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ABSTRACT

We define consistency of approximations to an optimization problem in terms of epiconver-
gence of the cost functions and convergence of stationary points of the approximating problems. We
then show that standard discretization techniques decompose semi-infinite optimization and optimal
control problems into families of finite dimensional problems, which, together with our optimality
functions, are consistent discretizations to the original problems. We then present two types of tech
niques for using consistent approximations in obtaining an approximate solution of the original prob
lems. The first is a "filter" type technique, similar to that used in conjunction with penalty functions,
the second one is an adaptive technique that can be viewed as an implementation of a conceptual
algorithm for solving the original problems.
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1. INTRODUCTION

The vast majority of semi-infinite optimization andcontinuous optimal control problems cannot

be solved without resorting to some form of discretization: domain discretization in semi-infinite

optimization and numerical integration in optimal control. There are basically two, not altogether

disjoint, discretization techniques in current use.

The first can be viewed as that of implementation of conceptual algorithms, and is characterized

by a theoretically justified numerical implementation of operations in a conceptual algorithm. There

is a moderate size literature dealing with the implementation of conceptual algorithms, see e.g. [14,

15. 21, 22, 23, 27]. In fact, one can even find a theory of implementation of conceptual algorithms,

see [14, 18]. Properly constructed implementations of conceptual superlinearly converging algo

rithms remain superlinearly converging (see, e.g., [15, 23, 27]), but, in our experience, implementa

tions of first order algorithms perform poorly. A particular aspect of implementations is that the

approximations used in computing function values and gradients need not be coordinated, which per

mits the use of implicit methods of integration of differential equations in the solution of optimal con

trol problems. However, the resulting approximate gradients are not gradients for the approximate

functions, which explains the degradation of first order optimization algorithms.

The second technique, sometimes called diagonalization (see [7, 9]), emulates the use of dif-

ferentiable penalty functions in nonlinear programming and hence is characterized by the fact that it

decomposes a semi-infinite optimization problem into an infinite sequence of nonlinear programming

problems, by domain discretization, and a continuous optimal control problem into an infinite

sequence of discrete optimal control problems, by explicit numerical integration of the differential

equations. Discrete optimal control problems are nonlinear programming problems with special

structure. Obviously, the gradients computed for the approximating problems are gradients of the

functions appearing in the approximating problems, which prevents the degradation of first order

methods. As with penalty methods, the solution of an optimization problem via diagonalization can

be viewed as a diagonal progression across minimizing sequences for the approximating problems,

i.e, one solves an approximating problem until some test is satisfied, and then uses the resulting end

point to start the solution of the next approximating problem. The choice of termination tests is

important, since it has a considerable impact on computational effort. In [13] we find some results on

the construction of optimal discretization strategies, while in [22, 23] rate-preserving strategies are

presented for use with first order algorithms for convex problems.

In this paper we examine two major issues associated with the use of diagonalization in the

solution of a semi-infinite optimization and optimal control problems. The first is the establishment

of the concept of consistency for the approximating problems, while the second one is the expansion

of available "cross-over" tests for use with diagonalization.



In Section 2 we introduce two concepts of consistency based on epiconvergence of the approxi

mating problems, as well as on the convergence of stationary points, characterized as zeros of

optimality functions. As we will see, unless some constraint qualification is satisfied, optimality

functions may have zeros outside the feasible set. Hence the two definitions make distinctions

between whether a constraint qualification is satisfied or not. In [8] it is shown that epiconvergence

implies that sequences of global minimizers of the approximating problems converge to global

mimmizers of the original problem. We strengthenthis result by showing that, in addition, sequences

of "uniformly" strict local minimizers of the approximating problems converge to a local mimmizer

of the original problem. To conclude Section 2, we show that differentiable penalty functions in non

linear programming, the most analyzed form of problem approximation, are consistent approxima

tions in our sense.

In Section 3 and 4 we define sequences of approximating problems for semi-infinite optimiza

tion and optimal control problems and show they are consistent in the sense of our definitions.

Finally, in Section 5 we present four new master algorithm models for use in solving optimization

problems via diagonalization.

2. PRELIMINARIES

Since we intend to examine more than one type of approximation effect, it is simpler, at first, to

deal with consistent approximations in abstract form. Thus let IB be a normed linear space, with norm

II • B, and consider the problem

P rm€i"/(j:) (2'l3)

where / : <B -»R is (at least) lower semicontinuous, and X c IB is the constraint set. Next, let

{<BN } jJLj be a family of finite dimensional subspaces of IB such that 2}N = (B if (B is finite dimen

sional (JR.") and CBN <= $N+h for all N, otherwise. Let IN = {1,2,3,...}, and consider the family

of approximating problems

P,v min /*(*). N€N, (2.1b)
x € Xh

where fN : (BN —> IR is (at least) lower semicontinuous, andX# c $N.

The relationship between the PN and P becomes clearer if we restate them all in epigraphical

terms. Thus, let the epigraphs (actually subsets of epigraphs) E c IRx (B and EN c IRx (BN be

defined by

E& {(x°,x)\x eX, x0Zf(x)), (2.1c)



EN 4 {(x°,x) \xeXN, x0ZfN(x)}. (2-ld)

Then the problems P and PA, can be restated in the following, equivalent form:

P* ,min x°> (2.1e)
(.r",.t)€£ V '

Pv niin x°. nm

In the form (2.le,f). we see that the problems P# differfrom the problemP only in the constraint set.

Hence, it is intuitively clear that for the FN to be of any use to us at all, the epigraphsEN must con

verge to the epigraph E. in the sense that Urn EN = Lim EN =E. Because of the form of (2.led),

this requirement can be rephrased as follows (see [3,8,26]).

Definition 2.1. We will say that the problems in the family {PN }^Bl converge epigraphically to
P (PN ->£"' P) if

(a) for every .v e X, there exists a sequence {xN }#o], with xN e XN, such that xN ->* and
limfN(xN)£f(x):

(b) for every infinite sequence \xN }NeK, where K <= IN, satisfying xN € XN, for all N € K and

xN ->* x. we have that x € X and lim//v(%) ^/ (*)• D

The main consequences of epiconvergence are contained in the theorem below, which requires
the following definition.

Definition 2.2. A sequence {xk )f^.* of local minimizers for the P* is uniformly strict, if there

exists a p>0 such that /*(**)</*(*) forall x € Xk, x * xk, such that 0* - ** H£ p forall* Zk*. •

Theorem 2.3. Suppose that FN -*Epi P.

(a) If {xN }v=1 is a sequence of global minimizers of the PN> and Jc is any accumulation point of

{x N }^al, thenx is a global minimizer of P.

(b) If {xN}^_, is a sequence ofuniformly strict local minimizers ofthe VN, and x isany accumu

lation pointof {.v A? }JJ„lf thenx is a local minimizer of P.

Proof, (a) A proof of this result can be found in [3,8,26], and is therefore omitted.

(b) Suppose that for some infinite subset K c is, we have that Jc N->* x. Let p >0 be a common

radius of attraction for the sequence {xN }N6 K. If x is not a local minimizerfor P, then there must

exist an x* e X, such that k* - x II £ p/2 and / (x*) =/ (x ) - 35, with 6 >0. By Definition 2.1 (a).
there exists a sequence U*v}jv=i> with x*N€XN, such that **# ->** and



hmNeKf(x*N)£Kinf(x*N)£f(x*l and by Definition 2.1 (b), we must have that

lim^ ck/n^n)^ IMfN (xN)Zf(x). Hence there exists an N0 such that for all N ZN0, N € K.

fl*** - x NII < p, / (**N) <; / (£) - 26 and / (x N) ^ / (*) - 6, which contradicts the local optimality

of the xN. Hence the theorem is true. •

In the absence of convexity, nonlinear programming algorithms can only be shown to compute

stationary points that are, hopefully, local minimizers of the P^, but not necessarily global mimmiz

ers of the P/y. The worst outcome of such a process is illustrated in Fig. 2.1, where a sequence of

local minimizers converges to a global maximizer. In view of Theorem 2.3, we note that epiconver

gence ensures, at least, that uniformly strict local minimizers of the PN cannot converge to anything

but local minimizers of P.

It is sometimes useful (as in the case of penalty function methods) to reformulate either the

problem P or the problems YN, N = 1,2 or both, in the following equivalent forms:

pO

min f°(x),
X € $

min ffiix),
x e Qs

(2.1g)

(2.1h)

where f°:<B -»R and f^.-'B -»R are defined as follows: f°(x) =f(x) for all x e X. and

f°(x) =+°o otherwise, and, similarly,/^(*) =fN(x) for all x e X#, and f$(x) =+°° otherwise.
The following result should be obvious.

fix)

']'"'*- /ioo(*)
- /so(*)

/io(*>

*10 *50 *100 x

Fig. 2.1. Convergence of Local Minimizers % to a Global Maximizer x



Corollary 2.4. Suppose that one of the following four statements is true: (i) PN ->Ep' P, (ii)
PN -+Epi P°, (Hi) P# ->£/"' P, (iv) P# ->£''' P°.

(a; If {x N }^=1 is a sequence of global minimizers of the ¥N, and jc is any accumulation point of

{x N }Jv=]imen * is a global minimizer of P.

(b) If {x N }tfal is a sequence of uniformly strict local minimizers of the PN, and x is any accumu

lation point of {x N }^ol, thenx is a local minimizer of P. •

As we have already mentioned, nonlinear programming algorithms can only be shown to com

pute stationary points, often characterized as the zeros of an optimality function (see, e.g. [18, 19]).

We will therefore characterize stationarity of points with respect to the problems P, PN, in terms of

the zeros of optimality functions, 0:2? -> R for P and dN : <DN -» R for J?N, N € N, where

2) c 2? and (DN c <BN, i.e., the optimalityfunctions may not be defined on the entire space. Quite

commonly (see, e.g.. Section 4), we have that (DN =2) n&N.

Definition 2.5. We will say that a function 0:2) -> R is an optimality function for P if (i)

X <= 2), (ii) 0() is upper semicontinuous, (Hi) 0(*)£O for all x € 2?, and (iv) for J? € X,

Q(x) = 0, if and only if x is a stationary point for P. Similarly, we will say that a function

QN : <DN -> R is an optimality function for ?N if (7j XN <= 2)N, (7/) 0^(0 is upper semicontinuous.

(7/7) 0N(x) £ 0 for allx € 2)N, and (7v) for£# € XN, QN(xN) = 0, if and only if jr^ is a stationary

point for P^. •

While all the optimality functions that we will see in this paper are continuous, there are

minimax and feasible directions algorithms that are based on upper semicontinuous optimality func

tions (see, e.g. [18.19]). Hence our assumption of upper semicontinuity in the definition of optimal

ity functions is inspired by practical considerations, rather than a search for generality.

The introduction of optimality functions leads us to two concepts of consistency of approxima

tion, as we see below.

Definition 2.6. Let 0(-), 6^(0, N € IN, be optimality functions for P, PN, respectively. We will

say that the pairs (PN, QN), in the sequence {(VN,QN)} J^ml are weakly consistent approximations to

the pair (P, 0), if (i) P„ -*Epi P, or (ii) PN -*Epi P°, or (Hi) Pj? ->E" P, or (iv) Pj? -f# P°, and for
any sequence [xN}N£K, ^^N, with xN € XN for all N € K, such that xN ->*,

MmQN(xN)£Q(x). •

The next definition implies that a constraint qualification is satisfied.

Definition 2.7. Let 0(), QN(-), N € N, be optimality functions for P, PN, respectively. We will



say that the pairs (PN, dN), in the sequence {(PN, dN)} jJol are consistent approximations to (P, 0), if

they are weakly consistent approximations, and, in addition 0(*) < 0 for all x eX and QN(x) < 0 for

all* €XN,N e N. •

The best known examples of consistent approximations are not those used in semi-infinite pro

gramming and optimal control, but those found in nonlinear programming, in the form of various

penalty function methods. It is useful to digress for a moment from our original charge and examine

what can be said about penalty methods, so as to establish a yardstick for comparisons. Thus, con

sider the simple case where

P mm{f(x)\g(x) = 0), (2.2a)

where / :R" -> R and g :JR." -» R;, with / < n are both continuously differentiable. Clearly, for

the above problem, X = {x e R" I g (x) = 0}. The simplest approximations using penalty func

tions have the form

Pyv min /*(*)» A^ e IN, (2.2b)
.V € R"

where fN :(BN -» R are defined by

fN(x)±f(x) +V2CNKg (x)l2, (2.2c)

with {cN } jy.j a strictly increasing sequence of positivepenalties that divergesto infinity.

To obtain consistency results, we must restate P in the equivalent form

P° min f°(x), (2.2d)

where f°:R -» R is defined by f°(x) =/(x) for all x € R" such that g(x) = 0, and f°(x) = +«>,
otherwise.

Theorem 2.8. The problems in the sequence {FN }^ol, defined in (2.2b), converge epigraphi-

cally toP°,defined in (2.2d).

Proof First, since for any x € Rn,/N(Jc) ^/°(Jc), it follows that iim/N(Jc) <.f\x). Hence set

ting xN = x for all N € IN, we see that part (a) of Definition 2.1 is satisfied. Next, suppose that the

sequence {xN }N°mi converges to the point x. If g(x)*0, then we must have that

00 = Mm/N(%) =/°(x). If g(x) = 0, then we must have hmf$QcN) Zlim/(xN)=f°(x). Hence
we see that part (b) of Definition 2.1 is satisfied. D

Next we will introduce optimality functions for the problems P and PN. Let 0: R" -»R be

defined by

•6



Q(x)&-min{^°Vf(x)-gx(x)TE>f I (?°)2 +U^2= 1} -te(x)rg(x)l2, (2.3a)

where £ € R', and, for any AfeN, letQN :R" ->R be defined by

fyfroA-B . I =Vfix)+gx(xf . <**(*) ^n2-ll—Vf(x) +gx(x)Tg(x)f,
Vl+c$g(x)f il+c$g(x)f cn

1 1
+

2ii„/vmi2 „2[1+ciflgixW <tfj
v/jv(*). (2.3b)

Clearly, 0(*) = 0 at any point that satisfies the constraint g(x) = 0 and the F. John condition of

optimality; while QN(x) = 0 if and only if VfN(x) = 0. Since the continuity and sign properties of

these functions are obvious, itfollows that they are optimalityfunctions.

Theorem 2.9. Thepairs in thesequence {(PN,QN)} £ml, defined by (2.2b) and (2.3b), are weakly

consistent approximations to (P.0), defined by (2.2a), (2.3a). Furthermore, if gx(x) has maximum

row rankfor all * € R", then they are consistent approximations to P.

Proof First, by Theorem 2.8, the problems ?N converge epigraphically toP°. Next, let {xN }^=1

be any sequence that hasa limit point, sayx. Then, because for allxN we musthavethat

1 17*/ w / *r cn8(xn) „
v/(%) + 5.v(%)

1+c$g (xN )f V1 +cfig(xN )f

<; - min {U?°V/ (xN) +gx (xN )T ?ll2 I(?0)2 + D^l2 = 1}, (2.4a)

and because

»T-?/ (xN) +gx (xN fg (xN )f -> lgx(* fg 0c )ll2, (2.4b)
cN

asN -»oo, it follows thatlim0#(%) ^ Btf).which shows that wehave weak consistency.

Now suppose that gx(x) has maximum rank for all x € Rn. Then 0(*) = O implies that

g (x) = 0, i.e., thatx € X. SinceX/y = R", it now follows thatwehaveconsistency. •

We will now proceed to show that we can construct consistent approximations to semi-infinite

optimization and optimal control problems.



3. CONSISTENT APPROXIMATIONS FOR SEMI-INFINITE OPTIMIZATION

To avoid excessively burdensome notation, we will restrict ourselves to the following two sim

ple examples of semi-infinite optimization problems. The first is anunconstrained minimax problem:

MMP min ,,,0/v^mm v|/ (x), (3 la)

while the secondone is an inequality constrained minimax problem:

ICP fex^5, (3-lb)
where

X^ {* €R" IVC*)£0}. (3.1c)

In (3.1abc), for; = 0,1. thefunctions V :R" -»R, areassumed to be of theform

\Vi(x)£maxV(x,y), n Id)

with ty :R" xR->IR twice continuously differentiable, and the set YS [0,1].

Now.for/V = 1,2,3 let YN £ {0,UN ,2/N ,...,N/N },andlet

\|/^(a*)= max ty(x,y), j =0,1 . n 2a)

For N = 1,2.3 we now define the approximating problems MMP# and ICPjy by

MMPtf min vJ8(x)f {32b)
x € R"

ICPjv min yjlix), (3 2c)
x € Xs

where

XN £ {x e R" Iyh(x) <>0 }. (3.2d)

Lemma 3.1. For any bounded set 5 c R", there exists a constant L < °° such that for all

N = 1,2.3 and* € 5.

-^#)-VU)^0, ;=0,1. (3.3)

Proof Let j € {0,1}. First, since YN <= y, we always have that \\r/i(x)^\\ti(x). Next, let

yv e y be such that V (,v) = ^(x,yx). Then there exists a yfi € YN such that lyr -yf, I <; 1/N.
Hence



vl,(x)ztf<x,y&)zV<xy)-jj. <3-4>
where L < °°is a Lipschitz constant fortf{-, •) on 5 x Y, j = 0,1. •

Theorem 3.2. The problems MMPN and ICP^ converge epigraphically to the problems MMP

and ICP, respectively.

Proof We only need to consider the problems ICP^ and ICP, because if we set$\x ,y) b 0, then

these problems degenerate to MMPA, and MMP, respectively.

Our first observation is that because of(3.3), \v$(x) £ \\P(x). Hence, sinceX <= xN for all N.
given any .v e X. we can define the sequence {xN }fiml by % = x for all N, and we immediately

obtain that *v e *\- for all N and lim \\r$(xN) &\\r°(x). which shows that part (a) of Definition 2.1 is
satisfied.

Next, suppose that {xN )^al is a sequence such thatxN € XN and xN -> x as N -> «>. it now

follows from the fact that \|/,v(%) ^0 and (3.3) that y\xN)£K/N for all N. Because \\t\) is con

tinuous, we conclude that VCO^O, i.e., that *€X. Furthermore, again by (3.3).
]im \|/?(.yv )£ lim vj/°(.vv) = \\P(x). which shows that part (b) ofDefinition 2.1 is satisfied. Hence our
proof is complete. •

Before we can deal with the question of consistency, weneed to introduce optimality functions

for the problems MMP, MMP^, ICP, and IC9N. Optimality conditions for ICP (ICP^) can be

obtained from those for MMP ( MMP/y), by making use of the parametrized functions

f> :R" ->R.andFv^ :R" -»R,/V = 1,2,..., with the parameter^ € R\ defined by

/vU) =max{V)U)-V)U')-wV)+.V1(Jf)-vV)+}. (3.5a)

FNy(x) 4max {\j/v(*) - \j/#(*') - yiflju')+, Wn(x )- V/vC*')+ }. (3.5b)

where y>0, and V(*)+A {max\|/V),0 }, and y,}(;0+ = {max\|/yj(x),0 }. It should be obvious
that if x is a local mininimizer for ICP (ICPN), then it is also a local unconstrained minimizer for

^v(} {Fn v())- Hence' As in tl9]' for y*°'let the set valued maPS Oy (x), G$ty(x), G\x), Gj}(X ),
with values in R"+1, be defined as follows:+

GYV)§ co^
r v € Y\

\f(x)-4>°(x,y) +yy\x)+
V.A°(x,y) (3.5c)

The parameter yis not needed fortheoptimality conditions, butwill beneeded in thealgorithms thatwewill describe inSection 5.



G\x)% co -
v€ Y

GXiy(x)& co \|/#(*)-<j>V,y) + W;v(*)+
V.A°(x,y)

Vl(x)+-tf(x,yj
V.A\x,y)

, Gj(x)& co
ye YN

VN(x)+-$\x,y)
VA\x,y)

(3.5d)

(3.5e)

We will denote the elements of these sets by £ = (§°, ©, with ^ e R". For the problems MMP and
MMP#, we set y = 0 and we define the optimality functions 6MMP, 6MMP„, by

A «,;„ eO , i/.ncn2 a ,„\A _;„ tO ^ i/_tii:ri20MMp(^) =-_niin ?°+l/2a?Q2, 6mmp>) =-- nn> ?°+V4ll§F (3.6a)

For the problems ICP and ICPN, we set y > 0 and we define the optimalityfunctions 0ICP, 6ICPv, by

6icp(*) =-- m'-> ^0+1/2ll?ll2, eICP,U)A-_ jpin _, ?°+1/^[l2.(3i6b)
Seco[Gy(x),G\x)} $eco{GZ,y(x),Gkx)) V '

Theorem 3.3.

(a) If x is a local minimizer for MMP ( xN is a local minimizer for MMPyy ), then 0 6 d\y°(x )
(0e d\\fN(xN)) (where 3\j/°(-), 3yyv(') denote the Clarke generalized gradients [6]).

(b) If x is a local minimizer for ICP ( x N is a local minimizer for 1CPN ), then (with y>0)

0 6 dFJx)(0edF ^ (xN)).
x A'.v.v

(c) For any x € R". 0€9\|/°U) <=> 0€G00(*) <=> 0Mmp(*) = O: Oed\\t$(x)
Oe Gl0(x) <=*> QMM?x{x) =0.

(d) Let gammag >0. Then, for any jreR",06 dFx(x) <=> 0e co{ G*($),G\$)}

6ICP(A-) =0:0e dFNj(x) «• Oe co{ Gly(x),Gj(x)} <=s> eICPiV^) =0.

(e) For 7^0, the set valued maps Gy° (•), (?#(), GV), G^O). N =1,2,3,..., and the corresponding
optimality functions 0mmp('), 0mm/v(')' 0icp(')» 0icpa()» A' = 1,2,3,..., are all continuous.

(f) For every bounded set S c R", there exists a K < <» such that for all * € S and all

N = 1,2,3,...,

is

Î MMP.v^ )"" 0MMP(* )I^ "^">

ieicpff(*)-e1Cp(*)i£
£
N

(3.7a)

(3.7b)

Proof. The proofs of (a) - (e) can be found in Examples 5.2 and 5.5 in [19]. Hence we only need to

deal with (/). Thus, suppose that for x € S, <£N € G^0(x) is such that 8MMPw(*) =~(?Jv +^atD2)-

10



Then the vector (§# +\|/°(*) - vyjjc*), %N) € Gq(x ). It therefore follows from (3.3) that

-QMMp(x)^^+^(x)-w^x)+V2^Nf^-QMMPN(x) +j^. (3.8a)
Next suppose that f* € Gq (j:) is such that 0mmp(*) =-(§?+1/2l^*ll2). Then, by Caratheodory's
Theorem, there exist barycentric coordinates py ^0, 7 =l,...,n+ 1, such that Ej'Jj1 pJr =1,
?P =V)(Jf)-L/-iWOf.yy). and £* =L/JiV'V^V.y,), with yj € r. Clearly, there exist
yNJeYN, j =l,...,/i+lf such that lyy -yNJ I£ 1/tf. Let ^* € G$t0(x) be defined by
^ =vS<x)-YJ$\iJ$0(xtyNj),anAfo =£/+/ \LJVx+0<x.tyNJ). Then we must have that

\&-&-wSt*)+tf(*)\*jf. (3.8b)

0^*-£j£-|-, (3.8c)
where we assume that L <«> is a common local Lipschitz constant for <(>(-,•) and V(j>(-, •) on 5 xy.

Now, (3.8b), together with (3.3), implies that I§J$* - §*°I £ 2L/N. Since the set valued maps Gq (*),
G$,0 (-v) are bounded on bounded sets, we now conclude that (3.7a) holds for some K <°°. A similar
proof applies to (3.7b). •

It is obvious from Theorem 3.3 that the functions 0Mmp(*)> 0mmpw(') are optimality functions for

the problems ICP andICP/vC*), respectively; similarly, it is obvious from Theorem 3.3 that the func

tions ©icpO. 9icpa() are optimality functions for the problems ICP and lCPN(x), respectively. We

arenow ready to state our final result, which is obvious in view of Theorem 3.2 and Theorem 3.3 (see

parts (d), (e)). Referring to Proposition 5.5 in [19], we see that 0iCp(* ) =0 if and onlyif 0 € otyV),

and similarly, 0ICpiV(* )=0 if and only if 0 € d^ix). The requirement that 0 £d\y\x) for all x £X

is known as the generalized Mangasarian-Fromowitz constraint qualification (see [17]) and we invoke

it toensure consistency (i.e., toensure that whenever y\x) >0,0icp(*) <0, etc.).

Theorem 3.4.

(a) Consider the problems MMP, MMP^, with the assumptions stated. Then the pairs in the

sequence {(MMPN, 0Mmp* )1aT-i are consistent approximations to (MMP, ©mmp).

(b) Consider the problems ICP, ICP^, with the assumptions stated. Then the pairs in the sequence

{(ICPyy, 0ICPa.) }£ol are weakly consistent approximations to (ICP, 01CP). Furthermore, if for all x

such that \|/V)>0. 0£oV(*), and, in addition, for all N€ N, and xN such that ^(%)>0,
0£d\yh(xN), then the pairs in the sequence {(ICP/v.0^^) }^=1 are consistent approximations to
(ICP.Oicp). •
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4. CONSISTENT APPROXIMATIONS FOR OPTIMAL CONTROL

We can illustrate most of the issues related to optimal control problems by considering two

fixed time optimal control problems. The first is an unconsn-ained optimal control problem, while the

second one is an optimal control problem with controland inequality end point constraints.

Optimal control problems always involve the controls and trajectories of a dynamical system.

We will assume that this dynamical system is described by the differential equation

-%-x(t) =h(x(t)Mt)). t€[0,1], jr<0) =?, (4.1)
at

where x (t) € R", u(t) e R'", and hence h :R" x Rm -» R". Since we will keep the initial condi

tion constant and only vary the control, we will denote the solution of (4.1) by x"(t).

The following assumption is standard:

Assumption 4.1. Let pmax € (0,°°) be a given, very large number. The function /*(•, •) in (4.1) is

continuously differentiable, and there exists a constant K € [1,°°) such that

(i) for all X* ,x// e R", and v', v" e B (0, pmax) the following three relationshold:

y/i(^',v')-/i(^,v'/)II^A:[Ibc/ -Jc"B + lv' -v^Q], (4.2a)

ll/?.v tf , V) - hx (x//, v" )I <; K [\xf - x" II + Bv' - v" I], (4.2b)

Mll{x,y)-hll(x",v")\£K[fo' -*"! + !• -v"ll], (4.2c)

(ii) for all x e R", v € B (0, pmax),

Oa(x,v)l£*[lxO+l]. (4.2d)

D

Referring to [1, 16 pp. 136-143], we see that under Assumption 4.1, the solution *"(•) is

Lipschitz continuously Frechet differentiable in u on the interior of the bounded subset

U^ {«€L™[0,l]IOwll0o<;pinax}, (4.3a)

Now LZ [0,1] is not a Hilbert space, while R", on which the approximating problems will be defined,

is a Hilbert space, a fact that causes considerable technical difficulties, because of the form of the

optimality functions that we use in R". This difficultycan be removed by introducing the pre-Hilbert

space:

L^2[0,l]£(LSU0,l],{v>2,H2), (4.3b)

i.e., the elements of the space L^2 [0,1] are functions u e L£ [0,1], but it is endowed with the scalar

product and norm used on L2 [0,1]. The space L«2 [0. U is not complete; however, it is dense in

12



L?[0.1].

It is reasonably straightforwardto deduce from [1, 16] that the solution of our differential equa

tion (4.1), xu(•), is also Lipschitz continuously Frechet differentiable in u (in the L2 [0,1] topology)

onthe following subset of LS^ [0,1]:

U° £ {u € L™ 2[0,1] I lu Boo <6pmax }, (4.3c)

where 8e (0,1) is near unity. Clearly, U° c U. For each t € [0,1], the Frechet differential

Dx" (t; •) is defined onL™a [0,1], and takes values in R".

For j =0,1,..., q, let gi':R" -»R be alocally Lipschitz continuously differentiable function,
and let

fJ(u)*gJ(xu(l)), j =0,1 q,

\|/(w) =max;€q/;(w),

where q= [l,2,..,q }. We will consider the following two problems:

0/

UP

CP

where

min fv(u),
u€U°

min {/V)lv|>(")<;0},
u € U,

Uf A {«€L2i2[ai]lii(/)€ [/, Vr E [0,1]},

(4.4a)

(4.4b)

(4.4c)

(4.4d)

(4.4d)

with U c R"' a compact, convex set contained in the interior of the ball

B(0,5pmax) A {v e R'» Illv II <; 5pmax }; and

fj(u)AgJ(x"(\)).

Problem (4.4c) can be restated in the canonical form (2.1a), as follows. Let

<UC± {u€Uc ly(«)£0},

then we can rewrite (4.4c) in the equivalent form

CP
min /°(ii).

(4.4c)

(4.4f)

(4.4g)

Computationally, the control constraint u €\JC causes nontrivial complications because it is

not differentiable in the pre-Hilbert space LJ22 [0,1], and hence prevents expressing optimality func

tions in the rather convenient dual form (3.6b).

13



Since both the functions gj(') and the solutions *"(•) are locally Lipschitz continuously dif
ferentiable, the following theorem is deduced from the chain rule and the linearization of the differen

tial equation (4.1) (for a proof see [4]):

Theorem 4.2. Suppose that Assumption4.1 is satisfied. Then the functionsfJ (•), j - 0,1,2,.., q,

defined in (4.4a), have continuous Frechet differentials DfJ :U° xLeo^->Rn that have the form
DfJ(u,bu)= {Vfj(u),5m ^, where the gradients, V/'(w) € L£i2[0,1] are locally Lipschitz con
tinuous on U° and are given by

V/'(ii)(0 =hu(xu(t),u(t))TpJ>u(t), t e [0,1], (4.5a)

with pJ*(t) € R" the solution ofthe adjoint equation

p{t) = -hx{xu{t),u(t))Tp{t), /€[0,1], p(l) = VsV(D), (4.5b)
•

Because there is no satisfactory Maximum Principle for discrete optimal control, the Pontryagin

Maximum Principle [24] is not a useful optimality condition in the context of establishing the con

sistency of discrete approximations. Hence we propose to use the following, rather basic, first order

optimality conditions and corresponding optimality functions to define stationary points.

Theorem 4.3. Suppose that Assumption 4.1 satisfied.

(a) Suppose that u is optimal for UP. Then

df°((t,bu)Z0, V6«€L^[0,1], (4.6a)

where df\,-) denotes the directional derivative.

(b) Let 0UP:U° -> R be defined by

0UP(«) = -BV/°(W)D22. (4.6b)

Then 0^(0 is continuous in the L™^ [0,1] topology, and, for any u € U° (4.6a) holds if and only if

0uP(«) = 0, i.e., 0xjP(O is an optimality function for UP.

(c) Let y > 0. For any u € L™2 [0,1], let

\j/(w)+= max {0, \j/(«)}, (4.6c)

andfor any u, u' e L'^ [0.1]. let

/V(«) Amax {/°(ii)-/V) - W("' )+> V(") - V("')+} • (4.6d)

If u is a local minimizer for CP, then
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dFJu,u-u)ZO, V«€UC. <4-6e)
u

(d) Let y> 0, and let0CP: Uc -> R bedefined by '

0CP(w)i min { ^DSuD| +max{ (V/°(w),5w )2-yv|/(«)+,/y(w)-^(")++(V/;(«),5w )2 } } ,
m+8m eUf ) 6 q

(4.6f)

Then (0 0CP() is negative valued, (ii) continuous in the L^ [0,1] topology, and, (Hi) any u € Uc

satisfies (4.6e) if and only if 0CP(«) = 0, i.e., 0cPO is an optimality function for CP.

Proof Since df°(u,bu) = {Vf°(u),bu ^, and since V/°(-) is continuous, parts (a) and (b) are
obvious.

(c) Since any local minimizer of CP is a local minimizer for the problem minu € y FA(«), (4.6e)
e u

follows directly.

(d). First, since 5m = 0 is admissible in (4.6c), it is obvious that 0Cp(") ^ 0 for all « € Uc. Next we

will show that 0CP(*) is continuous. LetF :Vc xL£)2 [0, l]c -» R be defined by

Fu(bu)& V*l6uU22+max {(V/°(ii),5ii )2-W(")+./;*(")"Vl/(w)++ (V/>(ii),6ii )2 }, (47a)

Then we can rewrite (4.6f) as

0CP(w)= min Fu(bu). (41b)

Note that F\/(u -u') is Lipschitz continuous in (u', u) e Uc xUc, in the L^ [0,1 ]topology. We
will denote the Lipschitz constant by L. Now suppose that { «,- }(" j is a sequence in Uc that con

verges to u, in the L»,2[0,1] topology. Let u' € Vc be such that 0CpOO = Fu("' -"). and let

u*i € Uc be such that 0Cp(«,) = F „.(«', «,), for all i € N. Then we must have that

0CP(«,.) <.F Ui{u' -u^, Vi e N, (4.7c)

and hence lim0CP(w,) <. limF Ui(w' -uf) = 0CP(w), i.e., 0CP(«) is u.s.c. Next, we must have that for

all i € IN,

0CP(w)£F „(«',•-w)

= [Fu(u't.-^-F^u't -utf + F^u'j -«,)

1 The fact that 6cp(h ) iswell defined follows directly from Corrolary 111.20 in Haim Brezis, Analyse Fonctionelle: Theorie etAppli
carious, Masson, Paris, 1983.
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£Llu -Uil2 + F„,(«>,•). (4.7d)

Hence weconclude that 0CP(w )£ lim 0CP(«/), which shows that 0CP(-) is l.s.c, and hence continuous.

Next, wewill show that 0CP(w )=0 if and only if (4.6e) holds. Since for any u, bu,

Fu(bu)Z VilbuH| +dFu(«,bu), (4.7e)

it follows that if 0CP(w ) <0, then (4.6e) cannot hold, and hence, by contraposition, if Q satisfies

(4.6e) then we must have that 0CP(£) = 0. Now suppose that (4.6) does not hold. Then there must

exist a u e Uc such that dFJu,u -u)<0. It is not difficult to deduce that there must exist a
u

A€ (0,1], such that F J\(u -u)-u)< 0. Hence, again by contraposition, we see that 0CP(w) = 0
u

implies that (4.6e) holds, which concludes ourproofthat 0cp() is anoptimality function. •

The simplest set of consistent approximations to the problems UP and CP are obtained by

integrating the differential equation (4.1) using Euler's forward method. This approach turns out be

computationally efficient when the differential equation (4.1) is not stiff. We begin by constructing

finite dimensional subspaces of L£j2 [0,1] on which the precision of Euler's method is easily esta

blished. For any integer N Z1, let T(N) A2N. Then, for any integer N 2> 1and it =0,1,2,...,T(N),
we define tNJC& k/T(N), and for k=0,1,2 T(N) - 1, we define nNtk :R -»R by

W)^i
1 for all t € [tNtk,tNJc+i), if* <;r(A0-2,

1 for all t e [tNJc,tNM1], if* =T(AO-l, (4.8a)

0 otherwise.

Next, for any integer N £ 1, we define the subspace Ljf[0,1] c L£,2 [0,1], by

L$[0, l]i(«6 L™2 [0,1] Iu(t) 4 £ uknNik(t)}, (4.8b)
*«o

where {uf } /^J0""1 is a sequence in Rm. Note that the union of the subspaces L#[0,1] is dense in
L2 [0,1]. Since the functions nNtk(-) are linearly independent, we see that Lff[Q, 1] is in one-to-one

correspondence with the finite dimensional space

L^R1™*"', (4.8c)

so that any ueLflO.l], with u(-) =£/S')"1 uknNJc(-), corresponds to UeLN, with

u = (u0,u!,...,«r(N)-i)- Thus, for N = 1,2,3,..., we can define the linear, invertible map

WN:L$[0,1]-*LN by
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W^1 A ,A O^WN( £ uknNJc('))£(u0,u1,...,unN)_l). (4.8d)

Now, for any u € Lff[0,1],

1 WH o ,A
Dwll2 ="F^V( E a"*<) • (4.8c)

Hence, to retain a proper scaling balance between the continuous and discrete time problems, we

define the scalar product (•, •)£ and norm H^ , onLN, by

77 ,7'\- A L
T(N)&'«')£,,& TZZTT&'i*')' (4-8f)

»»»r„ =̂ y< £ M2)*, (4.8g)

where the scalar product, (•,•), in (4.8f), is the usual Euclidean scalar product, and the norm U-l, in

(4.8g), is the usual Euclidean norm. Consequently, if u, u' € Lff[0,1] and u =WNu, u' = WNu',

then wealways have that (u, u')i, = («, u')2 and flull2 = llwll^ .

In addition, we will use the notation

U£ AU° n Ljf[0.1], Uf ^ AUc n l#[0,1]. (4.8h)

Clearly, whenever N" >iV', we musthave that U# c U#", and UcJy c Uc A«.

Next, given any u € L#'[0,1], where «(•) =^/io^1 uknNjc(')* we replace the continuous
dynamics (4.1) by the discrete dynamics resulting from the use of the Euler integration formula:

x(tNJc+1) = x(tNJ:) + A(N)h(x(tNjc),uk), k =0,l,...,r(AO-l, J(0)M, (4.9a)

where

A(N)A—!—, (4.9b)
T(A0

so that /^jt = kA(N). Clearly, (4.9a) has a unique solution for any u e LN. We will denote the solu

tion of (4.9), corresponding to any u =WNu, with « € L^[0,1], by {x%(tNtk)} k!$\ We associate
with the sequence {xH(tNtk )}[Hq\ ofvectors in R" the time function

r(N)-i _
%(') = £ xjj(tNik)nNJc(t). (4.9c)

JtoO

Making use of Theorem 3.1.6 in [6] one can show that exists a constant Kx < «> such that

KxHr(t)-xu(t)mKxA(N)t Vt € [0,1]. (4.9d)
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Also, it should beobvious that the solutionxH(tNik) iscontinuously differentiable inu.

Next, for N = 1,2,3,..., we define the functions ff, :Lff[0,\] -»R, j =0,1 q, and

V*:Lj7[0,l]->lRby

fjf(u)£gj(xH,(l)), yN(u) =maxfff(u). M10a)
j € q

Then we define the approximating problems as follows:

UP* min fg(u),
u€UjS

Cpn min {/A") IVN(u)£0q }

If we now define

(4.10b)

(4.10c)

UC^A {ueVc>N lVw(ii)£0}. (4.10d)

then we can transcribe (4.10c) into the canonical form (2.1b), as follows:

CP" min /*<«)• (4.10e)
As in the continuous case, it follows from the chain rule that the gradients V/^(m)(-) € L$[0,1],
j =0,1 q, exist and are locally Lipschitz continuous, uniformly in N € IN. They can be

expressed as follows:

T(N)-l _
V//r(ii)(/)= £ hu(xH(tNtk),uk)TpuHtNMi)nNJ,{t), t € [0,1], (4.10f)

where, for * =0,1,..., TV, puJ' (tN ^)is determined by the adjoint equation

P(tN*)-P(tNjt+\) =MN)hx(xZ,(tNtk),uk)Tp(tNJc+l),k =0,1,.. .,IW - 1, (4.10g)

p(l) = Vestal)). (4.10h)

Let

r(/v)-i _ .
PNJ(t) = £ PN^tNtk)KNyk(t). (4.10i)

Making useof Theorem 3.1.6 in [6], one can show that there exists a Kp <«» such that

WJ(t)-puHt)\ZKpA{N). (4.10J)

It should be clear that the following theoremis just a special case of Theorem 4.3.

Theorem 4.4. Suppose that Assumption4.1 is satisfied.
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(a) If u N is a local minimizer for UP#, then

df8(QN,bu)*0f VbueLff[OM (4.11a)

where df$(-, •) denotes the directional derivative of//?(•)•

(6) ForN = 1,2 let 0uPa,:U^^R bedefined by

0^(1/)A-QV/^°(W)822. (4.11b)

Then ©m^O) is continuous in theLS^ [0,1] topology, and, for any Q € U° (4.1 la) holds if and only

if 0upw(" ) = 0» i.e., 0upw(") is an optimality function for UPN.

(c) Let y > 0. For any u € L™ 2[0,1 ], let

\VN(u)+£max{0,vN(u)}, (4.11c)

and for any u, u' e Lfi[0,1], let

FNtU>(u)&max{f$(u)-f$(u')-yyvN(u')+,\vN(u)-yN(u')+}. (4.11d)

If uN is a local minimizer for CP*, then

dFN/°'U -Q)*0' V" e U^' (4.He)

where dF (-, •) denotes the directional derivative of F (•)•

(d) Let7> 0, and, forany iVeN, let 0CPa. : Uc # -» R bedefined by

0CPw(w)A min { lMbu$

+max{ (V/^(m),6m )2-yv|/n(w)+,/^(w)-\I/n(m)++(V/^(w),611)3} }. (4 llf)

Then (/J 0CP„(-) is negative valued, (ii) continuous in the L^[0,1] topology, and, (Hi) any

"at e UcA satisfies (4.1 le) if and only if 0Cpw(""at) =0, i.e., 0CpwO is an optimality function for

CP*. D

Next we obtain the following approximation results.

Lemma 4.5. Suppose that Assumption 4.1 is satisfied. Then there exists a constant Kj <°° such
that for allw e Uj?,andN € N(withN^l),

\fk(u)-fj(u)\ ZKfW?), j =0,1,...,<?, (4.12a)
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IWv(")-V(")l <KfA(N), <4.12b)

WfjrM-VfJ(u)h*Kf*(N). j =0,1,...,<? . (4.12c)

Proof The existence ofa Kf < °° such that (4.12a) holds, follows directly from the Lipschitz con

tinuity of thegJf (•), in (4.4a), and (4.9d). Hence,

\|/N(«)^max/-'(M)+A:/A(N) = \|/(«) + /i:/A(iV). (4<12d)

Reversing the rolesof \yN (u) and \j/(u) in (4.13), we obtain (4.12b). Next, the existence of a Kf < °o

(possibly larger than needed for (4.12a)), such that (4.12c) holds, follows from (4.10j) and the formu

laeforV/jt(«) and V/>(u). •

In proving consistency, we will need two assumptions. The first is that 6 and p,^ have been

chosen to be sufficiently large to ensure that the function /°(u) has nominimizers on the boundary of

the set U°. The second consists of a constraint qualification which, among other things, rules out

conversion of equality constraints into inequality constraints, and is closely related to the

Mangasarian-Fromowitz constraint qualification [17]:

Assumption 4.6.

(a) Let Zl denote the closure of U0. We will assume that all the global minimizers of the problem

UP min f\u), (13)

are in U°, i.e., that the problems UP and UP are equivalent.

(b) For every u € Uc such that \|/(«) £0, there exists a sequence { uN ) #ol, such that for all N,

uN e VCiN, \\f(uN) < 0, anduN —» u asN -»°°. •

Theorem 4.7. Suppose that Assumptions 4.1 and 4.6 are satisfied. Then for N = 1,2,3,..., the

problems UP^ and CPN converge epigraphically to the problems UP and CP, respectively, in the

LS,2 [0,1] topology.

Proof We begin with the problems UP^. Since the union of the subspaces L$[0,1] is dense in

£oot2[0,1], it is clear that for any u e U° thereexists a sequence {uN }#ml, with uN £ U#, such that

uN -> u asN —» oo. It now follows from (4.12a) that lim/#(%) =f°(u), which shows that part (a)

of Definition 2.1 is satisfied. Clearly, if { uN }#ol, with uN € UjJ, is such that uN -mi as N -» «\

then u € U° and, again by (4.12a), limf$(uN) =/°(«), which shows that part (b) ofDefinition 2.1 is

satisfied.

Next consider the problems CP#. We can infer from Assumption 4.6 that for any u € Zlc
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there exists a sequence {uN }fiml, with uN € £Zc>Aj, such that uN ->u as N -> «>, and by (4.12a),

limf$(uN) =/°(«), which shows that part (aj of Definition 2.1 is satisfied. Clearly, if {% }^=1,
with uN€ZlCiN, is such that uN->u as N-*°°, then w€ £ZC and, again by (4.12a),

limf${uN) =/ °(m ), which shows that part (6) ofDefinition 2.1 is satisfied. Hence our proof is com

plete. •

Theorem 4.8.

(a) Suppose that {uN }# ol is such that for all N € N, uN € U°, and uN -> u, as N -> «>, then

6upw("n) -> 6up("). asN ->°°.

(ft) Suppose that {uN }^ml is such that for all N € N, u# € UCt/v, and % -» u, as N —> °°, then

9cPa,(% ) -> 6cp(" ). as N -» °°.

/Yoo/.

(a) This part follows directly from (4.12c).

(b) For any N € IN and u, u' e Uc A, let

FNtU{u')^ViW -uWZ

+max{ {Vfff(u)y -M)2.-<yv|/A,(H)+l fk(u)-\\tN(«)++(V/^(m),u' -w^}, (4.14a)
j € q

where y is as in (4.6d,f) and (4.11d,f). Without loss of generality, we will assume that y"k 1. Now

suppose that the sequence {uN }^ai is such that for allN € N, % € VCfN, and % ->«, asN -»°°.

For all N, let u'N e\JCfN be such that 0Cp„(%) =^n,u„("'n). Then 0cp(%)^unWn)< wnere
F ltf(u) is defined in (4.7a). Now, (7) because of (4.12b) IW(%)+"¥(%)+' ^KA(N) for all N,

and (ii) because Uc is bounded in L£ [0,1], there exists a b < «>, such that Dw'̂ - %D2 £ ft for all N.

Hence making use of (4.12a,b,c) and the fact that y\tN (uN)+ = 0, we find that

Ocp^SF,,^)

= 1/2flM/A,-MNQ22

+max { (V/°(u),u'N -uN)2-yy(uN)+, fJ(uN) -y(uN)++ {VfJ(uN),u'N - uN ^ },

= ViWN-uN$

+max { {VfS{u)yN -uN\+ (Vf\u)-Vf$(u)yN -%)2-w(%)+. fi(uN)
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+l/;'(%)-/^(%)] - V(%)++ {^fi(uN)yN-uN)2+{^fJ(uN)~Vflt(uNWN -UN )2 }

^^iy,«w("N) +^(l+7+^)A(^). (4.14b)

Hence, since 0cP(O is continuous, we conclude that

0Cp(£) = Mm 0(%) * to0cp„(% ) • (4.14c)

Now, let u' e Vc be such that 0CP(£) = F Ju'), and let u'N € UcJV be such that u'N -»u ', as

N -» «>. Then forevery N, 0Cp„("n) ^ FNtUN(u 'N). Proceeding asfor (4.14b), weconclude that

QCPN(uN)<LFUN((}'N)+K(l+y+b)A(N). (4.14d)

Consequently, since F „> («) is continuous in (w', u),

to0CP>N)^n^[Fttw(i?/w) +A:(l+Y+6)A(N)] =0(i?). (4.14c)

Combining (4.14c) and (4.14d) we conclude that QN (uN) -> 0(m ), which completes our proof. •

At this point, the following result is obvious:

Corollary 4.9.

(a) Thepairs in the the sequence {(UP^, 0^)} ^ml areconsistent approximations to (UP, 0UP).

(b) Thepairsin the the sequence {(CP^, 0CPw)} „al areconsistent approximations to (CP, 0^). D

5. MASTER ALGORITHM MODELS FOR USE WITH CONSISTENT APPROXIMATIONS

Now that we have seen that we can construct consistent approximations for both semi-infinite

optimization and optimal control problems, we need to address the question of how such approxima

tions are to be used in the construction of an approximate solution of the original problem. We recall

that the experience with penalty functions in nonlinearprogramming indicates that it is a bad idea to

simply select a large penalty and solve the resulting unconstrained problem. The reason for this is

that large penalties produce serious ill-conditioning. Hence the commonly used strategy is to solve

approximately a sequence of progressively more severely penalized problems, which produces start

ing points for the successive problems from which Newton's method converges quadratically, and

hence overcomes the ill-conditioning. While increasing discretization of semi-infinite optimization

and optimal control problems does not lead to ill-conditioning, it does increase the computational

complexity of the resulting problems. Referring to the literature (see, e.g. [9, 13, 14, 22]) we find

reports that in the case of semi-infinite optimization and optimal control problems, there is also a
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considerable benefit to be obtained from increasing the discretization in a preplanned manner. We

will now describe two strategies, in the form of algorithm models, for increasing discretization in

solving semi-infinite optimization andoptimal control problems viaconsistent approximations.

The constraint set X in problem P can have a variety of characterizations. We will deal with

onlytwo: the first is whenX = X, where X is a "simple'' convex set, as in minimax problems on R"

and control problems with or without control constraints, but no trajectory constraints, while the

secondis more complex, and has the form X = {x € X I \j/(jc) <. 0}, whereX is a "simple" convex

set and \y(-) is a continuous function. To make this distinction explicit, we define the two cases as

follows:

Pu ?Sxf(*)m <5-la)

p min {f(x)\\v(x)£0}. (5 lb)
c x € X

Similarly, for TV = 1,2,3,..., the approximating problems P# acquirethe following form

P.* xfl^' (5.2a)

p min {fN(x) \yN(x)£0}. (5 2m

In view of the results in the precedingtwo sections, we make the followingassumption.

Assumption 5.1.

(i) The functions /, \|/: <B -> R as well as the functions fN, \\tN : <BN -* R, N = 1,2,3,..., are

continuous.

(ii) The set X is either a convex, closed subset of <B, or X-*B, and, for N = 1,2,3,...,

XN =X n$N.

(Hi) There exist continuous optimality functions 0U : X -> R, for Pu, 0C : X -> R, for Pc, as well

as continuous optimality functions QU>N :XN ->1R, for VUjN and QCiN :XN -»R, for PcA,

N = 1,2,3,....

(iv) There exist a strictly positive valued, strictly monotone decreasing function A: N —> R, such

that A(W) ->0 as N -»«\ and constants K e (0,°o), N0 € N, such that for all N ZN0, and all

x € XN, (or at least for all * in a sufficiently large, boundedopen subset of XN),

\fN(x)-f(x)\£KA(N), (5.3a)
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I*M*)-Y(*)I £KA(N). <5-3b>

(v) If {xN }#_! is such that % € XN for all TV, and xN -»£ as N -> «>, then QUtN(xN) -»Qu(£),

and QCtN(xN) -> 0c(jc), asN -> oo.

(viV For every * 6 X such that \j/(;t)£ 0, there exists a sequence {xN }^ such that for all N,

xN e XN,y\rN(xN)£0andxN -±x asN -¥°°. •

It should be obvious thatAssumption 5.1 ensures that thepairs (P„^, 0U^),N = 1,2,3,..., are

weakly consistent approximations to (P„,0U), and similarly, that the pairs (Pc^,0Cj^),

N = 1,2,3,..., are weakly consistent approximations to (Pc, 0C). Hence the following theorem is a

direct consequence of Theorem 2.4 and Assumption 5.1.

Theorem 5.2. Suppose that Assumption 5.1 is satisfied.

(i) If {xN }#ml is a sequence of global mimmizers of PUtN (PCiN) such that xN -»x as N -> «>,

thenJ? is a globalminimizer of P„ (Pc).

(ii) If {xN }#ol is a sequence of strict local mimmizers of PUyN (Ycjt), with radius of attraction

pN ^ 0, such that xN -»x as N -» «>, and there exists an infinite subset K c IN, such that pN ^ p > 0,

for all N € K, thenJ? is a localminimizer of Pw (Pc).

(Hi) If {xN }^ol is a sequence of local minimizers of Pu^ (Pc ^), such that xN -»x as N ->°°,

then0u(£) = O(0c(Jt) = O). D

We will now describe our first strategy for increasing discretization in solving "conceptual

problems" such as Pu and Pc via consistentapproximations satisfying the conditions of Assumption

5.1. This strategy has the advantage that it can be used with a very broad class of nonlinear program

ming algorithms. Its disadvantage is that convergence results can be stated only about rather sparse,

"filtered" subsequences of all the points constructed. We will present our strategies for solving the

problems Pu and Pc in the form of algorithm models in which we will define the "outer" iterations.

The "inner" iterations are defined by user supplied iteration maps AUfN, ACiN :XN ->2Xn, that
define one iteration of a nonlinearprogramming algorithm that can be used for solving the problems

Pujv andPc^. We beginwiththeunconstrained problem P„.

Master Algorithm Model S3.

Data. NQe N,x0e XNo.

Step 0. Set i = 0, N = N0.
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Step 1. Compute a *,+1 € Au ^ (*,- ).

Step2. If Qu ^ (xi+1) £ - 1/iV, setx*N =xM, and replace NbyN + l.

Step3. Replace i by i + 1 and go to Step 1. D

In view of Assumption 5.1, the following result is obvious:

Theorem 5.4. Suppose that (a) Assumption 5.1 is satisfied, and (b) that every accumulation point

£ of a sequence {xt }/^q, constructed according to the rule xi+i € A,,^(*,), satisfies Qujv(x) = 0.

Consider the the sequences {xt } and {x*N } constructedby Algorithm Model 5.3.

(i) If the sequence {x*N } is finite, then the sequence {x{ } has no accumulation points.

(ii) If the sequence {x*N } is infinite, then every accumulation point x of {x*N }, satisfies

0U(*) = O. •

For the constrained problem Pc we modify the above as follows:

Master Algorithm Model 5.5.

Data. N0 € N, x0 € XNo.

Step 0. Set i = 0, N = NQ.

Step 1. Computea xi+l e^jv (*/)•

Step 2. If 0C ^ (*/+1) ^ - l/N, and \|/(*/+i) ^ 1/N, setx*N = jc/+1, and replaceNbyN + l.

Step 3. Replace i by / + 1 and go to Step 1. D

Again because of Assumption 5.1, the following result is obvious:

Theorem 5.6. Suppose that (a) Assumption 5.1 is satisfied, and (b) that for every N Z.N0, every

accumulation point £ of a sequence {x{ }£q, constructed according to the rule xi+i eA^ (jc,- ),

satisfies QUtN(x) = 0, and \|/(Jc)£0. Consider the the sequences {xt } and {x*N } constructed by

Master Algorithm Model 5.6.

(i) If the sequence {x*N } is finite, then the sequence {xt } has no accumulation points.

(H) If the sequence {x*N } is infinite, then every accumulation point x of {x*N }, satisfies

0u(x) = Oand\|/(Jc)£O. D

We now turn to our alternative approach, which we believe to be computationally more

efficient, and which can be used with almost all unconstrained nonlinear programming algorithms.

However, for constrained problems, only the unified method of feasible directions, in [21] has so far

been shown to be compatible with our alternative approach. Again we begin with the unconstrained
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problem Pu. For this problem we require that the nonlinearalgorithmsused for solving the problems

Pu^ satisfy the following monotone uniform descent condition:

Assumption 5.7. For every x € Xy such that Qu(x) < 0, there exist p, >0, Nxe IN, and 5^ < 0

such that

/*C*/0-/jv<*0£6Xf (5.4)

for allxf €fi(jf,pJC)nA:A,,forall^/ € A^OO.andforallN *NX. D

Referring to Theorem 1.3.10 in [18], we find that Assumption 5.7 is a generalization of the

assumption in the following theorem.

Theorem 5.8. Supposethat Assumption 5.1 is satisfied. LetN be given and suppose that {*,- }£q

is a sequence in XN constructed using the recursion xM € AUi^(x/)f / £ N, in solving Pu>/V. If for

everyx € XN, such that 0„^ (x) < 0, thereexist px > 0, bx < 0 suchthat

/*(*")-/*(*') £8,, (5.5)

for all x? e B(x, px) n XN, for all x" € Au ^ {xf), then every accumulation point x N, of {*,• }^,

satisfies 0U ^ (xN) = 0. •

The assumptions of Theorem 5.8 are satisfied by most unconstrained optimization algorithms,

including the Armijo gradient method [2,18], the Polak-Ribi6re method of conjugate directions [18],

Newton's method [12,18], the BFGS method with back-stepping step-size rule [5], and the Pshenich-

nyi - Pironneau - Polak minimax algorithm [19,20,25]; however, there is no proof that the Fletcher -

Reeves method of conjugate directions satisfies these assumptions. Thus, to show that Assumption

5.7 is satisfied, one only needs to show that one can find a px and a 5* that are the same for all

N ZNX. This is relatively easy to show bothfor semi-infinite optimization problems and for optimal

control problems.

Now consider the following master algorithm for solving Pu, which uses the strictly monotoni-

cally decreasing function A: IN -> R introduced in Assumption 5.1.

Master Algorithm Model 5.9.

Parameter: p G (0,1).

Data. ALi € N, and x0 e XN_X

Step 0. set / = 0.

Step 1. compute Nf andxi+1 such that N{ £ Wf._lf jcj+1 € Au^t{xt) and
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/mCW-ZmW^-awP. (5'6)

Step2. Replace i by / + 1 and go to Step 1. •

Lemma 5.10. Suppose that Assumption 5.1 is satisfied, and that Master Algorithm Model 5.9 has

constructed an infinite sequence {*,- }JZq that has an accumulation point 5c. Then the accompanying

sequence {N{ } jl$ is such that Nt —» °° as i -» °°.

Proof. For the sake of contradiction, suppose that the monotone increasing sequence {Nj }JIq is

bounded. Then there exists an i0 € N, such thatNt = Nio = N* < «> for all i ^ i0. Then, by the test

(5.6), for all i ^ i0,

fN'(xi+1) -/*•(*/) £ - A(Ar )P, (5.7)

which implies that /#•(*/) -»-°°, as / -»«>. However, since /#*(•) is continuous and since by

assumption, jc, -»7 Jc as i -» °°, for some infinite subset / c N, /^ (*,•) ->7 /#* (Jc) as i -> °°,
which is a contradiction. Hence we must have that Nj -> °° as / —> °°. D

Theorem 5.11. Supposethat Assumptions 5.1 and 5.7 are satisfied. If {xt }£q is a sequence con

structed by the Master Algorithm Model 5.9, then every accumulation point Jc of {xt } JIq satisfies

eM(*) = 0.

Proof Suppose thatx{ —»7 £ as i -» °°, forsome infinite subset / c N. Forthesake of contradic

tion, suppose that 0U (Jc) < 0. Then, by Assumption 5.7, there exist 6^ <0,N^e N, and pA > 0 such
JC X X

that

fN(x,/)-fN(x/)^br (5.8a)

for all jc' € 5(Jc,pJn.x:,v,forallJt" e Au « (jc'), and for all W ZN^.
X X

Since jc,- —»7 jc as / —» °°, it follows from Lemma 5.10 that Nt —»°°, as / —> °° and hence that

A(N()-»0 as i->w. Let i0€ IN be such that for all i £i0, with AT as in (5.3.a,b), (i)

2KA(Ni)£-V2b^ (ii) IKAiN^^. 1, (Hi) jc,- € B(x,pJ, if i € /. Next, let /, be such that
X X

Nt £max{NA,N/o}. Then, for all /£/,, i e /, because of (5.3a), (5.8a), and the fact that
X

A(iV/+1)^A(iV/)^A(Nll),

/C*,+i)-/C*/)£-6^ + 2KA(ty)£-V46A . (5.8b)
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Now, forall i ^ / ltbecause A(iV/+1) £ A(Nt) £ A(N,1), we obtain, making useof (5.3a) and (5.6),

that

/CW -/(*,) £2ATA(Af,) -A(N,)P

= - A0V,)P {1-2tfA(fy)1-P } <;0, (5.8c)

and hence we see that the sequence {/(jc,) },"fl monotone decreasing. Since, by continuity off (•),

this sequence has an accumulation point, /(Jc), it follows that the entire sequence {/(jc,) }^ con

vergesto / (x). Sincethis is contradicted by (5.8b), ourproofis complete. •

Next, we will construct a natural extension of the Master Algorithm 5.9. First, we define the

parametrized function F^ :X -» IR,withjc7 € JC, by

Fx>(x)±max{f(x)-f(x')-yy(x')+Mx)-V(x')+}, (5.9a)

where y> 0 is a preselected parameter. Similarly, forevery AT £ N0, wedefine theparametrized func

tionFNj :XN -> IR, with x* € XN, by

FNs(x) = mzx{fN(x)-fN(x')-yyN(x')+,\vN(x)-\¥N(x')+}. (5.9b)

We need the following extension of Assumption 5.7.

Assumption 5.12. Consider the problems PC|N and suppose that for any N ZN0,

Acp :XN ->2 N is an algorithm map for PC|/V. We assume that for every jc € X such that
0C (jc ) < 0, thereexist px > 0, A^ € IN, and 6V, < 0 such that

F^Cx'OSo,, (5.10)

forall*' eB(x,px)r\XN,foTa\lx" e A^jO.andforallAf *NX. D

Now consider the following master algorithm which uses a strictly monotone decreasing func
tionA: N -»IR, satisfying the conditions of Assumption 5.1.

Master Algorithm Model 5.13.

Parameters, p € (0,1).

Data. N_i e N, andjc0€ XN_X.

Step 0. set / = 0.

Step 1. compute Nt and *,+1 such that Nf £ #,•_!, jc/+1 e Ac^.(jc,-) and

^^(^+i)^-A(N,)P. (5.11)
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Step 2. Replace i by i + 1 and go to Step 1. •

Lemma 5.14. Suppose that Assumptions 5.1 and 5.12 are satisfied, and that Master Algorithm

Model 5.13 has constructed an infinite sequence {jc,- }JIq thathasan accumulation pointJc. Thenthe

accompanying sequence {Nt }JZq is suchthatNt -> °°as i -> °°.

Proof. For the sake of contradiction, suppose that the monotone increasing sequence {Nj } JIq is

bounded. Then there exists an i0 € N, such that Nf = Nio = N* < °° for all i £ i"0. Then, by the test

(5.11)

F^tx,+1)£-ACN*)P (5.12)

for all i £i0. Since VN*(Xj+i)-WN*(xi)+&FN*A(x-i+i)* f°r all i "£/()' ^ follows from (5.9b) and

(5.11) that there must exist an /i^i'o. such that \|v(jc,-)£0 for all i ^/j. Hence for all i ^ilt

Vn* (xi)+ = 0, and therefore, in view of (5.9b), /Ar*(*/+i)-/j^(*/)£^Ar**(*/+i). Taking into

account (5.12) we now conclude that /#*(*/)->-°° as i ->°°. However, since by continuity,

fx* (Xj) ->K fN* (jc ), as i ->°°, where K c N is such that jc,- -»* Jc as i ->°°, we have a contradic
tion. Hence we must have that N{ -> °° as / -> °°. Q

Theorem 5.15. Suppose that Assumptions 5.1 and 5.12 are satisfied, and that Master Algorithm

Model 5.13 has constructed an infinite sequence {jc, }£q that has an accumulation point £. Then

0(Jc) = O.

Proof. First we note that for all N k N0, because of (5.3a,b),

FXi(xi+l)^FNliXl(xi+1) + (l+yWAiNt). (5.13a)

Hence, because of the imposed condition (5.11),

^(jcJ+1)^-A(N,-)P+(2+7)/i:A(N,.) =-A(N,-)P(l -(2+y)ii:A(NI)(1-P)). (5.13b)

Since 1 - (3 >0, it follows from (5.13b) and the fact that by Lemma 5.15, A(Af,) ->0 as i -> °°, that

there exists an i0 such that for all / £ i0,

/y*,+1)<;0. (5.13c)

Consequently, if \|/(*,-) > 0 forall / £ /0, then {\|/(x,-)} ,~/o is a monotone decreasing sequence with an

accumulation point \j/(Jc). It therefore follows that \j/(jc,) -> \|/(Jc) as i -> °°. Alternatively, if there

exists an i j ^ i*0 such that yC*,,) ^ 0, then, because of (5.13c), \j/(jc,-) £ 0 for all / £ i2and {/ (jc,- )} ,~/(

is a monotone decreasing sequence with an accumulation point / (Jc),and hence that / (jc,- ) —»/ (Jc)as

i -»<».
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Now, for the sake of contradiction, suppose that 0(Jc)<O, and that K c N is such that

*/ ->* £ as i -> oo. Then, because ofAssumption 5.8, there exists an i2, and a 5^ <0, such that for
X

alli e Kyi 2>/2,

*W*/+i)^<0, (5.13d)

and hence, because of(5.13a) and (5.13c),

*•*(*,+,) <; (2+y)KA(Ni) +6^ <0. (5.i3e)

Since by Lemma 5.14, A(Nt) -> 0 as i ->«>, it follows from (5.13e) that here exists an i3£ i2, such

that for all i € Kt i k /3, F^.(x/+1) £ V46„. But this contradicts the fact that either \|/(jc,) -»\j/(jc) as

i -» °°, or / (j:,- )-»/(*) as i -» °°. Hence we must have that 0(Jc) = 0. D

6. CONCLUSION

We have addressed three issues related to the use of discretizations in the solution of semi-

infinite optimization and optimal control problems. We have shown that discretizations of semi-

infinite optimization and optimal control problems are consistent approximations to the original prob

lems in the same sense as penalty functions are consistent approximations to constrained nonlinear

programming problems, viz., they converge epigraphically to the original problems, and hence that

their global minimizers can converge only to a global minimizer of the original problem and their

uniformly strict local minimizers converge to a local minimizer of the original problem. Next we

have shown that if we express stationarity in terms of zeros of continuous optimality functions, then

the stationary points of discretizations of semi-infinite optimization and optimal control problems

converge to stationary points of the original problem. Finally, we haveproposed several masteralgo

rithm models that can be used in constructing algorithms, based on consistent approximations, for

solving semi-infiniteoptimizationand optimalcontrolproblems.
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