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Abstract

Traveling wave fronts are considered for a one-

dimensional array of Chua's circuits. This solution is

obtained analytically and analyzed for the "primary real

bifurcation". For diffusion coefficients less than some non

zero critical value it has been observed numerically that

the traveling fronts fail to propagate. This nonlinear

phenomena is similar to that observed from pulse propagation

in nerves, and in coupled continuously- stirred tank

reactors.



1. Introduction

Systems of coupled cells with reactions and mass, energy or electric charge

transfer often serve as standard models for investigating the phenomena occurring in

the transformation and transport processes in living cells, tissues, neuron networks,

physiological systems and ecosystems, as well as in all forms of chemical,

biochemical and biological reactors and combustions systems. For example, the

coupling between a one- dimensional array of CSTRs (Continuously Stirred Tank

Reactors) has been used recently to prove the existence of traveling waves in such a

medium11,21. In the continuous limit, it is possible to get a reaction- diffusion

type model which exhibits all the classical properties of an autowave processes:

dispersion relation, curvature and so on13'41.

In recent years, it has become apparent that continuous models can not account

for all propagation phenomena occurring in nature. For example, biological

experiments in the nerve propagation of a stimuli shows the stimuli can fail to

propagate under some conditions. A situation that cannot occur if the medium is a

homogeneous continuum. One of the most well known examples is the multiple sclerosis.

In this case, traveling wave propagation fails due to insufficient current to

stimulate the excitable nerves. The study of wave propagation in systems of excitable

cells is an important aspect of neurophysiology and cardiophysiology, for example .

It is often the case that propagation failure leads to failure of these systems, and

in the case of the cardiac action potential, this can be fatal.

Recently, a significant increase in the number of publications on this subject

has appeared . In the field of chemistry, recent experiments of Laplante and co

workers ' have shown that a wave initiated in a one- dimensional array of CSTRs



(16 linearly coupled reactors) fails to propagate if the exchange rate is below some

non-zero critical value.

To the best of our knowledge, no large arrays exhibiting this effect has been

demonstrated or built. In this paper, we propose a more suitable framework for future

experiments on traveling waves than those occurring in chemistry and biology. By

coupling several Chua's circuit112'141 (simulating a reaction- diffusion medium) we

have been able, first, to show analytically the existence of traveling wave solutions

in this system, and second, to observe numerically the same qualitative results on

propagation failure as reported in chemistry and biology. The purpose of this paper

is to show that the behavior of our system, as a large array of coupled Chua's

circuits, is markedly different from the continuous approximation of classical

reaction- diffusion models. Moreover, the internal behavior of each circuit/cell

proves to be important in the description of the propagation failure phenomena.

The paper is organized as follows: in section II we discuss the circuit model

that we will use in the array. Section III provides a stability study of the

equilibrium solutions for Chua's circuit when it is coupled with its neighbors.

Section IV investigates the existence of traveling wave solutions corresponding to

two different nonlinear v-i characteristics (symmetrical and non-symmetrical) for

Chua's diode1151 in each circuit cell. The last section is devoted to the analysis of

propagation wave failure.

2. Model of Chua's Circuit Array

The basic unit (cell) of our one- dimensional array is a Chua's circuit11 , a

simple oscillator which exhibits a variety of bifurcation and chaotic phenomena. The

circuit contains three linear energy- storage elements (an inductor and two



capacitors), a linear resistor, and a single nonlinear resistor. Every oscillator was

coupled with their adjacent neighbors through linear resistors, simulating a

diffusion processes. Fig.la shows the basic cell circuit as well as the coupling with

the adjacent cells, via R-Ohm linear resistors.

The nonlinearity of the Chua's diode is given by the three-segment piecewise-

linear resistor characteristic shown in Fig.lb. We will consider the non

symmetrical, as well as the symmetrical Chua's diode in our study of traveling wave

fronts.

The circuit dynamics can be described by a third- order autonomous nonlinear

differential equation. We have to add a fourth equation which accounts for the

coupling between neighbors. In particular, we will choose the dimensionless form

given by (1.1) in Ref. [12], which we rewrite for each circuit cell k as,

xk = a (yk - h(xk)) + D [x^, - 2 xk + xk+1]

yk = xk - yk + zk (k = 0,1,2,...,£)

ik = -P yk (i)

where h(x) describes the three- segment piecewise- linear curve of the

nonlinear characteristic resistor described by h(x) = ao + aj x + bj Ix-xJ + b2 |x-

x2| when a! = (mj+m^, bx = (mo-m^, bj = (m2-mo)/2, and ao = (mo-ni!) Xj/2 + r^

x2 or, upon expansion,

h(x) = m2 x + (mo - mx) x > x2

= mo x x, < x < x2

= m, x- (mo - m{) x < xl (2)



We will choose x, = -1 and x2 = (m0-m1)/(m0-m2) so that the classical

symmetrical situation1121 (x2 = 1) is recovered when m2 = mv

In Eq. (1), D represents the diffusion coefficient of variable x, and is given

by a/(G R) in its dimensionless form1, where G is the conductance in Siemens of the

linear resistor in the Chua's circuit, and R is the coupling resistance in Ohms. The

set of fixed parameters used throughout this paper is the assigned values

{a,P,m0,m1,ni2} = {9,30,-1/7,2/7,1/7} and G = 0.7.

In addition to (1) we impose zero- flux boundary conditions; namely,

dx(0,t)/ds = 0 and 6x(*,t)/ds = 0 (3)

where I describes the array length and s is the direction of the diffusion.

This is equivalent to assuming x(0,t) = x(-l,t), and x(£,t) = x(£+l,t), for all t >

0, when x(0,t) denotes cell 0 and x(£+l,t) denotes cell I of the linear array.

The nonlinear boundary- problem described by equations (1) to (3) will be

solved by a 4th-order Runge- Kutta with automatic time step size control. The spatial

step size is kept at a constant value equal to one. Note that if we take the limit

As—>0, we would obtain a continuous model, where the "diffusion" term of the first

equation in (1) represents, then, the Laplacian of x, 32x/ds2.

3. Linear Stability: Primary Bifurcation Branches

The equilibrium states of Eq. (1) obtained by setting xk = yk = zk = 0 are

*We use the same scaled parameters than in Ref. [17].
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summarized as follows,

State X y z

P+
Po
P

(mj-m^/mj
0

(mo-m^/m!

0

0

0

(nio-m,)/!!^
0

(mpnioJ/m,

Here x, y and z are vectors of dimension (£+1) x 1. Each of these three

equilibrium states represents a solution to Eq. (1) for all values of the parameters.

The study of the behavior of the solutions in the neighborhood of the "trivial"

equilibrium solutions and the questions of their stability are simpler, and, in

particular, for the Chua's circuit have been described extensively . Bifurcation

of solution branches from the trivial branch is called "primary bifurcation" in the

literature of traveling waves118,191. Only real bifurcations are of interest for us

in this paper.

The stability of the trivial solution is determined by the eigenvalues of the

linearized equations (1) corresponding to the boundary conditions (3).

The eigenvalues are given by the characteristic polynomial,

X3 + X,2 (1 - m) + X (p - a - n,) - p n, = 0 (4)

where p., = -a m - D (rcn/Q2 (n = 0,1,2,...) , m = {mo, m^ m2} depending on

which trivial solution is being considered. (See Appendix A for more details).

Depending on the values of I and D, two regions are found where either all

eigenvalues are real, or there are always two complex conjugate roots for (4). This

bifurcation line is shown in Fig.2 for n=l. The upper part of the figure corresponds

to a saddle point for P0 and the lower part to a stable focus. The other two trivial



solutions has always two complex eigenvalues with a negative real part (stable focus)

for all values of I and D considered in this paper.

4. Traveling Wave Front

Here we investigate the existence of traveling wave solutions of (1) of the

form u(s,t) = u(£) = u(s-vt), u = {x,y,z), for some constant v. In order to have a

wave solution which evolves from one u(P.) to another state u(P+) (or the reverse),

the middle point u(P0) must be a point of unstable equilibrium120"221 (corresponding

to those already found at the upper part of Fig.2). The interval (P.,P0) plays the

role of a threshold: exceeding it leads to a transition from state P. to state P+ (or

the reverse).

To investigate traveling waves having a stationary profile and a constant

velocity v, let us define a reference frame moving with the propagating wave whose

relative coordinate is defined to be £ = s - v t. Eq. (1), thus, transforms into the

following system of ordinary differential equations in £,

-v dxla% = a (y - h(x))/e + D c?x/dg (5)

-v dyla% = x - y + z (6)

-v dzla\ = -p y • (7)

where the subscript k has been dropped to avoid clutter.

Following Ortoleva and Ross1211, we have assumed that x is a fast variable, of

order e_1, whereas for all other variables the relaxation time is of order unity.

This approximation is known to reproduce qualitatively quite well the classical

results found on traveling waves on reaction- diffusion problems.



The solution of Eqs. (5) to (7) need to be sought in two regions, labeled

"fast" and "slow", and then joined appropriately. The "fast" region is defined to be

that interval in the relative coordinate £ over which rapid (quasidiscontinuous)

changes in x take place; the "slow" region involves variations on a much larger

scale. Applying singular perturbation theory, the Appendix B gives derivations of the

following zeroth- order approximate equations for the "fast" and "slow" regions,

The "fast" region,

-v dxVa% = a (y* - h(x*)) + D cPxV^2 (8)

y* = const. (9)

The "slow" region,

a (y - h(x)) = 0 (10)

dy/d$ - v d>y/dZ? = dx/dt, + py/v (11)

The asterisk indicates here variables in the "fast" regions. Eq. (11) has been

obtained by differentiating (6) with respect to £ and using (7). The solutions of

equations (8) and (9) must be matched with those of (10) and (11). According to the

zeroth- order singular perturbation theory1211, we can formulate the matching

conditions only for the solutions from the "slow" region. In the problem of front

propagation, two "slow" regions are separated by a "fast" one at some £ = £c e

[0,+oo), which means that from the right and the left sides of the "fast" region, the

"slow" variable, y, must be continuous.

Solving equations (10) and (11) in the slow region and imposing the initial

conditions at £ -> 0 and +«>, such that the solution remains bounded, we obtain y = 0

8



for the "slow" region, at this level of the perturbation theory. In this case, the

matching conditions for £ = £c ("fast" region) implies by continuity that y* = 0.
[20-221

Now, equations (8) and (9) can be solved as a one- variable problem1

The velocity of the traveling wave solution, v, is obtained by integrating in x* from

x* = x. to x* = x+. Whence we get an expression for v in the form,

+(y* - h(x*)) dx* / f (dxVaX)1 a% (12)

The value of v is chosen so that the solution obtained satisfies:

(dx*la%) * = (dx*la%) * = 0
X =x.

where, in Eq. (12), it is easy to show that f (dV/dl;2) dx* = 0, by the
x.

conditions given above.

In this case, the sign of the velocity (direction of the wave) is defined by

the upper integral, I, in Eq. (12). The dominant state is defined to be x. if I < 0

and x+ if I > 0. If the integral is equal to zero, then v = 0, and the wave front is

stationary.

For the symmetrical Chua's diode, where m2 = ml in Eq. (2), and imposing the

above matching condition, y* = 0, we obtain the value v = 0 for the velocity. Fig.3

shows this solution as a stationary wave front. The value of the diffusion

coefficient and the length of the linear array were taken such that we are in the

upper part of Fig.2. The other possibility (lower part of Fig.2) gives rise to the

unstable solution shown in Fig.4 where both initial conditions at P+ and P. "fall"



flow towards P0 and eventually settles to either P+ or P. depending on the initial

conditions and the chosen parameters.

The non- symmetrical Chua's diode gives more interesting results. In this

case, Eq. (12) dues not have a trivial solution and can be completely solved^,

1/2

v = fc 1 (13)

'

4 a ,DP

(m2 x2 - 2 I)
d

where x = x. - x+ = (rrio-mjXmj+m^/mjmj. From Eq. (13) the maximum allowable
A

value for m2 is determined by the inequality I < m2 x2/2; namely, m2 = mlt

5. Propagation Failure

Solving numerically the Eq. (1) using the non- symmetrical Chua's diode, it is

possible to obtain a traveling wave front. A propagating wave can be initiated by

setting the first cell at the equilibrium state P+, while maintaining the remaining

cells at P.. Fig.5 illustrates the result of this simulation for 50 coupled Chua's

circuits and a fixed value of the diffusion coefficient (D = 2.57). Observed that as

time increases a wave front propagates towards the equilibrium state x+ = 3 from

those cells that originated at x. = -1.5. Three different stages can be identified

corresponding to the small, intermediate and final regimes of the propagating front.

Boundary effects are, in part, responsible for the initial and final regimes. During

the intermediate regime, the velocity is constant. In the central portion, the

^Eq. (9) was solved for I > 0. We obtain the bounded solution x(£) when x = x. as £ -»
0 and x = x+ when £, •» +<».
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propagation can be considered as identical to that observed from an infinite array of

discrete cells.

By changing the value of the diffusion coefficient, the velocity changes as

was predicted by Eq. (13), although, in contrast to the predictions of the classical

theory, the velocity becomes zero at a critical (non-zero) value of the diffusion

coefficient D. Fig.6 shows the actual behavior (points) and the theoretical

predictions (dashed line) derived from Eq. (13).

Fig.7 shows this critical behavior for a non-propagating wave front below the

critical value of the diffusion. After an initial motion (the first 50 sec.) the wave

front fails to propagate through more than 7 circuit cells, but rather remains at

this stage indefinitely. Observed the constant difference between the circuit cells

that have made the transition to P+ from those which, if unperturbed, will remain at

P.. We notice that propagation fails as a result of blocking transmission (similar to

those already found in nerve propagation), and not as a consequence of decreasing

amplitude.

J.P. Keener,?1 proved that the propagation failure is an inherent property

of the discrete systems and can not be observed in a continuous, one- variable,

homogeneous reaction- diffusion system. In addition, using bifurcation arguments

based on the existence of a limit point of a nonuniform steady state, he shows that v

approaches zero as D tends to some critical value D*. It can be shown that,

v = y (D - D*)m (14)

where y and D* are determined by fitting the numerical data shown in Fig.6 to

Eq. (14). Fig.6 shows this solution (continuous line) for y = 0.529 and D* = 0.363.

11



6. Conclusions

We have shown that when several identical Chua's circuits are coupled

resistively in a one- dimensional array, traveling wave fronts arise for certain set

of parameters. This wave solution is found to move when the Chua's diode is

asymmetric. In the symmetrical case, a stationary wave front appears. Both

possibilities are analyzed in the context of the primary real bifurcation which gives

the minimum length of our array to support a structure at fixed diffusion, D.

At the lowest approximation of the perturbation theory, we have calculated the

dependence of the wave velocity on D. This result agrees only qualitatively with the

numerical data. Numerically, it has been found that the velocity decreases with D and

becomes zero at a critical (non-zero) value, i.e. the wave front fails to propagate.

These differences in behaviors are due to the choice of different models. The

smooth asymptotic decay to zero always results when a continuous (PDE) model is used,

while an abrupt transition to zero, at a critical, non-zero, value of the diffusion,

can only be found in a discrete model where the internal dynamics of each circuit

cell plays an important role.

This discrete version of the array of Chua's circuit is being used to generate

and study more complicated dynamical patterns, such as those reported by physicist,

chemists and biologist in the classical Belousov- Zhabotinsky reaction. Spatial

bifurcations as well as spatio- temporal chaos are interesting subjects for future

research.

In this paper, we have presented only numerical results. However, large arrays

of Chua's circuits can be built via VLSI technology to prove, at real time, its

ability as a simpler and lower cost system or model, which is capable of reproducing

almost all reaction- diffusion situations described in the literature.
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Appendix A

Assumption 1^ Let us suppose that q0 - {x0,y0,Zo} is a set of equilibrium

solution for the Eq. (1) without diffusion. To study the stability of q0 we will look

for the perturbated solutions 6q in the form, q = 5q + q0, where q = {x,y,z}. Thus,

Eq. (1) can be written as,

5x
r

5y —

5z
V.

t m a 0 1 M
1 -1 1 8y
0 -P 0

J
Sz

+ D a*(bx)/ds2 (A.1)

where m = {mo, m{i m2}, depending on which trivial solution is being considered.

Assumption 2^ The solutions of Eq. (A.l) can be written explicitly as uncoupled

functions of time and space,

8x = exp(Xt) Q + F(s) 8x

5y = exp(Xt) Cy

5z = exp(A.t) Cz

13
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where Cx, Cy and Cz are unknown functions of {x,y,z} and F(s) accounts for the

space solutions.

Substituting (A.2) into (A.1) we get,

a*F(s)/ds2 + T F(s) = 0 (A.3)

where T e R1, is a function of {x,y,z} and the rest of the parameters of the

system appearing in Eq. (A.l). T can be explicitly calculated by solving the

differential equation (A.3).

F(s) = A cos (T| s - B) (A.4)

where A and B are arbitrary constants and T| = |r|! .

The zero-flux boundary conditions, Eq. (3), used throughout the paper can be

easily translated to Eq. (A.4) in the form dF(s=0)/ds = dF(s=£)/ds = 0. Thus, in Eq.

(A.4) the constant B is prc and T| = nrc/£ (p = n = 0,1,2...).

Since we are interested in the stability of Eq. (1), the eigenvalues, X, are

easily calculated (substituting (A.4) and (A.2) into (A.l)) by solving the equation

-a m -(nn/t) -X a 0
1 -l-X 1
0 -p -X

= 0 (A.5)
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Appendix B

We seek stable, physical (nonnegative, bounded) solutions for Eq. (1). We assume

that x is a fast variable, of order e1, while y and z are supposed to be slow

variables. We introduce times xf and xs for the fast and slow processes,

respectively, such that x/c,, s e « 1. The existence of different time scales suggest

that we introduce an appropriate scaling transformation so that Eq. (1) becomes Eqs.

(5) to (7). We will look for solutions of these equations in the limit e —> 0.

The nonlinear traveling wave profile has two characteristic regions; a "fast"

region where the rapid changes in x takes place, and a "slow" region where the rate

of the changes in the variables occur on a much larger scale. Doing so, we decompose

the problem in these two regions, and match the corresponding solutions at the

boundaries.

/. "Fast" region

In order to select terms of like order within this region we introduce a length

scale X(e) of the order of a diffusion length attained on the short time scale xf,

X(e) = (D xf)1/2 = (D xs e)m (B.l)

Hence we introduce the scaled relative coordinate p, such £ = e1 p. So that p

is of order one throughout the "fast" region. The velocity of the discontinuity

propagation is of the order of the distance X(e) divided by the time xf. We introduce

the reduced velocity co(e) as v(e) = e~m ©(e), and we assume co(e) to be finite as

e—>0. With these assumptions Eqs. (5) to (7) become,

15



D a*xjdp2 + co dx/dp + a (y - h(x)) =0 (B.2)

co dy/dp + e (x - y + z) = 0 (B.3)

co dzjdp - e P y = 0 (B.4)

Observed that all the terms in Eq. (B.2) are of the same order. This is not

the case in Eqs. (B.2) and (B.3). This observation suggests that we construct

expansions in e of u = {x,y,z} and velocity co(e),

oo oo

u- lU u„(p)} and w(e) =He" ^(e)} (B-5)
n=0 n=0

To lowest order in e we obtain the set of coupled differential equations,

D dfxjdp2 + co0 dxo/dp + a (y0 - h(xo)) =0 (B.6)

co0 dyo/dp = 0 (B.7)

co0 dzjdp = 0 (B.8)

where Eqs. (B.7) and (B.8) can be solved at this order of the approximation,

y0 = Zq = const. The values of the constant variables y0 and Zq must be determined by

matching conditions between the "fast" and the "slow" regions. Observed that the

motion of the traveling wave is described at the lowest order of the perturbation

theory, only, by the fast variable.

//. "Slow" regions

Here we choose a new length scale, A.'(e), associated with the distance over

16



which the front propagates on the long time scale xs,

A/(e) = xs v(e) * xs co0 e"1/2 as e-> 0 (B.9)

and define the length scale transformation £ = e"1 <|>. The velocity of

propagation is given by Eq. (B.5) and it has been implicitly used in the derivation

of Eq. (B.9). Then, Eq. (5) becomes for the "slow" region,

e2 D a^Xo/dty2 + e co0 dx^dty + a (y0 - h(xo)) = 0

which, that at the zeroth order becomes,

a (y0 - h(x0)) = 0 (B.IO)

while Eqs. (6) and (7) remain unchanged,

co0 dyo/dty + x0 - y0 + Zq = 0 (B.ll)

co0 dzjdty - p y0 = 0 (B.12)

The group of equations corresponding to the solution in the zeroth order of

the singular perturbation theory for the regions "fast" and "slow", (B.7) to (B.9)

and (B.IO) to (B.12) respectively, must be fulfilled by matching conditions between

both regions, as described in Section 4.
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Figure Captions

Figure 1: (a) Chua's circuit consists of a linear inductor L, a linear resistor

of conductance G, two linear capacitors Cj and Q, and a nonlinear resistor known as

the Chua's diode. Each unit is connected to its neighbors through linear resistors R

at node Vr (b) three-segment piecewise- linear v-i characteristic of Chua's diode.

The outer regions have slopes nij and m2, and the inner region has slope m^

Figure 2: Real bifurcation for the coupled Chua's circuits. The nature of the

equilibrium states corresponding to {P.,P0,P+} is identified in each region. The

formation of spatial structures can only occur in the upper region.

Figure 3: Stationary wave front for the variable x in the symmetrical case (m2 =

ml = 2/7). Its shape does not change with time and its velocity is found to be zero.

Length of the array is equal to 80 and the coupling resistance is equal to 5 Q (D =

2.57).

Figure 4: Unstable traveling wave solution. The parameters chosen in this case

are found in the lower part of Fig.2. Both initial conditions P. and P+ are

distributed uniformly along the array (£ = 18). The waveforms tend towards P0 and

after some time is attracted by one of the equilibrium states, in this case P..

Coupling resistance is equal to R = 0.25 Q.

Figure 5: Propagating wave front moving from Chua's circuit 1 to 50. This front

is defined as the wave of transition from state P. to P+. The intermediate regime,
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far from the boundaries can be considered to have a constant velocity, v = 0.785

circuits by sec. Coupling resistance is equal to R = 5 Q (D = 2.57).

Figure 6: Propagation failure in a linear array of coupled Chua's circuit. The

stationary wave front velocity is clearly seen to approach zero as the diffusion

approaches some critical value D* = 0.363. The points represent the numerical

simulation and the continuous line represents their fitting to a quadratic law

proposed by Keener. The dashed line is the approximate solution, Eq. (14), in the

zeroth order perturbation theory of the continuous case.

Figure 7: Non-propagating wave front for the same numerical conditions as in

Fig.5 except R = 27 Q (D = 0.48). In the first 50 sec. the wave propagates along the

array but it fails upon reaching the circuit number 7, where it remains constant from

then on.
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