
Copyright© 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or partof this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AP_LIN: A TOOL BOX FOR APPROXIMATE

LINEARIZATION OF NONLINEAR SYSTEMS

by

Raja R. Kadiyala

Memorandum No. UCB/ERL M92/22

1 March 1992

AP_UN: A TOOL BOX FOR APPROXIMATE

LINEARIZATION OF NONLINEAR SYSTEMS

by

Raja R. Kadiyala

Memorandum No. UCB/ERL M92/22

1 March 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

AP- LIN: A Tool Box for Approximate
Linearization of Nonlinear Systems *

Raja R. Kadiyala

Department of Electrical Engineering
and Computer Science

207-59 Cory Hall
University of California

Berkeley, CA 94720
email: raja@robotics.berkeley.edu

March 1, 1992

Abstract

A toolbox for nonlinear control system design is presented. This
package contains modules to approximate systems to polynomialssys
tems of arbitrary order and then render them input-output linear or
input-state linear with arbitrary order error terms. We also discuss
possibilities for real-time control.

'Research supported in part by the Army under grants DAAL-88-K-0106 and DAAL-
91-G-0191, and NASA under grant NAG 2-243

1 Introduction

There has been a great wealth of theoretical machinery built up for con
trolling and analyzing nonlinear systems culminating in a rather complete
characterization of linearization by state feedback. Feedback linearization,
however, has been somewhat slow to catch on in real world applications
mostly due to the fact that there does not exist a good Computer Aided
Design (CAD) tool which handles feedback linearization of nonlinear sys
tems. In turn, the nonlinear CAD tool development has been hampered in
the past since the calculations necessary to formulate the feedback law are
symbolic in nature.

Restricting ourselves to systems of the form

m

t=l

Vi = hi(x),

where /(a;), gi(x), and h{(x) are vector valued polynomials and x € Rn,u 6
Rm,y 6 Rly allows us to compute the linearizing feedback numerically as
opposed to symbolically. Furthermore, we are able to handle the tabular
data found in most flight control problems and also non-smooth problems
in a systematic fashion. Restricting ourselves to polynomial systems is not
overly constraining as many systems look either quadratic or cubic locally
and we are free to use as many approximations as necessary over a region.

The idea of using an approximate system created by a spline fit as the
basis for control system design is currently used in a (non-symbolic) package
specific to flight control developed at the NASA Ames Research Center.
This package carries through the necessary calculations, which then renders
an aircraft system input-output linear (see [Meyer, 1990]). The controller
created may then be readily implemented on the current generation of flight
control computers. Some of the features of the AP- LIN were taken from
cues set by this flight control package while the author was at the NASA
Ames Research Center.

We are currently in the midst of constructing the AP- LIN nonlinear
control CAD tool package which will implement the necessary operations
for feedback linearization on polynomials systems. The present status of
the toolbox includes a system approximator which takes a nonlinear system
and gives back a polynomial system of arbitrary order. From this approx
imation we may generate a feedback linearizing controller or a controller

which renders the system linear up to arbitrary order terms (as in [Krener
et a/., 1987]).

This paper starts with a brief review ofexact linearization and higher
order linear approximations which are the two control schemes currently
implemented in the AP- LIN toolbox. The toolbox itself is discussed in
section 3. Finally to show some ofthe features ofthe package we give a few
examples in section 5 anda possible scenario for realtime control is given in
section 6.

2 Review of Nonlinear Techniques

In this section we review two popular nonlinear techniques for controlling
systems with nonlinear dynamics, namely exact input-output linearization
and the approximate reduction ofnonlinear systems to linear systems.

2.1 Exact Linearization

We review, following the notation set in [Isidori, 1989], the basic linearizing
theory for the single-input single-output case. The multiple-input multiple-
output theory is similar, but more involved. Consider the SISO system

* = f(x)+g(x)u
y = h{x) (1)

with x € Rn,« € R and /, g, h smooth. Differentiating y with respect to
time, one obtains

dh.

V = dx~*
dh dh

= Txf{x) +Tx9(x)u
= Lfh(x) + Lgh(x)u (2)

Here L/h, Lah stand for the Lie derivatives ofhwith respect to /, g respec
tively (Lfh(x) = f£/(a?)). If Lgh(x) is bounded away from zero Vs € Rn
then the control law

yields the linear system

y = v. (4)

If Lgh(x) = 0, one continues to differentiate obtaining

y^ = Lifh(x) +LgLif1h(x)u t=l,2,... (5)
If there is a fixed integer 7 such that Va? € Rn LgL)h =0for i =0,..., 7- 2
and LgL^tyx) ^ 0then the control law

yields
yW = v. (7)

The integer 7 is called the strong relative degree of system (1).
For a system with a strong relative degree 7, it is easy to verify that at

each x° € Rn there exists a neighborhood U° of x° such that the mapping

denned as

with

i() = 6 = />(*)
$2(x) = fc = £/&(*)

$,(*) = €, = iJ-lA(*)

(8)

d$t(rc)if(a;) = 0 /or t = 7 + 1,..., n

is a diffeomorphism onto its image.
If we set n —($7+i,..., $n)T it follows that the system maybe written

in the normal form ([isidori, 1989]) as

f 1 = 6

6y-l = 6y (9)
£y = *(£»»?)+<*(£,!?)«

2/ = &.

In equation (9), 6(f,17) represents the quantity L^h^x) and a(£, 77) represents
LgLy~ h(x). We assume that x = 0 is an equilibrium point of the system
(i.e. /(0) = 0) and we assume that h(0) = 0. Then the dynamics

* = «(0,irt (10)

are referred to as the zero-dynamics (see [isidori, 1989] section <t.4 for de
tails). The nonlinear system (1) is said to be minimum phase if the zero-
dynamics are asymptotically stable.

2.1.1 Asymptotic Output Tracking

We now apply the normal form and the minimum phase property to the
tracking problem. We desire to have y(t) track a given y\f(t). With u
defined by (6), we choose

• =Vm +«i(»S_1) - »(7_I)) +•••+%(« - y) (ll)
with ot\,..., cty chosen so that

57 + ais7-1 + ... + o7 (12)

is a Hurwitz polynomial. Note that y(,_1) = &. If we define e, = y '̂*"1) -
yy ' then we have

e — Ae

v = q(t,v) (13)
& = ei + y{M1]

where A is the companion matrix associated with (12), and hence is a Hur
witz matrix.

It is easy to see that this control results in asymptotic tracking and
bounded states f provided yM.VM,-..,J/m_1) are bounded.

A sufficient condition for n to remain bounded is exponential stability
of the zero-dynamics and Lipschitz continuity ofg(f,n) in £,n. Thus, under
these conditions, (6) and (11) yield bounded tracking, (see [Sastry and
Isidori, 1987]).

2.2 Approximate Reduction of Nonlinear Systems to Linear
Systems

Consider the MIMO system defined below

x = f(x) + G(x)u

y = h(x) (14)

with i€Rn,«6Rm,jieR'. Furthermore f(x) and the columns and rows
of G(x), h(x) are smooth.

Following the technique in [Krener et a/., 1987], we seek a coordinate
change in the state space and output space along with state feedback such
that the resulting linear plant will agree with (14) up to an error term of
Of***1,*"*) (i.e. terms of0(x"+1) and 0(ip«)).

This is similar to a problem investigated by Poincare :

When can we transform

x = Ax + fW(x) + f®(x) + "- (15)

to the linear equation

i = As (16)

through a change of coordinates of the form

x = s+ <fP\s)-r<f>^{s) + --' (17)

where /M and ft1* are vector valued homogeneous polynomials ofdegree r
(i.e. fr\x) and <fir\x) would only contain 0(xT) terms)?

Poincare gave necessary conditions on the eigenvalues of A for such a
transformation to result in a linear equation (see [Arnold, 1983] chapter 5).
From a control standpoint this problem is not very interesting since we have
the extra freedom to choose u.

So let us consider the MIMO control system defined in (14). Suppose
that this system can be expanded as

x = Ax + Bu + jW(x) + GPl(x)u + 0(**,x2u)
y = Cx + hW(x) + 0(x3) (18)

Apply quadratic changes in the state space and output space

z = x-42\x) (19)
w = y--yW(y) (20)

to obtain

z = Az+ Bu + f&\z) +G^l\z)u
- [Az +Bu, <t>[2](z)] +0(x3, x2u)

w = Cz + hW(z) + C<{P\z)
- 7l2lW + 0(x3) (21)

where \Az +Bu,ft2\z^ is the Lie bracket of Az +Bu and <fi2\z) and
([/(*)> 0(2)] =|f/(^) - §£0(2)). Note that z agrees with xup through
order 1 terms, hence they may be interchanged as the argument of a homo
geneous polynomial of degree 1 or greater and included in the 0(x3, x2u)
term. A similar scenario holds for u and v defined below. Now, apply state
feedback of the form

to obtain

where

The equation

11 = aM(*) +(J +0M(*))t> (22)

i = Az + Bv + RiPXz,u) + 0(xz,x2u)
w = Cz +R2[2](z,w) +0(x3) (23)

R?\z,u) = /M(z) +gM(*)*
- [Az +Bu,<fP\z)\
+ B(oP>(z) +l3M(z)u)

R2l2](z,w) = hl2Xz) +C<fP>(z)-iW(w) (24)

Ri[2\z,u) = 0 (25)

is referred to as the controller homological equation of degree 2. If equation
(25) can be solved then we get

z = Az+ Bv + 0(z3,z2u) (26)

Further, suppose this system can be expanded as

z = Az + Bv + f®(z)
+ G[2\z)v + 0{zA,z3u) (27)

We could'repeat the above computations with

z = x-<f>®(x) (28)
v = a®(x) + (I+ pW(x))r (29)

to get a system which is linear up to 0(z4, z^u).
In general we have

x = Ax + Bu + fb\x)
+ GIp-11(x)tt +0(xp+1,a:p«) (30)

with change of coordinates

z = x-4fd(x) (31)
« = oW(«) + (/ +^-i)(i))t, (32)

which yields

i = Az + 5v + i2W(z,w) + 0(a;p+1,xp«) (33)

where

flMfoti) = /W(2) + GM(Z)U
- [a? +Bu,^(*)]
+ B(aW(z) +tfr-%)u)

(34)

The equation

flM(*,*) = 0 (35)

is the controller homological equation of degree p.
In contrast to section 2.1, this method attempts to linearize the state

space equations rather than the input-output map.

2.2.1 Solution of Controller Homological Equation

Equation (35) is a system of

"(T1)-!^2)
linear equations in

(m+n){ P)+m{ P-i)

n m P no. equations no. unknowns

2 1 2 10 11

3 1 2 27 27

4 3 2 88 106

8 1 2 352 332

9 3 2 648 621

Table 1: Problem size for various systems

unknowns, where

(n \ n\
\m J ~ (n-m)\mV

p is the linearization order, n, m are the dimensions of the state space and
input space. Typical problem sizes are given in table 1.

Typically this system of equations is either underdetermined or overde-
termined. Solutions may be computed using the singular value decomposi
tion to obtain the minimum coefficient size or minimize the coefficients of
the remainder term jRM, i.e.

• Underdetermined

• Overdetermined

mm

4,W

mm

2.2.2 Controller Implementation

In addition to linearization, one must also stabilize the plant. A subtle point
that needs to be addressed is: at what point in the design should we place
the eigenvalues of A with the standard state feedback control law

Fx + v

(where v is the redefined input)? There are twopossibilities:

1. on the original system

2. on the transformed system

If we apply state feedback to theoriginal system and G^~1^ ^ 0, we gain
another 0(xp) term, but we know its value (G^'^Fx) and can include it in
/W. Whereas, if we apply it to the transformed system and Rf^(z, u) £ 0,
we may introduce another 0(xp) term to our system from which we just
removed most 0(xp) terms and we have no way to remove this new term.
So, it is clear that one should apply state feedback before the transformation.

With this choice made, the iterations to compute the controller become:

1. Choose state feedback to place the poles of A:

u = Fx + v (36)

2. Calculate <f^(x), qW(i), and pb-^z) for the system

x = Ax + Bv+ ft\x)
+ G*^1](*)t> +0(*p+1,*ptt) (37)

where /W(») = /W(x) +G^~l\x)Fx

3. Define the coordinate change and feedback

z = x-4fP\x)
v = aM(*) +(J+/3[p-i](z))r (38)

and set

w = y-7W(y) (39)

We can estimate z by

z = Az + Bu + L(w - Cz) (40)

3 The AP. LIN Toolbox

The AP- LIN toolbox is a stand-alone set of programs all implemented in
standard C to run on any UNIX platform. The notion of using individual
programs for each task was partly inspired by the toolbox mind-set intro
duced in [Wette and Laub, 1986]. This differs from the approach taken in

10

APJUNTodBo*

•

Exact

Controller

Onto
udmt Apfnsinutun

CmfmfW
Uta

Onto

Contirflnr

CCode

Figure 1: The AP. LIN Toolbox Flow

[Krener et a/., 1991], which carries through the higher order linear approxi
mation control design in a MATLAB based package.

The heart of the toolbox is the polynomial system approximator which
is discussed in section3.1. As seen in figure 1 the toolbox can accept various
input forms from CACSD packages and symbolic packages along with user
defined subroutines. Other input forms will be added as time and resources
permit. From these system descriptions the system approximator will then
give back a polynomial system.

This polynomial system may be viewed (via I^TjjX) or we may simulate
the approximate system to check the validity of the spline fit. We may also
create (based on the approximate system) the two controllers mentioned
previously and generate C subroutines which may included in a simulation
or executed on a real-time controller.

Currently there is a SunWindows interface to the various routines. In
the future we plan to use X as the standard window system for the user-
interface, but one can always use the simple UNIX commandline sequences
from a dumb terminal to perform the desired operations.

11

3.1 Polynomial System Approximator

The polynomial system approximator creates a multivariate spline fit of
arbitrary order of

x = f(x) + G(x)u
y = h(x)

to the system

x = f(x) + G(x)u
y = h(x)

where f(x), h(x) are vector valued polynomials in x and G(x) is a matrix
of polynomials in x.

As stated previously, the approximation code accepts numerous input
forms such as MATRIXx, Mathematica, and user generated subroutines
in C or FORTRAN. The spline fit can be about an input trajectory or a
prescribed state trajectory and the computations can be made parallel for
increased speed.

3.1.1 Computation of Coefficients for Spline Approximation

For each ft, hi, Gij

U"r>)
parameters must be identified, where o is the order of the approximation,
and n is the dimension of the state space, (m + 2) singular value decompo
sitions must then be computed to get the closest approximation in a least
square sense.

One can easily see from table 2 that the number of parameters to be
identified becomes quite large, but this is only if we take a black-box ap
proach. Typically we will know the structure of our system and how the
nonlinear terms come in and which state variables the nonlinear functions
depend on. So, a more reasonable scenario is to have a system which is
mostly linear except for a few nonlinear terms which are a function of a
small subset of the state variables. In this case we would get a much more
reasonable problem size.

12

n o no. parameters

2 2 2

2 4 8

3 3 18

4 3 60

8 2 660

Table 2: Number of parameters to be identified for various systems

Figure 2: Backlash system from SystemBuild

4 Computation of Exact Linearization Control
Law

The computation of the exact linearization control law is straight forward
once the system has been approximated by a polynomial system. AP- LIN
basically caries through the calculations in section 2.1. AP- LIN also does
carry through the calculations for mimo systems.

In doing these computations several core routines that handle basic op
erations on polynomials were developed such as multivariate polynomial
addition, multiplication, and differentiation. The existence of these func
tions will speed development in the future as almost all algorithms will use
these core routines.

5 Examples

In this section we give a couple of examples to show some the capabilities
of the AP- LIN toolbox. Since the toolbox is still in its infancy, we have
not had a" chance to work through an extensive number of systems. A more
thorough undertaking on more realistic examples will be forthcoming. All
system and controller equations we generated by AP- LIN in MfjXform.

13

5.1 Backlash Example

In figure 2 we have a SystemBuild block generated within MATRIXx-
This super —block represents a simple model ofbacklash in a gear train. We
have two states and a nonlinearity (dead-zone) sandwiched between them.
Note that this system isnot controllable when x\ lies in thedead-zone region.

If we approximate this system with a third order polynomial system
about a sinusoidal trajectory and ask for the system equations in MjjXform
we get

System Spline Model

x = f(x) + g(x)u

and

y = h(x)

where x € R2, y € R1, and u € R1. With

/(«) = 3.1 •103*i3

g{x) =

h(x) = [x2]
These set of equations are expected since the dead-zone can be reason

ably approximated by a cubic function. The results of two simulations com
paring the approximate system to the actual system about two trajectories
is givenin figure 3. The approximation comes extremely close in both cases
and can be used as a model to base our control design on in this region. In
fact it was so hard to differentiate the approximate and the actual system
that we had to add the error plots.

Unfortunately finding a control law is not trivial since an exact lin
earization control law will have a singularity at x\ = 0 and the Jacobian
linearization of the approximate system is not controllable, hence the higher
order linearization will not yield anything fruitful. We may apply the exact
linearization control law with a preload function to avoid the singularity
(i.e. if ||a;i|| < 6 then use x\ = esgn(xi) in the control law). This controller
is essentially high gain and therefore not very robust and we only present

14

1

; til
t

k

1 . JH
i A III

rj[|[
>i urn

V l!i if

Figure 3: Third order approximation to the backlash system

it to continue through the example. Results of a simulation to track an
offset sinusoid through the dead-zone region is givenin figure 4. The actual
position (the dashed line) comes reasonably close, less than the dead-zone
region, to tracking the desired position (the solid line).

5.2 Simple Two Dimensional System

Consider the system

x\ = sin(a;2)
x*2 = u

y = xi (41)

Let us run the system through the systemapproximator with a trajectory
about the origin. We retrieve the third order polynomial system

x23
x1 = x2 —

0

x\ = u

y = xx (42)

15

Figure 4: Modified exact linearization controller

Note that this system is the same as the system one would get by simply
replacing sin(a;2) with the first two terms in the Taylor series expansion for
sin(-).

If we proceed through the exact linearization calculations on our actual
system we get

sin(x2)

cos(x2)w
v

cos(a?2)
(43)

It should be noted that this control law has a singularity at x2 —inf. Now
if we proceed through the exact linearization algorithm on our polynomial
system we get

xf
= x2-

• •(•-*)
u =

(l-f)
(44)

16

This control law has a singularity at x2 = ±\/2. The higher order lineariza
tion methodology will give us

where

ft3\z) =

d3\z)
P[2\z)

L 6

x = z + <ff-3*(z)
u = a®(x)+(l+l3W(xj)v

This coordinate change yields

z =

Z2 + — 2*- 4-
72 ^12 1296

.(i +^-^+tf-iSK

(45)

(46)

(47)

(48)

which has only 0(z, v)4 terms and higher. If we then close the loop with a
linear control law on both nonlinear controllers based on the approximation
and simulate the step response we get very similar results as seen in figure
5.

This last example shows two different nonlinear control approaches to
a problem with about the same results. One can envision a case where
perhaps the exact linearization control law had an unavoidable singularity
and the higher order linear approximation control scheme was stable in this
neighborhood. The moral is that the design engineer must have options
to turn to since there is not currently one omni-powerful methodology for
nonlinear systems.

5.3 Ball and Beam Example

Figure 6 represents the so called ball and beam system which is comprised
of a ball riding on a track. The control input is the torque of a motor at the
center of the track which rotates the beam causing the ball to move accord
ingly. The equations for the system may be written (after a redefinition of
the input) as:

17

Step Response

0.20 ' 1 ' 1—•—1—•—1—>—1—'—1—•—1—"—1—<—1—•—

0.IS

1
0.10

0.05
•

0.00

1
__•—I—i—I—.—I—.—[__,—i—.—i—.—i i.i.

0123 + 56789 10

Time (seconds)
' Bnct

*Approx

Figure 5: Step response of both nonlinear controller

Figure 6: Ball and Beam

18

xi x2 0

x2

X3
=

xixl- <7sinx3
x4

+
0

0

x4 m 0 1

y = Xi

where x = (xi, x2, x3, x4)r := (r, f, 0,0)T
This system may be approximated by AP- LIN as:

System Spline Model

* = f(x) + g(x)u

and

y = /*(*)

where x 6 R4, y € R, and ueR. With

a?2

/(») =
-9.8x3 + 1.6x33 + X1X42

x4

0

"0"

</(x) =
0

0

1

h(x) = [Xi]

(49)

The X1X42 term causes the system to have relative degree 3, hence we
would have unobservable dynamics if we used an exact linearization con
trol law on this model. Unfortunately these dynamics are not minimum
phase, thus we may not achieve asymptotic tracking. If we, however, ignore
this term in the computation of the linearizing control law, then we would
have a relative degree 4 system, and hence no zero dynamics. This further
approximation is valid if X4 remains small.

19

It is quiteeasy to make this additional approximation (just set the term
to zero) and have AP- LIN churn through the calculations to create the
linearizing control law. The calculation took less than 20 msec on a Sparc-
Station 1. The control law as created by AP. LINis given below.

Input-Ouput Linearizing Controller

x € R4, y € R, and u € R,

And the system has relative degree of 4

u = -A~1(x)B(x)+ A-1(x)v

Where

A(x) = [-9.8 +4.9x32]

B{x) = [9.8x3x42]
And the diffeomorphism:

yi

Vi
(3)

. vi

Xi

X2

-9.8X3 + 1.6X33
-9.8x4 + 4.9x32x4

Defines the linearizing change of coordinates.
If we now ask AP- LINto generate a C subroutine for the controller so

we may simulate the system, then we get the results shown in figure 7 for
the ball position (xi) tracking a sinusoid, (the solid line andthe dashed line,
respectively).

The AP- LIN toolbox gives us a platform to rapidly include nonlinear
control schemes since we restrict ourselves in the end to polynomial systems.
The data structures and manipulation routines have all been written to
handle the multivariate polynomials. Hence we may easily implement other
nonlinear algorithms such as the nonlinear regulator ([Byrnes and Isidori,
1990]), orthe approximate control methods discussed in [Hauser eta/., 1988],
or even some adaptive schemes suchas [Sastry and Isidori, 1987] and [Teel et
a/., 1991]. Thus we can give the control designer the options and flexibility
necessary.

20

* .3

K 0

!

/ \

t

•

-

-

•

—

0133458789 10
time (mc)

Figure 7: Tracking Results for the Ball and Beam

6 Real-time Control

In table 3 we have summarized the time it takes for the computation of the
approximation and to compute the higher order linearization control law on
various computer systems for different problem sizes. It should be noted that
these are all UNIX workstations running in a multi-user environment. In a
real time setting the times would be even smaller. The code was compiled
using the standard C compiler provided by the computer manufacturer and
with the default level ofoptimization. The machine labeled SS2-i860is a Sun
SparcStation 2 with an Intel i860 array processorconnected to it. Forthis set
up the singular value decomposition was ported to the array processor and
was solely executed on it. For the smaller problems the overhead involved in
setting up the shared memory and passing the data dominated the timing
figures, but as the problem became larger the speed of the i860 dominated.

The computation of the exact linearization controller on all platforms
took 10 msec. The speed of execution is due to the nature of the com
putation (mainly multiply and additions). So if on were to use the exact
linearization control law then the main computational load will be in the
system approximation which can be made much more manageable if we use
our knowledge of the system and do not take a black box approach.

21

System with 2 states, one input and output
Approximation

Time (msec)
Order Par. DEC 5000 SUN 4/370 SS2 SS2-i860

3 10 35 60 40 60

4 15 98 220 110 110

5 21 230 510 240 230

13 105 46981 47270 32160 21860

Controller Computation
Time (msec)

Order DEC 5000 SUN 4/370 SS2 SS2-i860

3 32 70 50 70

4 74 160 90 90

5 133 260 150 140

Table 3: Computation time for various processors

It is quite clear that for small problems we could currently do the ap
proximation and create a control law in real-time. With more optimization
and faster (perhaps parallel) processing power one will be able to handle
even larger problems.

So one may envision a scenario as depicted in figure 8 where we have a
controller running at some fixed rate and at a slower time scale we have the
system approximator gathering the inputs, states, and outputs to create an
approximation of the system in its current operating region. This approxi
mation is then feed to a another processor which will compute a new control
law and update the controller.

7 Conclusion

In this paper, we have presented a toolbox for nonlinear control system
design. The AP- LIN toolbox can currently approximate a system to a
polynomial system and then carry through the computations to input-output
linearize a class of systems or compute another control law which renders a
system linear up to arbitrary order error terms. New modules can be easily
incorporated and will allow the control designer the flexibility to choose
amongst them as more design schemes are added.

We have also shown that for small size problems it is currently feasible

22

u <System
Approximator

, i i

u
Plant

y
r

X

• Compute ;
; Control ;

X

'

y
i .. i

u
Controller

< k

V

Figure 8: Real-time control diagram

to implement a system approximator and routines to compute control laws
in a real-time setting. As processor speeds continue to climb we will be able
to handle larger and larger size problems.

8 Acknowledgements

The author would like to thank Sunil Shah of Integrated Systems Inc. for
his input, support, and encouragement to develop this package, Art Krener
at UC Davis for his guidance and motivation, and George Meyer at the
NASA Ames Research Center for allowing the author to spend one summer
at Ames to work on a similar package for flight control.

References

[Arnold, 1983] V. Arnold. Geometrical Methods in the Theory ofOrdinary
Differential Equations. Springer-Verlag, 1983.

23

[Byrnes and Isidori, 1990] C. Byrnes and A. Isidori. Output regulation
of nonlinear systems. IEEE Transactions on Automatic Control, 35,
No.2:131-140,1990.

[Hauser et al., 1988] J. Hauser, S.S. Sastry, and G. Meyer. Nonlinear con
troller design for flight control systems. Technical Report UCB/ERL
M88/76, Electronics Research Laboratory, University ofCalifornia, Berke
ley, 94720,1988.

[Isidori, 1989] A. Isidori. Nonlinear Control Systems: An Introduction.
Springer-Verlag, 1989.

[Krener et al., 1987] A. Krener, S. Karahan, M. Hubbard, and R. Frezza.
Higher order linear approximations to nonlinear control systems. In 26th
IEEE Conference on Decision and Control, pages 519-523, December
1987.

[Krener et al., 1991] A. Krener, M. Hubbard, S. Karahan, A. Phelps, and
B. Maag. Poincare 's linearization method applied to the design of non
linear compensators. Technical report, Institute ofTheoretical Dynamics,
University of California at Davis, Davis, CA 95616, 1991.

[Meyer, 1990] G. Meyer. Application of brunowsky forms in multi-mode
flight control. In 1990 American Control Conference, May 1990.

[Sastry and Isidori, 1987] S.S. Sastry and A. Isidori. Adaptive control of
linearizable systems. Technical Report UCB/ERL M87/53, Electronics
Research Laboratory, University of California, Berkeley, 94720, June 1987.

[Teel et al, 1991] A.R. Teel, R.R. Kadiyala, P.V. Kokotovic, and S.S. Sas
try. Indirect techniques for adaptive input output linearization of nonlin
ear systems. International Journal of Control, 53, No. 1:193-222,1991.

[Wette and Laub, 1986] M. Wette and A. Laub. Software practices in
computer-aided control systems design: A need for tool-based systems.
In IEEE Control Systems Society Third Symposium on Computer-Aided
Control System Design, pages 25-30, September 1986.

24

A Manual Pages for the AP- LIN Package

25

CLEAN.PARAM(l) USERCOMMANDS CLEAN_PARAM(1)

NAME

ctean_param - clean uprelatively small terms inpolynomial strings inanAPJJNconfiguration file
SYNOPSIS

cleanjraram [-c cutofftolerance] [-ffile]

DESCRIPTION

cleanj>aram takes the output from createjmodel(l), poincare(l), spline_hyper(l), spline_usr(l) and
creates a new configuration file as described below.

OPTIONS

-c cutoff tolerance; Use cutoff tolerance as the tolerance to detennine which variables are relatively
small (compared to other elements in a singlepolynomial string)and should not be set to zero. The default
is 1.0e-06.

-f file; Use the file named file as the file winch contains the system configuration data created by
create_model(l), poincare(l), splinejisr(l), splineJiyper(l)

SEE ALSO

create_model(l), poincare(l), splinejiyper(i), spline_usr(l)

AUTHOR

Raja R. Kadiyala, Dept of EECSU.C. Berkeley, email: raja@robotics.berkeley.edu

BUGS

None known yet...

SunRelease4.1 Lastchange: 20 Dec 1991

C0NFIG2LATEX(1) USERCOMMANDS CONFIG2LATEX (1)

NAME

config21atex - create latex froman APJJN configuration file

SYNOPSIS

fonftgHatfr [-c cutofftolerance] [-i inputfile] [-o outputfile]

DESCRIPTION

config2latex takes the output from create_model(l), lineaiize(l), pomcare(l), spline_hyper(l),
spline_usr(l) and creates a latex file of the configuration file.

OPTIONS

-c cutoff tolerance; Use cutofftolerance as the tolerance to determine which variables are relatively
small (compared to other elements in a single polynomial string) and should not be printed. The default is
1.0e-06.

-i input file; Use the file named inputfile as the file which contains the system configuration data created
by createjnodel(l), linearize(l), poincare(l), splinejisr(l), splinejiyper(l) The default is standard
input

-o output file; Use outputfile as the file to save to; the default is standard output

SEE ALSO

create_model(l), linearize(l), poincare(l), spline_hyper(l), spline_usr(l)

AUTHOR

Raja R. Kadiyala, Dept of EECS U.C. Berkeley, email:raja@roboHcsJberkeley.edu

BUGS

None known yet...

Sun Release 4.1 Last change: 20 Dec 1991

CREATE_M0DEL(1) USER COMMANDS CREATE.MODEL(l)

NAME

createjnodel - multivariatespline fitting front end script

SYNOPSIS

create modelfortranfile [-a] [-d] [-i inputfile] [-n number ofpoints] [-o outputfile] [-p power] [-t] [-v
1

DESCRIPTION

createjnodel takes a nonlinearmodel described by a MATRIXx HyperBuild fileand createsa polynomial
approximationof arbitrary order to the followingsystem

x' = f)(x) + G(x)u
y = h(x)

where f(x) and h(x) are vectorsof polynomials andG(x) is a matrix of polynomials. The approximation for
f(x) will contain all terms of order p and below except fororder0 terms, while the approximation for G(x)
will contain all order (p-1) and lower terms. This behavior may be changed by using the 'all terms' option
(see below). The spline fit is about some prescribed trajectorydefined by the data in the variables t and u in
the MATRIXx fsave'd file inputfile. The system is first simulated with the input specified in the input file
and then knot points are uniformly picked as the points to use for the least square fit If the input-output
spline option is picked men the system is approximatedby

y = h(u)
and we must have the variables t and u in the input file. The output is then saved in the file outputfile
which is systemxonfig by default This file may then be run through filters config21atex(l) to create latex
of the approximate system or create_usr(l) to create a usr code file which may be simulated to check the
validity of the approximation. Controllers may be created by using poincare(l) or linearize(l).
createjnodel is actually a front end script to the actual splineroutine, spline_hyper. The typicaluserwill
almost always spline fit models using createjnodel

OPTIONS

fortran file; Use the file namedfortranfile as the source code filewhich containsthe HyperBuild file to be
spline fit This argument is required.

-a Turns on all terms mode which will calculate all possible terms for f(x) and G(x).

-d Turns on debug mode which will printout more verboseinformation on what createjnodel is doing.
This argument is optional

-i input file; Use the file named inputfile as the file which contains the MATRIXx stored data of the tra
jectory to spline fit about This file is createdby the fsavecommand within MATRIXx and will contain the
variablest and u. This argument is optional.

-n num pts; Use num pts as the number of knot points to be used in the spline fit This argument is
optional.

-o output file; Use output file as the file to save to; the default is system.config. This argument is
optional.

-p power; Use power as the order of the polynomial fit This argument is optional

-t Time the spline operation. This argumentis optional.

-v Do an input-output spline fit as described above. This argument is optional.

Sun Release4.1 Last change: 20 Dec 1991

CREATE_M0DEL(1) USERCOMMANDS CREATE.MODEL (1)

FILES

Amp/tmp* temporary files created

SEE ALSO

cfean_param(l), config21atex(l), create_usr(l), linearize(l), poincare(l), spline_hyper(l), spline_usr(l)

AUTHOR

RajaR. Kadiyala, Dept of EECSU.C. Berkeley, email: raja@roboticsJberkeley.eau

BUGS

The errorchecking for improperdatais poor(trustis put in the user tp use the software property...)

Sun Release 4.1 Last change: 20 Dec 1991

CREATE_USR(1) USERCOMMANDS CREATEJJSR (1)

NAME

createjosr - create a C usr code block froman AP_LINconfigurationfile

SYNOPSIS

createjisr [-i inputfile] [-o outputfile]

DESCRIPTION

createjisr takes an AP_LIN configuration file and creates a C subroutine, in standard MATRIXx usr code
blockformat The createdcode is a subroutine representation of the AP_UN configuration file. Thissub
routinemay thenbe simulated to test thevalidity of theapproximation.

OPTIONS

-I input file; Use the file named input file as the file which contains the AP_UN configuration file The
default is standard input

-o output file; Use outputfile as the file to save to; the default is standardoutput

SEE ALSO

create_model(l), linearize(l), poincare(l), spline_hyper(l), spline_usr(l)

AUTHOR

RajaR. Kadiyala, Dept of EECS U.C.Berkeley, email: raja@robodcsJberkeley.edu

BUGS

None known yet...

SunRelease 4.1 Lastchange: 12Dec 1991

LINEARIZE(l) USERCOMMANDS UNEARJZE(l)

NAME

linearize - input output linearize a system described by anAPJJNconfiguration file
SYNOPSIS

linearize [-c cutofftolerance] [-i inputfile) [-o outputfile] [-t]

DESCRIPTION

linearize takes the output from createjnodel(l), splinejisrtf), splineJiyper<l) and creates a controller
that yields the originalsystem input output linear

OPTIONS

-c cutoff tolerance; Use cutoff tolerance as the tolerance to determine which variables are relatively
small (compared to otherelements in a singlepolynomial string) and shouldnot be set to zero. The default
is l.Oe-06.

-i input file; Use the file namedinput file as the file whichcontains the system configuration data created
by createjnodel(l), splinejisr(l), splineJiyper(l) The default is standard input

-o output file; Use outputfile as the fileto save to; the default is standard output

SEE ALSO

create_model(l), poincare(l), splinejiyper(l), spline_usr(l)

AUTHOR

RajaR. Kadiyala, Dept of EECS U.C. Berkeley, email: raja@robotics.berkeley.edu

BUGS

None known yet...

Sun Release 4.1 Lastchange: 20 Dec 1991

POINCARE(l) USER COMMANDS POINCARE(l)

NAME

poincare - reduce a system described byanAPJJNconfiguration fileto linear system up to arbitrary order

SYNOPSIS

poincare [-i inputfile] [-1 linearization level] [-o outputfile] [-t]

DESCRIPTION

poincare takes theoutput from createjnodel(l), spline_usr<l), splineJiyper(l) andcreates a controller
that yields the original system linear up to an arbitrary order (see Krener'et al., 1987 26th IEEE Conference
onDecision andpages 519-523)for a description of the theory.

OPTIONS

-i input file; Use the filenamed inputfile as the file which contains the system configuration data created
by createjnodel(l), spfine_usr(l), spline_hyper(l) Thedefaultis standard input

-I linearization level; Use linearization level as theorder of linearity for the system (i.e. if we hadpoin
care -13 then our resulting system with the control generated would be linear up through order 3 terms.
The default is 2.

-o output file;Use outputfile as the file to saveto; thedefault is the file controlconfig

SEE ALSO

create_model(l), linearize(l), splineJiyper(l), spline_usr(l)

AUTHOR

RajaR. Kadiyala, Dept of EECS U.C.Berkeley, email: raja@robotics.berkeley.edu

BUGS

None known yet...

SunRelease 4.1 Lastchange: 20 Dec 1991

SPLINEJHYPER(1) USER COMMANDS SPLINEJTYPER (1)

NAME

splinejiyper - multivariate spline fitting routine

SYNOPSIS

splinejiyper [-a] [-d] [-{fortranfile] [-iinputfile] [-n number ofpoints] [-ooutputfile] [-p power] [-s
number ofstates] [-t] [-v] [-z number oftmps]

DESCRIPTION

splinejiyper takes anonlinear model described by a MATRIXx HyperBuild file and creates a polynomial
approximation of arbitrary orderto the following system

x' = f(x) + G(x)u
y = h(x)

where f(x) andh(x)are vectors of polynomials and G(x)isa matrix of polynomials. The approximation for
f(x) will contain allterms of order p andbelow except for order 0 terms, whilethe approximation for G(x)
willcontain allorder (p-1) and lower terms. This behavior maybe changed by using the 'all terms' option
(see below). The spline fit is about some prescribed trajectory definedby the datain the variables t and u in
the MATRIXx fsave'd file input file. The system is first simulated withthe input specified in the input file
and then knot points are uniformly picked asthe points to use for the least square fit If the input-output
spline option is picked then the system is approximated by

y = h(u)
and we must have the variables t and u in the input file. The output is then saved in the file output file
which is systemxonfig by default This file may then be run through filters config21atex(l) to create latex
of the approximate system or create_usr(l) to create a usr code file which may be simulated to check the
validity of the approximation. Controllers may be created by using poincare(l) or linearize(l). It should
be noted thatthe typical user willnever usesplinejiyper, but would use instead the front end shell script
createjnodel which calls splinejiyper with the correct options. This commandis only on the SUN ver
sion and is notavailable on theDEC version. DEC users should usecreatejnodel instead.

OPTIONS

-a Turns on all terms mode which will calculateall possible terms for f(x) and G(x).

-d Turns on debug mode which will print out more verbose information on whatsplinejiyper is doing.
This argument is optional.

-f fortran file; Use the file named fortran file asthesource codefile whichcontains the HyperBuild file to
be spline fit This argument is required.

-i input file; Use the file named input file as the file which contains the MATRIXx storeddataof the tra
jectory to spline fitabout This file is created by the fsave commandwithin MATRIXx andwill contain the
variables t and u. This argumentis optional.

-n num pts; Use num pts as the number of knot points to be used in the spline fit This argument is
optional.

-o output file; Use output file as the file to save to; the default is system.config. This argument is
optional.

-p power; Use power as the orderof the polynomial fit; the default is 2. This argument is optional.

-s numstates; Use mm_states to set the number of states in the model. This argument is required.

-t Time the spline operation. This argument is optional.

-v Do an input-output spline fit as describedabove. This argument is optional.

Sun Release4.1 Last change: 20 Dec 1991

SPLINEjrYPER(l) USERCOMMANDS SPLINEJIYPER (1)

-a namjmps; Use numjmps as the numberof temporary variablesused by the system. This argumentis
required.

FILES

/tmp/tmp* temporary files created

SEE ALSO

ckan_param(l), config21atex(l), create_model(l),create_usr(l), linearize(l), poincare(l), spline_usr(l)

AUTHOR

Raja R. Kadiyala, Dept of EECS U.C. Berkeley, email:raja@robodcsJberkeley.edu

BUGS

The error checking for improperdata is poor (trust is put in the user to use the software properly...)

SunRelease4.1 Lastchange: 20 Dec 1991

SFLINEJJSR(l) USER COMMANDS SPLINEJJSR(1)

NAME

splinejisr - multivariate spline fittingroutine

SYNOPSIS

splinejisr [-a] [-c code file] [-d] [-i input file] [-k] [-n number ofpoints] [-o outputfile] [-p power] [-r
routine name] [-s number of states] [-t] [-u number of inputs] [-v] [-ynumber ofoutputs]

DESCRIPTION

spline_usr takes a nonlinear model described by a MATRIXx usr code file and creates a polynomial
approximationof arbitrary order to the followingsystem

x» = f(x) + G(x)u
y = h(x)

where f(x) andh(x) are vectors of polynomials andG(x) isa matrix of polynomials. Theapproximation for
f(x) will contain all terms of orderp andbelow except fororder0 terms, while theapproximation forG(x)
willcontain all order(p-1) andlower terms. This behavior may be changed by using the 'all terms' option
(seebelow). The splinefit is aboutsomeprescribed trajectory defined by the data in the variables t and u in
the MATRIXx fsave'd file inputfile. The system is first simulated with the inputspecified in the input file
and then knot points are uniformly picked as the points to use for the least square fit If the input-output
spline option is picked then the system is approximated by

y = n(u)
and we must have the variables t and u in the input file. The output is then saved in the file output file
which is systemxonfig by default Ifwe are in data mode (-d) dien the variables yand umust be in the
input file and we simply spline fit the input output data withoutneed for a code file.

The outfile system.config maythenbe run through filters config21atex(l) to create latexof theapproximate
system or create_usr(l) to create a usr code file which may be simulated to check the validity of the
approximation. Controllersmay be createdby usingpoincare(l) or linearize(l).

OPTIONS

-a Turns on all terms mode which will calculate all possible terms for f(x) and G(x).

-c code file; Use the file named codefile as the source code file which contains the usr subroutine to be
spline fit This argument is required.

-d Turns on data modecreatesan inputoutputsplinebasedon the data in the variablesy and u in the input
file. This argument is optional.

-i input file; Use the file named inputfile as the file which contains the MATRIXx stored data of the tra
jectory to spline fit about This file is created by the fsave command within MATRIXx and will contain the
variables t and u. This argument is optional.

-k Turns on state space fitting(i.e. specifywhichknot point to use in the least squares approximation. This
argument is optional.

-n num pts; Use num pts as the number of knot points to be used in the spline fit This argument is
optional.

-o output file; Use output file as the file to save to; the default is system.config. This argument is
optional.

-p power; Use poweras the order of the polynomialfit; the default is 2. This argument is optional.

-s numstates; Use numjtates to set the numberof states in the model. This argument is required.

Sun Release4.1 Last change:20 Dec 1991

SPLINE_USR(1) USERCOMMANDS SPLINEJJSR(1)

-tTime the spline operation. This argumentis optional.

-u num_inputs;Usenum inputs as thenumber of inputs for thesystem. Thisargument is required.

-v Do an input-output splinefitas described above. Thisargument is optional

-y numjiutputs; Usenumoutputs as thenumber of outputs for the system. Thisargument is required

FILES

Amp/tmp* temporary files created. $MATRIXX/src/usr01.c for template filefor usrcodesubroutine.

SEE ALSO

clean_param(l), config21atex(l), create_model(l), create_usr(l), linearize(l), poincare(l), spline_hyper(l)

AUTHOR

RajaR. Kadiyala, Dept of EECS U.C.Berkeley, email: raja@robotics.berkeley.edu

BUGS

Theerrorchecking for improper datais poor(trust isputin theuserto use thesoftware properly...)

SunRelease 4.1 Lastchange: 20 Dec 1991

