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Abstract

An algorithmic-level representation for thebehavioral specification of digital systems is pre
sented. The primary goal of Data-flow/Event Graphs (£>£-Graphs) is to provide support for
complex control specification and interfacing, thus making it well suited for control-dominated,
digital systems. DJS'-Graphs express in a single formalism the behavioral elements of timing,
control, and data-flow. This unified representation supports complete design specification and
encourages the use of formal methods for design synthesis and analysis. The primary purpose
of this memorandum is to document the DE-Graph formalism for use in on-going research in
algorithmic-level specification and synthesis.

1 Introduction

A specification is a complete, codified description of the behavioral andstructural properties and
components of a system. "Complete" in that it contains all relevant details pertaining to the
correct operation of thesystem. A specification iscodified using a model, ordesign representation.
Design representations are useful and necessary for anumber of design process activities including:
design exploration and estimation, synthesis, verification and analysis, and documentation. The
fundamental primitives of arepresentation define atomic behavioral and structural components and
arethe semanticcarriers ofaspecification. The type ofprimitives useddefinethe abstraction level of
the representation. An abstractionis a simplifiedrepresentation of the behavioral and/orstructural
properties of a system in order to facilitate a different, usually higher level of comprehension.
This simplification occurs through a restricted choice in primitives—only those primitives that
provide new and useful meaning to the representation are included. Intuitively, the usefulness
of a representation is very dependent upon the appropriateness of each of its primitives towards
accomplishinga particular task (e.g. synthesis, verification, etc).

An algorithmic-level design representation suited to the specification andsynthesis of control-
dominated, digital systems ispresented inthismemorandum. Thealgorithmic-leveldesign abstrac
tion expresses timing,control, anddatapath properties andfunctionality asatemporal sequence and
data-flow interconnectionof behavioraloperations. Control-dominated architectures, as the name
implies, emphasizeandcontainmost of the designcomplexity in theircontrollers rather than their
datapaths. Controller complexity arises due to synchronization, timing constraints, asynchronous
behavior, anddistributed, concurrent behavior. Control-dominated systems belong to the class of
reactive and real-time systems—systems which maintain a high-degree of interaction with their
environment [3]. Reactive systems also include signal processing applications which are distin
guished from control-dominated designs by theiremphasis on arithmetic computation. Although
some potentially useful abstractions for such applications are not defined in the Data-flow/Event
Graph representation, specification of complete, digital systemsdemands thatcomputational aswell
as controlbehaviors be supported. Thus, all threeelementsof algorithmic-levelbehavior—timing,
control, and data-flow—must be addressed in the representation.

Traditionally, algorithmic-level hardwarerepresentations haveseparated theelementsoftiming,
control,anddata-flow into separate domains,either throughhierarchy [24,27,13], context [29,19,
10],or by emphasizing only one or two ofthe elements [21,11,12,17,4,16,1,32,20,23,14,6,30].
Each approach provides advantages relating to its completeness in specification, complexity of
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verification, or optimally in synthesis. The majorityof design representations have focused on
either the timing and control aspects oron thedata-flow aspects of the specification. The former
representations are often referred to as state-based formalisms [3] and the latter as data-flow
formalisms. However, since digital systems are often comprised of both aspects of behavior, away
mustbe found to unifythese orthogonal formalisms. Thiscan beachieved by defining aninterface
between separate parts of a design described using different representations, or by combining the
elements of both in a single representation. The former approach allows for complete design
specification, but its non-uniformity complicates formal approaches to synthesis and analysis.
The latter approach also allows for completedesign specification but is alsoconducive to formal
methods. In order to support designs specified atdifferent levels of abstraction, we adopt theuse
of a common unit interface. For designs specified at the same level of abstraction, notably the
algorithmic-level, we adopt the useof a single, complete representation.

Data-flow/Event Graphs specify the behavioral aspects of the design specification. Since
behavior,by definition, is observable,it is necessary to define a structural environment that serves
as the means for behavior to occur. This structural environment consists of design components.
This aspect of the DE-Graph representation is presented in the next section. Section 3 provides
the description of the DE-Graph representation itself. Research involvingdesign synthesis from
this representation is in-progress, but is not presented in this memorandum.

2 Structural Design Components

The relationship between the various components of a digital design is shown in Figure 1. The
structural hierarchy of a design is composed of modules and submodules.1 A module is a black-
box consisting of one or more interfaces. A black-box is a component which interacts with its
environment through input/outputconnections but whose internalbehavior is not known. A module
may or may not have a behavioral specification in the form of a DE-Graph. It's internal behavior
and/or structure may be specified using another levelof abstraction such as functional, logic, or
physical layout Other modules may be used to define a module. Thus modules form a structural
hierarchy forthe design. This hierarchy canbe expressed atall levelsof abstraction from structural
up to algorithmic.

Interfaces

Ports

g)(QDDDDD)(Day)

module

Figure 1: Design Component Relationships

A module's interfaces provide its connection to an external environment which might be
composed ofother modules or D/A (digital-to-analog) or A/D converters necessary for interacting

To avoid the introduction of new terminology, we adoptterms from the Verilog Language [31] when a similarity exists.
The term"submodule"is usedonly to acknowledge the instance/masterrelationship betweentwo or moremodules.



with aphysical world. An interface is acollection ofports which are viewed as asingle component
in high-level communication transactions. That is, the ports associated with a module have a
natural association witheach other. For instance, amemory businterface consists of address, data,
and control ports. Interfaces are themedium through which designs represented atdifferent levels
of abstraction can be interconnected and interact. Thus, they serve as a unifying mechanism for
system-level representation.

A port is the fundamental primitive used toimplement communication among modules. Com
munication is realized through port transactions which are atomic and involve either reading or
writing avalue. Associated with a port isadata type, orspecification of the valid set of symbolic
values that the port can communicate. Examples ofdata types include a 16-bit integer, the opcodes
of an ALU, anaddress/data bus. Data typesare discussed in moredetail in Section2.5.

The types of transactions which can beperformed ona port are specified through internal and
external access masks. The internal access mask specifies the types of operations which can be
performed withrespect to the internal operations of the port's module. The external access mask
specifies the types of operations with respect to connections external to the module. An access
mask specifies a combinationof the followingoperational modes: read or read-locked and write
or write-locked. If the port is an "output" port in the conventional sense, then its internal access
is write and its external access is read orread-locked. Read-locked specifies that noother ports
connected totheport may serve as asource of values. A read access port implies a tri-state output
connection and aread-locked port implies astandard output. Write-locked access specifies that the
value placed on the port remains constant. This mode is intended for specifying access within the
context of a particular instance, or use, of the port. Portand module instantiation are discussed
in the next section. Presented in Figure 2 is an example of how ports of a CPU and associated
memory modules might be interconnected.

unidirectional
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Ntemory
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Figure 2: Example Port Interconnection

2.1 Port Behavior

Port behavior is classified as either synchronous or asynchronous. Transactions on synchronous
ports are relative to a particular clock event. The clock event is specified by an association with
a clock port, an active level or edge, and possibly a clock phase. Write operations require that
data be presented to the portat orbeforethe setup time, 63etup(P), of the next clockevent. Read
operations see valid data on a portafter an arrival time, 6arr(P), following the previous clock
event. Bothsetupandarrival timesmustbe less than theclockcycle time, 6cycle{ck).

By definition, asynchronous ports are notassociated with a clock, although an implementation
may actually synchronize portevents to a clock signal. Asynchronous portdatais never"invalid."



If necessary, a behavioral specification mustexplicitly ensure thecorrectness of port data through
events or timing constraints.

An initial value is associated with both synchronous and asynchronous ports. This value is
assigned to the port when the port's module resets. In addition, synchronous and asynchronous
ports may be related to otherports viadata-flow (i.e. combinational) connections. A synchronous,
data-flow port specifies that the port both feeds clocked latches as well as combinational logic
connected directly to its data-flow ports. Asynchronous data-flow ports are assumed to consist
of only combinational, data-flow relationships. This information is essential to obtaining high-
performance implementations during the synthesis process.

2.2 Port Compatibility

Two ormore ports can beconnected structurally if they are port compatible. The following rules
define compatibility:

1. Synchronous ports mustshare thesame clock event(port, active level oredge, clockphase);

2. Ports must be data-typecompatible(see Section 2.5);

3. Only one port is permitted external read-lockedaccess;

4. A synchronous port is not compatible with an asynchronous port unless the asynchronous
port has only external write or write-locked access.

2.3 Special Ports

Two special port designations are defined: reset and clock. Futhermore, a reset port is designated
aseither warm if its activestate resets onlythemodule's control state orcoldif port values aswell
as control state are reset. A port labeled as"clock" is used for synchronizing control operations
and data transfers. Associated with a clock is a phase count, and overlapping/non-overlapping
designation.

2.4 Parameters

Parameterized modules provide anefficient means of describing aclass of components whichdiffer
in a well-defined and regular manner. For instance, a 16-bit anda 32-bitripple carry adder can
bothbe described usinga definition which accepts a parameter n for the number of operand bits.
Multiple parameter values allow for the definition of more complex modules such as an n-bit,
m-word register file. In addition to integral parameters, it is also useful to parameterize the data
type of a memory or data transfer module. A generic RAM may be defined which stores values
of an arbitrary data type. When a parameterized moduleis instantiated, each parameter is bound
to a specific value. These values are thenusedby a macro expansion synthesis step to generate a
newdefinition of themodulecustomized by thevalue bindings. Customization of graph topologies
requires the use of special macro constructs. These constructs are currently only defined at the
functional level.

2.5 Data Types

The set of possible values thatcan be transmitted across a portis defined by the port's data type.
Implicit in its definition of a set of values, a data type captures a semantic context by restricting
the set of operations which can be applied to it. The mostcommon andmost primitive data type
in digital designs is the binary-valued bit and bit vector. These types are fundamental because
the Boolean operations associated with them can be directly implemented in digital logic. For
this reason, most design representations support these types. Arithmetic types suchas integer and
floating pointareoften supported because arithmetic functions are often considered as primitives
to the synthesis system.

Hardware functional modules aregeneralized by supporting user-defined datatypes and oper
ations. In addition to providing the designer with increased flexibility in specifyinga design, this
additional data abstraction provides for logicoptimizations whichreduce the area anddelayof the
implementation^]. A number of Hardware Description Languages support user-defined types.



These include VHDL [18], ELLA[26], and STRICT[9]. Both VHDL and ELLA utilize data types
asa means ofimproving the readability and verifiability ofthe specification. The STRICT language
promotes datatypes forverifying theconsistency of interfacingcircuitcomponents. However, these
languages omit features useful for synthesizing optimized implementations. These include support
for don't-care and unspecified values (discussedbelow).

The synthesis task concerned with data types is type encoding—the problem of obtaining a
unique assignment ofsymbolic type values tobinary values. By making theappropriate assignment
andbyexploitingdon't-care andunspecified values, theresulting logic networks which manipulate
dataof thegiven typecanbesimplified greatly during logic optimization. Thisoptimization results
in reductions in the final area and delayof thedesign.

The fundamental typeconstructsin £>£-Graphs are enumeration, vector, structure, and union.
An enumeration type defines a finite set ofsymbols, TE = {s0, s{,..., sn_j}. These values are
considered to be unordered, implying that the fundamental operations on values of type TE are
assignmentand equivalencechecking. Orderedenumerations are usefulfor numerictypes,but are
not included in the £>£-Graph representation.

A vector type Tv = [T0, n] is a single-dimension array of element type To and of length
n. Multi-dimensional arrays are possible by defining To to be a vector or another array. A
structure type Ts = (To, T\, — Tn-i) is an unordered composite of n elements. A union type
Tu = {T0,T1?... ,T„_i} is acompositeofnmutually-exclusiveelements. Unions are particularly
useful for specifying bus structures since they allow different token types (e.g. an instruction word
and a data word).

These type constructs are hierarchical, naturally defining a type as a tree where each node
denotes a type and it's fanout are element types. For convenience when referring to types, a type
T is used to represent the set of all possible aggregate, or abstract, values defined by the type,
T = {to,tx,..., tm-\). Abstract values arederived from the typetreeby enumerating its domain
using the following set of rules:

1. Structure nodes generate the Cartesian product of the abstract value sets for each of its field
types;

2. Union nodes generate the union of the value sets of each of its field types;

3. Vector nodes generate the Cartesian product Tn where T is the base type and n is the
dimension;

4. Enumeration nodes generate their value set.

2.5.1 DonH-Care Values

The importance of don't-care information in logic optimization has been known for quite some
time. Synthesis programs such as ESPRESSO-II [8], BOLD [5], and MIS [7] exploit don't-
care information to achieve significant reductions in area and delay of two-level and multi-level
combinational logic networks. Ravenscroft and Lightner [28] indicate how don't-care conditions
can be extracted from high-level control flow information. The need to provide a facility of
specifying don't-care information in high-level descriptions is addressed in [15]. This can be
accomplished in the context of data types by specifying sets of abstract values. Associated with
a type is the set DC{T) C T of values of T that are guaranteed not to occur. This information
is used in both encoding and logic optimization. During functional and logic-level synthesis, type
don't-cares are combined with don't-cares for a particular abstract-valuedrelation to simplify the
logic implementation.

2.5.2 Unspecified Conditions

Don't-care conditions can also arise from unspecified conditions which are by-products of the
encoding process. Unspecified conditions are those vertices of the Boolean space which are not
covered by an encoding. That is, for a type encoding / : T -> Bn, U(T) = Bn - f(T). U{T)
can be fully or partially added to the don't-care set for a type to improve logic optimality. If U(T)
contains error conditionsas identified in the design specification, it is possible to identify them
through the use of a special unspecified value defined for each data type.



2.5.3 Type Compatibility

Two types, T\ and T2 are defined to be type compatible if they specify the same set of abstract
values. Two abstract values are identical if their component values (enumeration type symbols)
match from leftto right. If T\ - {s0,s,,..., sn_i} andT2 = {tQ, t{,..., <m-i}, then T{ = T2 iff
n = m and Vi = 1... n, st- = ti.

3 Data-flow/Event Graphs

The Data-flow/Event Graph representation is a specification of the data-flow and event behavior
ofandbetween a setof resources. A resource isdefined hierarchically as: an implementation ofa
module, an interface belonging toa module implementation, or a portbelonging toan interface. A
module implementation is anallocation of a submodule. That is, foreach module implementation
there exists a unique structural component in the implemented design. Each use of a module
implementation is called a module instance, rm. "Use" refers to theperiod starting from when the
module is first required andending when itisnolonger needed. An instance may be"bound" toany
implementation of the same module type. This binding relationship provides synthesis flexibility
when dealing with resource conflicts.

Although an interface is a part of a module, it is recognized as a resource which is allocated
during the instantiation of the module. An interface such as a memory bus might be used to
perform several transactions during the allocation of a particular module instance. To avoid
conflicts between these separate transactions, interfaces are alsodefined as resources, rint. There
is a one-to-one correspondence between module portsand interfaces. Toavoidsimultaneous and
conflicting port operations, ports are defined as resources, rp.

Because ofthe hierarchical relationship between resources, aport instance rp uniquely specifies
an interface instance, rint(rp), and a module instance, rm(rp). Asimilar relationship exists for
module instances of interface andportinstances. Rint{r) isthesetof interface instances associated
with the module instance, r; Rp(r) is theset of port instances associated witheithera module or
interface instance, r. Anexample of theresource hierarchy fora cache controller module isshown
in Figure 3.

Definition 1 Data-flow/Event Graph. A DE-Graph is a hierarchical, directed, acyclic graph,
DE = (N,Ed,Et), where N is the set nodes used to represent behavioral operations and Ed and
Et are directed edges used to specify data and temporal dependencies, respectively, between nodes.

DE-Graphs can be used tospecify both asynchronous and synchronous circuit behavior. How
a particular behavior isactually implemented isentirely dependent upon the synthesis process and
thepotential target architectures. Simple node primitives areassumed torequire notime toexecute.

Complex nodes, such asiteration and task instantiation, may require non-zero time tocomplete
due tointernal timing constraints orportevents. The zero-time model isnotviolated since complex
nodes can be decomposed into theirconstituent zero-time primitives.

Non-deterministic behavior in DE-Graphs is restricted to itsarbitration and resource sharing
mechanisms. A legalgraphspecification may result in potential conflicts in the useof a resource.
In sucha case, the nodes causing theconflict must besequentially executed. The behavior of the
system may be dependent upon the ordering that is selected. This non-deterministic behavior is
resolved during the synthesis process. Arbitration is resolved through the use ofspecial hardware
circuitry which makes a choicewhen thesystem is inoperation.

Hierarchy serves twopurposes in DE-Graphs: to break feedback edges for iterative behavior
andtosupporta procedural abstraction. Procedural hierarchy isimplemented using special modules
called tasks. Tasks abstract behavior and reduce specification complexity in the same manner as
procedures and functions of software programming languages.

A DE-Graph consists of a single start node, ne, which is theonly node to be enabled when
thegraph begins execution. A graph also consists ofa single end node, nj, which is the lastnode
to fire. Allgraph nodes are reachable from ne; and nf is reachable from all non-external nodes.
Furthermore, ne and nj contain nopredecessor and successor edges respectively. Anexample of
a DE-Graph is shown inFigure 4. Schematically, the nodes ne and nj are represented using the
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names S and E, respectively. Temporal edges are shown with unfilled arrowheads and data-flow
edges with filled arrowheads.

Associated with each node is a particular behavior: a data transformation, data transfer, port
signal transition, etc. A node may consist of data-flow inputs and/or outputs which connect to
the inputs and outputs of other nodes using Ed edges. These inputs and outputs are referred to as
d-ports and are represented by the sets Din and Dout respectively. Each d-port is associated with
a data type which defines the permissible values thatarecommunicated. Incoming and outgoing
temporal edges of a node are referred to as Tin and Tout respectively. Because no distinction is
madebetween theedges T,n ortheedges Tout, theyare collectively represented in schematic form
as the single incoming or outgoing edge, t.

Every nodealso has anenabling event, te, anexecution event, tr, andafiring event, tj, that
mark the beginning,execution, andend of the node's behavior, respectively. When clear, anevent
name, ti, will also be used to referto the event time, t(ti). Graph behavior is defined by an ideal
model which sets the event time relationships as follows: tt = tx - tj for simple nodes, and
te < tx = tj for complex nodes (loops and tasks). The schematic for a graph node and its event
timing relationship is shown in Figure 5.

>=0

tx *
>=0

tr •

(a) (b)

Figure 5: (a) Generic DE-Graph node; (b) Node events and timingrelationships

Because £>E-Graphs are acyclic, each node is executed at mostone time pergraph execution.
Conditional behavior is supported by associating pre-condition flags, Ce, and a post-condition
flag, cj, with a node. A set of mutually exclusive condition flags define a condition class,
CC = (ci, c2,..., cn). A node cannot beenabled unless its pre-condition flags are set. If anode
becomes enabled andexecutes, then it sets its post-condition flag (if it hasone) when it fires. The
use of post-condition flags is limited to a special conditional node and to nodes with arbitrated
events (see Sections 4 and 5.3.2). In general, oncea node is enabled it executes untilcompletion
and then fires. This is the persistency criteria for node behavior. However, non-persistency can
occur when arbitration is involved.

Condition flags restrict the use of edges. A data or temporal edge between two nodes n, and
nj may only be defined if:

f Ci U{cj} = Ci! U{c}, c£ CC ifnj is ajoin node for class CC
\ QU{c;jcC| otherwise
Thus, it is acceptable to define a edge between a lesser-conditioned node and a greater-

conditioned node. The opposite is not true unless the sink node, n/, is a joinnodewhich differs
from the sourcenode, n,, by a condition flag of the associated conditionclass CC.

The execution of a node may involve interaction with one or more resource instances. Since
resources aresubject to constraints on their use, each node must allocate the resources it requires
during its execution. Allocated resource instances are defined by the set Ra. Another set, Rd,
specifies resources deallocated by the node. These two sets are not always equivalent, as is the
case for some task instantiations. A resource instance may be either a module, interface, or port
instance: R™ U Rani U Rp = Ra. Since theallocation of a port instance implies the allocation
of the port's interface and module, if rp e Rp, then rint(rp) € Rant and rm(rp) £ Rf*. The
analogous requirement for deallocation port instances is also made.

When a module, interface,or port instanceis allocated, its use is subject to a port usagemask,
m(r). This maskconsists of a setof port access flags which specifies howtheport maybeaffected,
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that is, read from or written to. Details on port access flags were provided in Section 2.
A node may impose initial value constraints on its allocated ports. If the node's behavior

assumes that specific values are present on ports before the node is enabled, then these initial
values are associated with the corresponding Ra portinstances. Similarly, if the node's behavior
guarantees avalue for adeallocated port, this value becomes afinal value for theport. A graph may
also impose initial andfinal value constraints onallocated ports. Graph initial values are assumed to
existatthestart of graph execution and final values mustexistwhen thegraph completes execution.
Consequently, graph initial values are equivalent to portresetconditions. Initial and final value
constraints can be staticallyverifiedbefore synthesis.

3.1 Node Enabling and Firing

The condition under which a node is enabled, and therefore may be executed, depends upon
its pre-condition flags, timing constraints, data dependencies, and resource allocation. All pre
condition flags for the node must be set. If the node is arbitrated, then the associated arbitration
must be pending. Timing constraints areassociated with temporal edges Et of the graph. Due to
conditional nodebehavior, only data dependencies andtimingconstraints betweennodes meeting
their pre-conditions are considered. Initial value constraints for ports are subsumed by using
timing constraints to define sequential ordering relationships between nodes with matching final
value constraints.

Resourceconstraints ensure thatmutuallyexclusive operations do not execute simultaneously.
If a nodeexecutionresultsin the allocation of a resource instance, then theremust be anassignable
resource implementation; if it results in a portallocation, thenexisting allocations of thatportmust
not define mutually exclusive access conditions.

The execution time characteristics of a node are critical to both analysis of design behavior
and to the synthesis process. Although graphbehavior assumes that only complex nodes require
non-zero execution time, actual delays are always introduced when mapping the behavior to a
particular target architecture. These delays must not result in the violation of constraints in the
original specification for the implementation to be valid.

The execution delay of a node is the time it takes for it to execute, t(tj) - t(te). Generally,
theexecution delay cannot be defined exactly, butcan bebounded between a minimum 6min and
maximum value 6max. If a maximum bound cannot be statically determined (that is, at the time
of synthesis), tmax(tj) - t(te) = oo, the node is said to be unbounded. Otherwise, the node is
bounded.

A node that specifies behavior that is not implemented by the module is called external.
Because the node's behavior is not controlled by the module, static determination of te and tj may
be impossible. Often a time range can be determined due to the presence of timing constraints,
tmin(te) < t{te) < tmax{te)andtmin(tf) < t{tf) < tmax{tf).

A node whose behavior is dependent upon the absolute time at which it executes is called
time-varying. Control optimizations for such nodes are more restricted than for other nodes.

3.2 Resource Allocation

The execution of a node results in the allocation of the resource instances specified by the set Ra
it the node has no output d-ports, then resources in the node's deallocation set, Rd, are released
when the node fires. If output d-ports exist, then their values may be defined by one or more of
theports specified in Rp or Rpd and thus Rpd ports cannot bereleased until theoutput values are no
longerrequired. The time between tj andthe lastuse,or expiration, of an output portvalue, d,, is
called the lifetime of the value, /*(d,). Rpd resources are deallocated when alloutput values have
expired. Specifically, for a node n and resource port rp:

talloc{rP) = te

, ,,.p\ _ / tj+maxd,€Do*t(lt(di)) if|£>out|>0
tdeaiiocV * ~ \tf otherwise

Similarly, an interface and module cannot be deallocated as long as any one of its constituent
ports are allocated. Thus, for an interface or module instance, r:



taiioc(r) = min {taiioc{rp))
rP6/?p(r)

tdealloc{r) = max {tdealloc(rP))

3.3 Timing Constraints

A timing constraint isatemporal relationship between theevents of twonodes, n, and nj. For most
nodes, these events represent the firing and enabling times, t) and t{. For event nodes (described
in Section5.1), the timing constraint refers to the event designated by the node's behavior.

A minimum constraint specifies thatV >V +6 for some non-negative value 6. A maximum
constraint specifies thatV < V + 6. 6 may be specified in unitsof seconds (e.g. 5ns) or incycles
of a particularclock signal (e.g. 2@ck 1). The latter unit divides time into a series of clock events.
In measuring the delay between two clock synchronous events, only the number of clock events
between them is considered (that is, it is conceivable that actual time differences of 5ns or 100ns
may bothbe considered as 1<®ck1). Exactconstraints areequivalentto specifyingbotha minimum
and maximum constraintwith the same value 6. Thus, a constraintthat specifies that two nodes
should be enabled simultaneously is achieved by introducing exact constraints to and from these
nodes and a common predecessor node.

Timing constraints are further classified as either hard or soft. Hard constraints are derived
from the original behavioral specification and cannot be compromised. Soft constraints may be
introduced during thesynthesis process orderived from implicit timing relationships. For example,
all data dependencies imply soft constraints between their source and destination nodes. These
additional constraint edges maybe introduced to simplifygraph analysis and synthesis algorithms
but theirremoval will haveno impact on thebehavioral specification. Soft constraints may also be
used to meet graph syntactic requirements. Forexample, sequentialconstraints between a select
node and its conditioned nodes.

Shown in Figure 6 is the DE-Graph for a Multibus Memory Read Task. The taskaccepts a
single address value A, reads the memory module attached to the bus, and returns the data value
as the task output D. The taskoutputis made available before the task completes by the <-port
V (a r-port is an interface port which implements a t event). Note that the specification involves
both minimum and maximum timing constraintsbetween events. Soft constraintsare introduced to
ensure thatthe graph start nodeand end nodeare the source and sink nodes for the graph. Timing
constraints are placed near theirassociated Et edge. Thoseedges not labeled are"> 0" minimum
timing constraints.

4 Arbitration and Timeouts

There are three forms of conditional behavior in DE-Graphs: data-flow conditionals (multiplexor
nodes), control-flow conditionals (select nodes), and event-based, or arbitration, conditionals. The
arbitration conditional setsacondition flag according to whichmember of a setof nodes completes
execution first. Before any event occurs, the arbitration is pending; once an event has occurred,
the arbitration is complete. If two or more events occur simultaneously then a fair choice is
made. Whether or not two events are considered simultaneous is implementation dependent. For
example a synchronous implementation where time is discretized into clock cycles would define
two events as simultaneous if they occur during the same clock cycle. A fair choice is defined
by the bounded-fair criteria. That is, the number of consecutive choices of a given event when
occurring simultaneously with another event is bounded. Thus, a valid specification may depend
upon this criteria.

An arbitration defines a condition class, CC. Each flag of CC serves as a post-condition
for an arbitrated node. Upon winning an arbitration, the node's post-condition flag is set and
the arbitration is complete. Once the arbitration is complete, other arbitrated nodes of the same
class cannot be enabled. If the nodes are executing when the arbitration completes, they are
immediately terminated. Figure 7 contains an example of arbitration among mutually exclusive
pulses whichoriginate from external sensors detecting the location ofanobject. The pre-condition
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flageffectively specifies that the node behaviors are mutuallyexclusive. Node terminationcan be
effectively used in specifying timeout conditions.

OR _T1 OR

c, selected c2selected Cj selected

Figure 7: Arbitrationof MutuallyExclusive Events

Itisalsopossible tospecify arbitrationamong nodes whose behaviorsarenot mutually exclusive
andwhose executions should notbe interrupted. This is accomplished bydefining a nullsuccessor
node for each of the original nodes. The post-conditions are then associated with these null event
nodes. Forexample, contrast thebehavior of the Z)E-Graph of Figure 8 with thatof Figure 7.

J""L
OR J~l

J~l
c, selected c2 selected Cj selected

Figure 8: Event Arbitration of Non-mutually Exclusive Events

As with the select node, arbitration can specify conditional behavior by using the arbitration
post-conditions as pre-conditions forothernodes. In this manner, thebehavior of thegraph canbe
determined by the outcome of the arbitration.

This arbitration mechanism is necessary and sufficient for modeling various forms of mutual
exclusion including semaphores and monitors [2]. DE-Graph specifications for request and
release tasks are shown in Figure9. The request taskwaits until the resource is available. Once
awarded toa request, theresource is nolongeravailable andotherrequests mustwait. Theresource

12



becomes available again whenthe release taskis executed. Dynamic, orexecution-time, resource
contention can thus be successfully handled. In cases where sequential constraints cannot be
imposed between two resource instances of the same implementation,this arbitration mechanism
is essential.

Request Task Resource Server

Release Task

Figure 9: Example Mechanism for Dynamic Resource Sharing

In addition to supporting dynamic resourcesharing,arbitrationconditionals can be used to define
timeout conditions for complex operations such as tasks and loops. Applications in the category
of HardReal-Time Systems require the use of timeouts in order to guarantee that maximum timing
constraints for unbounded operationsaremet. The graphof Figure 10 shows how arbitrationcan be
used to achieve a timeout. In the example, the arbitration is between an event with a minimum and
maximum constraint of30 clock cycles. If this event occurs before the task completes, then the task
is reset. Once terminated, any resources it still has allocated are immediately deallocated. Such
timeouts can only be used for simple tasks (that is, single node instantiation) since their interaction
with other graph nodes is limited to its enabling and firing events.

5 Node Types and Functionality

Nodes are grouped into three main classes: event, data-flow, and control. Event nodes describe
port activity such as rising and falling transitions. Data-flow nodes describe computational activity
but do not imply state. Examples include Boolean logic functions and data multiplexing. Complex
behaviors such as conditional execution and iteration are specified using control nodes.

5.1 Event Nodes

Event nodes specify port activity and also provide a means of setting a port to a specified value or
reading its current state. The operation performed by a node, if any, is specified by its type and
port access mask. There are three types of event nodes: transition, transfer, and null.
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Figure 10: Use of Arbitration for Timeout Behavior

Transition Event Nodes

A transition eventnode specifies that a port takes on a particular (constant) value when the node
fires. A transition event node with write access specifies that the given constant value is to be
placed on the port when the node executes. A transition event is eitherpersistent or volatile. For
persistent events, the valueremains on theport until another event to the sameportoccurs. If all
port events are persistent, then the value of a port is always known between events—information
whichcan be usedto optimizethe implementation. A volatileeventvaluemaynot remain untilthe
next event on the same port. The actual durationof the value is definedby the targetarchitecture,
but mustbe longenough to ensure it is detected correctly. Fora synchronous implementation, the
value may only remain until the end of the clockperiod in which the node fires. The graphand
timingdiagrams of Figure 11 exemplify thedifference between the behaviorspecified for a series
of persistent or volatile events.

Initial Condition: P=f

Persistent Events }

Volatile Events '

I I
0ns 30ns

>=25ns

>=90ns

>=130ns

i r

'< t

100ns 150ns

Figure 11: Persistent vs. Volatile Event Nodes
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A transition event node with read access fires when the port takes on the specified value.
Specifically, the node implies that the port value is or becomes the specified value when it fires.
The node is considered external and does not require an operation to be performed. However,
the effect of introducing timing relationships between a read transition event and other nodes may
be to delay the execution of these nodes until the event occurs. Many representations utilize a
"wait" node for such purposes. However, the meaning of a "wait" node is quite different from
a read transition event since the latter does not always necessitate the generation of hardware.
Additional read transition event nodes can be introduced in a specification for the purpose of
providing information on theactivity of a port without resulting in thegeneration of unnecessary
hardware to "track" these events.

Theconstant value associated with a read or write transition eventis a value of the same type
as Uie port, C C Tp. Additionally, the unknown value U(TP) andthe high-impedance condition
Z(TP) mayalso be specified, the latterfor portsthatare not read-locked.

Transfer Event Nodes

Transfer event nodes also specify port behavior but allow for variable values to be written or read.
A writetransfer event node assigns the value at its data input to the specified port. As with write
transition events, the value written may be persistentor volatile. A readtransfer event noderecords
the value of a port when the node is fired. This value is written to the node's single output port.
Read transfer event nodes are time-varying.

Null Event Nodes

Event nodes without an associated port instance or an associated operation are null events. Such
nodes can be used to introduce reference points for timing constraints. A null node fires immediately
upon being enabled. These event nodes are summarized in their schematic form in Figure 12.

Read Write Null

Transition Event Nodes

Write

Transfer Event Nodes

Figure 12: -D-E-Graph Event Nodes
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5.2 Data-flow Nodes

Data transformations such as function computation and type manipulation are specified using
data-flow nodes. Schematic symbols for functional data-flow nodes are shown in Figure 13.

V!>•••> (Tp.-./g

1 %K **

m^Tj

t d

Multiplexor

Figure 13: .D£-Graph Data-flow Nodes

Constant

5.2.1 Functions and Relations

The most fundamental functional data-flow node is the abstract relation. A relation specifies a
mapping R : T; -+ T0 from the abstract values of an input type Ti to the values of an output
type T0. Unlikea standard function, a relation is a one-to-many mapping providing for multiple
choices for a specific input value. Boolean functions are a special case of an abstract relation
where Uie types T* and T0 are Boolean vectors and a specific input value is mapped to a single
Boolean vector (possiblycontainingdon't-care values). Abstract relationsprovide a higher level
of data abstraction than Boolean functions becauseunencoded data typescan be manipulated. Of
course, a specificbinary vector value must be assignedto each abstract value of a data type before
a digital logic implementation can be obtained. However, delayingUie encodingdecisionuntil Uie
functional-level can result in significant improvements in area and delay[22,33].
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5.2.2 Data-flow Conditionals

Thedata-flow operator forconditional behavior is themultiplexor. The multiplexor has a single
select input ds, n data value inputs, and a single data output. The select value selects one of
the data inputs to be transferred to the output. Associated with each data value input, di, is an
abstract-valued cover C, of the select value type T3, C, c Ts. If for a select value ds,ds C C,,
then the data value of input d, is selected. In order to ensure mutual exclusiveness, selection
covers must be disjoint, C, n C, = 0, / ^ j,. The don't-care selection condition is defined as
DC(ds) = T3 - (J?=1 d. For don't-care selection values, Uie output value isdon't-care. Because
multiplexors are abstract-valued functions, theycouldbe specified usingtheabstract-relation node.
However, theconditional behavior abstraction of the multiplexor can be exploitedduringanalysis
and synthesis procedures. In addition, two-level relation representations of multiplexors are very
inefficient. Thereforeit is valuableto identifythe multiplexor node explicitiy.

5.2.3 Constant Generation

Another special case of the relation is the constant node which generates a constant value on its
output t/-port when it fires.

5.2.4 Type Transformations

Due to the hierarchical nature of data types and data values, special typenodes must be introduced.
These nodes are classified as promotion and reference. Reference nodes output token values of
types which are elements of their input token values. Index nodes accept a vector, structure, or
union type token and output a token with the value of the selected element. Vectors are indexed by
an integer constant; structures and unions are indexed by the element's label. Subset nodes output
multiple structure or vector element values.

Promotion nodes output values of types formed from their input values and types. These include
catenation nodes which join enumeration, vector, or structure input type tokens to form a larger
vector or structure type output token. Structure nodes accept input token values for each of the
elements of the output token type and form either a structure or union output value. The cast node
converts a data value from one type to another compatible type.

5.3 Control Nodes

Data-flow/Event Graphs support three fundamental control behaviors: iteration, data-dependent
selection, and arbitration. Data-dependent selection generally refers to mutual exclusion based
on a data value whereas arbitration refers to mutual exclusion based on Uie ordering of a set of
events. For simplicity, Uieterm "conditional" will be used to refer to both types of behavior. Unlike
iteration and selection, arbitration does not have an associated node primitive. Schematic symbols
for each control node are shown in Figure 14.

Inline conditionals are supported in DjE-Graphs by associating condition flags with each node.
The use of inline conditionals complicates graph analysis only slightly since nodes may either fire
once or not at all. However, the same is not the case for inline loops which impose significantly more
complexity. For this reason, hierarchical loops were adopted. Inline loops are often preferred since
resource sharing and graph transformations across loop boundaries are simplified and path-based
synthesis approaches!10] can be applied. The latter feature can be achieved with hierarchical loops
through the use of appropriate target architecture models and synthesis algorithm formulations.
Furthermore, resource sharing is accomplished by inserting all required resources in the loop
node's allocation set. However, this represents a somewhat restrictive approach because all loop
resources must be allocated before enabling the loop.

5.3.1 Iteration

A loop node contains a subgraph "loop body" which is executed one or more times. The number
of times it repeats is determined by its type: fixed, variable, or infinite iteration. A fixed iteration
loop always executes the same number of times. Variable iteration loops iterate until a condition,
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Figure 14: DE-Graph Control Nodes

computed during the execution of Uie loop, becomes true. Variable loops usea special loop exit
nodeas Uie loopbody's firing node, nj. If Uie exitnode's input value dc is contained by theexit
condition cover, C, de C C, then the loop does not iterate. Infinite loops never complete their
execution or fire.

Input d-ports of the loop node are used tointroduce values into Uie loop body. Inthe loop body,
these are represented as resource ports with initial values defined by the loop node input values.
Output d-ports arerepresented aswrite-locked, resource ports (that is,each portcan only bewritten
to once in the loopbody). Values which are used across iteration boundaries are represented by
a pair of resource ports, either of which may be associated with an input or output d-port. In
thispair, one portrepresents Uie current iteration value and Uie otherrepresents thenext iteration
value. The next value port is write-locked and its associated write event must occur after the last
read event to thecurrent value port. Tirfting constraints may be necessary to ensure this ordering
requirement. These restrictions allow theresource ports to be eliminated during loop unrolling, a
common optimization technique.

5.3.2 Selection

Theselect node sets a post-condition flag c, e CC, i = 1... n according to the value ds C T,
at Uie node's select input. An abstract-valued cover C, c Ta is associated witheach flag c,. If
ds C d then condition flag c, is set. Due to the mutual exclusiveness of Uie condition flags,
select value subsets fordifferent conditions must bedisjoint, Cj n C, = 0, i ^ j. Furthermore, it
is also necessary that at least one condition is selected. Thus, the don't-care selection condition
DC{ds) = Ts - (J"=1 d specifies a set of conditions which are guaranteed not to occur. The
behavior of the graph is undefined if a don't-care selection condition occurs. Because onlyone
post-condition flag may be associated with a node, a select node cannot be arbitrated.
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5.3.3 Conditional Join

In order topass a timing relationship ordata value out ofaconditional, ajoin node is used. Ajoin
node isassociated with a condition class CC and its incoming temporal and data edges originate
from nodes pre-conditioned by CC. The only relevant incoming temporal edges are those that
correspond tothe selected condition flag. The join node itself isnot preconditioned by CC. Every
select node andarbitration condition class has oneor more joinnodes associated with it.

Adata join node consists of two or more d-inputs, each associated with a mutually exclusive
condition c, e CC. Partial joins are not permitted and thus all conditions ofCC must be specified.
According towhich condition holds, the value of its associated (/-input ispassed tothe join node's
output d-port. One and only one input condition must be satisfied. This is specified using a
one-to-one/onto mapping, Mi : CC — Din. Ajoin event node does not have input and output
d-ports.

5.3.4 Task Instantiation

The DE-Graphequivalent of theprocedure or function in software languages is the task.

Definition 2 Task, a special type of module that meets thefollowing criteria:

1. The module defines aninterface with a warm reset port rw andzero ormore portsrepresenting
t-portsand d-ports.

2. If the module contains state (registers, latches, etc.) or if it contains t-ports, then it must
have an enabling port(te) andafiring port (tj).

3. The data type for t-ports is the enumeration type tjport = {dis,en}. A t-port event
corresponds to a transitionfrom its "disabled" state dis, to its "enabled" state en.

4. The moduleis initially idle in a reset state until the te event.

5. When themodule hascompleted itsoperation, it becomes idleandsignalswith the tj event.

6. All t-port events occurat or before thet/ event.

7. Upon completion, a module remainsidle until its reset signal, rw is set to its active value.

8. An active value on rw always resets the module to its idle, reset state.

9. While in its reset, idle state, no care port behavior or internalstate changes occur.

10. Input d-ports have access WL[RL]; Output d-ports have access RL[WL].

11. d-ports are labeledas volatile orpersistent. Persistent d-ports remain validuntilthemodule
resets; Volatile d-portsremain validfor a timedefined by the target architecture.

Modules which meet the requirements of a task may be instantiated and executed by a DE-
Graph. Task nodes are used to specify and control the instantiation of a task. Each port of a task
node may be associated with a port of the task module.

A task with persistent input data values that are valid when Uietask is enabled and whose output
values are valid when the task is fired is represented by a simple task node as shown in Figure 15.
Examples of such tasks include arithmetic modules and small sequential processes.

Some tasks may not immediately require all input values or resources when execution com
mences. If the predecessors of these inputs are on the critical path, delaying execution of the entire
task will decrease the performance of the circuit. Furthermore, allocation of resources before or
after they are used reduces potential parallelism. This may also result in a performance decrease
or area increase. To avoid these inefficiencies, such tasks are modeled as complex tasks.

Complex tasks use multiple task nodes to describe their instantiation. For each complex task
node, t{te) - t{tj) - t(tx). A complex task instantiation consists of at least two nodes, one
representing the enabling and start of execution for the task and the other for the firing of the task.
Other nodes of Uie same instantiation exist on a temporal or data edge path between these two
nodes. These nodes are used to specify late arriving task input data, early generation of task output
data, delayed allocation of resources, and/or early deallocation of resources. The temporal and
data edges between the enabling and firing task nodes (and other nodes of the same task instance)
are abstract specifications of the temporal and data-flow activity of the task. Unlike simple task
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Figure 15: Simple Task Instantiation

nodes, nodes ofa complex taskinstantiation takezero timeandtaskexecution delays areaccounted
for using timing constraints. Nodes fora particular task instatiation must all contain equivalent
pre-conditions and belong to thesametoplevel or loopbody graph. Furthermore, all complex task
nodes that do not associate their enablingconditionwitha i-port are external.

An example of a complex task instantiation is shown in Figure 16 with its associated timing
diagram in Figure 17. Note that Ra ^ Rd forsome of thenodes.

=5@ck

Figure 16: .D£-Graph for ComplexTask Instantiation

5.4 A Simple Example

Figure 18presents aspecification fortheClassic Mead &Conway Traffic LightController [25]. This
simple example demonstrates the use of several features such as task instantiation and arbitration.
The specification defines a tic module and a timer task. Also used is a dec task which performs
thedecrement function. It's specification isomitted as it isacommon library element.

Theenumeration type light is defined as thevalues {red, ylw, gm). There is a portdefined
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Figure 17: Execution Timing Diagram for Complex Task

for thehighway light hw, and the farm road light fr. Also, there is an input port car which is the
Boolean t when a car is waiting at the farm road stop. All ports are asynchronous. Maximum
timing constraints have notbeen specified since zero-time operations are assumed. Inserting timing
constraints mightbenecessary if there were resource conflicts which mightdelay someof thenodes.
This is not Uie case in this specification however.

The timertaskcounts down from its single argument to0 witha I second timingconstraint on
the executiontime of the iteration. Values of 45 and4 seconds wereassigned to the longandshort
tic durations.

An even simpler specification of the controller is possible by explicitly representing the long
and short delays as timing constraints of these amounts. In Uiis case, the timer task would not be
necessary.

6 Conclusions

The Data-flow/Event Graph representation for the specification of algorithmic-level behavior has
been presented. Novel features of this representation include:

1. Timing, control, and data-flow behavior is represented in a single, unified representation
supporting complete design specification and formal methods;

2. Both asynchronous and synchronous behavior can be specified;

3. Concurrency and synchronization are implicit in graph behavior;

4. Hierarchical resource relationships are supported, including the notion of an "interface re
source;"

5. Over-constraints areavoided through the explicit representationof timing, data, and resource
relationships;

6. External as well as internal port behavior can be specified;

7. Data value encoding is abstracted using enumeration and composite data types;

8. Abstract-valued relations provide an abstraction of Boolean logic functions;

9. Condition classes provide a general and flexible mechanism for supporting conditional be
havior including arbitration. Complex behaviors such as timeouts and dynamic resource
sharing can be described using this mechanism;

10. Complex task instantiation provides potential performance improvements by supporting late
arriving (allocation) and early generation (deallocation) of data (resources).

The intended application of Data-flow/Event Graphs is in the specification and synthesis of
control-dominated digital systems. For Uiis reason, the primitives and abstractions chosen for the
representation are best-suited for designs in this category. However, other applications such as
signal processing and software/hardware systems could be better supported through Uie inclusion
of new abstractions and primitives.
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