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Abstract

An indirect adaptive control law based on certainty equivalence is
designed for a model of the induction motor with the assumption that
the magnetic subsystem is linear. This nonlinear control law asymp
totically renders the induction motor system input-output linear and
also achieves input-output decoupling. In addition, we find that for
the specific caseof the induction motor we are able to prove parameter
convergence and asymptotic tracking of a an open set of reference tra
jectories using the indirect adaptive controller. This differs from the
generic case where we cannot guarantee parameter convergence. The
indirect adaptive control methodology also does not suffer from the
drawback of overparameterization, as in the direct adaptive control
technique. In addition simulations are also given comparing nonadap-
tive and indirect adaptive nonlinear controllers.

•Research supported in part by the Army under grants DAAL-88-K-0106 and DAAL-
91-G-0191, and NASA under grant NAG 2-243



1 Introduction

There has been much recent research in the use of adaptive control tech
niques for improving the input output linearization by state feedback of
nonlinear systems with parametric uncertainty. Techniques of direct adap
tive control (with no explicit identification) were proposed and developed in
[Kanellakopoulos et a/., 1989, Sastry and Isidori, 1987, Taylor et a/., 1989]
(see also [Sastry and Bodson, 1989]). Nonlinear indirect adaptive control
was initiated in [Bastin and Campion, 1989, Campion and Bastin, 1989,
Pomet and Praly, 1988]. It is motivated by the fact that, with exact knowl
edge of the plant parameters, a nonlinear state feedback law and a suitable
set of coordinates can be chosen to produce linear input-output behavior.
In the case of parameter uncertainty, intuition suggests that parameter esti
mates which are converging to their true values can be used to asymptotically
linearize the system. This heuristic is known as the certainty equivalence
principle. Indirect adaptive control differs from direct adaptive control in
that it relies on an observation error to update the plant parameters rather
than relying on an output error.

Indirect adaptive control can be broken down into two parts. First, a
parameter identifier is attached to the plant and adjusts the parameter esti
mates on line. These estimated parameters are then used in the linearizing
control law (see figure 1).

The use of nonadaptive feedback linearization for the control of an in
duction motor has been quite popular and has been used successfully in
[Krzeminski, 1987, Luca and Ulivi, 1987] and others. Furthermore, direct
adaptive nonlinear controllers have been developed in both [Georgiou and
Normand-Cyrot, 1989] and [Marino et a/., 1990]. However, in general, the
direct adaptive control scheme requires overparametrization, ie. extra pa
rameters must be added in the controller (see [Sastry and Isidori, 1987]).
The indirect adaptive control scheme does not suffer from this drawback.

In this paper we use the techniques constructed in [Teel et a/., 1991]
as applied to a fifth order symmetric induction motor model with linear
magnetic circuits. This model was used in [Marino et a/., 1990]. We start
by presenting a review of nonadaptive feedback linearization in section 2
and continue with a description of a nonlinear identifier and the indirect
adaptive nonlinear control scheme in sections 3, 4. With this background
theory set, we then proceed with a derivation of the fifth order induction
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Figure 1: Block Diagram of an Indirect Adaptive Controller

motor model in section 5 and carry through the calculations necessary for
the identification scheme and the indirect adaptive controller. We end with
simulations comparing a nonadaptive feedback linearization and an indirect
adaptive controller.

2 Nonadaptive Feedback Linearization

To fix notation, we review following [Isidori, 1989], the basic linearizing the
ory. Consider the two-input two-output system

z = f{x) + 9i(x)u! + g2(x)u2
2/i = hi(x)
2/2 = h2(x)

(1)

with x £ Rn,u G R and /, #, hi smooth. Differentiating y\ and y2 with
respect to time, one obtains

2/i = Lfhx + Lgih\U\ + L92hiu2
y2 = Ljh2 + Lgih2ui + Lg2h2u2. (2)

Here L/hj, Lgihj stand for the Lie derivatives of hj with respect to /, #,•
respectively (L/h(x) = j£f(x)). Continue differentiating each y* until some
Uj appear (ie. Lgjhi ^ 0 for j = 1 or j = 2). We then have

2/i

2/2

hi) =

M =
Ljhx +L^Lf^hnn +Lg2Lj-xhxu2
Ljh2 +LgxLj-lh2ui +L92LJ-Ih2u2. (3)



Define the 2x2 decoupling matrix

A(x) =

and the 2x1 vector

LgiLJ-yiUl L92LJ-Ihxu2
LgiLj h2u\ Lg2Lf~ h2u2

4(x) =
LJhx
Jh2LJh

(4)

(5)

The system (1) is said to have well defined vector relative degree [71 72] if
LgiL3shkUi = 0 for (i,k = 1,2 and 0 < j < 7* - 2) and the matrix A(x) is
uniformly (in x) nonsingular.

If a system has well defined vector relative degree than the control law

yields

"i

u2
= -A"1(x)6(x) + A-1(x)

(71)

M
2/i

2/2 v2

Vl

v2
(6)

(7)

We will not consider the case where the vector relative degree is not defined
(ie. A(x) is singular for some x).

For a system with a vector relative degree [7! 72], it is easy to verify that
at each x° GRn there exists aneighborhood U° ofx° such that the mapping

defined as

with

$x(x)
*2(x)

*7!+l(*)
$7l+2(z)

$:[/c

6
6

?7l+l
f-Yl +2

Rn

= ht(x)
- Lfhi(x)

h2(x)
Lfh2(x)

7/ = [$7l+72+l1---^n]T

(8)



is a diffeomorphism onto its image. The system may be written in normal
form ([Isidori, 1989]) as

6=6

Vft-l — S71

61 = h(€,T)) + aihl)((,n)ui + a{ia)((;,7i)u2
£71+1 = £71+2

: (9)

S7l +72 -1 = S7l +72

£71+72 = 62(6^) + a(2,i)(6^)«i + a(2,2)(6»7)w2

2/i = 6
2/2 = f7l+1

where 6,(6 *?) are elements of the vector in (5) and fl(,,j)(67/) are the entries
of A(x) given in (4). We assume that 77 remains bounded (this assumption
is meet for the induction motor).

2.1 Non-Adaptive Tracking

We now apply the normal form to the tracking problem. We desire to have
each yi(t) track a given yiM(t). We start by choosing V{ in (6) as

* = »S) +a(U)to&"1)-W(l-1)) (10)
+ •••+ a(«,7,)(2/«Af ~ Vi)

with cv(t)i),...,Q!(t-i7j) chosen so that

^+a(.M)^"1+ ... +«(.-/») (11)
is a Hurwitz polynomial.

It can be shown that this control results in asymptotic tracking and
bounded states f provided j/iM,yiM,... »2/l^~ ^ bounded.

3 Identifier Structure

Consider the two-input system

x = /(x, 0*) + /0(a) + gi(x)Ul + £2(x)u2 (12)



with x € Rn,0* E Rp and /,/0, gi are assumed to be smooth vector fields on
Rn. Furthermore, let /(x,0*) have the form

ft*,*) = ES-iflfAW (13)

Here 0*, i = l,...,p, are unknown parameters, which appear linearly, and
the smooth vector fields /,(x) are known. If we formulate the regressor

wT(x,u) = {f1(x),...,fp(x)\ (14)

then (12) can be written as

x = wT(x, u)9m +/o(x) +gi(x)ui +g2(x)u2. (15)

3.1 Observer-based Identifier

To estimate the unknown parameters, we will use the identifier system

x = A(x —x) + iuT(x, u)9
+ fo(x) + gi{x)ui -rg2(x)u2 (16)

9 = —w(x,u)P(x —x).

Here A e RnXn is a Hurwitz matrix and P G RnXn > 0 is a solution to the
Lyapunov equation

ATP + PA = -Q, Q>0. (17)

This identifier is reminiscent of oneproposed in [Kudva and Narendra, 1973],
[Kreisselmeier, 1977]. Note that A = -crl isa special case of the identifier. If
we define e\ = x —x, the observer state error, and <j> = 9 —9*, the parameter
error, and assume 9* to be constant, but unknown, then we have the error
system

ex = Ae1+wT(x1u)<l>
<j> = —w(x,u)Pei. * '

One should note the similarity of the error equation above with that of the
error equation of a full order observer, although all the states are available
by assumption.



Theorem 3.1 Stability of Observer-based Identifier
Consider the observer-based identifier of equation (18),

then 1. </> (E £«>>

2. ei € Loo n £2,

5. If it;(x,it) is bounded,
then ex £ £<» arc^ lim^oo ei(t) = 0.

Remarks:

1. The proof is a standard Lyapunov argument on the function

V{eu<t>) = eTlPel + <l>T<t>. (19)

2. The condition on the boundedness of it; is a stability condition. In
particular, if the system is bounded-input bounded-state (bibs) stable
with bounded input, then it; is bounded, (see [Sastry and Bodson,
1989]).

3. Theorem 3.1 makes no statement about parameter convergence. As is
standard in the literature, one can conclude from (18) that e\ and
(f> both converge exponentially to zero if it; is sufficiently rich, ie.,
3ai,a2>£ > 0 such that

rs+6

axI > / wwTdt > a2L (20)
Js

This condition is usually impossible to verify explicitly ahead of time
since it; is a function of x. If we assume that the regressor is bounded it
is clearly not necessary to have the upper bound in (20). Henceforth,
when we use this result we will assume that the regressor is bounded.

4 Indirect Adaptive Tracking

Let us consider our choice for the control law. The certainty equivalence
principle suggests that we pick the appropriate linearizing control law but



with the unknown parameters replaced by their estimates. We choose

= -A~\(x)b§(x) + A-\(x)
ux

u2

A§(x) =

b§(x) =

1>l

v2

L9nLyi~lfdhui LgnL;^-xh2u2 (21)

To achieve tracking we pick u,- in the form of (10). However, we do not have
exact expressions for the derivatives of yi which involve unknown parame
ters. Instead we will use estimates of the derivatives of y,- obtained from the
parameter estimates:

vi = !fS) +a(W,(y|2-1,-y^-1>)
+ ••• + «(t-,7,)(^M-2/«) (22)

y^ = Vhhi{x)

5 Induction Machine Model

The model for a 2-phase symmetric induction machine with linear magnetics
is derived in [Marino et a/., 1990]. To set notation we have #{r,s}, i{sa,ab,ra,rbh ^{aa,a&,ra,r6}
representing the resistance, current and flux linkage with respect to the
stator (s), rotor (r) and the stationary stator reference frame (a,b). The
inputs are taken as the voltages to the stator, namely vsay vsb and x =
[u,1pra,ll>rb,isa,iSb] ♦

We have, in the familiar x = f(x) + gi(x)vaa + g2(x)vsb form

/(*) =

^ (Mi3a - Vv0) - npu\l>rh
npuil>ra +§ (Misb - Vvt)

fct/Va +np^rb) - (M^V
^rb - npuxl>.

<xLr2

(23)

I sb



and

9\ =

92 =

0 0 0 J- 0

0 0 0 0 i
(24)

where a —L3 —*jj- and np is the number of pole pairs. Now choose the
outputs for tracking as

2/i

V2 tfa+tfb
(25)

5.1 Input-Output Linearization of the Induction Mo
tor

With the dynamics and outputs defined as above, we find that the system
has vector relative degree of [2 2], hence the n dynamics are one dimensional.
Thus the change of coordinates may be defined as

6
6

U
\ n )

I \

$(x) =
y\

2/2

2/2

\

JLr (*ra^sb
2
ra

I arctan (*j) )
LJ

4>rbi3a) ~ Tj-
rra+tfb

2g* [M (4>Taisa +4>rbi3b) - tfa - i>2rh]
arctan (**£j

(26)

7

where nwas picked to complete the change of coordinates. Since det (^f^) =
^lT11 Wa +V&) we must have the quantity {ij%a + ifib) nonzero, which is true
provided the motor is rotating. For $(x) to be a diffeomorphism we must
also have the angle arctan (^) 6 f^, f).

With this change of coordinates defined, we now proceed with the calcu
lations to render the induction motor input-output linear and decoupled. If
one differentiates y\ and y2 once each we obtain

2/i

2/2

L2Mx)
L2sh2{x) + A(x) Vsa

Vab
(27)



where

A(x) = LgxLfh\ L92Lfhi
. LgiL/h2 Lg2Ljh2

i
np Mifrrb nvM^T

2MRri/>ra 2MRrxl>Tb

which is nonsingular provided (t/;2a + i>rb) ls nonzero.
Choosing the state feedback of

we get

Vsa

vsb
=A"1(x){ ' -l2m*) '

. -L2M*) .
+

Vl

. V2 .

2/i *>i

. & . . U2 .

(28)

(29)

(30)

which is input-output linear and decoupled. We may then apply a linear
feedback of the form of (10, 22) to asymptotically track desired trajectories.

At this stage we point out a few important properties that hold for the
induction motor model

• The parameters Tl and Rr enter linearly.

• The decoupling matrix A(x) only depends on Rr and not Tl. The only
way A(x) can become singular through variations in Rr is if Rr = 0,
hence the vector relative degree is well defined with respect to param
eter variations.

• 77 remains bounded since it is a bounded function.

• The functions /t(x) multiplying the parameters are linear and hence
Lipschitz.

5.2 Partitioning the Model for Adaptation

We wish to adapt to the load torque and the rotor resistance, Tl and Rr. As
can be seen from (23) (24), both of these parameters enter linearly in /(x)

10



only, hence we need only partition f(x) as:

/«(*) =

r nBM

-n^otj)rb
npLJtl)Ta

7tnP^rb - "fisa
R*L -7LrnP^ra ~ tfisb J

fx(X) = f-^OOOO

}2(X) =
-h^ra + ¥-ikr L "sa

A?-b^b + gisb
MoL? WVo - Misa)

^ (i>rb ~ Misb) J

with [Of 92*}T = [TL Rrf we have

+ 9i(x)vsa + g2(x)v3b

and the regressor for the system is simply

wT(x) = [fx(x) f2(x)}.

5.3 Conditioning of the Regressor

Since we need persistency of excitation to guarantee that the parametererror
is driven to zero, let us examine the regressor more closely. By straight
forward calculation we have for wwT(x)

r _L
J2 0

<T*Lr* X
((^ra - Misa)2 +(VVfc - Mi3b)2)

(31)

(32)

(33)

(34)

Clearly this matrix is positive semi-definite and has rank of at least one
(in fact with the parameters and trajectories used in the simulations this

11



matrix was full rank throughout). For the case of persistency of excitation
we need only concern ourselves with the conditioning of fwwT(x)dT over
some window of time.

We will assume that this integral isa matrix of full rank. This assumption
is not constraining in any sense since wwT(x) is singular only if tprb = Mi3b
and ipra = Mi3ai which will not happen over an extended period of time
provided the motor is rotating. Hence requiring these two equations to not
hold identically over some period of time is not in the least bit restrictive
and is met in all but a singular case.

5.4 Adaptive Input-Output Linearization of the In
duction Motor

With the nonadaptive linearization framework set in section 5.1, we now pro
ceed with the adaptive law. We first must identify the unknown parameters
Tl and Rr. Using the equations from section 3 we have

x = A(x - x) -f- wT(x, u)9
+ fo(x)+gi(x)v3a + g2(x)v3b (35)

A

9 = —w(x,u)P(x —x)

where 9 = [fL Rr]T.
Note that since we know /o(aO,#i(z),02(z) exactly, there is no need to

include it in the regressor. As can be seen in (21), the same control law as
in section 5.1 is used except Tl and Rr are used in place of the true values.
Thus the control law for the indirect method is very easy to implement since
we use the same law as the nonadaptive case except parameter estimates are
used for the unknowns. The identifier is the only additional piece that need
be added.

Furthermore, since we have persistency of excitation and since the prop
erties listed in section 5.1 hold for the induction motor we can guarantee
asymptotic tracking of desired trajectories and the parameter error being
driven to zero. The proof is based on a MIMO version of the one in [Teel et
a/., 1991].

12



Parameter Value Units

^nom 180 rad/sec
TJ-max 12 N -m

J 0.089 kg -m2
np 2

Ra 0.435 a

RT 0.816 n

L3 0.002 H

LT 0.002 H

M 0.069 H

Table 1: Parameters for a 3-Hp Induction Motor

6 Simulation Results

A 3-Hp induction motor was simulated using the indirect adaptive scheme
with the motor parameters given in table 1. These values may be found in
[Krause, 1986, p. 190].

In the following we are allowing the parameters to be time varying. While
it is assumed that the true parameters are constant but unknown for the proof
to carry through, we simulate the more realistic scenario of the parameters
varying with time.

The rotor resistance, Rr, can vary ±50%from its nominal value. In light
of this we allowed the actual resistance to ramp from 50% of its nominal value
to 150%. This simulates the rotor coils heating up, causing the resistance to
increase. The initial estimate for Rr was set to the nominal value.

The load torque will be a function of the rotor speed. We model this in
a similar fashion to [Nath and Berg, 1981] where Tl is related to u quadrat-
ically. More specifically we have TL = 0.0012(0.05 + 0.3a;2). The initial
estimate of Tl was 8 N • m.

All of the simulations werecarried out using MATRIXx version 2.4 with
the variable step Kutta-Merson integration algorithm.

As can be seen in figures 2 and 3, the indirect adaptive control scheme
worked extremely well. The trajectories for the indirect controller were vir
tually indistinguishable from the desired trajectories of u and ij>2a + ip2b.

13
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Figure 2: Tracking Results and Error for cj

Furthermore, from figure 4 one sees that the estimates for Tl and Rr reach
their true values from initial offsets of 4 and 0.3, respectively, and then track
the true parameters throughout.

Observing the error for the nonadaptive controller in the bottom half of
figure 2, one sees that the shape of this waveform is similar to the desired
trajectory for V>™ + Hb- This is due to the fact that for the nonadaptive
controller we do not achieveoutput decoupling since there is parameter mis
match. As a result, the outputs interact. This is the main advantage of
using the adaptive scheme since one may always argue that a simple PID
loop will regulate the offset in the tracking error. This would result in the
steady state error being driven to zero (for constant trajectories), but the
outputs will never be decoupled if there is any parameter mismatch.

7 Conclusion

A nonlinear indirect adaptive controller was designed for a fifth order induc
tion motor model. The simulationresults were quite good and achieved both
asymptotic tracking and output decoupling and the parameter estimates for
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Tl and Rr converged to their true values. It should be noted that ,*c assumed
the rotor flux linkages, VVa and ^V6, were measured. This typically would in
volve flux coils to be installed in the rotor. One may also use the observers
developed in [Verghese and Sanders, 1988] to estimate these quantities.
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