Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



ON THE USE OF CONSISTENT APPROXIMATIONS IN
THE SOLUTION OF SEMI-INFINITE OPTIMIZATION
AND OPTIMAL CONTROL PROBLEMS

by

E. Polak

Memorandum No. UCB/ERL M92/36

13 April 1992
(Revised 17 December 1992)



ON THE USE OF CONSISTENT APPROXIMATIONS IN
THE SOLUTION OF SEMI-INFINITE OPTIMIZATION
AND OPTIMAL CONTROL PROBLEMS

by
E. Polak

Memorandum No. UCB/ERL M92/36

13 April 1992
(Revised 17 December 1992)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



ON THE USE OF CONSISTENT APPROXIMATIONS IN
THE SOLUTION OF SEMI-INFINITE OPTIMIZATION
AND OPTIMAL CONTROL PROBLEMS

by
E. Polak

Memorandum No. UCB/ERL M92/36

13 April 1992
(Revised 17 December 1992)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



ON THE USE OF CONSISTENT APPROXIMATIONS
IN THE SOLUTION OF
SEMI-INFINITE OPTIMIZATION
AND OPTIMAL CONTROL PROBLEMS'

by

E. Polak
Department of Electrical Engineering
and Computer Sciences
University of California
Berkeley, CA 94720

ABSTRACT

We define consistency of approximations to an optimization problem in terms of epiconver-
gence of the cost functions and convergence of stationary points of the approximating problems. We
then show that standard discretization techniques decompose semi-infinite optimization and optimal
control problems into families of finite dimensional problems, which, together with our optimality
functions, are consistent discretizations to the original problems. We then present two types of tech-
niques for using consistent approximations in obtaining an approximate solution of the original prob-
lems. The first is a "filter" type technique, similar to that used in conjunction with penalty functions,
the second one is an adaptive technique that can be viewed as an implementation of a conceptual
algorithm for solving the original problems.
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consistent approximations, algorithm convergence theory.
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1. INTRODUCTION

The vast majority of semi-infinite optimization and continuous optimal control problems cannot
be solved without resorting to some form of discretization: domain discretization in semi-infinite
optimization and numerical integration in optimal control. There are basically two, not altogether

disjoint, discretization techniques in current use.

The first can be viewed as that of implementation of conceptual algorithms, and is characterized
by a theoretically justified numerical implementation of operations in a conceptual algorithm. There
is a moderate size literature dealing with the implementation of conceptual algorithms, see e.g. [14,
15. 21, 22, 23, 27]. In fact, one can even find a theory of implementation of conceptual algorithms,
see [14, 18]. Properly constructed implementations of conceptual superlinearly converging algo-
rithms remain superlinearly converging (see, e.g., [15, 23, 27]), but, in our experience, implementa-
tions of first order algorithms perform poorly. A particular aspect of implementations is that the
approximations used in computing function values and gradients need not be coordinated, which per-
mits the use of implicit methods of integration of differential equations in the solution of optimal con-
trol problems. However, the resulting approximate gradients are not gradients for the approximate
functions, which explains the degradation of first order optimization algorithms.

The second technique, sometimes called diagonalization (see (7, 9]), emulates the use of dif-
ferentiable penalty functions in nonlinear programming and hence is characterized by the fact that it
decomposes a semi-infinite optimization problem into an infinite sequence of nonlinear programming
problems, by domain discretization, and a continuous optimal control problem into an infinite
sequence of discrete optimal control problems, by explicit numerical integration of the differential
equations. Discrete optimal control problems are nonlinear programming problems with special
structure. Obviously, the gradients computed for the approximating problems are gradients of the
functions appearing in the approximating problems, which prevents the degradation of first order
methods. As with penalty methods, the solution of an optimization problem via diagonalization can
be viewed as a diagonal progression across minimizing sequences for the approximating problems,
i.e, one solves an approximating problem until some test is satisfied, and then uses the resulting end
point to start the solution of the next approximating problem. The choice of termination tests is
important, since it has a considerable impact on computational effort. In [13] we find some results on
the construction of optimal discretization strategies, while in [22, 23] rate-preserving strategies are
presented for use with first order algorithms for convex problems.

In this paper we examine two major issues associated with the use of diagonalization in the
solution of a semi-infinite optimization and optimal control problems. The first is the establishment
of the concept of consistency for the approximating problems, while the second one is the expansion
of available ‘‘cross-over’’ tests for use with diagonalization.



In Section 2 we introduce two concepts of consistency based on epiconvergence of the approxi-
mating problems, as well as on the convergence of stationary points, characterized as zeros of
optimality functions. As we will see, unless some constraint qualification is satisfied, optimality
functions may have zeros outside the feasible set. Hence the two definitions make distinctions
between whether a constraint qualification is satisfied or not. In [8] it is shown that epiconvergence
implies that sequences of global minimizers of the approximating problems converge to global
minimizers of the original problem. We strengthen this result by showing that, in addition, sequences
of ‘‘uniformly’” strict local minimizers of the approximating problems converge to a local minimizer
of the original problem. To conclude Section 2, we show that differentiable penalty functions in non-
linear programming. the most analyzed form of problem approximation, are consistent approxima-
tions in our sense.

In Section 3 and 4 we define sequences of approximating problems for semi-infinite optimiza-
tion and optimal control problems and show they are consistent in the sense of our definitions.
Finally, in Section 5 we present four new master algorithm models for use in solving optimization
problems via diagonalization.

2. PRELIMINARIES

Since we intend to examine more than one type of approximation effect, it is simpler, at first, to
deal with consistent approximations in abstract form. Thus let B be a normed linear space, with norm

(-, and consider the problem
P min f(x) (2.1a)

where f : B — R is (at least) lower semicontinuous, and X < B is the constraint set. Next, let
{ By } N=; be a family of finite dimensional subspaces of B such that By = B if B is finite dimen-
sional (R") and By < By,,, for all N, otherwise. Let N 4 {1,2,3,...}, and consider the family

of approximating problems
i , N€eN, ‘
Py min fyG) (2.1b)

where fy : By — R is (at least) lower semicontinuous, and Xy < By.

The relationship between the Py and P becomes clearer if we restate them all in epigraphical
terms. Thus, let the epigraphs (actually subsets of epigraphs) E € Rx3B and Ey < RxBy be
defined by

Eé{(xo,x)lxex, xo2f ()}, (2.1¢c)



En8 {(0x)1x € Xy, xg2fn(x)}. @2.1d)

Then the problems P and Py can be restated in the following, equivalent form:

0

min x°, .
PN (x':',x) € E (2 le)
. 0
min X .
Py (%x) € Ex (2.10)

In the form (2.1e,f). we see that the problems Py, differ from the problem P only in the constraint set.
Hence, it is intuitively clear that for the Py to be of any use to us at all, the epigraphs Ey must con-
verge to the epigraph E. in the sense that Lim Ey = Lim Ey =E. Because of the form of (2.1c.d),
this requirement can be rephrased as follows (see [3, 8, 26]).

Definition 2.1.  We will say that the problems in the family { Py } x.; converge epigraphically to
PPy —EP P) if '

(a) for every x € X, there exists a sequence {xy }y.;, With xy € Xy, such that xy —x and
li_mfN(xN) sfx)

(b) for every infinite sequence {xy } v ¢ x, Where K < IN, satisfying xy € Xy, forall N € K and
xy =% x. we have that x € X and lim f (xy) 2 f (x). O

The main consequences of epiconvergence are contained in the theorem below. which requires
the following definition.

Definition 2.2. A sequence {x; }; of local minimizers for the P, is uniformly strict. if there

exists a p > O such that f; (x;) < f (x) forall x € X;,x #x;, suchthatlx —x, 0 Spforall k 2k*. O
Theorem 2.3.  Suppose that Py —7 P.

(a) If {Xy } ya is a sequence of global minimizers of the Py, and £ is any accumulation point of

{% N } Nar. then £ is a global minimizer of P.

(b) If {% n ) N=1 is a sequence of uniformly strict local minimizers of the Py, and £ is any accumu-

lation point of { £y } yw;, then £ is a local minimizer of P.

Proof. (a) A proof of this result can be found in [3, 8, 26], and is therefore omitted.

(b) Suppose that for some infinite subset K < N, we have that £ y =% £. Let p >0 be a common
radius of attraction for the sequence {Xy } y ¢ x. If £ is not a local minimizer for P, then there must

exist an x* € X, such that lx* -1 <p/2 and f (x*) = f (£ ) - 30, with 8 > 0. By Definition 2.1 (a).

there exists a sequence {x*y }y., Wwith x*y € Xy, such that x*, »>x* and
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limy ¢ x f %) STmf (x*y) Sf(x*), and by Definiion 2.1 (b), we must have that
limy ¢ x fn(Xn)2limfy (R y) 2 f (X). Hence there exists an N, such that forall N 2N,, N € K.

r*y =X yll<p, fx*y)<f(R)-25 and f (R y) 2 f (£) - B, which contradicts the local optimality
of the xy. Hence the theorem is true. O

In the absence of convexity, nonlinear programming algorithms can only be shown to compute
stationary points that are, hopefully, local minimizers of the Py, but not necessarily global minimiz-
ers of the Py. The worst outcome of such a process is illustrated in Fig. 2.1, where a sequence of
local minimizers converges to a global maximizer. In view of Theorem 2.3, we note that epiconver-
gence ensures, at least, that uniformly strict local minimizers of the Py cannot converge to anything

but local minimizers of P.

It is sometimes useful (as in the case of penalty function methods) to reformulate either the

problem P or the problems Py, N =1,2,..., or both, in the following equivalent forms:

po min £9x), (2.1g)

0 i 0
Py min I, (2.1h)

where f%: 8 >R and f:B —» R are defined as follows: fOx)=f(x) for all x € X. and
FO%x) = +e0 otherwise. and, similarly,f )(x) = fy(x) for all x € Xy, and f¥(x) =+ otherwise.

The following result should be obvious.

» ) _ fsox)
T, f1o(x)

X0 Xs0 X100 % X

Fig. 2.1. Convergence of Local Minimizers xy to a Global Maximizer £



Corollary 2.4.  Suppose that one of the following four statements is true: (i) Py —57 P, (ii)
Py -1 PO, (iii) Py - P, (iv) P§ -5 PO,
(a) If {Xy } N is a sequence of global minimizers of the Py, and £ is any accumulation point of

{®n } N=1, then % is a global minimizer of P.

(b) If {Xy )} N=1is a sequence of uniformly strict local minimizers of the Py, and £ is any accumu-

lation point of { £y } N, then £ is a local minimizer of P. O

As we have already mentioned, nonlinear programming algorithms can only be shown to com-
pute stationary points, often characterized as the zeros of an optimality function (see, e.g. [18, 19]).
We will therefore characterize stationarity of points with respect to the problems P, Py, in terms of
the zeros of optimality functions, 6:2 — R for P and Oy : Dy - R for Py, N € N, where
D < B and Dy < By, ie., the optimality functions may not be defined on the entire space. Quite
commonly (see, e.g.. Section 4), we have that Dy = D N By,.

Definition 2.5. We will say that a function 8:2 — R is an optimality function for P if (i)
X © D, (ii) O() is upper semicontinuous, (iii) 6(x)<0 for all x € D, and (iv) for £ € X,
8(X) =0, if and only if £ is a stationary point for P. Similarly, we will say that a function
Oy - Dy — R is an optimality function for Py if (i) Xy © Dy, (ii) Oy () is upper semicontinuous.
(iii) By(x)<Oforallx € Dy, and (iv) for Xy € Xy, Oy(F y) =0, if and only if £  is a stationary

point for Py . O

While all the optimality functions that we will see in this paper are continuous, there are
minimax and feasible directions algorithms that are based on upper semicontinuous optimality func-
tions (see, e.g. [18. 19]). Hence our assumption of upper semicontinuity in the definition of optimal-
ity functions is inspired by practical considerations, rather than a search for generality.

The introduction of optimality functions leads us to two concepts of consistency of approxima-
tion, as we see below.

Definition 2.6.  Let 6(-), 8y(), N € N, be optimality functions for P, Py, respectively. We will
say that the pairs (Py, Oy ), in the sequence { (Py,0y) } y=; are weakly consistent approximations to
the pair (P, 0). if (i) Py -5 P, or (ii) Py =P PO, or (iii) PJ —%P P, or (iv) P = P°, and for
any sequence (xy}lyekx. K N, with xy € Xy for all N € K, such that xy —x,
lim B (xy ) < B(x). O

The next definition implies that a constraint qualification is satisfied.

Definition 2.7.  Let 6(:), 6y (), N € N, be optimality functions for P, Py, respectively. We will
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say that the pairs (Py, 0y ), in the sequence { (Py,0y) } yo; are consistent approximations to (P, 0), if
they are weakly consistent approximations, and, in addition 8(x) <0 for all x €X and 6 (x) <O for
allx €Xy,N € IN. O

The best known examples of consistent approximations are not those used in semi-infinite pro-
gramming and optimal control, but those found in nonlinear programming, in the form of various
penalty function methods. It is useful to digress for a moment from our original charge and examine
what can be said about penalty methods, so as to establish a yardstick for comparisons. Thus, con-
sider the simple case where

P min{ f(x) 1 g(x)=0}, (2.2a)

where f :R” = R and g :R" — R/, with I <n are both continuously differentiable. Clearly, for
the above problem, X = {x € R" | g(x) =0}. The simplest approximations using penalty func-
tions have the form

Py min fy@x), NeEN, (2.2b)
where fy - By — IR are defined by
FnA @)+ Yacylig (012, (2.2¢)
with { cy } N @ strictly increasing sequence of positive penalties that diverges to infinity.
To obtain consistency results, we must restate P in the equivalent form
P _min £0x), (2.2d)
wherefo.'IR—>I-l—l is defined by %) = f (x) for all x € IR” such that g(x) =0, and fO%x) = +oo,

otherwise.

Theorem 2.8. The problems in the sequence { Py } ya;, defined in (2.2b), converge epigraphi-
cally to P, defined in (2.2d).

Proof.  First, since for any £ € R”, fy(®) < fO®), it follows that lim fy (£) < f %% ). Hence set-
ting xy =X for all N € IN, we see that part (a) of Definition 2.1 is satisfied. Next, suppose that the
sequence {xy } Na; converges to the point £. If g(£)=0, then we must have that
o =limfy(xy) = fO%). If g(£) =0, then we must have lim fJ(xy) = imf (xy) = f9%#). Hence
we see that part (b) of Definition 2.1 is satisfied. |

Next we will introduce optimality functions for the problems P and Py. Let 6:IR" - IR be
defined by



8(x) & —min { 1EOVf (x) - g, (x )T &R | (EO% + 1€ = 1} —Bg, (x) g (x)PP, (2.32)

where £ € R', and, forany N € N, let 8y :R" — IR be defined by

1 N8 ) Hz-ll—l—Vf(x)-i-gx(x)Tg(x)z,

Oy () B =l Vf (x) + g, ()T
N V1 +c2lg ()P d V1 + c2lg () N

=_[+ 2] Viy@x). (2.3b)
CN

1+ clg (x)I2

Clearly, 6(x) =0 at any point that satisfies the constraint g(x) =0 and the F. John condition of
optimality; while Oy (x) = 0 if and only if Vfy(x) = 0. Since the continuity and sign properties of
these functions are obvious, it follows that they are optimality functions.

Theorem 2.9.  The pairs in the sequence { (Py,6y) } v, defined by (2.2b) and (2.3b), are weakly
consistent approximations to (P,8), defined by (2.2a), (2.3a). Furthermore, if g, (x) has maximum
row rank for all x € IR", then they are consistent approximations to P.

Proof.  First, by Theorem 2.8, the problems Py converge epigraphically to P®. Next, let {xy } Nei

be any sequence that has a limit point, say £. Then, because for all xy we must have that

cngxy)
. VI () + gy ()T e My
\/ 1 + c2lg (xy)I? \1 + c2llg (xey 2
< -min { IEOVF (xy) + g, (xy ) ER | (B9 +1ER =11}, (2.42)
and because
1= VF () + 8y T g P = g, B g @ OI2 (2.4b)
N

as N — oo, it follows that lim By (xy) < 6(X'), which shows that we have weak consistency.

Now suppose that g (x) has maximum rank for all x € R". Then 6(x) =0 implies that
8x)=0,ie.,thatx € X. Since Xy = R", it now follows that we have consistency. O

We will now proceed to show that we can construct consistent approximations to semi-infinite
optimization and optimal control problems.



3. CONSISTENT APPROXIMATIONS FOR SEMI-INFINITE OPTIMIZATION

To avoid excessively burdensome notation, we will restrict ourselves to the following two sim-
ple examples of semi-infinite optimization problems. The first is an unconstrained minimax problem:

MMP : 0
xrgllr;n yi(x), (3.1a)

while the second one is an inequality constrained minimax problem:
ICP min y¥(x), (3.1b)
where
X8 (xeR Iy'x)<0}. (3.1¢)
In (3.1abc), for j =0, 1. the functions W :IR” — IR, are assumed to be of the form
qﬂ'(x)émaxd)j(x,y), (3.1d)
yEY
with ¢/ :IR” x R — IR twice continuously differentiable, and the set ¥ 2 [0, 1].
Now.forN =1,2,3,....letYy & {0,1/N,2/N,...,N/N }, and let
wi) 84 max ¢/ (x,y), j=0,1. (3.2a)
YE Yy

ForN =1,2.3,.... we now define the approximating problems MMP, and ICPy by

MMP, min yy(x), (3.2b)
ICPy min ye), (3.2c)
: N
where
Xy & (x e R" | yl(x)<0}. (3.2d)

Lemma 3.1. For any bounded set § ©IR", there exists a constant L <o such that for all
N=123,. .andx €8S.

L i i .
-WSWI(,(x)—qﬂ(x)sO, j=0,1. (3.3)
Proof. Let j € {0,1}. First, since Yy C Y, we always have that yj(x) <y/(x). Next. let
¥" € Y be such that ¢ (x) = ¢/ (x,y"). Then there exists a y§; € Yy such that |y* —y§ | < 1N,
Hence



. . . L
WL 2 oy 2 ¢ @y - G4
where L < o is a Lipschitz constant for ¢/ (-,-)onS xY,j =0, 1. O

Theorem 3.2. The problems MMPy and ICPy converge epigraphically to the problems MMP
and ICP, respectively.

Proof. We only need to consider the problems ICPy and ICP, because if we set ¢*(x,y) =0, then
these problems degenerate to MMP,, and MMP, respectively.

Our first observation is that because of (3.3), y§(x) < y’(x). Hence,since X < Xy for all N.
given any x € X. we can define the sequence {xy } y=; by xy =x for all N, and we immediately
obtain that xy € Xy for all N and lim w(xy) < y%(x ). which shows that part (a) of Definition 2.1 is
satisfied.

Next, suppose that { xy } v is a sequence such that xy € Xy and xy — x as N — o, It now
follows from the fact that yy(xy) <0 and (3.3) that y'(xy) < K/N for all N. Because y'(-) is con-
tinuous. we conclude that y'(x)<0, ie. that x € X. Furthermore, again by (3.3).
lim \,,‘,9 (vy) < lim wo(xN) = wo(x ). which shows that part (b) of Definition 2.1 is satisfied. Hence our
proof is complete. ]

Before we can deal with the question of consistency, we need to introduce optimality functions
for the problems MMP, MMPy, ICP, and ICP,. Optimality conditions for ICP (ICPy) can be
obtained from those for MMP ( MMPy), by making use of the parametrized functions
Fy:R" 5 R.and Fy » :R" - R,N =1,2,..., with the parameter ¥’ € R”, defined by

Fo(x) 8 max { w’(r) = ¢ ) - ' (), W) - '), ) (3.52)

F o0 2 max { yf0) = Wl ) = b (X )y wh () = wh(r'), ], (3.5b)

where >0, and y'(x), & {maxy'(x),0}, and wh(x), 2 {maxyl(x),0}. It should be obvious

that if £ is a local mininimizer for ICP (ICPy ), then it is also a local unconstrained minimizer for

F_ ) (FN ~(). Hence, As in [19], for y2 0, let the set valued maps G—$ x), G.,f,)”(x ), Gl(x), 5,J(x )
X o

with values in R"*!, be defined as follows:*

_ _ a0 +yy!
Gg(x)é.\-ceov{{wom gvgc’,(z,)y)w Um” ’ 029

* The parameter y is not needed for the optimality conditions, but will be needed in the algorithms that we will describe in Section 5.



0 0 1
=0 1A YN () =4 (x,y) + YWy (x),
GN Y (‘x) - v go}’N{ V'\.¢O(x ,y) ] }’ (3-5d)
1 1 1 ] ‘
=1y A V(x) =0 (x,y) =1 A YN () = 0'(x.y)
G (")'_\-ceoy{ V. olx,y) - Gv@= y € V.0'x,y) - G39

We will denote the elements of these sets by & = (£, &), with & € IR”. For the problems MMP and
MMP, ., we set y = 0 and we define the optimality functions Oypvp, Ommp,» bY

Ommp(x) & —_ min &0+ VIER, ©)8=_ min 0+ valER.
MM e Geen Ovvep, (6) = -, mip (3.62)

For the problems ICP and ICPy,, we set y> 0 and we define the optimality functions 8ycp, Ocp,. by

Brcp(x) &~ min 0+ YIEIR, Bycp, (x) 8 - in E+ VA& . (3 6p)

Eeco{G,y().G'()) Eecof Elp?.,(x).c?,}(x))

Theorem 3.3.

(a) If £ is a local minimizer for MMP ( xy is a local minimizer for MMPy, ), then 0 € %% )
(0 € dyy(xy)) (Where IyO(-), dwg(-) denote the Clarke generalized gradients [6]).

(b) 1If & is a local minimizer for ICP ( £y is a local minimizer for ICPy ). then (with y>O0)

0Oe dF (X)(0€ E)FV . N

(c) For any x € R". 0€ oy%x) <= O¢€ C_?é)(x) <> Oympx)=0: 0€YI(x) <>
Oe C_;,\(,),O (.\') > SMMP‘\. x)= 0.

(d) Let gammag >0. Then, for any x € R", 0 € dF,(x) <> 0€ co{ 53(&‘).5](&‘)} =
Bicplx) = 0: 0 € OFy ,(x) <= 0€ co{ G, (£).Gy®)} <> Bycp,(x)=0.

(e) Foryz0, the set valued maps 53(-) . 5,3(-), G'(¢), 5,3(-), N =1,2,3,..., and the corresponding
optimality functions Oygmp(*), Oppap, (), O1cp(), O1cp, (). N = 1,2,3,. .., are all continuous.

(f) For every bounded set § < IR", there exists a K <% such that for all x € § and all
N=123,...,

| Byintp, (1) — Bap(t)| < % (3.72)
K
|elcp~(X) - e]CP(X)| < W . (3.7b)

Proof. The proofs of (a) - (e) can be found in Examples 5.2 and 5.5 in [19]. Hence we only need to
deal with (f). Thus. suppose that forx € §, EN € 5,3,0 (x) is such that Bypp, (x) = —(ED + YIEN 1),

-10 -



Then the vector (£9 + w2%x) - wd(x),Ey) € GJ (x). It therefore follows from (3.3) that

—Buanap(0) < E +000) — yx) + lEY IP < = Bypnep, (1) + -1’% . (3.82)

Next suppose that & € GQ(x) is such that Ovmp(x) = = (E2 + Y4IE.1%). Then, by Caratheodory’s
Theorem, there exist barycentric coordinates p/ 20, j =1,...,n+1, such that Y"1/ =1,
E = y(x) -y w ®°(x,y;), and & = T WV, 0%x,y)), with y; € Y. Clearly, there exist
;i €Yy, j=1,..,n+1, such that ly; —yy;I S1N. Let Ew € G,?_o(x) be defined by

Ed = yx) - i W%, yy ;). and Eyu = J":i’ W V,6%x,yn;). Then we must have that

1Ef = &2 = wR(x) + yOx) S%, ~ (3.8b)
L
lEye —Eel< (3.8¢)

where we assume that L <o is a common local Lipschitz constant for ¢(:,*) and Vé(-,*) on S xY .
Now, (3.8b), together with (3.3), implies that |ES« — &1 < 2L/N. Since the set valued maps G Jw.
5,\9,0 (x) are bounded on bounded sets, we now conclude that (3.7a) holds for some K <. A similar

proof applies to (3.7b). O

It is obvious from Theorem 3.3 that the functions Bpvp(*), Oymp, () are optimality functions for
the problems ICP and ICPy, (x), respectively; similarly, it is obvious from Theorem 3.3 that the func-
tions Bcp(*). Oycp, (*) are optimality functions for the problems ICP and ICPy, (x), respectively. We
are now ready to state our final result, which is obvious in view of Theorem 3.2 and Theorem 3.3 (see
parts (d), (e)). Referring to Proposition 5.5 in [19], we see that Bcp(x ) = 0 if and only if 0 € dy'(x),
and similarly, Gjcp,(x) = 0 if and only if 0 € dyj(x). The requirement that O €9y (x) for all x €X
1s known as the generalized Mangasarian-Fromowitz constraint qualification (see [17]) and we invoke

it to ensure consistency (i.e., to ensure that whenever y!(x) > 0, O1cp(x) <0, etc.).

Theorem 3.4.

(a) Consider the problems MMP, MMPy, with the assumptions stated. Then the pairs in the
sequence { (MMPy,Ozmp,) } v=) are consistent approximations to (MMP, Oypvp)-

(b) Consider the problems ICP, ICPy, with the assumptions stated. Then the pairs in the sequence
{ ACPy, B1cp,) } N=; are weakly consistent approximations to (ICP, 6,cp). Furthermore, if for all x
such that w'(x)>0. 0 €dy'(x), and, in addition, for all N € N, and xy such that yi(xy) >0,

0 €dyp (xy), then the pairs in the sequence { (ICPy,61cp,) } N=1 are consistent approximations to
(ICP, B;cp). O
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4. CONSISTENT APPROXIMATIONS FOR OPTIMAL CONTROL

We can illustrate most of the issues related to optimal control problems by considering two
fixed time optimal control problems. The first is an unconstrained optimal control problem, while the
second one is an optimal control problem with control and inequality end point constraints.

Optimal control problems always involve the controls and trajectories of a dynamical system.
We will assume that this dynamical system is described by the differential equation

d

SO =hG&@u@). 1 € [0,1], x(0) =&, 4.1
where x(t) € R", u(t) € R”, and hence h : R" x R™ — R". Since we will keep the initial condi-
tion constant and only vary the control, we will denote the solution of (4.1) by x"(¢).

The following assumptic;n is standard:

Assumption 4.1.  Let py,, € (0,°0) be a given, very large number. The function £ (:,*) in (4.1) is
continuously differentiable, and there exists a constant K € [1, o) such that

(i) forallx’,x” € R",and v',v” € B(0, ppgy) the following three relations hold:

(e V)= h( VOISKIY =1+ =v'1], (4.22)
Wb (¢ V) =h & VNS KY =X’ T+ =v"1], (4.2b)
bh, (& V') = b, (X" VI SK[Y =21+ b =v"1), (4.2¢)

(ii) forallx € R",v € B(0, pmax)-

lh(x,vISK[Ixl+1]. (4.2d)
]

Referring to [1, 16 pp. 136-143), we see that under Assumption 4.1, the solution x"(:) is
Lipschitz continuously Frechet differentiable in # on the interior of the bounded subset

U2 {(u€L?0,1] 1 lule < ppgy } » (4.3a)

Now L% [0, 1] is not a Hilbert space, while R", on which the approximating problems will be defined,
is a Hilbert space, a fact that causes considerable technical difficulties, because of the form of the
optimality functions that we use in IR". This difficulty can be removed by introducing the pre-Hilbert
space:

L7,[0,118 (L2 10,17, (-, ), IMy), (4.3b)

i.e., the elements of the space L« [0, 1] are functions u € L [0, 1], but it is endowed with the scalar

product and norm used on L% [0,1]. The space L%, [0, 1] is not complete; however, it is dense in
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LY10,1].

It is reasonably straightforward to deduce from [1, 16] that the solution of our differential equa-
tion (4.1), x*(*), is also Lipschitz continuously Frechet differentiable in u (in the L3’ [0, 1] topology)
on the following subset of L, [0, 1]:

U° 2 {ueL?,y00,1] 1 lule<Bppu ), (4.3¢)

where 8 € (0,1) is near unity. Clearly, U° < U. For each ¢ € [0, 1], the Frechet differential
Dx"(t ;) is defined on L% [0, 1], and takes values in R".

Forj =0,1,...,q,let g/ :R" - R be a locally Lipschitz continuously differentiable function,
and let

flaw)Bg/x*), j=01,...q, (4.4a)

y(u) 8 max; ¢ o f/ (), (4.4b)

where q 41,2, ,q }. We will consider the following two problems:

: 0
UP Join, fH@), (4.40)
cp muin {f O%u) I y(u)<0}, (4.4d)
where
U 2 (uell,0111u@t)eU,vte[0,1]}, (4.4d)

with U ©R"™ a compact, convex set contained in the interior of the ball
B(0,5pma) 2 {v € R” | vl <8py,, } ; and

flaggaqy. (4.4¢)
Problem (4.4c) can be restated in the canonical form (2.1a), as follows. Let
U. 8 {uel, lyu)<0}, (4.4f)
then we can rewrite (4.4c) in the equivalent form

: 0
cp i fw). (4.4g)

Computationally, the control constraint u € U, causes nontrivial complications because it is
not differentiable in the pre-Hilbert space L, [0, 1], and hence prevents expressing optimality func-
tions in the rather convenient dual form (3.6b).
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Since both the functions g/ (-) and the solutions x*“(-) are locally Lipschitz continuously dif-
ferentiable, the following theorem is deduced from the chain rule and the linearization of the differen-
tial equation (4.1) (for a proof see [4]):

Theorem 4.2.  Suppose that Assumption 4.1 is satisfied. Then the functions f/(-), j =0,1,2,..,q,
defined in (4.4a), have continuous Frechet differentials Df/ : U° X L., — R" that have the form
Df/(u,du)= (Vf/(u),du’,, where the gradients, Vf/(u) € L™ , [0, 1] are locally Lipschitz con-
tinuous on U° and are given by

VI @)t) = b, (@), u(@)) p/*@t), 1 € [0,1], (4.52)
with p/*# () € IR" the solution of the adjoint equation

P(t) = =R G () u@) pt), t€0,1, p(l)= Vg (x*(1), (4.5b)
d

Because there is no satisfactory Maximum Principle for discrete optimal control, the Pontryagin
Maximum Principle [24] is not a useful optimality condition in the context of establishing the con-
sistency of discrete approximations. Hence we propose to use the following, rather basic, first order
optimality conditions and corresponding optimality functions to define stationary points.

Theorem 4.3.  Suppose that Assumption 4.1 satisfied.
(a) Suppose that & is optimal for UP. Then
df % ,8u) 20, vou € L, [0,1], (4.62)

where df 0¢-, ) denotes the directional derivative.

(b) LetByp:U° — IR be defined by

Byp(u) = =1V Oz . (4.6b)
Then Byp(*) is continuous in the LE , [0, 1] topology, and, for any # € U° (4.6a) holds if and only if
Byp(@) = 0, i.e., Byp(*) is an optimality function for UP.
(c) Lety>O0. Foranyu € LZ,[0,1], let

w(u), & max {0,y(u) }, (4.6¢)

and forany u,u’ € Lg,[0,1], let
Fu' (u) é max { fo(u) _fo(u’ )— W(u, )+' y(u) - \V(u/ )+ }. (4.6d)

If # is a local minimizer for CP, then
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dF (@ ,u-2)20, Vu e U, . (4.6¢)
u
(d) Lety>0,andlet8cp: U, — IR be defined by '

ch(u)é gnigu { ‘/zﬂ&ull22+1_n€ax{ (VFOw),8u Yy =ywu),, fH@)=y)+ (Vfiu),du) } ,
1 +du e JE€Qq
(4.6f)

Then (i) 8¢p(") is negative valued, (ii) continuous in the L%, [0, 1] topology, and, (iii) any & € U,
satisfies (4.6e) if and only if Ocp(Z ) = 0, i.e., B¢p(*) is an optimality function for CP.

Proof.  Since df %u,5u) = {Vf%u),du ),, and since V) is continuous, parts (a) and (b) are
obvious.

(c) Since any local minimizer of CP is a local minimizer for the problem min, ¢ y_ F_(u), (4.6¢)
. u
follows directly.

(d). First, since du = 0 is admissible in (4.6c), it is obvious that Ocp(u) <0 forall u € U,. Next we
will show that 8¢p() is continuous. Let F : U, XL 2[0,1]c = IR be defined by

F ,(5u) 2 vaidu II22+r_n€ax LAVFO), Bu Yy =ywu ), , £/ () =wu) o+ (VI (u),bu 'y}, (4.7a)
j€q
Then we can rewrite (4.6f) as
Bcp(u) = . in F ,(%u). (4.7b)
Note that F w(u —u’) is Lipschitz continuous in («’,u) € U, xU,, in the L%, [0, 1] topology. We
will denote the Lipschitz constant by L. Now suppose that {u; };2; is a sequence in U, that con-

verges to u, in the L3, (0, 1] topology. Let u’ € U, be such that B¢cp(u) = F W@ =u), and let
u’; € U, be such that O¢cp(y;) = F @ u;), foralli € IN. Then we must have that

Ocpu;) S F o (' -u;), Vi € N, (4.7¢)

and hence li—mecp(ui) <limF u W —u;) =0cp(u), ie., O¢cp() is u.s.c. Next, we must have that for
alli € N,

Ocp(u) < F ,(u; —u)

= [I::,,(u’,- -u)—f,,‘(u',- —u,-)]+fu,(u’,~ -u;)

T The fact that 8cp(ir) is well defined follows directly from Corrolary I11.20 in Haim Brezis, Analyse Fonctionelle: Theorie et Appli-
cations, Masson, Paris, 1983.
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SLlu —wl+F ,(;u;) . (4.7d)

Hence we conclude that Ocp(x) < lim Ocp(u;), which shows that B¢p(*) is L.s.c., and hence continuous.
Next, we will show that Ocp(# ) = 0 if and only if (4.6e) holds. Since for any u,0u,

F ,(5u) 2 Yaldul? + dF, (u,du), (4.7¢)

it follows that if O¢cp(Z) <0, then (4.6e) cannot hold, and hence, by contraposition, if # satisfies
(4.6¢) then we must have that Ocp(#) = 0. Now suppose that (4.6) does not hold. Then there must

exist a u € U, such that dF (& ,u —@)<0. It is not difficult to deduce that there must exist a
u

A€ (0,1], such that F _(A(u — ) —£) <0. Hence, again by contraposition, we see that Ocp(f) = 0
u -
implies that (4.6¢) holds, which concludes our proof that Ocp(-) is an optimality function. O

The simplest set of consistent approximations to the problems UP and CP are obtained by
integrating the differential equation (4.1) using Euler’s forward method. This approach turns out be
computationally efficient when the differential equation (4.1) is not stiff. We begin by constructing
finite dimensional subspaces of L, [0,1] on which the precision of Euler’s method is easily esta-
blished. For any integer N 21, let I'(V) 49N Then, for any integer N 21andk =0,1,2,...,'(N),
we define 1y 4 ék/I"(N), andfork =0,1,2,.., (V) -1, we define my ;, IR — R by

1 forall? € [ty .ty g41), ifk STN) =2,
y k(1)< 1forallt € [y, ty gaal, ifk =TN) =1, (4.8a)
0 otherwise .
Next, for any integer N 2 1, we define the subspace Ly'[0,1] < Lz, [0, 1], by
TN )-1
L0, 118 {u € L7,[0,1] 1 u(r)? Eo wTn ()}, (4.8b)

where {u; } ¢! is a sequence in IR”. Note that the union of the subspaces L§'[0, 1] is dense in
2 [0,1]. Since the functions my 4 (*) are linearly independent, we see that LJ'[0, 1] is in one-to-one
correspondence with the finite dimensional space

Ly A RTWyan (4.8¢)

so that any u € LJ[0,1), with u()=Y 4" u,my (), comesponds to # € Ly, with

u =(uguy,...,uprny1)- Thus, for N =1,2,3,..., we can define the linear, invertible map
Wy :LI0,1] - Ly by
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T(N)-1
WN( Z uan’k( )) = (llo,u], ur(N)-l) . (48d)

Now, for any u € Ly[0, 1],

I(N)-1

Buly = ———( z lu 19)% . (4.8¢)

I'V)

Hence, to retain a proper scaling balance between the continuous and discrete time problems, we
define the scalar product (-, -‘,,:N and norm -l , on L_,N , by

27 177\ é 1 7 1’

{u,u")g, 2 T (u,u’), (4.8)
1 -,
llz, ———I,(N)( Eo luty 1°)7%, (4.8g)

where the scalar product, {-,-), in (4.8f), is the usual Euclidean scalar product, and the norm [}, in
(4.8g), is the usual Euclidean norm. Consequently, if u, u’ € L§[0,1] and u = Wyu, u’ = Wyu’,
then we always have that (u,u"); = (u,u’)and luly = luly .

In addition, we will use the notation
US&U° N Ly0,1], U x2U, N LZO,1]. (4.8h)
Clearly, whenever N” > N’, we must have that Uy < Ug»,and U, » < U, y».
Next, given any u € LY[0,1], where u() = Yf%8! uymy (), we replace the continuous
dynamics (4.1) by the discrete dynamics resulting from the use of the Euler integration formula:
X(ty k1) = Xty )+ AR Rty ) 1), k =0,1,..,T(N) =1, X(©0) =&, (4.92)
where

1
AN)4 ™)’ (4.9b)

sothatty , = kA(N). Clearly, (4.9a) has a unique solution for any u € EN. We will denote the solu-
tion of (4.9), corresponding to any u =Wyu, with u € L§f[0,1], by {Zn(ty ) } 55, We associate
with the sequence { Xy (7y ;) } 24, of vectors in R” the time function

r(v)-1

)= Y Iy )my (). (4.9¢)
k=0

Making use of Theorem 3.1.6 in [6] one can show that exists a constant K, < o such that

Ixy(t) =x“ (N <K,AN), vt € [0,1]. (4.9d)
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Also, it should be obvious that the solution NGy &) is continuously differentiable in u .

Next, for N =1,2,3,..., we define the functions ff :L7[0,11> R, j =0,1,..

yy :Ly[0,1] - R by

i) g/ @A), wwu)= ;neaﬁfmu) :

Then we define the approximating problems as follows:

UP, min f{(u),
u € UR
CP, min {fu) | yy(u)<0q }.
u €U

If we now define
U yB{ueU,ylyy)<0},
then we can transcribe (4.10c) into the canonical form (2.1b), as follows:

CPy min  fu).

u€ Uy

.q, and

(4.10a)

(4.10b)

(4.10¢)

(4.10d)

(4.10e)

As in the continuous case, it follows from the chain rule that the gradients Vfj(u)(-) € LyI0,1],

J=0,1,...,q, exist and are locally Lipschitz continuous, uniformly in N € IN. They can be

expressed as follows:

T(N)-1 ,
VAkwYt)= Y, h GGy ) ue) B Uy ga)min @), 1 € [0, 1],
k=0

where, fork =0,1,...,N, p“Y (ty z) is determined by the adjoint equation

Pty g) =Pty ga1) = AN BNty ) w4 T P Iy gy k = 0,1,..,T(N) = 1,

p(1)=Vgiay)).

F(N)-1

BnI)= X By ma(t) .
k=0

Making use of Theorem 3.1.6 in [6], one can show that there exists a K, <o such that

N I() = p*I (N < K, AN) .
It should be clear that the following theorem is just a special case of Theorem 4.3.

Theorem 4.4. Suppose that Assumption 4.1 is satisfied.
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(a) If &y is alocal minimizer for UPy, then

df (i y,8u) 20, Vou € LTI0,1], (4.11a)
where df (-, ) denotes the directional derivative of f\J(-).
(b) ForN =1,2,...,let Oyp, - Uy — IR be defined by
Oup, () & -1VF w3 . (4.11b)
Then Oyp, (*) is continuous in the Lz, [0, 1] topology, and, for any & € U° (4.11a) holds if and only
if Byp,(2) = 0, i.e., Byp, (*) is an optimality function for UPy,.
(c) Lety>O0. Foranyu € L3,[0, 1], let
wy (@), A max {0, yy () }, (4.11c)
and for any u,u’ € L{[0,1], let
Fivar () & max { £i) = ) = vy (0 ) Wy () =y ('), ) - (4.11d)

If 7 y is a local minimizer for CPy, then

dF L (@,u=2)20, Vu € Uy, (4.11e)

ol

where dF N (-, ) denotes the directional derivative of FN 0.
W W

(d) Lety>O0,and,forany N € N, let 8¢cp, : U, y — IR be defined by

OCPN(u)é min  { Yaldul}

u+dbu € Uy n

+?1€a§{ (V) 8u Yy =yyy () @)=y @)+ (Vi u),0u )y} ). 4.11f)

Then (i) Ocp,(') is negative valued, (ii) continuous in the Ly'[0,1] topology, and, (iii) any

iy € U, y satisfies (4.11e) if and only if Bcp, (&) =0, ie., B¢p, (") is an optimality function for
CP,. O

Next we obtain the following approximation results.

Lemma 4.5. Suppose that Assumption 4.1 is satisfied. Then there exists a constant Ky <0 such
that forall u € Ug,and N € N (withN 2 1),

Ifh@) =f/ @)l SK;AN), j=0,1,...,.q, (4.12a)
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lwy () = wu)l <K;ANN), (4.12b)
"fol(u)-ij(u)"2SKfA(N), j =O, l,_._'q . (4.120)

Proof. The existence of a Kf < o2 such that (4.12a) holds, follows directly from the Lipschitz con-
tinuity of the g/ (), in (4.4a), and (4.9d). Hence,

wN(u)S}nea);fj(u)+KfA(N)=\|l(u)+KfA(N)- (4.12d)

Reversing the roles of yy (#) and y(u) in (4.13), we obtain (4.12b). Next, the existence of a Ky <o
(possibly larger than needed for (4.12a)), such that (4.12c) holds, follows from (4.10j) and the formu-
lae for V£, (u) and Vf/ (u). O

In proving consistency, we will need two assumptions. The first is that d and p,, have been
chosen to be sufficiently large to ensure that the function £ %(u) has no minimizers on the boundary of
the set U°. The second consists of a constraint qualification which, among other things, rules out
conversion of equality constraints into inequality constraints, and is closely related to the
Mangasarian-Fromowitz constraint qualification [17]:

Assumption 4.6.

(a) Let U denote the closure of U,. We will assume that all the global minimizers of the problem

. £0
UP uﬂemézf (u), (13)

are in U?, i.e., that the problems UP and UP are equivalent.

(b) For every u € U, such that y(u) <0, there exists a sequence { uy } yap» Such that for all N,
uy € U, v, yuy) <0,anduy - u asN — o, |

Theorem 4.7. Suppose that Assumptions 4.1 and 4.6 are satisfied. Then for N =1,2,3,..., the
problems UPy and CPy converge epigraphically to the problems UP and CP, respectively, in the
L2, [0, 1] topology.

Proof. We begin with the problems UPy. Since the union of the subspaces L{'[0, 1] is dense in
L 5[0, 1], it is clear that for any u € U° there exists a sequence { 4y } ya1, With uy € Ug, such that
uy = u as N — oo, It now follows from (4.12a) that lim f(uy) = f %u), which shows that part (a)
of Definition 2.1 is satisfied. Clearly, if { uy } yo;, With uy € UR, is such that uy — u as N — o,
thenu € U° and, again by (4.12a), lim f ,f,)(uN) =f O(u), which shows that part (b) of Definition 2.1 is
satisfied.

Next consider the problems CPy. We can infer from Assumption 4.6 that for any u € U,
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there exists a sequence { uy } ya;, With uy € U, y, such that uy = u as N — o, and by (4.12a),
limf{uy) = f O(u), which shows that part (a) of Definition 2.1 is satisfied. Clearly, if {uy } No1,
with uy € Uy, is such that uy »>u as N — o, then u € U, and, again by (4.12a),
lim £ (uy) = £ %u), which shows that part (b) of Definition 2.1 is satisfied. Hence our proof is com-
plete. O

Theorem 4.8.

(a) Suppose that {uy } y=; is such that for all N € N, uy € U°, and uy - &, as N — o, then
Oup, (uy) — Oyp(ll ), as N — oo,

(b) Suppose that {uy } y.;is such that for all N € N, uy € U, », and uy — &, as N — o, then
Ocp,(uy) = Ocp(@l ), as N — oo,

Proof.

(a) This part follows directly from (4.12c).

(b) ForanyN € Nandu, u’ € U, v, let

Fya@)8 vl —uld

+max { (VP == 1wy (@ @) =y @+ (V@ ~uh),  @.140)

where v is as in (4.6d.f) and (4.11d,f). Without loss of generality, we will assume that y> 1. Now
suppose that the sequence { uy } y.; is such that forall N € N, uy € U, y,and uy - u,asN — oo,
For all N, let u’y € U, y be such that Bcp, (uy) = F y, (&x). Then Bcpluy) < F , (y), where
F w () 1s defined in (4.7a). Now, (i) because of (4.12b) Iy (uy), = w(uy),| SKAN) for all N,
and (ii) because U, is bounded in Lz [0, 1], there exists a b < o, such that lu'y —uyl, <b forall N.
Hence making use of (4.12a,b,c) and the fact that yy (uy ), = O, we find that

Bcpluy) < F ,, (W'y)
= Vzﬂu’N -uNﬂzz
+;n€aué {AVFOw), iy —uy Yo =), [ (uy) = wuy)o+ (VI uy) 'y —uy )},

= Yollu'y — uy 12

+}n€a§ { (VFR) Wy —uy o+ (VFOu) = VERU), Uy = uy Yy = YWluy )y Fhiuy)
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+ [f () = £ Cun )l = wlun )y + AV gty =y Yo+ (V7 uy) = VEfGuy) u'y —uydy )

SF nau@n)+K(1+7+Bb)AN). (4.14b)
Hence, since B¢p(") is continuous, we conclude that
Ocp(@) = lim O(uy ) < lim O¢p, (uy) . (4.14¢)
Now, let # € U, be such that 8p() = F ﬁ(z’t‘ "), and let &’y € U, 5 be such that &'y — &’, as
N —oo. Then for every N, O¢cp,(uy) < Fy ,,, (& ’y). Proceeding as for (4.14b), we conclude that

Ocpy (un) SF , (8'%) +K (1 +7+b)AN) . (4.14d)

Consequently, since F « (1) is continuous in (u’, u),
1im Ocp, (uy) S UM [F , (8'y) + K (1 +y+b)AN)] = 8(&) . (4.14e)

Combining (4.14c) and (4.14d) we conclude that Oy (uy) — 6(& ), which completes our proof. O

At this point, the following result is obvious:

Corollary 4.9.
(a) The pairs in the the sequence { (UPy,0yp,) } =) are consistent approximations to (UP, Oyp).

(b) The pairs in the the sequence { (CPy,6cp,) } = are consistent approximations to (CP, Oyp). O

5. MASTER ALGORITHM MODELS FOR USE WITH CONSISTENT APPROXIMATIONS

Now that we have seen that we can construct consistent approximations for both semi-infinite
optimization and optimal control problems, we need to address the question of how such approxima-
tions are to be used in the construction of an approximate solution of the original problem. We recall
that the experience with penalty functions in nonlinear programming indicates that it is a bad idea to
simply select a large penalty and solve the resulting unconstrained problem. The reason for this is
that large penalties produce serious ill-conditioning. Hence the commonly used strategy is to solve
approximately a sequence of progressively more severely penalized problems, which produces start-
ing points for the successive problems from which Newton’s method converges quadratically, and
hence overcomes the ill-conditioning. While increasing discretization of semi-infinite optimization
and optimal control problems does not lead to ill-conditioning, it does increase the computational
complexity of the resulting problems. Referring to the literature (see, e.g. [9, 13, 14, 22]) we find
reports that in the case of semi-infinite optimization and optimal control problems, there is also a
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considerable benefit to be obtained from increasing the discretization in a preplanned manner. We
will now describe two strategies, in the form of algorithm models, for increasing discretization in
solving semi-infinite optimization and optimal control problems via consistent approximations.

The constraint set X in problem P can have a variety of characterizations. We will deal with
only two: the first is when X = X, where X is a ‘‘simple’’ convex set, as in minimax problems on R"
and control problems with or without control constraints, but no trajectory constraints, while the
second is more complex, and has the formX = {x € X | y(x) <0}, where X is a *‘simple’’ convex
set and () is a continuous function. To make this distinction explicit, we define the two cases as
follows:

P, , min f(x). (5.1a)
P, xrréir)l( {fGx)Iwx)<0}. (5.1b)

Similarly, for N = 1,2,3,.. ., the approximating problems Py acquire the following form

xréu%v fn(x). (5.2a)

min {fy() yy@)<0). (5.2b)

In view of the results in the preceding two sections, we make the following assumption.

Assumption 5.1.

(i) The functions f,y:B — R as well as the functions fy,yy : By - R, N =1,2,3,..., are
continuous.

(ii) The set X is either a convex, closed subset of B, or X =3B, and, for N =1,2,3,...,
XN =XN QN.

(iii)  There exist continuous optimality functions 6, : X - R, for P, 6, : X = R, for P, as well
as continuous optimality functions 6,y :Xy - R, for P,y and O,y :Xy - R, for Py,
N =123,...

(iv)  There exist a strictly positive valued, strictly monotone decreasing function A : N — IR, such
that AN) — 0 as N — =, and constants K € (0,~), N, € N, such that for all N 2N,, and all

X € Xy, (or at least for all x in a sufficiently large, bounded open subset of Xy ),

1fy() = f () SKAN), (5.3a)
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lyy () —wix)I SKAN). (5.3b)

(v) If {xy } N is such that xy € Xy for all N, and xy — £ as N — o, then 6, v (xy) = 6,(X),
and 0, y(xy) > 6. (), asN — o,
(vi) For every x € X such that y(x) <0, there exists a sequence {xy }ye; Such that for all N,

xNEXN,\vN(xN)SOande ~>x asN — oo, a

It should be obvious that Assumption 5.1 ensures that the pairs (P, 5,0, ). N =1,2,3,..., are
weakly consistent approximations to (P,,0,), and similarly, that the pairs (P, y,0. ).
N =1,2,3,..., are weakly consistent approximations to (P,,6.). Hence the following theorem is a
direct consequence of Theorem 2.4 and Assumption 5.1.

Theorem 5.2.  Suppose that Assumption 5.1 is satisfied.

() If {xy }Na is a sequence of global minimizers of P, y (P, ) such that xy —» % as N — oo,
then £ is a global minimizer of P, (P,).

(ii) If {xy }Na=p is a sequence of strict local minimizers of P, 5 (P, x), with radius of attraction
py 20, such that xy — £ as N — o, and there exists an infinite subset X <N, such that py 2 p >0,

forall N € K, then £ is a local minimizer of P, (P, ).

(iii) If {xy } = is a sequence of local minimizers of P, (P, y), such that xy — £ as N — oo,
then 6, (£) =0 (6. (£) = 0). ]

We will now describe our first strategy for increasing discretization in solving ‘‘conceptual
problems’’ such as P, and P, via consistent approximations satisfying the conditions of Assumption
5.1. This strategy has the advantage that it can be used with a very broad class of nonlinear program-
ming algorithms. Its disadvantage is that convergence results can be stated only about rather sparse,
*“filtered’’ subsequences of all the points constructed. We will present our strategies for solving the
problems P, and P, in the form of algorithm models in which we will define the *‘outer’’ iterations.
The “‘inner” iterations are defined by user supplied iteration maps A, y, A,y : Xy — 2*¥  that
define one iteration of a nonlinear programming algorithm that can be used for solving the problems
P, y and P, . We begin with the unconstrained problem P, .

Master Algorithm Model 5.3.
Data. Noe IN,.er XNO.

Step0. Seti =0, N =N,,.
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Step 1. Compute ax;,; € A, y(x;).
Step2. 1If0, y(x;4)2-1/N, setx*y =x;,;,and replace N by N + 1.
Step 3. Replacei by i + 1 and go to Step 1. O

In view of Assumption 5.1, the following result is obvious:

Theorem 5.4. Suppose that (a) Assumption 5.1 is satisfied, and () that every accumulation point

% of a sequence {x; } 2o, constructed according to the rule x;,; € A, y(x;), satisfies 6, y(£) =0.
Consider the the sequences {x; } and { x*y } constructed by Algorithm Model 5.3.

(i) Ifthe sequence {x*y } is finite, then the sequence {x; } has no accumulation points.
(ii) If the sequence {x*y } is infinite, then every accumulation point £ of {x*y }, satisfies
0,&)=0. O

For the constrained problem P. we modify the above as follows:

Master Algorithm Model 5.5.

Data. Ny€ IN,xg€ Xy,

Step0. Seti =0, N =N,.

Step 1. Compute a x;,; € A, y(x;).

Step 2. If 0, y(x;41) 2= 1N, and y(x;,;) < I/N, set x*y = x;,,, and replace N by N + 1.

Step 3. Replacei byi +1and goto Step 1. (]

Again because of Assumption 5.1, the following result is obvious:

Theorem 5.6. Suppose that (a) Assumption 5.1 is satisfied, and (b) that for every N 2N,, every
accumulation point £ of a sequence {x; } /2o, constructed according to the rule x;,; € A, (%)),

satisfies 8, y (£) = 0, and Ww(¥) < 0. Consider the the sequences {x; } and {x*y } constructed by
Master Algorithm Model 5.6.

(i) If the sequence {x*y } is finite, then the sequence { x; } has no accumulation points.
(ii) If the sequence {x*y } is infinite, then every accumulation point £ of {x*y }, satisfies
0,(8)=0and y®)<0. O

We now turn to our alternative approach, which we believe to be computationally more
efficient, and which can be used with almost all unconstrained nonlinear programming algorithms.
However, for constrained problems, only the unified method of feasible directions, in [21] has so far

been shown to be compatible with our alternative approach. Again we begin with the unconstrained
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problem P, . For this problem we require that the nonlinear algorithms used for solving the problems

P, y satisfy the following monotone uniform descent condition:

Assumption 5.7. For every x € X, such that 6,(x) <O, there exist p, >0, N, € N, and 'SX <0
such that

Ine?) =-fn(x) <8, (5.4)

forallx’ € B(x,p,) N Xy, forallx” € A, y(x'), and forall N 2N, . (]

Referring to Theorem 1.3.10 in [18), we find that Assumption 5.7 is a generalization of the

assumption in the following theorem.

Theorem §.8.  Suppose that Assumption 5.1 is satisfied. Let N be given and suppose that {x; } ;29
is a sequence in Xy constructed using the recursion x;,, € A, y(x;), i € N, in solving P, y. If for
every x € Xy, such that 0, y (x) <0, there exist p, >0, d, <0 such that

fnGE) =fy(x) <8, (5.5)
for all x' € B(x,p,) N Xy, for all x” € A, y(x’), then every accumulation point £ y, of {x; } /e,
satisfies 6, y (¥ y) = 0. o

The assumptions of Theorem 5.8 are satisfied by most unconstrained optimization algorithms,
including the Armijo gradient method [2, 18], the Polak-Ribiére method of conjugate directions [18],
Newton’s method [12, 18], the BFGS method with back-stepping step-size rule [5], and the Pshenich-
nyi - Pironneau - Polak minimax algorithm [19, 20, 25]; however, there is no proof that the Fletcher -
Reeves method of conjugate directions satisfies these assumptions. Thus, to show that Assumption
5.7 is satisfied, one only needs to show that one can find a p, and a &, that are the same for all
N 2N, . This is relatively easy to show both for semi-infinite optimization problems and for optimal
control problems.

Now consider the following master algorithm for solving P,,, which uses the strictly monotoni-
cally decreasing function A :IN — IR introduced in Assumption 5.1.

Master Algorithm Model 5.9.
Parameter: B € (0,1).

Data. N_;€ N,andxp€ Xy
Step 0. seti =0.

Step 1. compute N; and x;,, such that N; 2N;_;, x;,1 € A, y,(x;) and
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Fhia)) = Fu () S=AWNP. (5.6)

Step 2. Replacei byi +1and go to Step 1. O

Lemma 5.10. Suppose that Assumption 5.1 is satisfied, and that Master Algorithm Model 5.9 has
constructed an infinite sequence {x; } /o that has an accumulation point £. Then the accompanying

sequence { N; } joois such that N; = o asi — oo,

Proof.  For the sake of contradiction, suppose that the monotone increasing sequence {N; };og is
bounded. Then there exists an iy € N, such that N; = N,-oé N* <o forall i 2i, Then, by the test
(5.6),foralli =iy,

FarGian) =y () S—ANT)P, (5.7)
which implies that fy-(x;) = =<0, as i — 0, However, since fy«(-) is continuous and since by
assumption, x; =/ £ as i — o, for some infinite subset I € N, fyu(x;) =’ fae &) as i — o,
which is a contradiction. Hence we must have that N; — o asi — oo, O
Theorem 5.11.  Suppose that Assumptions 5.1 and 5.7 are satisfied. If {x; } ;2o is a sequence con-

structed by the Master Algorithm Model 5.9, then every accumulation point £ of {x; } ;2 satisfies
9,&)=0.

Proof. Suppose thatx; —' £ as i — o, for some infinite subset / < IN. For the sake of contradic-

tion, suppose that 6, (£ ) <0. Then, by Assumption 5.7, there exist d, <0, N, € N, and p_ > 0 such
X X X

that

N =fn&) st‘);, (5.82)

forallx € B(X,p,)NXy,forallx’ € A, y(x'),and forallN 2N,.
X X

Since x; —'
AN;) >0 as i >. Let ig€ N be such that for all i 2ip with K as in (5.3.a,b), (i)

2KA(N;) <=5, (ii) 2KAWN;)"P<1, (iii) x € B(,p,), if i € 1. Next, let i; be such that
X X

X as i — oo, it follows from Lemma 5.10 that N; — o, as i — o and hence that

N;2max{N_,N; }. Then, for all i 2i;, i €I, because of (5.3a), (5.8a), and the fact that
X
A(N;41) S AN;) S AWN;),

FQi)=fx)<- 52 +2KAN;)<- '/25‘? . (5.8b)
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Now, for all i 2 iy, because A(N;,;) S A(N;) S AN, ), we obtain, making use of (5.3a) and (5.6),
that

[ (xip1) = f () S2KAN;) - AN, )P

=-AW;)P{1-2KAN)P) <0, (5.8¢)
and hence we see that the sequence { f (x;) } ;=;, monotone decreasing. Since, by continuity of f (-),
this sequence has an accumulation point, f (£), it follows that the entire sequence { f (x;) } i:h con-
verges to f (£). Since this is contradicted by (5.8b), our proof is complete. - a

Next, we will construct a natural extension of the Master Algorithm 5.9. First, we define the
parametrized function F, : X — IR, withx’ € X, by

Fe@)8max {f(x)—f () =yw )y wir) = y(r), }, (5.92)

where y> 0 is a preselected parameter. Similarly, for every N > N, , we define the parametrized func-
tion Fy » : Xy = IR, withx’ € Xy, by

F @) 8 max { fy(x) = fy@) =y & ey () = Yy 00, ). (5.9b)
We need the following extension of Assumption 5.7.
Assumption 5.12. Consider the problems P,y and suppose that for any N 2N,

Acn Xy — 2% js an algorithm map for P, y. We assume that for every x € X such that
8 (x) <O, there exist p, >0, N, € N, and d, <0 such that

Fy o (x")<8,, (5.10)

forallx’ € B(x,p,) N Xy, forallx” € A, y(x’), and forall N 2N, . O

Now consider the following master algorithm which uses a strictly monotone decreasing func-
tion A: N — IR, satisfying the conditions of Assumption 5.1.

Master Algorithm Model 5.13.
Parameters. B € (0, 1).

Data. N_j€ N,andxg€ Xy_.
Step0. seti =0.

Step 1. compute N; and x;,, such that N; 2N;_;, x;,, € A, N, (x;) and

Fp, (i) S =AW (5.11)
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Step2. Replacei byi +1andgotoStep 1. O

Lemma 5.14. Suppose that Assumptions 5.1 and 5.12 are satisfied, and that Master Algorithm
Model 5.13 has constructed an infinite sequence { x; } /oo that has an accumulation point £. Then the

accompanying sequence { N; } ;oo is such that N; - o0 asi — o,

Proof.  For the sake of contradiction, suppose that the monotone increasing sequence {N; } o is
bounded. Then there exists an iy € N, such that N; = N,-oéN* <o foralli 2i, Then, by the test
(5.11)

Frm o (x747) S = AQV* )P (5.12)
for all i 2ig. Since Wyw (X;41) — Was (X; )4 S Fys 1, (x;4y), for all i 21y, it follows from (5.9b) and
(5.11) that there must exist an i; i, such that Yy« (x;) <0 for all i 2i;. Hence for all i 2i,,
W (%), =0, and therefore, in view of (5.9b), fyw (xj41) = e (X;) < Fpx ,(x;4). Taking into
account (5.12) we now conclude that fys(x;) » - as i — «. However, since by continuity,

Fae ;) =% fae(®), as i — o0, where K < N is such that x; % £ as i — =, we have a contradic-
tion. Hence we must have that N; 5> o asi — oo, a

Theorem 5.15. Suppose that Assumptions 5.1 and 5.12 are satisfied, and that Master Algorithm
Model 5.13 has constructed an infinite sequence {x; } ;.o that has an accumulation point £. Then

6(x)=0.
Proof.  First we note that for all N 2 N, , because of (5.3a,b),
Fy(Xi41) S Fy, 5 (i00) + 2+ VK ADN;) (5.13a)
Hence, because of the imposed condition (5.11),
Fy(xi41) S=AWN)P + 2+ DK AN;) = =AN)P(L = 2+ DK AN -P) (5.13b)

Since 1-B >0, it follows from (5.13b) and the fact that by Lemma 5.15, A(N;) = 0 as i — oo, that
there exists an i such that for all i 2 iy,

Fx',(x,'.'.]) <0. (5.13C)

Consequently, if w(x;) >0 for all i 2 i, then { y(x;) } ;/2;, is a monotone decreasing sequence with an

accumulation point (% ). It therefore follows that y(x;) = y(X) as i — . Alternatively, if there
exists an i 2 i such that y(x; ) <0, then, because of (5.13c), w(x;) <Oforall i 2i;and {f(x;)} e,

is a monotone decreasing sequence with an accumulation point f (£ ), and hence that f (x;) — f (%) as

i — o0,
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Now, for the sake of contradiction, suppose that 6(f) <0, and that K < N is such that

x; =% £ as i — oo, Then, because of Assumption 5.8, there exists an i,, and a , <O, such that for
X

alli € K,i 2i,,
Fy 5 (xi41) €3, <0, (5.13d)
and hence, because of (5.13a) and (5.13c),

Fa(ti3) S Q+DK AN, +8, <0, (5.13¢)

Since by Lemma 5.14, A(N;) = 0 as i — oo, it follows from (5.13¢) that hére exists an i3 2 i,, such

that forall i € K, i 2i3, F,(x;,)) <%0, . But this contradicts the fact that either y(x;) = (%) as
X

i o0, 0rf(x;) = f(¥)asi — o, Hence we must have that 6(%) = 0. O

6. CONCLUSION

We have addressed three issues related to the use of discretizations in the solution of semi-
infinite optimization and optimal control problems. We have shown that discretizations of semi-
infinite optimization and optimal control problems are consistent approximations to the original prob-
lems in the same sense as penalty functions are consistent approximations to constrained nonlinear
programming problems, viz., they converge epigraphically to the original problems, and hence that
their global minimizers can converge only to a global minimizer of the original problem and their
uniformly strict local minimizers converge to a local minimizer of the original problem. Next we
have shown that if we express stationarity in terms of zeros of continuous optimality functions, then
the stationary points of discretizations of semi-infinite optimization and optimal control problems
converge to stationary points of the original problem. Finally, we have proposed several master algo-
rithm models that can be used in constructing algorithms, based on consistent approximations, for
solving semi-infinite optimization and optimal control problems.
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