shouldbe significantly worse than previous dynamiccombining schemes.

5.3 Efficient Implementation of Dynamic Combining

As previously mentioned, most published implementations of dynamic combining for

networks with wide paths have been very expensive. This section presents a hardware technique

that requires much less hardware than previously conjectured [PN85]. Because the design applies

to networks built from jxk crossbar switches, it can be used in Delta networks, direct k-ary n-

cubes and meshes. The same ideas can be usedto construct an analogous softwarealgorithm. The

software equivalent is described in Section 5.3.1. This algorithm is simplerthan that published by

Goodman [G+89], and requires no spinning. Section 5.3.3 shows how the hardware scheme can

be easily modified to supportbarriers withoutthe large number of network transactions required

by a conventional combining barrier (Figure 5.2). The modifications result in what is essentially

a hardware implementation of the software barrier algorithm described in Section 5.2.4. Similar

modifications that support multiprefix operations are presented in Section 5.3.3.

138

53.1 Efficient Dynamic Combining in Hardware

The combining hardware described here assumes that combining is only required for

fetch&op instructions, which are distinct from reads, writes and coherence transactions. It is also

assumed thatthemultiprocessor network is constructed ofjxk crossbar switches, with a routing al

gorithm thatensures thattheresponse to a memory request returns onthesame path asthe request.

Figures 5.3 and5.4 showthe proposed combining hardware. Figure 5.3 is a typical kxk

switch implementation (Figure 4.7) augmented withan extra input and output port on the cross

bar switch, which are connected to a combiner composed of a combining table (Figure 5.4), an

arithmetic/logic unit, and a controller. For simplicity, the combiners operate serially, so onlyone

combining transaction can be handled at a time. All fetch&op transactions are routed through the

combiner twice: once when they arrive at the switch and again after a combining entry has been

established. The time interval while the transaction is in queue is the combining window during

which otherfetch&op transactions can becombined with the first. When it first arrives, a fetch&op

transaction is compared against otherbuffered fetch&op transactions to see if thesameoperation is

being made on the same location. If there is a match, the transaction is combined and the transaction

neednot be forwarded. If there is no match, a newtableentryis inserted and the transaction is put

back on the combiner queue; the new tableentry is marked active to indicate that it is eligible for

combination with future transactions. When a transaction makes a second pass through the com

biner, the combinerdetermines if any combining has taken placesincethe first pass. If combining

has occurred, the table entry must now be marked inactive and the fetch&op operandmust be re

placedwith the value of the combined operand. If no combining has occurred, the entry is deleted

since no decombining is required. There are clearly many ways in which the combinerqueue can

arbitrate amongnew combining transactionsand transactions makinga second pass.

The combiningtable providesassociative accesstocombiningentries. This can be imple

mented efficiently usingaset-associative organization (Figure 5.4). Ina set-associative organization

[Smi82], the table is composed of n/ linesof n9 entriesper line. Toaccessentry a;, a line is selected

by mapping x to some value between 0 and n/ - 1; this mapping is typically done by making n/ a

power of 2 and stripping off the log2rn low order bits of x. The addresses of the ns entries of the

selected line are then compared, in parallel, to find the desiredentry.

The identifier of a combining table entry has three components: the address of the syn

chronization variable, the fetch&op operation, and the instance id, which is used to differentiate

two or more distinct combining entries for the same address. The need for instance id's is illus-

O—

O—

Combining
Table

Crossbar

ALU

Combiner

-DO

O

O

Combiner
Queue

Figure 5.3: Combining Switch Architecture

Basic

Switch

Combining

Hardware

139

address entry data

address op instance active valid vals[.] inputs[.] result n
20 6 2 1 1 60 18 10 3 i

v ' '

T

Set1 Set 2

address

rt
compare

m
compare

'I'l

select

Sets

Set 3

a
compare

D

multiplexor

Jentry data

Set 4

a
compare

Figure 5.4: Combining Table Architecture

140

Lines

141

trated as follows. At time t\ two fetch&add transactions arrive for address x and are combined. At

time *2, after the first combined fetch&add transaction has been forwarded, two other fetch&add

transactions arrive for the same address. If these transactions are combined, theyrequire aseparate

tableentry and the entries must be differentiated by distinct instanceid's.

A combining table lookup requires these steps:

1. Select the table line usingthe log2 ni bitsof the fetch&op address.

2. In parallel, compare the address in each of the na sets against the fetch&op address and

operation.

3. Forthe entries whose addresses andoperations match, examine the valid bits, active bits and

instance id's. If an activeentry exist, combine the fetch&op. If one or more inactiveentries

exist, find the largest instance id idmax. Create a new entry and assign it an instance id of

idmax + 1. If no free entries exist for thisline, forward the fetch&op to the next switch.

The numberof sets in the combining table limits the numberof combininginstances that

can be stored fora particular address. Since morethanone address can map to the sameline in the

table, the maximum numberof combining instances may be less. We expect 4 to be a reasonable

number of sets.

A combining entry is composed of 8 fields (Figure 5.4) (values in brackets indicate the

number of bitsdevoted to this field assuming: switch fanin of 6,1024 processors, 32bit fetch&op

address, 32 bit limit on fetch&opoperands, 6 bit op-field, na = 4):

• fetch&op address (32)

e fetch&op operation (6)

• instance id (2)

e nc: the number of combinings that have taken place(4)

• vahi[]: an array of the fetch&op operands corresponding to the nc combined transactions.

This array has amaximum numberofentriescorresponding to the faninofthe switch. (6*32)

• input$i[]: an array of the switch input numbers corresponding to the nc combined transac

tionsThis array has a maximum numberof entries corresponding to the fanin of the switch.

(6*3)

142

• an active flag, indicating whether or notcombining canstilloccurfor thisentry (1)

e a valid bit, indicating whether or not the entry is free (1)

e the cummulative value of performing the fetch&op operation on all nc vals (32)

Withthe above assumptions, 36 bytesare required per entry, which is comparable to the

size of a cache line. Several thousand entries could therefore be provided at reasonable cost.

The timeto process a fetch&op transaction withthisscheme will clearly beconsiderably

longerthanthe timerequiredto process a reador write; weestimate 5 to 10timesas long. Because

of this, combining should be restricted to variables that are knownto cause significant contention.

The extra processing time, however, will certainly be no longer that the time required to do the

equivalent combining operation in software.

The complexity of thiscombining scheme is minimized by handlingonlyone combining

or decombining transaction at a time. This is in contrast with other designs that attemptto com

bine two or more transactions simultaneously, requiring sophisticated multiportqueuesand tables

[DKSS85, Lee87, DGK86, LV88b, SB77]. The impaa on the performance of reads, writes and

coherence operations should be small because the modifications to the basic switch are minimal:

the buffer controllers have a few extra states, the buffer decoders have an extra case to consider,

and the size of the crossbar is increased by one.

There are many ways to optimizethe performance of the basic architecture of Figures 5.3

and 5.4, including:

1. Pipeline the combiner.

2. Provide a two portedcombining table and separate decombiner.

3. Provide amechanismto permitunblockedfetch&op transactions to bypassthecombiner. The

effectiveness of this optimization is probably workload dependent.

5.3.2 Efficient Dynamic Combining in Software

The hardware combining scheme of the previous section can be used as the basis of an

analogoussoftware scheme. The techniquesdescribedhere could also be used in a softwareversion

of Ranade's combining algorithm [Ran87],

In the hardware scheme, a combining tree is dynamically mapped to a tree of switches

in the network. In the software scheme,processors are dynamically mapped to nodes in a logical

143

combining tree. Each node contains a table of combining data structures that is analogous to the

hardware table in Figure 5.4. Distinct trees are used for distinct synchronization variables. For

maximum performance, each mapping should attempt to minimize the communication required

to traverse the tree. Figures 5.5 through and 5.7 provide a sketch of the software algorithm. They

assume the availability of the following message passing primitives:

1. sendjindJnterrupt(proc, msg): proc isinterrupted and msg ispassed toan interrupt handler,

the sender does not block. In dynamic combining, the sequence of combining operations is

not known in advance, so processors mustbe permitted to interrupt eachother.

2. send(proc,msg): msg is sent to proc; the sender does not block and proc can receive the

message only with the receive primitive.

3. receivefproc, msg): the receiver retrieves msg from proc if one has arrived, or blocks until

one does.

These primitives could bebuilt from lowerlevel synchronization primitives and an interrupt facility.

The following different msg's are used:

1. startJetch&op(addr, val)

2. endJetch&op(addr)

3. arrivalxombined(addr)

4. arrivaljtotxombined(addr)

5. resultfaddr, val)

As inthehardware scheme, twoaccesses tothecombining table for each fetch&op (that is

notitselfcombined) provide awindow of timeduring whichotherfetch&op's cancombine withthe

first. It is assumedthatthe interrupt handlerenforcesmutualexclusion foreachtableaccess. Proces

sors send fetch&op transactions to their parent inthe combining tree. WhenastartJetch&op(addr,

val) first arrives at a parent, atable lookupis performed for anentrycorresponding to addr and op.

If an active entry exists, the transaction is combined and arrivalxombinedfaddr) returned to the

child. The child then waits for a result. If an active entry does not exist, an active one is created

with a distinct instance number, and arrivaljiotxombinedfaddr) returned to the child. The child

mustnowwait for somelengthof time and issueend-fetch&op(addr) to the parent. The parent now

static_fetch&op(a<Wr, val)

{
sen6(parent, startJetch&op(addr, val));
Ttce\\t(parent, msg);
switch (msg) {

case arrivalxombined(addr):
/* do nothing*/

case arrival-notxombinedfaddr):
wait until combining window is over;
send(parent,end4etch&op(addr));

case result(addr, val):
return(val);

}

recQ\vQ(parent, msg);

switch (msg) {
case result(addr, val):

retum(val);

}

Figure 5.5: Software Combining Algorithm: fetch&op Routine forLeaves

144

inierrupt_handlen>tfgt source)

i
switch (msg) {

case startJetch&op(addr, val):
if (table entry foraddr) {

send(source, arrivalxombined(addr));

}
else{

create a table entry;
send(source,arrivaljiotxombined(addr));

}
return;

case end/etch&opfaddr):
get table entry for addr,
sen<\(parent, start/etch&op(addr, val));
return;

case resultfaddr, val):
get table entry for addr;
for all children{

send(child, resultfaddr, val));

}
delete table entry for addr,
return;

case arrivalxombinedfaddr):
/* do nothing */
return;

case arrivalJiotxombined(addr):
wait until combining window is over,
send(pare/ir, endjetch&op(addr));
return;

Figure 5.6: Software Combining Algorithm: Interrupt Handler for Interior Nodes

145

interrupt_handler(/?isgf source)
{

switch (msg) {
case start/etch&op(addr, val):

perform op;
send(source, result(addr,val));
return;

}
}

146

Figure 5.7: Software Combining Algorithm: Interrupt Handlerfor Root

marks the corresponding table entry inactive and forwards a (possibly) combined startjetch&op

message to its parent. Atthe rootof thecombining tree, thesolecopy of thecombining variable is

operated on and the values priorto eachoperation are retumed via result messages to thechildren

thatissued start/etch&op's. Thechildren calculate result values andreturn result messages to their

children until the process completes.

The relative performanceof the hardwareandsoftwarecombiningschemes, like the bar

rier schemes, is dependent on whethera singleor multiple stage interconnection network is used.

With a multistage network, eacharc in thecombining tree requires thecrossing of logN and 1net

work linksby the software and hardware schemes, respectively. In thiscase the hardware scheme

is clearly superior.

With a single stagenetwork, the combining treecan be statically mapped to the network

topology in such a way that the link crossings would be similar for both schemes, and in this case

a more detailed study is required. The software scheme has the significant advantage that it can

support an arbitrary set of fetch&op operations. In particular, floating pointoperations could be

easily provided. The software scheme, however, "steals" cycles from the processors to execute

algorithm code and to do interrupt handling. For each fetch&op request from a single processor,

log Ar processors must execute code from some portion of the algorithm, so the fraction of stolen

cyclescouldbecomesignificant for finergrained parallel computations.

5.3.3 Modifications to Support Static Combining

The dynamic combining hardware in Figure 5.3 can be easily modified to support syn

chronous combining primitives such as barriers and multiprefix operations. Since each use of a

147

static combining primitive involves a predetermined set of processors, a combining tree can be

programmed into the combining hardware usingspecial setupcommands. When this is done, the

combinercorresponding to a particular node in the combining tree can wait until allof its children

have been combined before forwarding a fetch&op primitive toitsparent. Asbefore, an analogous

scheme can be implemented in software.

Combining tree information can be stored in thecombining table fields as follows. The

number and identities of children are stored in the result and values fields, respectively. The

count ofchildren that have synchronized iskept inthe combining count (n inFigure 5.4). To set up

the combining table, a registerfaddr, op) transaction is sent at initialization time by all processors

that participate in the combining tree. When acombiner receives a register request, it locates the

corresponding table entry (allocating one if necessary), records the input number of the originating

switch, and increments the child count. When acombiner receives astatic combining transaction, it

locates the corresponding table entry, combines the transaction with those that have already arrived,

and increments the running child count If all children have arrived, a single combined transaction

is forwarded tothe combiner's parent switch. At the root combiner, the synchronization variable is

updated and theresults are disseminated tothe children recursively. The cost of these modifications

are slightly more complex controllers for the combiner and main memory.

Since the combining table isof limited size, register requests may sometimes fail. If this

occurs, registerfailure transactions are forwarded to the root and to all participating processors,

and some backupalgorithm is used. The root must somehowremember that failure hasoccurred so

thatprocessors sending register requests in the future are notified of the failure; this could be done

by storing a reserved value at the root.

It iseasy toconstruct efficient barrier and multiprefix operations using this synchronous

combining scheme. A barrier operation can be implemented using astatic fetch&op with arbitrary
"op" and discarding the result. A multiprefix operation can be implemented like the 0 operation

in Section 5.2.5. Static fetch&op's must be used, and a register request is required to initialize
combining table entries.

5.4 Conclusions

This chapter has summarized known techniques for implementing common shared mem

ory synchronization primitives in hardware and software, indicating their advantages and disad

vantages. A technique was described for implementing static and dynamic combining inhardware

148

orsoftware. It was also shown how this technique readily supports barriers and multiprefix op

erations. Such a technique is desirable because it supports the efficient emulation of many useful

parallel programming paradigms, including those used intraditional shared memory programming

environments, the Connection Machine [Hil85], the Fluent abstract machine [RBJ88], the Ultra-

computer [Sch80], and the EPEX parallel Fortran model [1^88]. A duality exists among most

of the described hardware and software synchronization techniques, so that each offers the same

asymptotic performance. The hardware schemes should be faster by a constant factor, however, at

the expense of extra circuitry. Forcombining operations the performance improvement should be

considerable because the implementation can be pipelined. It is estimated that the proposed hard

ware combining scheme should require about 1.5 to 2 times the circuitry of a basic 7x7 network

switch. Such anetwork switch is probablypin-limited, so the addedcost appears minimal compared

to the potential performance gain.

149

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In thisdissertation implementation and evaluation techniques were presented for directory-

based cache coherence schemes. Although the focus hasbeenon scalable cache coherence, a thor

ough performance evaluation required detailed consideration of interconnection networks and syn
chronization schemes.

In Chapter 2,known methods were reviewed for efficiently implementing directories. The

tag caching scheme was introduced. There are now avariety of efficient directory implementations

thatdo not restrict the numberof copiesof a block.

In Chapter 3, the performance of full directory protocols were evaluated using execution

driven analysis of three parallel programs. It built upon previous work in several ways. First, it

applied efficient stack simulation techniques tothe evaluation ofdirectory protocols, extending the

woric of [Tho87] to support acompetitive scheme. This issignificant because it permits multipro
cessors with several (uniform) cache sizes to be evaluated inina single simulation run. Chapter

3 also introduced the concept of an update-run to a cached block, update-runs supplement the

pingfcling and write-run locality models with ameasure of invalidation/update traffic suitable for
point-to-point networks.

The empirical data in Chapter 3extends previously published data byevaluating update

and competitive directory schemes, and byconsidering larger numbers of processors. Unlike Eg-

gers' shared bus study [EK89b], the results here account for the extra point-to-point message traffic

required for invalidates or updates. When considering point-to-point traffic, the update (competi
tive) protocols generated 0 to 300% (0 to 60%) more network traffic than the invalidation protocol.

150

Since the average number ofupdates per shared writes ranged from 4to 16 (2 to 7) for the update
(competitive) simulations, this was not surprising. Although considerable extra traffic was gener

ated by the update and competitive protocols, the reduction in misseswas substantial: read misses

were reduced by 20 to 70% (15 to 60%). With buffered writes and blocking on read misses, the

miss reductions corresponded to only modest increases in processor utilization (5 to 15%).

Thegrowth of coherence traffic with multiprocessor size was also considered Chapter 3.

The frequency of invalidations, updates and invalidation misses ona per-processor basis increased

approximately linearly withthenumberof processors. Invalidations per shared write grew from 0.2

to 2.2 when thenumber of processors grew from 4 to 128. For theupdate (competitive) protocol,

updates pershared write grew from 2 to 16(0.5 to6)overthesame range of sizes. The simple update

and competitive protocols considered here are therefore inadequate for more than200 processors

withoutsomeadditional mechanism to further limitupdate traffic. The invalidation protocol appears

suitable for more than 500 processors.

New network modeling techniques developed in Chapter4 permitted a systematic com

parison of a broad class of interconnection networks. The techniques built upon the parametric

decomposition scheme used in the Bell Laboratories QueueingNetwork Analyzer and finite buffer

algorithm of Altiok andPerros to support realistic networic features: virtual cut-through flow con

trol, and the use of virtual channels for congestion reduction. Furthermore, the models support

arbitrary Maricovian routingand two moment approximations of arrival processes. The models are

also reasonably efficient, offering performance estimates in 5 to 100times less cpu time that simu

lations. Results for hypercube, multistage, three dimensional toroidalmesh, and three dimensional

mesh topologies showed the tradeoffs available amongbandwidthandlatency. The trafficestimates

ofChapter4 suggestthata threedimensional mesh topologywith wide pathsis a goodcompromise

for several hundred processors.

The cachinganalysisin Chapter3 assumedthatthe synchronizationprimitivesused in the

benchmarks (locks andbarriers) hadideal implementations: This wasdone so thatthe comparison

of coherence protocols would be unbiased by coherence activities generated by naive synchro

nization techniques. Chapter 5 justified this assumption by describing efficient implementations

for locks and barriers, in hardware and software. Section 5.3 also described software and hard

ware implementations for combining with an asynchronous reference model. Section 5.3 showed

how these implementations could be modified to supportmultiprefix operations,which offer direct

support for several powerful programming paradigms. It is estimated that the proposed hardware

combining scheme should require about 1.5 to 2 times the circuitry of a basic 7x7 network switch.

151

Such a switch is probably pin-limited, sotheadded costappears minimal compared to the potential

performance gain.

6.2 Future Work

This work can be extended in several ways. First, there is a need for better benchmark

data, and evaluation techniques with much greater efficiency. The empirical data in Chapter 3

was collected from about 1second of execution of three programs on a relatively small multipro

cessor (64 cpu's). Furthermore, the three programs represent only a small class of programming

paradigms. Innovative emulation techniques are desperately needed to permit large parallel pro

grams to run tocompletion onrealistically large data sets. Current trace-driven techniques are slow

because they are too detailed. A better understanding of the significance of various modeling de

tails would permit an intelligent tradeoff of accuracy for speed. A step toward this goal would be
an investigationof trace sampling [LPI88].

There are several ways in which the network modeling techniques of Chapter 4 can be

extended. It may be possible to model some of the recently proposed adaptive routing schemes

[LH91]. Since adaptive routing schemes adjust the Maricovian routing parameters based on net

woric load, one approach isto place the algorithm of Figure 4.15 inside an additional iterative loop

that adjusts the routing parameters based on the network load observed in the previous iteration.

Modifications similar to those used tomodel virtual channels may permit the support of multiple

message priorities. Priorities maybe useful inimproving the performance of synchronization and

other critical transactions. Finally, more efficient modeling techniques for virtual channels and

superposition could greatly reduce the currently large computation times for large networks.

Finally, the combining hardware described inChapter 5needs to bethoroughly evaluated

and compared against competing schemes, such as Ranade's Fluent implementation [RBJ88].

152

Bibliography

[A+85] M. Ajmone Marsan et al. Generalized stochastic petri net modelsof multiprocessors withcache

memories. In International Conference on SupercomputingSystems, pages 690-696,1985.

[A4* 88a] A. Agarwal et al. An evaluation of directory schemes for cache coherence. In Proceedings of

the InternationalSymposium on ComputerArchitecture, pages 280-289, May 1988.

[A+88b] F. Allen et al. An overview of the PTRAN analysis system for multiprocessing. Journal of

Parallel and Distributed Computing, 5:617-640,1988.

[A+89] Y. Afek et al. A lazy cachealgorithm. In ACM Symposium on Parallel Algorithms andArchi

tectures, pages 209-222,1989.

[AB84] J. Archibald and J-L. Baer. An economical solution to the cache coherence problem. In Pro

ceedings ofthe International Symposiumon ComputerArchitecture, pages 355-362,1984.

[AB86] J. Archibald and J. Baer. Cache coherence protocols: Evaluationusing a multiprocessorsimula

tion model. ACM Transactions on ComputerSystems, 4(4):273-298, Nov. 1986.

[ABC86] M. Ajmone Marsan, G. Balbo,and G. Conte. Performance Models ofMultiprocessor Systems.

MIT Press, 1986.

[ABC+89] M. Ajmone Marsan, G. Balbo, G. Chiola, A. Ciccardi, and G. Conte. Estimating the average

delayin adeltainterconnection networkoperating according to thecut-through packetswitching

technique. Performance ofDistributed andParallel Systems, pages 491-510,1989.

[AG88] Anant Agarwal and AnoopGupta. Memory-reference characteristics of multiprocessor applica

tions undermach. In SIGMETRICS International Conference on Measurement andModeling of

Computer Systems, pages 215-225,1988.

[AG89] George S. Almasiand AllanGottlieb. Highly Parallel Computing. Benjamin/Cummings, 1989.

[AG90] Anant Agarwal and Anoop Gupta. Temporal, processor and spatial locality in multiprocessor

memory references. Frontiers of Computing Systems Research, 1:271-295,1990.

[AH90] Sarita Adve and Mark Hill. Implementing sequential consistency in cache-based systems. In

Proceedings of the International Conference onParallel Processing, pages 47-50,1990.

153

[Aky88] Ian F. Akyildiz. Mean value analysis forblocking queueing networks. IEEE Transactions on

Software Engineering, 14(4):418-428, April 1988.

[AN87] Arvind and Rishiyur S. Nikhil. Executing a program on the MIT tagged-token dataflow archi

tecture. In Proceedings of the P.ARLE Conference, Eindhoven, June 1987; in Lecture Notes in

Computer Science, pages 1-29. Springer-Verlag, 1987.

[AP87] T. Altiokand H. G. Perros. Approximate analysis of arbitrary configurations of open queueing

networks with blocking. Annalsof OperationsResearch,9:481-509,1987.

[AP89] Seth Abraham and Krishnan Padmanabhan. Performance of the direct binary n-cube network

for multiprocessors. IEEE Transactions onComputers, 38(7): 1000-1011, July 1989.

[AS83] G.R. Andrews and F. B.Schneider. Concepts and notations for concurrent programming. Com
puting Surveys, 15(l):3-43, March 1983.

[ASK85] W. Abu-Sufah and A. Y. Kwok. Performance prediction tools for cedar A multiprocessor su

percomputer. In Proceedings of the International Symposium onComputer Architecture, pages

406-413,1985.

[B+84] D. Bitton etal. A taxonomy ofparallel sorting. Computing Surveys, 16(3):287-318, Sept. 1984.

[B+85] W. C. Brantiey et al. RP3 processor-memory element In Proceedings of the International
Symposium on Computer Architecture, pages 782-789, June 1985.

[BD81] F. A. Briggs and M. Dubois. Cache effectiveness inmultiprocessor systems. In Proceedings of
the ACM Conference on the Measurement and Modeling ofComputer Systems, pages 306-313,
1981.

[BD86] P. Bitar andA. M. Despain. Multiprocessor cache synchronization: Issues, innovations, evolu

tion. InProceedings ofthe International Symposium onComputer Architecture, pages 424-433,
June 1986.

[Bel82] Peter C. Bell. The use of decomposition techniques for the analysis of open restricted queueing

networks. OperationsResearchLetters, l(6):230-235, December 1982.

[BH89] Eugene D. Brooks and Joseph E. Hoag. A scalable coherent cache system with fuzzy direc
tory state. Technical report, University of California, Lawrence Livermore National Laboratory,

1989.

[BK88] Richard G. Bomand James R. Kenevan. Analytic derivation of processor potential utilization

in straight line, ring, square mesh, and hypercube networks. In SIGMETRICS International

Conference onMeasurement and Modeling ofComputer Systems, pages 94-103,1988.

[Ble89] G. E. Blelloch. Scans asprimitive operations. IEEE Transactions onComputers, 38(11):1526-

1538, November 1989.

154

[BST89] Henri E. Bal, Jennifer G. Steiner, and Andrew S. Tanenbaum. Programming languages for dis
tributed computing systems. Computing Surveys, 21(3):261-322, September 1989.

[C+89] D. R. Cheriton etal. Multi-level shared caching techniques for scalability in VMP-MC. In
Proceedings ofthe International Symposium on Computer Architecture, pages 16-24,1989.

[C+90] D. Chaiken etal. Directory-based cache coherence in large-scale multiprocessors. IEEE Com
puter, 23(6):49-59, June 1990.

[C+91] David E. Culler et al. Fine-grain parallelism with minimal hardware support: A compiler-
controlled threaded abstract machine. In Proceedings of the International Conference onAr

chitectural Supportfor Programming Languages andOperating Systems, pages 164-175,1991.

[CF78] L. M. Censier and P. Feautrier. A newsolution to coherence problems in multicache systems.

IEEE Transactions on Computers, C-27(12):1112-1118,Dec. 1978.

[CG89] Nicholas Carriero and David Gelernter. How to write parallel programs: A guide to the per

plexed. Computing Surveys, 21(3):323-358, September 1989.

[CKA91] David Chaiken, John Kubiatowics, and Anant Agarwal. LimitLESS directories: A scalable

cache coherence scheme. InProceedings ofthe International Conference onArchitectural Sup

portfor Programming Languages andOperating Systems, pages 224-234,1991.

[CKM88] R. Cytron, S. Karlovsky, and K.P. McAuliffe. Automatic management of programmable caches.

InProceedings of the International Conference onParallel Processing, volume II, pages 229-

238,1988.

[Coh90] Evan ReidCohn. Implementing the multiprefix operation efficiently. Journal ofParallel and

Distributed Computing, 10:29-34,1990.

[CS78] K. M.Chandy and C. H. Sauer. Approximate methods for analyzing queueing network models

of computing systems. Computing Surveys, 10(3):281-317,Sept 1978.

[CV88] H. Cheong and A. V. Veidenbaum. Stale data detection andcoherence enforcement using flow

analysis. In Proceedings oftheInternational Conference onParallelProcessing, pages 138-145,

1988.

[CV90] Hoichi Cheong andAlexander V. Veidenbaum. Compiler-directed cache management in multi

processors. IEEE Computer, 23(6):39-48, June 1990.

[D+86] M. Dubois et al. Memory access buffering inmultiprocessors. In Proceedings ofthe Interna
tionalSymposium on Computer Architecture, June 1986.

[D+88] F. Darema et al. A single-program-multiple-data computational model for EPEX/FORTRAN.

Parallel Computing, 7:11-24,1988.

155

[Dal90a] Yves Dallery. Approximate analysis ofgeneral open queueing networkswith restricted capacity.

PerformanceEvaluation, 11:209-222,1990.

[Dal90b] William J. Dally. Performance analysisof k-ary n-cube interconnection networks. IEEE Trans

actions on Computers, 39(6):775-785, June 1990.

[Dal90c] William J. Dally. Virtual-channel flow control. In Proceedings of theInternational Symposium

on Computer Architecture, pages60-68,1990.

[DB82] M. Dubois and F. A. Briggs. Effects of cache coherency in multiprocessors. IEEE Transactions

on Computers,C-31(ll):1083-1099, Nov. 1982.

[DGK86] Susan Dickey, Allan Gottlieb, and Richard Kenner. Using VLSI to reduce serialization and

memory trafficin shared memory parallel computers. In Charles E. Leiserson, editor,Advanced

Research in VLSI, pages 299-316,1986.

[DJ81a] D. M. Dias and J. R. Jump. Packet switching interconnection networks for modular systems.
IEEE Computer, pages43-53, Dec. 1981.

[DJ8 lb] Daniel M. Dias andJ. Robert Jump. Analysis andsimulation of buffered delta networks. IEEE

Transactions onComputers, 30(4):273-282, April 1981.

[DKSS85] S. Dickey, R. Kenner, M. Snir, and J. Solworth. A VLSI combining network for theNYU ultra-

computer. InProceedings ofthe International Conference onComputer Design, pages 110-113,
1985.

[DR+87] F. Darema-Rogers et al. Memory access patterns of parallel scientific programs. In SIGMET-
RICS International Conference on Measurement and Modeling ofComputer Systems, pages 46-
58,1987.

[DS87] William J. Dally and Charles L. Seitz. Deadlock-free message routing in multiprocessor inter

connection networks. IEEE Transactions on Computers, 36(5):547-553, May 1987.

[Dub85] M. Dubois. A cache-based multiprocessor with high efficiency. IEEE Transactions on Comput-
<?rj,C-34(10):968-972,Oct. 1985.

[Egg91] Susan J. Eggers. Simplicity versus accuracy in a model of cache coherence overhead. IEEE

Transactions onComputers, 40(8):893-906, August1991.

[EK88] S. J. Eggers and R.H. Katz. A characterization of sharing inparallel programs and itsapplication

tocoherency protocol evaluation. InProceedings of the International Symposium on Computer
Architecture, pages 373-383, June 1988.

[EK89a] S. J. Eggers and R. H. Katz. The effect of sharing on the cache and bus performance of par

allel programs. In Proceedings of the International Conference onArchitectural Support for
Programming Languages andOperating Systems, pages257-270,1989.

156

[EK89b] S. J. Eggers and R. H. Katz. Evaluating the performance of four snooping cache coherency
protocols. In Proceedings ofthe International Symposium on Computer Architecture, pages 2-
15,1989.

[Fen81] T. Feng. A survey of interconnection networks. IEEE Computer, pages 12-27, Dec. 1981.

[G+ 83a] D. Gajski etal. Cedar-a large scale multiprocessor. In Proceedings ofthe International Confer
enceon ParallelProcessing, pages514-529, August 1983.

[G+83b] A. Gottlieb et al. Basic techniques for the efficient coordination of very large numbers of co

operating sequential processors. ACMTransactions on Programming Languages andSystems,

5(2):164-189, Apr. 1983.

[G+83c] A. Gottlieb et al. The NYU Ultracomputer-designing an MIMD shared memory parallel com

puter. IEEETransactionson Computers, C-32(2):175-189, Feb. 1983.

[G+ 89] J. R. Goodman et al. Efficient synchronization primitives for large-scale cache-coherent multi

processors. In Proceedings of the International Conference on Architectural Supportfor Pro

gramming Languagesand OperatingSystems, pages 64-73,1989.

[G+90a] Kourosh Gharachorloo etal. Memory consistency and eventorderinginscalable shared-memory

multiprocessors. In Proceedings of the International Symposium on Computer Architecture,

pages 15-26,1990.

[G+90b] A. Gupta et al. Reducing memory and traffic requirements for scalable directory-based cache

coherence schemes. In Proceedings of the International Conference on Parallel Processing,

pages 312-321, August 1990.

[Gee74] J. Gecsei. Determining hit ratios for multilevel hierarchies. IBMJournal of Research and De

velopment, 18(4):316-327, July 1974.

[GGH91] KouroshGharachorloo, Anoop Gupta, and John Hennessy. Performance evaluationof memory

consistency models for shared memory multiprocessors. In Proceedings of the International

Conference onArchitecturalSupportfor Programming LanguagesandOperating Systems, pages

245-259,1991.

[GKW85] J. R. Gurd, C. C. Kirkham, and I. Watson. The manchester prototypedataflow computer. Com

munications oftheACM, 28(l):34-52, January 1985.

[GL73] L. R. Goke and G. J. Lipovski. Banyan networks for partitioning multiprocessor systems. In

Proceedings ofthe InternationalSymposium on ComputerArchitecture,pages 21-28,1973.

[GM88] Levent Gun and Armand M. Makowski. Matrix-geometric solution for finite capacity queues

witii phase-type distributions. Performance '87, pages 269-282,1988.

157

[Goo89] James R. Goodman. Cache consistencyand sequential consistency. TechnicalReport 61, Scal

able Coherent Interface Committee, March 1989.

[GS89] P. E. Green, Jr. and H. S. Stone. The implementation of a barrier for multiprocessors by means

of an optical bus. Technical Disclosure YO888-0018,January 9,1989, IBM Research, 1989.

[GW88] J. R. Goodman and P. J. Woest. The Wisconsin Multicube: A new large-scale cache-coherent

multiprocessor. InProceedings ofthe International Symposium onComputer Architecture, pages

422-433, May 1988.

[H+91] P. J. Hatcher et al. Data-parallel programming on mimd computers. IEEE Transactions on
ParallelandDistributed Systems, 2(3):377-383, July 1991.

[Hil85] W. Daniel Hillis. TheConnection Machine. MIT Press, 1985.

[Hoa78] C.A. R. Hoare. Communicating sequential processes. Communications ofthe ACM, 21(8):666-
677, August 1978.

[Hos89] T. Hoshino. P.4X Computer: High-Speed Parallel Processing and Scientific Computing.
Addison-Wesley, 1989.

[HRS88a] P. Heidelberger, B. D. Rathi, and H. S. Stone. A device for performing efficient task-distribution

with a bus connection. Technical Report Technical Disclosure YO889-0053, January 20,1989,
IBM Research, 1988.

[HRS88b] P. Heidelberger, B. D. Rathi, and H. S. Stone. A low-cost device for contention-free barrier

synchronization. Technical ReportTechnical Disclosure YO888-0218, March 16, 1988, IBM

Research, 1988.

[HS89] M. D. Hill and A. J. Smith. Evaluating associativity in CPU caches. IEEE Transactions on

Computers, 38(12):1612-1630, December 1989.

[Hud89] Paul Hudak. Conception, evolution, and application of functional programming languages.
Computing Surveys, 21(3):359-411, September 1989.

[HW88] P. Hudak and P. Wadler. Report onthe functional programming language Haskell. Technical

Report YALEU/DCS/RR656, Department of Computer Science, Yale University, 1988.

[IEE90] IEEE. SCI (scalable coherent interface). Technical Report Standard P1596 (Draft), IEEE, 1990.

[Jen83] Y.-C. Jenq. Performance analysis of a packet switch based onsingle-buffered banyan network.

IEEE Journal on SelectedAreasinCommunications, SAC-1(6):1014-1021,December 1983.

[Joh90] S. Lennart Johnsson. Communication in network architectures. In Robert Suaya and Graham

Birtwistie,editors, VLSI andParallel Computation. Morgan Kaufmann, 1990.

158

[K+ 86] A. Karlin et al. Competitive snoopycaching. In Proc. 27th .Ann. Symp. Foundations ofComputer
Science, pages244-254,1986.

[KLB76] W. Kraemer and M. Langenbach-Belz. Approximate formulae for the delay in the queueing
system GI/G/1. In Congressbook, Eight International Teletraffic Congress, page 235,1976.

[KRS86] C. P. Kruskal, L. Rudolph, and M. Snir. Efficient synchronization on multiprocessors with shared
memory. In Proceedings ofthe ACM Symposium on Principles ofDistributedComputing, pages
218-228,1986.

[KS83] C. P. Kruskal and M. Snir. The performance of multistage interconnection networks for multi

processors. IEEE Transactions on Computers, C-32(\2):1091-1098,Dec. 1983.

[KSW88] C.P. Kruskal, M. Snir, and A.Weiss. The distribution ofwaiting times inclocked multistage in
terconnection networks. IEEE Transactions onComputers, 37(11):1337-1352, November 1988.

[Kue79] Paul J. Kuehn. Approximate analysis of general queueing networks by decomposition. IEEE
Transactions onCommunications, 27(1):113-126, January 1979.

[KX89] Demetres D. Kouvatsos and Nikos P. Xenios. Maximum entropy analysis of general queueing
networks withblocking. Queueing Networks with Blocking: Proceedings ofFirst International

Workshop,pages 281-309,1989.

[L+ 87] R. L.Lee etal. Multiprocessor cache design considerations. In Proceedings ofthe International
Symposium onComputer Architecture, pages 253-263,June 1987.

[L+ 90] Dan Lenoski etal. The directory-based cache coherence protocol for the DASH multiprocessor.
InProceedings oftheInternationalSymposium onComputer Architecture, pages 148-159,1990.

[Lam79] L. Lamport How to make a multiprocessor computer that correctly executes multiprocess pro

grams. IEEE Transactions on Computers, C-28(9):690-691, Sept 1979.

[Law75] D. H. Lawrie. Access andalignment of data inanarray processor. IEEE Transactions onCom

puters, C-24(12):1145-1155,Dec. 1975.

[LDC89] Jesus Labarta, Jordi Domingo, and Olga Casals. Performance evaluation of packet switched

omega networks with finite buffers. Queueing Networks withBlocking: Proceedings of First

International Workshop, pages 249-255,1989.

[Lee87] G. Lee. Another combining scheme toreduce hotspotcontention in large scale shared memory

parallel computers. InProceedings of the International Supercomputing Conference, pages 6&-

79,1987.

[LH91] D. H. Linder and J. C. Harden. An adaptive and fault tolerant wormhole routing strategy for

k-ary n-cubes. IEEE Transactions onComputers, 40(1):2-12,January 1991.

159

[LPI88] S. Laha, J. H. Patel, and R. K. Iyer. Accurate low-cost methods for performance evaluation of

cache memory systems. IEEE Transactions onComputers, 37(11):1325-1336,November 1988.

[LT88] T. Lovettand S. S. Thakkar. The symmetry multiprocessor system. InProceedings ofthe Inter

national Conference on ParallelProcessing, pages 303-310,1988.

[LV88a] Scott T. Leutenegger and Mary K.Vernon. A mean-value performance analysis of a newmulti

processor architecture. InSIGMETRICS International Conference onMeasurement andModel

ing of Computer Systems, pages 167-176,1988.

[LV88b] G. J. Lipovski and P. Vaughan. A fetch-and-op implementation for parallel computers. In Pro
ceedings ofthe International Symposium on Computer Architecture, pages 384-392,1988.

[LY90] D. J. Lilja and P. Yew. A compiler-assisted directory-based cache coherence scheme. Technical

ReportCSRD 990, Center for Supercomputing Research and Development, University ofIllinois
at Urbana-Champaign, July 1990.

[MA89] Douglas E. Marquardt and Hasan S. AlKhatib. C2MP: A cache-coherent distributed memory
multiprocessor-system. In Proceedings ofSupercomputing '89,pages 466-475, November 1989.

[Mar68] K. T. Marshall. Some inequalities in queueing. Operations Research, 16(3):651-665, May-June
1968.

[May90] Ernst W. Mayr. Theoretical aspects of parallel computation. In Robert Suaya and Graham
Birtwistle, editors, VLSI and Parallel Computation. Morgan Kaufmann, 1990.

[MB90] S. L. Min and J. L. Baer. A performance comparison ofdirectory-based and timestamp-based
cache coherence schemes. In Proceedings ofthe International Conference on Parallel Process
ing, pages305-311, August 1990.

[MCS91] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Transactions on Computer Systems, 9(l):21-65, Febru
ary 1991.

[MGST70] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques for storage hier
archies. IBMSystemsJournal, 9:78-117,1970.

[Neu81] M. F. Neuts. Matrix-Geometric Solutions in Stochastic Models. Johns Hopkins University Press,
Baltimore, MD, 1981.

[NP85] A. Norton and G. F. Pfister. A methodology for predicting multiprocessor performance. In
Proceedings of the International Symposium onComputer Architecture, June 1985.

[OA89] S. Owicki and A. Agarwal. Evaluating the performance of software cache coherence. In Pro

ceedings ofthe International Conference on Architectural Supportfor Programming Languages
andOperating Systems, pages 230-242,1989.

160

[ON90] B. W. O'Krafka and A.R. Newton. An empirical evaluation of two memory-efficient directory
methods. In Proceedings ofthe International Symposium on Computer .Architecture, pages 138-
147, May 1990.

[P+ 85] G. F. Pfister etal. The IBM research parallel processor prototype (RP3): Introduction and archi
tecture. InProceedings of theInternational Symposium onComputer Architecture, June 1985.

[Pat81] J. H. Patel. Performance of processor-memory interconnections for multiprocessors. IEEE

Transactions on Computers,C-30(\0):771-780, October 1981.

[Pat82] J. H. Patel. Analysisof multiprocessors with private cache memories. IEEE Transactions on

Computers,C-31(4):296-304,April 1982.

[PCYL87] N. F.Tzeng P. C. Yew and D. H. Lawrie. Distributinghot-spot addressingin large-scale multi

processors. IEEE Transactionson Computers, pages 388-395, April 1987.

[Pea77] M. C. Pease. The indirectbinaryn-cube microprocessorarray. IEEETransactionson Computers,

C-26(5):458^73,May 1977.

[Per89] H. G. Perros. A bibliographyof papers on queueing networks with finitecapacity queues. Per

formance Evaluation, 10:255-260,1989.

[Per90] Harry G. Perros. Approximationalgorithmsforopen queueingnetworks with blocking. Stochas

tic Analysis of Computerand Communication Systems, pages451-498,1990.

[PH88] N. M. Patel and P. G. Harrison. On hot-spot contention in interconnectionnetworks. In SIG

METRICS InternationalConference onMeasurement andModeling ofComputerSystems,pages

114-123,1988.

[PN85] G. F. Pfister and V. A. Norton. Hot spot contention and combining in multistage interconnection

networks. IEEE Transactionson Computers, C-34(10):943-948, Oct. 1985.

[PP84] M. S. Papamarcos and J. H. Patel. A low-overheadcoherence solution for multiprocessorswith

privatecache memories. In Proceedingsof theInternational Symposium on ComputerArchitec

ture, pages 348-355, Jan. 1984.

[PS89] H. G. Perros and P. M. Snyder. A computationally efficient approximation algorithm for feed

forward open queueing networks with blocking. Performance Evaluation, 9:217-224,1989.

[QD84] M. J. Quinn and N. Deo. Parallel graphalgorithms. Computing Surveys, 16(3):319-348,Sept.

1984.

[R+90] R. Rettberg et al. The monarch parallel processor hardware design. IEEE Computer, 23(4):18-

31, April 1990.

161

[Ran87] A. G. Ranade. How to emulate shared memory. In Fundamentals of Computer Science, pages

185-194,1987.

[Ran89] Abhiram Gorakhanath Ranade. Fluent Parallel Computation. PhD thesis, YaleUniversity, 1989.

[RBJ88] AbhiramG. Ranade, Sandeep N. Bhatt andS. Lennart Johnsson. The FluentAbstractMachine.

InProceedings oftheFifth MIT Conference onAdvanced Research in VLSI, pages 71-94, March

1988. Also availableas Yale Univ. Comp. Sc. TR-573.

[RF87] Daniel A. Reedand Richard M. Fujimoto. Multicomputer Networks: Message-Based Parallel
Processing. MIT Press, 1987.

[S A88] R. L. Sites and A. Agarwal. Multiprocessor cache analysis using ATUM. In Proceedings ofthe
International Symposium onComputer Architecture, pages 186-195,1988.

[SB77] H. Sullivan and T. R. Brashkow. A large scale homogeneous machine. In Proceedings of the
International Symposium onComputer Architecture, pages 105-124,1977.

[SB91] J.M.Sipelstein and G.E.Blelloch. Collection-oriented languages. Proc. IEEE, 79(4):504-523,
April 1991.

[Sch80] J. T. Schwartz. Ultracomputers. ACM Transactions on Programming Languages and Systems,
2(4):484-521,Oct 1980.

[SD87] C. Scheurich and M. Dubois. Correct memory operation of cache-based multiprocessors. In

Proceedings of the International Symposium on Computer Architecture, pages 234-243, June
1987.

[SH91a] Richard Simoni and Mark Horowitz. Dynamic pointer allocation for scalable cache coherence

directories. Technical report, Computer Systems Laboratory, Stanford University, 1991.

[SH91b] Richard Simoni and Mark Horowitz. Modeling the performance of limited pointers directo
ries for cache coherence. Technical report, Computer Systems Laboratory, Stanford University,
1991.

[Sha89] Ehud Shapiro. The family of concurrent logic programming languages. Computing Surveys,
21(3):412-510, September 1989.

[Sie85] H. J. Siegel. Interconnection Networks for Large-Scale Parallel Processing. Lexington Books,
1985.

[Smi82] A. J. Smith. Cache memories. Computing Surveys, 14(3):473-530, Sept. 1982.

[Smi85] A. J. Smith. CPU cache consistency with software support and using onetime identifiers. In

Proceedings of the Pacific Computer Communications Conference, pages 153-161,1985.

162

[SS86] P. Sweazey and A.J. Smith. Aclass ofcompatible cache consistency protocols and their support
by the ieee futurebus. In Proceedings ofthe International Symposium on Computer Architecture,
pages 414-423,1986.

[SSG89] G. S. Sohi, J. E. Smith, and J. R.Goodman. Restricted fetch&0 operations for parallel processing.

InProceedings of the International Supercomputing Conference, pages 410-416,June 1989.

[ST72] D. R. Slutz and I. L. Traiger. Evaluation techniques for cache memory hierarchies. Technical

Report RJ 1045 (#17547), IBM, May 1972.

[Ste89] P. Stenstrom. A cache consistency protocol for multiprocessors with multistage networks. In

Proceedings of theInternational Symposium onComputer Architecture, pages407-415,1989.

[Sto87] H. S. Stone. High-Performance Computer Architecture. Addison-Wesley Publishing Company,

1987.

[SV81] Alberto L. Sangiovanni-Vincentelli. Circuit Simulation. Sijthoff and Noordhoff, 1981.

[SW89] Moshe Segal and Ward Whitt A queueingnetworkanalyzer for manufacturing. In Teletraffic

Science for NewCost-Effective Systems, Networks andServices, pages 1146-1152,1989.

[SWG91] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford parallel ap

plications for shared-memory. Technical report Computer Systems Laboratory, StanfordUni

versity, 1991.

IT*90] Shreekant Thakkar et al. New directions in scalable shared-memory multiprocessor architec

tures. IEEE Computer, 23(6):71-83, June 1990.

[Tak89] Yukio Takahashi. Aggregate approximation foracyclic queueing networks with communication

blocking. QueueingNetworks with Blocking,pages 33-46,1989.

[TF88] Y. Tamir and G. L. Frazier. High-performance multi-queue buffers for VLSI communication

switches. In Proceedingsof theInternationalSymposium on ComputerArchitecture, pages343-

355,1988.

[Tho87] J. G. Thompson. Efficient Analysisof Caching Systems. PhD thesis, University of California,

Berkeley, 1987.

[TMH80] Yutaka Takahashi, Hideo Miyahara, and Toshiharu Hasegawa. An approximation method for

open restrictedqueueing networks. OperationsResearch, 28(3):594-602, May 1980.

[TR88] Lewis W. Tucker and George G. Robertson. Architecture and applications of the connection

machine. IEEE Computer,21(8):26-39, August 1988.

[TRH89] Thomas H.Theimer, Erwin P.Rathgeb, andManfredN. Huber. Performanceanalysisofbuffered

banyannetworks. Performance ofDistributedandParallelSystems, pages 57-72,1989.

163

[TS71] I. L. Traiger and D. R. Slutz. One-pass techniques for the evaluationof memory hierarchies.

TechnicalReportTech. Rep. RJ 892 (#15563), IBM, July 1971.

[TS89] James G.Thompson and Alan Jay Smith. Efficient (stack) algorithms for analysis of write-back

and sector memories. ACM Transactions onComputer Systems, 7(1):78-117, February 1989.

[V+88] M. K. Vernon etal. An accurate and efficient performance analysis technique for multiproces
sor snooping cache-consistency protocols. In Proceedings of the International Symposium on

Computer Architecture, pages 308-317,May 1988.

[VH86] M. K. Vernon and M. A. Holiday. Performance analysis of multiprocessor cache consistency
protocols using generalized timed petri nets. In SIGMETRICS International Conference on Mea
surement andModeling ofComputer Systems, pages9-17,1986.

[VJS89] Mary K. Vernon, Rajeev Jog, and Gurindar S.Sohi. Performance analysis of hierarchical cache-

consistent multiprocessors. Performance ofDistributed and Parallel Systems, pages 111-126,
1989.

[WG89a] W. D. Weber and A.Gupta. Analysis ofcache invalidation patterns in microprocessors. In Proc.
ASPLOSIII, pages 243-256,1989.

[WG89b] W-D. Weber and A.Gupta. Analysis of cache invalidation patterns in multiprocessors. In Pro
ceedings ofthe International Conference on Architectural Supportfor Programming Languages
andOperating Systems, pages 243-256,1989.

[Whi82] W. Whitt. Approximating apoint process by arenewal process, I: Two basic methods. Opera
tionsResearch, 30(1):125-147,January 1982.

[Whi83] W. Whitt. The queueing network analyzer. Bell System Technical Journal, 62(9):2779-2815,
November 1983.

[Wil87] A. W. Wilson Jr. Hierarchical cache/bus architecture for shared memory multiprocessors. In
Proceedings of the International Symposium on Computer Architecture, pages 244-252, June
1987.

[Wol89] Ronald W. Wolff. Stochastic Modeling and the Theory ofQueues. Prentice-Hall, 1989.

[YBL89] W. Yang, L. N. Bhuyan, and B.-C. Liu. Analysis and comparison of cache coherence proto
cols for apacket-switched multiprocessor. IEEE Transactions on Computers, 38(8): 1143-1153,
August 1989.

[YF82] W. C. Yen and K. S. Fu. Coherence problem in a multicache system. In Proceedings ofthe
International Conference onParallel Processing, pages 332-339,1982.

164

[YLL90] Hyunsoo Yoon, Kyungsook Y. Lee, and Ming T. Liu. Performance analysis of multibuffered
packet-switching networks in multiprocessor systems. IEEE Transactions on Computers,
39(3):319-327, March 1990.

165

Appendix A

Geometric Queue Models

A.1 GEO+l*/GEO+l/l/N Queue Model

The state space of the discrete time Markov chain for aGEO+l*/GEO+1/1/N queue is
the number of customers in queue, n.

Let:

• Pi = 1 - ft be the probability that acustomer arrives on inputstream i,

• n be the probability that acustomer departs when the queue isnon-empty.

• NmaT = N + k be the maximum number in queue. This assumes that the basic queue limit
jV is supplemented by kextra buffers to hold customers from upstream queues that block. •

• n3 = Nmax + 1 denote the number of states in the discrete time Markov chain.

• P«i,«2 te me transition probability between states s\ and 52.

• P?i,«2 te ^ transition rate between s\ and 52 for events in which an arrival occurs on stream
h, andthere is no departure.

• ^Ji,«21* ^ transition rate between 51 and s2 for events in which an arrival occurs on stream
h, andthere is a departure.

• tt3 be the steady state transition rate out of state s.

• P denote the matrix of transition probabilities p8l82.

• it denote the vector [7rai,..., iran J.

• fa(h,i) denote the fraction of arrivals on stream h that find i customers inqueue.

166

• fd(i) denote the fraction ofdepartures that, just before departure, find i customers in queue.

State transitions result from m € {0,..., k] simultaneous arrivals, and a possible si
multaneous departure. With k arrival streams, m simultaneous arrivals can occur in C(k, m) =

' * \I ways. Denote each distinct setof m arrival streams (selected from k possible streams)
m J

as S*1 = {i\,..., iJm}, where j = 1,...,C(k, m). The probability that m arrivals occur on the
streams in Sj" is:

jPrfarrivals onS™) =

The transition probabilities are:

no-*".)
A=l

n-SL (A.l)
h J

C(k,m)

Po,m = J2 ^Karrivals on 5f) form =0,...,fc (A.2)

Nmax—n\

Pm.m-i = 1- £ Pnum+j forni = 1,. ..,Nmax (A.3)

C(k,m+l)

Pnumm(ni+m,Nmax) = » £ ^(arrivals On Sf+1)
J=l

C(Jfe.m)

+0-/0 S -PKarrivalsonST1) (A.4)

forni = l,...,JVmaa.

and m = 0,..., k - 1

Pn,,min(n1+fc,Nmax) = (1 - n)Pr(dimate on ^f) (A.5)

forni = l,...,iVma*

Equation(A.2) gives transitionprobabilitiesfor anempty queue. In this case no departures can take

place. Equation (A.3) is the probability that the number in queue decreases: adepartureoccurs with

zero arrivals. Equations (A.4) and (A.5) give transition probabilities for for state changes in a non

empty queue in which the number in queue increases or remains the same.

167

The calculation of fa{h, i) requires djia2 and pj1>a2: the fraction of transitions between
two states in whichanarrival occurs onstream h,withand without adeparture. These are calculated

with straightforward variations of Equations (A.2) to (A.5):

Po,m =]C ^(arrivals on Sf) for m=0,..., k (A.6)

Pnuni-\ = 0 forni = \,...,Nmax (A.7)

dg,m = 0 form = 0,...,fc (A.8)

^.m-i = 0 for ni = 1,..., Nmax (A.9)

Pnumm(m+m,Nmax) = 0-/0]£ JMarrivals on Sf) (A.10)

forni = \,...,Nmax

and m = 0,..., k

fCmin(n,+m,Nma,) = /* £ Pr(anivals on SJ1+1) (A.ll)
<i|fc€S*»+l}

forni = l,...,JVmax

and m = 0,...,k- 1

These differ from the equations for paun by summing over only those arrival sets containing h.
The steady state transition rates are the solution tothe matrix equation [Wol89]:

» = *P (A.12)

with the added constraint that

E *j = l (A. 13)

These can be solved numerically with a sparse matrix package. Since the Markov chain is ir

reducible and has a finite number of states, Equations (A.12) and (A.13) have aunique solution
[Wol89].

168

The probability that a customer arriving from stream h finds t customers in queue is
determined using:

/«(M)=£-
« i+l

m 2^ 7r>Pi,min(j+m,Nmax) + 2^ TJ^J,mm{j+m-\,Nmax)
m=l L7=max(t'-m,0) >=max(i-m+l,0)

(A.14)

forn = 1,...,A

andz = 0,...,JVmax

Equation (A.14) sums over all transitions such that one arrival (of m simultaneous arrivals, includ

ing an arrival on stream h) finds i in queue. The sums therefore involve all transitions between

statesni and n2 such that n\ < i < 712. Since m simultaneous arrivals arequeued in randomorder,

•L ofthe arrivals on aparticular stream are queued at any particular position.

The probability that a departing customerleaveswhen there are i customersin queue is:

m = mENmax ,,— .

ENmax ~ .

The average number in queue is:

fort = l,...,iVmax (A.15)

L= Y, Timin(i,iV) (A.16)
i=o

Applying Little's Law, the average delay in queue w (including service time) is:

L

W = I

= T^T- (A17)2^j=\Pj

Forstates in which the numberin queue exceeds the queue limit N (ie. customers atone or

more upstream queues are blocked), the arrival rates must be reduced to account for the fact that once

an upstream queue blocks, it no longer sends customers until it becomes unblocked *. Modeling

this in detail is expensive because it requires maintainingthe blocking stateofeach upstreamqueue;

this would increase the sizeof the state space by a factor of 2k. A simpler, approximate method is

1Simulations of thesuperposition process showed that accuracy improves considerably if this effect ismodeled.

169

to reduce the arrivalrate of each stream h for states greater than N:

Al = <

Xh i = 0,...,N

0 i = N+k

Aj, is the adjusted arrival rate on stream h when i customers are in queue. This is based on the

following approximations:

• If an arrival blocks, the probability that the arrival is from stream h is the fraction of all

arrivals due to stream h.

• Each blocking event is independent of all others.

The probability that i blocked customers are from streams other than h isthus the probability that
an arrival is from another stream (1 - =£*—) raised to the power i.

A.2 GE02+l*/GEO+l/l/N Queue Model

In this model interarrival times are distributed as amixture of twogeometric distributions,

plus 1. Assume the parameters ofthe two distributions are p° and pl, and that the mixing parameter

is s. With probability 5, an interarrival time isselected using ageometric distribution with parameter
p°. With probability 1- s, the interarrival time is selected using ageometric distribution with
parameter pK The state space of the discrete time Markov chain for the GE02+l*/GEO+1/1/N
queue therefore requires k extra variables to record the state of the k mixtures: a\,... ,a*, where

a, G{0,1}. a, = ,;' indicates that the next interarrival on stream i will be distributed as 1plus
a geometric random variable with parameter pj. These variables are denoted by the vector A =

[a\,..., ojb]. The state space for the queue model is then (n,A), where nisthe numberofcustomers

in queue. It is assumed that all GE02+1 distributions have acommon mixing parameter s.
This discussion uses the notation introduced inthe previous section, plus the following:

• The number of states is now n3 = 2k(Nmax + 1).

• Diff[Ai, A2) denotes the set of indices of A\ and -42 for which a] ^ a}. For example,
Diff([l,2,1],[1,1,2]) = {2,3}. |DiffUi, A2)\ denotes the number of indices that differ.

• sq = s and s\ = 1 - s.

170

• a, = 1 - Oi. Hence a, = 1 if a, = 0 anda, = 0 if a, = 1.

• a, denotes the fraction of time i customers are inqueue.

• Ak denotes the set ofall valid mixture vectors [a\,..., a*] oflength k.

In thisqueue model, transition probabilities depend notonlyontheoccurrence of arrivals

or a departure, but also on the set of streams that have a change in mixture state. As before, the m

arrivals can occur on C(k, m) different sets of inputs, each denoted Sf for j = 1,..., C(k, m).
The probability that m arrivals occur onstreams Sf is similar to Equation (A.l), except that the

per-stream arrival probabilityis indexed by mixture state:

fMarrivals on Sf) =

Pr(changes on Diff(Au A2) in Sf) =

The transition probabilities are thus:

C(k,m)

no-*)
Ui=l

ft *»
*=iW Pih

n
Wi€S7M*Di«M,w4*)}

u=i v* - n*).

Given mixture states Ai and A2 and arrivals onSf, the probability that only the mixture

variables in Diff(A\,A2) change state is:

n S7t;

L{«|«€Diff(>li,>t2)>

(A.19)

(A.20)

P(o,Ai),{m,A2) = 53 Pr(arrivals on Sf)Pr(changes on Diff(Ai, A2) in Sf) (A.21)

for m = 0,..., k

and all Ai, A2 such that Diff(Ai, A2) < m

Nmax—ni

P(ni,Ax),{ni-l^i) = 1- 5Z 53 P(ni,AMrn+jtA2)

forni = l,...,iVmax

(A.22)

P(ni,Ai),(mm(ni+m,Nmax),Ai) —
C(k,m+l)

p. 53 Pr(arrivals on Sf+1)Pr(chznges on Diff(Ai, A2) in Sf+l)
i=i

C{k,m)

+ (1 - /0 53 ^(arrivals on Sf)Pr(changes on Diff(Ai, A2) in Sf) (A.23)

171

forni = \,...,Nmax

and m = 0,...,/:- 1

and all Ai, A2 such that Diff(Ai, A2) < m

P{3i,Ai),{min(ni+k,Nmax),A2) =

(1 - A/)Pr(arrivals on Sk)Pr(changes on Diff(Ai,A2) in Sk) (A.24)

for 5i = l,...,Nmax

and all Ai, A2 such that Diff(Ai,A2) <k

Equation (A.21) gives transition probabilities for an emptyqueue. Inthiscase no depar

tures can take place. Equation (A.22) istheprobability that thenumberof customers inanon-empty

queue decreases: a departure occurs withzero arrivals. Equation (A.23) and (A.24) apply to tran

sitionsin which the numberof customers in a non-emptyqueue increases or remains the same.

As for the GEO* model, the expressions for d)u^ and pj1>a2 are straightforward (but
messy) variations of Equations (A.21) to (A.24):

Ph(Q,AMmM) = 53 ^(arrivals on Sf)Pr(changes on Diff(Ai, A2) in Sf) (A.25)
U\h€Sf}

for m = 0,..., k

and all Ai, A2 such that Diff(Ai, A2) < m

d(0,AMm,A2) = 0 (A.26)

for m = 0,..., k

and all Ai, A2 such that Diff(Ai, A2) < m

PinxAMni-UAx) = 0 forni = l,...,JV-max (A.27)

^iiLiiiMni-Mi) =0 forni = l,...,i\Tmox (A.28)

1 (n*A\),(mm(n\+m,Nm<xx),Ai) ~

(1-/0 5Z iMarrivals on Sf)Pr(changes on Diff(Ai, A2) in Sf) (A.29)
{j\hss?}

172

forni = l,...,iVmax

and m = 0,..., k

and all Ai, A2 such that Diff(Ai, A2) < m

dhu{n\,Ai),(mm(ni+m,Nmax),Ai) ~

p 53 ^arrivals on Sf+^Prfchanges on Diff(Ah A2) in Sf+l) (A.30)
U\h€Sf+1}

forni = l,...,JVmax

and m = 0,..., k - 1

and all Ai, A2 such that Diff(Ai, A2) < m

The steady state transition rates are the solution to Equations (A.12) and (A. 13) for the

new state space.

The probabilitythat a customer from stream h finds i customers in queue is analogousto

Equation (A.14):

fa(h,i) =

k 1
Er

TTi
m=l \j=max{i-m,Q){Ai,Ai\{piff{Ai,Ai)\)<m}

53 53 ^O.^i^O^O.tmMi+m.Nmax),^)

(A.31)
i+\

+ 53 53 ^Ai^A^^mmU+m-hNmaxhAi)
j=mta(i-m+l,0){AifA2\(\Diff(AuA2)\)<m}

forh = l,...,fc

andi = 0,...,iV"max

The probability that a departing customer leaves when there are i customers in queue is

analogous to Equation (A. 15):

•fcW = ~Nm*x
£j=f /*Oj

ai f0Ti = \,...,Nmax (A.32)
J=l QJ

Here qj is the fraction of time that thereare i customers in queue, for anymixture state. It is found

using:

<**= 53 *M) (A-33)
{A\A€A*<}

173

The average number in queue L is:

1= 53 afmin(t,jv) (A.34)
•=o

Applying Little's Law,the average delay in queue w (including service time) is:

L

W = A

£}=,KP +(l-5)p})
As before, A), is reduced usingEquation (A. 18)when one or more customersare blocked

(?' > N). For thismodel A}, is a function of two geometric probabilities:

^ = spi° +0-s)rf (A.36)

We derate $ and pj,1 equally.

A.3 Distribution of the Minimum of Two GE02+1 Random Variables

In this section the first two moments arederived forthe minimum oftwo GE02+1 random

variables. First consider the minimum of two GE02 random variables B\ and B2:

P = min{Bi,B2} (A.37)

Let {pn,p\2} and {j>2i,P22} be the parameters for the geometric distributions in the mixtures for
B\ and B2, respectively. Let qtj = 1- pti. It is assumed that B\ and B2 have acommon mixing
parameter s.

The probability that B> = 6, i e {1,2}, is:

Pr(Bi =6) =sqfon +(1 - s)q\2pi2 (A.38)

The probability that £, > 6 is:
oo

Pr(Bi >6) = 53 Pr(B{ = b) (A.39)
i=6+l

oo

= 53 (wUph +o - *)&m) (a.40)
1=6+1

= sft1 f)««fti +0~*)&* f>l2P.-2 (A.41)

=*1rfir+«-)*1T^ <A42>
= s&l + (l-s)q%1 (A.43)

(A.35)

174

The probability that B = 6 is then:

Pr(B = 6) =

Pr(Bi = b)Pr(B2 > b)+ Pr(5i > 6)Pr(B2 = 6)

+Pr(Bi = 6)Pr(P2 = b) (AM)

The first two moments of B are found using ^-transforms [Wol89]. Let G{z) be the z-

transformof B:
oo

G(z) = Y,Pr(B = i)zi (A.45)
i=0

After some tedious algebra:

G(r) = ^(X ~gllfel) , 3(1-3)0- 911922)
1- 911921* 1-911922*

, S(\ - s)(\ - gi292l) , (1 ~ 3)2(1 - gl2922) ,AA„
+ : + (A.46)

1 - 912921* 1 - 912922*

The two moments are thus:

E(B) = limG'(z) (A.47)
z—»1

329il92i ,3(1-5)911922
1 - 911921 1 - 911922

)3(l-s)gi2921 +(1-3)2912922 (A 4g)
1 ~ 912921 1 - 912922

E(B2) = (Mm G"(z)) + E(B) (A.49)
z—*l

s29ll92l(l + 9ll92l) 5(1 - 3)911922(1 + 911922)
0-9il92l)2 (1-9H922)2

5(1 - 3)gi292l(l + 9l292l) . 0 - 3)29l2922(l + 912922)
(1- 912921)2 (1-912922)2

The moments for the minimum of two GE02+1 random variables are the moments of

.4 = 5 + 1:

E(A) = E{B)+1 (A.51)

E(A2) = Var(A) + E2(A) (A.52)

= Var(B)+ E2(A) (A.53)

= E(B2) - E2(B) + E2(A) (A.54)

(A.50)

Appendix B

Queueing Models for Specific

Interconnection Networks

175

B.l Notes for All Models

1. Buffer queues without external arrivals have a queue limit of 4 messages. Buffer queues

with extemal arrivals have no queue limit. Allbuffer queues use avirtual channel queueing

discipline (with 4 channels). The service distribution is deterministic with a delay of one
discrete time unit

2. All channel queues have a queue limit of 1message, and use a FIFO queueing discipline.

The service distribution is deterministic with adelay of one discrete time unit.

3. Virtual cut-through flow control is assumed.

4. All arrival streams are geometric with common parameter p. Messages therefore arrive at a

rate of p messages per cycle. Flits arrive at a rate of bp, where bis the number of flits per
message.

5. As discussed in Section 4.4.1, the service time atchannel queues is deducted from overall
network delay.

6. As discussed in Section 4.4.1, onlyblocking due to channel queues is modeled. This allows

aqueueing network tohave cycles as long as each cycle includes at least one buffer queue.

B.2 Unidirectional Three Dimensional Torus

Buffer Queues Channel Queues

CPU

Figure B. 1: Queueing Model of a Unidirectional 3-D Torus Network

Table B.l: Routing Parameters for 3-D Torus

Qij Number of Processors

8 64 216 512 1000

QX,X 0.0 0.5 0.6667 0.75 0.8

qx,Y 0.5 0.375 0.2778 0.2188 0.18

QX,Z 0.25 0.09375 0.0463 0.0273 0.018

QX,CPU 0.25 0.03125 0.0093 0.0039 0.002

Qy,y 0.0 0.5 0.6667 0.75 0.8

Qy,z 0.5 0.275 0.2778 0.2188 0.18

Qy.cpu 0.5 0.125 0.0556 0.0313 0.02

Qz,z 0.0 0.5 0.6667 0.75 0.8

qz.cpu 1.0 0.5 0.3333 0.25 0.2

QCPV,X 0.5714 0.7619 0.8372 0.8767 0.9009

QCPU,Y 0.2857 0.1905 0.1395 0.1096 0.0901

QCPU,Z 0.1429 0.0476 0.0233 0.0137 0.0090

176

177

B.3 Bidirectional Three Dimensional Torus

Buffer Queues Channel Queues

CPU

Figure B.2: Queueing Model of a Bidirectional 3-D Torus Network

B.4 Three Dimensional Mesh

A full queueing network of k3 switches (of the form of Figure B.2) was used; it is too
cumbersome to give the routing parameters for such large networks. The routing parameters were
found as described in Section 4.4.1: by aggregating the N(N - 1) customer classes corresponding
to all possible source/destination pairs.

B.5 Hypercube

B.6 Radix-2 Delta

All routing probabilities are \.

Table B.2: Routing Parameters for Bidirectional 3-D Torus

9«j Number ofProcessors

8 64 216 512 1000

Qx+,x+ 0.0 0.3333 0.5 0.6 0.6667

QX+,Y + 0.5 0.3333 0.25 0.2 0.1667

Qx+,Y- 0.0 0.1667 0.1667 0.15 0.1333

Qx+,z+ 0.25 0.0833 0.0417 0.025 0.0167

°x+,z- 0.0 0.0417 0.0278 0.0188 0.0133

QX+,CPU 0.25 0.0417 0.0139 0.0063 0.0033

Qx-,x- 0.0 0.0 0.3333 0.5 0.6

QX-,Y+ 0.0 0.5 0.3333 0.25 0.2

qx-y- 0.0 0.25 0.2222 0.1875 0.16

Qx-,z+ 0.0 0.125 0.0556 0.0313 0.02

Qx-,z- 0.0 0.0625 0.0370 0.0234 0.016

QX-,CPU 0.0 0.0625 0.0185 0.0078 0.004

Qy+,y+ 0.0 0.3333 0.5 0.6 0.6667

Qy+,z+ 0.5 0.3333 0.25 0.2 0.1667

Qy+,z- 0.0 0.1667 0.1667 0.15 0.1333

aY+,CPU 0.5 0.1667 0.0833 0.05 0.0333

QY-,Y- 0.0 0.0 0.3333 0.5 0.6

Qy-,z+ 0.0 0.5 0.3333 0.25 0.2

<1Y-,Z- 0.0 0.25 0.2222 0.1875 0.16

aY-,CPU 0.0 0.25 0.1111 0.0625 0.04

Qz+,z+ 0.0 0.3333 0.5 0.6 0.6667

QZ+,CPU 1.0 0.6667 0.5 0.4 0.3333

QZ-,Z- 0.0 0.0 0.3333 0.5 0.6

QZ-,CPU 0.0 1.0 0.6667 0.5 0.4

QCPU,X+ 0.5714 0.5079 0.5023 0.5010 0.5005

<icpu,x- 0.0 0.2540 0.3349 0.3757 0.4004

QCPU,Y+ 0.2857 0.1270 0.0837 0.0626 0.05005

QCPU,Y- 0.0 0.0635 0.0558 0.0470 0.04004

QCPU,Z+ 0.1429 0.0317 0.0140 0.0078 0.00501

QCPU,Z- 0.0 0.0159 0.0093 0.0059 0.00400

178

179

Buffer Queues Channel Queues

„., c

CPU

Figure B.3: Queueing Model of a Hypercube Network

oo
o

m
C

N
C

N
i
n

m
m

n
^

«
•
n

C
N

C
N

«
n

m
m

c
n

v
o

c
n

c
n

m
C

N
v
o

v
o

m
C

N
C

N
m

«
n

i
n

C
N

«
-•

O
m

m
•
n

C
N

~
©

O
«

n
C

N
«

n
C

N
C

N
m

«
n

m
C

N
V

O
o

o
O

n
O

X
O

n
m

c
n

V
O

O
O

0
\

O
N

i
n

C
N

V
O

o
o

o
o

m
C

N
V

O
v
o

m
C

N
C

N
«

n
C

N
i
-
h

m
r
^

c
n

f<
p

h
*

n
C

N
^

«
n

r
-

c
n

c
n

m
C

N
1

-
H

m
r
-

t
^

i
n

c
n

1
-H

•
n

m
m

c
n

1
-
H

»
-
H

«
n

»
n

c
n

C
N

N
O

o
c
n

o
o

8
8

8
8

m
mC

N
C

N
s
s

S
8

8
8

i
n

»
n

C
N

C
N

1
F

H
V

O
O

c
n

o
©

8
8

•
n

i
n

c
n

C
N

n
o

1-H
O

c
n

o
1

-H
»

-
H

o
o

i
n

m
c
n

v
o

c
n

c
n

O
©

©
d

d
d

d
d

d
d

d
d

d
d

d
©

©
©

©
©

©
©

d
©

d
d

d
d

o
d

d
©

d
d

©
©

©
d

o
©

d
d

»
n

i
n

m
C

N
C

N
m

gcN
m

C
N

v
o

v
o

i
n

m
c
n

«
n

m
m

C
N

-
O

Q
o

o
O

n
O

n
«

n
C

N
C

N
«

-•
m

C
N

C
N

«
n

•
n

I
£

»
n

C
N

V
O

m
c
n

v
O

i-H
O

O
«

n
C

N
V

O
V

O
*

n
C

N
C

N
i
n

m
i
n

C
N

1
-
H

m
r
-

c
n

c
n

i
n

C
N

-
h

i
n

o
o

r
*

m
C

N
1

-
H

m
m

m
c
n

^
H

1
-
H

m
c
n

C
N

8
«

n
«

n
C

N
C

N
V

O
O

c
n

O
©

8
8

0
8

»
n

»
n

C
N

C
N

l
-
H
S

3
o

©
©

8
m

mC
N

C
N

v
o

©
c
n

o
1

-
H

o
©

©
m

i
n

c
n

C
N

v
o

"
H

©
c
n

O
c
n

©
©

«
n

a
s
©

1
V

O
O

©

£
d

d
d

d
d

d
o

d
d

©
d

d
d

d
d

o
d

d
©

©
d

©
©

©
©

©
d

©
©

©
©

©
©

©
d

o
d

d
©

d

<
*

*
o

m
m

m
C

N
C

N
m

i
n

J
j

in

m
C

N
1

-
H

1
—

1
«

n
C

N
C

N
m

m
»

n
C

N
V

O
O

O
o

o
i
n

c
n

V
O

v
o

m
C

N
C

N
m

i
n

m
C

N
1

-
H

m
m

C
N

I-*
»

n
m

i
n

C
N

1
-
H

1
-
H

m
c
n

C
N

«
n

m
m

C
N

V
O

c
n

^
^

8
o

o
8

3
C

N
v
o

c
n

^
H

1
-
H

*
n

C
N

s
c
n

c
n

»
n

C
N

v
o

V
O

m
c
n

C
N

p
m

C
N

^
h

O
O

o
«

n
1

-
H

o
©

©
©

©
©

m
C

N
O

©
©

o
m

c
n

~
©

o
O

O
»

n
N

^
O

©
1-H

Z
d

d
d

d
d

d
©

d
o

©
d

d
©

d
d

o
d

d
©

©
©

©
©

d
©

d
©

©
©

d
©

©
d

©
©

©
d

o
d

©

m
•
n

C
N

i
n

C
N

m
m

s
m

C
N

^
h

^
h

m
C

N
C

N
«

n
m

m
C

N
V

O
c
n

^
^

^
«

n
C

N
V

O
V

O
«

n
C

N
C

N
»

n
«

n
m

C
N

i—
*

O
O

o
o

o
o

o
i
n

C
N

»
-
H

©
©

©
©

©
©

»
n

C
N

1
-
H

©
©

o
o

»
-H

i
n

c
n

©
©

©
©

C
N

i
n

©
©

©
©

m
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

©
©

d
©

©
©

©
d

d
©

d
d

©
©

d
©

d
©

d
d

o
d

d
d

©

o
o

m
«

n
C

N
o

©
o

o
m

O
O

O
C

N
»

n
©

©
©

©
©

©
©

m
©

©
©

©
o

©
©

q
©

©
©

©
©

©
©

©
o

©
o

©
©

d
d

d
d

d
d

d
o

©
©

d
d

©
©

©
o

d
d

©
©

©
©

©
©

©
©

^
d

d
©

©
©

d
d

©
o

d
d

©
©

^
£

s
£

o

c
n

(
S

c
o

^
v
n

v
q

r
^

oo
o\

2
C

j
**j

^
r

v
o

v
O

t
-

»
o

v
«

o
i
t

v
n

vQ
.

r
^

o
o

o
\

o
a

.
io

\q
t-^

00
O

V
2.S.

vQ
.

t-^
00

O
v

2
&

p
i

c
J

p
i

p
i

p
i

N
P

I
N

(
S

c
o

C
O

c
n

C
O

C
O

C
O

C
O

C
O

v
^
r

^
f

•
v

if
•*

^
f

v
o

«
n

v
>

«
n

V
I

«5
*

*
C

n
C

n
C

n
C

n
C

n
C

n
C

n
C

n
C

n
c
n

C
n

C
n

C
n

C
n

C
n

C
n

C
n

C
n

C
n

C
n

C
n

C
n

C
n

C
n

C
n

C
n

C
n

C
n

C
n

C
n

C
n

C
n

C
n

C
n

C
n

C
n

C
n

C
n

C
n

"89C8

S1
-
H

m
mC

N

mC
N.0625.0625

m
»

n
C

N

mC
N

1
-
H

C
N

i
n

»
n

C
N

mC
N

i
n

«
n

©

500525021251062603130156007820039100196

O
O

sC
O

o
o

o
©

O
©

©
o

©
o

o
o

o
©

^
o

©
©

©
©

o
©

©
©

o

C
N

1
-
H

m

©
i
n

c
n

v
o

c
n

r
»

c
n

»
-h

v
o

o
o

O
n

O
n

9

m
i
n

C
N

C
N

T
-H

©

l/>
C

N
i
n

mC
N

©
»

n
C

N
m

©
«

n
©

©
©

s?
o

m
c
n

©
i
n

c
n

v
o

«
n

c
n

i—
©

!
-
•

m
c
n

i-h
©

O

r
>

c
n

i-h

8
8

8
©

81
o

©
©

o
©

o
©

©
©

o
©

©
©

1
-
H

o
d

d
d

d
©

©
o

d
d

o

v
o

©
©

«
n

r
»

T
f

f
-

T
f

C
N

O
O

O
N

O9

mC
N

i
n

mC
N

©
©

mC
N

i
n

o
o

m
©

o
©

o
o

©

<
N

-
h

i
n

C
N

©
«

n
c
n

v
o

m
c
n

«
-"

o

—
i
n

c
n

i-h
©

©

r
>

c
n

8
8

o
o

Ifl
2

©
o

©
©

o
o

o
o

o
©

o
1

-
H

o
o

©
©

©
©

©
o

o
d

o
©

©

V
O

n
©

©
m

r
-

o
n

c

s
r
>

r
f

r
^

c
n

•-H
m

J?*
©

©
o

©
o

©
©

o
©

o
©

©
o

©
©

©
«

n
c
n

v
o

i
n

c
n

^
o

c
n

i-
h

©
©

o
©

©
©

o
o

©
o

o
©

1
-
H

o
o

©
o

o
o

o
o

o
©

©
o

d
d

©
©

o
d

d
©

fl
tj-

r-^
o

n
9

i-»
«

n
c
n

o0
4

o
o

©
©

o
©

©
©

o
©

©
o

o
©

©
©

©
r>

o
o

r
f

m
c
n

i-h
©

©
©

©
©

©
o

T
f

©
©

©
©

©
o

o
o

o
©

o
©

©
©

©
©

o
d

d
O

O
©

©
©

©

o
i

b
a

b
b

ft.
•
h

p
|

C
O

<
»

»
n

v
o

t
-

0
0

O
v

o

3C
O

•«*»
ft,

ft.
ft.

o
ft.

b*
tf

ts
£>

tf
S

b*
tf

15
?>

C
n

r
-

o
o

o
v

u
0

0
o

\
o

o
\

u
o

ft,
ft,

ft,
ft.

ft,
ft.

ft,
ft,

ft.
ft.

H
C

n
£

C
n

.52
C

n
C

n
cn

cn
cn

cn
l

C
n

C
n

0
0

C
n

•ft
C

n
C

n
S

i
o

o
o

o
C

n
C

n
C

n
C

n
C

n
C

n
&

&
&

C
n

C
n

C
n

S

Buffer Queues Channel Queues

-CIIDCk JOB—

-ill fY- -XIO—-

3»-

0

—5*-

1

—>•

=»• —=»• 5»-

S»-

n-1

=»•

=»• =»•

Figure B.4: Queueing Model of Radix-2 Delta Network

182

B.7 Radix-4 Delta

All routing probabilities are \.

Buffer Queues Channel Queues

•{nuo^^^oo—

3* 3* 3»>

3*

3* 0

3*

3»- 1

3»-

3"-

3» 3» 3»

3*

3*

3*

3*

n-1

3*

2»

3»-

3»-

Figure B.5: Queueing Model of Radix-4 Delta Network

B.8 Radix-8 Delta

All routing probabilities are £.

183

Buffer Queues

3* 3» 3*»

3* 3» 3»-

3- 3» 3-

3*

0
3*

" 1
3»-

3* 3* 3»

5> 3- 3»-

3* 3* 3»-

3* 3*-

Channel Queues

3- 3»-

3" 2>-

3* 3»

3-

n-1
3"-

3» 3*-

3* 3»-

3* 3»-

3* 3-

Figure B.6: Queueing Model of Radix-8 Delta Network

184

	ERL-92-4 (1 of 2)
	ERL-92-4 (2 of 2)

