Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DESIGN AND EVALUATION OF DIRECTORY-BASED
CACHE COHERENCE SYSTEMS

by
Brian Walter O’Krafka

Memorandum No. UCB/ERL M92/4

6 January 1992

DESIGN AND EVALUATION OF DIRECTORY-BASED
CACHE COHERENCE SYSTEMS

by

Brian Walter O’Krafka

Memorandum No. UCB/ERL M92/4

6 January 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

DESIGN AND EVALUATION OF DIRECTORY-BASED
CACHE COHERENCE SYSTEMS

by

Brian Walter O’Krafka

Memorandum No. UCB/ERL M92/4

6 January 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Design and Evaluation of Directory-Based Cache Coherence Systems
Brian Walter O'Krafka
Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley.

Abstract

A cache coherence scheme is a critical part of a shared memory multiprocessor because it relieves
the programmer of the burden of moving shared data among local and remote memories, In this
dissertation several new techniques are described for implementing and evaluating the performance
of cache-coherent multiprocessors. The first contribution of this work is a generalization of shared
bus stack simulation techniques that supports directory-based cache coherence schemes. This is
desirable because stack simulation permits the evaluation of multiple cache sizes in a single sim-
ulation run. ‘Results are presented for three benchmark programs, three directory methods, and
multiple cache, block and multiprocessor sizes. The results quantify the tradeoffs between network
traffic and miss ratio that are possible by varying the number of updates in a competitive direc-
tory scheme. These results extend previous studies of shared bus architectures by accounting for
point-to-point network traffic and larger numbers of processors. A second contribution is an ap-
proximation technique for analyzing interconnection networks as open, acyclic networks of finite
queues. The technique combines the algorithms used in the Bell Laboratories Queueing Network
Analyzer with a known algorithm for approximating the effect of finite buffers. The combined al-
gorithm permits analysis of queueing networks with hundreds of queues and is applicable to a broad
class of interconnection network, including hypercubes, meshes, tori and Delta networks. Using
traffic estimates from cache simulations, this analysis technique is applied to a number of alternative
networks. Good cache and network performance requires good synchronization support. The latter
part of this dissertation describes several efficient implementations of fetch&op synchronization
primitives. The implementations are suitable for hardware or software, and can be easily modified
to support multiprefix operations.

Professor A. Richard Newton
Dissertation Committee Chairman

ii
Acknowledgements

Writing this dissertation has been an intensely arduous yet intensely rewarding experi-
ence. Many of the rewards have been due to interactions with some extremely talented people. My
advisor, Professor Richard Newton, gave me the resources and motivation to study multiprocessor
memory systems. Richard’s advisorship has taught me alot about independent research and creative
thought, for which I am thankful. The other members of my dissertation committee, Professor Ab-
hiram Ranade and Professor Ronald Wolff, provided valuable comments that improved this work.
Their participation is gratefully acknowledged. I also received technical support from several stu-
dents in the Computer Science Division. Mike Carlton was a source of good ideas about cache
coherence and simulation. M. T. Raghunath gave me an education in multiprocessor networks.
Bob Boothe provided help with benchmark validation. The help of all three is greatly appreciated.

Others provided moral support and friendship. Mark Beardslee, Brian Lee and Gregg
Whitcomb endured my griping during many lunch hours and coffee breaks. Wendell Baker, Abhijit
Ghosh and Chuck Kring relieved the monotony of focussed research by participating in numerous
discussions on cold fusion, Republican politics and other diverse topics. I am deeply grateful for
the opportunity to work with these fellow students.

This dissertation would not have been completed without the support of my family. The
energy and enthusiasm of my wife, Audrey, were frequent sources of encouragement. My daughters
Anne and Catherine added an extra dimension to my life that has relieved much of the tension of
graduate study. Their arrival into our family will be the most memorable part of my experiences at
Berkeley. Anne, Catherine, Audrey and I all received a great deal of support from our parents in
Canada, for which we are grateful.

This work was supported-in part by the Natural Sciences and Engineering Research Coun-
cil of Canada, Digital Equipment Corporation, and the Defense Advanced Research Projects Agency
(under contract N0O0039-C-87-0182). Their support is gratefully acknowledged.

iii

Contents
Table of Contents 3
List of Figures 4
List of Tables 5
1 Introduction 1
1.1 The Goal: Cost-Effective Acceleration of Engineering Applications 1
1.2 Multiprocessor SyStemsttt e e e 2
12.1 ProgrammingParadigms 3
122 Architectures it ittt e e 5
1.3 Multiprocessor Cache Coherence 7
1.3.1 Formal Notions of Cache Coherence 7
1.3.2 Cache Coherence Strategies0.u..... 10
1.3.3 Performance Evaluation of Cache Coherence Strategies 12
14 Organizationofthe Dissertationc........ 16
L5 Contributions i e e 17
2 Directory-based Cache Coherence Strategies 18
21 OVeIVIEW . . o i e e e e e e e e 18
2.2 The Censier and Feautrier Directory Scheme 18
2.3 Efficient Directory Implementations 20
23.1 SchemesthatRestrictListLength 21
232 Schemes thatReduce ListGranularity 21
2.3.3 Schemes that Store ListsPer CacheBlock 22
24 Conclusions v ittt i e e e e e 24
3 Workload Characterization 26
31 Overview . .. e e e 26
32 Previous Work L e e e 26
3.3 Stack Simulation of DirectoryMethods 32
33,1 Introduction e 32
3.3.2 Multiprocessor Stack Simulation 34

333 Protocols. e e e e e e e e e e 45

3.3.4 Stack Simulation of Directory-based Coherence Protocols 45
3.4 Evaluating Competitive DirectoryMethods 49
3.5 SimulationMethodology 50
350 MerCs . . . o e 51
3.5.2 Simulated Architecture 51
353 Benchmarks 54
36 NumericalResults0 'unine... 56
36.1 MissesandTraffic 0ouv... 56
3.6.2 Performance of the Competitive Protocol 62
3.6.3 Coherence Traffic Versus MultiprocessorSize 69
3.64 SynchronizationBehavior 69
37 Conclusions e e e e e 73
Network Performance Analysis 74
41 OVerview e e e e e e e e e 74
42 Previous Work L e e e 74
421 NetworkDesign 75
4.2.2 Performance Analysis Via Simulation and Stochastic Modelling 81
42.3 Performance Analysis Via Formal Properties 85
424 FocusofthisResearch. 86
4.3 An Analytic Modelling Technique 86
43.1 OVeIVIEW o e e e e 86
4.3.2 The Queueing Network Analyzer 87
4.3.3 Altiok and Perros’ Finite Buffer Approximation. 94
434 Mergingthe Algorithms0.... 08
4.3.5 Two Moment Approximations of Blocking Distributions 100
4.3.6 Iterating QNA and the Finite Buffer Algorithm 102
4.3.7 Virtual Cut-throughFlowControl 103
438 VirwalChannels, 105
4.3.9 Convergence and Computational Complexity 107
44 NumericalResults, 108
44.1 Methodology, 108
442 Results.ttt 110
4.5 Processor Utilization of CachingSchemes 119
45.1 Methodologyttt 119
452 NumericalResults 121
46 ConClusion i i it e e e e e 123
Synchronization 12§
S0 Overview ... e e e e e e e 125
52 Previous WOTK L i i e e e e e e e 125
S21 Overview . .. or .. e e e e e 125
522 Read,WriteandFetch&ops 129
523 LockImplementationsc0..0.n... 129

524 BarrierImplementations, .. 131

5.2.5 Implementation of Multiprefix Operations 132
526 Combining. 135
S27 Summary ... e e e e e e e 137
5.3 Efficient Implementation of Dynamic Combining 137
5.3.1 Efficient Dynamic CombininginHardware 138
5.3.2 Efficient Dynamic Combiningin Software 142
5.3.3 Modifications to Support Static Combining 146
54 ConClusions e e e e e 147
6 Conclusions and Future Work 149
6.1 Conclusions e e 149
6.2 FutreWork e 151
Bibliography 152
A Geometric Queue Models 165
A.1 GEO+I*/GEO+1/I/NQueueModel oo v v v 165
A2 GEO2+1*/GEO+1/1/NQueue Model 169
A.3 Distribution of the Minimum of Two GEO2+1 Random Variables 173
B Queueing Models for Specific Interconnection Networks 175
B.l NotesforAllModels.0 uenunn.. 175
B.2 Unidirectional Three Dimensional Torus 175
B.3 Bidirectional Three Dimensional Torus 177
B4 Three DimensionalMesh 177
BS5 Hypercube e e 177
B6 Radix-2Delta it 177
B.7 Radix-4Deltattt 183
B8 Radix-8Delta0 ... 183

vi

List of Figures

1.1 Components of a MultiprocessorSystem 2
1.2 Basic Multiprocessor Organization: Distributed MainMemory 5
1.3 Basic Multiprocessor Organization: “Dance-Hall” Arrangement 6
1.4 The Restrictivenessof StrongOrdering 8
2.1 Tags for Basic Censier and FeautrierProtocol 19
22 SmallTagFields i i it ittt i e 22

2.3 Decentralized Linked ListDirectory 23
24 Centralized Linked ListDirectory v v v v n v, 24
2.5 Memory-Mapped LinkedListScheme 25
3.1 ThePing/ClingLocalityModel 30
32 The Write-runModel it 31

3.3 Uniprocessor Stack Simulation 33
34 MOESIStates o vt vttt it et e e e e e 35

3.5 Stack Algorithm for MOESIProtocols v o v v v v v v v v .. 42
3.6 Multiprocessor Stack Simulation., 43

3.7 Write Routine for InvalidationProtocol 44
3.8 Write Routine for UpdateProtocol 44
3.9 Write Routine for CompetitiveProtocol 46
3.10 Counting Invalidations WhenaBlockisDirty 48
3.11 TheUpdateeunModel, 49

3.12 Cumulative Distribution of Update-runLength 51

3.13 Fraction of Updates that Occur at k’th Position in an Update-run 52
3.14 Miss Ratios for InvalidationProtocol 57
3.15 Traffic for InvalidationProtocol0ov.... 58
3.16 MissRatiosforUpdateProtocolcouvuu... 59
3.17 TrafficforUpdate Protocol, 59
3.18 Miss Ratios for CompetitiveProtocol 60

3.19 Traffic for CompetitiveProtocolo.... 61

3.20 Comparison of Miss Ratios for All Protocols 62
3.21 Comparison of Traffic (Volume) for AllProtocols 63

3.22 Miss Ratios Versus Self-Invalidation Threshold (VERF) 63

vii

3.23 Traffic Versus Self-Invalidation Threshold (VERF) 64
3.24 Miss Ratios Versus Self-Invalidation Threshold LOCUS) 65
3.25 Traffic Versus Self-Invalidation Threshold LCOCUS) 66
3.26 Miss Ratios Versus Self-Invalidation Threshold (UGRAY) 67
3.27 Traffic Versus Self-Invalidation Threshold (UGRAY) 68
3.28 Copies Per Inval Versus MultiprocessorSize 70
3.29 Copies Per Update Versus MultiprocessorSize 71
3.30 Copies Per Update Versus MultiprocessorSize 72
4.1 StructureofaNetworkSwitch 75
4.2 Unidirectional k-ary n-cube Network 76
4.3 Bidirectional k-aryn-cube Network 77
44 k-aryn-dimensionalMesh 77
4.5 Recursive Structure of DeltaNetworkso v v e ... 78
4.6 Packet-switchingTerminology 79
4.7 A Network Switch with VirwalChannels 80
4.8 Virtual Channelsand Sub-channels 82
49 QueueingModelofaDeltaNetwork v v v v e v e .. 88
4.10 Superposition, Departures and Splitting of Point Processes 89
4.11 Summaryof QNA Algorithm 94
4.12 Coxian Representation of Adjusted Service Distribution. 97
4.13 Coxian Representation of BlockingDelay 98
4.14 Summary of Finite Buffer Algorithm 99
4.15 Combining QNA and the Finite Buffer Algorithm 104
4.16 Arrivals in Buffer Queue Analysis Bypass the Upstream Channel Queue 105
4.17 Blocking Delay Distribution with Virtual Channels 106
4.18 Multiple Virtual Channels ApproximatedasOne 108
4.19 Simplified Model of Direct k-ary n-cube Under UniformLoad 110
4.20 Simplified Model of a Delta Network Under UniformLoad 111
4.21 3-D Torus Network Performance (5 Flits/Packet) 112
4.22 3-D Torus Network Performance (10 Flits/Packet) 112
4.23 3-D Bidirectional Torus Network Performance (5 Flits/Packet) 113
4.24 3-D Bidirectional Torus Network Performance (10 Flits/Packet) 113
4.25 3-D Mesh Network Performance (5 Flits/Packet) 114
4.26 3-D Mesh Network Performance (10 Flits/Packet)o 114
4.27 Hypercube Network Performance (5 Flits/Packet) 115
4.28 Hypercube Network Performance (10 Flits/Packet) 115
4.29 Radix-2 Delta Network Performance (5 Flits/Packet) 116
4.30 Radix-2 Delta Network Performance (10 Flits/Packet) 116
4.31 Radix-4 Delta Network Performance (5 Flits/Packet) 117
4.32 Radix-4 Delta Network Performance (10 Flits/Packet) 117
4.33 Radix-8 Delta Network Performance (5 Flits/Packet) 118
4.34 Radix-8 Delta Network Performance (10 Flits/Packet) 118

4.35 Algorithm for Estimating Processor Utilization with Non-Zero Network Delay . . 120

5.1
5.2
53
54
55
5.6
57

B.1
B.2
B.3
B4
B.5
B.6

Example of a Multiprefix Operation 128
Pseudo-code for Combining Barrier Algorithm 133
Combining Switch Architecture 139
Combining Table Architecture00ou..... 140
Software Combining Algorithm: fetch&op Routine for Leaves 144
Software Combining Algorithm: Interrupt Handler for Interior Nodes 145
Software Combining Algorithm: Interrupt Handler forRoot 146
Queueing Model of a Unidirectional 3-D Torus Network 176
Queueing Model of a Bidirectional 3-D TorusNetwork 177
Queueing Model of a Hypercube Network 179
Queueing Model of Radix-2 DeltaNetwork 182
Queueing Model of Radix-4 DeltaNetwork 183

Queueing Model of Radix-8 DeltaNetwork 184

ix

List of Tables

1.1
1.2

3.1
3.2
33
34
3.5
3.6
3.7
38
39
3.10
3.1

4.1
42
43
44

B.1
B.2
B.3
B4

AnalyticModels e e 14
AnalyticModels(continued) 15
Trace-driven Multiprocessor Cache Studies 27
Trace-driven Multiprocessor Cache Studies (continued) 28
Common MultiprocessorBenchmarks 29
MOESI Cache Responses to ProcessorRequests 37
MOESI Cache Responses to Network Requests 38
A Simple MOESI InvalidationProtocol 39
A Simple MOESI Update Protocol (Write-thru) 39
TransactionTypes i i ittt e 53
TransactionFormats 53
Benchmark Characteristics, 55
Steady-State Statistics 0 e e e e e e 56
Published Network Performance Studies 83
Published Network Performance Studies (continued) 84
Processor Utilizations for VERF,4BytePath 122
Estimated Traffic Increases for Large Multiprocessors 123
Routing Parametersfor3-DTorus, 176
Routing Parameters for Bidirectional3-DTorus 178
Routing Parameters foraHypercube 180
Routing Parameters for a Hypercube (continued) 181

Chapter 1

Introduction

1.1 The Goal: Cost-Effective Acceleration of Engineering Applications

In this dissertation techniques are described for the design and evaluation of directory-
based cache coherence schemes for large, shared memory multiprocessors. “Large” here implies
a machine composed of several hundred uniprocessors, each with the power of a state-of-the-art
workstation. The main goal is to show that directory-based coherence strategies are feasible and
desirable for machines of this scale, and that their implementation complexity is modest.

Although impressive gains continue to be made in uniprocessor performance, multipro-
cessors remain an important research area for many reasons. One reason is that faster computers
enable new problems to be solved and more design options to be explored. Another reason is that
the computing requirements of many engineering problems continue to grow at least as fast as the
number of compute cycles that become available. As an example, advances in integrated circuit
densities demand computer aided design (CAD) tools that support design problems that grow at the
same rate as uniprocessor MIPS ratings. Faster CAD programs also reduce the time to get a product
to market, which is crucial for many products.

In this chapter, the state of multiprocessor design is reviewed, with a focus on open prob-
lems in scalable cache coherence. It begins with a broad review of the main components of a
multiprocessor system: programming paradigms and architectures. The review shows why shared
memory is a desirable architectural abstraction for a variety of programming models. Unfortunately,
ideal shared memories with unlimitéd concurrent access must be approximated using collections of
single-ported memories interconnected by a network. It is therefore attractive to provide a cache
memory at each processor to avoid costly data transfers across the network. If multiple cached

copies of shared-writeable data are permitted, some mechanism must ensure that the processors see
a coherent view of memory: this is the cache coherence problem. An introduction to multiprocessor
cache coherence is provided in Section 1.3, with an emphasis on issues that are not well understood.
The specific problems addressed in this work are listed in the final section, along with a summary
of the contributions and an outline of the dissertation.

1.2 Multiprocessor Systems

A multiprocessor system is a layered set of abstract machines, with higher level abstrac-
tions layered above lower level abstractions (Figure 1.1). The highest level abstractions are im-

Problems Example:
Standard Cell Placement

Increasing

Abstraction
! Programming Mode! 1 Monitors
Programming Model 2 Locks, Barriers
Software
Programming Model m test&set, Assembly Language
Machine Architecture 1 MIMD, Shared Memory, Dance-Hall
Machine Architecture 2 Pipelined Procassors, Caches
Hardware
Machine Architecture n CMOS Gate Arrays
Layers of Abstract Machines

Figure 1.1: Components of a Multiprocessor System

plemented in software, and provide programming models with which a programmer can solve a
problem. The lower levels are hardware implementations of more primitive parallel machines; the

topmost architecture furnishes a platform on which higher level programming models are built. A
typical set of layers would be a monitor-based programming language [AS83] implemented on a
cache-coherent *“dance-hall” architecture (processors and memories on opposite sides of a multi-
stage network) implemented in CMOS using pipelined network elements. The role of a multipro-
cessor architect is to devise machine architectures that are sufficiently abstract to simplify imple-
mentation of the software layers, and sufficiently simple to permit a fast, cost-effective implemen-
tation. The state of multiprocessor design is reviewed in this section by examining programming
paradigms and machine architectures in greater detail. The purpose of the review is to show that
cache coherent, shared memory architectures make good platforms for implementing a wide variety
of programming models.

1.2.1 Programming Paradigms

Good programming paradigms simplify the task of writing parallel programs. The broad
variety of computational problems has resulted in a broad variety of programming paradigms,
including: functional and logic programming, data-parallel programming, parallel loops, shared
memory, and message passing [AS83, BST89, CG89, Hud89, Sha89].

The functional and logic programming models belong to the larger class of declarative
programming models, in which computations are described solely via single assignment expres-
sions [Hud89]. Functional languages are based on function application, while logic programs are
composed of relations. Prohibiting multiple assignments to variables is equivalent to prohibiting
side effects, which makes declarative languages suitable for formal analysis. It also fosters a pro-
gramming style that exposes more parallelism than imperative languages. In spite of these advan-
tages the use of declarative languages has been minimal. This has been due to the lack of good
compilers and the fact that these languages make a significant departure from traditional imperative
languagés. Recent improvements in compilation techniques and attempts at standardizing a gen-
eral purpose functional language (Haskell [HW88]) may result in greater interest in this class of
language in the future. Declarative programming models are the most abstract in that all notions of
a multiprocessor implementation—-multiple processes running on distinct processors, an intercon-
nection network, distributed memory-are completely avoided.

Inthe data parallel (or collection-oriented [SB91]) model, parallelism is expressed as the
application of operations to large collections of data. For example, an addition operation could be
applied to a collection of pairs of numbers to add two vectors, or it could be applied in tree fashion

to find the sum of a list of numbers. This computational model is surprisingly useful given its
simplicity, and is common in many languages for massively parallel computers [SB91]. Collection-
oriented constructs are typically embedded in existing languages such as C, FORTRAN, and Lisp.
They are also a natural component of functional languages. Like the declarative model, data-parallel
programming models abstract the most cumbersome implementation issues. The implementation
of multiple processes on distinct processors is usually abstracted in a more restrictive way, however,
by assuming a single flow of control (single instruction stream, multiple data stream (SIMD)).

Parallel loops is a programming paradigm that is often used in parallelizing scientific ap-
plications (usually written in FORTRAN) [D* 88, A*+88b]. In this model, loops with few dependen-
cies a}nong iterations are distributed among multiple processors for parallel execution. Typically,
most or all of the parallelization is performed automatically, so the notions of multiple processes,
interprocess communication, and distributed memory are abstracted.

The shared memory programming model provides the programmer with a set of pro-
cesses that can issue reads and writes to a globally shared memory, such that any number of reads
and writes to distinct addresses can be performed simultaneously [May90]. Variations in the way
in which simultaneous reads and writes to the same address are resolved create a family of shared
memory models. In the most restrictive model, exclusive read/exclusive write (EREW), simul-
taneous accesses to the same address are not allowed. In the least restrictive model, concurrent
read/concurrent write (CRCW)), the accesses are performed simultaneously, with the effect of the
writes being the same as if they were serialized. Basic read and write primitives can be augmented
with more sophisticated access instructions such as ferch&op [KRS86). A fetch&op instruction
with target address addr and value v causes the contents of addr, say z, to be replaced with z
op v, and retuns z. Simultaneous fetch&op instructions with the same target address are satisfied
concurrently, with the results corresponding to some arbitrary serialization. Concurrent fetch&op
instructions can be viewed as performing a data parallel operation in which a collection of numbers,
the v’s, are operated on and all partial results are collected. The shared memory model abstracts the
implementation of a physical multiprocessor memory. Unlike the preceding programming models,
multiple interacting processes are an explicit part of the shared memory paradigm.

The message passing programming model {Hoa78] is the least abstract model because
it makes explicit the notion of a collection of distinct processes operating on distinct, distributed
memories and interacting through a network. Like the data-parallel and shared memory models,
message passing primitives are usually embedded in traditional imperative languages.

1.2.2 Architectures

At some level a programming model must be implemented on an abstract machine sup-
ported directly in hardware. Virtually all hardware architectures share the basic structure of Figure
1.2 or Figure 1.3: collections of serial processing elements and memories interconnected by a net-
work. The most basic programming model supported by this hardware is the message passing
model, in which processes running on different processing elements communicate by messages
through the network. This basic architecture can be augmented with additional hardware to support
higher level programming abstractions. Shared memory can be approximated with hardware that
maps a global shared address space onto multiple physical memories. Data parallel computation
can be supported by forcing all processing elements to execute a single instruction stream in lock-
step [Hil85]. Data flow computation can be supported by adding complex associative memories

[AN87, GKW85].

Physical

Processor Memory

Network

Figure 1.2: Basic Multiprocessor Organization: Distributed Main Memory

Since a particular programming paradigm is best-suited to a particular class of problem,
it is desirable to support as many paradigms as possible on a single architecture. Very specialized
hardware, however, is often useful for only a single programming model. The most obvious exam-
ple is the complex hardware provided in traditional data flow computers. Data parallel architectures
like the Connection Machine are an extreme example in which the hardware supports only a single
instruction stream.

Specialized hardware is often not necessary for good performance. There is growing evi-
dence that higher level programming models can be efficiently emulated on much simpler architec-

Processor _
Network
Physical
Memory

Figure 1.3: Basic Multiprocessor Organization: “Dance-Hall” Arrangement

tures. For example, reasonably efficient techniques have been published for compiling functional,
logic programming, data parallel, and parallel loop computations onto shared memory and, in some
cases, message passing architectures (Hud89, Sha89, SB91, Ht91, D*88). The Monsoon data-flow
architecture is an interesting attempt to support data-flow computation at a much lower level than
previous generation data-flow architectures (MIT Tagged Token Machine and Manchester Data-
Flow Machine). Instead of providing complex token matching hardware, Monsoon efficiently sup-
ports a multithreaded abstract machine in which conventional uniprocessors are augmented with
hardware to permit efficient context switches of very lightweight processes (or threads). Recent
work suggests that even this may not be necessary [C*91].

It therefore seems unnecessary to go far beyond a shared memory or message passing
architecture to support a broad variety of programming models. There are good reasons, however,
to provide hardware support for shared memory. One is that the shared memory programming
model is much less cumbersome than message passing for many applications. This includes the
implementation of operating systems, debuggers, and higher level programming models. Another
reason is that emulating shared memory on a message passing architecture has a high cost that cannot
be avoided without hardware support. This is because multiple emulation instructions must be used

for each shared access in the shared memory program, and many shared memory programs issue
frequent shared accesses [DR*87, EK88). Furthermore, shared memory programs exhibiting good
speedups (or, equivalently, high processor utilization) have few free cycles available for emulation.
There are many open research issues conceming the design of a shared memory for hun-
dreds or thousands of processors. One of the most important is the provision of cache memories
at each processor. A cache at each processor permits many memory accesses to be satisfied lo-
cally by buffering data as it is referenced. Unlike uniprocessor systems, however, a multiprocessor
with caches requires a mechanism to ensure that multiple cached copies of the same data remain
coherent. The design and evaluation of a particular class of coherence schemes is the topic of this
dissertation. The following section reviews previous work in cache coherence in greater detail.

1.3 Multiprocessor Cache Coherence

There are numerous ways to ensure that multiple cached copies of data are consistent.
In fact, there are numerous ways in which the notion of “coherent” can be interpreted. The most
common interpretations are presented in the following section. Techniques for enforcing these co-
herence standards are reviewed in Section 1.3.2. The final part of this section summarizes previous
work in evaluating multiprocessor cache performance. The discussions in these sections identify
problems in directory-based cache coherence that are addressed in this dissertation.

1.3.1 Formal Notions of Cache Coherence

A set of multiprocessor caches is often defined to be coherent if the value returned on a
LOAD instruction is always the value written by the latest STORE instruction with the same address
[CF78]. This definition is unsatisfactory for two reasons. First, it is ambiguous with respect to the
temporal occurrence of LOAD’s and STORE's. When is a LOAD or a STORE determined to have
taken place: when initiated by a processor, processed by a cache controller, or propagated to all
cached copies? The second reason is that the definition is based on a notion of processors issuing
and completing shared references in lock-step. This is overly restrictive because it requires all pro-
cessors to observe the same interlegving of all references from all processors. This restrictiveness
severely reduces the amount of pipelining and reordering that can be applied to shared references,
with a subsequent loss in performance. To illustrate this, consider a processor that issues STORE
A followed by STORE B (cpu 1 in Figure 1.4). Assume that STORE's are considered complete

once they have been propagated to all copies. If the addressed memory locations reside in different
memory banks on the other side of a complex network, they may be propagated to copies out of
order if STORE A is delayed. If this occurs, it is possible for another processor to observe STORE
A before the STORE B, which violates the definition. The most straightforward implementation of
this definition, then, requires each processor reference to be completed at the main memory before
a new reference can be issued.

issues: Observes:
CPU 1 STORE B
STonE A O
cache 1 cac;ie 2
,
[copyof B |
N Update A 4 Update B
\ Network
Store A Store B
[master copy of A | [master copy of B |
bank 1 bank 2
Main Memory

Figure 1.4: The Restrictiveness of Strong Ordering

The above definition of coherence is closely related to Lamport’s sequential consistency.
A multiprocessor is sequentially consistent if “the result of any execution is the same as if the
operations of all the processors were executed in some sequential order, and the operations of each
individual processor appear in the order specified by its program [Lam79].” The simplest way to
implement sequential consistency is that described above, in which each processor issues LOAD’s
and STORE'’s in program order and ensures that all copies are updated (or invalidated) for each

reference before issuing the next [SD87]. Accesses in a multiprocessor that satisfy these restrictions
are said to be strongly ordered. More complex implementations of sequential consistency have
been proposed [AH90, A+89], but it is unclear whether significant improvements in performance
are possible.

The restrictiveness of sequential consistency can be relaxed by using a weaker notion of
coherence that exploits some knowledge about how synchronization is performed in the program-
ming paradigms of interest. These weaker notions of coherency are, in decreasing restrictiveness:

1. processor consistency
2. weak consistency

3. release consistency

A multiprocessor is processor consistent if “the result of any execution is the same as if
the operations of each individual processor appear in the sequential order specified by its program
[Goo89].” This relaxes the requirement of strong ordering that the same interleaving of all processor
references is observed by all processors. It exploits the fact most synchronization algorithms de-
signed using sequential consistency still perform correctly under processor consistency. Programs
can be constructed, however, that behave differently under sequential and processor consistency.

A multiprocessor is weakly consistent if [D 86):

1. accesses to global synchronizing variables are strongly ordered;

2. no access to a synchronizing variable is issued in a processor before all previous global data
accesses have been performed;

3. no access to global data is issued by a processor before a previous access to a synchronizing
variable has been performed.

Synchronizing variables are variables that are used in synchronization operations, such as locks,
barriers, test-and-set, and fetch-and-add. Weak consistency exploits the fact that most parallel pro-
grams do not perform synchronization using LOAD and STORE accesses to the shared memory, but
use special synchronization primitives corresponding to the operations just listed. Access to mutu-
ally exclusive data can only be acquired by references to synchronization variables, so intervening
references can be pipelined as long as they are not initiated until the last synchronization access
completes, and as long as they are completed before the next synchronization access is initiated.

10

Release consistency is an optimization of weak consistency requiring a further classifica-

tion of synchronization accesses into acquire accesses and release accesses. These are described in
[GGHO91] as follows:

An acquire synchronization access (e.g., a lock operation or a process spinning for
a flag to be set) is performed to gain access to a set of shared locations. A release

synchronization access (e.g., an unlock operation or a process setting a flag) grants this
permission.

With this differentiation, it is not necessary to impose Condition 2 of weak consistency on an ac-
quire, or Condition 3 on a release.

The relative performance of these consistency models was examined in [GGH91] using
simulations of three parallel applications on a small number of processors (16). The study showed
that all three weak consistency models provide substantial benefits over a strongly ordered sys-
tem. Weak consistency and release consistency performed similarly, and provided performance
only marginally better than processor consistency. These results are intuitive for weak and release
consistency since synchronization references tend to be infrequent, so the time spent waiting for
outstanding accesses to complete at synchronization points should be minimal.

1.3.2 Cache Coherence Strategies

In the previous section several definitions of coherence were described. In this section
strategies for enforcing these standards are presented. The strategies fall into three classes:

1. software methods;
2. snooping bus protocols;
3. directory methods;

In software methods, a compiler manages the cache using special cache control instruc-
tions. The simplest class of software methods requires a programmer to explicitly identify shared-
writeable data so that it will not be cached. The penalty for this simplicity is a significant increase
in average memory access time and network traffic [ONS0). More sophisticated software meth-
ods use compile-time analysis to identify certain parallel programming constructs and insert cache
management instructions. Typical instructions include cache-flush, selective invalidation, cache-
bypass, and main memory update. Two types of programming construct are typically recognized:
critical sections [Smi85] and parallel loops [CV90].

11

In critical section schemes, the compiler ensures that all data modified within a critical
section is reflected in main memory when the critical section is left. This is typically done with
cache invalidation or update instructions at every point where a process leaves a critical section. If
invalidations are used, all modified cache blocks are written back to main memory.

Most work on software methods has focussed on parallel DO-loops, usually in the con-
text of parallelizing FORTRAN compilers [CV90]. These schemes are similar to the critical section
technique described above, except that coherence instructions are placed at the end of loops. The
best loop and critical section schemes use sophisticated compiler analysis to perform selective in-
validation [CV88, CKM88].

Software schemes have the advantage of requiring minimal hardware support. This is
offset by the disadvantages of known techniques. The most significant is that many engineering
applications are not easily coded in a FORTRAN-like programming model because they make ex-
tensive use of pointer-based data structures; for these applications parallelized loops are not appli-
cable. The critical section schemes are more suitable, but they must be very conservative to deal
with arbitrary pointer use. Furthermore, some of the more sophisticated software methods require
substantial hardware support for selective invalidation [CV90]. Unfortunately, relatively little is
known about the relative performance of software and hardware coherence techniques. Some com-
parisons have been reported in (OA89, MBS0], but all of these focus on parallelized loops.

Snooping bus protocols exploit the broadcast capability of a shared bus, which enables
each cache to efficiently monitor and disseminate shared access information. Many snooping bus
protocols have been proposed and implemented; a good summary is in [AB86]. Unfortunately, the
number of high performance processors that can reside on a bus is limited. Attempts have been
made to extend snooping bus protocols to larger numbers of processors using collections of busses
interconnected in hierarchies [Wil87, MA89, T*+90], and multidimensional meshes [GW88]. These
extensions have the disadvantages that they are network-specific and rely on broadcasting for some
steps in their protocol. Some are also extremely complex. No results have been published compar-
ing the performance of extended snooping bus schemes with alternative coherence s}rategies.

Directory-based coherence protocols rely on a (conceptually) centralized set of “book-
keeping” information, the directory, which maintains the status of all cached shared-writeable data.
The directory maintains for each block of main memory a list of the caches with copies. Cache ac-
cesses that affect directory state and/or other caches are required to consult the directory to ensure
that the directory and other cached copies remain consistent.

12

One of the earliest directory schemes, due to Censier and Feautrier [CF78}, implemented
the copy lists using bit vectors. With this organization, the directory can be interleaved with the
main memory to get sufficient bandwidth. The main disadvantage of this scheme is the high cost
of implementing bit vectors at each main memory block for a large number of processors. Several
techniques for reducing the overhead have been proposed. Archibald and Baer [AB84] suggest the
use of only a single cache identifier per main memory block, and the use of broadcasts when more
than a single copy is required. Agarwal et. al. [A*88a) generalize this to their Dir; B and Dir; N B
schemes. In a Dir; B scheme, ¢ cache identifiers are provided for each block, and broadcasting is
used when the number of copies exceeds i. The Dir; N B scheme is similar to Dir; B, except that
instead of resorting to broadcasting, identifier memory is “recycled” by invalidating older copies.
A number of techniques have recently been proposed for reducing directory overhead without the
performance penalties of the Dir; B and Dir; N B schemes. These techniques, including one de-
veloped as part of this research, are described in Chapter 2.

Directory methods are attractive because they apply to a broad class of interconnection
network, are conceptually straightforward, and do not require broadcasts. The main disadvantage
of early directory methods, efficient implementation of the directory, can now be overcome with
the techniques described in Chapter 2. A secondary disadvantage of directory schemes is that a
directory controller can become a bottleneck if many copies of a block must be invalidated or
updated on a shared write. There is a growing amount of empirical evidence, however, to suggest
that this is not a problem in practice [WG89a, ON90, C+90, SWG91]. Results in Chapter 3 confirm
this.

1.3.3 Performance Evaluation of Cache Coherence Strategies

A cache coherence strategy is effective only if its overhead does not outweigh its ben-
efit. Overhead in coherence schemes takes the form of extra network traffic, stolen cache cycles,
stolen main memory cycles, and extra cache misses due to invalidations. The overhead of com-
peting schemes can be estimated with several performance evaluation techniques: analytic models,
simulation with synthetic workloads, and trace driven simulation.

Analytic models are desirable because of their simplicity, reduced computational require-
ments, and the insight they provide. Most analytic models of multiprocessor caches take a relatively
small number of parameters representing the workload and simulated architecture, and produce esti-
mates of maximum speedup and the frequencies of various coherence operations. Typical workload

13

parameters include miss ratios for shared and local data, the fraction of references to shared data,
the fraction of writes to shared data, and the average number of copies of shared data. Common
architectural parameters include network path width, cache block size, and memory latencies. The
structure of most analytic models is as follows:

1. Estimate the relative frequency of various network transactions (messages that are issued by
a processor into the interconnection network).

2. Estimate the arrival rate of network traffic by assuming some network delay.
3. Use the arrival rates to estimate the actual network delay with some congestion model.

4. If the estimated network delay does not match the assumed network delay, return to Step 2,
and repeat the process until convergence is reached.

The main differences in models are in the number of workload and architectural parameters, the
algorithm used to estimate the frequency of transactions in Step 1, and the congestion model in
Step 3. Tables 1.1 and 1.2 categorize some published analytic models according to these criteria.

There are several common techniques for estimating the frequency of various network
transactions. The simplest is to simply guess some values, or derive them algebraically from more
fundamental parameters. Another technique is to construct a stochastic model of program behavior
and either solve it directly or simulate it. Both of these methods must be validated against real
programs to verify their accuracy. The most common way to do this is trace-driven simulation.
Traces can be acquired during an execution of a program on a particular parallel machine, or they
can be generated during the cache simulation by simulating the processors.

There are many ways to estimate network congestion. The simplest is to use a known
model for the network of interest. Published network models that could be used here are reviewed
in Chapter 4. Unfortunately, most known models do not account for several important behavioral
features. Network congestion can also be estimated with an “application specific” model. These
are usually constructed as a network of queues or a stochastic Petri net, both of which can be solved
using standard techniques [ABC86]. A third way to estimate network congestion is by simulation.

As the tables show, only a few models have been validated against real parallel programs.
It is difficult to make believable caE:he design choices using models that have not been validated
against real parallel programs, so most models in Tables 1.1 and 1.2 are of limited use. In particular,
recent cache studies using reference traces from real parallel programs indicate that most early

Table 1.1: Analytic Models

Model | Network ¢ | Determination of | Congestion Model Notes
Transaction
Frequency
[V*88] | bus algebraic closed queueing block on write,
network (MVA ®) | continuous time,
not validated
with traces
[VIS89] | hierarchical | algebraic closed queueing block on write,
bus network (MVA) continuous time,
not validated
with traces
[VH86] | bus algebraic generalized timed | block on write,
Petri nets continuous time,
not validated
with traces
[LV88a] | multicube | algebraic closed queueing continuous time,
network (MVA) not validated
with traces
[NP85] | multistage | algebraic Kruskal/Snir RP3 model [P*85],
(KS83], software coherence,
simulation not validated
with traces
[OA89] | multistage, | algebraic open and closed continuous time,
bus, queueing networks | validation against
crossbar 4 cpu traces

2N/A means not applicable.
YMVA denotes Mean Value Analysis [ABC86].

14

Table 1.2: Analytic Models (continued)

15

Model Network ¢ Determination of | Congestion Model Notes
Transaction
Frequency
[Dub85] | N/A algebraic N/A not validated
with traces
[DB82] | N/A Markov chain N/A not validated
with traces
[YBL89] | packet-switched | Markov chain open and closed not validated
bus queueing networks | with traces
(MVA®Y)
[YF82] | non-blocking algebraic open and closed not validated
queueing networks | with traces,
(custom solution) | block on write
[Pat82] | circuit switched | algebraic known models not validated
delta or crossbar with traces,
ignores coherence
(BD81] | crossbar algebraic closed queueing not validated
network with traces
(custom solution)
(PP84) bus algebraic customized not validated
bus model with traces
[A*85] | bus algebraic stochastic not validated
Petri nets with traces,
continuous time
[AB86] | N/A simulation of N/A not validated
synthetic workload with traces
“N/A means not applicable.

*MVA denotes Mean Value Analysis [ABC86].

16

cache models were overly pessimistic in their assumptions about reference locality and contention
for shared data [EK88].

Calibration with real programs can take place at Step 1 as described above, or can be
applied to the entire modeling process with detailed simulations of the entire multiprocessor. As
mentioned, the most common technique for validating models is trace-driven simulation. A de-
tailed comparison of trace-driven multiprocessor studies is deferred to Chapter 3. The comparison
shows, however, that most studies on directory-based coherence focus on invalidation protocols,
most consider relatively small numbers of processors (32 or fewer), and few consider the impact
of alternative interconnection networks. There is a need to investigate different directory protocols
and a-wider variety of interconnection networks. There is also a need to consider machines with
larger numbers of processors. One of the reasons existing work has had a narrow focus is the high
cost of detailed multiprocessor simulation. More efficient techniques are needed to reduce this cost.

1.4 Organization of the Dissertation

This dissertation builds upon existing work on directory-based cache coherence by devel-
oping more efficient techniques for performance evaluation and by applying them to a broader class
of architectures. The overall performance methodology is based on that described in Section 1.3.3,
in which the workload is characterized and iteratively applied to a network model. The dissertation
is organized as follows.

In Chapter 2 a more detailed description of cache coherence strategies is provided. The
strategies are suitable for multiprocessors with hundreds of processing elements, with a focus on
simple and efficient directory-based techniques. A new efficient directory implementation is intro-
duced.

A trace-driven analysis of directory-based coherence schemes is presented in Chapter 3.
An efficient stack simulation technique is used that permits multiple cache sizes to be evaluated
in a single simulation run. Quantitative data for invalidation, update and competitive directory
protocols are presented. In addition, a new technique is introduced that permits efficient evaluation
of a spectrum of competitive protocols. These techniques are applied to three benchmark programs
for several cache, block and multiprocessor sizes.

The results in Chapter 3 are obtained under the assumption of zero miss penalty. The
impact of non-zero miss penalties are considered in Chapter 4, which presents a comparison of a
broad class of interconnection network. The comparison is based on new, efficient analytic models.

17

The results in Chapter 3 are obtained with the additional assumption of ideal synchro-
nization support for locks and barriers. This assumption is justified in Chapter S, in which known
synchronization techniques are reviewed. Several new techniques are presented for the implemen-
tation of fetch&op and barrier primitives in a broad class of interconnection network.

Chapter 6 concludes with a summary of important results and a discussion of future re-
search issues.

1.5 Contributions

The contributions of this work are:

1. A detailed study of directory-based cache coherence schemes using execution driven sim-
ulation of several benchmark programs. This study provides quantitative comparison data
for update, invalidation, and competitive directory protocols. An efficient stack simulation
technique is used that permits data for multiple cache sizes to be obtained in one simulation
run. Efficient ways of storing a global directory are developed and compared using new and
previously published results.

2. Efficient analytic models for evaluating a broad class of packet-switched interconnection net-
works. The class includes hypercubes, indirect binary cubes, meshes, and k-ary n-cubes. The
techniques are used to compare the most promising interconnection networks using workload
data obtained from the cache study in 1.

3. An implementation technique for incorporating fetch&op primitives in the kxk cross-bar
switches used to build meshes, Delta networks, k-ary n-cubes, and many other networks.

18

Chapter 2

Directory-bésed Cache Coherence

Strategies

2.1 Overview

This chapter is a review of directory-based coherence schemes that are suitable for ma-
chines with hundreds or thousands of processors. It begins with a detailed description of the Censier
and Feautrier directory scheme, from which most of the other schemes are derived. As mentioned
in the introduction, the main weakness of this scheme is the excessive amount of memory required
to implement the directory. A secondary weakness is that directory controllers may be locked out
for long periods of time when large numbers of invalidations or updates must be issued. All of the
schemes described in this chapter overcome the first weakness, and a few attempt to overcome the
second. One of the refined schemes is a contribution of this dissertation.

The goal of the chapter is to show that hardware coherence techniques exist that are of
reasonable complexity and require a reasonable amount of hardware for implementation. The con-
tribution of this chapter is the “tag cache” directory implementation.

2.2 The Censier and Feautrier Directory Scheme

In this scheme physical memory is divided into blocks of fixed size. Each block of main
memory is associated with a directory entry (or tag) containing N presence bits where N is the
number of processors in the system, a single bit indicating whether or not the block is modified,
and a lock bit (Figure 2.1). The bit vector implement a list of all cached copies. Using the notation

19

valid bit

modified bit ————

MAIN MEMORY: Tag| L M| [] - [n]

Cache Bits

lock bit

modified bi
Figure 2.1: Tags for Basic Censier and Feautrier Protocol
of [AB84], a block is always in one of these three states:

1. ABSENT: no cache holds a copy (all cache bits in the directory entry are 0, and the modified
bit is 0; lock bit is 0);

2. PRESENT: one or more caches hold copies, and the block is unmodified (one or more cache
bits in the directory entry are 1, and the modified bit is 0; lock bit is 0);

3. PRESENTM. exactly one cache has a copy and it is modified (exactly one cache bit is 1 and
modified bit is 1; lock bit is 0);

4. LOCKED: an operation on this block is currently in progress (lock bit is 1);

In like manner, each cache block is associated with a cache directory entry consisting of
a valid bit and a modified bit (Figure 2.1). Cache blocks may be in one of these states:

1. INVALID: the contents of the cache block are invalid (valid bit is 0);
2. VALID: the contents of the cache block are valid and unmodified (valid bit is 1 and modified
bitis 0);

3. VALIDM: the contents of the cache block are valid and modified (valid bit is 1 and modified
bit is 1). This state implies that this cache has the only valid copy of the block in the entire
multiprocessor.

The coherence protocol is defined by the actions taken by cache and memory controllers
for each combination of processor request, cache block state, and main memory state. If a processor
issues a read and the local cache block of the data is valid, no main memory access is needed and

20

the data is read from the cache. If a block for the referenced data does not exist, a block must be
assigned and its old data displaced to main memory. The missed reference is then handled as if
the block was invalid: a read transaction is issued to the main memory. If the main memory block
is in an unmodified state, the block contents are returned to the requesting memory controller. If
the main memory block is modified, the block contents are read from the single “owning"” cache,
written to main memory, and forwarded to the requester. In all of these cases the cache and main
memory entries have their states updated to VALID and PRESENT, respectively.

When a processor issues a write, it can only be satisfied locally if the local cache block is
VALIDM. If the local cache state is VALID, an invalidate transaction is sent to the main memory
which, if other caches have copies (ie: main memory state is PRESENT or PRESENTM), issues
invalidations to them. If the local cache misses or the block is invalid, the controller issues an
invalidate-fetch transaction to the main memory. A fetch is required here so that the portion of the
block untouched by the write is made valid. The main memory sends invalidations to caches with
copies. If the block is modified, the main memory also fetches the current data, updates itself, and
forwards the data to the requester. The states of cache and main memory blocks are updatéd to
VALIDM and PRESENTM, respectively.

The main memory is always notified of block replacements so that the appropriate cache
bit is cleared. If a cache replaces a VALIDM block, the block must be written back and the main
memory state changed to ABSENT.

The Censier and Feautrier scheme is well-suited to large multiprocessors because it does
not depend on the use of broadcasts (and hence does not depend on a particular network), and
permits the main memory and its directory to be interleaved. Although the communicationoverhead
could be excessive if many blocks reside in many caches, the scheme’s greatest drawback is the
severe memory overhead introduced by the large number of cache bits in the main memory tags.
As an example, a system with 100 processors requires a 102 bit tag, dictating a block size in excess
of 125 bytes for tag overhead to be less than 10%. Systems built using this consistency scheme are
not easily expanded because the tag length is dependent on the number of processors.

2.3 Efficient Directory Implementations

The severe memory overhead of the basic Censier and Feautrier scheme can be overcome
in many ways. The techniques fall into three categories:

21

1. Restrict the length of the copy lists.

2. Reduce the granularity of the copy lists: have each cache identifier refer to a group of caches
rather than a single cache.

3. Use a hierarchical directory.

4. Store the copy lists per cache block rather than per main memory block.

2.3.1 Schemes that Restrict List Length

It has been empirically observed for invalidation protocols that a small number of cache
identifiers are sufficient most of the time [A*+88a]. The most basic list reduction scheme exploits
this by providing only a single cache identifier per main memory block. When more than a single
copy is required broadcasts are used [AB84]. Agarwal et. al. generalize this to their Dir;B and
Dir;N B schemes [At88a). In a Dir; B scheme, i cache identifiers are provided for each block,
and broadcasting is used when the number of copies exceeds i. The Dir; N B scheme is similar
to Dir;B, except that instead of resorting to broadcasting, identifier memory is “recycled” by in-
validating older copies. Although directory overhead is reduced, for small block sizes it is still
considerable. For example, one ten bit cache identifier creates 7.8% overhead for a 16B block size.
The performance of these schemes has been evaluated using trace-driven simulationin [C*90]. The
results indicate that a full directory permits up to twice the processor utilization than a Dir;N B
scheme with ¢ < 4. This is largely because of contention for synchronization variables. With var-
ious software optimizations, the performance with limited identifiers comes within 10 % of a full
directory scheme.

[CKA91] describes a variation of the above schemes called a limitless directory. A limit-
less directory is a Dir; N B scheme modified so that directory overflows interrupt the local proces-
sor, which maintains long directory entries in local main memory.

2.3.2 Schemes that Reduce List Granularity

Weber and Gupta propose the use of directory entries of a single size, but further reduce
tag overhead with the use of coarse vectors and multicast invalidations [G*90b). [BH89] describes
a similar idea, and discusses a particular implementation of a multistage interconnection network
that supports efficient multicast operations; this multicast optimization is similar to one proposed
by Stenstrom (Ste89] for his decentralized linked list protocol (described in Section 2.3.3 below).

22

2.3.3 Schemes that Store Lists Per Cache Block

Another way to reduce directory overhead is to exploit the fact that tags are needed to
record the locations of only those blocks residing in caches. Since the total number of cache blocks
is typically much smaller than the total number of main memory blocks, tag overhead can be greatly
reduced. For example, a 64 processor machine with 32 kilobyte caches and 32 megabytes of dis-
tributed main memory requires only 1.6 megabytes of full length tags (assuming they are 100 bits in
length), to store directory information for the 64 x 32K +16 = 128K cache blocks. Alternatively,
25 megabytes of full length tags are needed if one tag is provided per main memory block.

In one class of these schemes [ON90, LY90, Ste89] copy lists are stored in associative
memories accessed by block address. The scheme described in [ON90] was proposed as part of
this research. In this scheme, two tag caches of different tag sizes are provided at each bank of the
distributed main memory: a large cache with small tags capable of holding the identifiers of a small
number of cached copies (Figure 2.2), and a small cache with full-sized tags (Figure 2.1).

SMALL TAG: Tag:{ L | M 1 e K
lock bit —I Cache ID’s
(logN bits each)
modified bit

Figure 2.2: Small Tag Fields

The coherence protocol for this scheme is similar to the basic Censier and Feautrier pro-
tocol with the exception that tags must be allocated from a tag cache as needed; when no tags are
free, a cached block must be invalidated and its tag re-allocated. When a block is first referenced,
it is allocated a small tag. When the number of copies of a block exceed the number of copies
supported by the small tags, a large tag is allocated and the small tag is freed. A least-recently-used
(LRU) replacement strategy may be used to select tags for re-allocation.

Similar schemes were independently published in [G*90b] and [Ste89]. In [Gt90b] a
tag cache is called a sparse directory. Instead of using two tag sizes, the scheme in [G*90b] uses
copy lists with coarse granularity, as described in Section 2.3.2. The scheme described in [Ste89]
differs from the other two in that full size directory tags are kept at the caches instead of the main
memory. The main memory, however, stores a cache identifier with each block to point to the cache
with valid directory data.

The complexity of storing lists as bit vectors in associative tables is greatly reduced by

23

using linked lists. These can be organized in a centralized or decentralized fashion. Decentralized
linked list schemes include the Scalable Coherent Interface protocol [IEE90] and the Stanford linked
list protocol [T*90]. In these schemes tag overhead is reduced by storing single identifier tags at
the caches and maintaining copy information in distributed linked lists (Figure 2.3). As in the
[Ste89] scheme, the main memory holds a pointer to the head of the copy list for each block. In
the basic protocol, invalidations are performed by having each member of the list invalidate their
copy and remove themselves from the list (at the main memory). This is done serially, so the time
to perform j invalidations takes the time of 2j network transactions. In contrast, the centralized
directory schemes issue invalidations serially at the controller, but they can traverse the network
and be processed in parallel. Optional variations of the SCI protocol have been proposed to reduce

serialization, but they require complicated checks to avoid dangling list segments.

| Cache Cache Cache
| Ldata‘Qnexﬂ,————Ldata | next | = data | next |

N

Network

DN

!

| data [head

>

Figure 2.3: Decentralized Linked List Directory

The performance problem of simple decentralized schemes and the complexity of higher

performance decentralized linked list schemes can be overcome by centralizing the linked lists at

24

the memory controllers [SH91a). The scheme in [LYS0] stores list entries in an associative table,
similar to a tag cache, but relies on compiler support to manage the directory. Figure 2.4 illustrates
the centralized linked list scheme due to [SH91b]. Here links are stored in a special memory and
managed by the main memory controller. Whenever the supply of links is exhausted, one or more
links in use are reclaimed by invalidating the appropriate copies; the link pool is made sufficiently
largé, however, that this should be rare. a

data head pointer cacheid next
— 93 P
j ree list
L 42
17]
]
Link Memory

Data Memory
Figure 2.4: Centralized Linked List Directory

Figure 2.5 illustrates an variation of the scheme in [SH91a] that requires minimal hard-
ware. Like the limitless directory scheme a portion of main memory is used for list storage; unlike
the limitless directory scheme, however, no special tag memory is needed, and all coherence activi-
ties are handled by the main memory controller. If list data cannot be accessed quickly enough, the
slow speed of main memory Can be overcome by exploiting the fast column-mode access of many

commercially available memory chips, or by storing several cache identifiers per link entry.

2.4 Conclusions

Full directories can be efficiently constructed using tag caches or linked lists, without
broadcasting or limiting the number of cached copies of 2 block. The centralized linked list schemes
are the most attractive because they donot need hardware to manage large bit vectors, and they avoid
the complications of decentralized linked list schemes. The memory-mapped decentralized linked
list scheme is especially attractive because of itslow implementation COst: a slightly more complex
controller and several additional registers.

Translation Look-Aside Butfer

Physical

Address

Virtual
Address

MAP OF MAIN MEMORY
Status | Pointer
DATA Block of Data

ID | Pointer

DIRECTORY ID [Polnter

OF CACHE ID'S

10 I Pointer

D I Pointer

Free Links

Figure 2.5: Memory-Mapped Linked List Scheme

25

26

Chapter 3

Workload Characterization

3.1 Overview

Workload characterization using references from benchmark programs has been exten-
sively used for uniprocessor cache studies [Smi82] and more recently for multiprocessor caching
schemes [AG88, SA88, WG89b, ON90]. This chapter begins with a review of previous work.
Following this, known stack simulation techniques are extended to support the evaluation of direc-
tory methods. These techniques are applied to three benchmark programs to evaluate invalidation,
update and competitive directory protocols. An additional technique is described that is used to
evaluate numerous competitive schemes from the results of a single simulation run of an update
protocol. '

The goal of the chapter is to show that directory-based cache coherence is very effective
at reducing average memory access time and network traffic. The contributions of this chapter
are: extensions to a stack simulation algorithm that support directory schemes, an algorithm for
determining competitive protocol performance from an update protocol simulation, and quantitative
performance data for three benchmark programs.

3.2 Previous Work

Many recent studies present empirical data on multiprocessor performance based on traces
of parallel programs (Tables 3.1 and 3.2); some of the benchmarks used in these studies are de-
scribed in Table 3.3. The tables show that all studies of directory methods with non-bus networks
consider invalidation protocols only, and most consider 32 or fewer processors. The MIT and

Table 3.1: Trace-driven Multiprocessor Cache Studies

Study Focus Benchmark Number Notes
Set of Procs.
[G*83c] | Ultracomputer, Fortran programs: | up to 256 | multistage network,
software coherence | parallel loops execution-driven
[ASK85] | Cedar, Fortran kemels: 32 multistage network,
software coherence | parallel loops execution-driven
[EK88] snooping bus Eggers Sto12 shared bus,
[EK89b] | protocols (Table 3.3) trace-driven
[EK89a]
[A*88a] | directory methods Mach 4 shared bus,
(invalidation) (Table 3.3) trace-driven
[DR*87] | Cedar, Fortran kemels, | 8 multistage network,
software coherence | parallel lcops execution-driven
[SA88] directory methods Mach 4 shared bus,
(invalidation) (Table 3.3) trace-driven
[AG8S8] ping/cling Mach 4 ideal network,
sharing model (Table 3.3) trace-driven
[C*89] | hierarchical directory | Mach 4 tree of busses,
scheme (Table 3.3) trace-driven
[WGB8Sb] | analysis of directory | Stanfordl 4t0 32 ideal network,
invalidation patterns | (Table 3.3) trace-driven
[G*90b] | sparse directories Stanford1, 41064 ideal network,
(invalidation) Stanford2 trace-driven

(Table 3.3)

27

Table 3.2: Trace-driven' Multiprocessor Cache Studies (continued)

28

Study Focus Benchmark Number Notes
Set of Procs.
[SWGHY1] | sparse directories Stanford1, 410 64 ideal network,
(invalidation) Stanford2 trace-driven
(Table 3.3)
{GGH91] | coherence model Stanford1 16 constant network
comparison (Table 3.3) delay, execution-driven
[C*90] directory schemes, MIT 32 to 64 | multistage network,
(invalidation) (Table 3.3) trace-driven
[CKA91] | Limitless directories | MIT 64 multistage network,
(invalidation) (Table 3.3) trace-driven
[LY90] software coherence Lilja 32 multistage network,
with directory (Table 3.3) execution-driven
(invalidation)
[AGS0] ping/cling sharing Mach 4 ideal network,
model (Table 3.3) trace-driven
[Wil87] | hierarchical directory | 3 C programs 16 bus hierarchy,
(invalidation) trace-driven
[L*87] software coherence | Fortran kemels, | 32 multistage network, -
parallel loops execution-driven

Table 3.3: Common Multiprocessor Benchmarks

29

Benchmark Program Language ¢ | Parallelism | Data Refs
Set Per Proc.
(thousands)
Mach POPS: rule-based language ? ? 380
THOR: logic simulator C ? 442
LocusRoute: VLSI router C ? 419
Eggers TOPOPT: PLA folder C 6/8 101
VERIFY: logic verifier C 11/12 96
SPICE: circuit simulator ? ? 114
CELL: VLSI placement C 6/8 141
Stanfordl | Maxflow: max. flow in graph C ? 281
SA-TSP: traveling salesman problem | C ? 238
MP3D: particle simulator C 52/64 173
THOR: logic simulator C 16/64 223
LocusRoute: VLSI router C 48/64 214
Stanford2 | Ocean: eddy current simulation Fortran 84/96 ?
Water: water molecule simulation C 44/48 ?
Cholesky: cholesky factorization C 22/64 ?
MIT FFT Fortran ? 68
Weather Fortran 12/32 283
Simple Fortran 7.3/16 422
Speech Lisp ? 184°%
Lilja arc3d: fluid flow Fortran ? 206
flo52: transonic flow past airfoil Fortran ? 313
trfd: quantum mechanics Fortran ? 184
simple24: heat flow Fortran ? 133
pic: electrodynamics Fortran ? 274
linpack: 125x125 matrix Fortran ? 313

2" denotes unpublished.
bdoes not include instruction references.

30

Stanford benchmark sets include traces of 64 processor systems, but only three of these are for C
programs with reasonable parallelism. The only trace-driven analyses of update and competitive
protocols are [EK88, Egg91, A*88a], which study shared bus architectures with 12 or fewer pro-
cessors. By focussing on shared bus architectures, these studies do not adequately measure the
coherence traffic that would occur with point-to-point networks.

There are also differences in the goals of previous studies. Most are comparisons of aver-
age memory access time and network traffic for very specific architectures. [WG89b] enumerates
classes of coherence patterns and relates them to benchmark programs. {AG90] and [Egg91] con-
sider simpler, more abstract models of program behavior based on what [AG90] calls processor
locality. Processor locality is the degree to which data is referenced by a processor without inter-
vening references by other processors; data that is referenced many times by a processor before a
reference by another processor exhibits high processor locality (which is desirable in a coherent
caching scheme). It is quantified with the ping/cling [AG90] and write-run [Egg91] models. In-
stead of examining the stream of data references issued by each processor, these models con;ider
the stream of references to each data block, focussing on the identity of the processor associated
with each reference. The ping/cling model is illustrated in Figure 3.1. A ping is defined as a refer-

Stream of Processors Referencing a Particular Block:

processor:tsl*l|1|2|3|3|3|1|2|2l4|414l4lals(1| Time

pings
Figure 3.1: The Ping/Cling Locality Model

ence to a block in which the processor differs from that of the previous reference; here the data has
“bounced” or pinged to another processor, requiring some coherence action. A cling occurs when a
block is immediately re-referenced by the same processor. Good processor locality is indicated by
a large ratio of clings to pings. Programs with good processor locality are said to exhibit sequential
sharing, and perform well with an invalidation protocol. Alternatively, programs with a large ratio
of pings to clings are said to exhibit fine-grained sharing, suggesting the use of an update protocol.

The write-run sharing model is a special case of the ping/cling model (Figure 3.2). A
write-run is defined as a sequence of writes by a particular processor with no intervening references

31

Stream of Processors Referencing a Particular Block (r: read, w: write):

external re-reads

P L4 |

processor: 13|11 (2]|3 1{2|2|4({4(4/4|3|3]|1 Time

read/write: [r [r {w|r (wiw|r|rle|(w|iriw|r|w/ wiw|r

- ~aere—- -y ape—————
length: 1 2 1 2 2

(7]
(2]

write-runs

Figure 3.2: The Write-run Model

by another processor; the write-run begins with a write and ends with a read or write by another
processor. Write-runs therefore begin and end with particular types of pings, and are made up of
a particular type of cling. A sequence of write-runs may be separated by sequences of reads by
a set of processors, called external reads. The first read by another processor after a write-run is
called an external re-read. The behavior of update and invalidation protocols can be measured
using components of the write-run model:

e Invalidations in a shared-bus invalidation protocol: number of write-runs (ie. the number of
writes that ping).

e Invalidation misses in an invalidation protocol: number of extemal re-reads (ie. the number
of reads that ping).

o Unnecessary updates in a shared-bus update protocol: length of a write-run (ie. the number
of writes that cling to a processor).

The ping/cling and write-run models provide a convenient framework for understanding
the reference behavior of parallel programs. The write-run model is also sufficiently detailed to
permit a comparison of snooping update and invalidation protocols using data from one simulation
run [Egg91]. Although the basic ping/cling and write-run models include measures of the number
of invalidation or update requests issued from the cache at which a write is made, they do not
provide a measure of the number of other cached copies that must be invalidated or updated. This
is important in evaluating directory-based coherence schemes, where invalidations and updates are
not performed in a single operation.

The results in this chapter build upon previous work in four ways:

32

1. By investigating a broader class of protocols, including invalidation, update and competitive.
2. By applying efficient stack simulation techniques to the evaluation of directory schemes.

3. By supplementing the write-run and ping/cling performance models with the notion of an
update-run: a stream of updates received by a cache block between local accesses. update-
runs quantify point-to-point coherence traffic and permit a comparison of a spectrum of com-
petitive protocols using data from a single simulation run.

4. By considering larger numbers of processors (64 and greater).

This work also avoids some secondary problems with existing studies. First, ideal synchronization
support is assumed so that coherence effects are not skewed. This is important because excess
traffic and misses due to naive barrier or lock implementations can produce misleading results. For
example, results in [C*90] show that the use of a tounament barrier instead of a simple counting
barrier ! substantially reduces traffic and average access time. Another secondary problem that is
avoided is a lack of parallelism in the benchmarks. As shown in Table 3.3, many of the benchmarks
used in previous studies have an unknown or poor amount of parallelism. All of the benchmarks
used in this chapter exhibit good processor utilization for at least 64 processors.

3.3 Stack Simulation of Directory Methods

3.3.1 Introduction

Stack simulation is a technique for simulating caches of multiple sizes in a single pass
over a reference trace. They significantly reduce the amount of time required to simulate a set of
alternative caches. In this section stack simulation algorithms for single processor and shared bus
multiprocessors are reviewed . The section begins with a discussion of some cache design policies
that must be restricted for stack algorithms to apply.

All cache designs must specify policies for: the selection of a block for replacement, the
selection of what to ferch and when, and what should be done with write references [Smi82]. A
replacement policy specifies how a block is selected for eviction when a newly referenced block
is brought in. Common replacement policies include least recently used (LRU), first-in-first-out
(FIFO) and random. fetch policies determine when blocks of data are brought inio the cache.

!These barrier implementations are described in Section 5.2.4.

33

The most common fetch policy is demand fetch, in which blocks are brought into the cache only
when they are first referenced. A more aggressive fetch policy is demand prefetch, in which one or
more blocks following the referenced block are also loaded on a cache miss. A cache write policy
determines what takes place in response to a write hit or miss. A write-through cache updates its
copy and main memory on each write; a copy-back or write-back cache updates main memory only
when a written (or dirty) block is replaced. When a write miss occurs in a write-through cache, the
cache can load the referenced block (write allocate) or just update main memory.

With certain restrictions, multiple sizes of a particular cache design can be simulated in
a single pass of a reference trace using stack simulation. Stack simulation exploits the inclusion
property of certain replacement and fetch policies, which ensures that the contents of a cache of a
particular size are included in all larger caches. In the basic scheme [MGST?70], the hit ratios for
all cache sizes can be found in one pass of the reference trace by storing block addresses in a stack
such that all blocks in a cache of size C are represented by the top C stack entries (Figure 3.3). To

Reference Stack

most block b1

recently REGION 1
used block b2

Cache Size 1

REGION 2

Cache Size 2

REGION 3

Cache Size 3

Figure 3.3: Uniprocessor Stack Simulation

keep track of the number of hits, a hit counter is associated with each position in the stack. On each
reference, the corresponding block is located in the stack (at level C) and moved to the top (since

34

it must now reside in all cache sizes), and the hit counter is incremented at the position where the
block was found. The blocks that were in positions 1 through C — 1 are now rearranged (in a manner
depending on the replacement policy) to make room for the referenced block at position 1. Because
of inclusion, a hit at level C represents a hit in all caches of size C or greater. The hit ratio for a
cache of size C is simply the sum of hits for all stack positions from 1 to C. The stack algorithm
can only be applied to caches with stack replacement policies and a restricted set of fetch policies.
Stack replacement policies satisfy the constraint that the selection criteria for a replaced block must
be independent of cache size. The simplest and most common stack replacement policy is least
recently used (LRU); in a stack simulation with an LRU replacement policy, the rearrangement of
block addresses is simply a downward shift. Fetch policies that do not violate the inclusion property
include demand fetch and demand prefetch.

The hit counters need not be maintained for each block. If the number of cache sizes of
interest is much smaller than the stack size, memory can be saved by associating counters with the
regions of blocks defined by the cache sizes.

The simple scheme just outlined is restricted to a single block size, single processor, and
full associativity. Extensions have been published to support multilevel cache hierarchies [Gec74],
multiple block sizes and associativities [TS71, ST72], and the collection of other statistics in addi-
tion to miss ratios [TS89). Extensions have also been published to support operations other than
read and write, such as deletions and cache flushing [TS89]. Efficient non-stack simulation algo-
rithms have been developed for supporting certain important cache designs for which inclusion
does not hold [HS89]. The restriction of a single processor has been relaxed by extensions that
support shared bus and file system caching systems [Tho87)]. These extensions are the focus of the
following section.

3.3.2 Multiprocessor Stack Simulation

The multiprocessor stack simulation algorithm used in Section 3.6 is based on work by
Thompson [Tho87], who developed a stack simulation algorithm for the MOES/ [SS86] class of
coherence protocols. The MOESI class of protocols includes most published shared bus coher-
ence schemes, and, with the modifications in Section 3.3.4, is also applicable to the three directory
schemes considered in this dissertation.

The MOESI protocol class derives its name from the five states a cached block may take
(Figure 3.4):

35

o=

(Does not match
Only main memory) Share-
Copy able

(O=T=R0)
O

Invalid

Figure 3.4: MOESI States

o Modified. this is the only cached copy and it is dirty.

o Owned: there are 2 or more cached copies, and this copy is dirty.
e Exclusive: this is the only cached copy and it is not dirty.

o Shared: other caches may have copies, and this copy is not dirty.
e Invalid: this copy is invalid.

The MOESI protocols are described in Tables 3.4 and 3.5 (taken from [Tho87]), which
show cache actions in response to processor requests and network (bus) requests, respectively. Re-
sponses are shown in one of two forms. “X, action” means change the block state to X and perform
“action”. “‘Shared?: X/Y, action” means perform “action” and set the block state to X if the block
is shared, and Y if unshared. Transactions of the form Shared?:0/M can be replaced by O, and
transactions of the form Shared?:S/E can be replaced by S. The network transactions specified in
Table 3.4 are as follows:

1. nothing: do nothing.
2. read block: fetch a copy of the block (to read).
3. write block: write back a copy of the block to main memory. Keep the local copy.

4. displace block: write back a modified copy of the block to main memory. Invalidate the local
copy.

36

5. notify: notify the main memory of a flush.
6. inval: invalidate all other copies of the block.
7. update: update all other copies of the block.

8. read block and inval: fetch a copy of the block (to write) and invalidate all other copies of
the block.

9. read block and update: fetch a copy of the block (to write) and update all other copies of the
block.

10. read, write: perform a separate cpu read (to bring the data into the cache) followed by a
separate Cpu write.

write-thru denotes a request that is issued by a write-through cache; no cache denotes that it is
requested by a processor without a cache.

The network transactions specified in Table 3.5 are as follows:
1. nothing: do nothing.
2. forward. forward a copy of the block to the requesting cache without updating main memory.

3. forward & update memory: forward a copy of the block to the requesting cache and update
main memory.

4. update copy:.update the local cached copy.

The original MOESI definition specifies bus signals for each bus transaction. Tables 3.4 and 3.5
abstract this because the protocols are also applicable to directory schemes using general inter-
connection networks. In the context of a shared bus, all caches observe the network transactions,
including those without copies (or, equivalently, copies that are invalid). sharability can therefore
be determined by a wired-OR sharing line (SL in the MOESI specification), and the bus ensures
that all coherence actions for a particular processor reference are satisfied atomically. In the context
of a general interconnection network and directory-based coherence, the directory protocol would
ensure that only those caches that need to respond to a network transaction are accessed; atomicity
would be enforced, and sharability determined, via the directory.

Table 3.4: MOESI Cache Responses to Processor Requests

Cache State Processor Request
Read Write
M (Modified) | M, nothing M, nothing
O (Owned) O, nothing {4} Shared?:0/M, update
{5} M, inval
E (Exclusive) | E, nothing M, nothing
S (Shareable) | S, nothing {6} Shared?: O/M, update
{7} M, inval
{8} S, update(write-thru)
{9} S, inval(write-thru)
I (Invalid) {1} Shared?: S/E, read block | {10} M, read block & inval
{2} S, read block (write-thru) | {11} read,write
{3} 1, read block (no cache) | {12} I, inval (no-cache,write-thru)
{13} 1, update (no-cache,write-thru)
{14} read,write (write-thru)
Cache State Processor Request
Pass Flush
(Push & Keep) (Push & Discard)
M (Modified) | E, write block I, displace block
-0 (Owned) {15} Shared?: S/E, write block | I, displace block
{16} S, write block
E (Exclusive) | — I, notify
S (Shareable) | - I, notify
I (Invalid) - -

37

Table 3.5: MOESI Cache Responses to Network Requests

Network Request Cache State
M (Modified) O (Owned)
Read Block or {19} O, forward {17} O, forward
Write Block {20} S, forward & update | {18} S, forward & update
memory memory
Read Block & Inval or {21} 1, forward I, forward
Inval or {22} 1, forward & update
Read Block & Inval memory
(Write-thru)
Read Block (No Cache) or | M, forward Shared? O/M, forward
Displace Block
Read Block & Updateor | - {23} S, update copy
Update or {24} 1, nothing
Read Block & Update
(Write-thru)
Inval (Write-thru) or M, forward 0, forward
Inval (No Cache)
Update (Write-thru) or M, update copy O, update copy
Update (No Cache)
Network Request Cache State
E (Exclusive) S (Sharable) I (Invalid)
Read Block or S, nothing S, nothing I, nothing
Write Block
Read Block & Inval or 1, nothing 1, nothing I, nothing
Inval or
Read Block & Inval
(Write-thru)
Read Block (No Cache) or | E, nothing S, nothing I, nothing
Displace Block
Read Block & Update or | - {25} S, update copy | I, nothing
Update or {26} 1, nothing
Read Block & Update
(Write-thru)
Inval (Write-thru) or I, nothing I, nothing I, nothing
Inval (No Cache)
Update (Write-thru) or {29} E, update copy | {27} S, update copy | I, nothing
Update (No Cache) {30} 1, nothing {28} I, nothing

38

Table 3.6: A Simple MOESI Invalidation Protocol

Cache State

Read

Processor Request

Write

Flush
(Push & Discard)

M (Modified)

M, nothing

M, nothing

1, displace block

S (Shareable)

S, nothing

{7} M, inval

I, notify

I (Invalid)

{1} S, read block

{10} M, read block & inval | —

Network Request

M (Modified)

Cache State

S (Sharable) | I (Invalid)

Read Block

{20} S, forward & update memory

S, nothing | I, nothing

Read Block
& Inval
Inval

{22} 1, forward & update memory

I, nothing I, nothing

Displace Block

1, nothing

S, nothing I, nothing

Table 3.7: A Simple MOESI Update Protocol (Write-thru)

Cache State

Read

Processor Request

Write

Flush
(Push & Discard)

S (Shareable)

S, nothing

{8} S, update

I, notify

I (Invalid)

{2} S, read block

{14} read,write

Network Request

S (Sharable)

Cache State

I (Invalid)

Read Block

S, nothing

I, nothing

Read Block
& Update
Update

{25} S, update copy

I, nothing

Displace Block

S, nothing

I, nothing

39

40

Since the MOESI protocols represent a class, there are alternative actions for many states.
Tables 3.6 and 3.7 show the altematives used in simple invalidation and update protocols (these are
two of the directory methods examined in Section 3.3.3).

The multiprocessor stack simulation algorithm is based on the following assumptions:

1. Reference streams are synchronized: the interleaving references from different processors is
independent of cache size. This assumption permits one-pass analysis of a multiprocessor
reference stream without considering low-level timing details that cause different temporal
behavior for different cache sizes. It is unrealistic because it is equivalent to assuming zero
miss penalty. The results should still be useful, however, because the network delays in a
symmetric multiprocessor should perturb each reference stream in a similar way, so relative
orderings should not change substantially. Furthermore, the simulated ordering is an example
of at least one correct execution of the program. This assumption has been made in other
simulation studies, including [C*90, OA89, SWG91].

2. Protocol actions are consistently applied on a block basis. If a particular rule from Table 3.5
is used for block ¢ during a read miss, it must always be applied to block 7 under the same
situation. This restriction still permits different protocols to be used for different blocks.

3. The stack position of a block in a particular cache cannot be changed by external cache ac-
tions, with the exception of invalidations. This is reasonable because *“the fact that another
cache is using a block may be reason to discard a block, but never a reason to want to keep it
(Tho87].”

4. All caches in the multiprocessor are the same size.

The folloﬁring description of Thompson’s stack simulation algorithm is restricted to the
subset of MOESI states required by the directory schemes of interest: the M, S and I states—those
required by the directory protocols described in Section 3.3.3. These three states can be determined
using the following state variables associated with each cache block: the valid level v; and, if the
block is dirty, its dirty level d; and the identity of the sole cache containing the dirty copy DC.
The valid level v; of block i is the smallest cache size for which block ¢ is valid; this is implicitly
maintained as the stack position of the block. If the block is not valid in any cache, v; = co. The
dirty level d; is the smallest cache size for which block i is dirty. If the block is not dirty in any
cache, d; = oc. The block may be valid in smaller caches, but it is only dirty in caches of size d;
and larger. The situation where v; < d; arises in write-back caches when a dirty block is pushed

41

from a small cache and later read again, but not written. In the MOESI protocols a block can be
dirty in only one cache at a time, so DC and d; need not be stored for each copy of a block. The
state of block ¢ in a particular cache j of size C is determined by examining v;, DC and d;:

e Miv; < C,j=DCandv; >= d;
e S:v;<Cand (§ # DCor(j = DC and v; < d;)).
o l:v; > C.

The stack algorithm for MOESI protocols involving only the M, S and I states is shown in
Figures 3.5 and 3.6. It is assumed that the reference streams from all N processors are interleaved
into a single trace of length n,. s, in a manner that is consistent with the synchronization constraints
of the program. Furthermore, for each reference the state of all copies of a block is updated atomi-
cally. Reference ¢ in the interleaved trace furnishes a block address 5;, the type of reference action;,
and the identity of the cache, ¢;, at which the access is made.

On each processor reference, the referenced block is located in the stack of the appropriate
cache to determine its valid level, v;. If the block is dirty, the identity of the sole cache containing
the copy, DC, is found, along with the dirty level d;. If the referenced cache happens to be DC, a
check is made to see if any write-backs have occurred. This is indicated by the valid level exceeding
the dirty level; since a block cannot be dirty in cache sizes for which it is not valid, all cache sizes
between d; and v; must have flushed the block. These flush operations are recorded by a call to the
“Statistics” routine of the form: Statistics(type, from, to, low size, high_size). This routine records
a network transaction of type fype from processor from to processor to for cache sizes in the range
lowsize 10 high_size. The remaining simulation steps are reference-specific. If the reference is a
read, the block must be fetched for all cache sizes for which it is invalid. If the block is dirty in
another cache, it must be retrieved from that cache before being forwarded to the referenced cache.
Pass references require main memory to be updated only if the local copy (if any) is dirty. Flush
references require main memory to be updated if the local copy is dirty, and the local copy to be
invalidated.

If the reference is a write, the simulation steps are protocol-specific. Figure 3.7 shows the
steps taken for the simple invalidation protocol of Table 3.6. Here the block must be fetched (for
writing) by all cache sizes for whicil it is invalid. If the block is dirty in another cache, it must be
retrieved from that cache, and that copy invalidated. If the block is not dirty in another cache, all
other copies are invalidated. The actions for the simple update protocol (Figure 3.8 and Table 3.7)

fOl’(i =1 lOn"f,){

b = block address for reference i

action = action for reference i

¢ = cache identifier for reference i

Ve = position of b; in stack ¢

DC = sole cache containing dirty copy of b; (if any)

d = dirty level for block in cache DC (if applicable)
m = main memory bank containing b.

if (c == DC) { I* if cache holds dirty block */
if (d < v.) { /* record writebacks */
Statistics(WRITEBLOCK, ¢, m, d, v.);
d=v;
}
}

switch (action) {
case READ:
Statistics(READBLOCK, ¢, m, 1, v.);
if (rules {7} or {10} used) { /* if invalidation protocol */
if (DC # oo and DC # c) { /* if block dirty, get copy from owner */
Statistics(RETRIEVE_BLOCK_TO_READ, m, DC, d, c);
d = oc;
}
}

case WRITE:
WriteRoutine(); /* protocol dependent */

case PASS:
if (¢ == DC and d # oo) { /* write back if dirty */
Statistics(WRITEBLOCK, ¢, m, d, o0);
d=o0;

}

case FLUSH:
if | == DC and d # oo) { /* write back if dirty */
StatisticsCc WRITEBLOCK, ¢, m, d, 0);
d = o0;
}
v = oo, /* invalidate local copy */
}
update stack c;

}

Figure 3.5: Stack Algorithm for MOESI Protocols

42

43

Reference Stack Reference Stack Retem"tce Stack
Directory For Cache 1 For Cache 2 For Cache 3
5
5 I REGION 1
Block 5 | —
89 Cache Size 1
l—-' 89 —‘_.
Block 89 99 REGION 2
31 31
Block 31 Cache Size 2
REGION 3
Cache Size 3

Figure 3.6: Multiprocessor Stack Simulation

are similar, except other cached copies are updated instead of invalidated, and it is not possible for
a block to be dirty in any cache.

In the basic uniprocessor stack algorithm, the number of hits for all cache sizes was effi-
ciently maintained using counters for each stack region. Since the number of hits obeys inclusion,
the number of hits for all caches containing the referenced block can be maintained by incrementing
just one counter per reference. Other cache statistics can be efficiently collected using counts that
obey inclusion. For each of these statistics, the number of events in a cache of size C is the sum of
counts for each of the stack regions contained by that cache. These statistics include:

1. block writes (write-backs): count the number of avoided write-backs [Tho87). This is done
by incrementing an avoided write-backs counter for the stack region containing the dirty level
of a written block. Since an avoided write-back in a cache of size C must also be an avoided
write-back in all larger caches, the count obeys inclusion.

2. block reads (fetches): these are misses, which are determined by counting the number of hits.
The number of misses is then the number of reads and writes minus the number of hits. These
may be further distinguished by the type of reference causing the fetch: read or write. This is
useful because extra actions (invalidations or updates) are required for block fetches caused

Statistics(READ_BLOCK_TO_WRITE, ¢, m, 1, v.);

if(d # oo and DC # ¢) {
StatisticsS(RETRIEVE_BLOCK_TO_WRITE, m, DC, d, o),
d=ox;

}

for{j| vj # 00,j# DC,j # ¢} {
Statistics(INVALIDATE, m, j, vj, 00);

vj = 00,
} DC =¢;
d=0;

Figure 3.7: Write Routine for Invalidation Protocol

StatisticS(READ_BLOCK_UPDATE, ¢, m, 1, v.);

for {j | jo # 00,5 # ¢} {
Statistics(tUPDATE, m, j, vj, 0);
}

Figure 3.8: Write Routine for Update Protocol

45
by writes.
3. write-throughs (to main memory): This is just the total number of writes.

Stack simulation is desirable only if the added complexity does not defeat the benefit
of analyzing multiple cache sizes simultaneously. Empirical results in [Tho87] show that a stack
simulation takes about 15 % more time to run than a non-stack simulation of a single cache size, so
the net benefit is substantial. Similar overhead was observed for the simulations used in this work.

3.3.3 Protocols

The directory protocols considered in this chapter are variations of Censier and Feautrier’s
scheme [CF78]. The first, denoted INVAL, is Censier and Feautrier’s invalidation protocol with-
out variation. The second, UPDATE, is Censier and Feautrier’s scheme modified so that writes
to shared writeable data send updates to all other cached copies. Like INVAL, UPDATE requires
the maintenance of copy lists at the main memory. Unlike INVAL, we assume that writes to shared
writeable data write through the cache. Update requests are therefore issued to the main memory on
each shared write. This is the simplest implementation of an UPDATE protocol, and optimizations
may reduce the amount of write-through traffic. Simulation results, however, suggest that update
traffic from the main memory to cached copies dominates write-through traffic, so any traffic re-
duction with a write-back scheme would be minimal. The third coherence scheme, COMPX, is a
competitive protocol in which updates are issued to cached copies until an invalidation criterion is
satisfied, at which point the copy is invalidated. In COMPk the invalidation criterion is checked at
each cache by counting, for each cache block, the number of updates received between references
by the local cpu. When the number of updates reaches a threshold, &, the cache invalidates its copy.
By varying k from 1 to oo, a set of protocols with behavior ranging from that of INVAL to that of
UPDATE can be constructed. COMPk is similar to the bus-based competitive protocol described
in [K*86). Like UPDATE, we assume write-through caches for shared-writeable data.

3.3.4 Stack Simulation of Directory-based Coherence Protocols

Thompson’s stack simulation algorithm assumes an idealized shared bus architecture with
zero miss penalty. With the same assumptions, the same algorithm can be used for directory-based
coherence protocols that fall into the MOESI class. The invalidation and update protocols described
in Section 3.3.3 correspond to the MOESI protocols in Tables 3.6 and 3.7 in the previous section,

46

and hence can be evaluated using stack simulation. In this section it is shown that the competitive
protocol can also be evaluated with stack simulation. It is also shown how simulation statistics
peculiar to directory schemes can be efficiently collected.

On first inspection, the competitive protocol falls outside of the MOESI class because
self-invalidations (flushes) are initiated based on feedback from the coherence system: the number
of updates since the last processor reference. It is still as a MOESI protocol, however, because the
self-invalidation criterion obeys inclusion: the number of updates observed by block ¢ in a cache
of size C is the same as the number observed by block ¢ in a cache of size C + 1. This can be
shown by induction. At the beginning of a simulation it is trivially true since no blocks are valid.
Assume it is valid at time ¢. Consider the actions that modify the update count for a block: a local
reference or an update from the network. On a local reference the update count is set to zero for
all cache sizes, so inclusion is preserved. An update from the network increments the update count
for all cache sizes in which the block is valid. If the count does not exceed the self-invalidation
threshold, inclusion is preserved. If it does exceed the threshold, the block becomes invalid in all
cache sizes so inclusion is still preserved. The self-invalidation criteria therefore obeys inclusion,
so the competitive protocol can be simulated as a MOESI protocol, with modifications to support
update counts. An extra variable, updates., must be maintained per cached block to store update
counts. updates. for block b must be set to zero for each reference to b at cache c. The write
routine for the competitive protocol is shown in Figure 3.9. It is identical to the routine for the
update protocol, with the exception that the update counters of cached copies must be incremented
as they are updated. When an update count exceeds the self-invalidation threshold, the cached copy
is invalidated.

StatisticsS(READ_BLOCK_UPDATE, ¢, m, 1, v.);

for {j | v # 00, j # e} {
Statistics(UPDATE, m, j, v;, 00);
updates; = updates; + 1;
if (updates; > k) {
invalidate copy;
}

}

Figure 3.9: Write Routine for Competitive Protocol

47

Because directory schemes issue invalidations or updates on a point-to-point basis, there
are a number of of additional traffic statistics that are of interest. These are:

1. invalidations (to main memory): These can be found by counting the number of write hits
to modified blocks. This count obeys inclusion because validity is inclusive and dirtiness is
inclusive. The number of invalidation requests sent to main memory (that do NOT require a
block to be fetched) is then the number of unqualified write hits minus the number of write
hits to modified blocks.

2. retrievals (from caches with dirty copies): since dirtiness is inclusive, these can be counted
directly. The retrieval count corresponding to region d in cache DC is incremented.

3. invalidations (to caches): These can be counted directly since an invalidation in a cache of
size C implies an invalidation in all 1arger caches. When a block is invalidated in the stack for
cache j, the invalidation count for that position in stack j is incremented. This statistic only
applies to blocks that are not dirty in any cache. If a block is dirty in some cache, it may be
possible for the block to be clean for some sizes and dirty for others. This arises when v, < d,
which arises in write-back caches when a dirty block is pushed from a small cache and later
read again, but not written. Invalidations for sizes v. to d can be counted using the retrieval
count (Item 2 above) plus an additional count of dirty invalidations at each stack region 1,
denoted dinv;. Whenever a retrieval is made from cache DC, the dirty invalidation counter
for region v, is incremented. Unfortunately, the dirty invalidation count does not provide
the number of dirty invalidations directly. This is because the count of dirty invalidations
does not obey inclusion: sizes v, to d receive invalidations, while sizes d t0 oo receives
retrievals. The following discussion shows that the number of dirty invalidations to cache of
size C is just the sum of dinv; — r; for all inclusive stack regions 7, where 7; is the count of
retrievals at region ¢. To see this, consider Figure 3.10. Assume that separate counters for
dinv; and r; are maintained for each shared reference j. Denote these counters dz’mf and r{ ,
respectively. Figure 3.10 shows, for a particular cache, dinvf and rf for each stack region.
Consider a single reference, say 1. It is clear that the number of dirty invalidations for region
kis Y%, (dinv} - r}). The total number of dirty invalidations dinv, due to all references,
is just -

Nrefs k

dinv = Y Y (dinv! - i) (3.1)

=1 i=1

48

But
Nrefs k . k
Y) dinv} =) diny; (32)
i=1 =1 =1
and
Nrefs k) k
YYo= (33)
I=1 =1 i=1
therefore: .
dinv = Z(dinv,- -7) (3.4)
i=1
Reference Stack Ref 1 Ref 2 Ref 3
dec r de r dec r
block b1
most
recentl REGION 1 1 0 0 0 0 0
taag Y block b2
Cacheo Size 1
REGION 2 0 O 1 1 10
Cache Size 2
REGION 3 o1 o0 o0 01
Cacheo Size 3

de: count of dirty invalidations
r: count of retrievais

Figure 3.10: Counting Invalidations When a Block is Dirty

4. updates (to caches): These can be counted directly since updates must obey inclusion. An
update to a block in stack ¢ causes the update count for the corresponding stack region to be
incremented.

One additional metric is collected for the competitive protocol: the number of self-invalidations
at each cache. Since update counts are inclusive, the count of self-invalidations is also inclusive,
so it can be counted directly.

49

3.4 Evaluating Competitive Directory Methods

In this section it is shown how the results of a single UPDATE simulation can be used
to find the performance of COMPk for different threshold values. The technique is based on the
cumulative distribution of the number of updates between references at a cache (Figure 3.11). Be-
cause of its similarity to the notion of a write-run, an uninterrupted series of external updates to a
cache block is called an update-run. Update-runs supplement the ping/cling and write-run models
by measuring the number of copies of a block involved in invalidations and updates. Given the
distribution of update-run lengths, it is possible to determine the fraction of references that would
be misses if cached copies were invalidated every k updates (with no intervening references by the
corresponding cpu). Similarly, the fraction of update traffic attributed to updates occurring at the
J'th position in an update-run permits a determination of the number of updates that would not take
place for a given k.

Stream of Processors Referencing a Particular Block (r: read, w: write):

extemnal updates for copy at processor 3

b |

2|2/{4/!4|4/4|3 |31 Time
wirir|r|iwiriwlr| w wwlr
-

(2]
(2]
(2]
-

processor: (3 |1{1]|2
read/write: (r | r | W

length: 1 3

update-runs

Figure 3.11: The Update-run Model

Figure 3.12 shows a typical plot of the normalized cumulative distribution of the number
of references (to shared writeable data) for which k updates were observed since the last reference
to the same block by the same cpu. Let the fraction of references finding k intervening updates
be r(k). References with zero intervening updates are not included. Let r.(k) be the cumulative
version of r(k): r.(k) equals the fraction of references finding k or fewer intervening updates. (k)
and r.(k) are obtained from a single simulation of the UPDATE protocol. Figure 3.13 shows the
fraction of update transactions (from main memory to caches) that occur at the k’th position in an
update-run. Let the fraction of updates that occur in the k'th position be u(k). u(k) is related to
r(k) by the equation:

L2k r(d)

50

Let uc(k) be the cumulative version of u(k).

The performance of COMPk for threshold & is found by adjusting the miss ratio and traffic
of UPDATE to account for the extra misses and fewer update transactions:

ertra.misses = refsx fo.(1-r(k-1)) (3.6)

updates_avoided = mupdates x (1 — u(k)) 3.7
where:

e refsis the number of references to shared writeable data.

¢ mupdates is the number of MUPDATE transactions received by the cache with a full update
protocol.

e fa. is the fraction of references that have one or more updates since the last reference to the
same block.

The extra misses are the number of data references with update-runs of length k or greater: any
cache block that receives more than k — 1 updates is invalidated. The number of updates avoided
is the fraction of updates (in a full update scheme) corresponding to positions & + 1 or greater in an
update-run.

Because they do not account for changes in replacement behavior caused by self-invalidations,
these formulae are exact only for infinite caches. Furthermore, if (k) and u(k) are determined from
a subset of a program trace, they must be adjusted to account for the following end effects:

1. Portions of update-runs that occur prior to the start of steady-state. This data can be obtained
from the transient portion of the trace during which steady-state is established.

2. Updates to blocks that are not re-referenced in the sampled time interval. The effect of these
on u(k) can be found by scanning the caches at the end of the simulation.

Numerical results for this technique are presented in Section 3.6.2.

3.5 Simulation Methodology

The stack simulation techniques of Section 3.3 were applied to three benchmark programs
to obtain miss ratios and network traffic for the INVAL, UPDATE and COMPk coherence schemes.
In this section the metrics, simulated architecture, and benchmark programs are described.

51

Cumutative Distribution

1.00

0.

0.80.

0.70_

0.60.

0.50

0.30-

0.20-

0.10

0.00 10.00 20.00 30.00 40.00
Length of Update-run: k

Figure 3.12: Cumulative Distribution of Update-run Length

3.5.1 Metrics

The metrics of the comparison are cache miss ratio and network traffic. Miss ratios in-
clude misses due to references to shared writeable and non-shared-writeable data; they do not in-
clude instruction misses. Miss ratios reported in Section 3.6.1 are the average of the miss ratios for
all simulated processors.

Network traffic is given in bytes of data sent into the network by a cache controller, nor-
malized by the number of instructions referenced at that cache. Cache controllers communicate
with main memory banks using transactions composed of two point-to-point network messages: a
request and a response. Tables 3.8 and 3.9 show the transaction types and their sizes for each coher-
ence scheme. Traffic values in Section 3.6.1 are the average of the traffic values for all simulated
processors.

3.5.2 Simulated Architecture

The different coherence schemes were compared using instruction-level simulations of a
multiprocessor architecture with separate instruction and data caches, and an idealized main mem-

Updates that Occur at Position k In an Update-run

1.00

0.90

0.60.

0.50

0.40

0.30

0.20

0.10.

0.00.

0.00 10.00 20.00 30.00 40.00
Position In Update-run: k

Figure 3.13: Fraction of Updates that Occur at k'th Position in an Update-run

52

53

Table 3.8: Transaction Types

Name ¢ Description Format °
Request | Acknowledge
I1fU|CIT|U]|] C
CPUREAD get shared block to read 111 }1|S5{5]|5
CPUWRITE get shared block to write 113 13[|5({51]S5
CPUUNSHARED | get unshared block 1{1]1|5]51]5
DISPLACE displace clean block 1111114144
WRITEBACK displace dirty block 212121414 |4
INVAL . invalidate copies 1(-1{-14)- |-
UPDATE update copies -13131-14]|4
LOCK lock 11111414 |4
UNLOCK unlock 1[1|1]4]|4 |4
BARRIER wait at barrier 111 (11414 |4
MREAD get cache copy to read 41-1-15]-1-
MWRITE get cache copy to write 41-1-15]-1-
MINVAL invalidate cache copy 41-1-14|-]-
MUPDATE update cache copy -|616]-(4]4

“transactions beginning with “M" are from main memory to caches; all others are from caches to main memory
*L: INVAL, U: UPDATE, C: COMPk; numbers correspond to formats in Table 3.9

Table 3.9: Transaction Formats

Number Format Size (bits) ¢
1 (trans)(addr)(src)(dest) 92

2 (trans)(addr)(src)(dest)(block) | 124,220,604
3 (trans)(addr)(src)(dest)(word) | 124

4 (trans)(addr)(src) 82

5 (trans)(addr)(src)(block) 114,210,594
6 (trans)(addr)(src)(word) 114

“assuming: (trans) is 8 bits, (addr) is 64 bits, (src) and (dest) are 10 bits, (word) is 32 bits, (block) is 32, 128 or 512
bits

54

ory. An accurate model of the MIPS R2000 cpu was used to drive the two level memory hierarchy.
The cpu model accurately modeled pipelining and interlocks in the integer and floating point arith-
metic units. The main memory was “ideal” in that it was assumed to have zero latency and presented
no serialization to simultaneous accesses by multiple processors. This assumption was required by
the stack simulation algorithm.

Synchronization operations were restricted to operations on locks and barriers. The ideal
main memory provided support for the high-level synchronization operations LOCK(lock_variable),
UNLOCK(ock.variable) and WAIT_.BARRIER(barrier_variable). Locks and barriers were han-
dled by appropriately stalling processes at the main memory and maintaining queues of stalled
process identifiers for each lock and barrier. The main memory incurred no serialization delay for
simultaneous queueing operations; delay was incurred, however, for processes waiting in queue
for access to a lock or for the completion of a barrier. This particular synchronization model was
used so that cache performance would not be biased by poor synchronization support. These ideal
assumptions are justified by the detailed discussion of synchronization techniques in Chapter 5.

When measuring network traffic, it was assumed that the main memory was interleaved
and distributed among the processors. It was also assumed that one cache controller and one mem-
ory bank shared a network port. Any transactions issued from a block of main memory was thus
counted with transactions issued from its respective cache controller. Interleaving was performed
using bit selection on the lowest order bits of a block address.

Since all memory references were satisfied in one cache cycle, independent of whether
there was a hit or miss, the system under study was sequentially consistent. The results should also
apply, however, to multiprocessors with weaker coherence standards.

64 processors were used for all simulations. It was assumed that for each benchmark that
the entire program could reside in main memory.

The simulated caches were fully associative with LRU replacement, using demand fetch
with fetch-on-write, and write-back (except for writes to shared writeable data in UPDATE and
COMPk, which were write-through).

3.5.3 Benchmarks

Table 3.10 shows some characteristics of the benchmarks used in the comparison. The
three benchmarks are:

1. VERF: a program that checks the equivalence of two Boolean networks;

Table 3.10: Benchmark Characteristics

55

Benchmark | Instruction ¢ Data References ® % Writes | Utilization | Data Memory ¢
References | Shared | Non-shared | (Shared) Touched

verf 2,070,000 | 332,000 219,000 7.01% 69% 609kB
ugray 3,540,000 | 359,000 956,000 1.33% 89% 2.27MB
locus 10,600,000 | 399,000 { 3,330,000 7.2% 98% 1.76MB

*per cpu

*per cpu

“touched by all processors

2. LOCUS: a router for standard cell layouts;

3. UGRAY: a ray tracer;

The reference counts of Table 3.10 are on a per child basis, and only include references

after steady-state 2 was reached. Furthermore, all results in Section 3.6.1 are for steady-state be-

havior. The caches were considered to be in steady-state when one of the following conditions was

met:

1. The average working set isloaded. Here the size of the working set is defined as the minimum

cache size for which the average steady-state miss ratio is within 10% of that observed for an

infinite cache.

2. The average amount of valid data per cache is greater than or equal to the maximum cache

size of interest.

Steady-state for VERF was reached using condition 2. Steady-state for UGRAY and LOCUS was
reached using condition 1. This is shown in Table 3.11, which shows the average number of valid

blocks in a cache when steady-state was established. The results are for 64 processors and the

INVAL protocol; results for the other protocols are similar. The table also shows the size of the
“working set” for each benchmark. For UGRAY and LOCUS the working set was loaded at the
start of steady-state. VERF exhibited much poorer locality, with a working set larger than 256kB.
However, the caches in all VERF simulations had at least 64kB of valid data at the start of steady-

state.

2‘Steady-state” cache statistics do not include the effects of loading an empty cache: the cache is loaded at the begin-
ning of the simulation.

56

Table 3.11: Steady-State Statistics

Benchmark | Block | Valid Data | “Working Set” ¢ | Miss Ratio
Size | (atstartof Cold | Warm

steady state) % %
VERF 16B 79kB) 705 | 547
VERF 32B 115kB 00 7171 6.04
VERF 64B 156kB 00 777 6.86
UGRAY 16B 53kB 32kB 2.33 | 0586
UGRAY 32B 61kB 32kB 1.36 | 0.509
UGRAY 64B - 76kB 32kB 0.870 | 0.468
LOCUS 16B 34kB 32kB 1.07 | 0.486
LOCUS 32B 38kB 32kB 0.789 | 0.316
LOCUS 64B 43kB 32kB 0.616 | 0.217

“Minimum cache size for which steady-state miss ratio is within 10% of infinite cache miss ratio.

The last two columns of Table 3.11 show cold and warm miss ratios (for all data refer-
ences). These show the large impact of a cold start 3 .

3.6 Numerical Results

The first part of this section compares the UPDATE, INVAL and COMPk coherence
schemes for a variety of cache and line sizes. The results are presented in five subsections. The first
three examine the three coherence schemes individually. The last two subsections compare their
relative performance and examine the effect of varying the invalidation threshold in the competi-
tive protocol. The synchronization behavior of the benchmarks is described in the last part of this
section.

3.6.1 Misses and Traffic
Invalidation Protocol

Figures 3.14 and 3.15 show miss ratios and traffic as a function of block and cache size
for the invalidation protocol. The UGRAY and LOCUS benchmarks have very good locality of
reference at even small cache sizes, so increasing the block size has a more pronounced reduction in
- misses than increasing cache size. Increasing the block size to 64 bytes for a 16kB cache, however,

3“Cold start” cache statistics include the effects of loading an empty cache.

57

causes a sharp increase in misses due to cache pollution 4. The VERF benchmark has much less
locality of reference and exhibits larger reductions in misses as cache size is increased, but suffers
from cache pollution and an increase in invalidation misses when the block size is increased beyond
4 bytes.

For all benchmarks traffic falls gradually as cache size is increased. The trends for differ-
ent block sizes, however, are different for each benchmark. For VEREF, traffic consistently increases
with increasing block size, due to increases in miss ratio caused by cache pollution and increased
invalidation traffic. For LOCUS, traffic consistently decreases as block size is decreased, indicating
that most of the extra data fetched on a miss is eventually used. Traffic for UGRAY falls as block
size increases from 4 to 16 bytes, but rises as block size is further increased to 64 bytes. For the
16kB cache this is due to cache pollution, as observed in the plot of miss ratios. For larger cache
sizes traffic rises because the reduction in misses is not sufficient to offset the higher cost of fetching
64B blocks.

Miss Ratlo
*—r—e
1e-01 - //'
2 —
. UGRAY
12 4 e ° * . 7
RN eh o
\: . \". L, kR
s . Yo 'e BN -
N » e
§ ! *
Y 3 % 3
° yooome= Y
, LOCUS
k3 4 %
{ SR

Block Size: 4B 16B 64B 4B 16B 64B 4B 16B 64B 4B 16B 64B
Cache Size: 16kB 2x8 84kB {nfinite

Figure 3.14: Miss Ratios for Invalidation Protocol

“At some size, a block becomes so large that more useful data is replaced than is brought in, and the number of misses
increases. In such a situation, unused data is said to “pollute” the cache.

58

Bytesinstruction
s—
P a
10000 |- — -
VERF
IR Ny
4
! UGRAY
[]
- o\" 2 ‘.’ ¢
.\ o o, /
) -\‘ o e PO
10-01 - S __ \‘---, "\{. _
Locus b
BlockSize: 4B16B 64B 4B 16B 64B 4B 16B 64B 4B 16D 64B
Cache Size: 16kB 32kB 64kB Infinite

Figure 3.15: Traffic for Invalidation Protocol

Update Protocol

Miss ratios for the update protocol (Figure 3.16) follow trends similar to those of the in-
validation protocol, with values up to 5 times smaller. An exception occurs, however, for the VERF
benchmark with an infinite cache, in which increasing block size reduces misses substantially. This
is expected since cache pollution cannot occur in an infinite cache and misses due to false sharing
5 cannot occur using the update protocol (since no invalidations take place).

Traffic for the update protocol (Figure 3.17) follows a similar trend only for the VERF
benchmark. This is because the fraction of update traffic is considerably higher than the fraction of
invalidation traffic observed for the invalidation protocol. For the LOCUS benchmark, the relation-
ship between traffic and block size reverses as cache size increases, showing how the contribution of
| update traffic dominates in large caches. The contribution of update traffic in the UGRAY bench-
mark remains about the same as cache size increases. As observed for the invalidation scheme,
cache pollution causes the sharp increase in traffic for UGRAY with a 16kB cache and 64B block.

3False sharing occurs when two or more processors concurrently access unrelated data items that have been put in the
same cache block. Although the processors are not sharing data, the coherence system acts as if they are because sharing
is determined on a block basis. False sharing causes unnecessary invalidations and update traffic.

59

Miss Ratio
10-01 ~ / ~1
i VERF / T
i \ -
1002 - . o UGRAY -
e . °
5 ‘: .x‘.‘. l". Y 7]
LR ° L
\. [} 5, .‘, iy .«‘
- "‘:\‘ %0 NN T
» e I
® L ®
10-03 |- _— % ¢
Locus 3
L Y
T :‘ -‘

Block Size: 4B 16B 64B 4B 16B64B 4B16B 64B 4B 168 64B
Cache Size: 16kB 328 84kB Infinke

Figure 3.16: Miss Ratios for Update Protocol

Bytesnstruction
VERF
5 .
zr -
10400 — -
® UGRAY
I.’ .
e, ! o 0.o® oY
.:: ."‘\‘ S. Y
‘G e OO .-0 co-® |
Locus

Block Siza: 4B 16B 64B 4B 16B 64B 4B 16B 648 48 16B 64B
Cache Size: 16kB 32«8 84kB Infinie

Figure 3.17: Traffic for Update Protocol

60

Competitive Protocol

As expected, results for the competitive protocol (Figures 3.18 and 3.19) follow trends
that are a mix of those observed for the other protocols. These results are for a self-invalidation
threshold of 8. Miss ratios and traffic values lie between those of INVAL and UPDATE. Miss ratios
follow the trends of the other schemes with the exception of VERF with an infinite cache. Here the
miss ratio declines as block size increases from 4B to 16B, as observed for the UPDATE scheme.
As block size is increased further to 64B, the number of self-invalidations rises and the miss ratio
increases, as observed for the INVAL scheme.

Traffic for COMPk also follows trends that are a composite of the behavior of INVAL
and UPDATE. VERF follows the same trends with values between those of INVAL and UPDATE.
Traffic for LOCUS decreases from 4B to 16B block sizes, and rises from 16B to 64B block sizes, as
observed for INVAL. The presence of updates, however, causes the changes to be less severe since
the number of misses is substantially reduced. The results for UGRAY show that, as block size is
increased, a reduction in update traffic reverses the increase in traffic observed for UPDATE.

Miss Ratio
>0
10-01 |- //0 -
o _ / -
VERF .\/
tid -
10-02 - UGRAY -
e ® ¢
o, o ‘ %
A Y | | -
'."L [} . ‘.\
Y * e e
kY [) \ % .‘
‘s \Y W A
x‘t. Q Y “
2 \ N e Y ‘. -
_— N,
wcus * .

Block Size: 4B 16B 64B 4B 16B 64B 4B 16D 64B 4B 15B 64B
Cache Sizo: 16kB 32k 64xB Infinie

Figure 3.18: Miss Ratios for Competitive Protocol

61

Bytesinstruction
:[: / —
1.6 =
10400 VERF -
b -
65— -
’ UGRAY
3 —
o,
R A Q. —
e “o_» .. .o o‘\‘
. | 4 e I “4.,‘ .. .\‘{ h
Locus
Block Size: 4B 168 64B 4B 168 64B 4B 16B 648 4B 168 648
Cache Size: 16kB 32kB 64kB Infinite

Figure 3.19: Traffic for Competitive Protocol

Comparison

Figures 3.20 and 3.21 show the relative the performance of the schemes assuming a 64kB
cache. In almost all cases UPDATE provides a reduction in miss ratio at the expense of an increase
in traffic. COMPk results are roughly the average of those for UPDATE and INVAL, although in
a couple of examples (VERF, 64B block and UGRAY, 64B block) COMPk has the least amount
of traffic. UPDATE and COMPk improve miss ratios the most for large block sizes, which is
expected since false sharing increases with block size and causes an increase in invalidation misses
for INVAL.

With a 64B block size, which is desirable to minimize directory overhead, the increases in
traffic for using UPDATE over INVAL are 31% for VERF, 0% for UGRAY and 282% for LOCUS.
The corresponding increases for using COMPk are -5% for VERF, 18% for UGRAY and 56%
for LOCUS. By using UPDATE/COMPk in place of INVAL, miss ratios improve by 19%/15%,
74%/57% and 66%/17% for VERF, UGRAY and LOCUS, respectively.

Since all of the miss ratios for UGRAY and LOCUS are less than 1%, reducing them
should have little impact on the average number of cycles per instruction. VERF exhibits much
higher miss ratios, and the update schemes provide significant reductions for cache sizes larger than

62

64KB. The benefit of UPDATE and COMPk may therefore be substantial. Absolute multiprocessor

performance is considered in detail in Section 4.5, which considers the impact of network delay on
processor utilization.

Miss Ratio
u—o:,: —
.\._._. VERF
10-02}- . -
... o
) ¢ o VoRAY
.| . “, [—
(S .. -..\ .
e
L}
2l]
——— b o
» .
L Locus e
10-03 kY -
s
S
(NVAL UPDATE [NVAL UPDATE INVAL UPOATE
COMPS couMPs conPs
48 Blook 160 Blook 648 Block

Figure 3.20: Comparison of Miss Ratios for All Protocols

3.6.2 Performance of the Competitive Protocol

Figures 3.22 to 3.27 show miss ratios and traffic for the three benchmarks with infinite
caches and three block sizes: 16B, 32B and 64B. Point results for INVAL, COMPS and UPDATE are
shown for reference. As k — oo, miss ratios and traffic converge to those measured for UPDATE.
As k — 1, the miss ratios converge to those measured for INVAL. The miss ratios converge be-
cause a COMP1 scheme invalidates blocks on the first update. Traffic does not converge, however,
because the INVAL protocol sometimes requires blocks to be retrieved from caches with modified
copies. The INVAL protocol is also write-back, while COMP1 is write-through.

The figures show that most of the reduction in miss ratio is achieved by k & 10, at which
point traffic has increased to about the average of that for UPDATE and INVAL.

Sysamsyucton

- S -

[_
R . GERY p
v L) 'Y)
z"’ . '!‘ '..:‘. ~.’./ =
i ‘g 7
v o Vd
P ir 4
=011 Locus ¢ -

INVAL UPDATE INVAL UPDATE INVAL UPDATE
COMPS COMPY COMPS

48 Block 168 Blook 64B Block

Figure 3.21: Comparison of Traffic (Volume) for All Protocols

Miss Ratios for SELFINVAL Scheme--VERF Benchmark

Miss Ratio x 10°

70.00[! ' ! '
65.00
60.00
55.00
50.00
45.00
40.00
35.00
30.00

25.00

20.00 ST -

15.00|_ UPDATE ® —

10.00 l | i 7
0.00 10.00 20.00 30.00 40.00

Figure 3.22: Miss Ratios Versus Self-Invalidation Threshold (VERF)

Tratfic for SELFINVAL Scheme—VERF Benchmark

Tratfic (Bytes/instruction)

T T I [&
8.00| -
7.00| -

UPDATE
6.00

Figure 3.23: Traffic Versus Self-Invalidation Threshold (VERF)

Miss Ratios for SELFINVAL Scheme—LOCUS Benchmark

Miss Ratlo x 10~°
5.00(J

4.50
4.00
3.50
3.00
2.50
2.00
1.80

1.00,

0.50h

0.00 10.00 20.00 30.00 40.00

Figure 3.24: Miss Ratios Versus Self-Invalidation Threshold (LOCUS)

65

Traffic for SELFINVAL Scheme--LOCUS Benchmark

Trafflc (Bytes/instruction)

T T T T T
°
0.40 | 4
UPDATE ¢
035 | ° —
030 | -
025 | _
020 | _
015 |]
°
INVAL
8
| | ! L |
0.00 10.00 20,00 30.00 %0.00

Figure 3.25: Traffic Versus Self-Invalidation Threshold (LOCUS)

Miss Ratios for SELFINVAL Scheme—UGRAY Benchmark

Miss Ratio x 10~

Nk

l p
! iNvaL
sno__ﬂ N
|
asol % i
.00 i
3.so_ i
3.00_ i
UPDATE
2'50_ __________________ -
®
2,00 4
1800 00 N\ Tl o |
1.00 64B []
| l | 1
0.00 10.00 20.00 30.00 20.00
K

Figure 3.26: Miss Ratios Versus Self-Invalidation Threshold (UGRAY)

67

Trafflc for SELFINVAL Scheme—UGRAY Benchmark
Traffic (Bytes/instruction)

T T T T T
024
022

uPDATE ®
0.20 i

0.18

0.16

014

012 ©

Figure 3.27: Traffic Versus Self-Invalidation Threshold (UGRAY)

68

69

3.6.3 Coherence Traffic Versus Multiprocessor Size

If the size of a multiprocessor is increased, the average number of cached copies should
also increase if an application has enough parallelism to exploit the processors. This results in
an increase in coherence traffic. If the increase is large, the scalability of a directory protocol
can be severely limited. Figures 3.28 to 3.30 show the average number of cached copies versus
multiprocessor size for the three protocols. The number of copies is the average observed for an
invalidation or update request from a cache. The plots show that, to first order, the number of
copies grows linearly with the number of processors. As expected, the average number of copies
for UPDATE and COMPk are much higher than for INVAL. They are sufficiently high that both
UPDATE and COMPk are only appropriate for multiprocessors with 100 or fewer processors. These
results were limited to 128 processors, so it is possible that quite different behavior could occur for
larger machines.

3.6.4 Synchronization Behavior

The cache simulator was instrumented to collect congestion information for lock and bar-
rier operations. In the simulations no serialization delay was incurred for access to synchronization
variables; only serialization due to mutual exclusion was modeled.

Alock was considered to exhibit high contention if the average length of its waiting queue
(as observed by an arriving process) exceeded one. The simulations showed that only a few locks
experienced heavy congestion, and those that did were readily identifiable because they guarded a
frequently used shared data structure. Only 1 of 85 locks in VERF and 2 of 82 locks in LOCUS
exhibited mean queue lengths in excess of one (UGRAY did not use locks). In both programs the
mutually exclusive operation built with these locks could be more efficiently implemented using a
fetch&op operation with combining.

No benchmark made frequent use of barriers, so any barrier congestion was of little con-
sequence.

Since the number of simulated processors was relatively small, and the computation gran-
ularity was large, hardware implementations of locks and barriers are not justified for the bench-
marks considered here. The congestion observed for a few locks could be avoided by fetch&op with
combining, but the improvement in overall performance would probably be minimal. These obser-
vations are not surprising because VERF, UGRAY and LOCUS were written to perform efficiently
with weak synchronization support.

COPIES PER
INVALIDATION

220

0.80

0.40

0.20

COPIES PER INVALIDATION
vs
NUMBER OF PROCESSORS

—

........

verf 32B block

.- locus 32B block

16

32 64 128 236

NUMBER OF PROCESSORS

Figure 3.28: Copies Per Inval Versus Multiprocessor Size

70

COPIES PER UPDATE (COMPETITIVE)

COPIES PER v
UPDATE NUMBER OF PROCESSORS
7001 ! ! ! ' 7
6.00 7
verf 32B block

/ ugray 328 block
locus 32B block =
] | |]]]
4 16 32 64 128 258
NUMBER OF PROCESSORS

Figure 3.29: Copies Per Update Versus Multiprocessor Size

71

COPIES PER UPDATE (FULL UPDATE)
Vs

COPIES PER NUMBER OF PROCESSORS

UPDATE

16.00 —

14.00

12.00

10.00

4.00

1 1 I | | |

verf 32B block L0 =

Figure 3.30: Copies Per Update Versus Multiprocessor Size

NUMBER OF PROCESSORS

72

73

3.7 Conclusions

In this chapter it has been shown how an efficient stack simulation algorithm for shared-
bus coherence protocols can be extended to simulate directory-based coherence schemes. The al-
gorithm substantially reduces the cost of multiprocessor simulation by permitting multiple cache
sizes to be analyzed in a single run,

The stack algorithm was applied to update, invalidate and competitive directory protocols
for three benchmark programs. The competitive scheme, denoted COMPX, is a simple one in which
cache blocks that draw in excess of k updates between references are invalidated. COMPk with k =
8 was simulated, and results for other values of k was found from data obtained from simulations
of the update protocol. COMPk performance was determined using a count of update-runs: the
number of external updates to a cached block between local references. This metric extends the
notions of ping/cling and write-run introduced in other locality models.

The simulations show that the update and competitive protocols can reduce overall miss
ratios by up to a factor of 3. The reduction in misses comes at the expense of a comparable increase
in network traffic. Two of the benchmarks, LOCUS and UGRAY, exhibited overall miss ratios of
1% or less for 64kB or greater cache sizes. Consequently, the improvement in cycles per instruction
due to a reduced miss ratio would probably be small. The other benchmark, VERF, had much
poorer locality of reference and showed miss ratios between 5 and 10% for 64kB or greater cache
sizes. The improvement in cycles per instruction attainable by an update scheme would probably
be appreciable only for cache sizes of 128kB or greater.

Estimates of COMPk performance for values of & from 1 to 40 indicate that a broad range
of miss ratio/traffic tradeoffs are possible by varying k from 1, in which COMPX is similar to an
invalidation protocol, to 10, at which most of the attainable miss ratio reduction is achieved but
traffic is still less than that of a full update scheme. This suggests that a good choice for k lies
between 4 and 10.

74

Chapter 4

Network Performance Analysis

4.1 Overview

The stack simulation techniques of Chapter 3 require the assumption that the cache miss
penalty (network latency) is zero. This was adequate for estimating miss ratios and traffic, but
not for determining average memory access time or, equivalently, processor utilization. In this
chapter an analytic modelling technique is presented that permits rapid estimation of the latency
and throughput of a broad class of multiprocessor interconnection networks, including k-ary n-
cubes, Delta networks, and multidimensional meshes. The relative performance of these networks
and the accuracy of the technique are shown via extensive numerical results that are compared to
simulation data. In Section 4.5 these results are combined with the cache performance data of
Chapter 3 to estimate processor utilization for several protocols on several networks.

In this chapter it is shown that relatively simple interconnection networks can provide
good performance for the workloads of interest. The contributions are a powerful analytic mod-
elling technique for multiprocessor networks, and a quantitative comparison of a broad number of
altematives.

4.2 Previous Work

There is a huge literature on the subject of multiprocessor network design and perfor-
mance analysis, with recent surveys in [RF87, Sie85, DJ81a, Fen81]. This work can be roughly
classified into three categories:

1. network design

75

2. performance analysis via stochastic models and simulation

3. performance analysis via formal properties of specific designs

This section summarizes previous work according to these categories. It concludes with
a discussion of the networks considered in this research, and the rationale for their selection.

4.2.1 Network Design

Multiprocessor interconnection networks can be classified according to topology, switch-
ing technique, flow control scheme and routing algorithm. Virtually all networks of interest are
constructed of jxk cross-bar switches, possibly augmented with buffer queues at the inputs and/or
outputs (Figure 4.1). A network topology is defined by the size of the basic switching elements and

1
— 1Tk O—-

input Buffers (C)llg%t:ttels
— 2
——i 2

Crossbar Switch

Figure 4.1: Structure of a Network Switch

the way in which they are connected. Much of the literature on interconnection networks concerns
different topologies and their properties; surveys are in [Fen81, Sie85, RF87). Three of the most
common topologies are k-ary n-cubes, k-ary n-dimensional meshes, and Delta networks. These
topologies are the focus of the numerical results in Section 4.4.

k-ary n-cubes (Figure 4.2) are n-dimensional toroidal meshes with k processors per di-
mension. Processor locations are denoted by n digit radix » numbers. The neighbors of a processor
(the other processors to which it is connected) are those with locations in which one of the » digits
differs by one. This class of network includes rings (k-ary 1-cubes) and hypercubes (2-ary n-cubes).
k-ary n-cubes for which k > 2 can be further distinguished by whether or not two links in opposite

76

directions are provided at each connection (Figure 4.3). Providing two links reduces the minimum
latency by about a factor of 2, increases the maximum bandwidth, and supports the combining of
synchronization references, as described in Chapter 5.

Jofo-
lenles
o

k=3, n=2

a

©

Figure 4.2: Unidirectional k-ary n-cube Network

k-ary n-dimensional meshes (Figure 4.4) are k-ary n-cubes with the “end-around” con-
nections removed. End-around connections are those between processors whose dissimilar location
digits are 0 and & — 1. With end-around connections removed, two links must be provided for each
connection. '

Delta networks [Pat81] are a class of multistage network that includes many common
subclasses, including Omega networks and indirect binary cubes [Law75, Pea77]; they are also
closely related to the more general class of Banyan networks [GL73]. Delta networks are con-
structed of n stages of axb crossbar switches, connected in a recursive manner illustrated in Figure
4.5 (taken from [TRH89]). A one stage Delta network is simply a single axb switch. An L-stage
Delta network is constructed from a L — 1 stage Delta networks connected to a new column of 5--!
switches. The interconnections are subject to the restriction that all inputs to a particular switch at
stage L must come from the same crossbar output at stage L — 1. An n stage network therefore
has a™ inputs and b" outputs, which are designated by n-digit radix-a and n-digit radix-b numbers,
respectively. By construction, Delta networks provide a unique path between each of the inputs and

/
=N
e
WAV

CL N\ -
U

k=3, n=2

Figure 4.3: Bidirectional k-ary n-cube Network

k=3, n=2

Figure 4.4: k-ary n-dimensional Mesh

77

78

outputs, facilitating digit-controlled routing. In digit-controlled routing, a packet at stage ¢ of the
network is sent out the switch output corresponding to the ith digit of the destination address. This
simple, decentralized routing strategy is an attractive feature of Delta networks.

1 ! ! iLever '
1 (L=1)Level Del:av‘Netwovk
‘30"& Network (a x b Groasbar)
1 1
b
a’L-1)

2 2
. : . bA(L-1)

LEVEL L-1 LEVEL L

Figure 4.5: Recursive Structure of Delta Networks

Interconnection schemes are further classified as single stage or multi-stage. A network
topology is single stage if each cross-bar switch is directly connected to at least one processing
element. A network topology is multi-stage if it is not single stage. k-ary n-cubes and k-ary n-
dimensional meshes are therefore single stage, and Delta networks are multistage.

There are two common network switching techniques: circuit-switching and packet-switching.
In a circuit-switched network, a complete path from source to destination is established and held
for the entire time during which a packet is transferred. Messages in a packet-switched network are
buffered at the switches, so only partial paths are established and held. Circuit-switched networks
are attractive where low latency is desired and the required bandwidth is low. Packet-switched
networks are desirable when high bandwidth is required, because the buffering at switches per-

79

mits the network to be pipelined. Packet-switched networks are also desirable when the combining
synchronization technique (described in Section 1.2.2) must be supported.

With a packet-switching scheme, there are three common ways in which packets can
be buffered: store-and-forward, virtual cut-through and wormhole. Figure 4.6 introduces some
terminology (due to [DS87]) used to describe the buffering strategies. Messages are broken up into
packets, which are the smallest blocks of data for which routing information is maintained. packets
are composed of flits, which are the smallest blocks of data for which flow control is maintained.
flits are composed of phits, which are the size of the physical channels connecting the switches.

packet
flit
phit_| phit | phit
= = =
L = L
Q Q. Q
o |E(E | E|E —_—
Physical Channel
Buffers
Switch

Figure 4.6: Packet-switching Terminology

In a store-and-forward packet-switching scheme, complete packets are buffered at switches
such that transmission to the next switch cannot begin until the complete packet has been received
and stored. In a virtual cut-through packet-switching scheme, the latency seen by a packet at a
switch is reduced by permitting the packet to be transmitted to the next switch after the first flit is
received. In both schemes, a packet can be forwarded only if the destination switch has enough
buffers for an entire packet. wormhole packet-switching is similar to cut-through, but only requires
the allocation of enough buffer space for a single flit before forwarding a packet.

Regardless of the buffer management (flow control) scheme that is used, network perfor-
mance can be substantially improv;d by breaking buffer queues into multiple virtual channels at
each physical input or output port in a switch [Dal90c]. This technique is effective at reducing a
component of blocking delay illustrated in Figure 4.1. Figure 4.1 shows a typical switch imple-

80

mentation with one buffer per input. If a first-in first-out (FIFO) queueing discipline is used at the
input queues, a customer at the head of the queue can block other customers that, if they were at
the head, would not be blocked. Figure 4.1 shows an example of such a situation. Here customer
1 (destined for output 1) is blocked because customer 2 at the other queue has been granted access
to output 1. Customer 3, however, is destined for output 2, and could be sent to output 2 during
this switch cycle if it could bypass customer 1. Simulation studies have shown that this phenomena
can significantly reduce the maximum throughput of the switch [Dal90c, TF88). Figure 4.7 shows
how congestion of this nature can be avoided by adding passing lanes [Dal90c] at the outputs or
inputs. These extra lanes are denoted virtual channels. Adding extra lanes reduces the frequency
with which the contention illustrated in Figure 4.1 occurs. The cost of extra lanes is extra intercon-
nect within the switch; the size of the cross-bar switch can remain the same, with each input port
multiplexed among its virtual channel queues [Dal90c].

Buffer Queues Channel Queues

Virtual Channels

O+

Crossbar Switch

Figure 4.7: A Network Switch with Virtual Channels

A third characteristic of a network is routing algorithm, for which there are two classes:
oblivious and adaptive. An oblivious routing scheme is one in which the route taken by a packet
is determined solely by the packet’s source and destination. An adaptive routing scheme uses the
source and destination plus knowledge about the state of the network, such as the number of packets

81

in buffers. oblivious routing schemes are simpler than adaptive schemes and ensure in-order trans-
mission of packets between two processing elements. By exploiting extra knowledge about the
network, however, adaptive schemes offer potentially better performance. The extra performance
has a cost: stable, deadlock-free adaptive routing schemes are generally more difficult to design
and analyze. It is also more difficult to design combining schemes that work with adaptive routing
algorithms.

The network models in this chapter are restricted to oblivious routing. Examples of obliv-
ious routing algorithms include:

1. digit routing in Delta networks, as described above.

2. e-cube routing ([SB77]): The e-cube routing algorithm is an oblivious routing algorithm for
binary hypercubes. Let N be the number of processing elements in the system. Each of
the NV switches in a hypercube has 1 + log N output links, where links 0 to log N — 1 go
to other switches and link log N goes to the processing element at that switch. In e-cube
routing, a packet with destination d at switch ¢ is sent to the output link corresponding to the
most significant bit that differs between ¢ and d; if no bits differ, the packet has reached its
destination. Since the algorithm does not depend on the state of the network, it is oblivious.

3. Routing in k-ary n-cubes ([DS87]): Routing in k-ary n-cubes is a generalization of e-cube
routing. Here routing is performed in order of decreasing dimension (k — 1,k - 2,...1,0) by
comparing the k digits of the radix-k addresses of the packet destination and switch. A packet
with destination d at switch ¢ is sent along the highest dimension at which d and i differ; when
d = i, the packet has arrived at its destination. To prevent deadlock, the buffers for each input
at a switch must be divided into two virtual channels to prevent cyclic dependencies among
buffers at different switches. Virtual channel 0 is taken when d < i, and channel 1 otherwise.

k-ary n-cubes require virtual channels for both deadlock avoidance and congestion re-
duction. For clarity, channels used to prevent deadlock will be referred to as virtual channels, and
channels used to reduce congestion will be referred to as sub-channels (Figure 4.8). As Figure 4.8
shows, a virtual channel may be made up of several sub-channels.

4.2.2 Performance Analysis Via Simulation and Stochastic Modelling

Until recently, few examples of large scale multiprocessors or programs existed, so per-
formance analysis of multiprocessor networks was typically done using synthetic workloads. With

Buffer Queues . Channel Queues

Virtual Channels

il Pap——

| VU,

Ul P |

~J Crossbar Switch
<> Sub-channels

Figure 4.8: Virtual Channels and Sub-channels

82

Table 4.1: Published Network Performance Studies

Study Network Technique Features

Kruskal/Snir | Delta Probabilistic Infinite buffers,

[KS83] Analysis Optimistic Switch Model,
Store-and-forward

Dias/Jump Delta Probabilistic Single buffers,

[DJ81b] Analysis Various Switch Models,
Store-and-forward

Jenq Delta Probabilistic Single buffers,

[Jen83] Analysis FIFO Buffering
Store-and-forward

Yoonet. al. Delta Probabilistic Multiple buffers,

[YLLS0] Analysis FIFO Buffering,
Store-and-forward

Kruskal et. al. | Delta Probabilistic Waiting Time Distribution,

(KSW88] Analysis Optimistic Switch Model,
Infinite Buffers,
Store-and-forward

Labanta et. al. | Delta Open Queueing | Multiple buffers,

[LDC89] Network FIFO Buffering,

: Store-and-forward

83

a sufficiently simple workload, exact or approximate analysis using stochastic models is possible.

Tables 4.1 and 4.2 summarize some commonly referenced network performance studies, indicating

analysis technique and special features. Typical workload assumptions are:

1.

uniform traffic
. one flit per packet

infinite buffers

. geometric arrivals

synchronous switching

The most common analysis technique is to assume an arrival process independent of network state
and use an approximate discrete time Markov model.

Some studies have considered extensions of the basic assumptions. Models of Delta net-
works, k-ary n-cubes, and hypercubes with finite buffers have been studied in (DJ81b, ABC*+89,

Table 4.2: Published Network Performance Studies (continued)

Study Network Technique Features
Marsanet. al. | Delta Generalized Multiple buffers,
[ABC*89] Stochastic FIFO Buffering,

Petri nets Virtual Cut-through
Theimeret. al. | Delta Probabilistic Single buffers,
[TRH89] Analysis FIFO Buffering,
Store-and-forward
Patel/Harrison | Delta Probabilistic Hot-spot Traffic,
[PH88] Analysis Infinite Buffers,
FIFO Queueing,
Store-and-forward
Reed et. al. Single Stage | Closed Queueing | Infinite buffers,
[RF87] Networks FIFO Buffering,
Store-and-forward
Bomet. al. Single Stage | Probabilistic Zero delay channels,
[BK88] Analysis Infinite Buffers,
Store-and-forward
Abraham et. al. | Hypercube Probabilistic FIFO Queueing,
[AP89) Analysis Finite Buffers,
Store-and-forward
Dally k-ary n-cubes | Probabilistic FIFO Queueing,
[Dal90b] Analysis Wormhole Routing

84

85

LDC89, YLLS0, Dal90b, AP89). Hot-spot traffic is considered in [PH88) for cross-bar, multiple-
bus, and Delta networks. Multi-flit packets with virtual cut-through are considered in [ABC+89]
for Delta networks with finite buffers. As Tables 4.1 and 4.2 show, few results have been published
for models considering the simultaneous impact of finite buffers, and multi-flit packets. Another
problem with existing work is the use of different timing models for switches. Results in [DJ81b]
illustrate the significant variations in network performance that can result from different switch
models.

4.2.3 Performance Analysis Via Formal Properties

The stochastic models of the previous section make extremely simplistic assumptions
about the temporal and spacial characteristics of packet transmission. With more knowledge about
the communication pattems of an intended workload, stronger statements can sometimes be made
about network performance. Such results have been published for specific problems in linear al-
gebra, graph theory, sorting and other areas [QD84, B*84, Joh90]. Unfortunately, the engineering
applications for which this research is addressed do not typically permit exploitation of these results.

Other formal results have been published concerning efficient emulation of an ideal shared
memory on realizable networks. A recent result by Ranade [RBJ88) shows how to efficiently em-
ulate a concurrent read, concurrent write shared memory in time logarithmic in the number of pro-
cessors. Unfortunately, the emulation algorithm has several implementation problems if coherent
caches are provided:

1. Itis unclear how combining can be performed on cacheable data. One straightforward solu-
tion is to only perform combining for fetch&op accesses, and mark fetch&op variables un-
cacheable; unfortunately, the formal properties of the algorithm would not necessarily hold.
Actual performance of such an scheme could still be good if most contention occurred on
fetch&op variables (intuitively, this would be expected).

2. Itisassumed that shared memory accesses are issued synchronously. With modem processing
elements, however, the time to access local cache memory is one or two orders of magnitude
less than the time to access memory across a network; thus the synchronous network “cy-
cle time” is considerably greater than the processor cycle time. Ranade describes a way to
emulate asynchronous references on a synchronous network by issuing “dummy" packets at
regular intervals, but this consumes extra network bandwidth.

86

3. Block fetches are generally more time consuming than reads, writes or fetch&op’s. This
could adversely affect the network “cycle time”.

Furthermore, it is theoretically unclear whether ad hoc combining schemes in multiprocessors with
asynchronous references is less effective [G*83c). These schemes are described in Section 5.2.6.

4.2.4 Focus of this Research

Despite many known network designs and performance studies, it is still difficult to select
the “best” network for a cache coherent shared memory multiprocessor. This is because existing
results do not adequately deal with the combined effects of multiple flit packets, finite buffers, and
sophisticated buffering schemes, or do so only for a very narrow class of network. The rest of
this chapter presents a modelling technique that overcomes these problems, permitting a relatively
broad class of networks to be studied analytically. The most promising networks can be selected
using these efficient analytic methods and subjected to detailed simulation.

As mentioned previously, the networks considered are:

1. k-ary n-cubes
2. k-ary n-dimensional meshes

3. Delta networks

These were chosen because they represent the most common networks addressed in the literature
and examples of each class have been implemented in real machines. We further assume packet-
switching, oblivious routing and virtual cut-through flow control. Packet-switching is assumed
because it increases bandwidth and permits combining. Oblivious routing is assumed because it is
easier to analyze and ensures in-order packet transmission between two points. Virtual cut-through
flow control is assumed because it is easier to model than wormholing, and requires only a moderate
increase in the number of buffers. Despite the focus on these classes of networks, the analysis
techniques should be applicable to others.

4.3 An Analytic Modelling Technique

4.3.1 Overview

This section describes a modelling technique that permits any network that can be de-
scribed as an interconnected set of jxk switches to be analyzed in a uniform way. The technique

87

is based on a combination of algorithms used in the Bell Laboratories Queueing Network Analyzer
[Whi83, SW89] and in the finite buffer approximation technique of Altiok and Perros [AP87). These
algorithms are combined and augmented with techniques to model synchronous timing, virtual cut-
through flow control, and virtual channels.

The use of queueing models as a basis for network analyis is attractive because there are
many published techniques for modelling a wide variety of features. In particular, open networks of
GI/G/1/n! queues possess many of the modelling features required in the analysis of interconnection
networks. Figure 4.9 shows how a Delta network can be modelled as an open network of finite
queues. In this model, a customer completing service is held at the server until its destination
queue has a free buffer. The queues corresponding to physical channels have queue limit 1 and are
necessary to model the timing restriction that only one flit can cross a physical channel per network
cycle; they are included in the network only to impose a blocking delay on the buffer queues at
the switch inputs. The service delay encountered at the channel queues must be deducted from the
final overall latency calculation. This basic queueing model can be extended to model virtual-cut
through of multi-flit packets, and the effect of having multiple virtual channels at a switch input
(see Section 4.3.4).

4.3.2 The Queueing Network Analyzer

The Bell Laboratories Queueing Network Analyzer (QNA) [Whi83] is a program for
analyzing open networks of GI/G/m queues with the following restrictions:

1. first-come, first-served (FCFS) queueing discipline

2. renewal external arrivals

3. no limits on the number of customers in the network or at individual queues
4. continuous time service and interarrival distributions

The following discussion is restricted to single server queues, which are sufficient for the network
models of interest.

!GI/G/1/n is an example of a commonly used notation for classifying queues. The general form of the notation is
“A/S/mfn”, where:"A” denotes the interarrival distribution, “S” denotes the service distribution, “m" denotes the number
of servers, and “n"” denotes the maximum number of customers allowed in the queue. GI denotes renewal arrivals and
G denotes a general service distribution. Other common distributions are M and C, denoting exponential and Coxian
distributions, respectively.

88

Buffer Channel
Quo_uos Crossbar Ou‘ouos

10010 O~

—LL1] O~ 111 O

Switch

—-DIIEEO/ NTT]
—{111 O {111 O

Figure 4.9: Queueing Model of a Delta Network

O

QNA supports two different routing models: Markovian and deterministic. With Marko-
vian routing, all customers belong to a single class. After completing service at queue ¢, a customer
proceeds to queue j with fixed probability ¢;;, independent of its previous history. With deter-
ministic routing, each customer belongs to a class with a deterministic route through the network.
Customers are not permitted to change class.

Since efficient techniques do not exist for analyzing this class of network, QNA uses ap-
proximation techniques. QNA uses a parametric decomposition algorithm, in which the arrival pro-
cesses at each queue are determined globally, and congestion measures determined locally, queue-
by-queue. There are three approximations that form the basis of the QNA algorithm. The first is
the representation of service and interarrival distributions using only two parameters: the mean and
squared coefficient of variation. The second is the approximation of general point arrival and depar-
ture processes as renewal processes; in a general point process, the random variables representing
interarrivals are not necessarily independent, as they are in a renewal process. The third approx-
imation is a set of linear expressions that determine the two moment representations of the point

processes resulting from the superposition and splitting of general point processes, and departures
from a queue (Figure 4.10).

Many other approximation techniques have been proposed to analyze open networks of
queues with similar features [CS78, Dal90a, Per89, GM88, Per90, KX89, Kue79, Bel82, TMHS0,

89

External Amivals

[T O

Queue i

LT O

Superposition Departures Splitting
Figure 4.10: Superposition, Departures and Splitting of Point Processes

Aky88, Tak89). The QNA approach is attractive because it provides a general framework that is
easily extended to handle new features and approximations. Since it uses linear equations for its
global analysis, it is very efficient and convergence to a single solution is guaranteed.

There are four steps to the QNA algorithm:

1. For deterministic routing, the multiple customer classes are coalesced into a single aggregate
customer class with Markovian routing.

2. Two-moment interarrival distributions for each queue in the network are determined using a
global analysis.

3. Congestion at each queue is estimated using GI/G/m approximation formulae.
4. Individual congestion measures are combined to estimate overall network performance.
The following terminology is used to describe the algorithm. Let:
¢ 7 denote the number of queues in the network.
e); denote the mean arrival rate at queue .
o c2; denote the squared coefficient of variation of the interarrival distribution at queue i.

e Ao, denote the mean rate of external arrivals at queue <.

® gi; denote the probability that a customer leaving queue i proceeds to queue j.

o 4, denote the mean service rate at queue i. 7; = ul is the mean service time at queue i.
* p; = 3i denote the utilization at queue .

¢ c2; denote the squared coefficient of variation of the service distribution at queue 7.

e c%; denote the squared coefficient of variation of the interdeparture distribution at queue i.

Aggregation of Multiple Customer Classes

Multiple customer classes are treated approximately by transforming the multiple classes
and routes into an equivalent single class with Markovian routing; this simplifies steps 2 and 3 of
the algorithm. Assume that there are r customer classes with the following parameters for each
route k:

¢ the number of nodes on the route, n;

the external arrival rate of the class, A

the squared coefficient of variation of the external arrival process, ¢

the list of n) nodes visited on the route, denoted ny;

the list of =) service times for each step of the route, denoted 7

the list of n; service variability parameters for each step of the route, denoted &, j

A single aggregate customer class is determined by finding, for each queue j, values of
Aojo cg,., T; and c§j that account for all routes that pass through the queue. Ag;, the aggregate rate
of external arrivals, is the sum of arrival rates of all classes whose routes start at queue j:

’\Oj = 2 Xk (4.1)
{kinp =3}

The aggregate variability of external arrivals, %j, is determined using a superposition approxima-
tion that is described in the discussion of Equations (4.10) to (4.14) below:

Suck
G=(-w)+a; ¥ S (42)
(ki =4} "0

91

where w; is determined using Equation (4.13).

The mean, aggregate service time for queue j, 7;, is a weighted average of the service
times for all customer classes that pass through queue j:

_ Lh=1 L{tng=i} AeTht
TJ = AJ

(4.3)

The weights are the fraction of customers corresponding to each route. J; is the sum of the flow
rates of all routes passing through the queue:

Ai= o+) i (44)
k=1
A;j is the flow rate from queue 7 to queue j:
Aij = Y M (4.5)
{kdinpy=i,Nr41=7}
and Ao is the rate at which customers leave queue :.

o= Y. A (4.6)

{kinkn, =i}

Aggregate service variability, cgj, is found using a weighted average of the second mo-
ments of the service distributions for each class passing through queue j:

Cz‘ _ Zi:l E{l:n,,,:j} Xk‘r,?‘(cik’ + 1) _ T_z
2 2); i
TJ 5

(4.7)

This corresponds to a mixture of the service distributions for each route passing through the queue.
Here 73(c%, + 1) is the second moment corresponding to the squared coefficient of variability c2,,.
The terms T}Aand Tj-z convert the weighted average of second moments, which is itself a second
moment, to a squared coefficient of variability.

Markovian routing parameters g;; for the aggregate class are determined by considering
the flow of all customers through each queue i (denoted);), and the flow of customers from queue
¢ to all other queues (denoted A;;):

@i = 32 (438)

1
Determination of Interarrival Distributions

As mentioned, an interarrival distribution is represented using only a mean and squared
coefficient of variation. The mean arrival rates at all queues are related by the rate balance equations:

92

Aj = Aoj+ D Nidij (4.9)

=1
The relationship among arrival variabilities are related by linear equations for superpo-
sition, departures and splitting (Figure 4.10). The superposition formula is derived as the convex
combination of two different superposition approximations:

Z; = wick; + (1 - wj)ch; (4.10)

where ¢ ; is an asymptotic renewal approximation [Whi82] and c}; is a Poisson approximation.

;= z":cz),‘\—’ (4.11)
=0 2
k=1 (4.12)
wj = [144(1 - p;)%(y; - 1)) (4.13)
i = (LR (4.14)
i=0 Y

¢; in Equation (4.11) is the variability of the fanin stream from queue i. ¢ ; isa weighted sum of the
variabilities of the fanin customer streams. c3 ; is the variability of a superposition of Poisson fanin
streams, which is itself Poisson. The origin of the weighting factor w; is described in [Whi83).

The departure approximation is based on Marshall’s formula for interdeparture variability
[Mar68] combined with an estimate of waiting time at the queue:

ki =1+ (1= p})(c% - 1) + pH(maz{c?,02} - 1) (4.15)

The splitting approximation is the exact formula obtained for random splitting of a re-
newal process [Whi83]:
d=pt+1-p (4.16)
where ¢? is the variability of ith stream after splitting, p; is the probability that an arrival goes to
stream ¢, and ¢? is the variability of the arrival process before splitting.

Since all of the variability approximations are linear with known coefficients, the resulting
system of equations is:

n
czj =aj+ ZC%,‘b.’j (4.17)
i=1

93

where: n
aj = 1+ wi{(pojed; - 1)+ > pijl(1 ~ @) + gijp?zil} (4.18)

1=1

z; = 1+ (max{cZ,0.2} - 1) (4.19)

w; is determined using Eqn. (4.13), and
bij = w;pijtii(1 - £}) (4.20)
Congestion Approximations

Once the arrival rates and variabilities are known for each queue in the network, the delay
at queue ¢ is found using a variation of the Kraemer and Langenbach-Belz approximation [KLB76]:
_ mipi(cd + &)

EW, = 2o (4.21)

where:

_21-pi) (1-¢2,)2 '
_ { exp[- A2l el o, “22)
1

<
21
EW, here does not include service time. The average number in queue is found using
Lirtle’s law. Estimates of other congestion measures, such as the variance of the waiting time and

number in queue, can be found using formulae in [Whi83].

Total Network Performance Estimation

Total network performance is computed by combining the congestion measures calculated
for each queue. The average number of customers in system is the sum of the average number of
customers at each queue:

EN = zn:EN,- (4.23)
i=1
The average latency for an aggregate customer is the sum of the average latency at each queue,
weighted by the probability that an aggregate customer passes through the queue:

ET =) ET; (4.24)

i=]
where
ET; = (Xi/ Xo)(ri + EW)) (4.25)

94

Y= S (4.26)
k=1

Expected latency for customers of a particular class k is determined by:

Nk
ETi =) (EWp, +n,,) (4.27)
i=1
Overall variabilities and other metrics can estimated as described in [Whi83).
Figure 4.11 summarizes the QNA algorithm. '

if (multiple customer classes) {
/* approximate with a single class (Equations (4.1) to (4.8)) */

}

I* find arrival rates (Eqn. (4.9)) */
solve the set of equations:
Aj=doj+ X Midij, i=1,...,n

I* find arrival variability (Eqns. (4.10) to (4.16)) */
solve the set of equations:
C%J =a; + 2?:1 CE“bij, j =1,...,n

/* find local congestion measures (Eqn. (4.21)) */
forG=1,...,n){

E‘VJ = rjpj(cazzi':jc%i)g
EN; = Mj(EW; 4+ 1)

}

/* find overall network performance */
EN =Y, EN;

ET = Z?:l ET;

Figure 4.11: Summary of QNA Algorithm

4.3.3 Altiok and Perros’ Finite Buffer Approximation

The QNA algorithm does not model the effect of finite buffers at queues. Finite buffer
effects, however, are important in interconnection networks because they determine congestion at

95

physical channels and affect the bandwidth saturation point. This section describes a technique for
modelling finite buffer effects due to Altiok and Perros [AP87); Section 4.3.4 describes how the
technique is incorporated into the QNA framework.

The Altiok and Perros algorithm applies to networks of finite queues with these restric-
tions:

1. A single customer class with Markovian routing.
2. One server per queue.

3. Anopen queueing network.

4. Exponential, first-come first-served service.

5. The queueing network is acyclic to prevent deadlock. If cycles were permitted, cyclic depen-
dencies would exist on buffers.

6. Poisson external arrivals.

7. transfer blocking: in a transfer blocking model customers block after they receive service.
Blocking occurs if a customer’s destination queue is full. When blocked, a customer remains
at the server of the source queue and no other customers may be served until it proceeds to
its destination.

8. Customers that block for the same destination queue are transferred to the destination in first-
come first-served order. Simultaneous blockings are resolved randomly.

9. External arrivals only occur at infinite queues. Modifications of the algorithm to deal with
finite input queues are described in [AP87).

Consider an open, acyclic network of finite queues (such as the Delta network in Figure
49). Let:

e N; be the queue limit for queue i, including a customer in service.

o m;;(k) be the probability that a customer leaving queue ¢ for queue j finds k customers at
queue j.

o fanin; be the fanin at queue .

96

o (k) be the probability that a customer from any fanin queue finds k customers at queue :.

The fundamental idea of the Altiok and Perros algorithm is to analyze the acyclic network
from outputs to inputs, determining for each queue the distribution of the blocking time it introduces
for each of its fanin queues. The service times of the fanin queues are then adjusted to account for
this blocking time, and the process is repeated. The precise algorithm is as follows:

1. Determine the values of A, by solving the rate equations:

n
/\j=1\0j+21\;q;j, j=1..,n (4.28)
=1
2. Levelize the acyclic network and perform the following steps on all queues in decreasing
order of level (ie. from outputs to inputs).

3. Adjust the service distribution to account for blocking delays at fanout queues. The adjusted
distribution is illustrated in Figure 4.12. The branches correspond to the different routes
a customer may take upon completing service. The blocking delay boxes correspond to the
Coxian [Wol89] representations of blocking delay due to the downstream queues, which have
already been calculated. The adjusted distribution is itself a Coxian distribution.

4. For finite queues, determine the distribution of blocking delay that the queue will contribute
to its fanin queues:

(a) Find the effective external arrival rate); at the finite queue, such that the actual rate of
customers serviced is A;, by solving the equation:
- Ai
M= mi(N;)
m;(V;) is the fraction of customers that find the queue full and are hence refused ser-
vice. m;(N;) is a function of the effective arrival rate };, so Equation (4.29) is solved
by iteration. 7;(V;) is calculated by analyzing an M/C/1/N; + fanin; queue model us-
ing matrix geometric techniques [Neu81]. The queue limit is augmented by fanin, to
account for Assumption 8 above that blocked queues are unblocked in first-come first-

(4.29)

served order. Poisson arrivals are assumed, and a Coxian distribution is used to model
the service distribution (which has been adjusted to account for downstream blocking
delays in Step 3).

(b) Assume 7;; = 7; for all fanin queues <.

97

(c) Approximate the distribution of blocking delay due to this queue as in Figure 4.13. With
probability 7;(NV;), an arriving customer finds the queue full and no other customers
blocked, so it remains blocked for the remaining time of the customer in service. Since
exponential service is assumed, the remaining service time has the same distribution
as a complete service time. With probability =;(N; + m), an arriving customer finds
the queue full and m customers blocked. The customer now remains blocked for m
full service times, plus the remaining service time of the customer in service. With
probability 1 — 2,{:’;‘3"" 7i(N; + m) an arriving customer is not blocked at all.

The size of the Coxian representations of adjusted service distributions grows rapidly,
with a corresponding increase in computational complexity. This can be reduced by approximating
the complex Coxian representations by simpler ones with a limited number of phases [PS89].

This algorithm is most accurate when the arrival rates at queue fanins are not excessively
unbalanced. Unbalanced streams are treated inaccurately because of the approximation of mii(k)
by (k) (at Step 4(c)). This is inaccurate because customers in a very heavy arrival stream are
unlikely to encounter a blocked customer from a light arrival stream, but customers from the light
stream are very likely to encounter a blocked customer from the heavy stream.

Bj
Blocking Dist.
at Queue j
i
S qij
Service Dist. -
at Queue i
ik
g Bm
Blocking Dist.
at Queue m

Figure 4.12: Coxian Representation of Adjusted Service Distribution

Figure 4.14 summarizes the finite buffer algorithm.

98

queuse i not full

1 service delay

queuse full, e

1waiting ™ gerice Dist,
at Queue i
(Equilibrium)

queus full,

2wailing ™ gervice Dist, Service Dist.
atQueuse i ™ atQueuei
(Equilibrium)

2 service delays

Service Dist. see Service Dist.
" queue full, at Queue i — "™ atQueueli
all other fanins —(Equilibrium)
waiting

fanin service delays

Figure 4.13: Coxian Representation of Blocking Delay

4.3.4 Merging the Algorithms

The finite buffer algorithm of Section 4.3.3 is incompatible with QNA because it uses
complex Coxian distributions instead of two-moment approximations, and because it assumes ex-
ponential service and Poisson arrivals at all queues. Furthermore, the basic QNA and finite buffer
algorithms do not account for virtual cut-through buffering and the use of virtual channels. Section
4.3.5 describes how the incompatibility of Coxian distributions and exponential service is resolved
by using two-moment representations for the blocking and service distributions (at Steps 3 and
4); this modification has the benefit of significantly reducing the computational complexity of the
algorithm.

The assumption of Poisson arrivals is relaxed by using two moment approximations of in-
terarrival distributions, determined with QN A. QNA and the finite buffer algorithm must be applied
in an iterative loop, however, because of a cyclic dependency: QNA requires service parameters to
determine arrival parameters, and the finite buffer algorithm uses arrival parameters to determine
service parameters. Section 4.3.6 describes the iteration algorithm.

Effects of virtual cut-through buffering and virtual channels can be modelled with tech-
niques described in Sections 4.3.7 and 4.3.8.

/* solve rate equations */
Aj=d X Mg, J=1,...,n

levelize the network;
for each queue j in decreasing order of level {

adjust service distribution to include blocking
at downstream queues (Figure 4.12);

/* determine blocking delay */

k=1,

A=A

repeat {
find 7;(N;) by analyzing M/C/1/N; + fanin; queue with X¥~! arrival rate;
AL - 1-—3.W.7'
k=k+1;

}

o Ak_Jk-1
until (xi—< 0.01);

construct Coxian distribution of blocking delay of this queue
on fanin queues (Figure 4.13);

Figure 4.14: Summary of Finite Buffer Algorithm

100

4.3.5 Two Moment Approximations of Blocking Distributions

Simplification of Coxian blocking distributions to two moment representations is easily
done by considering Coxian representations (Figures 4.12 and 4.13) as sums and mixtures of a set
of independent random variables. A sum of random variables X and Y with distributions f, and
fy is arandom variable Z = X + Y with distribution f, = f; ® f,, where ® denotes convolution
[WoI89]. A mixture of X and Y has distribution s f, + (1 — s)f,, where s is a mixing parameter
between 0 and 1. If a mixture of X and Y is denoted M (s, X,Y'), the distributions of Figures 4.12
and 4.13 can be represented as:

Si + M(qij, Bj, M(qixyBm,...)...) (4.30)

and
M(mi(N;), S5, M(7y(N; + 1), S5, M(mi(N; +2), 5F + 2S;,...)...) (4.31)

S; is a random variable with the service distribution at queue i. S¢ is a random variable with the
distribution of a remaining service time, as viewed by a blocked packet.

It is straightforward to find the mean and second moment of the sum and mixture of two
or more independent random variables:

E(X+Y)= E(X)+ E(Y) (4.32)

E(M(X,Y,s)) = sE(X)+ (1 - s)E(Y) 4.33)

E(X+Y))=Var(X+Y)+E¥X+Y)=Var(X)+ Var(Y)+ E¥X +Y) (4.34)

E((M(s,X,Y))?) = sE(X}) + (1 - s)E(Y?) (4.35)

The second moment can then be used to determine the squared coefficient of variation: & =
E(Z?%) - 1. Equations (4.32) through (4.35) can be repeatedly applied to service and blocking
distributions to obtain two moment approximations.

In Section 4.3.3 blocking probabilities at a queue were found directly from a matrix geo-
metric analysis of M/C/1/N queues. With two moment approximations of service and interarrival
distributions a simpler technique can be used: blocking probabilities can be determined by fitting
simple distributions to the moments and solving the resulting queue model. The distributions used
here are:

101

o GEO+1(p): the distribution corresponding to the random variable 14+ X, where X is a random
variable with a geometric distribution with parameter p (used when the squared coefficient
of variability is less than or equal to 1).

o GEO2+1(p1, p2, s): the distribution corresponding to the random variable 1 + X, where X
is distributed as a mixture of two geometric distributions, with parameters p;, p; and mixing
parameter s (when the squared coefficient of variability is greater than 1).

In both cases one is added to ensure a minimum interarrival time of one. Technically, GEO+1(p) is
a degenerate case of GEO2+1 (GEO+1(p) is equivalent to GEO2+1(p, p, 0.5), GEO2+1(p, 0, 1.0),
GEO2+1(0, p, 0), etc.). Discrete time distributions are used because they are more appropriate for
synchronous interconnection networks.

A random variable X with distribution GEO+1(p) has first and second moments:

E(X)= (4.36)

-

2 yy= 2=P
EY(X)= (4.37)

A random variable X with distribution GEO2+1(p1, p2, s) has first and second moments:

E(X)=1+E(2) (4.38)
_ E(2%) - E¥(2)
EXY) = T Bz 1 B) (4.39)
where
E(Z)=1+ 8 ;;pl + 5,1 ;2”2 (4.40)
1- 2 - - _ 2
BYz) = U= p%p') + 255 p;zg 7, 3l p%p’) (4.41)

A random variable X with moments E(X) and E(X?2) can be fitted to a GEO+1 or GEO2+1
distribution by substituting E(X) and E(X 2) into Equations (4.36) and (4.37) or Equations (4.38)
through (4.41) and solving for the appropriate parameters.

A GEO2+1*/GEO+1/1/N queue is therefore used in place of the M/C/1/N queue in Figure
4.14. The GEO2+1*/GEO+1/1/N queue has k GEO2+1 arrival streams, a single GEO+1 server, and
queue limit N. Multiple input streams are modelled because it is possible for multiple customers to
arrive simultaneously in a discrete time system; this is not the case in the continuous time models
of the QNA and finite buffer algorithms. By accounting for the arrival rates of each stream, these

102

discrete time superposition techniques overcome the weakness of the original Altiok and Perros
algorithm when modeling the superposition of streams with very different rates. A GEO+1 distri-
bution is used for the service distribution because it was observed that service distributions, even
after adjustment for blocking delay, exhibit squared coefficients of variation close to 1; using a
GEO+1 distribution instead of a GEO2+1 distribution reduces the number of states in the discrete
time Markov chain by a factor of 2. "

The GEO2+1*/GEO+1/1/N queue is analyzed by constructing a discrete time Markov
chain and solving for steady-state transition rates [Wol89]. The steady state transition rates are then
used to determine blocking probabilities and congestion at the queue. Appendix A describes this
analysis.

Unfortunately, the number of states in the discrete time Markov chain (z, = 2*(N + 1))
grows exponentially with . Computation time can be reduced by using the GEO2+1%/GEO+1/1/N
model only when k is small (less than or equal to three). For larger values of k, arrivals are modeled
using GEO+1 distributions, requiring a Markov chain with only n, = N + 1 states. This should
not impact accuracy significantly because the regularity (coefficient of variation) of the aggregate
arrival process should increase with the number of streams (Wol89], making the impact of inter-
arrival variability less important. Appendix A describes the analysis of the GEO+1¥/GEO+1/1/N
queue.

With discrete time models, the distribution of remaining service time S¢, as observed by
a blocked packet, can be approximated by the following two moments:

E(S8) =1+ —E(—Sz)—‘l- (4.42)
E(5f%) = E(5?) (4.43)

This assumes that adjusted service times are almost deterministic (ie. they have low variability).
Equation (4.42) accounts for the fact that in a discrete time system a customer that blocks will block
for at least one time unit.

4.3.6 Iterating QNA and the Finite Buffer Algorithm

The cyclic dependency between QNA and the finite buffer algorithms can be resolved by
combining them in an iterative manner:

1. Using unadjusted service distributions, apply QNA to the network to get rates and variabilities
of interarrivals at each queue.

103

2. Apply the modified finite buffer algorithm to adjust the service distributions.

3. Re-apply QNA to find the interarrival rates and variabilities for the adjusted service distribu-
tions.

4. Repeat steps 2 and 3 until the service and interarrival distributions converge.

S. Calculate network performance measures.
More formally, let:

e 70 and c2;; be the mean and squared coefficient of variation of the initial, unadjusted service
distribution at queue .

o 7} and c%; be the mean and squared coefficient of variation of the adjusted service distribution
at queue 1 for iteration k of the algorithm.

e M¥and ¢Z;, be the mean and squared coefficient of variation of the interarrival distribution at
queue : for iteration k of the algorithm.

k

. Aﬁ:max{ﬁ;j'::i= L,...N, k=1,...},

2. 2. '
° Aﬁz =max{%’-:l= L...N, k= a“'}'

stk

o Ak =max{ﬁ"’—j\%i::i= 1,...N, k=1,..},
. i< .
. Aﬁg =max{Lc;‘:;‘;”:z= I,...N,k=1,...}.
A, A%, A and A%, are the maximum relative changes, between iterations, of their respective
service and interarrival parameters; they are used as the convergence criteria. Figure 4.15 shows
the algorithm.

4.3.7 Virtual Cut-through Flow Control

In QNA and the finite buffer algorithm it is assumed that customers do not proceed to the
next queue until service is completed. With virtual cut-through, however, a packet is forwarded
after the first flit is served, assuming its destination has sufficient buffer space and the required
physical channel is free. The servér is still occupied for the time corresponding to a full packet.
This effect can be modelled by altering the way in which the delay in queue ET} is calculated:

ETY* = ET;— (b-1) (4.44)

k=0
repeat {

}

k=k+1

apply QNA (Figure 4.11) to find A¥ and c2;, fori = 1,...

apply finite buffer algorithm (Figure 4.14) to find
rFand ¢ fori=1,...,N
A"_max-'-—;&—— i=1,...N, k=1,...

2
Ac,-max%ci'”‘—'l.z 1,...N, k=1,...

Ak=max-Tis— i=1,...N, k=1,...

104

until (A% < 0.01) and (Af:‘% < 0.01) and (A% < 0.01) and (Af_f% < 0.01))

calculate network performance measures (Eqns. (4.23) to (4.27))

Figure 4.15: Combining QNA and the Finite Buffer Algorithm

105

where ETy< and ET; are the queueing delays (including service) with and without virtual cut-
through buffering, and b is the number of flits per packet.

With virtual cut-through, blocking behavior is slightly different from that of the Altiok
and Perros model. This is because channel queues never block: buffer queues ensure that destina-
tion buffer queues have sufficient buffer space (for an entire packet) before sending a packet to a
channel queue. Blocking delay caused by full buffer queues is incurred at upstream buffer queues,
not channel queues. The blocking calculation for buffer queues is therefore performed using arrival
processes that come from the upstream buffer queues (Figure 4.16). The determination of conges-
tion measures (L and w) at buffer queues is also made using arrival processes from upstream buffer
queues. It was found that using the single arrival process from a channel queue was not accurate.

Buffer queues are analyzed
using arrival streams from
upstream buffer queues

Upstream Upstream
Buffer annel
Queues Queues

—HITOSHIO -
—HIDOAYION

Figure 4.16: Arrivals in Buffer Queue Analysis Bypass the Upstream Channel Queue

4.3.8 Virtual Channels

Adding virtual channels to input buffers (Figure 4.7) improves performance by permitting
unblocked customers in the middle of a queue to pass blocked customers at the front. Since this is a
non-FIFO queueing discipline, the estimate for blocking delay at a server in Section 4.3.3 (Figures
4.12 and 4.13) no longer applies.

Figure 4.17 illustrates a blocking delay distribution that accounts for virtual channel
buffering. Like Figure 4.12, Figure 4.17 enumerates all possible situations that can arise when
a customer leaves a buffer queue with n, virtual channels. The different situations are determined
by the number of customers in queue at the time of departure (denoted k), the number of distinct
destinations of the k customers (denoted :), the particular set of 7 destinations that are chosen, and
by the probability that all 7 of these destinations block. The rectangular boxes depict the delay ex-
perienced by a set of customers blocking at a set of destinations. With virtual channels, if any of the

106

all destinations block

Blocking
/. . / Dist.
Service . . .
™ Dist. . . . !
at least one destination
. : . does not block

Branches: k customers i distinct destinations are
in queus destinations {d1, ..., di}

Figure 4.17: Blocking Delay Distribution with Virtual Channels

k customers in queue is destined for an unblocked destination, no blocking occurs— all customers
block only if all destinations are full. All destinations are full with probability

P(all dests_full) = H pby; (4.45)
J=1

where pbg; is the probability that an arrival finds destination d; full (see Figure 4.13):

faning B -1

pba; = DY 7a(Ni+7) (4.46)
Jj=0

One of the k customers can proceed when one or more of the destinations becomes free; the blocking
delay B is therefore the minimum of the blocking delays experienced at the ¢ distinct destinations:

B = min{By,,...,Ba,} (4.47)

Bj; has the blocking distribution seen at destination d; (determined as in Section 4.3.3 and Figure
4.13). The distribution of B is found by fitting By, , . . ., By, to a mixture of geometrics and finding
the two moments of their minimum (see Appendix A).

The branching probabilities in Figure 4.17 are calculated as follows. P(k customers) is
calculated directly from the Markov chain analysis of the buffer queue in the finite buffer algorithm
(Figure 4.14). This, however, introduces a cyclic dependency because the Markov analysis requires
that the service time be adjusted for downstream blocking delay. Fortunately, since the algorithm
is iterative, P(k customers) can be estimated using the Markov analysis of the previous iteration.
For the initial iteration, it is assumed (optimistically) that P(k customers) = 1 for £ = 1, and zero
fork > 1.

P(i destinations) and P(dests = {d, .. .,d;}) are calculated together as:

k .
CF) e
15773 Jj=1

...

P(i dests)P(dests = {dy,...,d}) = Z (

(ilvmv"k)

107

where the summation is for all tuples (iy,...,ix) such that 3% i; = kand i; > Oforj = 1,...,k.
The summation tuples account for the different ways that i distinct destinations can be assigned to
k customers. The total number of branches 75ranches for which all destinations block is:

Nye k
Npranches = z Z (il ;) (449)
yeeaslm

k=1 (iys.erim)
= 3 npem* (4.50)
k=1

l],...,lm

k
(_) = TTTE%IT is a multinomial coefficient, corresponding to a term in

the expression (z1 + z3 + ... + zm)¥. The summation in 4.49 is for all m-tuples (i1, ...,im)
such that 3°T' i; = k and i; > O for j = 1,...,m. Equation (4.49) is a sum of the number of
ways that k customers can be sent to m destinations, for all possible values of k. Equation (4.50)
follows from the fact that the second summation in Equation (4.49) is equivalent to the multinomial
(1+1+...4 1)k with m ones. Clearly, nranche, grows quickly as k increases. Fortunately, & is
small for most multiprocessor network models.

Like Figure 4.12, Figure 4.17 corresponds to a mixture of blocking delays, each of which
is approximated by two moments. As before, this mixture is reduced to a two moment approxima-
tion by repeatedly applying Equations (4.32) to (4.35). The result is an approximation of the service
time at the switch input, augmented by an estimate of blocking delay, and the rest of the queueing
analysis in Figure 4.15 remains unchanged.

As discussed in Section 4.2.1, some networks require virtual channels to prevent dead-
lock, and have the buffer organization of Figure 4.8. This buffer organization is approximated as in
Figure 4.18. Here two or more virtual channels (with a uniform number of sub-channels) is modeled
as one virtual channel with the same number of sub-channels.

4.3.9 Convergence and Computational Complexity

There are two iterations in the algorithm (Figure 4.15), for which convergence is not
necessarily guaranteed. Furthermore, convergence does not necessarily guarantee a unique solution.
Unfortunately, the combined complexity of finite buffers, two-moment approximations, and the
other network features makes a formal analysis of convergence properties difficult. For the networks
analyzed in Section 4.4, however, convergence of both inner and outer loops typically occurred in
ten or fewer iterations, unless the network was heavily saturated. This was true for network sizes

108

Simplified Model

Figure 4.18: Multiple Virtual Channels Approximated as One

ranging from 10 to 10000 queues. When the algorithm did converge, the result was always close
to a simulation result,

Since the number of iterations in both loops is only weakly dependent on network size.
" the approximate computational complexity is the cost of performing the outer loop, multiplied by
a constant. The Markov analysis in the inner loop (the finite buffer algorithm) requires the solution
of a sparse system of linear equations for each queue. The number of variables is N + & + 1 for the
GEO+1*/GEO/1/N queue model, and 2€(N + k + 1) for the GEO2+1%/GEO/1/N queue model (see
Appendix A); since the GEO2+¥/GEO/1/N model is only used for k less than four, the number of
equations is approximately O(N). The cost of solving a sparse system of N equations is dependent
on the pattern of non-zero coefficients in each problem instance. A rule-of-thumb, however, is
that a typical sparse system of N equations can be solved in O(N1-3) operations [SV81). The
number of blocking cases considered in the virtual channel model is exponential in the number of
fanouts. This is usually a small integer, however, so the Markov analysis should dominate. Each
outer iteration requires the solution of an additional two sets linear equations of size n for the QNA
algorithm, where n is the number of queues. The total complexity of the algorithm is therefore
O(nN'3 4+ n!3), in which the first term is usually dominant.

4.4 Numerical Results

44.1 Methodology

In this section the modelling technique of Section 4.3 is validated against simulation data
for k-ary n-cubes, Delta networks, and meshes. The following assumptions are made:

1. All switches operate synchronously.

109

2. The switch model of Figure 4.7 is assumed for all networks. In this model packets are buffered
at the inputs by one or more virtual channels per input, and virtual cut-through flow control is
used. Virtual channel queues for the same input share a single port to the crossbar network.
With virtual cut-through, once a physical channel is assigned to a packet, it is dedicated to
the packet for a number of network cycles corresponding to the length of the packet in flits.
Only one flit may be passed over a physical channel per network cycle. A physical channel
can be assigned to a packet only if the.receiving end has space for the entire packet.

3. Buffer queues without external arrivals have a queue limit of 4 packets. Buffer queues with
external arrivals have no queue limit.

4. Cycle times are identical for all networks.

3. Processing elements issue packets into the network using GEO+1 interarrival distributions.
In the GEO+1 distribution, a packet is injected into the network with probability p on each
clock cycle. This corresponds to an input rate of p flits/cycle per network port.

6. A uniform spacial distribution is used for determining the destination of a packet when it is
generated. With a uniform distribution, the probability that a packet is sent to processor i is
-N‘_—,, where N is the number of processors and ¢ can be any value between 1 and N except
the identity of the processor issuing the packet.

7. If two or more customers arrive at the same destination queue simultaneously, the blocking
order is random.

8. All packets have the same number of flits.

Section 4.2.1 describes the interconnection topologies for the particular networks con-
sidered here. Routing parameters are determined by aggregating the different customer classes
corresponding to all combinations of source and destination. Since oblivious routing is assumed
in each of the networks of interest, each class has a unique route determined by one of the routing
algorithms in Section 4.2.1. Since destinations are selected uniformly, the arrival rate for each class
is x2. Input queues use the virtual channel queueing discipline. Channel queues use the FIFO
queueing discipline. As mentioned breviously. channel queues are put in the network only for de-
termining the blocking delay they incur on input queues; the service time for the channel queues are
therefore not included in the network delay calculation. A buffer queue with two or more virtual

110

channels, each with k sub-channels, is modelled as a buffer queue with one virtual channel with &
sub-channels.

Queueing models for symmetric networks (k-ary n-cubes and Delta networks) with a uni-
form workload can be simplified by considering the minimal representative portion of the network.
In a k-ary n-cube, the arrival processes at each switch are stochastically identical from switch to
switch, so the queueing model can be reduced to that of a single switch with direct feedback (Figure
4.19). In a Delta network, the arrival processes for switches in each horizontal slice are identical,
so the model can be reduced to a single slice (Figure 4.20). Both of these simplifications intro-
duce cyclic dependencies among buffers. To break the cycles it is assumed that that buffer queues
never fill. Channel queues therefore never block, and only channel queues contribute blocking de-
lay to buffer queues. This approximation is accurate for the networks of interest when four or more
buffers are provided per buffer queue. Further details on the queueing models for specific networks
~ are provided in Appendix B.

O
(POOO

From Processor To Processor

Figure 4.19: Simplified Model of Direct k-ary n-cube Under Uniform Load

4.4.2 Results

Figures 4.21 10 4.34 show plots of latency versus arrival rate, as predicted by the analytic
model, for torus (¢ = 3), bidirectional torus (¢ = 3), mesh (¢ = 3), hypercube, and radix 4 and 8
Delta networks. Results are shown for 5 and 10 flit packet sizes. Simulation points are also shown

111

—-D:Dngo :ngzgo-——
—=T O+ O~

Figure 4.20: Simplified Model of a Delta Network Under Uniform Load

to indicate the accuracy of the model. Vertical lines indicate the saturation points predicted by the
model; simulation points along the upper horizontal border indicate the saturation points predicted
by the simulator. As the plots show, predicted latencies are usually within 5% of simulated values
until heavy saturation (latency exceeds ten times the minimum) occurs. The predicted saturation
points also corresponded well with simulation results.

As expected, the hypercube and Delta networks (Figures 4.27 to 4.34) exhibit the best
performance: saturation bandwidth is independent of the number of processors. This results from
the fact that the utilization of physical channels (channel queues in Figure 4.7) is independent of the
number of processors [RF87]. The cost for this performance, however, is greater implementation
cost: more complex interconnections, log N more switches for the multistage network, and larger
switches for the direct network. For all networks, the saturation bandwidth (in flits/cycle) remains
the same as the number of flits/packet changes, but latency rises faster because long packets occupy
channels for longer periods of time. The torus network exhibits very low saturation bandwidth for
large machines, even for small packet sizes. Adding two links between neighboring processors in-
creases the saturation point by a factor of 2.5. For a given path width, a unidirectional toroidal mesh
requires twice the number of interconnections through a node to embed the end-around connections
[DS87]. The mesh results show that the extra interconnections are better used as back-links in a
mesh, since this increases the saturation point by a factor of 2.

All of these results assume that a main memory and cache controller share a single net-
work port. Saturation bandwidth could possibly be increased by adding more ports. This and other
alternatives could be easily investigated using the same modeling technique.

112

§ Flit Messages

3
.

Torus

“FPrcs
*HEProcs ™"

1A

4160 Frecs ™

FlitRam

lllllllllllllll
llllllll

l—____L
8 8 8 8 8 8
$¢§%8¢¢g

1.00

Qso

Figure 4.21: 3-D Torus Network Performance (5 Flits/Packet)

Torus: 10 Flit Messages

FlitRam

0]

D Torus Network Performance (10 Flits/Packet)

3

.
.

Figure 4.22

113

Bitorus: S Flit Messages

8 Procs

i
N
G

-

..,
e
.~
Rl TR P PPN
et cercstnacconncanan

I
S e
e
..

15.00 -
000 _
s.00 -

0.00 —
1 1 1 1 1 | Flit Raxe

Figure 4.23: 3-D Bidirectional Torus Network Performance (5 Flits/Packet)

Bitorus: 10 Flit Messages
Latency

80.00
75.00
70.00
65.00

$5.00
50.00
45.00
40.00
35.00
30.00
25.00
20.00
15.00
10.00
5.00
0.00

1 PlitRew

Figure 4.24: 3-D Bidirectional Torus Network Performance (10 Flits/Packet)

114

§ Flit Messages: Mesh

8 Procs
b 14, haa
PlitRer

100.00 -
95.00 [~
$0.00 —
85.00
80,00
75.00 —
.00 -
65.00 |-
60.00
$5.00

1.00

Q8o

000

3-D Mesh Network Performance (5 Flits/Packet)

Figure 4.25

10 Flit Messages: Mesh

Latency

kit
"R Precs ™

FlitRae

100.00

95.00 -
90.00 —
85.00 -
80.00 —
75.00 —
70.00 -
65.00 |-
60.00 -
$5.00 -

50.00 i~
45.00 —

15.00 —

1.00

Qaso

.00

Figure 4.26: 3-D Mesh Network Performance (10 Flits/Packet)

115

Hypercube: 5 Flit Messages

T T T T T T 8 Procs
30,00 - . . -‘"EE

a0~ isssa
26.00
.00
2.00

20.00
18.00

16.00

14.00
12.00
10.00
8.00
6.00
4.00
200

000 =) 1 { 1 1 1=
0.00 0.20 0.40 080 0.80 1.00

Figure 4.27: Hypercube Network Performance (S Flits/Packet)

Hypercube: 10 Flit Messages
Lazency

T T T T T T | 8 Procs
60.00 — . . "GP

55.00 - =515 8o~
50.00 [-

45.00

T
a
1

40.00

35.00 —

25.00 —

20.00 |-

15.00

10.00 [~

5.00 -

0.00 - . , -
1 1 I 1 ! Plit Rae

Figure 4.28: Hypercube Network Performance (10 Flits/Packet)

116

Min2: § Flit Messages

T T T T 3 T3 Procs
f {ar=—
1650 toei =™

100.00 - K
95.00
.00 r . n:

85.00 |~

80.00 -

75.00 -

65.00 ~
60.00
$5.00 -
50.00 [~
45.00 [~
40.00 [~
35.00 -
30.00 -
25.00
20.00 -
15.00
10.00 [~

5.00 —

0.00 -

»
[
I
.
’
.
]
]
.
‘
.
)
’
¢
’
»
Il
v
.
.
Il
.
¢
)

! 1] 1 1 ! Flit Rew

Figure 4.29: Radix-2 Delta Network Performance (S Flits/Packet)

Min2: 10 Flit Messages
Latency

T 8 Procs
100.00
95.00
90.00
85.00
80.00
75.00

{1658 Broea ™

65,00
60.00
55.00
50.00
45.00
40.00
35.00
30.00
25.00
20.00
15.00
10.00
5.00
0.00 — .

FlitRam

Figure 4.30: Radix-2 Delta Network Performance (10 Flits/Packet)

40.00

35.00

25.00

20.00

15.00

10.00

5.00

Min4: S Flit Messages

T T T T T e Proc
n . . o
488 broc "
B 105 Proes =
C 1 1)) i PitRax
Q.00 0.40 0.60 0.80 1.00

Figure 4.31: Radix-4 Delta Network Performance (5 Flits/Packet)

50.00

45.00

25.00

15.00

10.00

5.00

0.00

Figure 4.32: Radix-4 Delta Network Performance (10 Flits/Packet)

Min4: 10 Flit Messages
T T T3 Procs
. {Gra
488 Brosi
"10% Proes ~
_ 1 i 1 1] FlitRax
000 0.40 060 080 1.00

117

118

Min8: § Flit Messages

 IGLT
"Sf2ba

TFE B
2888
T 1T 71

Figure 4.33: Radix-8 Delta Network Performance (5 Flits/Packet)

Min8: 10 Flit Messages
T T3 Poa
.)
a 818 Proci ="
! L] FlitRav
aso 1.00

Figure 4.34: Radix-8 Delta Network Performance (10 Flits/Packet)

119

4.5 Processor Utilization of Caching Schemes

4.5.1 Methodology

The impact of network latency on processor utilization (or, equivalently, memory access
time) can be taken into account using the modeling paradigm outlined in Section 1.3.3. In this
paradigm, network-independent cache simulations are used to estimate arrival rates, and network
models provide the latency with which a cache miss is processed. This, however, alters the arrival
rate that was initially assumed, so a new arrival rate is estimated and the process is iterated until
the assumed arrival rate corresponds to the arrival rate adjusted for miss latency. The miss latency
can then be used to estimate the time during which a processor is stalled on a read miss, which
corresponds to a decrease in utilization.

Figure 4.35 summarizes the algorithm. The input parameters are:
® n., is the average number of read misses, per processor, in the cache simulation;

® Thusy is the average number of cycles during the cache simulation in which a processor is
busy (ie. not waiting for a lock or barrier);

® t,m i the total number of cycles of the cache simulation;

® frm = Nym/thusy is the average number of misses per busy cycle;

® nyrans 1S the average number of network transactions issued by a cache;
® Ubqse is the average processor utilization assuming zero network latency;

® Abase = Nirans/tbusy iS the rate at which network transactions arrive at a network port, as-
suming zero network latency;

® 7y, is the average number of flits per transaction; It is determined using the cache simulation
results and the transaction sizes in Tables 3.8 and 3.9.

o Ty, is the time to process a network transaction at its destination;
The following are calculated:
o Uy is the average processor utilization, accounting for network latency;

® Ape is the rate at which network transactions arrive at a network port, accounting for network
latency;

120

® Tnet(Anet, ns1its) is the average network latency (one way) for the specified arrival rate and
packet size;

® Tirans is the total time to process a network transaction, including two network traversals and
" processing at its destination;

It is assumed that write misses.are buffered, so a cache stalls only on read misses.

t=0;

repeat {
Tirans = 2 * Tnet(Abers nptite) + Tiirs
i=141;
Mgt = m,é,f,‘f'm3

} until (2as¢=2aad < 0,01)

net

Unet = |+Dbag?rmitran: ’
Figure 4.35. Algorithm for Estimating Processor Utilization with Non-Zero Network Delay
The expression for)., is the simplified form of:

i Nerans
A= 451
net tbuay(] + frmTtrana) ()

The expression for Uy, is derived as follows:

tbusy
U = 4.52
net tsim + NrmTirans ¢)

tousy
_ Laim 4.53)
1+ T::'frmTtram
Ubase

= 4.54)
1 + UbaaefrmTtrana (
4.55)

121

4.5.2 Numerical Results

Table 4.3 shows utilization estimates for the most demanding benchmark, VEREF, for sev-
eral different network and protocol configurations. It is assumed that Ty, = 20 cycles, network
paths are four bytes wide, and caches are infinite. The networks considered are a unidirectional
3-D torus, a bidirectional 3-D torus (bitorus), a hypercube, and a 3-D mesh. Since Delta networks
have performance that is similar to a hypercube, they are omitted for brevity. Table 4.3 also shows
the fraction of total network bandwidth used by the benchmark. The network saturation point is
defined here as the load at which delay is ten times the minimum.

For a 16 byte block size all four networks provide reasonable utilizations (58 to 68 %).
The UPDATE and COMP8 protocols improve utilization by 5 to 10 % at the expense of up to 50%
more traffic. In all cases a large fraction (30% to 100%) of available network bandwidth is used.
Traffic increases sharply for a 64 byte block size, and causes the torus network to saturate for all
protocols. UPDATE and COMP8 improve utilizations by 10 to 15 %, but require up to 100 % more
traffic. With a 64 byte block size, the UPDATE and COMPS protocols cause the mesh network to
saturate and use up most of the available bandwidth of the hypercube and bidirectional torus. These
protocols are therefore only appropriate for smaller block sizes.

The table shows that coherent caches reduce the sensitivity of processor utilization to
network latency. The UPDATE results, in particular, show that latency can be increased by a factor
of 5 with a reduction in utilization of only 15%. This insensitivity explains why utilizations for
different networks do not vary appreciably for networks operating below their saturation points. It
also explains why utilizations are relatively insensitive to the number of flits per packet. Of the four
networks, the mesh offers a good compromise between implementation cost and performance.

Network performance for multiprocessors with more than 64 processors can be estimated
by scaling network traffic by the anticipated increase in coherence traffic. Results in Section 3.6.3
suggest that the frequency of cache invalidations (updates) grows linearly with the number of pro-
cessors. The traffic for an N processor system relative to a 64 processor system can therefore be

found by scaling the invalidation/update traffic for the 64 processor system by increase in machine
size. Let:

e 7,y be the ratio of traffic for the NV processor system relative to the 64 processor system.

* fes be the fraction of traffic in the 64 processor system due to invalidations or updates (from
main memory to cache).

Table 4.3: Processor Utilizations for VERF, 4 Byte Path

Network Anet Network Delay | 322 @ [Utilization
(flits/cycle) ___(cycles) (%)
“IDEAL, 64B Block, 5 flits/packet]
Ideal | 0151 | 0.0 0.0 75
INVAL, 16B Block, 5 flits/packet
Torus 0.224 559 045 58
Bitorus 0.249 36.0 0.29 63
Hyper 0.252 33.8 0.29 64
Mesh 0244 | 39.6 0.34 62
INVAL, 64B Block, 10 flits/packet
Torus 0.450 26.2 1.00 65
Bitorus 0.458 48.1 0.54 59
Hyper 0473 423 0.54 60
Mesh 0.440 55.5 0.61 57
UPDATE, 16B Block, 5 flits/packet
Torus 0.344 61.0 0.69 64
Bitorus 0.371 354 043 68
Hyper 0.374 33.2 043 69
Mesh 0.367 39.2 0.51 68 |
UPDATE, 64B Block, 5 flits/packet]
Torus 0.50 819 1.00 39
Bitorus 0.86 222 1.00 60
Hyper 0.87 222 1.00 60
Mesh 0.72 407 1.00 51
COMPS, 16B Block, 5 flits/packet
Torus 0.279 503 0.56 64
Bitorus 0.296 333 0.34 68
Hyper 0.298 31.8 0.34 68
Mesh 0.293 36.3 041 67
COMPS8, 64B Block, 5 flits/packet
Torus 0.500 214 1.00 53
Bitorus 0.707 56.4 0.82 67
Hyper 0.724 46.3 0.83 68
Mesh 0.720 48.7 1.00 68

?Asar is the arrival rate at which network delay is ten times the minimum (light load) delay.

122

123

Table 4.4: Estimated Traffic Increases for Large Multiprocessors

N Protocol 16B Block 64B Block

foa | ™~ | Jes TN

128 | INVAL [0.0640 | 1.06 | 0.0445 | 1.05
128 | UPDATE | 0482 | 148 | 0.675 | 1.68
128 | COMPS8 0394|139 0.608 | 1.61
256 | INVAL |0.0640 | 1.19 | 00445 1.13
256 | UPDATE | 0482 |245| 0675 | 3.03
256 | COMPS8 0394 | 2.18| 0.608 | 2.82
512 | INVAL | 0.0640 | 145]| 0.0445 | 1.31
512 | UPDATE | 0482|437 | 0.675| 5.73
512 | COMP8 0394 | 3.76 | 0.608 | 5.26
1024 | INVAL | 0.0640 | 1.96 | 0.0445 | 1.67
1024 | UPDATE | 0482 | 823 | 0.675 | 11.13
1024 | COMP3 0.394 | 691 | 0.608 | 10.12

The increase in traffic is then:

o= (- fo) + forgy (4.56)
= 1+ falg - 1) 457)

Table 4.4 shows estimated traffic increases for 128, 256, 512 and 1024 processors. It shows that
the UPDATE and COMPS protocols are only appropriate for 128 processors or less. Traffic for
the INVAL protocol, however, rises slowly enough that lower dimension networks with sufficiently
wide paths should provide good support for up to 1024 processors.

4.6 Conclusion

In this chapter analytic techniques were presented for estimating the performance of a
broad class of multiprocessor interconnection networks with realistic features: finite buffers, vir-
tual channel queueing discipline, and virtual cut-through flow control. Numerical comparisons
with simulation results showed that predicted values are usually within 5% of simulation values
until heavy saturation is reached (latency exceeds ten times the minimum). The predicted satura-
tion points also corresponded well with simulation results. The final section examined the impact
of network performance on processor utilization in a cache coherent multiprocessor. The results
suggest that, with an invalidation protocol and sufficiently wide paths, good utilization can be ob-
tained for a number of different networks for machines with up to 1000 processors. The mesh

124

network is particularly attractive because of its low implementation cost. The update and competi-
tive protocols are only appropriate for small block sizes and machines with up to a couple hundred
processors. '

125

Chapter 5

Synchronization

5.1 Overview

Synchronization support is tied to the design of a cache coherence scheme, because poor
implementations of synchronization primitives can negate much of the benefit of coherent caches.
The availability of coherent caches can also permit more efficient implementations of synchro-
nization primitives, suéh as locks and barriers [BD86, IEE90, L*90]. This chapter begins with a
review of published implementation techniques for the following hardware-supported synchroniza-
tion primitives: fetch&op, locks, barriers, and multiprefix operations. A new technique is described
for implementing fetch&op, barrier, and multiprefix operations in hardware or software. The hard-
ware version applies to single or multistage networks constructed of jxk crossbar switches.

The goal of this chapter is to show that sophisticated synchronization support is possible
in hardware or software using straightforward techniques of moderate complexity.

5.2 Previous Work

5.2.1 Overview

Some common hardware-supported synchronization primitives in shared memory multi-
processors, in order of increasing functionality, are [Sto87, RBJ88)

1. read and write

2. fetch&op

126

3. locks
4. barriers

5. multiprefix operations

. The simplest primitives are the read and write instructions provided “for free” on all
shared memory multiprocessors. Many of the first synchronization algoﬁthms were based on read
and write instructions because early high-level languages did not provide access to more powerful
read-modify-write instructions [Sto87]. These algorithms, however, relied on the assumption that
multiple reference streams are sequentially consistent: accesses by each process are performed in
program order, as observed by any of the multiple processes. Although this assumption is reason-
able for multiprogramming operating systems running on single processors, it severely impacts the
performance of cache coherent multiprocessors; this was addressed in Chapter 1.

fetch&op instructions are the most common class of synchronization primitive, and in-
clude test-and-set, compare-and-swap and fetch-and-add [Sto87). A fetch&op instruction takes
two arguments: addr, the address of a shared variable, and val, a value to be used in the speci-
fied operation. fetch&op applies “op” to val and the contents of addr, stores the result in addr,
and returns the contents of addr prior to performing the operation. This is all done atomically.
test-and-set, compare-and-swap, and fetch&add are common examples of fetch&op primitives. In
test-and-set, “op” is “set the contents of addr to one”, and val is unused. In compare-and-swap,
the contents of addr is compared with val; if equal, they are swapped, otherwise the contents of
addr are unchanged. In fetch&add, val is added to the contents of addr. Machines that support
fetch&op instructions include: IBM 370 (compare-and-swap, test-and-set) [Sto87], Sequent Sym-
metry (test&set) [LT88], IBM RP3 (fetch&add) [P* 85], NYU Ultracomputer (fetch&add) (G 83c],
and Cedar (various fetch&op) [G*83a).

locks provide a mechanism by which processes can gain exclusive access to shared data.
Mutual exclusion is enforced by associating a lock with each collection of mutually exclusive data.
Processes must acquire the lock before accessing the protected data, and must release it when they
are finished. When a lock is acquired, a process has exclusive access to the critical section, and any
other process attempting to acquire the lock stalls until the former process releases it.

barriers provide a mechanism by which multiple processes ensure that they have reached
the same point in a program before proceeding. Barriers are typically used to ensure that results
of one step of a computation, a parallel loop for example, are complete before proceeding with the
next step.

127

multiprefix operations are much higher level operations that can be exploited in certain
parallel algorithms [RBJ88). Multiprefix operations are defined on a set of L value lists:

[llls1129 .. -7lln|]

[lLlalnLZ,“-wILn’_] (5.1)

It is assumed that:
1. There is at most one value stored per processor.

2. Processors are assigned distinct identifiers between 0 and N — 1, where N is the number of
processors.

3. Let proc(l;;) denote the processor holding value [;; of list i. Values in a list ¢ are ordered by
processor identifiers such that proc(l;;) < proc(l;(j+1))-

Given an associative binary function F, a multiprefix operation computes a second set of L lists:

[ru = I,z = F(liz,rin)s- oo Ping = Flings Tiny=1)]

[rLl =1L, Tpp, = F(In;_zv TLl)s ceesTLn = F(ILnLarL(nL-l))] (52)

where r;; is stored in processor proc(l;;). This can be generalized by permitting a different binary
function to be used for each list [Ran89). Figure 5.1 shows a simple example of a multiprefix
operation in which the minimum values in two lists are found.

Relatively few algorithms have been published that exploit the full power of multiprefix
operations. Multiprefix operations, however, subsume many other less powerful primitives, includ-
ing scans [Ble89), fetch&op [G*83b], and Hillis’ 8 operation [Hil85].

The following example illustrates the usefulness of this class of synchronization opera-
tion. This example uses the 3 operation and is taken from Hillis’ dissertation on the Connection
Machine [Hil85). A operations can be thought of as a weaker form of the multiprefix operation
in which the application of the binary function F' is not constrained to processor order, and inter-
mediate results are not returned. Consider the problem of finding the minimum path between two
vertices in a graph:

128

Eg: Determine the minimum for 2 lists of numbers

LIST 1 LIST2
Processor: 1 2 3 4 5 6
Value: 7 9 6 23 2 14

(i (i

Result: 7 7 6 23 2 2

Figure 5.1: Example of a Multiprefix Operation

Given a set of vertices, V, and a set of edges E = V x V, find the length k of the
shortest path between two distinct vertices a and b.

Hillis describes the following parallel algorithm for solving the problem:
1. Label all vertices with +oc.

2. Label vertex a with 0.

3. Label every vertex, except a, with 1 plus the minimum of the labels of all neighboring ver-
tices.

4. Repeat the previous step until the label of b is finite. The label of b is the desired result.

The heart of the algorithm is Step 3. It can be directly implemented as a $ operation with F =
min(z, y) and a set of value lists, one per vertex, containing the labels of neighboring vertices.
For many large graphs of interest, the average value of & for a randomly selected pair of vertices
is a small integer. An efficient parallel implementation of the § operation can therefore provide
considerable speedup over a serial solution.

The remainder of this section reviews published hardware and software implementations
for these synchronization primitives.

129

5.2.2 Read, Write and Fetch&ops

Atomic reads and writes are provided “for free” on a sequentially consistent shared mem-
ory multiprocessor. This is not the case for weakly consistent multiprocessors, where the ordering
of read and write operations are relaxed to improve performance. In a weakly consistent multipro-
cessor atomic reads and writes must be implemented as special synchronization instructions so that
stricter ordering is enforced.

The most common way to implement atomic reads, writes or fetch&op instructions in
a weakly coherent multiprocessor is to mark the corresponding synchronization variables as non-
cacheable and build main memory controllers that support atomic read, write and fetch&op transac-
tions. Since synchronization variables are uncached, only one copy of each exists in the system, and
atomicity is easily enforced by the memory controller that contains the variable. This simple im-
plementation serializes concurrent synchronization accesses. Higher performance can be achieved
using a technique called combining. Since combining is also applicable to barriers and multiprefix
operations, a discussion of it is deferred to Section 5.2.6.

5.2.3 Lock Implementations

Efficient locks can be implemented in software using lower level fetch&op instructions.
The most effective technique is the MCS algorithm [MCS91], in which all spinning is done on
local variables and minimal memory is required. The simplest version of the MCS algorithm is
constructed using fetch&store and compare&swap primitives. The fundamental idea of the MCS
algorithm is to maintain a distributed linked list of waiting processors, with the head of the list kept
in a shared lock structure; this is analogous to the distributed linked list directory in Figure 2.3. All
of the links other than the root are stored locally at the processors that are waiting. If a processor
issues a lock request, it allocates a local link structure and appends itself to the list pointed to by
the shared lock structure. When a processor issues an unlock request, it grants the lock to the next
processor on the list and deallocate its local link. Details about how the list is updated atomically
and about how spinning is performed locally are in [MCS91].

The MCS lock algorithm has the following properties:

1. It scales well.

2. It only requires space proportional to the number of processors that contend for a lock; this
may be as high as O(V') but would typically be to O(1).

130

3. It requires the least amount of network traffic of all known software lock algorithms.

4. If a compare&swap primitive is available, it ensures that a lock is granted in FIFO order,
guaranteeing faimess.

5. The time to access a free lock by a single processor is within a factor of two of the fastest
algorithm.

Several techniques have been published on the implementation of locks completely in
hardware [L*90, BD86, G*89, IEE90]. They are similar to the MCS algorithm in that a list is
maintained of all processors waiting on a lock. The first class of hardware techniques maintains
a distributed linked list using cache lines as link entries [IEE90]. The algorithm is essentially the
same as the MCS algorithm, except that it is implemented entirely in hardware. This class of scheme
is well suited to cache coherent multiprocessors employing distributed linked lists to store cache
. directory information (Section 2.3.3). Although the published schemes all use cache lines as links,
they could be easily modified to use local (non-cache) memory.

The second class of hardware techniques maintains a centralized list at the main memory
controller corresponding to the lock address [L*90]. These techniques typically exploit the hard-
ware required by directory methods that maintain centralized directory information (Section 2.3.3).
If directories are implemented as linked lists, the lock algorithm is essentially the same as the MCS
algorithm except the links are all kept at one memory controller. If directories are implemented as
bit vectors, process identifiers are kept as sets and FIFO information is lost.

Care must be taken with lock implementations that exploit cache coherence hardware to
ensure that list information is not lost when cache lines are displaced or directory entries re-used. If
cache lines holding lock links are “locked” in a set-associative cache, a deadlock situation can arise
when all the entries-of a set are assigned to lock link structures; if this situation arises and a cache
miss occurs on a block that maps to the same set, special action must be taken to ensure that the
processor does not deadlock and that list information is preserved. A similar situation can arise in a
centralized linked-list directory scheme, in which there is usually a limited supply of link structures
that is subject to exhaustion. Since this is a (hopefully) rare situation, lock operations that find no
free links can be forced to retry until a link becomes available.

Empirical results in [MCS91] indicate that there is little performance to be gained with
hardware implementations of locks, so they are desirable only if the extra hardware cost is very
small. For multiprocessors with linked list cache coherence schemes, the added cost is a slightly
more complex state machine in the memory or cache controllers, so the extra cost is minimal.

131

5.2.4 Barrier Implementations

Like locks, barriers can be efficiently implemented in software using fetch&op primitives.
The tree barrier of Mellor-Crummey and Scott is representative of the most efficient algorithms
[MCS91]. The tree barrier algorithm minimizes network contention by combining barrier requests
in software. Each process is mapped to a node in a tree. When a process arrives at a barrier, it
waits until all of its children arrive at the barrier and then indicates its arrival to its parent. When all
processes have arrived, the root initiates wakeup by issuing “wake-up calls” to its children. When
wakened, children wake up their children and the process repeats until all processes are resumed.
The detailed algorithm features a number of low-level optimizations that are described in [MCS91].

The tree barrier algorithm has the following properties:

1. Ithas a critical path of length OClog N).

2. Tt only requires space proportional to the number of processors that meet at the barrier.
3. Itrequires O(V) network traffic, the minimum possible.

4. All spinning is performed on local variables.

Hardware barrier implementations have been published in {HRS88b, Hos89, GS89]. In
[Hos89], all processors are connected to a large AND gate that asserts a barrier signal when all
processers arrive at a barrier. When the barrier signal is asserted all processes are simultaneously
wakened and execution continues. This scheme severely restricts the number of barriers that a mul-
tiprocessor can support at one time. The schemes in [HRS88b, GS89] implement barriers using a
synchronization bus connected to all processors. By multiplexing the bus, a moderate number of
separate barriers can be supported. Barrier algorithms based on fetch&op can also be considered
hardware implementations because they rely on special combining hardware [AG89)]. Combining
hardware permits concurrent synchronization accesses to the same address to be satisfied simultane-
ously (or almost simultaneously). A detailed discussion of combining is in Section 5.2.6. Pseudo-
code for a combining barrier is shown in Figure 5.2. It uses fetch&increment, fetch&decrement
and fetch&no-op ! operations. When a process arrives at a barrier it increments or decrements the
arrival count based on its local sense flag (for efficiency, the sense flag obviates the need to reini-
tialize the arrival count after each barrer). If, based on the arrival count, the process is the last to

arrive, it clears or sets the global arrival flag. If the process is not the last to arrive, it repeatedly

!fetch&no-op is just a read operation that can be combined.

132

reads the global arrival flag until it indicates that all processes have arrived. With a combining net-
work, the minimum time to perform the barrier operation is only two round trip network crossings,
independent of the number of processors. In spite of its low latency, a great deal of network traffic
is generated as the processors spin on the wake-up flag. Section 5.3.3, however, shows how the
polling traffic can be eliminated by making simple modifications to a particular implementation of
a combining network. N

The AND gate and bus barrier schemes permit barrier operations in tens of processor
cycles, which is considerably faster than the best software algorithms. Barrier implementations
that rely on a combining network can perform a barrier operation in a minimum of 2 round-trip
network crossings. If a multistage network is used, this is log IV fewer crossings than required by
a good software scheme. If a single stage network is used, the performance improvement is less
because the software combining tree can be mapped onto the network of processors to minimize
the number of “hops” between tree nodes.

5.2.5 Implementation of Multiprefix Operations

Implementations of multiprefix operations are considerably more complex than barrier
or lock algorithms because of the order in which the binary function F’ must be applied. Efficient
hardware and software implementations have been published in [Ran87] and [CohS0], respectively.

The hardware scheme in [Ran87] employs randomization to construct an algorithm with
time and space complexity O(log V') and O(N), respectively, on a butterfly network with a modest
amount of combining hardware. Although it is described in the context of special purpose combin-
ing hardware, it can also be completely implemented in software using the techniques of Section
5.3.2. The algorithm is easily generalized to networks other than the butterfly.

The software multiprefix algorithm in [Coh90] requires only basic communication facil-
ities among processors. It assumes a binary hypercube interconnection network, but can be gener-
alized to other networks. The algorithm is complicated, and a detailed description of it is beyond
the scope of this summary. Time complexity is O(log N + Tsort(S,S)), where S is the length
of the largest list of values, and T'sorr(M, P) is the time to sort M items on P processors with a
given multiprocessor network. Space complexity is O(N).

Although the time complexity of both algorithms is the same, the software scheme is prob-
ably less efficient by a large constant factor. The hardware scheme scheme can also be pipelined,
permitting multiprefix operations to be applied at a much higher rate.

133

/* globally shared barrier structure */
shared structure {
/* nprocs initialized to # procs. arriving at barrier */

int nprocs;
int sense = 0;
int count =0;
boolean all_arrived = FALSE;
} BARRIER;
/* barrier code */
void barrier(bar)
BARRIER bar;
{

local int count;

if (bar.sense = 0) {
count = fetch&inc(bar.count);
if (count == bar.nprocs) {
bar.all_arrived = TRUE;

}
else {
while (fetch&nop(bar.all _arrived) == FALSE) {
/* do nothing */
}
bar.sense = 1;
}
}
else {
count = fetch&dec(bar.count);
if (count == 0) {
bar.all_arrived = FALSE;
}
else {
while (fetch&nop(bar.all _arrived) == TRUE) {
1* do nothing */
}
bar.sense = 0;
}
}

}

Figure 5.2: Pseudo-code for Combining Barrier Algorithm

134

B operations are an important subset of multiprefix operations that can be implemented
with fetch&op. This is because 3 operations do not impose an ordering constraint on the application
of the binary function F. The implementation requires a distinct synchronization address a; for each
of the L value lists (Eqn. 5.1). The contents of a; are initialized to /;;. A 8 operation with function
F is performed by having all processors proc(l;;), j # 1, issue fetch&F(a;,!;;). The result for
list 7 is then the contents of a;.

The use of fetch&op within a 3 operation provides a good example of where the high
bandwidth of a hardware combining scheme can be exploited. This example considers how pipelined
fetch&op’s can be be used to emulate a very large data parallel computer (many thousands of pro-
cessors) on a much smaller shared memory machine (several hundred processors). Emulation re-
quires that the thousands of virtual processors be mapped onto several hundred physical processors.
Given this mapping, the 3 operation can be performed by having each physical processor execute
~ the following:

/* issue fetch&op’s for all emulated processors */

for (all /;; on this processor) {
deferred_fetch&F(a;, I;;, address_of_result);
}

/* wait for fetch&op’s to complete */
fence;

Each physical processor serially issues fetch&op accesses for each of the list elements mapped to
it. With pipelined combining hardware, the fetch&op’s can be issued at a very high rate. This can
only be done, however, if processors can defer access to the results. The particular deferred access
mechanisms used here are:

o A deferred access fetch&op primitive, which does not force the processor to wait for the
result. The deferred fetch&op primitive requires an extra operand: a pointer to the memory
location in which the result is placed.

o A fence instruction, which forces the processor to stall until all outstanding references are
completed. This requires the processor to maintain a count of outstanding accesses. Fence
instructions have been suggested elsewhere for similar synchronization functions [B*85,
G*90a).

135

Assuming that most of the fetch&op operands and results reside in the local cache, most loop ac-
cesses (except the fetch&op’s) will be satisfied locally. At the end of the loop the fence operation
stalls the processor while the final fetch&op completes. With a sufficiently large number of virtual
processors, the stall time should be small compared to loop time, and good utilization should be
achieved. Good hardware support for fetch&op primitives provides a powerful way to emulate data
parallel computation.

5.2.6 Combining

In some programming models, simultaneous accesses to the same location are performed
concurrently, with the same result as if they were performed in some arbitrary serial order. This
powerful abstraction is known as combining, and can be used to construct efficient parallel algo-
rithms, including parallel queues, 3 operations, iteration assignment in parallel loops, and barriers
[AG89]. Because of fanout restrictions, the combining abstraction can only be approximated in an
implementation. In the simplest implementation, n concurrent fetch&op’s are performed in serial
order, requiring O(n) time. If the “op” in fetch&op is associative, however, the time can be reduced
to O(log n) by reordering the linear dependencies of a serial order into a tree. Implementations that
use this technique are said to support combining. Two or more fetch&op accesses that generate an
intermediate value are said to be combined.

Combining can be performed in hardware or software. One of the first combining imple-
mentations was developed for the multistage network in the NYU Ultracomputer [G*83c). This
implementation exploited the fact that simultaneous accesses to the same address pass through a
tree of switching elements, with the root at the memory bank holding the addressed data. The tree
of switching elements provides a natural way to reorder a serial application of the simultaneous
accesses. Hardware within each switch detects two or more simultaneous accesses to the same lo-
cation, and generates an intermediate result. To reduce network traffic, the switch forwards a single
access with the intermediate operand, and retains a record of the accesses that are combined. When
a result for the intermediate access is returned, it is split into return values for each of the combined
accesses. Variations of this combining scheme have been published in [P+ 85, SB77, TR88, Rt90].
The tree barrier described in Section 5.2.4 is an example of combining in software. Other examples
are in [G*89, PCYLS87].

There are two common combining situations with special properties that can be exploited
in an implementation. The first is combining in the context of a synchronous reference model. In

136

a synchronous reference model, processors issue shared accesses in lock-step. Several algorithms
have been published that exploit this synchrony to provide provably efficient combining (Ran87).
These efficient combining schemes can also be used in an asynchronous reference model by emulat-
ing asynchronous accesses. Emulation, however, introduces overhead that can reduce performance.
This was discussed in Section 4.2.3.

A second important combining situation arises in barrier and $ algorithms based on
fetch&op primitives. In barrier and 3 operations, a known set of processors issue fetch&op ac-
cesses to the same address in synchrony. We denote such fetch&op accesses as static fetch&op
accesses. fetch&op accesses that do not statisfy these restrictions are dynamic. static fetch&op
accesses can be exploited in efficient combining implementations [Ran87], which we call static
combining schemes. Alternatively, implementations supporting dynamic fetch&op accesses are
called dynamic combining schemes. The software and hardware barrier schemes in Section 5.2.4
are examples of static combining. Section 5.3.3 analogous ways to support multiprefix operations.

Most published hardware combining schemes support dynamic combining with asyn-
chronous references. In its full generality, hardware implementations of asynchronous combining
are very expensive, so most published implementations restrict the number and type of simultaneous
combining operations that can take place. [SSG89] and [HRS88a] show how fetch&increment and
fetch&decrement can be combined efficiently using a global synchronization bus. [R*90] describes
an efficient implementation of read combining. [TR88] and [LV88b)] describe efficient combining
schemes for networks with bit-wide datapaths. Published implementations of combining hardware
for networks with wide paths and less restrictive operations have been very expensive; [PN85] es-
timated that a combining switch for a multistage network would require 6 to 24 times as much
hardware as comparable non-combining network. Combining with synchronous references can
be implemented efficiently, but synchronizing processor references has a potential performance
penalty.

Hardware combining support is attractive for two reasons. The first is that latency of
a combining operation can probably be reduced by a factor of 2 or more over a software imple-
mentation. The second is that a software implementation cannot be pipelined; the bandwidth of
combining hardware is therefore higher because of reduced latency and pipelining. It is likely that
combining hardware can be sufficiently pipelined to permit fetch&op requests to be accepted by a
switch every 2 cpu cycles, with a processing latency of 20 or less (see [Joh90) and the combining
implementation described in Section 5.3). A software implementation of either algorithm (using
techniques described in Section 5.3.2) would probably require at least 40 cycles per fetch&op, and

137

could not be pipelined. A hardware scheme would therefore increase bandwidth by an order of
magnitude.

5.2.7 Summary

Some form of synchronous or asynchronous combining is necessary in software or hard-
ware to construct many scalable parallel algorithms. In particular, static combining is useful for
implementing efficient barriers and multiprefix operations, and dynamic combining is useful for
implementing efficient parallel queues. Combining in hardware is attractive because of the much
higherbandwidthit offers. A provably efficient algorithm is known for implementing dynamic com-
bining in hardware for a synchronous reference model (or, using the techniques of Section 5.3.2, in
software). Although the algorithm can be modified to emulate combining with asynchronous ref-
erences, there is a potential performance penalty. On the other hand, dynamic combining hardware
can be easily modified to support static combining. One approach is described in Section 5.3.3.
Section 5.3 describes a dynamic combining implementation that should require far less hardware
than conjectured in [PN85). Furthermore, there seems to be no reason why the performance of the
implementation should be significantly worse than previous dynamic combining schemes.

5.3 Efficient Implementation of Dynamic Combining

As previously mentioned, most published implementations of dynamic combining for
networks with wide paths have been very expensive. This section presents a hardware technique
that requires much less hardware than previously conjectured [PN85]. Because the design applies
to networks built from jxk crossbar switches, it can be used in Delta networks, direct k-ary n-
cubes and meshes. The same ideas can be used to construct an analogous software algorithm. The
software equivalent is described in Section 5.3.1. This algorithm is simpler than that published by
Goodman [G*89], and requires no spinning. Section 5.3.3 shows how the hardware scheme can
be easily modified to support barriers without the large number of network transactions required
by a conventional combining barrier (Figure 5.2). The modifications result in what is essentially
a hardware implementation of the software barrier algorithm described in Section 5.2.4. Similar
modifications that support multiprefix operations are presented in Section 5.3.3.

138

5.3.1 Efficient Dynamic Combining in Hardware

The combining hardware described here assumes that combining is only required for
fetch&op instructions, which are distinct from reads, writes and coherence transactions. It is also
assumed that the multiprocessor network is constructed of jxk crossbar switches, with a routing al-
gorithm that ensures that the response to a memory request returns on the same path as the request.

Figures 5.3 and 5.4 show the proposed c6mbining hardware. Figure 5.3 is a typical kxk
switch implementation (Figuré 4.7) augmented with an extra input and output port on the cross-
bar switch, which are connected to a combiner composed of a combining table (Figure 5.4), an
arithmetic/logic unit, and a controller. For simplicity, the combiners operate serially, so only one
combining transaction can be handled at a time. All fetch&op transactions are routed through the
combiner twice: once when they arrive at the switch and again after a combining entry has been
established. The time interval while the transaction is in queue is the combining window during
* which other fetch&op transactions can be combined with the first. When it first arrives, a fetch&op
transaction is compared against other buffered fetch&op transactions to see if the same operation is
being made on the same location. If there is a match, the transaction is combined and the transaction
need not be forwarded. If there is no match, a new table entry is inserted and the transaction is put
back on the combiner queue; the new table entry is marked active to indicate that it is eligible for
combination with future transactions. When a transaction makes a second pass through the com-
biner, the combiner determines if any combining has taken place since the first pass. If combining
has occurred, the table entry must now be marked inactive and the fetch&op operand must be re-
placed with the value of the combined operand. If no combining has occurred, the entry is deleted
since no decombining is required. There are clearly many ways in which the combiner queue can
arbitrate among new combining transactions and transactions making a second pass.

The combining table provides associative access to combining entries. This can be imple-
mented efficiently using a set-associative organization (Figure 5.4). Ina set-associative organization
(Smi82], the table is composed of n; lines of n, entries per line. To access entry z, a line is selected
by mapping = to some value between 0 and n; — 1; this mapping is typically done by making n; a
power of 2 and stripping off the log, n; low order bits of 2. The addresses of the n, entries of the
selected line are then compared, in parallel, to find the desired entry.

The identifier of a combining table entry has three components: the address of the syn-
chronization variable, the fetch&op operation, and the instance id, which is used to differentiate
two or more distinct combining entries for the same address. The need for instance id’s is illus-

139

Crossbar

Combiner
Queue

Combining

Controller

Combliner

Figure 5.3: Combining Switch Architecture

Combining
Hardware

140

address entry data
- e
address op instance active valid vals[.] inputs[.] result n
20 6 2 1 1 60 18 10 [3 |
Lines
—Y
\ -
\\ -
\ 7
\ -
\ P
\ -~
\ -7 Sets
By pd -
ve
Set 1 Set 2 Set 3 Set 4
address .
compare compare compare compare
| | I |

— mutltiplexor
select
emr& data

Figure 5.4: Combining Table Architecture

141

trated as follows. At time ¢ two fetch&add transactions arrive for address z and are combined. At
time ?3, after the first combined fetch&add transaction has been forwarded, two other fetch&add
transactions arrive for the same address. If these transactions are combined, they require a separate
table entry and the entries must be differentiated by distinct instance id’s.

A combining table lookup requires these steps:

1. Select the table line using the log, n; bits of the fetch&op address.

2. In parallel, compare the address in each of the n, sets against the fetch&op address and
operation.

3. For the entries whose addresses and operations match, examine the valid bits, active bits and
instance id’s. If an active entry exist, combine the fetch&op. If one or more inactive entries
exist, find the largest instance id idmqe,. Create a new entry and assign it an instance id of
tdmar + 1. If no free entries exist for this line, forward the fetch&op to the next switch.

The number of sets in the combining table limits the number of combining instances that
can be stored for a particular address. Since more than one address can map to the same line in the
table, the maximum number of combining instances may be less. We expect 4 to be a reasonable
number of sets.

A combining entry is composed of 8 fields (Figure 5.4) (values in brackets indicate the
number of bits devoted to this field assuming: switch fanin of 6, 1024 processors, 32 bit fetch&op
address, 32 bit limit on fetch&op operands, 6 bit op-field, n, = 4):

o fetch&op address (32)

fetch&op operation (6)
o instance id (2)
¢ n.: the number of combinings that have taken place (4)

e vals;[]: an array of the fetch&op operands corresponding to the n. combined transactions.
This array has a maximum number of entries corresponding to the fanin of the switch. (6*32)

e inputs;(]: an array of the switch input numbers corresponding to the n. combined transac-
tions This array has a maximum number of entries corresponding to the fanin of the switch.
(6*3)

142

e an active flag, indicating whether or not combining can still occur for this entry (1)
e avalid bit, indicating whether or not the entry is free (1)
¢ the cummulative value of performing the fetch&op operation on all n. vals (32)

With the above assumptions, 36 bytes are required per entry, which is comparable to the
size of a cache line. Several thousand entries could therefore be provided at reasonable cost.

The time to process a fetch&op transaction with this scheme will clearly be considerably
longer than the time required to process a read or write; we estimate 5 to 10 times as long. Because
of this, combining should be restricted to variables that are known to cause significant contention.
The extra processing time, however, will certainly be no longer that the time required to do the
equivalent combining operation in software.

The complexity of this combining scheme is minimized by handling only one combining
or decombining transaction at a time. This is in contrast with other designs that attempt to com-
bine two or more transactions simultaneously, requiring sophisticated multiport queues and tables
[DKSS8S, Lee87, DGK86, LV88b, SB77]. The impact on the performance of reads, writes and
coherence operations should be small because the modifications to the basic switch are minimal:
the buffer controllers have a few extra states, the buffer decoders have an extra case to consider,
and the size of the crossbar is increased by one.

There are many ways to optimize the performance of the basic architecture of Figures 5.3
and 5.4, including:

1. Pipeline the combiner.
2. Provide a two ported combining table and separate decombiner.

3. Provide amechanism to permit unblocked fetch&op transactions to bypass the combiner. The
effectiveness of this optimization is probably workload dependent.

5.3.2 Efficient Dynamic Combining in Software

The hardware combining scheme of the previous section can be used as the basis of an
analogous software scheme. The techniques described here could also be used in a software version
of Ranade’s combining algorithm [Ran87).

In the hardware scheme, a combining tree is dynamically mapped to a tree of switches
in the network. In the software scheme, processors are dynamically mapped to nodes in a logical

143

combining tree. Each node contains a table of combining data structures that is analogous to the
hardware table in Figure 5.4. Distinct trees are used for distinct synchronization variables. For
maximum performance, each mapping should attempt to minimize the communication required
to traverse the tree. Figures 5.5 through and 5.7 provide a sketch of the sofiware algorithm. They
assume the availability of the following message passing primitives:

1. send_and_interrupt(proc, msg): proc isinterrupted and msg is passed to an interrupt handler;
the sender does not block. In dynamic combining, the sequence of combining operations is
not known in advance, so processors must be permitted to interrupt each other.

2. send(proc,msg). msg is sent to proc; the sender does not block and proc can receive the
message only with the receive primitive.

3. receive(proc, msg): the receiver retrieves msg from proc if one has arrived, or blocks until
one does.

These primitives could be built from lower level synchronization primitives and an interrupt facility.
The following different msg’s are used:

1. start_fetch&op(addr, val)

2. end fetch&op(addr)

3. arrival combined(addr)

4. arrival_not_combined(addr)
5. result(adadr, val)

As in the hardware scheme, two accesses to the combining table for each fetch&op (that is
not itself combined) provide a window of time during which other fetch&op’s can combine with the
first. It is assumed that the interrupt handler enforces mutual exclusion for each table access. Proces-
sors send fetch&op transactions to their parent in the combining tree. When a start fetch&op(addr,
val) first arrives at a parent, a table lookup is performed for an entry corresponding to addr and op.
If an active entry exists, the transaction is combined and arrival_combined(addr) returned to the
child. The child then waits for a result. If an active entry does not exist, an active one is created
with a distinct instance number, and arrival_not.combined(addr) retumed to the child. The child
must now wait for some length of time and issue end_fetch&op(addr) to the parent. The parent now

static_fetch&op(addr, val)

{
send(parent, start fetch&op(adadr, val));
receive(parent, msg);
switch (msg) {
case arrival_combined(addr).
/* do nothing */
case arrival_not_combined(addr).
wait until combining window is over;
send(parent, end_fetch&op(addr)),
case result(addr, val):
return(val);
}
receive(parent, msg),
switch (msg) {
case result{addr, val).
return(val);
}
}

Figure 5.5: Software Combining Algorithm: fetch&op Routine for Leaves

144

145

interrupt_handler(msg, source)
{
switch (msg) {
case start_fetch&op(addr, val).
if (table entry for addr) {
send(source, arrival_combined(addr));
} .
else {
create a table entry;
send(source, arrival .not_combined(addr)),

}

retumn,

case end_fetch&op(addr):
get table entry for addr;
send(parent, start_fetch&op(addr, val)),
return;

case result(adadr, val):
get table entry for addr;
for all children {
send(child, result(addr, val)),
}

delete table entry for addr;
return;

case arrival_combined(addr):
/* do nothing */
return;

case arrival_not_combined(addr):
wait until combining window is over;
send(parent, end_fetch&op(addr));
return,

Figure 5.6: Software Combining Algorithm: Interrupt Handler for Interior Nodes

146

interrupt_handler(msg, source)

switch (msg) {
case start_fetch&op(addr, val).
perform op;
send(source, result(addr, val));
return;

Figure 5.7: Software Combining Algorithm: Interrupt Handler for Root

marks the corresponding table entry inactive and forwards a (possibly) combined start fetch&op
message to its parent. At the root of the combining tree, the sole copy of the combining variable is
operated on and the values prior to each operation are returned via result messages to the children
that issued start._fetch&op’s. The children calculate result values and return result messages to their
children until the process completes.

The relative performance of the hardware and software combining schemes, like the bar-
rier schemes, is dependent on whether a single or multiple stage interconnection network is used.
With a multistage network, each arc in the combining tree requires the crossing of log N and 1 net-
work links by the software and hardware schemes, respectively. In this case the hardware scheme
is clearly superior.

With a single stage network, the combining tree can be statically mapped to the network
topology in such a way that the link crossings would be similar for both schemes, and in this case
a more detailed study is required. The software scheme has the significant advantage that it can
support an arbitrary set of fetch&op operations. In particular, floating point operations could be
easily provided. The software scheme, however, “steals” cycles from the processors to execute
algorithm code and to do interrupt handling. For each fetch&op request from a single processor,
log N processors must execute code from some portion of the algorithm, so the fraction of stolen
cycles could become significant for finer grained parallel computations.

5.3.3 Modifications to Support Static Combining

The dynamic combining hardware in Figure 5.3 can be easily modified to support syn-
chronous combining primitives such as barriers and multiprefix operations. Since each use of a

147

static combining primitive involves a predetermined set of processors, a combining tree can be
programmed into the combining hardware using special setup commands. When this is done, the
combiner corresponding to a particular node in the combining tree can wait until all of its children
have been combined before forwarding a fetch&op primitive to its parent. As before, an analogous
scheme can be implemented in software.

Combining tree information can be stored in the combining table fields as follows. The
number and identities of children are stored in the result and values fields, respectively. The
count of children that have synchronized is kept in the combining count (n in Figure 5.4). To set up
the combining table, a register(addr, op) transaction is sent at initialization time by all processors
that participate in the combining tree. When a combiner receives a register request, it locates the
corresponding table entry (allocating one if necessary), records the input number of the originating
switch, and increments the child count. When a combiner receives a static combining transaction, it
locates the corresponding table entry, combines the transaction with those that have already arrived,
and increments the running child count. If all children have arrived, a single combined transaction
is forwarded to the combiner’s parent switch. At the root combiner, the synchronization variable is
updated and the results are disseminated to the children recursively. The cost of these modifications
are slightly more complex controllers for the combiner and main memory.

Since the combining table is of limited size, register requests may sometimes fail. If this
occurs, register failure transactions are forwarded to the root and to all participating processors,
and some backup algorithm is used. The root must somehow remember that failure has occurred so
that processors sending register requests in the future are notified of the failure; this could be done
by storing a reserved value at the root.

It is easy to construct efficient barrier and multiprefix operations using this synchronous
combining scheme. A barrier operation can be implemented using a static fetch&op with arbitrary
“op”' and discarding the result. A multiprefix operation can be implemented like the 3 operation
in Section 5.2.5. Static fetch&op’s must be used, and a register request is required to initialize
combining table entries.

5.4 Conclusions

This chapter has summarized known techniques for implementing common shared mem-
ory synchronization primitives in hardware and software, indicating their advantages and disad-
vantages. A technique was described for implementing static and dynamic combining in hardware

148

or software. It was also shown how this technique readily supports barriers and multiprefix op-
erations. Such a technique is desirable because it supports the efficient emulation of many useful
parallel programming paradigms, including those used in traditional shared memory programming
environments, the Connection Machine [Hil85], the Fluent abstract machine [RBJ88), the Ultra-
computer [Sch80], and the EPEX parallel Fortran model [D*88]. A duality exists among most
of the described hardware and software synchronization techniques, so that each offers the same
asymptotic performance. The hardware schemes should be faster by a constant factor, however, at
the expense of extra circuitry. For combining operations the performance improvement should be
considerable because the implementation can be pipelined. It is estimated that the proposed hard-
ware combining scheme should require about 1.5 to 2 times the circuitry of a basic 7x7 network
switch. Such a network switch is probably pin-limited, so the added cost appears minimal compared
to the potential performance gain.

149

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this dissertation implementation and evaluation techniques were presented for directory-
based cache coherence schemes. Although the focus has been on scalable cache coherence, a thor-
ough performance evaluation required detailed consideration of interconnection networks and syn-
chronization schemes.

In Chapter 2, known methods were reviewed for efficiently implementing directories. The
tag caching scheme was introduced. There are now a variety of efficient directory implementations
that do not restrict the number of copies of a block.

In Chapter 3, the performance of full directory protocols were evaluated using execution
driven analysis of three parallel programs. It built upon previous work in several ways. First, it
applied efficient stack simulation techniques to the evaluation of directory protocols, extending the
work of [Tho87] to support a competitive scheme. This is significant because it permits multipro-
cessors with several (uniform) cache sizes to be evaluated in in a single simulation run. Chapter
3 also introduced the concept of an update-run to a cached block. update-runs supplement the
ping/cling and write-run locality models with a measure of invalidation/update traffic suitable for
point-to-point networks.

The empirical data in Chapter 3 extends previously published data by evaluating update
and competitive directory schemes, and by considering larger numbers of processors. Unlike Eg-
gers’ shared bus study [EK89b}, the results here account for the extra point-to-point message traffic
required for invalidates or updates. When considering point-to-point traffic, the update (competi-
live) protocols generated 0 to 300% (0 to 60%) more network traffic than the invalidation protocol.

150

Since the average number of updates per shared writes ranged from 4 to 16 (2 to 7) for the update
(competitive) simulations, this was not surprising. Although considerable extra traffic was gener-
ated by the update and competitive protocols, the reduction in misses was substantial: read misses
were reduced by 20 to 70% (15 to 60%). With buffered writes and blocking on read misses, the
miss reductions corresponded to only modest increases in processor utilization (5 to 15%).

The growth of coherence traffic with multiprocessor size was also considered Chapter 3.
The frequency of invalidations, updates and invalidation misses on a per-processor basis increased
approximately linearly with the number of processors. Invalidations per shared write grew from 0.2
to 2.2 when the number of processors grew from 4 to 128. For the update (competitive) protocol,
updates per shared write grew from 2 to 16 (0.5 to 6) over the same range of sizes. The simple update
and competitive protocols considered here are therefore inadequate for more than 200 processors
without some additional mechanism to further limitupdate traffic. The invalidation protocol appears
suitable for more than 500 processors.

New network modeling techniques developed in Chapter 4 permitted a systematic com-
parison of a broad class of interconnection networks. The techniques built upon the parametric
decomposition scheme used in the Bell Laboratories Queueing Network Analyzer and finite buffer
algorithm of Altiok and Perros to support realistic network features: virtual cut-through flow con-
trol, and the use of virtual channels for congestion reduction. Furthermore, the models support
arbitrary Markovian routing and two moment approximations of arrival processes. The models are
also reasonably efficient, offering performance estimates in § to 100 times less cpu time that simu-
lations. Results for hypercube, multistage, three dimensional toroidal mesh, and three dimensional
mesh topologies showed the tradeoffs available among bandwidth and latency. The traffic estimates
of Chapter 4 suggest that a three dimensional mesh topology with wide paths is a good compromise
for several hundred processors. ,

The caching analysis in Chapter 3 assumed that the synchronization primitives used in the
benchmarks (locks and barriers) had ideal implementations: This was done so that the comparison
of coherence protocols would be unbiased by coherence activities generated by naive synchro-
nization techniques. Chapter 5 justified this assumption by describing efficient implementations
for locks and barriers, in hardware and software. Section 5.3 also described software and hard-
ware implementations for combining with an asynchronous reference model. Section 5.3 showed
how these implementations could be modified to support multiprefix operations, which offer direct
support for several powerful programming paradigms. It is estimated that the proposed hardware
combining scheme should require about 1.5 to 2 times the circuitry of a basic 7x7 network switch.

151

Such a switch is probably pin-limited, so the added cost appears minimal compared to the potential
performance gain.

6.2 Future Work

This work can be extended in several ways. First, there is a need for better benchmark
data, and evaluation techniques with much greater efficiency. The empirical data in Chapter 3
was collected from about 1 second of execution of three programs on a relatively small multipro-
cessor (64 cpu’s). Furthermore, the three programs represent only a small class of programming
paradigms. Innovative emulation techniques are desperately needed to permit large parallel pro-
grams to run to completion on realistically large data sets. Current trace-driven techniques are slow
because they are too detailed. A better understanding of the significance of various modeling de-
tails would permit an intelligent tradeoff of accuracy for speed. A step toward this goal would be
an investigation of trace sampling [LPI88].

There are several ways in which the network modeling techniques of Chapter 4 can be
extended. It may be possible to model some of the recently proposed adaptive routing schemes
[LH91]. Since adaptive routing schemes adjust the Markovian routing parameters based on net-
work load, one approach is to place the algorithm of Figure 4.15 inside an additional iterative loop
that adjusts the routing parameters based on the network load observed in the previous iteration.
Modifications similar to those used to model virtual channels may permit the support of multiple
message priorities. Priorities may be useful in improving the performance of synchronization and
other critical transactions. Finally, more efficient modeling techniques for virtual channels and
superposition could greatly reduce the currently large computation times for large networks.

Finally, the combining hardware described in Chapter 5 needs to be thoroughly evaluated
and compared against competing schemes, such as Ranade’s Fluent implementation [RBJ88].

152

Bibliography

[A*85)

[A*88a]

[A*88b)

[A*89)

[AB84]

[AB86]

[ABC86]

[ABC+89]

[AG88]

{AG89]
[AGS0]

[AH90]

M. Ajmone Marsan et al. Generalized stochastic petri net models of multiprocessors with cache
memories. InInternational Conference on Supercomputing Systems, pages 690-696, 1985.

A. Agarwal et al. An evaluation of directory schemes for cache coherence. In Proceedings of
the International Symposium on Computer Architecture, pages 280-289, May 1988.

F. Allen et al. An overview of the PTRAN analysis system for multiprocessing. Journal of
Parallel and Distributed Computing, 5:617-640, 1988.

Y. Afek et al. A lazy cache algorithm. In ACM Symposium on Parallel Algorithms and Archi-
tectures, pages 209-222, 1989.

J. Archibald and J-L. Baer. An economical solution to the cache coherence problem. In Pro-
ceedings of the International Symposium on Computer Architecture, pages 355-362, 1984.

J. Archibald and J. Baer. Cache coherence protocols: Evaluation using a multiprocessor simula-
tion model. ACM Transactions on Computer Systems, 4(4):273-298, Nov. 1986.

M. Ajmone Marsan, G. Balbo, and G. Conte. Performance Models of Multiprocessor Systems.
MIT Press, 1986.

M. Ajmone Marsan, G. Balbo, G. Chiola, A. Ciccardi, and G. Conte. Estimating the average
delay in a delta interconnection network operating according to the cut-through packet switching
technique. Performance of Distributed and Parallel Systems, pages 491-510, 1989.

Anant Agarwal and Anoop Gupta. Memory-reference characteristics of multiprocessor applica-
tions under mach. In SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems, pages 215-225, 1988.

George S. Almasi and Allan Gottlieb. Highly Parallel Computing. Benjamin/Cummings, 1989.

Anant Agarwal and Anoop Gupta. Temporal, processor and spatial locality in multiprocessor
memory references. Frontiers of Computing Systems Research, 1:271-295, 1990.

Sarita Adve and Mark Hill. Implementing sequential consistency in cache-based sysiems. In
Proceedings of the International Conference on Parallel Processing, pages 47-50, 1990.

[Aky88)

[AN87]

(AP87]

[AP89]

[AS83]

[ASKS5]

(B+84]
(B+85)

(BD81]

[BD86)

(Bel82)

(BH89)

(BK88]

(Ble89)

153

Ian F. Akyildiz. Mean value analysis for blocking queueing networks. /EEE Transactions on
Software Engineering, 14(4):418-428, April 1988.

Arvind and Rishiyur S. Nikhil. Executing a program on the MIT tagged-token dataflow archi-
tecture. In Proceedings of the PARLE Conference, Eindhoven, June 1987; in Lecture Notes in
Computer Science, pages 1-29. Springer-Verlag, 1987.

T. Altiok and H. G. Perros. Approximate analysis of arbitrary configurations of open queueing
networks with blocking. Annals of Operations Research, 9:481-509, 1987.

Seth Abraham and Krishnan Padmanabhan. Performance of the direct binary n-cube network
for multiprocessors. JEEE Transactions on Computers, 38(7):1000-1011, July 1989.

G.R. Andrews and F. B. Schneider. Concepts and notations for concurrent programming. Com-
puting Surveys, 15(1):3-43, March 1983.

W. Abu-Sufah and A. Y. Kwok. Performance prediction tools for cedar: A multiprocessor su-

percomputer. In Proceedings of the International Symposium on Computer Architecture, pages
406-413, 1985.

D. Bittonet al. A taxonomy of parallel sorting. Computing Surveys, 16(3):287-318, Sept. 1984,

W. C. Brantley et al. RP3 processor-memory element. In Proceedings of the International
Symposium on Computer Architecture, pages 782-789, June 1985.

F. A. Briggs and M. Dubois. Cache effectiveness in multiprocessor systems. In Proceedings of

the ACM Conference on the Measurement and Modeling of Computer Systems, pages 306-313,
1981.

P. Bitar and A. M. Despain. Multiprocessor cache synchronization: Issues, innovations, evolu-

tion. In Proceedings of the International Symposium on Computer Architecture, pages 424433,
June 1986.

Peter C. Bell. The use of decomposition techniques for the analysis of open restricted queueing
networks. Operations Research Letters, 1(6):230-235, December 1982.

Eugene D. Brooks and Joseph E. Hoag. A scalable coherent cache system with fuzzy direc-
tory state. Technical report, University of California, Lawrence Livermore National Laboratory,
1989,

Richard G. Born and James R. Kenevan. Analytic derivation of processor potential utilization
in straight line, ring, square mesh, and hypercube networks. In SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, pages 94-103, 1988.

G. E. Blelloch. Scans as primitive operations. /EEE Transactions on Computers, 38(11):1526-
1538, November 1989.

(BST89]

[C+89]

[C*90]

[Ct91]

[CF78]

[CG89]

[CKA91]

[CKMSS]

[Coh90]

[CS78]

[CV88]

[CV90)

[D*86]

(D*88]

154

Henri E. Bal, Jennifer G. Steiner, and Andrew S. Tanenbaum. Programming languages for dis-
tributed computing systems. Computing Surveys, 21(3):261-322, September 1989.

D. R. Cheriton et al. Multi-level shared caching techniques for scalability in VMP-MC. In
Proceedings of the International Symposium on Computer Architeciure, pages 16-24, 1989,

D. Chaiken et al. Directory-based cache coherence in large-scale multiprocessors. /EEE Com-
puter, 23(6):49-59, June 1990.

David E. Culler et al. Fine-grain parallelism with minimal hardware support: A compiler-
controlled threaded abstract machine. In Proceedings of the International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, pages 164—175, 1991.

L. M. Censier and P. Feautrier. A new solution to coherence problems in multicache systems.
IEEE Transactions on Computers, C-27(12):1112-1118, Dec. 1978.

Nicholas Carriero and David Gelernter. How to write parallel programs: A guide to the per-
plexed. Computing Surveys, 21(3):323-358, September 1989.

David Chaiken, John Kubiatowics, and Anant Agarwal. LimitLESS directories: A scalable
cache coherence scheme. In Proceedings of the International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, pages 224-234, 1991.

R. Cytron, S. Karlovsky, and K. P. McAuliffe. Automatic management of programmable caches.
In Proceedings of the International Conference on Parallel Processing, volume 11, pages 229
238, 1988.

Evan Reid Cohn. Implementing the multiprefix operation efficiently. Journal of Parallel and
Distributed Computing, 10:29-34, 1990.

K. M. Chandy and C. H. Sauer. Approximate methods for analyzing queueing network models
of computing systems. Computing Surveys, 10(3):281-317, Sept. 1978.

H. Cheong and A. V. Veidenbaum. Stale data detection and coherence enforcement using flow
analysis. In Proceedings of the International Conference on Parallel Processing, pages 138-145,
1988.

Hoichi Cheong and Alexander V. Veidenbaum. Compiler-directed cache management in multi-
processors. IEEE Computer, 23(6):39-48, June 1990.

M. Dubois et al. Memory access buffering in multiprocessors. In Proceedings of the Interna-
tional Symposium on Computer Architecture, June 1986.

F. Darema et al. A single-program-multiple-data computational model for EPEX/FORTRAN.
Parallel Computing, 7:11-24, 1988.

[Dal90a]

(Dal90b]

(Dal90c]

(DB82]

(DGK86)

(DI81a]

[DJ81b]

[DKSS85]

[DR*87]

(DS87]

[Dub85]

(Eggol]

[EK88]

(EK89a]

155

Yves Dallery. Approximate analysis of general open queueing networks with restricted capacity.
Performance Evaluation, 11:209-222, 1990.

William J. Dally. Performance analysis of k-ary n-cube interconnection networks. /EEE Trans-
actions on Computers, 39(6):775-785, June 1990.

William J. Dally. Virwal-channel flow control. In Proceedings of the International Symposium
on Computer Architecture, pages 60-68, 1990.

M. Dubois and F. A. Briggs. Effects of cache coherency in multiprocessors. /JEEE Transactions
on Computers, C-31(11):1083-1099, Nov. 1982.

Susan Dickey, Allan Gottlieb, and Richard Kenner. Using VLSI to reduce serialization and
memory traffic in shared memory parallel computers. In Charles E. Leiserson, editor, Advanced
Research in VLSI, pages 299-316, 1986.

D. M. Dias and J. R. Jump. Packet switching interconnection networks for modular systems.
IEEE Compuier, pages 43-53, Dec. 1981.

Daniel M. Dias and J. Robert Jump. Analysis and simulation of buffered delta networks. IEEE
Transactions on Computers, 30(4):273-282, April 1981.

S. Dickey, R. Kenner, M. Snir, and J. Solworth. A VLSI combining network for the NYU ultra-

computer. In Proceedings of the International Conference on Computer Design, pages 110-113,
1985.

F. Darema-Rogers et al. Memory access patterns of parallel scientific programs. In SIGMET-
RICS International Conference on Measurement and Modeling of Computer Systems, pages 46—
58, 1987.

William J. Dally and Charles L. Seitz. Deadlock-free message routing in multiprocessor inter-
connection networks. JEEE Transactions on Computers, 36(5):547-553, May 1987.

M. Dubois. A cache-based multiprocessor with high efficiency. JEEE Transactions on Comput-
ers, C-34(10):968-972, Oct. 1985.

Susan J. Eggers. Simplicity versus accuracy in a model of cache coherence overhead. /EEE
Transactions on Computers, 40(8):893-906, August 1991,

S.J.EggersandR. H. Katz. A characterization of sharing in parallel programs and its application
to coherency protocol evaluation. In Proceedings of the International Symposium on Computer
Architecture, pages 373-383, June 1988.

S. J. Eggers and R. H. Katz. The effect of sharing on the cache and bus performance of par-
allel programs. In Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 257-270, 1989.

(EK89b]

{Fen81]
[G*+83a]

[G*83b)

(G*83c]

(G*89]

[G*90a)

[G*90b]

[Gec74]

[GGHI1]

[GKW85]

[GL73]

[GM88]

156

S.J. Eggers and R. H. Katz. Evaluating the performance of four snooping cache coherency

protocols. In Proceedings of the International Symposium on Computer Architecture, pages 2—
15, 1989.

T. Feng. A survey of interconnection networks. /EEE Computer, pages 12-27, Dec. 1981.

D. Gajski et al. Cedar-a large scale multiprocessor. In Proceedings of the International Confer-
ence on Parallel Processing, pages 514-529, August 1983.

A. Gottlieb et al. Basic techniques for the efficient coordination of very large numbers of co-
operating sequential processors. ACM Transactions on Programming Languages and Systems,
5(2):164-189, Apr. 1983.

A. Gottlieb et al. The NYU Ultracomputer—designing an MIMD shared memory parallel com-
puter. [EEE Transactions on Computers, C-32(2):175-189, Feb. 1983.

J. R. Goodman et al. Efficient synchronization primitives for large-scale cache-coherent multi-
processors. In Proceedings of the International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 64-73, 1989.

Kourosh Gharachorloo et al. Memory consistency and event ordering in scalable shared-memory
multiprocessors. In Proceedings of the International Symposium on Computer Architecture,
pages 15-26, 1990.

A. Gupta et al. Reducing memory and traffic requirements for scalable directory-based cache
coherence schemes. In Proceedings of the International Conference on Parallel Processing,
pages 312-321, August 1990.

J. Gecsei. Determining hit ratios for multilevel hierarchies. /BM Journal of Research and De-
velopment, 18(4):316-327, July 1974.

Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Performance evaluation of memory
consistency models for shared memory multiprocessors. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating Systems, pages
245-259, 1991.

J. R. Gurd, C. C. Kirkham, and I. Watson. The manchester prototype dataflow computer. Com-
munications of the ACM, 28(1):34-52, January 1985.

L. R. Goke and G. J. Lipovski. Banyan networks for partitioning multiprocessor systems. In
Proceedings of the International Symposium on Computer Architecture, pages 21-28, 1973.

Levent Gun and Armand M. Makowski. Matrix-geometric solution for finite capacity queues
with phase-type distributions. Performance '87, pages 269-282, 1988.

[Goo89]

(GS89]

[GW8S)

[H*91)

[Hil85]

[Hoa78)

[Hos89]

[HRS88a]

[HRS88b]

[HS89]

(Hud89]

(HWS8S]

(IEES0]

[Jen83]

[Joh9Q]

157

James R. Goodman. Cache consistency and sequential consistency. Technical Report 61, Scal-
able Coherent Interface Committee, March 1989.

P.E. Green, Jr. and H. S. Stone. The implementation of a barrier for multiprocessors by means
of an optical bus. Technical Disclosure YO888-0018, January 9, 1989, IBM Research, 1989.

J.R. Goodman and P. J. Woest. The Wisconsin Multicube: A new large-scale cache-coherent

multiprocessor. In Proceedings of the International Symposium on Computer Architecture, pages
422-433, May 1988.

P. J. Hatcher et al. Data-parallel programming on mimd computers. IEEE Transactions on
Parallel and Distributed Systems, 2(3):377-383, July 1991.

W. Daniel Hillis. The Connection Machine. MIT Press, 1985.

C. A.R. Hoare. Communicating sequential processes. Communications of the ACM, 21(8):666—~
677, August 1978.

T. Hoshino. PAX Computer: High-Speed Parallel Processing and Scientific Computing.
Addison-Wesley, 1989,

P. Heidelberger, B. D. Rathi, and H. S. Stone. A device for performing efficient task-distribution
with a bus connection. Technical Report Technical Disclosure YO889-0053, January 20, 1989,
IBM Research, 1988.

P. Heidelberger, B. D. Rathi, and H. S. Stone. A low-cost device for contention-free barrier
synchronization. Technical Report Technical Disclosure YO888-0218, March 16, 1988, IBM
Research, 1988.

M. D. Hill and A. J. Smith. Evaluating associativity in CPU caches. IEEE Transactions on
Computers, 38(12):1612-1630, December 1989.

Paul Hudak. Conception, evolution, and application of functional programming languages.
Computing Surveys, 21(3):359-411, September 1989.

P. Hudak and P. Wadler. Report on the functional programming language Haskell. Technical
Report YALEU/DCS/RR656, Department of Computer Science, Yale University, 1988.

IEEE. SCI (scalable coherent interface). Technical Report Standard P1596 (Draft), IEEE, 1990.

Y.-C. Jenq. Performance analysis of a packet switch based on single-buffered banyan network.
IEEE Journal on Selected Areas in Communications, SAC-1(6):1014-1021, December 1983.

S. Lennart Johnsson. Communication in network architectures. In Robert Suaya and Graham
Birtwistle, editors, VLS and Parallel Computation. Morgan Kaufmann, 1990.

(K*86)

[KLB76}

[KRS86]

[KS83]

(KSW88]

[Kue79]

[KX89]

[L+87]

(L*90]

[Lam79]

[Law75]

[LDC89)

[Lee87]

{LH91]

158

A.Karlinet al. Competitive snoopy caching. In Proc. 27th Ann. Symp. Foundations of Computer
Science, pages 244-254, 1986.

W. Kraemer and M. Langenbach-Belz. Approximate formulae for the delay in the queueing
system GI/G/1. In Congressbook, Eight International Teletraffic Congress, page 235, 1976.

C.P.Kruskal, L. Rudolph, and M. Snir. Efficient synchronization on multiprocessors with shared

memory. In Proceedings of the ACM Symposium on Principles of Distributed Computing, pages
218-228, 1986.

C. P. Kruskal and M. Snir. The performance of multistage interconnection networks for multi-
processors. [EEE Transactions on Computers, C-32(12):1091-1098, Dec. 1983.

C. P. Kruskal, M. Snir, and A. Weiss. The distribution of waiting times in clocked multistage in-
terconnection networks. /EEE Transactions on Computers, 37(11):1337-1352, November 1988.

Paul J. Kuehn. Approximate analysis of general queueing networks by decomposition. /EEE
Transactions on Communications, 27(1):113-126, January 1979.

Demetres D. Kouvatsos and Nikos P. Xenios. Maximum entropy analysis of general queueing
networks with blocking. Queueing Networks with Blocking: Proceedings of First International
Workshop, pages 281-309, 1989.

R. L. Lee etal. Multiprocessor cache design considerations. In Proceedings of the International
Symposium on Computer Architecture, pages 253-263, June 1987.

Dan Lenoski et al. The directory-based cache coherence protocol for the DASH multiprocessor.
In Proceedings of the International Symposium on Computer Architecture, pages 148-159, 1990.

L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess pro-
grams. /EEE Transactions on Computers, C-28(9):690-691, Sept. 1979.

D. H. Lawrie. Access and alignment of data in an array processor. JEEE Transactions on Com-
puters, C-24(12):1145-1155, Dec. 1975.

Jesus Labarta, Jordi Domingo, and Olga Casals. Performance evaluation of packet switched
omega networks with finite buffers. Queueing Networks with Blocking: Proceedings of First
International Workshop, pages 249-255, 1989.

G. Lee. Another combining scheme to reduce hot spot contention in large scale shared memory
parallel computers. In Proceedings of the International Supercomputing Conference, pages 68—
79, 1987. :

D. H. Linder and J. C. Harden. An adaptive and fault tolerant wormhole routing strategy for
k-ary n-cubes. IEEE Transactions on Computers, 40(1):2-12, January 1991.

[LPI88]

(LT88]

[LV88a)

[LV88b]

[LYS0)

[MA89]

[Mar68]

[May90]

[MB90]

(MCS91)

{(MGST70}

[Neu81]

(NP85)

[OAR89]

159

S. Laha, J. H. Patel, and R. K. Iyer. Accurate low-cost methods for performance evaluation of
cache memory systems. /EEE Transactions on Computers, 37(11):1325-1336, November 1988.

T. Lovett and S. S. Thakkar. The symmetry multiprocessor system. In Proceedings of the Inter-
national Conference on Parallel Processing, pages 303-310, 1988.

Scott T. Leutenegger and Mary K. Vernon. A mean-value performance analysis of a new multi-
processor architecture. In SIGMETRICS International Conference on Measurement and Model-
ing of Computer Systems, pages 167-176, 1988.

G.J. Lipovski and P. Vaughan. A fetch-and-op implementation for parallel computers. In Pro-
ceedings of the International Symposium on Computer Architecture, pages 384-392, 1988.

D.J.Liljaand P. Yew. A compiler-assisted directory-based cache coherence scheme. Technical
Report CSRD 990, Center for Supercomputing Research and Development, University of Illinois
at Urbana-Champaign, July 1990.

Douglas E. Marquardt and Hasan S. AlKhatib. C2MP: A cache-coherent, distributed memory
multiprocessor-system. In Proceedings of Supercomputing’ 89, pages 466-475, November 1989.

K.T. Marshall. Some inequalities in queueing. Operations Research, 16(3):651-665, May-June
1968.

Emst W. Mayr. Theoretical aspects of parallel computation. In Robert Suaya and Graham
Binwistle, editors, VLS/ and Parallel Computation. Morgan Kaufmann, 1990.

S.L. Min and J. L. Baer. A performance comparison of directory-based and timestamp-based
cache coherence schemes. In Proceedings of the International Conference on Parallel Process-
ing, pages 305-311, August 1990.

John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Transactions on Computer Systems, 9(1):21-65, Febru-
ary 1991.

R. L. Matison, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques for storage hier-
archies. IBM Systems Journal, 9:78-117, 1970.

M.F. Neuts. Matrix-Geometric Solutionsin Stochastic Models. Johns Hopkins University Press,
Baltimore, MD, 1981.

A. Norton and G. F. Pfister. A methodology for predicting multiprocessor performance. In
Proceedings of the International Symposium on Computer Architecture, June 1985.

S. Owicki and A. Agarwal. Evaluating the performance of software cache coherence. In Pro-
ceedings of the International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 230-242, 1989,

[ON90]

[P*85]

[Pat81]

[Pat82]

[PCYL87]

[Pea77]

[Per89]

[Per90]

[PH88]

[PN85]

(PP84]

(PS89]

[QD84]

{R*90)

160

B. W. O’Krafka and A. R. Newton. An empirical evaluation of two memory-efficient directory

methods. In Proceedings of the International Symposium on Computer Architecture, pages 138-
147, May 1990.

G.F. Pfister et al. The IBM research parallel processor prototype (RP3): Introduction and archi-
tecture. In Proceedings of the International Symposium on Computer Architecture, June 1985.

J. H. Patel. Performance of processor-memory interconnections for multiprocessors. /EEE
Transactions on Computers, C-30(10):771-780, October 1981.

J. H. Patel. Analysis of multiprocessors with private cache memories. IEEE Transactions on
Computers, C-31(4):296-304, April 1982.

N. F. Tzeng P. C. Yew and D. H. Lawrie. Distributing hot-spot addressing in large-scale multi-
processors. JEEE Transactions on Computers, pages 388-395, April 1987.

M. C.Pease. The indirect binary n-cube microprocessor array. /EEE Transactions on Computers,
C-26(5):458-473, May 1977.

H. G. Perros. A bibliography of papers on queueing networks with finite capacity queues. Per-
formance Evaluation, 10:255-260, 1989.

Harry G. Perros. Approximation algorithms for open queueing networks with blocking. Stochas-
tic Analysis of Computer and Communication Systems, pages 451-498, 1990.

N. M. Patel and P. G. Harrison. On hot-spot contention in interconnection networks. In S/G-
METRICS International Conference on Measurement and Modeling of Computer Systems, pages
114-123, 1988.

G. F. Pfister and V. A, Norton. Hot spot contention and combining in multistage interconnection
networks. /EEE Transactions on Computers, C-34(10):943-948, Oct. 1985.

M. S. Papamarcos and J. H. Patel. A low-overhead coherence solution for multiprocessors with
private cache memories. In Proceedings of the International Symposium on Computer Architec-
ture, pages 348-355, Jan. 1984.

H. G. Perros and P. M. Snyder. A computationally efficient approximation algorithm for feed-
forward open queueing networks with blocking. Performance Evaluation, 9:217-224, 1989.

M. J. Quinn and N. Deo. Parallel graph algorithms. Computing Surveys, 16(3):319-348, Sept.
1984.

R. Rettberg et al. The monarch parallel processor hardware design. JEEE Computer, 23(4):18-
31, April 1990.

[Ran87]
[Ran89)
(RBJ88]
[RF87]
[SA88)
[SB77]
[SB91]
[Sch80]

[SD87]

[SH91a)

(SH91b)

(Shag9]
[Sie8S]

[Smi82]

[Smi85]

161

A. G. Ranade. How to emulate shared memory. In Fundamentals of Computer Science, pages
185-194, 1987.

Abhiram Gorakhanath Ranade. Fluent Parallel Computation. PhD thesis, Yale University, 1989.

Abhiram G. Ranade, Sandeep N. Bhatt, and S. Lennart Johnsson. The Fluent Abstract Machine.
In Proceedings of the Fifth MIT Conference on Advanced Research in VLSI, pages 71-94, March
1988. Also available as Yale Univ. Comp. Sc. TR-573.

Daniel A. Reed and Richard M. Fujimoto. Multicomputer Networks: Message-Based Parallel
Processing. MIT Press, 1987.

R. L. Sites and A. Agarwal. Multiprocessor cache analysis using ATUM. In Proceedings of the
International Symposium on Computer Architecture, pages 186-195, 1988.

H. Sullivan and T. R. Brashkow. A large scale homogeneous machine. In Proceedings of the
International Symposium on Computer Architecture, pages 105-124, 1977.

J. M. Sipelstein and G. E. Blelloch. Collection-oriented languages. Proc. IEEE, 79(4):504-523,
April 1991.

J. T. Schwartz. Ultracomputers. ACM Transactions on Programming Languages and Systems,
2(4):484-521, Oct. 1980.

C. Scheurich and M. Dubois. Correct memory operation of cache-based multiprocessors. In

Proceedings of the International Symposium on Computer Architecture, pages 234-243, June
1987.

Richard Simoni and Mark Horowitz. Dynamic pointer allocation for scalable cache coherence
directories. Technical report, Computer Systems Laboratory, Stanford University, 1991.

Richard Simoni and Mark Horowitz. Modeling the performance of limited pointers directo-
ries for cache coherence. Technical report, Computer Systems Laboratory, Stanford University,
1991,

Ehud Shapiro. The family of concurrent logic programming languages. Computing Surveys,
21(3):412-510, September 1989.

H.J. Siegel. Interconnection Networks for Large-Scale Parallel Processing. Lexington Books,
1985.

A.J. Smith. Cache memories. Computing Surveys, 14(3):473-530, Sept. 1982.

A.J. Smith. CPU cache consistency with software support and using one time identifiers. In
Proceedings of the Pacific Computer Communications Conference, pages 153-161, 1985.

[SS86]

[SSG89]

[ST72]

[Ste89]

[St087]

[SV8i]
(SW89]

[SWGI1]

[T*90)

[Tak89]

[TF88]

[Tho87]

(TMHS80]

(TR88]

[TRH89]

162

P. Sweazey and A. J. Smith. A class of compatible cache consistency protocols and their support
by the ieee futurebus. In Proceedings of the International Symposium on Computer Architecture,
pages 414-423, 1986.

G.S. Sohi, J. E. Smith, andJ. R. Goodman. Restricted fetch& ¢ operations for parallel processing.
In Proceedings of the International Supercomputing Conference, pages 410416, June 1989.

D. R. Slutz and I. L. Traiger. Evaluation techniques for cache memory hierarchies. Technical
Report RJ 1045 (#17547), IBM, May 1972,

P. Stenstrom. A cache consistency protocol for multiprocessors with multistage networks. In
Proceedings of the International Symposium on Computer Architecture, pages 407-415, 1989.

H. S. Stone. High-Performance Computer Architecture. Addison-Wesley Publishing Company,
1987.

Alberto L. Sangiovanni-Vincentelli. Circuit Simulation. Sijthoff and Noordhoff, 1981.

Moshe Segal and Ward Whitt. A queueing network analyzer for manufacturing. In Teletraffic
Science for New Cost-Effective Systems, Networks and Services, pages 1146-1152, 1989.

Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford parallel ap-
plications for shared-memory. Technical report, Computer Systems Laboratory, Stanford Uni-
versity, 1991.

Shreekant Thakkar et al. New directions in scalable shared-memory multiprocessor architec-

. tures. IEEE Computer, 23(6):71-83, June 1990.

Yukio Takahashi. Aggregate approximation for acyclic queueing networks with communication
blocking. Queueing Networks with Blocking, pages 33-46, 1989.

Y. Tamir and G. L. Frazier. High-performance multi-queue buffers for VLSI communication
switches. In Proceedings of the International Symposium on Computer Architecture, pages 343
355, 1988.

J. G. Thompson. Efficient Analysis of Caching Systems. PhD thesis, University of Califomnia,
Berkeley, 1987.

Yutaka Takahashi, Hideo Miyahara, and Toshiharu Hasegawa. An approximation method for
open restricted queueing networks. Operations Research, 28(3):594-602, May 1980.

Lewis W. Tucker and George G. Robertson. Architecture and applications of the connection
machine. JEEE Computer, 21(8):26-39, August 1988.

Thomas H. Theimer, Erwin P. Rathgeb, and Manfred N. Huber. Performance analysis of buffered
banyan networks. Performance of Distributed and Parallel Systems, pages 57-72, 1989,

[TS71]

[TS89]

[V*88)

[VH86]

[VIS89]

[WG89a)

[WG89b]

[Whi82]

[Whi83]

[Wil87]

[Wol89]

[YBL89]

[YF82]

163

L. L. Traiger and D. R. Slutz. One-pass techniques for the evaluation of memory hierarchies.
Technical Report Tech. Rep. RJ 892 (#15563), IBM, July 1971.

James G. Thompson and Alan Jay Smith. Efficient (stack) algorithms for analysis of write-back
and sector memories. ACM Transactions on Computer Systems, 7(1):78-117, February 1989.

M. K. Vernon et al. An accurate and efficient performance analysis technique for multiproces-
sor snooping cache-consistency protocols. In Proceedings of the International Symposium on
Computer Architecture, pages 308-317, May 1988.

M. K. Vernon and M. A. Holiday. Performance analysis of multiprocessor cache consistency
protocols using generalized timed petri nets. In SIGMETRICS International Conference on Mea-
surement and Modeling of Computer Systems, pages 9-17, 1986.

Mary K. Vernon, Rajeev Jog, and Gurindar S. Sohi. Performance analysis of hierarchical cache-
consistent multiprocessors. Performance of Distributed and Parallel Systems, pages 111-126,
1989.

W.D. Weber and A. Gupta. Analysis of cache invalidation patterns in microprocessors. In Proc.
ASPLOS 111, pages 243-256, 1989.

W-D. Weber and A. Gupta. Analysis of cache invalidation patterns in multiprocessors. In Pro-
ceedings of the International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 243-256, 1989.

W. Whitt. Approximating a point process by a renewal process, I: Two basic methods. Opera-
tions Research, 30(1):125-147, January 1982.

W. Whit. The queueing network analyzer. Bell System Technical Journal, 62(9):2779-2815,
November 1983.

A. W. Wilson Jr. Hierarchical cache/bus architecture for shared memory multiprocessors. In
Proceedings of the International Symposium on Computer Architecture, pages 244-252, June
1987.

Ronald W. Wolff. Stochastic Modeling and the Theory of Queues. Prentice-Hall, 1989.

W. Yang, L. N. Bhuyan, and B.-C. Liu. Analysis and comparison of cache coherence proto-
cols for a packet-switched multiprocessor. JEEE Transactions on Computers, 38(8):1143-1153,
August 1989,

W. C. Yen and K. S. Fu. Coherence problem in a multicache system. In Proceedings of the
International Conference on Parallel Processing, pages 332-339, 1982.

164

[YLL90] Hyunsoo Yoon, Kyungsook Y. Lee, and Ming T. Liu. Performance analysis of multibuffered
packet-switching networks in multiprocessor systems. JEEE Transactions on Computers,
39(3):319-327, March 1990.

165

Appendix A

Geometric Queue Models

A.l

GEO+1*/GEO+1/1/N Queue Model

The state space of the discrete time Markov chain for a GEO+1¥/GEO+1/1/N queue is

the number of customers in queue, n.

Let:
Pi = 1 — g; be the probability that a customer arrives on input stream 1,
4 be the probability that a customer departs when the queue is non-empty.

Nmar = N + k be the maximum number in queue. This assumes that the basic queue limit
N is supplemented by k extra buffers to hold customers from upstream queues that block. -

ns = Nmaz + 1 denote the number of states in the discrete time Markov chain.
Ps,,s, be the transition probability between states s; and s;.

Pl ,, be the transition rate between s; and s, for events in which an arrival occurs on stream
h, and there is no departure.

d.’;: s, D the transition rate between s; and s; for events in which an arrival occurs on stream
h, and there is a departure.

m, be the steady state transition rate out of state s.
P denote the matrix of transition probabilities p,,,,.
m denote the vector [7,,,...,7,,].

fa(h,) denote the fraction of arrivals on stream A that find i customers in queue.

166

e f4(2) denote the fraction of departures that, just before departure, find 7 customers in queue.

State transitions result from m € {0,...,k} simultaneous arrivals, and a possible si-
multaneous departure. With k arrival streams, m simultaneous arrivals can occur in C(k, m) =

k
() ways. Denote each distinct set of m arrival streams (selected from k possible streams)
m

as ST = {i{, ...,i2.}, where j = 1,...,C(k,m). The probability that m arrivals occur on the
streams in S7* is:

k
Pr(arrivals onST") = [H(l - 1)] H (A.1)
h=1 (1 - P J
The transition probabilities are:
C(k,m)
Pom = E Pr(armrivalson S7*) form =0,...,k (A.2)
J=1
Nmaz—n)
Pnyny-1 = 1- Z Pny g +j forni=1,...,Nnaz (A.3)
=0
C(k,m+1)
Prymin(n+mNmas) = M), Pr(amivals on ST
J=i
C(k,m)
+(1—-p)) Pr(amivalson ST") (A4)
Jj=1

andm = 0,...,k-1

Prymin(ny+k,Nmaz) = (1 — p)Pr(arrivals on Sf) (A5)

form = 1,---,Nma.1:

Equation (A.2) gives transition probabilities for an empty queue. In this case no departures can take
place. Equation (A.3) is the probability that the number in queue decreases: a departure occurs with
zero arrivals. Equations (A.4) and (A.5) give transition probabilities for for state changes in a non-

empty queue in which the number in queue increases or remains the same.

167

The calculation of f,(h, i) requires d% ,, and p? , : the fraction of transitions between
two states in which an arrival occurs on stream k, with and without a departure. These are calculated
with straightforward variations of Equations (A.2) to (A.5):

Pbm = Y, Pr(amivalsonST) form=0,...,k (A.6)
{ilhesm}
Phim-1 = 0 forny =1,...,Npaz (A7)
djpm = O form=0,...,k (A.8)
dgl,m—l =0 forn; =1,...,Nmaz (A9)
p',ihmin(,,l,,_m.Nm“) = (1-p) Z Pr(arrivals on ST*) (A.10)
{ilhesm)
forny = 1,...,Npaz

andm = 0,...,k

d',;hmm(mm,vm) = pu Z Pr(arrivals on S7**1) (A.11)
{ilhesy+1}
forny = 1,...,Npaz

andm = 0,...,k-1

These differ from the equations for p,, ,, by summing over only those arrival sets containing h.
The steady state transition rates are the solution to the matrix equation [Wol89]:

T=xP (A.12)
with the added constraint that N
Z =1 (A.13)
Jj=0

These can be solved numerically with a sparse matrix package. Since the Markov chain is ir-

reducible and has a finite number of states, Equations (A.12) and (A.13) have a unique solution
[Wol89].

168

The probability that a customer arriving from stream k finds i customers in queue is
determined using:

k i ;
: 1 : H
fa(h,i) = Z oy [' Z Trjp.';.min(j-i-m.Nmu) + Z Wjd;",min(j+m-1.1vm,)

m=1 j=max(:—m,0) J=max(i-m+1,0)

(A.14)

forh = 1,...,k

and: = 0,...,Nnmaz

Equation (A.14) sums over all transitions such that one arrival (of m simultaneous arrivals, includ-
ing an arrival on stream k) finds ¢ in queue. The sums therefore involve all transitions between
states n) and n3 such that n < ¢ < nj. Since m simultaneous arrivals are queued in random order,
of the arrivals on a particular stream are queued at any particular position.

The probability that a departing customer leaves when there are ¢ customers in queue is:

N BT
fa(@) = TN

T)
ZN”‘:‘ fori=1,...,Nmazr (A.15)

The average number in queue is:

Nma.r
L=) mmin(i,N) (A.16)
=0

Applying Little’s Law, the average delay in queue w (including service time) is:

o o L
oA

L
?:l pj

(A.17)

For states in which the number in queue exceeds the queue limit NV (ie. customers at one or
more upstream queues are blocked), the arrival rates must be reduced to account for the fact that once
an upstream queue blocks, it no longer sends customers until it becomes unblocked !. Modeling
this in detail is expensive because it requires maintaining the blocking state of each upstream queue;
this would increase the size of the state space by a factor of 2. A simpler, approximate method is

!Simulations of the superposition process showed that accuracy improves considerably if this effect is modeled.

169

to reduce the arrival rate of each stream h for states greater than NV:

Ah £=0,...,N
. N-i
A= ’\“(l‘f"&T) i=N+1,...,.N+k-1 (A.18)
j=1
0 i=N+k

 is the adjusted arrival rate on stream h when i customers are in queue. This is based on the
following approximations:

e If an arrival blocks, the probability that the arrival is from stream h is the fraction of all
arrivals due to stream h.

o Each blocking event is independent of all others.

The probability that i blocked customers are from streams other than 4 is thus the probability that

an arrival is from another stream (1 — -Z—:-%hT) raised to the power i.
j=19

A2 GEO2+1*/GEO+1/1/N Queue Model

In this model interarrival times are distributed as a mixture of two geometric distributions,
plus 1. Assume the parameters of the two distributions are p® and p!, and that the mixing parameter
is s. With probability s, an interarrival time is selected using a geometric distribution with parameter
p°. With probability 1 — s, the interarrival time is selected using a geometric distribution with
parameter p'. The state space of the discrete time Markov chain for the GEO2+1*/GEO+1/1/N
queue therefore requires % extra variables to record the state of the k mixtures: g, ...,ax, where
a; € {0,1}. a; = j indicates that the next interarrival on stream i will be distributed as 1 plus
a geometric random variable with parameter p,’ . These variables are denoted by the vector A =
[a1,...,ax]. The state space for the queue model is then (n, A), where n is the number of customers
in queue. It is assumed that all GEO2+1 distributions have a common mixing parameter s.

This discussion uses the notation introduced in the previous section, plus the following:

o The number of states is now n, = 2%¥(Npaz + 1).

* Diff(4;, 42) denotes the set of indices of 4; and A4, for which a} # a?. For example,
Diff([1.2,1],(1,1,2]) = {2,3}. |Diff(A, A2)| denotes the number of indices that differ.

e sp=sands)=1-s.

170

® @ =1-a; Henceq; = 1ifa; =0andg; =0ifa; = 1.
® a; denotes the fraction of time customers are in queue.
o A denotes the set of all valid mixture vectors [ay, . . ., ax] of length k.

In this queue model, transition probabilities depend not only on the occurrence of arrivals
or a departure, but also on the set of streams that have a change in mixture state. As before, the m
arrivals can occur on C(k, m) different sets of inputs, each denoted Spforj=1,...,C(k,m).
The probability that m arrivals occur on streams ST is similar to Equation (A.1), except that the
per-stream arrival probability is indexed by mixture state:

Pr(arrivals on ST) = LH(I— h)] L T f":h,,.h] (A.19)

Given mixture states A and A; and arrivals on S™, the probability that only the mixture
variables in Diff(A, 4;) change state is:

Pr(changes on Diff(A1, A2) in ST*) = H Sa; [II sg,.] (A.20)
{ili€S™ igDiff(A1,42)} {ili€Diff(A;,42)}

The transition probabilities are thus:
C(k,m)
P(0,4;),(m. A7) = Z Pr(arrivals on ST*) Pr(changes on Diff(A;, A;) in ST*) (A.21)
J=1
form=0,....k
and all A;, 4; such that Diff(4;, 42) < m

Nmaz=~n)
p(nhAl)t("l-loAl) = 1 - z Z p(ﬂ].Al).(ﬂ]‘hi,A;) (A'22)
3=0 {Aj|Ar€Ak}

fOl'nl = 1,--.,Nmax

P(ny,A,),(min(n1+m Nmaz) 42) =

Clkm+1)
) Pr(arivals on S™*!)Pr(changes on Diff(4;, 4;) in S7*+)
i=1
C(k,m)

+(1-pu) D_ Pr(amivals on ST*)Pr(changes on Diff(4;, 4;) in ST') (A23)
Jj=1

17

forny=1,...,Nmaz
andm=20,...,k-1
and all A,, A3 such that Diff(A1, 42) < m

P(sy.4,).(min(n) +k.Nmaz) Az) =

(1 — p) Pr(arrivals on S§)Pr(changes on Diff(4;, A;) in S¥) (A24)

fOI'S] = 1”"9Nmat

and all 4;, A such that Diff{ 4, 42) < k

Equation (A.21) gives transition probabilities for an empty queue. In this case no depar-
tures can take place. Equation (A.22) is the probability that the number of customers in a non-empty
queue decreases: a departure occurs with zero arrivals. Equation (A.23) and (A.24) apply to tran-
sitions in which the number of customers in a non-empty queue increases or remains the same.

As for the GEO* model, the expressions for d? , and pk , are straightforward (but
messy) variations of Equations (A.21) to (A.24):

Plo.Ay)m.Ag) = { |Z }Pr(arrivals on ST") Pr(changes on Diff(A1, 42) in ST') (A.25)
jlhesm

form=0,...,k

and all 4, 4; such that Diff(4;,4;3) < m

Ao, 1), (m.Az) = O (A.26)
form=0,...,k

and all Ay, A such that Diff(A;, 42) <m

By, dr)ma—1,47) = 0 forny = 1,..., Nomaz (A27)
d?"l,Ax),(nl-l.Al) =0 forny =1,...,Npmas (A.28)

h _
p(nl,Al).(min(n|+m.Nm¢,),Az) =

(1-u) 3 Pr(amivals on ST*)Pr(changes on Diff(4;, 42) in S™) (A.29)
{ilhesr}

172

forn; = ..., Nmaz
and m=0,...,k

and all 4;, A4; such that Diff(A,, A2) < m

df : =
("l'Al)v(mm("l"'mvaar)'AZ) -
g > Pr(armivals on ST*!)Pr(changes on Diff(4), 42) in ST**!) (A.30)
{jlhesT*1}
forny=1,...,Npar
andm=0,...,k-1
and all A;, A such that Diff(A;, A2) < m
The steady state transition rates are the solution to Equations (A.12) and (A.13) for the

new state space.

The probability that a customer from stream h finds ¢ customers in queue is analogous to
Equation (A.14):

fa(h’i) =

k [
1 h
Z ; L Z Z w(j‘Al)p(ijl)$(min(j+m'Nmaz)tA2)
m=1 j=max(i—-m,0) {A;,A42|(IDiff(A),A2)|)Sm}
i+1 .
+ 2 > T(5,41)805,41) (min(i+m=1,Nmas)rda) | (A-31)

j=max(i—m+1,0) {41,42|(|Diff(A1,A42)])<m}
forh = 1,...,k
andi = 0,0-07Nm03'

The probability that a departing customer leaves when there are ¢ customers in queue is
analogous to Equation (A.15):

. Ha;
fa)) = mf——
ZNmaz ua]

= ZN:“a fori=1,..., Nmaz (A.32)

Here o, is the fraction of time that there are ¢ customers in queue, for any mixture state. It is found
using:

a; = Z T(i,A) (A.33)
{AlAeA*}

173

The average number in queue L is:

Nmoz
L=) o;min(i,N) (A.34)
=0
Applying Little’s Law, the average delay in queue w (including service time) is:
o o L
T
L
= (A.35)
T5=1(sp9 + (1 - s)p})

As before, A}, is reduced using Equation (A.18) when one or more customers are blocked

(¢ > N). For this model A}, is a function of two geometric probabilities:
’ Ny =sp + (1 - s)pi! (A.36)

We derate pi0 and pj! equally.

A.3 Distribution of the Minimum of Two GEO2+1 Random Variables

In this section the first two moments are derived for the minimum of two GEO2+1 random
variables. First consider the minimum of two GEO2 random variables B, and Bj:

B = min{B, By} (A.37)

Let {p11.p12} and {p21, p22} be the parameters for the geometric distributions in the mixtures for
B, and By, respectively. Let g;; = 1 — p;;. Itis assumed that By and B, have a common mixing
parameter s.

The probability that B; = b,: € {1,2}, is:

Pr(B; =b) = .sqf’lp.-l +(1- s)qup.'z (A.38)
The probability that B; > bis:
Pr(B;>b) = Y Pr(B;=b) (A.39)
i=b+1
= Y (sgpar + (1 - 8)ghpin) (A.40)
i=b+1
= 'Y dhpa + (1-8)a' Y ahpia (A41)
i=0 i=0
— ogbt1_Pil _ o\gb1_Pi2
= sgi T+ (1= o (A42)

= s+ (1 - s)g5H! (A.43)

174

The probability that B = b is then:

Pr(B=1b)=
Pr(By = b)Pr(B2 > b) + Pr(B; > b)Pr(B; = b)
+Pr(By = b)Pr(B; = b) (A44)

The first two moments of B are found using z-transforms [Wol89]. Let G(z) be the z-
transform of B:

(=<
G(z) =)_ Pr(B = i)z (A.45)
1=0
After some tedious algebra:

G(z) = $#(1 - guga) , (1 - s)(1 - qugz)

1 -gqz 1-quenz
- - —3)2(1 —
+8(1 s)(1 - q12g21) + (1-38)%(1 — q12922) (A.46)
1 - qi2q212 1 - q129222
The two moments are thus:
" E(B) = lmG(2) (A47)
z—
s2quga |, s(1 - s)angn
1 -qgnagn 1-q11922
- _ o2
+8(1 8)q12921 + (1 - 8)*q12g22 (A48)
1 —qi2q2 1 - q12q22
E(B?*) = (lim G"(z)) + E(B) (A.49)
Z—
s2q11921(1 + qnga1) |, s(1 - s)angaa(1 + q11922)
(1-anen)? (1 - qngn)?
+s(1 - 3)qi2g21(1 +2qxzqzn) (1 - 3)2qiag22(1 +2¢112‘122) (A.50)
(1 - qi2g21) (1 - q12922)

The moments for the minimum of two GEQ2+1 random variables are the moments of
A=B+1:

E(A)= E(B)+1 (A.51)
E(A%) = Var(A)+ E¥A) (A.52)
= Var(B)+ E*A) (A.53)

E(B?) — E¥(B) + E¥A) (A.54)

175

Appendix B

Queueing Mbdels for Specific

Interconnection Networks

B.1

B.2

Notes for All Models

. Buffer queues without extemnal arrivals have a queue limit of 4 messages. Buffer queues

with external arrivals have no queue limit. All buffer queues use a virtual channel queueing
discipline (with 4 channels). The service distribution is deterministic with a delay of one
discrete time unit.

- All channel queues have a queue limit of 1 message, and use a FIFO queueing discipline.

The service distribution is deterministic with a delay of one discrete time unit.
Virtual cut-through flow control is assumed.

All arrival streams are geometric with common parameter p. Messages therefore arrive at a
rate of p messages per cycle. Flits arrive at a rate of bp, where b is the number of flits per
message.

. As discussed in Section 4.4.1, the service time at channel queues is deducted from overall

network delay.

As discussed in Section 4.4.1, only blocking due to channel queues is modeled. This allows
a queueing network to have cycles as long as each cycle includes at least one buffer queue.

Unidirectional Three Dimensional Torus

Buffer Queues Channe‘l Queues
* IO —A10-

" SHITIOSRRZ A0
z O

CPU /» O—\ CPU

Figure B.1: Queueing Model of a Unidirectional 3-D Torus Network

>

J U U

N

Table B.1: Routing Parameters for 3-D Torus

gij Number of Processors

8 64 216 512 1000
ax.x 0.0 0.5 0.6667 | 0.75 0.8
axy 0.5 0.375 0.2778 | 0.2188 | 0.18
9x,z 0.25 0.09375 | 0.0463 | 0.0273 | 0.018
gx.cpru | 0.25 0.03125 | 0.0093 | 0.0039 | 0.002
avy 0.0 0.5 0.6667 | 0.75 0.8
qv,z 0.5 0.275 0.2778 | 0.2188 | 0.18
gvcpu | 0.5 0.125 0.0556 | 0.0313 | 0.02
9z,z 0.0 0.5 0.6667 | 0.75 0.8
gzcpu | 1.0 0.5 0.3333 | 0.25 0.2
qcpu,x | 05714 | 0.7619 | 0.8372 | 0.8767 | 0.9009
gcpuy | 0.2857 | 0.1905 | 0.1395 | 0.1096 | 0.0901
qcpu,z | 0.1429 | 0.0476 | 0.0233 | 0.0137 | 0.0090

176

B.3 Bidirectional Three Dimensional Torus

Buffer Queues

Channel Queues

X+

> |

O

71_

O

PP

N\ (Y () D

ORI

- o

CPU >

—

Q_
Q_
@

g

Figure B.2: Queueing Model of a Bidirectional 3-D Torus Network

B.4 Three Dimensional Mesh

\

177

X+

CPU

A full queueing network of k> switches (of the form of Figure B.2) was used; it is too
cumbersome to give the routing parameters for such large networks. The routing parameters were
found as described in Section 4.4.1: by aggregating the N(N — 1) customer classes corresponding

to all possible source/destination pairs.

B.5 Hypercube

B.6 Radix-2 Delta

All routing probabilities are .

Table B.2: Routing Parameters for Bidirectional 3-D Torus

gij Number of Processors

8 64 216 512 1000
ax+,x+ |00 0.3333 | 0.5 0.6 0.6667
ax+y+ |05 0.3333 | 0.25 0.2 0.1667
ax+y- |00 0.1667 | 0.1667 | 0.15 0.1333
9x+,z+ | 025 0.0833 | 0.0417 | 0.025 | 0.0167
gx+.2- |00 0.0417 | 0.0278 | 0.0188 | 0.0133
gx+.cpu | 0.25 0.0417 | 0.0139 | 0.0063 | 0.0033
gx-x- |00 0.0 0.3333 1 0.5 0.6
gx-y+ |00 0.5 0.3333 { 0.25 0.2
gx-y- |00 0.25 0.2222 | 0.1875 | 0.16
gx-z+ |00 0.125 | 0.0556 | 0.0313 | 0.02
gx-z- |00 0.0625 | 0.0370 | 0.0234 | 0.016
gx-.cpu | 0.0 0.0625 | 0.0185 | 0.0078 | 0.004
av+y+ |00 0.3333 1 05 0.6 0.6667
av+.z+ 1|05 0.3333 1 0.25 0.2 0.1667
av+,z- |00 0.1667 | 0.1667 | 0.15 0.1333
av+.cprpu | 05 0.1667 | 0.0833 | 0.05 0.0333
gv-y- |00 0.0 0.3333 | 0.5 0.6
av-.z+ |00 0.5 0.3333 | 0.25 0.2
qy-,z- 0.0 0.25 0.2222 | 0.1875 | 0.16
gv-cpu | 00 0.25 0.1111 | 0.0625 | 0.04
q9z+.2+ 0.0 0.3333 | 0.5 0.6 0.6667
gz+.cprpu | 1.0 0.6667 | 0.5 0.4 0.3333
q9z-,2- 0.0 0.0 0.3333 | 0.5 0.6
gz-cpu | 00 1.0 0.6667 | 0.5 04
gcpru,x+ | 05714 | 0.5079 | 0.5023 | 0.5010 | 0.5005
gcpu,x- | 00 0.2540 | 0.3349 | 0.3757 | 0.4004
dcpuy+ | 02857 | 0.1270 | 0.0837 | 0.0626 | 0.05005
gcpuy- | 00 0.0635 | 0.0558 | 0.0470 | 0.04004
dcpru,z+ | 0.1429 | 0.0317 | 0.0140 | 0.0078 | 0.00501
qacpu,z- | 0.0 0.0159 | 0.0093 | 0.0059 | 0.00400

178

179

Buffer Queues Channel Queues

© HITO§ A0 @
| THIORS/EOT
2 \ O— 2
3 (O 3

CPU /» O\\ CPU

Figure B.3: Queueing Model of a Hypercube Network

Table B.3: Routing Parameters for a Hypercube

gij Number of Processors

8 64 256 512 1024
0,2 05 |05 0.5 0.5 0.5
Q13 025 | 0.25 0.25 0.25 0.25
q1,4 00 |0.125 0.125 0.125 0.125
Qs 0.0 | 0.0625 | 0.0625 0.0625 0.0625
q.6 0.0 | 0.03125 | 0.03125 0.03125 0.03125
07 00 |00 0.015625 | 0.015625 0.015625
Qs 00 |00 0.0078125 | 0.0078125 | 0.0078125
Q9 00 {00 0.0 0.00390625 | 0.00390625
Q110 00 |00 0.0 0.0 0.00195312
qicpyu | 0.25] 0.03125 | 0.0078125 | 0.00390625 | 0.00195312
Q23 05 |05 0.5 0.5 0.5
Q2.4 00 |02s 0.25 0.25 0.25
Qs 00]0.125 0.125 0.125 0.125
VX3 0.0 | 0.0625 | 0.0625 0.0625 0.0625
@7 00 |00 0.03125 0.03125 0.03125
@28 00 |00 0.015625 | 0.015625 0.015625
@9 00 |00 0.0 0.078125. | 0.0078125
@10 |00 {00 0.0 0.0 0.00390625
@cpu | 0.5 100625 | 0.015625 | 0.0078125 | 0.00390625
034 00 |05 0.5 0.5 0.5
a5 00 |0.25 0.25 0.25 0.25
73,6 00 |0.125 0.125 0.125 0.125
90,7 00 |00 0.0625 0.0625 0.0625
q3,8 00 |0.0 0.03125 0.03125 0.03125
Y 00 {00 0.0 0.015625 0.015625
43,10 00 |00 0.0 0.0 0.0078125
ascpy | 1.0 | 0.125 0.03125 0.015625 0.0078125
qa,5 00 |05 05 0.5 0.5
a6 00 | 025 0.25 0.25 0.25
94,7 00 |00 0.125 0.125 0.125
qa,8 00 |00 0.0625 0.0625 0.0625
q49 00 |00 0.0 0.03125 0.03125
44,10 0.0 | 0.0 0.0 0.0 0.015625
qaacpu | 00 | 025 0.0625 0.03125 0.015625
456 00 |05 0.5 05 0.5
g5, 00 100 0.25 0.25 0.25
4¢3 00 |00 0.125 0.125 0.125
g59 00 |00 0.0 0.0625 0.0625
as,10 0.0 | 0.0 0.0 0.0 0.03125
gscpyv | 00 |05 0.125 0.0625 0.03125

180

Table B.4: Routing Parameters for a Hypercube (continued)

gij Number of Processors

8 64 256 512 1024
46,7 0.0 0.0 0.5 0.5 0.5
d6.8 0.0 0.0 0.25 0.25 0.25
d6,9 0.0 0.0 0.0 0.125 0.125
4d6,10 0.0 0.0 0.0 0.0 0.0625
gecpu | 0.0 1.0 0.25 0.125 0.0625
@18 0.0 0.0 0.5 0.5 0.5
q19 0.0 0.0 0.0 0.25 0.25
47,10 0.0 0.0 0.0 0.0 0.125
¢icpu | 00 0.0 0.5 0.25 0.125
gs.9 0.0 0.0 0.0 0.5 0.5
gs,10 0.0 0.0 0.0 0.0 0.25
agcprpy | 00 0.0 1.0 0.5 0.25
99,10 0.0 0.0 0.0 0.0 05
@cpry | 00 0.0 0.0 1.0 0.5
qiocpu | 0.0 0.0 0.0 0.0 1.0
gcpuy | 0.5714 | 0.5079 | 0.5020 | 0.5010 | 0.5005
gcpuz | 0.2857 | 0.2540 | 0.2510 | 0.2505 | 0.2502
gcpus | 0.1429 [0.1270 | 0.1255 | 0.1252 | 0.1251
gcrua | 0.0 0.0635 | 0.0627 | 0.0626 | 0.0626
gcpus | 0.0 0.0317 | 0.0314 | 0.0313 | 0.0313
qcrues | 0.0 0.0159 { 0.0157 | 0.0157 | 0.0156
gcrpua | 00 0.0 0.00784 | 0.00783 | 0.00782
gcpus | 0.0 0.0 0.00392 | 0.00391 | 0.00391
qcrus | 0.0 0.0 0.0 0.00196 { 0.00196
gcpu.io | 0.0 0.0 0.0 0.0 0.000978

181

182

Buffer Queues Channel Queues

O O-1-

Figure B.4: Queueing Model of Radix-2 Delta Network

183

B.7 Radix-4 Delta
All routing probabilities are §.

Buffer Queues Channel Queues

o ol

—_— e —= e —
—_— = = — =

0 S 1 S A —— | T .
— o - —— I

Figure B.5: Queueing Model of Radix-4 Delta Network

B.8 Radix-8 Delta

All routing probabilities are .

184

Buffer Queues Channel Queues

L A\u\\v\\ m m.\
~ | /
‘
’0" ,'c\\/ X \‘
/, "74' ‘%«“
] /e l/AA

- X‘)\\\\

—> —= — —
=~ — — —
— > — —
— —— s e s —_— 1 ——
—> [l —> —>

— — —
2 — — —

Figure B.6: Queueing Model of Radix-8 Delta Network

	ERL-92-4 (1 of 2)
	ERL-92-4 (2 of 2)

