Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

TECHNOLOGY COMPUTER-AIDED
DESIGN FRAMEWORKS AND THE
PROSE IMPLEMENTATION

by

Alexander Shih-Wei Wong

Memorandum No. UCB/ERL M92/27

13 March 1992

TECHNOLOGY COMPUTER-AIDED
DESIGN FRAMEWORKS AND THE
PROSE IMPLEMENTATION

Copyright © 1992
by

Alexander Shih-Wei Wong

Memorandum No. UCB/ERL M92/27

13 March 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

TECHNOLOGY COMPUTER-AIDED
DESIGN FRAMEWORKS AND THE
PROSE IMPLEMENTATION

Copyright © 1992
by

Alexander Shih-Wei Wong

‘Memorandum No. UCB/ERL M92/27

13 March 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Dedicated To Mom and Dad

ii

Contents

Chapter 1: Introduction to Technology CAD Frameworks 1
1.1 CAD for Integrated Circuit TECANOIOZYcceeeererereererererenerssesesesesessrsssassasassssces 3
1.2 TCAD Framework Requirements..............ccoeeeereennrenenenenne 6
1.3 The Role of Technology Simulation in CAD........cccoeeeeererenrereererersesesesesesesasassesenes 7
1.4 Survey of EXisting Implementations...........eeeeeeeesereeseeseseesssssssesessssssnesssssssnens 12
1.5 TCAD Framework Standardseeeeeemencresessccsenesscscssnsescessssenssssssssssssees 14
L6 SUMINATYcueetetininceeennesensetssssssessessessessessessessessssosssensasessnssasessassassassessssmsses 16
1.7 DisSertation OULHNEccecerueremresrensereseserosessssisessssesssasessssssssssssssssssssssesssssans 17
Chapter 2: The Process Simulation Environment 19
2.1 HISIOTY.uueieetncniectcnnenrenersnsssseessssnsssesssssssseessnssssssssnsessnsessessesessssmemnemsens e e e 20
2.2 ATCRIECIUTC......oucureeceecenrennssstes s sessse s sssssssssssesessnsssssssssssesassns snessssesssmsssssseen 21
2.3 Coupling with Other TYPES Of CADcovereereereereesreseessssesseseesssssssssomsesseeeeons 25
2.4 DALAFIOW.......uccoicuimcneesensensssssssssesensssassssssessessssssssssnssssessssessossosssessemsessessens 26
2.5 EEPROM Bit Cell EXAMPIE.......ououeemmeeeererereeresressessreesessssssssssessmesse e eeens 28
2.6 SUINMALYoceeeeececereetes e e esssesssssseesesssssesssssssessessessessses e e e ees 35
Chapter 3: Representing Wafer Information 37
3.1 What is Wafer INfOrmation?...............uuruucenceneeesessssnssnnssssssessessssssssssssssesomnsen. 37
3.2 'Who Uses Wafer INfOTMAtioN?eeueeemeeereereesseessees oo seeeseosss oo 38
3.3 Issues in Common Wafer REPreSENtationvveesveeseereeneeeeeseososseneonon 43
3.4 Common Wafer Representation APProachesoveveevveeooomoosoeos oo, 47
3.5 SUMMALY ...ttt sse e eeeensssseessesss s et eees e eeon 49
Chapter 4: Wafer Representation Standards 50
4.1 MOUVALION.oocuriricenccnsernsesnec s s ssssssssesessessssssessessossossseseme e eesen oo 51
4.2 The Profile Interchange FOrmat (PIF)............ecevuereoeeeesuenseeroes oo 53
4.3 Semiconductor Wafer REpresentation.............c.eceeeveeeesseesvoeemoes oo ossssesesesesonns 56
4.4 Information MOGEUNG..........couurrruemruerennreniscnseensesssesssssesessse s sesess s sssses e 62

4.5 COStADALYSISouuccirrececensienersesesssssnsssssseseemmsssesessssssessssess s eeseeeenes s s sen e 64
4.5 OutStANAING ISSUES ...cvecccemeerruaeerseneressessssessemseenssssseesssessoessssessss e senes s eeens 66
4.7 Moving Forward with the Standards Process ereessemssssesseenssseenssese e 69
4.8 An Implementation Plan for SWR Version 1.0 ceessasssnssanssnaesnane 71
4.9 Conclusions...... .74
Chapter 5: The Binary PIF.. 75
5.1 BPIF Object DEfiNItIONcvurruerrenesrsnrenncessscnesessessensssnesmsssnsssssssessssssssnssnssenes 76
5.2 BPIF Toolkit Functions....................... ceereeseestsatsasassnasassennans .81
5.3 Layering on the OCT Database.............ccevveruruernsensessesnesnssssossemssnsessesessesseemens 84
5.4 TUStrative EXAMPIESccovuruerreerienerisecieneeesncenescnsecnscessssssssmmsssesssesssssssssssssssons 85
5.5 USing BPIF in PROSE.......oiiireeteeencneisstssiescssesssssssssessssssssssssessssssssns 88
5.6 PEIfOMMANCEcorvecrrrrerernnnnenssessseesnessssssssssssessssssssssssssssssesssssesssesssssesssssns 91
5.7 Comparison with Other PIF IMplementationsc.ceereeeueeessereesmrsessessessand 94
5.8 BPIF4ececinscisceecesensssssssesssssssssssessmsssmssssssssassessssssensenssessssssnssssssessaeed 95
5.9 Berkeley Topography Utilities via the PROSE/SIMPL Interface....................... 99
5.10 INEETOPEIADILILY.......ccovmeirrrerrrerrerse s esessecesnsenesassssensasssessssmssessesssssensessssessenes 100
5.11 Concluswns_,.z 101
Chapter 6: Coupling TCAD and IC Design CAD 103
6.1 INITOQUCHION.......uu.cuecmecenrrnernnsiens e seeessess s sseemseeensesssssssssesssssesseesse e sesmes 103
6.2 Examples of Potential APPICAONSceurueesesecemsemmeemsseesssnsssesssasssoessonns 105
6.3 Coupling TCAD and IC CAD in PROSE through a Framework 109
6.4 Using and Creating a New APPHCAtONeuveeeeereeensreseesnessessessesesssssessesns 117
6.5 SUMMALYe.outirircceenrensersesissesssssssssssessssssssssassesnssnssnsssssnsssssassnssasessasenns 119
Chapter 7: PROSE for Phase Shifting Masks 121
7.1 INOAUCHON...........oeuececurrnenessssseesseessesssssessessssnssnssssssssssssnssessessessessessosnnes 122
7.2 PROSE IMpIemMentation GOAlSeeerueesemsrnssecesssesesnsensessassessesssssesassesses 126
7.3 Phase-Shifting Mask COMPONENLSvervecmererersecmcessnsseesesssesssssesssssssssssessnes 127
7.4 The ANALYSIS TOOLvovurrrrrrresrserscrsssssensessensenssnsessssssessesssssssesssssssssnsessesssnennens 140
7.5 Graphical User Interface for Interactive use of TOOISoeevemereernneeesonnes 142

v

7.6 Analysis 0f a 16Mb DRAM........cccuveveeccnenteireenrenessessssessensssensssesasssssessassnsnns 146
7.7 Further Ideas - SymbOlC LaYOULc..evuereeeeressessessessessecsnsessessessesss eresresersananes 154

Chapter 8: The PROSE Manager and Coupling TCAD t0 CIMccceecsueeeeeee 158

8.1 REQUITEIMENLS «...ceeececeercenecnceresssaressssesssasessesessssssssssssesesssnsssssssasssassosssssssses 159
8.2 Related Work on Process REPIESEntationeusecusecusesmnceeccmssmssenssessases 160
8.3 PROSE Manager.............. e SRR ettt sn e 161
8.4 The PROSE Command Languagec.ceueeveeuemeseeecnmeenecnsesassensnsens R 163
8.5 PCLSREIl ...ttt s st ssssssnsnssnsssssesessesessessssasessm enes 165
8.6 PCl IMPIEMENLALONcvveurerrecenreersernrcaeescssssseecneessnsnssesnessnsssssssessensmnsaseseenne 167
8.7 Comparison to SIMPL-IPX and VISTAccecueeeerereeeresressessessessssssemsesssssses 170
8.8 CoUPlNG t0 CIM........coeererrmrrnenerrensesancincesensseseensessssssmssessessnssssesssssessssssensenen 171
8.9 Conclusions.......cco.ocuu...... e et Re AR AR R et 177
Chapter 9: Conclusions and Future Work 178
9.1 SUMMALYucininiieiieeinresetss st ssecsssssseesssssssssssensssesssesesssass e 178
9.2 Challenges on the HOTIZON.c.ueeveeciecusenseenecesenessesseesessssssessessssssossssssssnees 181
9:3 Future Plansccucuue....... sssaesepaenessessssasntsassstess nssestsoasasassssssensentssarsasennns 182
9.4 WIAPPING IL UDcuucmmemrrennrrnnsrinsisee s sssnssssssssseossessnsssesssssssssassssssssssss e ens 184
Bibliography 185

Acknowledgments

I would like to thank Professor Andrew Neureuther, my research advisor, not
only for his superb research guidance, but also for his encouragement and suggestions
on all facets of life during my stay at Berkeley. I am indebted to Professors William
Oldham and Charles Stone for serving on my Ph.D. committee and for reading my

dissertation. I am grateful to Dean David Hodges for serving on my committee.

My long-time cubicle-mates Rich Ferguson, Ed Scheckler, and Nelson Tam,
and cubicle-neighbor Kenny Toh, made life fun and interesting with their computer
games, cubicle sports, and the occasional technical discussion. I feel fortunate to think
of them not only as my colleagues, but also my friends. The same is true of my more
recent cubicle-mates John Helmsen and David Newmark. John Hutchinson and Bill
Partlo are gréat friends, not to mention competitive Mac-game opponents. Ken
Nishimura assisted me countless times with small computer requests that often turned

out to be big ones. Rick Spickelmier answered all of my Octtools questions.

I thank Duane Boning and Stefan Halama for their collaboration on the Profile
Interchange Format. Sandy Wisch transformed BPIF++ concepts into C++ reality.
Chris Hegarty and Chris Williams provided much appreciated assistance with BPFL
and general process flow language questions. Goodwin Chin offered many great
suggestions on general TCAD issues, as well as specific PROSE and PIF ones. May he
be forgiven for attending Stanford rather than Berkeley for graduate school. Andrej
Gabara and Robert Wang openly shared SIMPL ideas and the latest software releases.

It was a joy to work with Dick Gurtler, Norm Shelly, and Bob Tremain during my time

at Motorola.

vii

The members of the Scmic-onductor Wafer Representation Working Group
were invaluable in promoting, describing, and implementing a wafer standards. I could
not have asked for a more motivated, dedicated, and talented group of researchers to
work with. Wally Dietrich deserves special mention for helping me with those tough

committee issues that found their way into the SWR realm.
I thank my parents for their endless love, understanding, and support.

Finally, I would like to acknowledge the Semiconductor Research Corporation

for their most generous financial assistance.

viii

Biography

Alexander Wong rec;eivcd the B.S. degree in Computer Engineering from the
University of Illinois at Urbana-Champaign in 1987, and the M.S. degree in Electrical
Engineering from the University of California at Berkeley in 1989. His technical
interests include computer-aided design tools and frameworks for process technology

and integrated-circuit applications.

He has worked in summer positions at General Electric Semiconductor, ATN&T
Bell Laboratories, and Lawrence Livermore National Laboratory in 1985, 1986, and
1987, respectively. In 1989, he was a consultant for the Advanced Technology Center
at Motorola. He is currently the Chairman of the CAD Framework Initiative
Semiconductor Wafer Representation Working Group, and is a member of Eta Kappa

Nu, IEEE, Tau Beta Pi, and Phi Kappa Phi.

ix

1

Introduction to Technology CAD
Frameworks

Technology computer-aided design (TCAD) tools can help technologists
analyze, understand, and predici the results of integrated-circuit processing technology
in a timely and economical manner with computer simulations. TCAD tools can also
calculate device behavior and offer insight into process latitude and design
manufacturability. As process technologies become more complex, these capabilities
make TCAD not only a desirable but an increasingly necessary part of the integrated-

circuit design and manufacturing process.

The effective use of TCAD is highly dependent on the unification of
specialized TCAD tools and seamless interfaces between TCAD and related CAD
domains. The job of a TCAD framework is to provide facilities that enable TCAD
tools, and tools in related domains, to wdrk together. Current TCAD systems are still
in their infancy - a broad and important set of framework topics must still be
addressed. These include common wafer representations, graphical user interfaces,
common process flow specification and execution, and ways to couple design,

technology, and manufacturing information.

This dissertation examines the diverse and large number of framework issues
facing process technology CAD. Solutions in domain interfaces, semiconductor wafer
representation, process management, and graphical user interfaces are proposed and
implemented in an experimental framework named the Process Simulation

Environment (PROSE). PROSE explores these issues through a new open-architecture

that allows tools to be easily intcgrated through common interfaces. PROSE also
brings together integrated-circuit design, technology, and computer-integrated
manufacturing CAD domains through the OCT/VEM/RPC framework. A graphical
user interface based on the VEM layout editor is developed to allow for simultaneous
wafer and mask editing, and interactive process simulation capabilities. A Binary
Profile Interchange Format (BP}F) toolkit provides common tool interfaces for
accessing, storing, and manipulating wafer data such as device topography and
impurity fields. A manager for process simulators has been implemented. An
interpreted command language, named Pcl, allows users to specify process
parameters, query wafer data, .;dl'ld invoke simulators. A Pcl shell supports graphical

and textual interfaces for entering and executing process flows.

The development of PROSE has been guided by a valuable early prototypé
described in the author’s masters report [1]. The implementation has been
substantiated through the integration of disparate process simulators and the linkage of
these simulators to IC CAD through the OCT/VEM/RPC CAD framework. The
development of a global phase-shifting mask application takes advantage of PROSE’s
merged design and technology CAD facilities. PROSE has also influenced, and has

been influenced by, other frarﬁework projects and representation standards work
| within the research community. An updated version of the BPIF toolkit, BPIF++, uses
many object and function definitions proposed by the Semiconductor Wafer
Representation standards group, of which the author is Chairperson. Driving TCAD
tools with Pcl and coupling with CIM has been demonstrated with an exploratory

implementation using SIMPL.

This chapter introduces the role of IC processing technology simulation tools
in the design cycle, evaluates the requirements they place on integration frameworks,

and surveys existing systems and standards efforts.

1.1 CAD for Integrated Circuit Technology

Mainstream technology CAD tools can be grouped by tools simulating
integrated-circuit fabrication prbcesscs (process simulation), tools simulating device
behavior (device simulation), and support tools such as input parsers and output
visualizers. When used together, these tools can explore device processing technology
and device behavior through computer simulation. For example, the device in Figure
1-1 is fabricated on “virtual silicon” using process simulation. With device simulation,
the current-voltage characteristics of the resulting device are computed. In this section,
the types of tools used in process and device simulation are described. For a more
detailed discussion of process and device simulators, several texts are helpful [2]

[31(4] [5].

Process Simulation Device Simulation

Current I
A

> Voltage V

Figure 1-1. Technology CAD can be roughly grouped into process simulators,

device simulators, and support tools such as those that display cross-sectional
profiles and and current-voltage characteristics.

1.1.1 Process Simulation

Although cross-sectional profiles can be estimated with geometric simulators
such as SIMPL-2 [6] and OYSTER [7], combining several specialized, “expert” tools
results in a more accurate profile. These experts can be loosely divided into above-
silicon and below-silicon simulators. Figure 1-2 shows how a variety of tools working

together are needed to produce the example CMOS cross-sectional profile.

SAMPLE CREEP

Polysilicon
Metall
510,

N

S/D Implant
| Si
P-Well SUPREM IV
[T e+ stop
|/
FEDSS

Figure 1-2. Conceptual CMOS wafer cross-section. To obtain the most accurate
profile, several different TCAD tools, such as the ones shown above, must be
used.

Above-silicon process simulators handle the processing technology that
occurs, not surprisingly, above the silicon wafer surface. Pattern transfer, chemical
vapor deposition, and device interconnect methods are all above-silicon processes.
Pattern transfer is accomplished by a lithographic process involving photoresist
application, exposure, and development. Commonly available programs for
lithography include DEPICT-2 [8], PROLITH [9] and SAMPLE [10] . For depositing

a material using chemical vapor deposition or selectively etching a material using wet

4

or dry processes, ESPRIT [11] and SPEEDIE [12], as well DEPICT, PROLITH and
SAMPLE [13], can be used. Metallization for device interconnect is also a deposition
process. In addition to the programs mentioned above that treat the advancing surface
as a string, atomistic approaches have also been taken, e.g., the SINBAD simulator

[14].

Below-silicon processes cover thermal process steps such as dopant diffusion,
jon implantation and thermal oxidation.! Because of the complex interactions between
oxidation and diffusion, these steps are usually handled by a single simulator such as

CREEP[15], FEDSS [16], PREDICT [17], PROMIS [18], or SUPREM 1V [19].

1.1.2 Device Simulation

Device cross-sections generated by process simulation can be fed into device
simulators for device characterization and calculation. Three equations are important
in device simulation: the Poisson equation, the electron current-continuity equétion,
and the hole current-continuity equation. Many two-dimensional simulators that solve
these equations have been developed, such as FIELDAY [20], PADRE [21], PISCES
[22], and SIFCOD [23]. They can handle general structures for both bipolar and MQS
devices, but are computationally intensive. A faster simulation can be achieved if the
structure is limited to MOS devices, because then only the Poisson and majority-
carrier equations need to be solved. This is the approach of CADDET [24] and
MINIMOS [25].

1. Oxidation, which grows at the silicon interface, is generally grouped into the below-silicon category
because it involves the physics of high temperature processes similar to diffusion.

5

Parasitic resistance and capacitance values may also be computed by solving
the Poisson equation. This is particularly important due to the interesting and irregular
topographic structures present in most advanced devices. Programs that can calculate

parasitic values with arbitrary geometries include FCAP2 [2] and RACPLE [26].

1.2 TCAD Framework Requirements

An environment that supports the development and integration of TCAD tools,
such as process and device simulators, is called a TCAD environment or framework.
The ideal framework provides facilities for the TCAD “ABCs”, that is, the ability to

apply tools easily to new problems, build new tools, and chain tools together.

A common complaint from users is the large initial effort required in learning
how to use TCAD tools in comparison with other types of CAD tools. This time sink is
compounded by the observation that technologists typically use TCAD for sporadic
but intense periods of time. They must therefore re-learn the tool each time it is used
(since they have undoubtedly forgotten how to use them from their previous
encounter). These problems hinder the ability to easily apply TCAD tools to new
technology problems. Providing user-friendly interfaces for TCAD has been
demonstrated to be an effective solution. Programs such as SIMPL-DIX [27] contain
menu-driven interfaces but lack the ability to use command macros. For example, an
analytical oxidation simulation requires the entry of six cryptic oxidation parameters
each time it is invoked. Some forms of inherently graphical data, such as mask layout,
must also be entered textually. To fully satisfy the ease-of-application requirement, the
user-interface must provide menu and keyboard driven input mechanisms for single
and multiple macro commands, and graphical means for entering graphic data such as

mask layout and initial wafer profiles.

ATCAD framework should also aid the TCAD model developer, who is
typically not a computer scientist but is often asked to be one when implementing a
new model and tool. By providing generic routines that are common to all programs,
such as input parsers, visualization routines, and math libraries, this task can be
reduced significantly. For example, a breakdown of the SUPREM IV program shows
that less than half of the source code is used to implement the actual models; the
supporting routines make up thé larger half [28]. Figures for other process simulators
are similar. The time saved in building a new tool is valuable because it allows the

developer to spend more time on model development.

Tool chaining is the third and final requirement of a TCAD framework.
Researchers who model IC processing usually focus on a particular area of the
technology, such as lithography, thermal processing, deposition, or etching. Thus, the
resulting simulators are naturally developed along process technology boundaries.
Although these individual simulators are valuable in understanding and advancing
specific parts of IC technology, a much greater gain may be realized by combining
these pieces into an integrated package that can handle a complete process flow. This

integration can be accomplished through tool chaining.

1.3 The Role of Technology Simulation in CAD

Customer expectations of smaller, faster, and less expensive chips in a highly
competitive marketplace places a tremendous burden on all aspects of CAD.
Shortened product design cycles require speedy technology development and
Characterization that results in circuit models early in the life of a new technology.
Aggressive design constraints require that these models are timely and accurate. The
difficulty of these tasks is compounded by the rising complexity of both the

technology and the circuit design. The results of integrated-circuit design CAD (IC

7

CAD) and technology CAD ultimately wind up in manufacturing, which also pushes
CAD within the context of an automated factory. Computer-integrated manufacturing
(CIM) can assist in wafer tracking, equipment allocation, process monitoring, process
flow, and equipment modeling, and can also make use of design and wafer data from

design and technology CAD.

A vertically-integrated CAD system that supports a full range of tasks from
synthesis, circuit simulation, and mask layout in IC CAD, to process and device
simulation in TCAD, to equipment modeling and process flow specification in CIM, is
important to realize the needs of future designers and technologists. As shown in
Figure 1-3, this system should provide pipelines for exchanging several key pieces of
data among all three environments. In this organization, TCAD plays the central role

of filling the gap between design and manufacturing.

1.3.1 TCAD and IC CAD

The distinction between IC CAD and technology CAD is blurring due to the
increasing amount of process technology knowledge required to design a chip and the
increasing amount of design information needed to drive the technology. In the future,
one could imagine how designers can use IC CAD not only to design circuits, but also
to see how their designs affect circuit characteristics and technology concerns such as
manfacturability, yield, and reliability. Technologists, with the help of TCAD, can
potentially produce an optimized technology for each design type, thereby giving
designers more freedom in their layouts, or reverse engineer from product to design in
order to solve manufacturing problems. The future is not as far away as one may think.
There exist tools that make use of both IC CAD and TCAD data, e.g., mixed device

and circuit simulators that calculate device characteristics based on layout [29],

ground rules
device models mask layout
device parasitics mask topology
layout cut-line
wafer state

process flow wafer state

simulation parameters ICCAD mask

Process Flow

Work in
Progress

Equipment

Figure 1-3. A vertically integrated CAD system with data connections between
environments. Arrow labels suggest the types of information exchanged.

resistance and capacitance solvers that generate parasitic values due to mask
topography [30], statistical simulators that predict process latitude and manufacturing

reliability [31], and topography simulators that rely on mask data [6].

IC CAD provides three major types of information to TCAD: physical mask
layout information for topography process and device simulation; topological mask
information that describes the mask shapes and their relation;ships with each other
(useful for optical imaging and other tools that depend heavily on the mask layout);
and cut information that specifies the location on the layout associated with a cross-
section view. TCAD, on the other hand, provides IC CAD with the necessary rules for
layout and circuit design, including: design rules (also known as ground rules) for
mask design; circuit models from device simulation; parasitic resistance and
capacitance values for a particular topography; and mask layout information with

processing effects.

1.3.2 TCAD and CIM

Interaction between TCAD and CIM is also necessary to transfer technology
from the design phase into manufacturing. Because TCAD aims to model the
- fabrication processes that occur in the factory, it needs process flow, equipment
parameters, and other data from the factory. These can be provided by CIM, which,
incidentally, needs TCAD wafer information for verifying process flow accuracy,
calibrating equipment parameters, etc. This information loop can feed-back upon
itself, leading to a situation where TCAD wafer data and CIM rate data are exchanged
multiple times. For example, pattern transfer of high numerical-aperture features may
require increased etch time or benefit from changes in etching conditions, and

interactions between oxidation and diffusion may reduce diffusion time.

Process flow representation is another area where TCAD and CIM intersect. It
is very desirable to have the same process flow recipe for both the actual and simulated

manufacturing process. The Berkeley Process Flow Language (BPFL) is a merged

10

dcscriptjon that can drive both simulators and equipment [32]. If BPFL is used, the
process flow requires both TCAD data, e.g., mask data for pattern transfer steps, as

well as CIM data, e.g., equipment models and wafer tracking.

1.3.3 Programming Point of View

These CAD domains are also intertwined from a programming viewpoint. For’
example, Figure 1-4 shows how the most basic CAD components, such as operating
systems, storage managers, and user fnterfaccs, can be shared between IC CAD and
TCAD. It makes sense not only to link different types of CAD, but also to take

advantage of code re-use through common underlying platforms.

TCAD
Systems
jﬁTask'Levél'_ .
- Utilities and Interfac_es
TCAD
Framework
Storage User
Management = Interface
' ' CAD
Infrastructure

Figure 1-4. A proposed TCAD framework architecture based on a CAD
infrastructure [55].

11

1.4 Survey of Existing Implementations

True frameworks require a set of commonly agreed to infrastructural
components and “plug and play” compatibility between tools. The latter is the so-
called holy-grail of the TCAD framework community. On the evolutionary path to this
long-term goal, many implementations that are framework-like. These include
programs that pool models, systems that combine muitiple tools, and environments

that provide favorable surroundings for tool integration and development.

Early integration efforts resulted in large, monolithic programs that gathered
multiple TCAD models. Examples include SAMPLE for photolithography and above-
silicon processes and SUPREM-IV for thermal processing. SAMPLE was originally
designed to allow modules to plug into the program [33]. In this architecture, each
model is assigned a unique TRIAL statement number. Some, but not all, data is shared
between modules and makes use of several common functions, such as those for input
parsing and surface de-looping. The lack of full data sharing led to incompatible
modules within SAMPLE. For example, the output of the non-planar etch module
cannot be passed to another module since completely different data structures ai'e
used. SUPREM 1V is also a large program with several, but not all modules, sharing
common functions. Its input format for data and control has become somewhat of a de-

facto standard because of its popularity.

One of the first two-dimensional programs with the ability to simulate a variety
of models at the process level was SIMPL-1 [34]. It uses elementary analytical models
for deposition, etch, development, and implantation to create rectangular cross-
sections of the wafer. A polygon-based program named SIMPL-2, soon followed.
Advancements in operating system technology also allowed SIMPL-2 to connect to

external programs. For example, SIMPL-2 can execute the SAMPLE deposition

12

module transparently, from the user’s point of view, through UNIX operating system
file transfers and system calls. The OYSTER program, a three-dimensional program
that uses analytical models using a solid modeling approach, was also developed
during this period. Although these programs used analytical models and computed
cross-sectional profiles very quickly, their main weakness was the lack of physically

accurate numerical models for precise simulation.

Since the mid 1980s, many groups have published on integrated systems that
use time-consuming but accurate simulators to simulate a complete process flow.
These include almost all large companies who use TCAD in the U.S., Europe, and
Japan [35](36][37](38][39][40][41][42][43] [44], universities and other research
groups [45] [46], and TCAD vendors [47][48][49]. To a certain degree, all support
two-dimensional, numerical-based simulation of the complete process flow and
provide data and utility sharing, but within this group, some are more framework-like
than others. Generally, those with more framework features, e. g., common wafer
databases, shared utilities, etc., are still under active development. The VISTA system
[50] and the PROSE environment described here are examples of such TCAD

environments.

TCAD environments that target the development of new models are stilla
research topic and, at the current level of research effort, should be realized within the
next five years. Systems such as PROSE and VISTA, although currently integration
systems, are making strides towards supporting model development by providing
common library routines for basic simulator functions. One system that has targeted

model development since its inception is PROPHET [51]. It has two differentiating

13

features. First, models in PROPHET do not use private data structures, but rely on C-
function calls to access a common data area. Second, a shared set of math library

routines is available to the models.

Two systems that look at the TCAD world from a different perspective are
CAFE [52] and PREDITOR [31]. CAFE addresses the TCAD integration issue from
the computer-integrated manufacturing viewpoint. PREDITOR is a statistical
simulator that calls on fast analytical models many times rather than slow, numerical

models only once, to capture the statistical variance that occurs in the factory.

A summary of TCAD past, present, and future “frameworks” is collected in
Table 1-1. They are loosely divided into five classes: single monolithic programs,
integrated systems, statistical and extention language approaches, systems based ona
Profile Interchange Format (PIF)-like representation [53], and development or other

types of framework-based systems.

1.5 TCAD Framework Standards

TCAD researchers and users worldwide are working on standards to reduce the
number of different tool formats. The current situation is similar to that of the IC
design CAD community ten years ago, with each site using its own custom suite of
tools. Within the past five years, design CAD has been moving steadily towards
framgwork standards. Rather than re-invent the wheel, TCAD can take advantage of
many existing standards, such as those for layout and visualization, but if must also set
new standards that are specific to TCAD, particularly for wafer and process flow

representation.

14

SURVEY OF TCAD SYSTEMS
Name lifﬂllatlon Notes
f - Monolithi?:-zeneﬁoees Simulators
MECCA A'I‘éc'l" Bell Laboratories AT&T Internal
FEDDS IBM IBM Internal
SAMPLE UC-Berkeley Above-Silicon Processes
SUPREM IV Stanford University Below-Silicon Processes
o — ﬁated TC_T_Systems —
COMPOSITE Fraunhofer Part of STORM
HP's System Hewlett Packard HP Internal
IDDE Phillips Object-based Graphical Interface
MASTERPIECE Silvaco Data Systems Vendor Integrated System
P&D Workbench NEC Networked Computers
SATURN Siemans AG Process and Device Simulation
SIMPL-IPX UC-Berkeley X Window User Interface with Mask Layout
STUDIO Tech. Modeling Assoc. Vendor Integrated System
Supervised Simulation Toshiba Geometric Data Interface
TITAN CNET/CNS Part of the STORM Project
Statistical and Extension Language Approaches
Hitachi's System Hitachi Includes Numerical Simulation
Preditor ' Carnegie Mellon Univ. Statistical simulation/Chip Database
SIM-C Dawn Technologies Vendor, CIM Extension language
Profile Interchange Format (PIF)-like Systems
CAFE MIT Emphasis on CIM
EASE Intel Uses a PIF Predecessor
. :PROSE.. C ,
" VISTA TU-Vienna LISP Tool And Data Control
Development and Other TCAD Framewﬁl}ased Approaches
Framework Prototype | CFI TCAD Framework Group Early Standards Prototype.
PROPHET AT&T Bell Laboratories Development Environment

Table 1-1. Summary of TCAD programs, systems, and environments with

framework properties.

15

The profile interchange format (PIF) effort was the first TCAD standards
group. It concentrated on a specification for cross-sectional proﬁle information. This
effort resulted in a document that described a representation philosophy and ASCII file
format [53]. PROSE and several of the environments mentioned above use a PIF

approach.

The CAD Framework Initiative (CFI) and the Electronic Design Interchange
Format (EDIF) organizations are current undertaking the definition of standards for IC
CAD. The TCAD community has piggy-backed onto these efforts through three sub-
groups. The CFI TCAD framework group contains three working groups addressing
programming interfaces for semiconductor wafer representation (SWR),
semiconductor process flow representation (SPR), and information modeling
(DM&YV). The information modeling effort is also being pursued by two technical sub-
committees within EDIF, the device modeling and verification (DM&V) group and the
process and device (P&D) group (which originally handled the PIF work). In August
1991, the TCAD framework group successfully demonstrated a prototype of their

standards [54], and efforts are being made to commercialize the standard.

These committees are well represented by most TCAD researchers in the US
and a few in Europe. It is the hope that future work in the area of TCAD integration

and development frameworks will endorse these emerging standards.

1.6 Summary

Technology CAD plays an important role in understanding and advancing
semiconductor technology development. There are many tools today that can simulate
process and device behavior in integrated-circuit technology. TCAD frameworks can

increase the value of these tools making them easier to apply, reduce the time needed

16

to develop new tools, and allow tools to be chained together. Most groups have
recognizéd the need for a TCAD framework and have developed their own systems,
and standards efforts are underway to unify semiconductor wafer and process

representations among tools.

1.7 Dissertation Outline |

The goals of the Process Simulation Environment (PROSE) are to develop a
TCAD system that enables the efficient application of process simulation to
technology problems by users, effortless integration of TCAD tools by developers and
system integrators, and the interaction between different types of CAD. In addition, a
conscious effort is made to assist in forging framework standards that benefit the

community at large.

The role of PROSE as a TCAD tool integration environment is covered within
the first five chapters of this disseration. Chapter 2 describes the overall framework
architecture and summarizes each of the components. Component interaction is
explained from a user point of view through a practical example that simulates a
CMOS EEPROM bit-cell. Chapters 3 through 5 tackle the difficult problem of
exchanging semiconductor wafer information between tools in a uniform and robust
manner, and agreeing on a common representation between different groups. Wafer
representation requirements, standards efforts, and an object-oriented functional

interface to wafer data are presented.

Interactions with design and manufacturing environments are then covered.
Chapter 6 describes how the joint use of TCAD and IC CAD, especially strong in -
PROSE because of its access to a general CAD framework, can be used to advantage.
Chapter 7 describes a phase-shifting mask CAD toolkit application that makes use of

17

both TCAD and design CAD within PROSE. This application is able to analyze large,
non-regular cells for phase-shifting mask applicability using global and local
techniques. Chapter 8 covers the management and descriptidn of process flow
information within PROSE using a tool command language, and the link to computer-
integrated manufacturing systems through a common process flow language.

Conclusions and perspectives on future trends in TCAD frameworks are discussed in
the final chapter. '

18

2
The Process Simulation Environment

In exploring TCAD issues it is important to balance unconstrained “what if”
thinking with the reality of what can be efficiently implemented. PROSE has the
grounding in reality through the implementation of a TCAD system for tool
integration, yet also explores future sources of stimulation by working with available
resources in IC CAD. Starting with an overview of PROSE will give the general
reader an example of a TCAD system, and provide the experienced TCAD developer

with a survey of the strengths of PROSE.

The quest for a system that satisfies the ABCs of TCAD (tool application, tool
building, and tool chaining) has led to advances in framework architecture, wafer
representation, and process flow specification. PROSE has the following features and
capabilities. A friendly user-interface contains graphical, menu, and textual editing
capabilities. This allows even casual users to use TCAD tools for their application.
Common utilities for input, output, and wafer manipulation help TCAD developers
implement new models more easily. A common TCAD database significantly reduces
the time required to integrate tools by providing a central repository for cross-sectional
device profile information and a functional interface to access that data. A new process
command language allows users to specify and execute process flows in a
programming language style, with procedure calls to access process simulators and

wafer data.

19

An equally important emphasis in PROSE is on the coupling of TCAD to
different environments and the development of industry standards for TCAD data
representation. PROSE was designed with an “open architecture”, meaning all
components are modular and communicate by way of standard interfaces accessible
from technology, design, and manufacturing CAD domains. Several ideas generated
by the TCAD community’s stﬁndards efforts, such as the architecture described by the

SRC group [55] and the CFI TCAD Framework Group [56], have been incorporated

into PROSE and vice-versa.

Section 2.1 chronicles the history of the concept by a motivating example
taken from the SIMPL system. Section 2.2 describes the overall architecture of the
environment and summarizes each of the components. The interaction of PROSE with
design and manufacturing CAD environments is discussed in Section 2.3. Section 2.4
describes the flow of data between components from the programmer’s perspective.
Section 2.5 explains PROSE from a user’s perspective, using an EEPROM device as

an example. A chapter summary is given in Section 2.6.

2.1 History

The idea for a process simulation environment began in 1987 after the
evolutionary nature of the SIMPL-DIX [27] architecture caused it to become
unwieldy. As shown in Figure 2-1, this fourth generation system has an architecture
where tools are directly connected using specific translators. Each arrow represents a
link between two programs, typically requiring a few graduate student-months to
develop. Therefore, the fifteen arrows linking SIMPL-DIX to other tools represents

almost three graduate student years of work for only a partially connected system.

20

USER

IMPL-DIX) «—(CIF Layout

—.’ s
RACPLE/

‘ WORST

CR]IEEP - > Sg\%PTI_Gz\ contour CRITIC

v
plot I SUPREM <«—» PISCES
TEMPEST SAMPLE SPLAT N
plotcap

Figure 2-1. The SIMPL-DIX system implementation.

The intent of PROSE is to define an architecture and implement a system
aimed at modular TCAD tool integration to ease the burden of adding new tools. An
initial version of the architecture and an exploratory implementation were developed
in the Spring of 1989 [1]. The encouraging results of this work led to a continued

effort in the area and resulted in the version of PROSE described in this dissertation.

2.2 Architecture

The architecture contains an interesting mix of new TCAD specific
components for wafer and process flow representation, and existing generic CAD
components for user interaction, data storage, and tool communication. Figure 2-2
summarizes this architecture in its component form. Tool and task level applications
are designed to plug directly into the system through interfaces provided by the TCAD

database and process flow manager.

21

. Task-Level Applications
Manager [

(Process Flow) Tool-Level Applications
(Simulators and Utilities)

$

TCAD Database

Functional Interface (BPIF)
Data Represen
ataba

Figure 2-2. The PROSE architecture. Shaded components make use of the OCT/
VEM/RPC CAD Framework.

The TCAD database component uses the Binary PIF (BPIF) interface which
defines a set of geometry and mesh objects, and implements C and C++ function
libraries that can access and manipulate them. The process flow manager combines
simulation, control, and BPIF commands in a command language named Pcl. A layout
editor allows users to edit mask and wafer data, and invoke process commands, while

a separate graphical user-interface controls process flow execution.

2.2.1 OCT/VEM/RPC

Early in the definition process, it was recognized that the requirements for
TCAD environments were similar to those of IC design CAD environments, and
therefore IC CAD could provide hints and/or implementations for parts of the
architecture. PROSE takes advantage of previous CAD implementations in the user

interface, database, and communications areas by using the OCT/VEM/RPC CAD

22

Framework [57]. OCT (Octopusl)'is an object-based data manager, VEM (View
Editor Monolith) is a combination layout editor and user interface, and RPC (OCT
Remo;e Procedure Call) is ameans for tool communications icross different machines
and operating systems. In addition, the open architecture of OCT/VEM/RPC allows it
to be modified with relative ease. PROSE makes use of these components where
possible, and provides extensions to the components for specific TCAD needs to from

an infrastructural base for TCAD applications.

2.2.2 Graphical User Interface

The graphical user interface is an interactive shell and geometric editor. The
shell is menu and/or keyboard driven, with dialog-boxes that “pop-up” when
additional information from the user is required. The geometric editor supports the
display and editing of both mask layout and cross-section data. This editor is much
more flexible than the SIMPL-DIX user-interface [27], which only allows layout and
cross-section viewing. Multiple windows and menus are supported in this X-windows

graphical environment.

2.2.3 The TCAD Database

The most important, and the most difficult to implement, component within
PROSE is the TCAD database. This database acts as the central repository for all
cross-sectional wafer data. Applications access this data through a standard functional
interface named the Binary PIF that allows programs to store, retrieve, and manipulate
wafer objects such as material boundaries and the fields within them [58]. Object types
are based on the Profile Interchange Format (PIF) representation [53]. This philosophy

is better.than previous wafer storage schemes, e.g., SIMPL-IPX, because a central

1. The first Octiools database was named SQUID. OCT is its successor. According to folklore, the term
OCT stands for octopus, to suggest the database’s many arms.

23

representation reduces the number of translators needed between tools and the time
required to add new tools. The underlying persistent database implementation uses the

OCT database.

A second responsibility of the TCAD database is to provide a pipeline to and
from other CAD environments. For IC CAD, this primarily means mask layout and
wafer data. Because the OCT database is used for both wafer and mask data storage,
this link naturally exists within PROSE. Programs can access both types of data
through similar functional interfaces - the Binary PIF for wafer data, and the standard
OCT interface for mask data. For CIM, wafer and process flow data can also be

exchanged through functional interfaces.

2.2.4 Manager

. The manager coordinates all components needed to accomplish a given task.
From the user’s viewpoint, input to the manager can originate either from interaction
with the user, or from a pre-determined process flow specification. In the first case,
process simulation commands can be invokeq from a menu within the VEM layout
editor. In the latter, a set of process flow language commands can be interpretively
executed using the PROSE command language (Pcl), which is a modified version of
the Tool Command Language (Tcl) [59]. Pcl contains many programming language
features such as variables for holding simulation parameters and conditional

statements for complex process flows.

An X-window user-interface using the Tk toolkit [60] allows Pcl commands to
be run from a more friendly graphical environment. Process flow managemént by the
Berkeley Process Flow Language (BPFL) [32], which unifies simulation and

manufacturing process flow information, has also been investigated for use in PROSE.

24

In either interactive or interpretive mode, the manager processes commands
one at a time. Upon receipt of a command, the manager uses either the RPC or UNIX
shell communication mechanisms to initialize and execute tlie necessary
component(s). For example, a lithography simulator might be invoked to perform a
lithography step. The manager would handle the communications necessary to retrieve
the initial profile from the TCAD database, perform the simulation, and write back the

resulting profile.

2.2.5 Applications

Both tool and task level applications are supported. Tool level applications are
generally a single program such as a process or device simulator. Task level
applications, on the other hand, can invoke one or more tools multiple times, e.g., a

process parameter optimization program.

Three process simulators have been incorporated into PROSE: the SAMPLE
topography simulator [13], the SIMPL-2 general pfocess simulator [6], and the
SUPREM-1V thermal simulator [19]. From SIMPL-2, translators are also available to
variety of other process and device simulators [45]. PROSE utilities have been
developed for display of profile boundary and impurity information. Additional
applications can be added with relative ease by replacing their specific interfaces with

the interfaces provided for process flow and semiconductor wafer data.

2.3 Coupling with Other Types of CAD

In addition to providing an environment for TCAD tools, an equally important

goal within PROSE is to couple TCAD to related CAD environments.

25

At best, current TCAD systems have a very weak link to mask information,
which is the intersection point between TCAD and IC CAD.' PROSE tightly couples
these two environments through the shared use of the OCT/VEM/RPC CAD
Framework. Programs may access both wafer data and mask or higher level design
information through similar OCT interfaces, thereby removing the distinction between

the two environments.

PROSE also attempts to provide links between TCAD and CIM at the process
flow and equipment modeling levels. Pcl serves as a common input language for
TCAD tools and contains constructs for tool invocation, error handling, event looping,
and conditional branching. Calls to CIM can potentially be made from this language to
invoke the BPFL interpreter or the Berkeley Equipment Modeling system [61]. Wafer
information is transferred to CIM through the Binary PIF.

2.4 Data Flow

To explain the operation of PROSE in more concrete terms, this section
describes the dataflow between each of the components for a typical unit step. This
operation is summarized graphically in Figure 2-3. Typically, each unit step causes

three sub-steps to occur. These are signified in Figure 2-3 by the annotated arrows.

Two types of information, control and physical, flow between the components.
Control information controls the component, i.e., input commands to a process
simulator, and is generated by the manager. Physical data, on the other hand, is the
physical quantity, such as the process flow, wafer, or mask layout data that the tool

needs to perform its task.

26

Parasitic Simulator
Thermal Simulator

—

N\, .
Manager } 1. Invocation
2. Simulation

Utilities ¢ - » TCAD
3. Visualization lDatabase

g

Topography Simulator

User
Interface

Figure 2-3. Data flow within the environment. Process flow and mask layout
information is provided by the computer integrated manufacturing and IC
design CAD environments.

2.4.1 Invocation

The process begins when the manager receives a command either from the user
through the menu interface in interactive mode, or from the next Pcl command in
interpretive mode. The manager then determines which simulator should be invoked
based on the command type and initializes that program through the remote shell
mechanism. After the simulator is awakened, the manager either translates the process
command into a simulator input deck, or makes a direct function call to the simulator.

This sub-step consists entirely of control information - no physical data is exchanged.

27

2.4.2 Simulation

The simulator reads in the input deck that contains the commands to be
executed, and a pointer to where the mask and wafer data is Stored. After retrieving the
physical data from the TCAD and/or IC CAD database, the simulator performs the

simulation and stores the resulting data back into the database.

2.4.3 Visualization

Since the communication is synchronous, the manager waits until the simulator
completes its task before the visualization utility is invoked. The visualizer, like the
simulator, reads the most recent versions of the profile and mask data, and transforms
it into a form compatible with VEM. The graphic is then displayed in VEM, and the

process step is marked “done”.

2.5 EEPROM Bit Cell Example

This section shows how PROSE can be used to generate a CMOS electrically
erasable read-only memory (EEPROM) bit-cell similar to the one described by
Chacherelis et al. [62]. The process flow and mask layout for the cell are shown in

Figures 2-4 and 2-5.

2.5.1 Interactive Mode

To use PROSE interactively, the user starts the session by invoking the VEM
layout editor, which also acts as the user interface shell (see Figure 2-6). The initial
mask layout is then drawn into the physical mask facet of the cell using VEM mask
layout editing functions, a tutorial of which can be found in [63). The complete mask
layout as seen in VEM is shown in Figure 2-5. The OCT facet representing the cross-
sectional view of the device, named the cross facet, must also be opened from the
VEM shell. The interactive manager is then invoked by selecting the PROSE

28

EEPROM PROCESS FLOW

Twin Well lum CMOS Front End
Modified Locos Isolation

Buried N+ Mask and Implant

Gate and Coupling Oxidation
Enhancement Vt Adjustment Implant
Poly Deposition/Definition
Interlayer Oxide

Metall Deposition/Definition
Interlayer Oxide

Metal2Z Deposition/Definition

Figure 2-4. CMOS process flow for the EEPROM example [62].

...........

" O
ey
24,

o

Figure 2-5. EEPROM mask set [62].

29

application in the VEM menu from the cross facet. After PROSE prompts the user for
the background substrate doping and the desired cut-line is entered into the cutline
Jfacet, the starting silicon substrate is displayed in the cross fécet, and the cut-lines

associated with the mask are shown in the cuts facet (see Figures 2-7 and 2-8).

Figure 2-6. Starting PROSE by invoking the VEM layout editor and selecting the
PROSE application. This creates a VEM console window and enables the
PROSE menu.

Wafer, process, and system commands can now be executed. The available
menu options are shown in Figure 2-9. Process stebs are performed on the cross-
section facet either by selecting the process from the process menu, or by typing the
process step name into the console window. Pop-up menus prompt the user for
additional information, such as resist thickness in the spin-on step, the mask layer and
polarity to be used in the exposure step, and the layer to be developed in the
development step. The resulting profiles are then displayed as new cross facets. An
example CVD oxide deposition step is shown in Figure 2-10. Multiple tool invocation

is handled by the manager and is transparent to the user.

30

Figure 2-7. The cross facet. A pop-up menu obtains the substrate background
doping from the user. The initial wafer profile, a piece of bare silicon, is then
displayed.

The final profile for the EEPROM cell is shown in Figure 2-11. Because it is
boundary-based, the VEM layout shows only the topography of the device, even
though both boundaries and fields are stored in the OCT database. A separate viewer,
based on the SIMPL-DIX program [27], can be used to display the fields within each

layer (see Figure 2-12).

2.5.2 Interpretive Mode

In interpretive mode, The process flow can also be entered textually. This is
useful when the process flow is overly time consuming to accomplish interactively,

when a process flow has been previously defined and is run on a new cut-line or mask

31

fouaven

DIFF
MET2
POLY

VIA

MET1
CONTACT
DIFF
N+BURIED

Figure 2-8. The cut-line is saved in the cut-line view (top). The cut-lines for each
mask layer are automatically extracted from the general cut-line and shown in
the cuts view (bottom).

Initialize
Load

Save

APIF Read
APIF Write

/ Deposition
Wafer Development

Process ———» Etch

System Exposure
Implantation
Oxidation

Exit

Figure 2-9. The menu of PROSE commands.

32

Figure 2-10. An example deposition step. (Top) the original wafer, (Middle) the
menu invocation and dialog boxes, (Bottom) the resulting wafer.

set, or when only slight modifications to an existing process flow are made. The
LOCOS oxidation and N+ implant steps for the EEPROM process flow, expressed in
Pcl, are shown in Figure 2-13. Analytical SIMPL-2 models are used in this example.

The interpretive manager interprets the process flow one step at a time, much like a
33

.
-

s

Figure 2-11. The final EEPROM profile.

Figure 2-12. EEPROM substrate doping is displayed in the PROSE viewer.

34

code dgbugger, e.g., dbx [64], inte;'prets a section of source code in a C-language
program. The flow is shown in the simple X-windows based. user interface that assists
users in executing process flows. The filled in check-boxes in the figure signify that the
LOCOS steps have been completed, but that the implant steps have not.

2.6 Summary

This overview chapter provides both an example of a TCAD system and
highlights some of the strengths of PliOSE. The architecture uses the OCT/VEM/RPC
CAD framework for its generic graphical-user interface, database, and
communications needs. Extensions have been made to the framework so that TCAD
specific requirements such as wafer data representation can be handled. Using a CAD
framework allows a close coupling between TCAD and IC CAD, since exchange of
wafer and mask layout information uses the same underlying interface. PROSE
operates on unit steps. Each unit step causes a series of interactions between each of
the components, which reads in a starting cross-section, performs a simulation step or
steps, and writes back the resulting cross-section. An EEPROM example shows how
PROSE can be used both in interactive and interpretive modes. The following chapters
will examine the key issues in TCAD systems and the PROSE implementation in

greater detail.

35

Show Menu Options

show —p openfile
show flow

run step
run all

Figure 2-13. The first two steps of the EEPROM process flow are specified using
SIMPL-2 models in Pcl and displayed through the user interface.

36

3
Representing Wafer Information

Technology CAD (TCAD) places specific demands on the representation,
access, and manipulation of semiconductor wafer information. TCAD tools, such as
process and device simulators, need to store and exchange different types of
information, such as multi-dimensional geometric, field and attribute data.
Furthermore, tools in other areas, e.g., integrated-circuit CAD and computer-

integrated manufacturing, also benefit from access to wafer information.

This chapter begins in Section 3.1 by describing what semiconductor wafer
information is and how it relates to other types of CAD data. Section 3.2 takes a
pragmatic, bottom-up look at how existing process and device simulators model wafer
information. Section 3.3 motivates the need for a common wafer representation, and

Section 3.4 surveys previous approaches. The chapter is summarized in Section 3.5.

3.1 What is Wafer Information?

Semiconductor wafer information models the wafer state at a particular time
instance. Pictorially, wafer data may be represented by device cross-sections and
impurity profiles, such as the MOSFET shown in Figure 3-1. These cross-sections
contain information such as device topography, impurity concentrations, and electrode
connections to the outside world. Two related types of data are mask and process flow
information. Although they are used to generate the wafer cross-section, they are not

considered part of the wafer representation.

37

Mask Layout

41
Vg
v
Mask Layout Device Characteristic
(Process Simulation) (Device Simulation)

Figure 3-1. TCAD Wafer Data

Depending on the requirements of a particular TCAD tool, wafer data can be
represented in several ways. To better understand these requirements, different TCAD

tools are examined in terms of how they represent and make use of this data.

3.2 Who Uses Wafer Information?

Process simulators are arguably the most demanding users of semiconductor
wafer data. Topography, oxidation, and other simulators that model the fabrication

process have a varied set of requirements for manipulating cross-sections.

3.2.1 Boundary Representation Tools

Topography simulators that model deposition and etching processes generally
rely on boundary representations [12][13]. This is because topography simulators are
interested in profile shape and material adjacency information. A popular
representation is the string-model and its variations [65][66], and an example

implementation is the SAMPLE non-planar etch machine [67]. In this model, each

38

material layer is represented by a s;ring of vertices that are connected by line segments
(see Fiéure 3-2); the shape of the profile evolves by moving the vertices based on their
etch rates. One drawback of this particular string model impiementation is the
requirement that all strings span the cross-section. This is a problem when materials
reach only halfway. A more general approach is the polygonal data structure in
SIMPL-2 [6]. In this representation, connectivity information is stored on vertices at °
material boundaries (see Figure: 3-3). This representation is similar to winged-edge
data structures used in graphics appliéations [68], but still does not properly handle

cross-sections with completely enclosed islands of material.

Figure 3-2. (Left) A string represented by a set of connected line segments.
(Right) A problem can occur when the string does not span the entire cross-
section. '

A different approach to topography simulation is the use of cells that represent
the atomistic nature of materials. In the ballistic deposition model proposed by Brett
[14], circular shaped cells (or disks) with sticking and other coefficients are shot at a
profile (see Figure 3-4). An approximate boundary based on cell density can then be
computed. For etching, the cell-model can be used to remove “atoms” of the material

based on their exposure to the etching mechanism [69].

.

39

Node Contents for @

X, Y coordinate

Material] —
Material I —
Material I —® O

Figure 3-3. The SIMPL-2 polygonal representation. Vertex nodes store
information about touching materials. If material name pointers are followed, a
clockwise outline of a material can be obtained.

BN

Figure 3-4. Atomic-based approaches, such as ballistic deposition (left) and cell-
based etching (right).

3.2.2 Mesh Based Tools
In photolithography, meshes are used to track the amount of photoactive
compound in a photoresist during exposure and development. The SAMPLE program,

for example, implements this model with a tensor product mesh.

40

Thermal simulators for oxidation, diffusion, and implantation are also
generally mesh-based due to the field nature of the data they manipulate. A well
known thermal simulator that uses a triangular mesh is SUPREM IV [19]. Whether
finite-element, finite-difference, or other discretization methods are used, local
element neighbor information must be part of the structure for computational
efficiency. Global material boundary information, on the other hand, is lower priority
in these simulators, and is specified only implicitly through the material type for each

element (see Figure 3-5).

Figure 3-5. Material boundaries are obtained through the slow process of
searching for boundary elements. For example, the boundary elements of the
lightly stippled material are cross-hatched.

The majority of TCAD simulation tools are mesh based. This is also true for
resistance and capacitance solvers and device simulators, which use meshes to solve
the Poisson and electron-hole current continuity equations. There are a variety of mesh
types in use. Some of the most common are triangular, rectangular, and tensor-product
meshes, but others, such as Octrees [70], have also been successfully applied to
process and device simulation. Auxiliary representations are also necessary for

specifying boundary conditions in both mesh and boundary-based representations.

41

Tools may also rely on analytical or unevaluated functions for wafer
representation. This is the case of the FABRICS statistical simulator [71]. Because
each complete simulation requires thousands of simulations (to account for the
statistical randomness of the process), full numerical simulation is too slow. Instead,
fast analytical solutions are used instead. Unevaluated fields also occur in device

simulator output such as current-voltage and capacitance curves.

In summary, wafer data is represented most commonly by its geometry and
field components (see Figure 3-6). The geometry view, also called the boundary or
topography view, provides information about the material boundaries of the cross-
section, and can answer questions like “which parts of the wafer are polysilicon” or
“where is metal exposed to the ambient”. The field view best describes fields within a
cross-section, such as a MOSFET’s source and drain regions or the gate threshold

voltage adjustment, as represented by the triangular mesh.

i

LI—|JF'_"||

Figure 3-6. Separation of a MOSFET into geometry and field views.

42

3.3 Issues in Common Wafer Representation

A common wafer representation goes a long way to helping solve the tool
connection or chaining TCAD framework requirement. The most obvious reason for
using a central representation is to reduce the number of translators and therefore the
amount of translator development time necessary between tools from O(n2) to O(n), as
shown in Figure 3-7. Another important reason is the loss of data accuracy due to

incomplete representations and/or poor translation between them.

Simulator A Sumulator A
7
Simulator D Simulator B Simulator B ~— O Simulator C
Simulator C «<—» Simulator E Simulator D Slmulator E

Figure 3-7. The number of translators grows O(n?) with the number of simulators
to be integrated. This can be reduced with a central representation.

Unfortunately, wafer representations optimized for specific process steps, such
as those described in Section 3.2, do not necessarily produce an optimized common
representation when combined. For instance, pioneering integration systems used
evolutionary approaches to arrive at a common representation. Often, the data
structure or the associated savefile format of the most used tool in the system was
taken as the initial “common” representation. As additional requirements were
discovered, the database evolved to meet those new needs. In the SIMPL system, the
initial design goal was to integrate topography tools using the SIMPL-2 data structure.
When tools that made use of node and line segment representations were added to the
system, such as the creeping flow simulator CREEP, the SIMPL-2 data structure was

extended with additional slots for marking tracing boundaries. The implementation of

43

the SIMPL/SUPREM link has also led to some extensions of the SIMPL-2 mesh
structure but not enough to completely represent the information needed by SUPREM
IV. Since element data remains with the SUPREM program, data consistency becomes
a problem. After four generations of SIMPL, the latest version, SIMPL-IPX, has
turned into an “integration jungle,” with many specific translators and no central

location for wafer data.

The practical experiences gained from the SIMPL implementation have
identified several major issues that must be addressed when developing a common

wafer representation. These issues are now discussed.

3.3.1 Multiple Wafer Views

The scope of the representation must adequately cover all wafer views that are
needed by the TCAD tools using the framework. For instance, the MOSFET profile in
Figure 3-6 may need to supply its boundary nodes for an etching simulator, or its mesh
nodes for an oxidation module. Maintaining consistency between the two major views,
i.e., field and geometry, is difficult, siﬁce each time bne view changes, the other one
must be updated, or at least be marked invalid. As mentioned before, there are a
variety of different mesh types used in TCAD, each of which can be considered a

different view.

The situation is complicated even more if the tools within the framework also
use unevaluated functions, have special representations for boundary conditions, or
use custom views. Multiple views also place demands on storage requirements, since

each profile may need redundant information to meet performance constraints for a

particular view.

3.3.2 Data Mapping

Associated with the multiple view problem is the problem of translating the
data between views, or data mapping. The inaccuracies of translating between
boundaries and meshes in between SAMPLE and SUPREM is one example of a data
mapping problem that has been. previously investigated [72]. Consider performing an
etch step with both view types. Many problems arise when the resulting boundary is
“stitched-back” into the mesh. I:=or instance, imbalances in the boundary and mesh
densities must be equalized, or the boundary may have to “snap” to the grid (see
Figure 3-8). The quality of the translation is highly dependent on the way the data

mapping is performed.

Dense Boundary/Coarse Grid
~N———3—
T
Dense Grid/Coarse Boundary |

Figure 3-8. The “stitch-back” of a boundary etch-front causes a data mapping
problem. (Left) Mismatches in the boundaries and/or field densities must be
handled. (Right) Additional constraints might require the boundary to be
snapped to the mesh elements.

Translation between mesh-types is another example of data mapping.
Translators are needed for converting between different forms of uniform and non-

uniform'meshes. Even the straightforward conversion of a rectangular mesh to a

45

triangular one by dividing each rectangle into two triangles, for exgmple, may lead to
problems of a mesh that is too dense for the TCAD tool to handle. Density adjustment

or other adaptive grid techniques must usually be employed.

3.3.3 Application Constraints

Wafer representation is dependent on the type of application using it, i.e.,
whether the tool exists both in Source code and binary forms, or only the latter, makes
a difference. When both are available, the internals of the tool can be changed to
conform to the common wafer representation. In the binary only case, a tool wrapper
must be used. The wrapper translates the incoming common representation into the
tool’s format, performs the function, and translates the tool’s output back into the
common representation, as shown in Figure 3-9. Wrappers limit wafer representation
performance because the entire profile must usually be passed into and out of the
wrapped program, as opposgd to only passing the necessary data. Nevertheless,
wrappers can be used whenever it is desirable to leave the TCAD tool in its original

form, as is true of most existing tools. New tools, however, should avoid the use of

wrappers.

Input Translator
(common representation -> tool representation)

Output Translator
(tool representation -> common representation)

Figure 3-9. Wrappers allow existing tools to use a common representation
without modifying the internals of the tool.

46

The types of data access provided are also dependent on whether the
ﬁamework is to be used for tool integration or development purposes. For example,
set operations are important when integrating tools to perform operations the stitch-
back function shown in Figure 3-8, which can be easily implemented with a geometric
“inset” of the etch front into the original profile. Their use in supporting TCAD model
development may be limited thqugh, since algorithms usually operate on individual
elements and segments rather than entire geometries. “Move-point” and “move-

element” would be more helpful in this case.

3.3.4 Performance

Performance requirements differ depending on whether TCAD tools plan to
use the data representation for tool integration or model development. In the first case,
performance is much less of an issue because the time spent within the tool is much
greater than the time taken in exchanging the data. Performance is obviously very

important when the representation is used within the tool.

3.4 Common Wafer Representation Approaches

Common wafer representation approaches currently in use are uniform file
formats, functional interfaces, and shared-data structures. The choice of
implementation is highly dependent on the level of functionality desired and the

targeted application.

3.4.1 File Interchange Formats

An approach that allows for a loose coupling between tools is the uniform file
interchange format. This concept is similar to the textual formats used in IC CAD for
layout information, e.g., Caltech Intermediate Form (CIF) [73]. Tools exchange
information by reading and writing data files using the format. If the format is

47

complicated, the parsing function can be difficult to implement though. Generally, file
formats are used for integration. The Intersite Profile Interchange Format [53],

discussed in Chapter 4, is an example of a common file format.

3.4.2 Functional Interfaces and Client-Server Models

Functional interfaces allow tools to access data directly without the need of a
file format, and have been used in the most recent wave of PIF-like environments
being developed [50][74]. These interfaces range in complexity from low-level
interfaces that provide file parsing functions, medium-level interfaces that access
TCAD data as objects, to high-level interfaces that can manipulate multiple or
composite objects. Low- to medium-level interfaces usually address the integration
problem, while higher-level interfaces can be used for integration as well as

development purposes.

A related approach is the client-server model. In this model, a wafer server
maintains the state of the wafer. Client TCAD tools, such as simulators and
visualizers, request wafer data from the server through a functional programming
interface. In effect, the server acts as an oracle that answers questions about the wafer
state posed by the clients. This approach is geared towards new tool development. The
functionality of the client-server model depends on the amount of functionality placed
on the server side relative to the client side. The Semiconductor Wafer Representation
Architecture [56], which is presented in Chapter 4, as well as the Chip Database

(CDB) [75] make use of the client-server model.

Both functional interfaces and the client-server model have the advantage of
being database independent, since the storage mechanism is hidden from the

programmer through the function call.

48

3.4.3 Common Data Structures

The tightest coupling of tools is achieved through a shared data structure. This
can be quite effective if the same language is used for all tools, there are a limited
number of tools, and the agreed-upon data structure does not change. Shared data-
structures can support both integration and development, depending again on the level
of functionality that the common function library provides. A prime example of this
type of environment is DAMSEL [76]. Common data structures have the disadvantage
of having a high maintenance cost, because each time the data-structure is changed, all

related modules must also be updated.

3.4.4 Performance Considerations

When considering data access performance, the data structuring approach is
the most efficient, followed by functional interfaces, the client-server model, and file
interchange formats. The difference in performance between data-structures and
functional interfaces is minimal. Initial results show that the client-server model can
also be competitive to data structures to within ten percent [77)]. File formats are a

factor of ten slower.

3.5 Summary

Understanding what wafer information is and how it can be represented is an
important part of building a successful TCAD framework. Two widely representations
are boundaries and meshes. Multiple data views, data mapping, application type, and
data access performance make development of a common representation very difficult.
Several different approaches that address this problem are currently in use, including

file formats, functional interfaces, and shared-data structures.

49

4
Wafer Representation Standards

The use of standards in semiconductor manufacturing, such as wafer size, type,
and crystal orientation, is analogous to the use of standards in TCAD. A standard
wafer representation is particularly valuable to the TCAD community because of the

complex physics involved, requiring multiple areas of expertise.

Several de-facto wafer standards based on popular simulator programs such as
SIMPL-2 [6], and SUPREM IV [19] are already in use, but their formats are over-
burdened with the demands placed on them by new tools. Since 1986, two committees
addressing the Profile Interchange Format (PIF), and the Semiconductor Wafer
Representation (SWR), have been actively developing standards based on input from
multiple groups in the U.S. and Europe. Finding the right path to standardization is
difficult. Technical considerations such as the choice of operating system,
programming language, and programming paradigms, e.g., the client-server model, an
object-oriented approach, etc., must be sorted out. Development costs, membership
from universities and companies on different continents, and other political issues also

arise.

This chapter gives a perspective on the progress and key issues in developing
standards for wafer representation. It is based on the author’s experiences from co-
developing the SIMPL-IPX system, designing PROSE, participating in the PIF
standards, and chairing the SWR working group. Section 4.1 discusses the motivation
for a standard and the parties involved. The progress and potential of the PIF and SWR

efforts are then charted in Sections 4.2 and 4.3, respectively. Section 4.4 describes

50

standards work on information médeling. A quantitative cost analysis of standards for
integraﬁon and development are given in Section 4.5. Major areas of concern in the
SWR are discussed in Section 4.6. Section 4.7 suggests smoéther ways to run the
standards process. A possible scenario for future standardization is presented in

Section 4.8, and conclusions are made in Section 4.9.

4.1 Motivation

4.1.1 Benefits

There are three main arguments for developing and using a wafer standard.
First, a standard reduces the amount of effort each group needs to devote to the
common representation problem. With the vast amount of work remaining in wafer
representation (especially in three-dimensions), the pooling of expert minds makes the
best use of limited resources. Second, a standard wafer representation allows tools to
share data, allowing them to be easily connected to synergistically address new
technology issues. This is the main benefit of an integration standard. Third,
supporting routines written for the standard can be used by all TCAD tools, reducing
the development time for new tools and encouraging model development. This is the

motivation for a development standard.

4.1.2 Everyone Wins

Three types of TCAD developers make up the wafer standardization interest -
universities, industry, and vendors - each of who have their motivations for promoting

a standard.

Professors and their students are interested first in development standards, and
second in integration standards. A development standard reduces the time necessary
for graduate students to develop and test out new models. A side benefit is the research

31

content of development standards. Since it is still an active research area, publications
and degrees can result from standards work. Integration standards are also desirable,
mainly because it allows researchers to accelerate technology transfer to industry and
other users, as well as addréss new technology issues by combining simulators. Tool
sharing through integration standards also allows for testing a specific tool with other
tools. For instance, an etch tool may need to be linked to deposition and lithography
tools to prove its usefulness. Finally, there should be flexibility in the standard to allow

universities to explore and expand on them in their research.

Research and development groups in industry require a standard for comparing
models and integrating the large number of tools provided by universities and
industrial partners. A wafer standard for tool integration is top priority for companies
who do not have a way to link their tools. Companies with integrated systems are more
inclined to support the development standard, which is a long-term project. Either
way, the standard must be “industrial strength” in specification and implementation to
satisfy the requirements of these practical users, but still remain flexible enough to

support future extensions.

Vendors can also use an integration standard to help them connect their tools
more easily. In the future, the ones who do will be at an advantage over those with
closed systems. This advantage is important because of the small number (certainly
less than five) of vendors that the market can support. The general opinion is that
vendors will be driven to use standards only if demanded by the user, but there is also
a potentially lucrative business in standards documentation and implementation. To
date, the development standard has less of an impact on vendors because it is still in its

research and definition rather than implementation phase.

52

Led by the universities, supported by the industry, and closely watched by the
vendor community, wafer represehtation standardization has been pursued since 1985.
The wafer standards effort was first organized by Neureuther in an open letter mailed
to TCAD groups worldwide [78]. This letter proposed the formation of a committee to
standardize on a cross-sectional profile representation. Since then, two major efforts
have taken on the challenge. The Profile Interchange Format addresses mainly the
integration standard, while the Semiconductor Wafer Representation addresses both

integration and development.

4.2 The Profile Interchange Format (PIF)

The Process and Device Technical Subcommittee of the Electronic Design
Interchange Format (EDIF) organization was formed in 1986 to formalize a wafer
standard by a working group of university and industry researchers. The result of this
first effort was the publication of the textual Profile Interchange Format (PIF) in 1988
[53]. Since its initial definition, the PIF has evolved into a storage file-format as well
as an object definition for a functional interface. These two versions are known as the
Intersite PIF and the Intertool PIF, respectively. When combined, the PIF provides the
features of a file format for exchanging data across sites, as well as an efficient

functional interface to wafer data (see Figure 4-1).

4.2.1 File Format

The Intersite PIF allows for data exchange between multiple tools through files
that have a EDIF-like syntax. An example of an ASCII PIF file describing a MOSFET
can be found in [53]. This file format has gained only limited acceptance as a standard
file format for describing wafer information due to its parsing complexity. Several
tools have been modified to write to variations of the format [1][50][79][80][81], but

none are able to read in and understand all files generated by others. Another
53

Other

Process Intertool | TCAD
Slws Interface ITJOI:I%S'&
: ties
b =

Device toolkit
Simulators

Figure 4-1. The Profile Interchange Format (PIF).

disadvantage is the inefficiency of writing and accessing data serially through a file ,
since tools are often only interested in selected portions of the representation. To
address these problems, efforts have been made to provide low-level parser functions
for retrieving data from a PIF file [82](83], but only a handful of tools have made use

of them due to their limited functionality.

. 4.2.2 Functional Interface

~ The next step in the evolution was the broadening the PIF concept in ways
more suitable for rapid interaction between simulators. The Intertool PIF uses the
same conceptual model as the Intersite PIF, but represents wafer data as object
instances in a graph, and provides a functional programming interface that can access
and manipulate these instances. Besides allowing TCAD tools to access PIF data
commonly, the functional interface has other advantages. It promotes code reuse. For
example, each tool no longer needs a PIF file-parser, since object data can be readily
retrieved through function calls. Programmers may also work with these objects at
different levels of abstraction, e.g., as single objects such as a point, or as higher-level

composite objects such as a geometry containing multiple points. Finally, storage of

54

data as a graph of objects allows for direct rather than serial access of PIF information.
These advantages lead to higher programmer productivity and more efficient access to

the data.

Several TCAD database implementations use the Intertool PIF concept,
including an early PIF-like database developed at Intel [36], the Binary PIF described
in Chapter 5, PIF/Gestalt [79], and the Binary PIF in VISTA [84]. Although these
implementations do not cunenﬂy conform to a single standard PIF model, they are all

members of the PIF family.

4.2.3 Discussion

Technically, the PIF has the potential to become a standard for tool integration.
The Intertool PIF shows promise as a functional interface to wafer data. The PIF can
also help in development needs by providing shared utilities, but the level of the
sharing that it can achieve will depend on future rgsea{ch. Unfortunately, the PIF is
remains a philosophy and not a standard. Various groups working on the PIF have and
continue to make new and necessary extensions to the initial file format version,
resulting in multiple PIF versions that are incompatible with one another. The PIF

puzzle now has all the pieces, but needs a champion to put it all together.

Politically, the PIF is a good first effort at an integration standard and has
played an important role in drawing together TCAD framework researchers from
CMU, UC-Berkeley, MIT, Stanford University, and TU-Vienna. The research era of
tool integration is almost over though as universities turn their attention to a
development standard. Commercialization by companies and vendors is the next

logical step. Unfortunately, the PIF has not succeeded in obtaining the necessary

55

backing from these groups. Other than the attendance of an occasional meeting and the
support university research efforts, the PIF has unfortunately fallen on the back-burner

of the commercial TCAD stove.

4.3 Semiconductor Wafer Representation

In June 1988, the Semiconductor Research Corporation (SRC) organized a
workshop on TCAD Frameworks at Stanford University. Discussion at the conference
ignited a ten-man effort on this iopic. An initial architecture document outlining the
requirements for such a framework was completed in March 1989 [55]. This work
generated a shopping list of capabilities that future systems should have. Out of this

list, wafer representation was identified as one of the two most important items for

standardization. !

In June 1989, the TCAD Framework Group was formed as a committee of the
CAD Framework Initiative (CFI). Within this group, the Semiconductor Wafer
Representation (SWR) working group was dssigned the task of standardizing on wafer
representation. The members spent one year developing an architecture and
programming interface that would support both integration and development needs.
The SWR contains the experiences of many groups who have looked at the wafer
representation problem in university and industry. At the kick-off meeting of the SWR,
ideas from many different implementations (FOXI, PREDITOR, PROPHET, PROSE,
SUPREM/PISCES) and previous standards (EDIF DM&V and EDIF P&D) were

~ collected, and their union was used as a basis for initial standards discussions [85].

1. Process representation was the other item identified as being very important.

56

4.3.1 Architecture

‘The architecture, which was approved by the committee for prototyping
purposes in April 1991, is shown in Figure 4-2 [56]. It uses an object-oriented
approéch to describe wafer data and the client-server model to access it. The SWR
representation is divided into field and geometry components, which provide boundary
and mesh based views of the wafer cross-section, respectively. Clients access wafer
data by way of a standard programming interface defined in C++ [86]. The types of
calls that the client may make to the server are shown in Figure 4-3. The SWR
architecture and programming interface documents are publicly available and can be
obtained through the CAD Framework Initiative. A general discussion of the SWR
may be found in [87].

TCAD Clients

| simulatora

SimulatorB - 'ﬁ_

A:zace i Cm

SWR Server

Figure 4-2. The SWR architecture [56].

57

Geometry Server

Objects:
point, edge, face, cell, cell complex

Operations:

create, delete, access (general);
section, coalesce, inset (set) '
create geometry from mesh (other)

Example: make a square
SwrgPoint<2> p(0,0);
SwrgPoint<2> q(1,1);
SwrgWafer2D cellComplex(p,q);

Field Server

Objects:
field, mesh, element

Operations:
conform, extract, mesh geometry, validate
(interactive); evaluate; update

Example: mesh an existing geometry
f = Field.mesh_geometry(celll, flag);

Example: evaluate function
f = Field<T>.evaluate(point)

Figure 4-3. Example SWR objects and operations [86].

4.3.2 Prototype

A prototype SWR standard was first demonstrated in August 1991. The

demonstration simulated the construction of a MOSFET from the initial field

oxidation through the source and drain formation sketched in Figure 4-4. The main

components of the SWR server are the geometry server from IBM [88] and the field

server written by Giles, Chin, and Law [77]. Universities, companies, and vendors

contributed the nine clients listed in Figure 4-4. Simple new clients used the SWR to

test it out as a emerging development standard, while larger existing clients used the

SWR as an integration standard.

58

® e eet———

Process Step Client Simulator

Initial Profile SUPREM IV

Deposit Polysilicon TI Deposition
Tool

Gate Lithography SAMPLE

Etch Gate Intel Etching Tool
SPEEDIE
Strip Photoresist TT Stripping Tool

Create S/D Junction SUPREM IV

C Simulate Device PISCES
MINIMOS

Figure 4-4. SWR Prototype MOSFET process flow summary.

4.3.3 Discussion

The client-server approach to wafer representation is new to TCAD, as is the
use of the C++ language and an object-oriented programming style. The emphasis on

software engineering techniques from the computer-science field is a radical departure

59

for physicists and electrical engingcrs who are still used to the “old programming
ways.” Some typical concerns expressed are the large existing base of FORTRAN and
C programs that must be wrapped or re-implemented, the steep learning curve for
C++, the applicability of the client-server model, and the assumption of the POSIX

operating environment.

Both the technical ad\;antages and the difficulties of this approach have been
better understood through the SWR prototyping exercise. For example, adding tools to
the framework was a much easier task than expected, once one understood the server.
Wang reported that wrapping SAMPLE for the prototype took about two weeks and
800 lines of code [90]. This is factor of twenty-five improvement in speed, and factor
of five improvement in size over the one student year and 4000 lines of code needed to
develop the stitch-back routines in SIMPL-IPX. The pre-existence of set operations in
the geometry server was the main reason for this improvement. The feasibility of a
development standard has also been shown with the implementation of new

elementary deposition and etching codes using the SWR.

Several concerns were also raised. Client developers complained about lack of
detailed documentation during the prototyping, although this seems to be typical of
any prototyping project. Machine requirements were fnore demanding due to server
and wrapper size. The binary code size for each of the field and geomeu')" Servers was
about one mega-byte. Client wrappers were also about a mega-byte apiece. A system
with ten clients therefore requires an extra twelve mega-bytes of memory when
integrated. The complexity of implementing the geometry and field servers, which are
68,000 and 10,000 lines of code respectively, is also an issue. Server overhead does

not seem to be a problem though. Field server calls for point examination is about a

60

factor of two slower than direct C++ function calls, but this is still only ten percent of
the time used in function evaluations such as sqrt(x2+y2) [77]. In general, these issues

are not enough to offset the advantages of the SWR approach:

From a political point of view, the SWR has been somewhat successful at
working towards a standard. The group has more active industrial participation than
the PIF, which was mainly a university effort. The twenty active SWR members are
split evenly between universiﬁe§ and companies. A second difference is the strong
participation of computer scientists and mathematicians who have assisted with
software engineering and geometry issues, and who have pushed for approaches such

as the client-server model.

The SWR prototype was the committee’s key accomplishment not only
because of the technical understanding gained, but also for political reasons. First, it
proved that the different groups within the TCAD community could work together on
a joint project. Thirteen organizations participated in the prototype: Second, it
generated interest, confidence, and credibility. The initial demonstration was seen by
over fifty people, and subsequent showings at member companies, Sematech, and the
International Electron Devices Meeting (IEDM) have been well attended by managers,
funding agency representatives, and the casual observer. Third, the prototype was a
concrete project with a set goal and deadline for the group. Standard specifics had to
be agreed upon in the documents, and had to be implementable within the allotted
périod. On the downside, the time required to coordinate the effort was considerable.
Code integration and coupling tools between competitive companies required lots of
legal paperwork. Even with these barriers, the prototype was by far the most

productive three months spent by the SWR working group.

61

During the tenth meeting of the SWR in February 1992, the architecture and
programming interfacc documents were updated to Version 0.9C.! It is the hope that
Version 1.0 of both documents will represent the state of the SWR world after the
prototype experience, will bc geared as an integration framework, and can be used to
support simple new tools. All concepts described in this version have either been
exercised in the prototype or are those that the committee feels are well understood,
useful, and easily implementable extensions to the current framework. Ironically, the
success of the prototype has raised everyone’s expectations, thus making it more
difficult to formulate future plans, e.g., how to commercialize the software, whether to

work on integration or development issues, and most importantly, who will do the

work.

4.4 Information Modeling

An underlying information model for wafer data is being developed in parallel
with the PIF and SWR efforts. The EDIF Device Modeling and Verification
subcommittee, which became a CFI working group in 1991, has proposed an
information model for the PIF in 1989 and more recently for the SWR [91]. Figure 4-5
shows the proposed device and geometry views in EXPRESS-G graphical notation
[92]. Device information is separated into segment and boundary parts. Segments
make up the layer materials and geometric information such as points, lines, and faces,
as well as mesh and field attribute information. Boundaries specify boundary

conditions for the device.

1. After voting approval by the TCAD Framework Group, this version will be designated Version 1.0.

62

device_2D L

subSegments L[2:#)] " segmentsL boundaries L
1, £ STRING
segment_2D | info l
| : .
S 0 boundary_2D info
compSeg_2D primSeg_2D r
l . H :
geoPrimitives | | holes geoPrimitives | | holes
L[1:#] i L[1:#] [1:#] i L{1:#]
5 oints,
oints, ines,
ines, faces
faces mesh mesh
field attributes field attribuzes

Figure 4-5. Top level DM&YV information model for a two-dimensional device

[91]. Segments and boundaries contain geometries, e.g., points, lines, and faces,
and fields, e.g., mesh and field attributes.

The information model is the most basic way of expressing wafer data
information, and may be the starting point of agreement between all groupé. The
DM&V group was chosen to develop the information model because of their modeling
expertise and interest. An initial review of the model by members from the SWR and
VISTA groups shows no major inconsistencies with the SWR or VISTA architectures

[93]. A more complete review is currently underway by the DM&V and SWR groups.

63

4.5 Cost Analysis

In this section, the cost of developing and using a standard is compared to the
cost of not using a standard. Wafer standardization can progl;ess along two paths:
agreement on a standard for integration systems; and continued research in the area of
wafer representation for development systems. These two approaches to standards are

addressed separately.

4.5.1 Integration Standard

The main advantages of an integration standard are: (1) a reduction of the time
required to integrate new tools, (2) the ability to compare different tools that perform
similar functions, e.g., judging the results of two lithography simulators; (3) the ability
to share general utilities such as visualization tools; and (4) increased opportunities for
smaller research groups to contribute equally in the TCAD arena. Assuming ten
significantly different new models are developed by research groups each year
worldwide, two-man months of effort are required pt;r module for understanding and
integration, and one month is needed to make the tool user-friendly using current
techniques. Therefore, each integration organization (company) would spend
approximately three person-years on (1) and (2).l The cost for (3) is also included in
the three-months per tool estimate, since most sites already have a set of common
utilities for their system. The cost for (4) is unknown but TCAD groups without
integration projects, such as those at the University of Alberta and the University of
Wisconsin, would benefit. If we assume there are ten integration sites worldwide then
the total yearly effort spent on TCAD integration without standards is thirty person-

years. This estimate does not include the unknown cost of (4).

1. Three person years is often more than a company can afford. Because of this, often only a subset of
these models are integrated. The cost of the technology that is not transferred is unknown.

64

The cost to produce a document specifying the integration standard based on
the PIF and SWR work is a two person-year effort (four people, each working half
time). The price of developing an implementation depends on the amount of previous
work that is both applicable' and available, but can be conservatively placed at ten
person years. Thus, the total cost is approximately twelve person-years for
documentation and implementation of an integration standard. Taking figures from the
SWR prototype, integration of a new tool into the framework should take no more
than a week if the standard is used, but the time necessary to understand how the tool
works remains constant. Thus, the cost to add a new tool is roughly one month and one
week. The effort for ten tools at ten sites would be about ten person-years or less,
depending on whether there is integration sharing among sites. The tool integration
burden can also be shifted from the development group to the users using this

approach.

An integration standard is ripe for commercialization or cooperative
development because there is a savings of at least a full-time person per organization
per year, and the system could be developed with less effort that the savings from the

first year.

4.5.2 Development Standard

In SAMPLE and SUPREM, less than one-third of the code implements the
process models; the other two-thirds is for model support, such as input parsing and
simulator output. This is thought to be typical for most simulators. A development
standard can conservatively reduce the coding time by one-half, substantially

increasing the productivity of simulator developers and reductin g the duplication of

65

work. For instance, half of the graduate student coding effort would be saved. A
development standard might also address how the scope of 'I"CAD tools can be used

through enhanced controllers such as task level managers.

There are more unknowns in costing out a development standard because it is
further in the future than an integration standard. A paper definition is estimated to
take between two and four person-years. Since this is still an active research area, it is
hard to estimate the cost of an implementation, but it is on the order of tens of person-
years. A TCAD project of this scale is probably not manageable by any individual
organization, and will therefore require a joint effort between universities, companies,

and vendors.

Some overlap between the integration and development standard exists. An
integration standard would allow some degree of utility sharing, making it somewhat
easier for developers of new tools. The development standard, on the other hand, is a
superset of the integration standard, since tools in the integration framework can also

act as models in the development framework.

4.6 Outstanding Issues

Although we have come a long way in defining wafer standards, many
outstanding issues, both technical and political, remain. The way that these issues are
resolved will greatly affect the future of the standards work in general, and the SWR

working group in particular.

4.6.1 Technical Issues

Remaining technical issues can be grouped into issues created by the decisions
made, issues that have not yet been addressed, and future issues that are still

unknowns.

66

For each choice made in a definition, many other choices are sacrificed. For
example, the major architectural decisions made in the SWR are the use of the client-
server model, the definition of the representation through the C++ language using an
object-oriented paradigm, the separation of the representation into geometry and field
components, and the implementation of a geometry interface based on set operations.
These decisions were made by the SWR group after careful consideration, but other
choices are also valid. The group could have selected a layered model instead of the
client-server model, a FORTRAN instead of C++ specification, unified instead of
separated geometry and field data, and moving boundaries rather than set operations.
There are reasonable arguments for each of these approaches, and the best choice is

still being debated.

Many issues related to the wafer representations must also be addressed before
a true standard exists, for example, error handling, data persistency, definition for
multiple programming language implementations, and intertool communications
mechanisms. Although there has been some work within the CFI group to study these

issues, they have not been specifically addressed in the SWR.

Finally, there are still many remaining unknowns. Development frameworks
are in their infancy. As we continue to work towards them, they will no doubt bring up
more issues. Three-dimensional process and device simulation needs will place
additional demands on framework representation and performance requirements. The
magnitude of the legacy system problem, i.e., the headache of maintaining an old
monolithic system or transferring all the tools to a new framework, must also be

considered.

67

4.6.2 Political Issues

The main political barriers are the cost of standards and who will pay for them,
the issue of committee membership by those in Europe and Asia (when funding is
mainly through US sources), and the complications of implementing standards by

committee.

The cost of standards development to date has been quite high and almost
completely supported through volunteer time. Future costs must not only be reduced,
but also charged to a customer. The SWR group has so far held ten meetings, with each
meeting averaging of two days in duration. Writing the architecture and programming
interface documents have consumed one person-year, the prototype integration has
taken two person-years of effort, and chairing the group has been a half time job for
over a year. It is unlikely that these volunteers will agree to work for free for much
longer. New developers and new sources for dollars must be found. The large number
of SWR meetings is also an issue, as travel is always a sore spot with companies and

funding agencies.

Participation by the Europeans and the vendors is also key. It is imperative to
coordinate efforts with TCAD groups and standards projects within Europe, e.g., TU-
Vienna, ETH, DASSI, and the STORM project, and vendors such as Dawn
Technologies, Silvaco, and TMA. There seems to be a general lack of interest among
the Europeans, who seem to view the SWR effort as a waste of time. A concrete
proposal that describes a coordinated effort would be a good first step. This would also
tie in the vendor community, which has expressed an interest in seeing standards

documents produced from the SWR work.

68

Finally, the extent of the st;mdard needs to be clarified on whether it includes
only do.cumentation, or documentation with an implementation. The argument for the
latter is that a standard must be widely available and shown to be useful in order for it
to be accepted. But a standards implementation limits commercial possibilities for
vendors, brings up many code ownership issues, and makes the coordination effort

between members more complex and more costly.

4.7 Moving Forward with the Standards Process

The number of issues raised in Section 4.6 is large but not overwhelming.
From the cost analysis of Section 4.5, standards for wafer integration and development
are definitely worth pursuing. Given the current state of the SWR, this subsection
provides two suggestions for moving forward in the standards process: the division of
standards work into integration and development thrusts, and technically-oriented
meetings and project driven standards. A commercialization plan for an integration
standard is presented to identify some more specific suggeéﬁons for a successful
cooperative arrangement. A research plan for SWR Version 2.0 (the development
framework) should also be crafted to meet the needs of the TCAD framework

research community, but is left to future work.

Suggestion #1: Let the researchers do research, and let the implementors
implement.

People tend to do better at things that they like to do, rather than are forced to
do. Given that the SWR group is mostly university and industrial researchers, and the
fact that Version 1.0 of the SWR is almost complete, it is unlikely that they will be
willing to devote any more time to an integration standard. It is better to unleash them
on the specification and prototyping of a development framework, and to put them in

an advisory role for the integration standard. Companies who show an interest in the

69

representation for integration should join forces with universities who have related
implementations, e.g., the PIF people, to formally develop a standard using new
blood.! The effort spent on pursuing an integration standard is worthwhile for the

reasons cited in Section 4.1, even if only supported by a handful of companies.

Suggestion #2: Strive for technically oriented meetings and project driven
standards.

The most productive SWR meetings have been the ones where political issues
are either not discussed, or discussed only briefly. Unfortunately, roughly a third of
SWR meeting time has been spent on politics, bureaucracy, or rehashing previous
decisions.2 In the future, political issues at technical meetings should be delayed until
the last hour of the last day. In addition, many discussions require only a small group
of people. Meeting in task groups of three or four appears to be effective means of
making specific decisions that can be recommended to the committee at large. Projects
are also extremely useful for motivating people andbachieving goals. The SWR
prototype project, and its deadline, encouraged the group to make decisions much
more readily than multiple discussions without a practical application. The CFI
organization has also recognized the importance projects and is using them to drive the

standards process for design CAD.

1. The keyword here is develop. The integration standard is a development, and not a research project.
Thus, the burden of development should mostly rest on industry, with universities providing help to the

transfer of technology in their respective implementations by students and the undergraduate or mas-
ter’s level.

2. The committee chair assumes only partial responsibility. SWR members like to talk a lot too!

70

4.8 An Implementation Plan for SWR Version 1.0

Rather than specify specific recommendations for solving standards issues
such as implementation personnel, code ownership, and funding, these elements are
presented within an overall proposal for implementing Version 1.0 of the SWR. This
framework would be useful for tool integration and simple tool development. Such a
proposal has long been needed in guiding the future role of the SWR. Only a summary
and key recommendations of this project-centered proposal are presented here. A more
detailed proposal has been distributed to the SWR group at large for comment and

consideration [94].

4.8.1 Project Goals

The key goals of this project are the commercialization of the SWR server and
its demonstrated use by four key TCAD client types: above-silicon (topography)
process simulators, below-silicon (thermal) process simulators, device simulators, and
resistance/capacitance parasitic extractors (see Figure 4-6). A scenario is proposed
where the SWR servers, based on their prototypes, are commercialized by vendors and
SWR client Qrappers for proprietary tools are implemented by companies. These
wrappers would then be shared with the universities to assist them in wrapping their
tools. This should not be large burden on universities because most tools of the same
type are similar in nature. Figure 4-6 identifies some possible industry and university

tools that could be wrapped in this project.

4.8.2 Benefits

Vendors would benefit because it would be easier to integrate their tools, and
there would potentially be a new market based on SWR compliant applications.

Companies would be able to buy and use a supported server. Each company would

71

Topography Simulator Thermal Simulator
(Intel Etcher) . (IBM FEDSS)
(UC-Berkeley SAMPLE) (Stanford SUPREM 1V)
" { Geometry Server
| (IBM/Vendor)

Field Server
(GCL/Vendor)

S "

Device Simulator Parasitic Extractor
(TUV/DEC MINIMOS) (HP FCAP2)
(Stanford PISCES) (UC-Berkeley RACPLE)

Figure 4-6. The SWR V1.0 would demonstrate robust servers working with the
four key client types. GCL stands for the Giles/Chin/Law prototype
implementation.

have their tool connected to the server at the end of the project, and would be able to
add more tools easily by modifying wrappers written by other participating
companies. Universities would have a skeleton server to use, and would no longer

have to worry about technology transfer issues to companies.

4.8.3 Costs and Funding

A very rough guesstimate summarizing the work involved for this project is
listed in Table 4-1. The basic idea is as follows: companies would be expected to

contribute mostly person-power; consortiums such as Sematech (or possibly a group

72

of companies) would be asked to provide integration facilities and seed money to
vendors for server development; and universities would receive some travel and

student assistance for their contributions.

Component Cost (in Person Years) Who Financial Support
Field Server 3 Vendors Consortium/Sales
Geometry Server 3 Vendors Consortium/Sales
Client Wrappers (Industry) * 0.5 for each client Companies Companies
Client Wrappers (University) 0.2 for each client Universities Consortium
Project Management 0.5 Consortium Consortium
Facilities (Integration Site) - Consortium Consortium
Totals 93 All Companies/Consortium

Table 4-1. Guesstimate of component costs for the SWR V1.0 implementation
project.

4.8.4 O\qlership

The paper definition of the standards should remain in the public-domain to
encourage worldwide participation. On the other hand, it is only fair to allow parties
who implement the code to retain ownership. Servers are owned and supported by the
vendors, with special discounts available to the participants. Client wrappers are to be
shared among participants (so that they can more easily wrap their own proprietary
code). Binary versions of the clients may also be made available at the integration site.
Universities should be given versions of the SWR server at minimal or no cost.
Arrangements could be made release a reduced version of the server to research

partners, e.g., universities in Europe.

73

4.9 Conclusions

Wafer standardization is exciting yet frustrating. The. whole committee smiles
when agreements are made. The committee frowns when bureaucracy or differences
get in the way. The PIF work addresses mainly the integration standard through file
format and functional interfaces. More recently, the SWR working group has been
working on a development and integration standard using new concepts such as the
client-server model and the objéct-oriented programming style. This is a multi-
disciplinary group with talents in physics, electrical engineering, and computer
science. A prototype of the SWR has provided many useful comments, and more
prototype projects should be pursued in the research of development frameworks, or
SWR Version 2.0. Intégration frameworks, on the other hand, are ripe for
commercialization. In spite of the technical and political issues that remain, standards
can reduce TCAD integration and development time by a factor of three and should be

_'pursned. A plan for implementing Version 1.0 of the SWR that targets specific goals

and benefits all participants has been proposed as a starting point for discussion of

future efforts.

74

-5
The Binary PIF

The “Binary PIF” (BPIF) defines a set of objects and a library of functions that
describe an intertool version of the profile interchange format (PIF), a representation
for semiconductor wafer information. The “BPIF Toolkit” function library enables
technology CAD (TCAD) tools, such as process and device simulators, to access PIF
data through a common interface, thus facilitating tool integration and encouraging
utility sharing. This approach defines a toolkit that is easy to use, and which meets the
tool integration and performance needs within a TCAD environment. The chosen
environment, PROSE, uses the OCT/VEM/RPC CAD framework, which gives BPIF a
convenient location for storing persistent data through the OCT database, and access

to mask information.

The definition and implementation of BPIF began in 1988, a year before the
Semiconductor Wafer Representation (SWR) working group, described in Section 4.3,
was founded. Therefore, it played a role in helping formulate the initial standard.
During its mid-life, BPIF development was carried out concurrently with the SWR
work. One of its main tasks then was to uncover issues in wafer representation by
carrying out experiments on next generation communications of cross-sections. The
BPIF has since been improved on to address these issues through a new BPIF++

toolkit that uses an object-oriented C++ interface.

Sections 5.1 - 5.7 describe an experimental BPIF Toolkit, based on C and the
OCT data manager. These sections were published as an article in IEEE Trans. on

Computer-Aided Design.! Examples are shown of how TCAD tools may use the

75

toolkit to access wafer data, such as grids and geometries, within a graph of PIF
objects. A BPIF package supponix;g the use of the intertool PIF within the PROSE
environment, which includes a link to the PIF intersite file format, is then presented.
Performance measurements for BPIF are found to be fast enough for general use.
Comparisons are made with the PIF/Gestalt implementation to assist in the

standardization of the intertool PIF.

Sections 5.8 - 5.10 contain recent work on BPIF++. These include the
advantages and implementation of BPIF++, the link to the Berkeley Topography
Utilities (BTU), and the interoperability potential of BPIF++. Chapter conclusions are

drawn in Secton 5.11.

5.1 BPIF Object Definition

Conceptually, BPIF objects are designed to be the same as those defined in the
intersite or ASCII file version of the PIF [53]. There are three object types -
geometries, grids, and attributes. A hierarchical approach is used to represent the
geometries (boundaries) of the cross-section [83]. In this scheme, the most basic
geometric building block is the point. Lines are constructed from a set of points, and
faces are constructed from sets of lines, as shown in Figure 5-1. Fields are represented
on grids (or meshes). Grids are constructed similar to geometries by specifying a set of
points and then connecting the points to form elements, or by using pre-defined grid
types. Doping impurities and other attributes can be associated with the grid. Certain
attributes may also be attached to geometries; for example, the association of an

electrode name to a material boundary.

1. A. Wong, et. al, “The Intertool Profile Interchange Format: A Technology CAD Environment
Approach,” IEEE Trans. on Computer-Aided Design, September 1991 [58].

76

P6 L6 P5
F1 F2
o L5\ P4 14 P3
L7 L4 LS L6 L
- r P By o
PI LI p7 L2 P2

Figure 5-1. Constructing a geometry hierarchically.

Several changes and additions were made to the initial BPIF definition, based
on findings from exercising BPIF. One change involves representing grid node indices
and elements as large arrays, as opposed to individual objects. Access time for large
numbers of individual node and element objects was found to be too slow in
applications involving grids with many points. Storing nodes and elements as large,
array objects increases access efficiency. Specific objects for rectangular, triangular,
and tensor-product grids are also supported due to efficiency concerns. .Additional
objects have been added to handle mask and cut-line information. The “cut” object
uses a PIF geometry to represent a cut through a mask or mask set; the cut may be a
point, liné, or face. The “mask” object provides a reference, in the form of a character
string, to external layout information. Finally, attribute handling has been simplified.
Two pre-defined attributes, “name” and “impurity”, are tested in the current prototype.
A “stranger” object has been included to allow for general attributes and other user-

definable data. A summary of BPIF objects may be found in Table 5-1.

BPIF objects are described by C-language structures. The generic object
contains a union of specific PIF object types, and the field pi fObjectType
determines the type of the object. Each specific type is in turn defined by its own C-

structure. For example, Figure 5-2 shows the structures of both the generic object and

77

Type Objects
Organizational File, Snapshot
Geometry Geometry, Point, Line, Face Solid, Segment, Boundary
Grid ' Grid, GridNodeArray, GridPointArray
Layout Interface Mask, Cut
Pre-Defined Attributes NameAuribute, ImpurityAttribute
Other Stranger

Table 5-1. BPIF objects used by the toolkit.
the specific “point” object type. Values of the object are accessed through the
structure’s data members. Since objects must be explicitly stored and retrieved in the
database, there are generally two copies of each object: one in memory, and another in
persistent storage. To create a new object in the database, the programmer first creates
and initializes the in-memory copy of the structure, and then calls the pifCreate
function with pointers to the object and its parent as arguments, e.g.,
pifCreate(*parent, *point). Toupdate an in-memory copy of the object from
the database, a call is made with pifUpdate, e.g., pifUpdalte (*point). The

behavior of these two functions is shown pictorially in Figure 5-3.

a) b)

/ \ / N N
Program O Program N—
Memory OCT Memory ocT
v pifPoint

pifPoint _ \\ dimension|
dimension
X,Y'Z -) x’y’z

— > N

Figure §5-3. Use of (a) pifCreate and (b) pifUpdate to create and retrieve objects in
the OCT database.

78

typedef int pifObjectType:
struct pifObject { /* PIF_OBJECT */
pifObjectType type:
union {
pifFile file;
pifSnapshot snapshot;
pifGrid grid;
pifGeometry geometry;
pifPoint point;

pifStranger stranger;
} pif;
};

struct pifPoint {
pifDimension dimension;
pifCoord x,y,z;

};

Figure 5-2. C-Structures for PIF_POINT and PIF_OBJECT.

Relationships between BPIF object instances are governed by a set of
attachment guidelines, or PIF Policy. An attachment is a bi-directional connection
between two objects that is maintained by BPIF; all of the required attachments
between instances are established upon object creation. Optional attachments, such as
that associating attribute information with part of the geometry, may be established
with the pifAttach function. Currently, no automatic checks are made on the
legality of an attachment. This has the advantage of allowing new relationship rules to
be explored with relative ease, but places the responsibility of adhering to PIF policy

on the programmer.

79

Large collections of PIF objects are not organized in a static file as in the
ASCII PIF, but rather in a dynamic graph of instances of PIF objects. A fragment of a
PIF instance graph detailing the structure of a triangular facé is shown in Figure 5-4.
A more general instance gréph is shown in 5-5. Application programs generate,
manipulate, or access these instance graphs to: capture a wafer structure, to change
that structure by simulation or other means, and to examine the result. The instance
graph is an informal depiction of the objects and the relationships between them;
programmers generally have these types of graphs in mind when using a PIF Toolkit.
The purpose of the PIF toolkit is to enable application programs to create and directly
manipulate these instance graphs. Consistency of the attachments in the object graph is

left to the programmer (which is defined by the PIF Policy).

Face
Name: F1
Orientation:
+1+1+1
Lines:

< | N

!

P3

L2

P1 L1 P2

Figure 5-4. A graph of PIF object instances for a triangular face.

80

- File
Snapshot Snapshot

N /)

Grl‘

Geomet\y
Mask
"flo.cif* cut nameAtt

"2nd_grid"
Face
/ Line,” “SLin
- -
Gegmetry Point Poini Point
nameAtt
“cutlineGeo" Grid ——w7 nodes
X1,
nameAtt x2.¥2
"my_tri"* ImpurityAt x3,y3
value1 '
value2 elements
valued n1,n2,n3]
n2,n3,n4
n1,n3,n5

Figure §-5. An example PIF object instance graph.

5.2 BPIF Toolkit Functions

The BPIF toolkit provides a database independent set of functions that allows
programmers to access, modify, and store objects. BPIF functions are separated into
basic and extended toolkits. The basic toolkit is a minimal set of low-level functions
needed to manipulate the instance graph, as is used mainly by programmers. The
extended toolkit, on the other hand, provides higher-level functions that generally
operate on many objects and is meant for both developers and programmers. In Figure
5-6, for instance, the function pifCreatePoint is a low-level function that creates a
point, whereas the pifDeleteGrid operates on multiple objects related to a grid, and

is therefore a high-level function.

5.2.1 Basic Toolkit

The set of basic PIF toolkit functions is separated into five groups. These

functions, summarized in Table 5-2, are described below.

81

pifDeleteGrid

(deletes grid) i g metry pifCreatePoint

(cre?tes point
n& / at x,y,2)

(x.y.2)

Figure §-6. Basic and extended toolkit function examples.

The “file” functions open and close a PIF file. This area delimits the working
name and address space for a set of PIF objects, and corresponds to a file in the ASCII

PIF.

The “basic” functions create, retrieve, and modify objects. Most of these
functions have an equivalent OCT operation; details may be found in the OCT User’s

Guide [95].

For walking around and retrieving instances in a graph, the BPIF toolkit offers
a set of instance generator functions in the “traversal” group. The function
pifInitGenerator (*object, pifObjectMask) creates a generator object that
contains all directly related instances specified by a PIF object mask. The object mask
allows the programmer to indicate the types of objects that are to be included in the
resulting generator. For instance, one can generate all combinations of points, lines,
and faces from a geometry with the function call pifInitGenerator (*geometry,
PIF_POINT_MASK | PIF_LINE MASK | PIF_FACE_MASK). This generator can

then be used by pifGenerate to retrieve each of these objects. In addition to single

82

Group Name Function
file pifOpenFile opens an instance file
pifCloseFile saves an instance file
basic ' pifCopy copies an object
pifCreate creates an object
pifAttach attaches two objects
pifDetach detaches an object
pifUpdate reads object from database
traversal pifInitGenerator finds objects based on criteria
pifGenerate gets next object
pifGenNumber gets number of objects in generator
pifReverseGenerator reverses the generator order
attribute pifGetByAtributeName gets an object by name
pifGetByAttributeImpurity gets an object by its impurity type
other pifError error handler
pifPrintObj “pretty prints” object
pif Version returns BPIF version number
Other Types Name Function
deep pifInitGeneratorDeep multi-level generator
recursive pifCopyRecursive recursively copy object tree
.pifDe]eteRecursive recursively delete object tree
extended pifCreate2DSubstrate create starting substrate
pif2DAddTopLayer add top layer to profile

Table 5-2. Summary of functions in the BPIF toolkit.

level “shallow” generator functions, multiple level generators are also available, and
are characterized by the “deep” suffix, e.g., pifInitGeneratorDeep. For example,

one could use a deep generator to find all the points from the face in Figure 5-4.

The “other” group contains functions for debugging, error handling, and other
miscellaneous tasks. Examples of these are pi fPrintOb3 to “pretty print” the
contents of an object and pifVersion, which returns the current version of the
toolkit. Exception handling is through a common error routine pi fError. All

functions return PIF_STATUS, which evaluates to either PIF_OK or PIF_NOT_OK.

83

Functions in the “attribute” group have been implemented for frequently used
attributes such as “name” and “impurity”. These are pre-defined as special PIF objects
in the BPIF object model. For example, there is often a need to get an object by its
name or its impurity type. The functions pi fGet ByNameAttribute and

pifGetByImpurity perform this task.

5.2.2 Extended Toolkit

Commonly used, higher-level functions, which operate on multiple objects, are
contained in an extended PIF toolkit. These functions are subroutines built on the basic
toolkit functions. For example, two extended toolkit functions that have been
implemented are pifCreate2DSubstrate and pifAddTopLayer.
PifCreate2DSubstrate createsa starting snapshot instance graph of a two-
dimensional substrate with a thickness and doping concentration. This snapshot
contains the necessary sub-graphs of the geometry, grid, and attribute instances .
PifAddTopLayer modifies the snapshot by depositing a new material with a finite,

positive thickness onto an existing profile.

5.3 Layering on the OCT Database

The PIF toolkit is intended to be layered on an object-oriented database in a
manner transparent to the toolkit user. A standard PIF toolkit should allow
implementation across a wide range of programming languages and database types,
although this is limited by practical considefations, €.g., one rarely finds a TCAD tool
that uses COBOL. The implementation of the BPIF toolkit, which is similar to other

PIF toolkit definitions such as [79], was found to be only a moderately difficult task.

84

The BPIF toolkit implementation is built on OCT, a data manager that uses
object-oriented concepts. At the lowest level, all PIF objects are cast into OCT
“stranger” objects, with an automatic translation between the PIF object and the OCT
stranger object occurring each time an instance is stored into or retrieved from the
database. For instance, in the pifCreate function, the data in the PIF object union is
first copied into an OCT straﬁger object, and this resulting object is stored into the
database. Objects are retrieved by pifUpdate through the reverse procedure.
Although these implementation details are transparent to the programmer, they do
affect toolkit performance, as discussed in Section 5.6. This translation is eliminated in

the BPIF++ implementation described in Section 5.8

5.4 Illustrative Examples

The BPIF extended toolkit provides a mechanism that makes it easy for
applications to access PIF data. Programming time is saved, since, unlike the ASCII
PIF, there is no need to parse the input filé. Instead, programs link in the BPIF library
and make function calls with high-level objects. Suppose a programmer has a
deposition routine that only needs to work with the top-string of a profile. Figure 5-7
shows how the extended toolkit can be used to extract this string from the current
snapshot, allow the programmer to manipulate the string, and then write back the

resulting profile into the database.

Programmers may also use lower-level functions in the basic toolkit to access
PIF data. For example, assume a programmer would like to construct a face from a list
of points, producing an instance graph such as the one shown in Figure 5-4. The
function makeFaceFromPoints, shown in Figure 5-8, implements this task. Line 9
uses the function makeLinesFromPoints to create an array of lines that make up the

face. Line 10 allocates memory for a PIF_FACE object and sets the face pointer to it.

85

modifyTopString(file, snapshot, newString)

pifObject *file, *snapshot; /* PIF file and snapshot */
stringStructure newString; /* structure for new string */

{

pifObject *topString; /* holder for profile top string */

/* pifGetTopString is a function which retrieves the top string of
a profile within:a given snapshot */
pifGetTopString(file, snapshot, topString):

/**

programmer’s routine to the modify top string goes here
***/

pifPutTopString(file, snapshot, topString); /* replace string */
}:

Figure 5.7. Simple example showing how the BPIF extended toolkit may be used
by an application.

The fields of the PIF_FACE ob}ect are then set: face->pif.face.arrayisa
pointer to the array of lines, and face->pif.face.directory points to the
orientation of each line, which is assumed to be 1. Each field must contain a valid
value. For example, array may only contain a pointer to an array of points, and
direction must be set to -1 or 1. Alist of object types and their fields can be found
in [96]. Recall from the discussion in Figure 5-3 that the PIF object in memory is not
automatically stored in OCT, but must be explicitly saved. This is done in line 16 with
the pifCreate command, which takes pointers to the object’s parent (the geometry)

and the object (the face) as arguments. Finally, the result, a pointer to the new face, is

returned to the calling procedure.

86

1 pifObject *makeFaceFromPoints(geo, pts, n)

2 /* This function creates a face from an array of points and
stores them in the database. Lines which make up the face
are also created in the process. The starting geometry and
point array are passed in as “geo”, “pts”, and “n”, the
number of points. These points are assumed to be in
counter-clockwise order around the face. This function
returns a pointer to the new face. */

pifObject *geo, *pts; /* pointers to geometry & points */

int n; /* # of points */

{

pifObject *1lines[], *face;

int i;

/* makeLinesFromPoint creates a line from an array of points and
stores them in the database */

9 lines = makelLinesFromPoints(geo, pts, n); /* create lines */

10 face = AllocPIFObject(l); /* allocate pifFace object */

11 face->type = PIF_FACE; /* face points to pifFace object */

12 face->pif.face.array = lines; /* create face from lines */

13 face->pif.face.direction = AllocPIFInt (n);

14 for (i=0; i<n; i++) /* set line orientation */

15 face->pif.face.direction[i] =":

16 pifCreate(geo, face);

17 return(face):;

18 };

W oy e W

Figure 5-8. Example function using the basic toolkit which creates a face from an
array of points.

Figure 5-8 demonstrates how this function is used to create a triangle. Line 3
reserves program memory for an array of three points. Next, each of the required fields
in points p[0] through p (2] are set. The makeFaceFromPoint s function is called

to create the face in line 9. For comparison, this example implemented with the PIF/

87

Gestalt toolkit using CommonLisp may be found in [79]. This function may be added
to the BPIF toolkit if it is frequently used, since the extended toolkit is intended to be a
growing library of “helper” routines contributed from BPIF programmers.

1 /* Example use of makeFaceFromPoints */

2 /* Assumes the geometry “geo” to which the face is attached
already exists */

3 pifObject p[3]:;

4 p[0).type = PIF_POINT; ./* create first point in memory */
5 pl(0]).pif.point.dimension = TWO;

6 p[0).pif.point.x=0; p[0].pif.point.y=0;

7 pifCreate(file, &pl[0]); /* create point in OCT database */
8 p(l].type = PIF_POINT;

9 pl(l).pif.point.dimension = TWO;

10 p[1].pif.point.x=10; p[l].pif.point.y=0;

11 pifCreate(file, &pl[1]):

12 p(2).type = PIF_POINT;

13 pl2]).pif.point.dimension = TWO;

14 p[2]).pif.point.x=5; p[2]).pif.point.y=5;

15 pifCreate(file, &p(2]);

16 makeFaceFromPoints(geo, p, 3); /* create face */

Figure 5-9. Creating a triangle using the makeFaceFromPoint s function.

5.5 Using BPIF in PROSE

BPIF is used by PROSE to examine the practicality of the object model and
toolkit functions within the setting of an environment for operating process and device
simulators. A BPIF package, consisting of the toolkit and PIF utilities, is used to store,
access, manipulate and view this data from a common database, as well as provide a
link to the ASCII PIF. Figure 5-8 shows the scope of the BPIF package
implementation. The shaded components are part of the OCT/VEM/RPC CAD
framework [57]. Three process simulators - SIMPL, SAMPLE, and SUPREM, have

88

been modified to use the toolkit. These tools were chosen because they represent
different types of six_nulators (analytical, topography, and thepnal), and therefore can
be used as a proving ground for experiments on BPIF. Circuit designers would also be
interested in the results since they the cross-sections are linked to the layout through

SIMPL.

Several PIF utilities are also included with the package. A BPIF parser and
writer links the ASCII and Intertool versions of the PIF. The writer is able to generate
ASCII PIF, and the parser can read in PIF files written by the writer. Although the
capabilities of this parser are limited, it does enable comparisons between the intertool
and ASCII PIF. These results are giver; in Section 5.6. A second utility is the BPIF
viewer translator. Cross-sections manipulated using BPIF are stored using BPIF Policy
within OCT and are not directly displayable by the VEM layout editor. The viewer
utility translates BPIF facets a form that VEM can display, i.e., OCT physical facets.

SIMPL-2 [6] has been modified to translate between its internal data structure
and the intertool PIF through the BPIF toolkit. Using this interface, any SIMPL-2
process function can be' applied to a BPIF cross-section. Two routines, simpl2bpif,
and bpif2simpl, have been added to SIMPL to accomplish this. The former builds
an internal data structure compatible with the PIF object model, and then makes BPIF
calls to store them in OCT. The latter performs the inverse process. In addition, the
commands within SIMPL have converted into OCT-RPC format and can be invoked
using RPC menus within VEM. This version of SIMPL-2, named SIMPL-RPC,
contains functionality similar to SIMPL-DIX with the additional ability to edit mask
layout and cross-section information. SIMPL-RPC is the interactive component of the
general PROSE manager described in Chapter 8. For each step, the current state of the

profile is read from the OCT database into SIMPL-RPC using the toolkit. After

89

completion of the process step, the resulting cross-section is written back into OCT,
translated by the viewer routine, and automatically displayed by VEM. Since a
common database is used, both layout and cross-section geometries can be displayed

simultaneously in the VEM editor.

The BPIF interface to SAMPLE uses the wrapper technique. Instead of
modifying the SAMPLE code, a translator operates between BPIF and the SAMPLE
output file. This has the advantage of leaving the SAMPLE binary intact, but the
disadvantage of requiring that all necessary data is stored in the savefile format. This is
the case for SAMPLE's string-based algorithms, e.g., deposition, etching, and
lithography. The sample2bpif and bpif2sample routines allow these algorithms to
be accessible from within PROSE. For example, Figure 5-10 shows a photoresist
profile generated by SAMPLE, stored in BPIF and viewed in VEM.

Figure 5-10. BPIF photoresist profile generated by SAMPLE.

The BPIF interface to SUPREM 1V also uses a wrapper. In this case, it is the
grids rather than strings that need to be translated between the two formats. The BPIEF

reads and stores these grids using the PIF_GRID attribute. Since VEM is string-based,

90

it can not be used to display raw BPIF grid information, but there are two other ways
that this can be viewed. String contours can be generated and displayed in VEM, or a

separate simple grid-viewer based on the SIMPL-DIX graphics routines can be used.

5.6 Performance

Measurements are taken on a DECstation 3100 workstation to determine the
relative data access and storage performance of the ASCII versus the Binary versions
of the PIF. The read and write access times, and storage sizes of three different types of
profile objects were tested: 10,000 point objects; a single object containing an array of
10,000 impurity values; and a DRAM bit-cell whose cross-section is shown in Figure

5-11. Results are summarized in Table 5-5.

Figure 5-11. DRAM bit cell used in the performance measurements.

91

10,000 Points 10,000 Value Array DRAM Bit Cell

Access Type | Read | Write | Size | Read | Write | Size | Read | Write | Size
ASCII PIF 3 1 400 1.5 0.5 140 <1 <1 43
Binary PIF 6 7 469 0.6 0.7 80 <1 <1 51

Table 5-3. ASCII and Binary PIF performance numbers. All times are in seconds,
and sizes are in kilobytes (Kb).

The 10,000 PIF point test is used to determine raw object storage and retrieval
performance. The ASCII PIF isjtwo times faster than BPIF for reading in an object,
and seven times faster in writing and object. This difference in performance is due to
the extra overhead imposed by BPIF on any object that is stored or access by the
program. The storage requirements of both are comparable at forty and forty-seven

bytes per point.

The 10,000 value impurity array test is used to determine speed and size
performance for large objects. In this case, BPIF is three times faster than the ASCII
_ PIF for reading the object, and a little slower writing it. Storage sizes range from eight
bytes per value for BPIF, to fourteen bytes for the ASCII version. When compared to
the point test, we can conclude that it is better to store a small number of objects that
are very large, rather than a large nﬁmber of small objects, since object access

overhead remains relatively constant.

For typical cross-sections, Binary PIF performance meets or beats the ASCII
PIF. For example, the DRAM bit-cell contains 575 points, two 450 point impurity
arrays, and additional information such as the definition of the tensor product mesh,
simulation window, and cut-line information. In this case, ASCII and Binary access
times are both under a second, and storage requirements are comparable. This test is
more reflective of real performance because it takes into account object organization

and access style.

92

In the ASCII PIF, all data must be accessed serially, while BPIF uses a tree
structure. Thus, BPIF can easily make up for the difference in raw access speed if only
a portion of the cross-section is used, which is usually the case. For example, a
SAMPLE deposition module needs only the top profile-string. With a simple analysis,
a rough performance comparison can be made. Assuming the “top-string” data
contains fifty turning points and is (on average) in the center of the PIF file, the total
number of objects that an ASCII PIF parser must read and search is fifty plus half the
number of objects in the file. For a single snapshot in BPIF, the average search through
a graph for the top-string is seldom more than ten objects; thus sixty total objects are
accessed. Assuming BPIF is three times slower than the ASCII PIF in access time, an

equation for relative practical performance can be stated as follows:

; TotalObjects
ASCII PIF —» ObjectsToRead + —_—

2 (10 + ObjectsToRead) x3 ¢— Binary PIF

TotalObjects
N

TotalObjects 2 260

50 2 (10+50) x3

Therefore, BPIF will be faster when there are more than 260 objects in the snapshot,
i.e., when the file size is larger than 10Kb. This performance gap increases with the

size and complexity of the cross-section.

Finally, a comparison was made to determine the relative times taken by BPIF
versus the OCT data manager. In this measurement, it was found that the creation time
for 10,000 OCT points was three seconds out of a total of seven seconds. This
indicates that access time is split about evenly between BPIF and OCT., These figures

are reasonable for this prototype and compare favorably to the performance of other

93

intertool implementations such as [79], which uses a relational database and is 100
times slower. An optimized BPIF implementation on a commercial object-oriented

database would increase performance by at least a factor of two.

3.7 Comparison with Other PIF Implementations

Toolkit performance and ease of programming are most important in BPIF. The'
toolkit offers adequate performénce in most one-dimensional and some two-
dimensional applications; some confidence of this fact is given by the examples. The
use of C-structures to access data within object instances, and a compact set of
functions to manipulate this data, has also made the toolkit relatively easy to learn and
use. However, BPIF lacks a formal, object definition that guarantees consistency
between PIF objects, and between the intertool and ASCI versions of the PIF. A
formal object definition is better addressed by a related Intertool PIF approach, PIF/
Gestalt [79], developed at MIT.

Besides PIF/Gestalt, two other PIF relatives deserve mention. The first is the

- representation used in Intel’s EASE system [36], which is a predecessor of the
intertool PIF. The rigid FORTRAN programming language and lack of a flexible
hierarchical file system such as UNIX made it difficult to extend this database, but
many of its concepts have been incorporated into the current intertool PIF. The second
is the wafer representation used in the VISTA system under development at TU-
Vienna [84]. This system makes extensive use of a modified PIF, both in intertool and
intersite forms, and has been successfully integrated the PROMIS process simulator
and MINIMOS device simulator. Through discussions among the groups working on
intertoot PIF, it is the hope that a single conceptual model and a standard interface can

be achieved in the future.

94

5.8 BPIF++

A logical step for BPIF is a toolkit implementation using an object-oriented
language and data manager. This extension has been made in a C++ version of the
BPIF toolkit, named BPIF++ [97].! BPIF++ improves on the original in three ways.
First, an object-oriented interface rather than C-structures are used to access the data
members, resulting in greater programming language independence through better
hiding of the data representation. This is important for future compatibility with the
SWR specification, which also ﬁses C++, and other languages that do not use C-like
structures, such as LISP and FORTRAN. Second, performance and simplicity are
increased by the eliminating the extra translation step previously necessary when
displaying the cross-section in VEM.Object policies are compatible between the
layout-editor and BPIF++. Third, BPIF++ maintains consistency between the in-
memory object and the persistent object stored in OCT. Except for opening and
closing the BPIF file, automatic OCT creation and manipulation makes the underlying

database virtually transparent.

The BPIF object and function definitions have been changed in BPIF++ to
track the evolving SWR standards. BPIF++ objects are very similar to BPIF objects,
with minor changes to follow SWR naming convention, BPIF++ geometry objects are
stored as OCT geometry objects ,and grid objects are stored as OCT properties. A list
of BPIF objects and their OCT counterparts are shown in Figure 5-12. Each time a
BPIF object is created, a corresponding OCT object is also automatically created, e.g.,
creating a BPIF++ vertex creates an OCT point. Object instance graphs for a BPIF++
file, and its corresponding OCT representation, are shown in Figure 5-13. The major

difference between a BPIF++ and BPIF graph is the redundant information stored in

1. Another name for BPIF++ is FPIF, which stands for “finalized PIF”.

95

the edge and face instances corresponding to the OCT edge and polygon instances.
Similarly in OCT, point information is maintained both in edges and polygons as well
as the point objects representing this data. The reason for this implementation is so that

VEM can draw the facet diréctly without additional translation.

BPIF++ Object OCT Object

file ; facet

layer layer

vertex point

edge edge

face polygon

gen generator

impurity property: real-array
window property: real-array
rectgrid property: real-array

Figure 5-12. BPIF++ objects and their mapping into objects in OCT physical
policy.

The BPIF++ implementation provides a variety of functions equivalent to the
BPIF low-level function library for accessing and manipulating instance graphs.
Specific functions rather than general ones are used. For example, a vertex v1 is
created using the command vl = new (container, x, y), instead of filling in
the fields for v1 and issuing the pifCreate command. The values for X and Y can be
retrieved using the getX () and getY () commands, e.g., xlocation =
v1l.getX(), or by accessing the member in the structure, e.g., xlocation = vl.x.

A summary of BPIF++ functions is shown in Table 5-2.

96

BPIF++

/; me\h

window
layer yer
\ . .
. Nm‘p‘mw
ge vertex vénex vertex vertex edge edge edge face

OoCT

cet

e ——Ta
property \
7 N

(o
property
7 mw
property

edge point point point point ge edge edge polygon

Figure 5.13. Example object instance graphs. The top graph is the BPIF++
representation, while the bottom graph is the corresponding OCT
representation.
Performance measurements of BPIF++ show a significant improvement over
BPIF, and are listed in Table 5-5. Point access is two to three times faster, while large
array access performance remains the same. BPIF++ file sizes are thirty to sixty
percent smaller due to the use of compact OCT structures rather than the larger general

PIF_STRANGER object type. The DRAM cross-section took under a second to read

and write, and was 25% smaller.

Translation routines between BPIF++ and SIMPL-2 were implemented to test
the practical usefulness of BPIF++. BPIF++2Simpl reads in an OCT facet and
converts it into the SIMPL-2 data structure. Simpl12BP IF++ performs the reverse
operation, the result of which can be graphically viewed in the PROSE environment.

97

Object Function Name Description
all create creates an object
attach attaches two objects
" print prints object information
printOct prints OCT version of object
~ delete object
getOct gets OCT version of object
file open opens an instance file
close saves an instance file
layer setName sets Jayer name
getName gets layer name
vertex getX, getY get X or Y coordinate value
changeX, changeY modify X or Y coordinate value
edge getVertex get array of vertices
getPntX, getPntY get array of points
count number of points
face getEdge get array of edges
getPntX, getPntY get array of points
gen gen create object generator
impurity getNumber get number of impurities in array
getData get impurity data
setName set impurity name
setData set impurity data
window getXmin, getXmax get X simulation window boundaries
getYmin, getYmax get Y simulation window boundaries
setVals set boundary values
rectGrid setVals set number of grid lines
getX, getY get number of X and Y grid lines
gelxArm, getyArr get array of X and Y grid lines
attribute createName, createRef, createDim create attribute
setName, setRef, setDim, setimp set attribute values
getName, getRef, getDim, gedmp get attribute values

Table 5-4. Summary of functions in the BPIF++ toolkit.

98

10,000 Points ' 10,000 Value Array DRAM Bit Cell

Access Type | Write | Read | Size (kb) | Write | Read | Size (kb) | Write | Read | Size (kb)

ASCII PIF 1 3 400 0.5 1.5 140 <1 <1 43
Binary PIF 7 6 469 0.7 0.6 80 <1 <1 51
BPIF++ 3 2 170 0.8 0.6 50 <1 <1 4

Table §-5. ASCII, Binary PIF, and BPIF++ performance numbers. All times are in
seconds.

The ability to use an object-oriénted programming style made it much easier to
implement these translators when compared to the translators for BPIF. The code size
for these translators was about 210 lines for Simpl12BPIF++, and 450 lines for

BPIF++2Simpl.

5.9 Berkeley Topography Utilities via the PROSE/SIMPL Interface

The Berkeley Topography Utilities (BTU) provide a set of functions for
manipulating geometric boundary information [72]. Functions such as stitch-back for
non-planar etching and string to grid translation are provided in this set of functions.
The SAMPLE/SUPREM 1V link makes use of these high-level functions in the stitch-
back of a SUPREM 1V profile into SIMPL-2 cross-section.

BPIF and BPIF++ currently do not have topography functions implemented
internally, but can take advantage of BTU functionality through the PROSE/SIMPL
interface. For example, out-diffusions can be performed using this link. The original
profile is generated by the SIMPL program and stored in OCT using BPIF++. The
diffusion step reads the BPIF++ profile into the SIMPL-2 structure, performs the
SUPREM 1V diffusion, and updates the mesh values using BTU functions. The
diffused profile is then saved back using BPIF++.

99

5.10 Interoperability

When two programs are tightly coupled and have a h_igh communication
bandwidth between them, they are said to interoperate. For example, oxidation and
diffusion algorithms interoperate since the two processes intimately depend on each
other during each time step. In this section, the potential of BPIF for handling separate
modules that need interoperability is evaluated through two examples - two-

dimensional oxidation/diffusioﬁ and three-dimensional deposition.

A typical oxidation step typically uses 5000 node points in the grid due to
equation solver limitations. Using BPIF++ performance figures, point write time is 0.4
seconds and read time is 0.3 seconds for this case. Assume that there are ten scalar
attributes such as position, velocity, stress, and impurity doping at each point. If each
attribute is stored as an array, it will take three seconds to read and four seconds to
write. Therefore, the communication time for one tool is seven seconds per step. With
oxidation and diffusion tools working together, the total transfer time is fourteen
seconds per step (see Figure 5-14). If a one hour oxidation requires an exchange of
information every fifteen seconds, the total time spéht transferring data between the
tools would be about an hour. If the total computation time required is also an hour,

BPIF++ interoperability overhead is about 50%.

BPIF++ interoperability performance for three-dimensional topography is
similar. For example, in the three-dimensional SAMPLE-3D, about 2,000 triangular
elements (4,000 edges) and 1,000 points are used in the gaussian etching simulation of
a surface corner [98]. The total number of BPIF++ objects is therefore 7,000 (2,000 +
4,000 + 1,000), which takes 1.4 seconds to read and 2.1 seconds to write. To exchange
this data between a movement/visibility calculation module and a regularization

module would require seven seconds (2 x (1.4+2.1)). If 50 regularization and 300

100

Module Read: 3 sec Read: 3 sec e

Write: 4 sec Write: 4 sec

BPIF++

5000 grid points
10 scalar attributes
(oxide material)

Figure 5-14. Oxidation/diffusion interoperability example. Each transfer between
the two modules takes about one second.

movement steps are required, then the total time spent moving the data around is forty
minutes (7 seconds x 350). A typical SAMPLE-3D run takes twenty minutes, so-‘\e
forty minute interoperability (200%) overhead is not acceptable, except for possibly
accessing a computationally intensive dé-loop algorithm that requires a smaller
number of data exchanges, such as [99]. For instance, if ten de-loop calls are required
for the simulation described above, then the exchange time using BPIF++ would be
140 seconds (2 x (7 seconds * 10)). This is only twelve percent of the total simulation

time.

5.11 Conclusions

Three years of experimenting with the PIF wafer representation philosophy has
uncovered many TCAD requirements and issues in the areas of direct program access,
database support, and visualization. These items have been addressed in the BPIF

implementation. In the Intertool PIF style, BPIF consists of a library of functions that

101

TCAD programs may use to create, access, manipulate, and store objects using objects
defined similarly to the textual PIF. During this time, this work has evolved from a C-
language interface in the original BPIF to an object-oriented, C++ interface named

BPIF++,

BPIF is a prototype toolkit that explores the feasibility of intertool PIF usage
within a TCAD environment, PROSE, and is driven by the needs of tools.
Performance and ease-of-use requirements of the toolkit have been confirmed through
the development of a BPIF package used within PROSE, which connects the SIMPL,
SAMPLE, and SUPREM process simulators. BPIF is similar to other PIF-like

implementations and efforts are being made to unify the different approaches.

An object-oriented version of BPIF, named BPIF++, has been defined and
implemented. BPIF++ objects are stored in OCT, and a set of C++ functions is
provided to manipulate these objects. BPIF++ improves on BPIF in p;i-formance and
ease of use. Consistency is maintained between in-memory and database objects, and
objects follow the SWR programming interface style. A targeted use of BPIF++ is to
support data transfer between modules that interoperate. Interoperability performance
for BPIF++ is plausible for solving oxidation/diffusion problems in two-dimensions,
and reasonable for special cases in three-dimensions, such as the computationally
expensive de-loop procedure. The BTU topography toolkit can also be linked into
PROSE by BPIF++ and SIMPL. The advantages of BPIF++ make it the representation

of choice for future PROSE development.

102

6
Coupling TCAD and IC Design CAD

A coupling between TCAD and IC CAD can be a potent combination in
advancing the capabilities of CAD. It can foster increased understanding for both the
circuit designer and technologist, and create powerful new applications that make use
of both mask and wafer data. This chapter describes the philosophy behind the TCAD/
IC CAD coupling, several potential applications, and PROSE’s contribution of wafer
and phase-shifting mask data and applications to the OCT/VEM/RPC CAD

framework.

Section 6.1 describes the need for a TCAD/IC CAD coupling. Examples of
several potential applications of this link are described in Section 6.2. Section 6.3
discusses how PROSE adds TCAD components to the OCT/VEM/RPC CAD
framework %o achieve a unified environment. Section 6.4 uses SIMPL as an example
to explain how new applications can be easily added. Section 6.5 summarizes the

chapter.

6.1 Introduction

In the past, CAD for technology (TCAD) and CAD for design (IC CAD) have
been treated as separate disciplines in both industrial and academic research groups.
Designers created circuit and mask designs based on “magic” technology paraméters
supplied by technologists in the form of circuit models and layout ground rules.
Technologists had little need for IC CAD because the TCAD did not really need

anything more than simple mask configurations such as lines and elbows. The

103

situation today is different due to more aggressive designs and technologies. Circuit
designers and technologists must work together to balance design and technology

considerations that transcend traditional boundaries.

Coupling IC CAD and TCAD can significantly raise the level of
communication between designers and technologists by improving understanding,
knowledge transfer, and model accuracy. First, a combination IC CAD/TCAD system
can answer designers’ technology questions by providing device cross-sections and
circuit models for a particular layout situation. Second, this system can speed up the
transfer of design and technology data by automatically updating circuit and layout
models within both systems, rather than relying on human transt"ers through files or
written memos. Third, the system can take advantage of more sophisticated models.
For instance, parasitic values can be extracted using TCAD tools and passed to the
circuit simulator, rather than relying on an average resistance per unit length value.
BCAD tools, on the other hand, can use typical mask sections of the real design rather
than test pattern geometries. The main types of data that are exchanged between IC

CAD and TCAD were presented in Figure 1-3 and are reproducéd in Figure 6-1.

There are also synergistic effects in the development of TCAD and IC CAD
tools. Infrastructure and utilities can be shared among tools to display and edit cross-
section and layout information, store this data, and manipulate this data. For example,
the VEM layout editor and OCT data manager are used for editing and storing both
mask and wafer information in PROSE. CAD layout editors contain set operations for
manipulating masks, that can, if represented similarly, be applied to cross-sections for
merging geometries. Simulated annealing algorithms can be used for optimization

problems in both areas, such as cell placement in CAD and image optimization in

TCAD.

104

ICCAD

ground rules mask layout
device models
device parasitics mask topology
layout cut-line
Process
Device
TCAD

Figure 6-1. Information exchanged between technology CAD and IC Design CAD
(or EDA) environments.

6.2 Examples of Potential Applications

ATCAD/IC CAD link has many potential applications from both the design
and technology points of view. In this section, several examples of each type are given,

as well as a phase-shifting mask example that uses both views.

6.2.1 Designer’s Point of View

From the designer’s point of view, having a tool that can reach from synthesis
to layout to process and device simulation in TCAD opens the door to many new
applications. Ideally, this “CAD Microscope” allows designers to “see” not only mask

layout, but also cross-section, device, and manufacturing views of the wafer (see

105

Figure 6-2). In addition to educating designers on these new views, the microscope
can also help in the improvement of circuit models and the understanding of design-

rules.

IC CAD
TCAD

1.Gate Mask
CIM 2.Source/Drain

Implant
3.Metallization
. S

Figure 6-2.The conceptual CAD Microscope. By inspecting an area in the mask
layout, the user would be able to generate the TCAD cross section, device
simulation, and manufacturing process flow information.

Layout editors generally present a conceptual view of the mask patterns, which
can be quite different from the images incident on the actual wafer. These differences,

predictable by TCAD, result from the diffraction effects of li ght, the imperfections of

106

the optical imaging system, and the non-planarity of the wafer. The ability to view
patterns based on these parameters can play an important role in understanding mask

printability and defect tolerances.

Viewing cross-section data graphically within the layout can also be a very
powerful tool for understanding design rules. The number of design rules has
increased dramatically from 30 rules for a 5 micron, 6 mask DRAM process to 100
rules for a 1.5 micron process Qith 13 masks [100]. Rules were meant to be broken,
and the best designers are the ones who know when to “break the rules” to get the most
out of a technology. A cross-section display tool built on the integrated IC CAD/
TCAD system can help both amateur and expert designers decide how to trade-off
design rules for space and/or performance by quantifying the consequences. For
example, a metal-to-metal spacing design rule can be important in avoiding sharp
corners that cause reliability problems, but the difference between an acceptable or
unacceptable angle is dependent on device topography. With a graphical interface,
verification of a mask configuration can be achieved simply by viewing the cross-

section and identifying the most critical angle [27].

Model accuracy can be improved by accounting for TCAD results in the circuit
simulation loop. For instance, layout-driven device simulation can provide better
models to the circuit simulator as well as provide device sizing information. The same
ideas can also be used for parasitic resistance and capacitance elements, which can be
calculated more accurately based on layout when compared to the simple unit length
and width approach. This can be particularly important in cases with severe

topography, where the actual resistance can be three times greater when compared to

the planar case.

107

6.2.2 Technologist’s Point of View

From the technologist’s point of view, having a tool that can reach from
process simulation, process integration to layout, terminal conditions and circuit
perfofmance opens the doof to other classes of new applications. Looking through the
microscope in reverse allows a broad view of the entire context of product design.
Thus decisions in developing uhit processes, integrating processes, predicting yields, .
and making the process manufacturing worthy can be made in the overall context of

the products.

The lithographer and mask maker in establishing a base line process can, for
example, examine the kinds of patterns which will be required to hold critical size.
The process integrator will be able to examine area and speed penalties from various
metallization step-coverage approachs to decide which technology to pursue.
Equipment modelers in predicting tool yield impact will be able to realistically assess
interaction of defect size distributions with the variation in circuit vulnerability as a
function of defect location in the layout design. Manufacturing support will be able to
anticipate préblems caused by device context issues such as problems in alignment
signal quality variations due to subtle film thickness changes, or resist notching due to
reflections from device topography. The entire design team will benefit from being
able to assess worst case scenarios from diverse factors such as changes in circuit

loading, layout hedges, tools, materials and process conditions.

6.2.3 Phase Shifting Masks

Phase-shifting mask design is singled out to illustrate in detail the TCAD/IC
CAD link because it has a strong dependence on both design and technology. Using
alternat:i;lg (0 and 180 degree) phases of light passing through transparent features

allow much closer packing of mask patterns. The higher density for the same

108

lithography tool results in potential feature-to-feature interactions for every pattern on
a mask. These local effects are linked with global effects as the routing causes
different phase assignments over the entire chip, since the coénputation time needed by
the TCAD imaging tools is not practical for large chips. These tools depend on
guidance from IC CAD for selecting the critical areas that require detailed simulation.
Local simulations may also identify areas where the global view is affected. This co-
dependence forms an iterative loop where trade-offs due to both IC CAD and TCAD
constraints must be considered. A phase-shifting mask analysis and design tool, using

both global IC CAD and local TCAD tools, is described in Chapter 7.

6.3 Coupling TCAD and IC CAD in PROSE through a Framework

One of the main goals of PROSE is to explore the coupling of TCAD with IC
CAD. PROSE is well positioned to do this because is built to be an application under a
general CAD framework. The chosen framework is OCT/VEM/RPC [57], which is
designed to support a variety of IC CAD tools. It does this by providing uniform user
interface, database, and communications facilities that CAD applications can make

use of,

6.3.1 City Analogy

The infrastructure that a framework provides is analogous to the infrastructure
provided by a city. Like the TV station, library, and highways of a city that attract
skilled workers and businesses, the framework concept encourages tools to work and
live together by supplying the basic CAD infrastructural components necessary for
tool operation. In Figure 6-3, t he OCT/VEM/RPC CAD framework provides the
infrastructural components such as the database (library), user interface (TV station),
and intertool communications (highways) necessary to support a “city” of CAD tools.

This infrastructure can also support new suburbs, such as a TCAD framework, which
109

will in turn build new infrastructure. In PROSE, TCAD specific representations and
design functions are added to enhance the overall framework for TCAD and IC CAD

tools.
. /..-' ! Y .\'
T : DSP:]
TV | L
Station o @ g
P [-
§ (VEM || & g
8 User
o -E Interface) L
0 10rary
2 |z (oCT TCAD
s |8 Database) Highway
(RPC Communications)

IC CAD

Figure 6-3. The OCT/VEM/RPC CAD framework provides the infrastructural
components necessary to support a “city” of CAD tools and outlying suburbs.
In this example, the downtown area is IC CAD, TCAD is a major suburb, and
the metropolitan area is CAD, which includes other suburbs such as automatic
digital signal processing synthesis tools.

6.3.2 OCT/VEM/RPC
The OCT/VEM/RPC CAD framework was developed in 1986 to support the

IC CAD tools at UC-Berkeley. Since that time, there have been four releases of the
Octtools, which contains the framework and the over fifty IC CAD tools that use it.
Logic synthesis, placement, and routing tools are examples of applications that had

traditionally used these framework facilities.

110

The framework is divided into three components: the OCT data manager, the
VEM layout editor, and the RPC communications facility. OCT is a persistent object-
like database for IC CAD information. Physical mask layout., symbolic “sticks” mask
layout, and circuit schematics are the main views that OCT represents. OCT function
calls enable applications to access these objects, which are stored in a graph structure.
VEM is an X-Windows application that allows one to visualize and edit OCT data
through a full-featured layout e&itor. Different functions are available in VEM,
depending on the view being edited. For instance, one can add, delete, and change
points, edges, and polygons when editing masks in the physical view, or add gates in a
schematic view. The OCT Remote Procedure Call (RPC) mechanism allows OCT and
VEM functions to be transparently called over different machines. This makes it
possible to have a uniform interface between VEM and a designated remote
application by enabling the application to take advantage of the menu, control, and
query interfaces supported by VEM. Even if the application resides on a different

machine, RPC still makes it appear to be a subroutine in VEM’s address space.

Two of the framework’s strongest features are its ability to represent, display
and control multiple views of the design, and to allow user-supplied applications to
operate on these views across different machines. An example of an integrated IC
CAD application is shown in Figure 6-5. Three OCT facets representing different
levels of design abstraction have been opened within VEM: the mask layout of a gate;
a circuit diagram of a decoder; and an output driver cell schematic. The layout editing
functions in VEM are used to coordinate the viewing and editing of these facets. An
RPC application can also be dynamically associated with a view to add additional

functionality to the editor. These applications can be user-defined and require no

111

changes to the VEM source code. For instance, the layout of the gate might call on an
interactive design rule checker, while the output driver may be linked to a timing

simulator contributed by another user.

VEM
Layout Editor
and Shell

! Rule
Checker

Timing
Simulator

Figure 6-4. The VEM shell allows multiple views that are stored in the OCT
database to be edited and controlled. User supplied applications, such as a
design rule checker and timing simulator, can be added to the system through
the RPC mechanism.

6.3.3 PROSE TCAD Additions to OCT/VEM/RPC

PROSE makes a new class of TCAD representations and applications available
through the OCT/VEM/RPC framework. These additional capabilities are shown in
Figure 6-5. The Binary PIF enables cross-section wafer data to be represented in OCT
and accessed through the BPIF toolkit. Mask layers can also be either of single or

multiple-phases, with the the latter being for phase-shifting mask applications. Both of

112

these new views can be displayed as in VEM in addition to its standard views. Process

simulation and phase-shifting mask applications have been linked to the framework by

RPC.

PROSE Added Representations and Applications

Process
Simulators

Phase Shifting
Mask Toolkit

VEM
Layout Editor
RPC Cross Section Editor
and Shell

RPC

Phase
Shift Mask

Figure 6-5. PROSE couples IC CAD and TCAD by adding TCAD cross-section
and phase-shifting mask views, as well as process simulators and a phase-
shifting mask toolkit, to the OCT/VEM/RPC framework.

Most of the CAD microscope concept discussed in Section 6.2 has been
realized through the PROSE extension with OCT/VEM/RPC, which implements a
dual TCAD/ICCAD system. Users have access to circuit desi gn, mask layout (both

113

regular and phase-shifting masks) and wafer profile information. Users can
indiscriminately make use of all three types of data from single or multiple

applications.

6.3.4 Storing TCAD Information in OCT

Wafer, mask, and cut information is stored in a PROSE design directory that
can be accessed through a uniform set of OCT and Binary PIF function calls. This is a
significant improvement over current environments such as SIMPL, which only
loosely associate mask information with the cross-section.! The pooled database links
mask layout areas with cross-section areas through the cut (see Figure 6-6). This
allows for TCAD programs to query which mask is associated with a particular cross-
section, and IC CAD programs to ask a cross-section view of a particular mask. By

extending this association, circuit models and parasitics can also be included.

Cutl

Cut2

Figure 6-6. Each mask may have many cross-sections associated with it. These
are determined by the different cut-lines.

1. In SIMPL-IPX, the cut, and the mask segments associated with the cut, are stored with the cross-sec-
tion, but the mask itself is not linked. Inconsistencies can arise when the mask is modified because the
cut and mask segments are not notified of this change.

114

PROSE implements each design as a UNIX directory consisting of four sub-
directories called views, one each for the physical mask, cross, cut-line, and cuts on the
mask (see Figure 6-7). Each sub-directory in turn contains a‘coments facet and an
optional interface facet, which are UNIX files. The contents facet holds the actual data,
while the interface facet provides an abstraction of the data for tools that may only
need a subset of the view’s information, e.g., the boundaries for a cell. The mask view
(also called the physical view) contains the geometric shapes of the mask and optional
parasitic values associated with each geometry. The cross view holds the device cross-
section and is accessible by the Binary PIF. The cut-line view contains the location of
the cut-line across the mask. The cuts view saves the one-dimensional openings

associated with the cut-line for the particular mask set (see Figure 6-8).

Mask gy, contents;

interface;
Cross contents;
— interface;
MyDes1gn
contents;
\ Cutline —» interface;
contents;
technology facet Cus — interface;

Figure 6-7. Organization of mask, wafer, and cut information for a PROSE
design.

6.3.5 Editing TCAD Views in VEM

The VEM editor provides a uniform user interface for both IC CAD and TCAD
applications, eliminating the need for the user to switch between two different

interfaces. Mask editing is accomplished using standard VEM physical-mask

115

Figure 6-8. One-dimensional mask openings are saved with the cuts facet.

commands as described in [63]. Polygon cross-section editing is accomplished in
exactly the same manner in VEM, but the results are stored in a BPIF wafer view. As
previously described, masks and cross-sections are associated by the cut. Users can
ask for a particular cross-section by drawing a two-dimensional cut-line across the
mask and invoking a menu command to view the cross-section. If one already exists, it
is displayed. Otherwise, the cross-section is generated by the TCAD Manager either
interactively or through batch processing. The interactive interface is demonstrated in
Section 2.5, and uses the same editing style. Users can also open a cross-section and
query for the associated layout. In this case, two layout views are displayed: the mask

and cut-line and the one-dimensional mask cuts.

6.3.6 Communicating with RPC

In PROSE, the TCAD Process Manager (or just “the manager”) and Phase-
Shifting Mask Toolkit described in Chapter 7 are implemented as RPC remote

applications to VEM. These applications have access to all VEM user-interface

116

facilities including: (1) deck-of-cards menus; (2) dialog boxes; (3) graphical
“pointing”; and (4) console input commands. These facilities are explained in the

context of the TCAD Interactive Manager.

The deck-of-cards main menu of the manager is created through a C-structure
that specifies the names that will appear on the menu and the corresponding routines
that will be invoked. When the manager needs more information from the user, it can
use dialog boxes, such as thoseAshown in Figure 2-10, to query for additional
parameters. Graphicai “pointing” capabilities can also be used in cases where menu or
textual entry is cumbersome. An example of how the manager uses this feature is in
identifying the mask required for an exposure step. In this case, The user can point to
the mask in the layout window rather than typing in the mask name. Commands from
the user can also be typed directly into the VEM console window, which passes the

command to the manager.

-4
6.4 Using and Creating a New Application

The procedure for using PROSE in the framework is as follows. After the
VEM shell is started, the user can open an OCT facet, e.g., the cross-sectional view of
the device, by typing its name into the VEM console window. The PROSE RPC
application, e.g., an modified process simulator such as SIMPL modified to use the
RPC functions (SIMPL-RPC), is then invoked. This opens an RPC connection
between VEM and SIMPL that allows data to pass between VEM, SIMPL, and OCT.
User input is entered into VEM, which then directs it to SIMPL if appropriate. Wafer
and layout data are passed between SIMPL and OCT through VEM. Any changes to
the facet are also updated in the VEM graphical view. When the application is finished,
the RPC connection is broken and full control returns to VEM. Each wafer cross-

section can run a different RPC application, but no more than one application can be

117

running at any time in a facet. All internal VEM functions remain accessible even
when there is an RPC application running, so capabilities such as geometry editing,

cell hierarchy querying, opening new windows, etc., are can also be used.

New applications can be easily added to PROSE to take advantage of the
features described above. Converting an existing program that uses BPIF and/or OCT
calls into an RPC application involves two major modifications and one minor one.
The major changes are the modification of the “main” routine of the program to
initialize the RPC link, and the modification of routines to use a “callback” setup. The
minor change involves using the RPC library rather than the OCT library during
program compilation. A tutorial on adding new RPC applications can be found in the

RPC Programmer’s Guide [101].

The SIMPL program demonstrates how a simulation program can be modified.
First, the main routine in SIMPL is chanéed to SIMPLMain and a UserMain routine is
added. The UserMain routine is éall:d when the RPC application is invoked by VEM.
VEM passes this information about the facet, mouse location, and status that led to its
invocation. SIMPL calls on its initialization routines, e.g., the routines originally in
SIMPLMain. If there is no cross-section in the facet, SIMPL creates one by asking the
user for the substrate background doping and making BPIF calls to create it. If a cross-
section exists, then it is read into the SIMPL data structure. When the initialization is
complete, SIMPL retumns control to VEM with a pointer to the menu entries and the
associated routines that are called when the user selects that entry. For example, if the
deposition command is selected, the rpcSIMPLDepo routine is invoked. This routine

~ 1s shown in Figure 6-9. RPC menus prompt the user for the deposition type and

118

parameters, such as the material to be deposited, the deposition thickness, and the
deposition model to be used. The SIMPL deposition function is then called, the cross-
section is modified internally in SIMPL, and the data is written back into OCT.

If a tool uses BPIF, then it is extremely easy to convert it into an RPC
application. One week’s time was needed to switch SIMPL from the textual interface
over to the RPC graphical interface. The most time consuming aspect of the

conversion was to write the user dialog menus for each of the callback functions.

6.5 Summary

One of PROSE'’s greatest strengths is its ability to couple tools and data
between both IC CAD and TCAD worlds. This coupling has many new potential
applications from both the designer’s and technologist’s viewpoints. PROSE adds
TCAD components the OCT/VEM/RPC framework, implementing the IC CAD/
TCAD link. The result is a system where mask layout (regular and phase-shifting) and
wafer information, and the tools that support them, are seamlessly presented usidg
uniform user interface, database, and communications mechanisms. Implementing
" new applications in this integrated environment is easy, as demonstrated by the
conversion of the SIMPL program. This component of PROSE has been shown to
meet the needs of an integrated IC CAD/TCAD system.

119

/*** rpcDepo - SIMPL deposition example **%*/
/* define deposition type menu shown in Figure 2-10 */
dmWhichItem depotype(] = {
{“*anisotropic”,0,0},
{“*isotropic”,0,0},
{“vertical”, 0,0},
{“*spin-on”,0,01}};
/* define deposition parameter menu shown in Figure 2-10 */
dmTextItem depoitemsvert[] = {
{*material name”,1,20,”POLY”,0},
{“thickness”,1,10,”1”,0}};

int rpcDepo (spot, cmdList, uow)

RPCSpot *spot; /* where the mouse is */
lsList cmdList:; /* params on VEM command stack */
long uow; /* user option word (not used) */

{
/* create depotype menu and wait for response, returned in “num” */

if (dmWhichOne (“DEPOSITION TYPE”, 4,depotype, &num, 0, help-
String) == VEM_NOSELECT)

return (RPC_OK) ; /* return if no selection */

/* vert. deposition - ask for parameters, returned in depoitems */

if (dmMultiText (“DEPOSITION PARAMETERS”, 3,depoitems) == VEM -
NOSELECT)

return (RPC_OK) ; . :
/* all answers are strings; convert thickness to floating point #
*x/

thickness = (float)atof (depoitems[1].value);
VEMMSG (“"Running Deposition...”);
bpifpp2Sim(spot) ; /* read BPIF++ wafer into SIMPL */
/* perform SIMPL vertical deposition */
SIMPL_Deposition (depoitems(0].value, thickness, spin);
sim2bpifpp (spot,cmdList,uow); /* write back into BPIF++ *x/
VEMMSG (“done!\n”) ; /* report to user that we’re done */
return (RPC_OK) ; } /* notify VEM that we’re done */

Figure 6-9. A code fragment of the SIMPLdepo function showing how an
elementary SIMPL vertical deposition step is performed on a BPIF++ wafer.
The depotype menu structure creates the selection menu shown in Figure 2-10.

120

7
PROSE for Phase Shifting Masks

A particularly challenging example that highlights the need for a TCAD link to
IC CAD is the phase-shifting mask application. Using this technology, features can be
spaced more closely by using alternating phases of light passing through transparent
areas, resulting in higher resolution patterns using current generation lithography
equipment. This chapter describes a PROSE Phase-Shifting Layout Toolkit,
nicknamed PLUTO, that implements a phase-shifting mask CAD system. PLUTO
contains an automatic analysis tool for determining the phase-shifting viability for a
particular design and a toolkit for designing phase-shifting masks within the layout
editor. These tools are applied to the periphery circuits of a 16Mb dynamic RAM
scaled for 64Mb rules using phase-shifting technology.

Section 7.1 introduces the phase-shifting mask problem and the architecture of
the PROSE implementation. Section 7.2 introduces the goals the PROSE phase-
shifting mask implementation. Major phase-shifting mask components are described
in Section 7.3. The analysis tool is discussed in Section 7.4, and the interactive toolkit
in Section 7.5. Section 7.6 investigates a 16Mb DRAM using the tools and is an
adaptation of material published in the 1991 Intl. Electron Devices Meeting Technical
Digest!. The advantages of a symbolic layout approach are described in Section 7.7. A

summary of this chapter is presented in Section 7.8.

1. A.S. Wong, et. al, “Investigating phase-shifting mask issues using a CAD toolkit,” Intl. Electron
Devices Meeting, Washington D.C., Dec. 1991 [102).

121

7.1 Introduction

Phase-shifting mask technology has recently become more than just a novelty
due to its potential for increasing resolution using current-generation lithography
equipment as well as extending the ultimate limits of optical lithography. CAD tools
for phase-shifting masks have not been developed in a large part because of the
difficulties in linking global IC data and tools with local TCAD analysis mentioned in
Chapter 6. This section gives some background of phase-shifting mask technology and

proposes an architecture for a phase-shifting mask CAD system.

7.1.1 Levenson Phase Shifting

Emerging phase-shifting mask technologies have the potential of creating more
compact designs at the small cost of a few additional passes in writing the masks. First
proposed by Levenson for projection printing in 1982, this technique uses opposite (0
and 180 degree) phases of light so that features can be more densely packed [103].
This alternating approach is particularly aitractive because the spill-over of light
between transparent areas that would normally add can now be subtracted, allowing
features to be placed closer together. Image contrast can also be increased and defocus
effects can be reduced; leading to a smaller printable feature size. Figure 7-1 compares
the phase-shifted and non-phase shifted case for an alternating line and space pattern.
The final intensity incident on the phase-shifted wafer has higher intensity and
therefore better resolution. Other phase-shifting techniques such as the use of rims
[104], outriggers [105], and a chromeless technique [106][107], might also be

included in the toolkit but are not addressed here.

122

Normal Mask Phase-Shift Mask

SOOI D LIOIEIIINRL LA AR QAR RN AP

Increased intensity due to proximity effects
which cause constructive interference.

& a
htensm M
/

Null due to destructive interference.

Figure 7-1. Phase-shifting masks can increase image intensity, contrast, and
therefor feature density by using opposite phases of light. Intensity is
proportional to the square of the electric field.

7.1.2 Arcﬁitectur‘e

Ultimately, one would like to have a phase-shifting mask CAD system that can
automatically translate a traditional, single phase design into a phase-shifted one that
uses less area, while maintaining the same printability as the original mask (see Figure
7-2). A possible flowchart for accomplishing this task is shown in Figure 7-15. The
first step determines the amount of shrinkage that can reasonably be achieved using
phase-shifting mask techniques. This factor can either be set a priori by the designer
who requires a specific shrinkage amount, or can be based on constraints such as
image contrast and intensity. Next, each mask region is phase-shifted by the chosen
approach, e.g., alternating line or rim shifter. A design-rule checker (DRC) then checks
the new design for violations. These violations are corrected, possibly resulting in a

different global phase assignment or even a different shrink factor. The proposed

123

flowchart is only one of several possibilities. For example, phase assignment can occur
before shrinkage to allow for different shrink-factors to be used for different phases.
This has the disadvantage of not providing the phase assignment mechanism with data
about the shrink. A local feédback loop between these two steps may therefore be

necessary.

Phase-Shifting
Mask Synthesizer

Figure 7-2. The ideal automatic phase-shifting mask system takes a regular mask
as input, and magically produces a phase-shifting mask.

Theoretically, one would like to use detailed TCAD analysis to solve for or
optimize the entire chip through image simulation. Realist-ically, several constraints
make this level of analysis infeasible. Computation time increases as the fourth power
of the area, and storage requirements are proportional to area. A practical example is
the SPLAT program, which uses transmission cross coefficients to compute the areal
image [108]. SPLAT requires ten minutes and forty seconds to compute the image of a
0.8 A/NA sized contact hole in a 5 A/NA by 5 A/NA region on a Sun 4/280 [109]. The
non-linear relation between the mask geometry and the image at the wafer also
requires optimization algorithms to compensate the mask pattern using non-linear
optimizers. Even using simulated-annealing techniques, thousands of SPLAT runs are

necessary for optimizing a twenty-by-twenty array of pixels [110].

124

Initial Design

|

- Initial Shrink

|

- Phase-Shift Masks

|

Check Phase Shifting
Design Rules

T .
-
[ves

For Each Violation:

1. Extract Area
- 2. Correct Area by Shift .
or Replacement

Y

Result
and Violation Data

Figure 7-3. Phase-shifting mask synthesizer flowchart.

Trade-offs between detail versus size must be made. The inclusion of IC CAD
can relieve this problem by applying rule-based phase-shifting diagnostics at a global
level, and calling on TCAD only in instances where design rules need to be established
for new patterns. Using this global/local division, the IC CAD and TCAD components
required of such a system are shown in Figure 7-4. In addition, several components,

such as a user interface and manager, must span both environments.

125

IC CAD/TCAD Components
User Interface
Manager
Database
Feedback Control
IC CAD Components::
Multi Phase-Mask Layout
D:ds 180 Hlefa.rchy TCAD Components:
ask Resizing .
Global Mask Phase Assignment . Lithography Tools .
Design Rule Checker Scaling & Moven?ent Detcm'nnatlon
Violation Statistics Recorder Detailed Region Correction
Region Extraction and Replacement
Compactor

Figure 7-4. Requirements for a two-level phase-shifting mask system using both
TCAD and IC CAD.

7.2 PROSE Implementation Goals

The goal of the PROSE implementation is to develop the major components
necessary for a phase-shifting mask design system that uses both global ICCAD and
local TCAD information. Four major components were built to perform automatic
phase assignment, design-rule checking, mask area capture and extraction, and phase-
shiftability analysis. Phase assignment uses a global recursive algorithm to assign
opposite phases to neighboring mask shapes. The design rule checker can flag
minimum space and width requirements for layers of dift:erem phases and shapes.
Small sections of the global mask can be extracted from the layout for local analysis,

redesigned, and replaced. An analysis tool uses design rule violation information to

126

	ERL-92-27 (1 of 3)
	ERL-92-27 (2 of 3)

