Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AP_LIN: A TOOL BOX FOR APPROXIMATE
LINEARIZATION OF NONLINEAR SYSTEMS

by

Raja R. Kadiyala

Memorandum No. UCB/ERL M92/22

1 March 1992

AP_LIN: A TOOL BOX FOR APPROXIMATE
LINEARIZATION OF NONLINEAR SYSTEMS

by

Raja R. Kadiyala

Memorandum No. UCB/ERL M92/22

1 March 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

AP_ LIN : A Tool Box for Approximate
Linearization of Nonlinear Systems *

Raja R. Kadiyala

Department of Electrical Engineering
and Computer Science
207-59 Cory Hall
University of California
Berkeley, CA 94720
email: raja@robotics.berkeley.edu

March 1, 1992

Abstract

A toolbox for nonlinear control system design is presented. This
package contains modules to approximate systems to polynomials sys-
tems of arbitrary order and then render them input-output linear or
input-state linear with arbitrary order error terms. We also discuss
possibilities for real-time control.

*Research supported in part by the Army under grants DAAL-88-K-0106 and DAAL-
91-G-0191, and NASA under grant NAG 2-243

1 Introduction

There has been a great wealth of theoretical machinery built up for con-
trolling and analyzing nonlinear systems culminating in a rather complete
characterization of linearization by state feedback. Feedback linearization,
however, has been somewhat slow to catch on in real world applications
mostly due to the fact that there does not exist a good Computer Aided
Design (CAD) tool which handles feedback linearization of nonlinear sys-
tems. In turn, the nonlinear CAD tool development has been hampered in
the past since the calculations necessary to formulate the feedback law are
symbolic in nature.
Restricting ourselves to systems of the form

z

f(z) + zm: gi(z)u;

i=1

i = hi(z),

where f(z), gi(z), and h;(z) are vector valued polynomials and z € R®,u €
R™,y € R!, allows us to compute the linearizing feedback numerically as
opposed to symbolically. Furthermore, we are able to handle the tabular
data found in most flight control problems and also non-smooth problems
in a systematic fashion. Restricting ourselves to polynomial systems is not
overly constraining as many systems look either quadratic or cubic locally
and we are free to use as many approximations as necessary over a region.

The idea of using an approximate system created by a spline fit as the
basis for control system design is currently used in a (non-symbolic) package
specific to flight control developed at the NASA Ames Research Center.
This package carries through the necessary calculations, which then renders
an aircraft system input-output linear (see [Meyer, 1990]). The controller
created may then be readily implemented on the current generation of flight
control computers. Some of the features of the AP- LIN were taken from
cues set by this flight control package while the author was at the NASA
Ames Research Center.

We are currently in the midst of constructing the AP_ LIN nonlinear
control CAD tool package which will implement the necessary operations
for feedback linearization on polynomials systems. The present status of
the toolbox includes a system approximator which takes a nonlinear system
and gives back a polynomial system of arbitrary order. From this approx-
imation we may generate a feedback linearizing controller or a controller

which renders the system linear up to arbitrary order terms (as in [Krener
et al., 1987)).

This paper starts with a brief review of exact linearization and higher
order linear approximations which are the two control schemes currently
implemented in the AP. LIN toolbox. The toolbox itself is discussed in
section 3. Finally to show some of the features of the package we give a few
examples in section 5 and a possible scenario for realtime control is given in
section 6.

2 Review of Nonlinear Techniques

In this section we review two popular nonlinear techniques for controlling
systems with nonlinear dynamics, namely exact input-output linearization
and the approximate reduction of nonlinear systems to linear systems.

2.1 Exact Linearization

We review, following the notation set in [Isidori, 1989), the basic linearizing
theory for the single-input single-output case. The multiple-input multiple-
output theory is similar, but more involved. Consider the SISO system

i = fz)+g(z)
y = hiz) @)

with z € R*,u € R and f, g, h smooth. Differentiating y with respect to
time, one obtains

oh oh
= 25/(@) +5-9(2)u
= Lgh(z)+ Lyh(z)u 2)
Here L¢h, Lyh stand for the Lie derivatives of A with respect to f, g respec-

tively (Lgh(z) = -g—z f(z)). If Lyh(z) is bounded away from zero ¥z € R™
then the control law

1
u= m(-lifh +) (3)
yields the linear system
y=v. 4)

K Lyh(z) = 0, one continues to differentiate obtaining
y® = Lih(z) + LI h(z)u i=1,2,... (5)

If there is a fixed integer v such that Yz € R® L, L h=0fori=0,...,7-2
and L, L’"’1 h(z) # 0 then the control law

N S
= LyL}'lh(z)(Lih(z) + v) (6)
yields
y) = v, (7)
The integer v is called the strong relative degree of system (1).
For a system with a strong relative degree 7, it is easy to verify that at
each 20 € R™ there exists a neighborhood U? of z° such that the mapping

$:U° —R"
defined as
®1(z) = & = h(z)
<I>2(z) = Ez = L;h(z) (8)
Oy(z) = & = L}'_lh(z)
with v

d®(z)g(z)=0 for i=y+1,...,n
is a diffeomorphism onto its image.

If we set 7 = (®441,-..,8,)7 it follows that the system may be written
in the normal form ([Isidori, 1989]) as

£ = &
é‘r.-l = E'y (9)
& = W& n)+aé n)u

n = Q(f’ 77)

y = &.

In equation (9), b(¢, 7) represents the quantity L"h(z) and a(£, n) represents

L L”'lh(z) We assume that z = 0 is an equilibrium point of the system
(i.e. f(O) 0) and we assume that ~(0) = 0. Then the dynamics

7= ¢(0,7) (10)

4

are referred to as the zero-dynamics (see [Isidori, 1989] section «.3 for de-
tails). The nonlinear system (1) is said to be minimum phase if the zero-
dynamics are asymptotically stable.

2.1.1 Asymptotic Output Tracking

We now apply the normal form and the minimum phase property to the
tracking problem. We desire to have y(t) track a given yp(t). With u
defined by (6), we choose

v=yif +oa(l) = 30D+t equm - 9) (11)
with o, ..., chosen so that
T+ ey (12)

is a Hurwitz polynomial. Note that y(“l) = §;. If we define ¢; = y(“l) -
(' 1) then we have

€ = Ae
7 = q&n) (13)
& = e+yfV

where A is the companion matrix associated with (12), and hence is a Hur-
witz matrix.

It is easy to see that this control results in asymptotic tracking and
bounded states £ provided yas, ¥ar, . ,y}u 1) are bounded.

A sufficient condition for 7 to remain bounded is exponential stability
of the zero-dynamics and Lipschitz continuity of (£,) in &,%. Thus, under
these conditions, (6) and (11) yield bounded tracking. (see [Sastry and
Isidori, 1987]).

2.2 Approximate Reductlon of Nonhnear Systems to Linear

Systems
Consider the MIMO system defined below
& = f(z)+G(z)u
y = h(z) (14)

with z € R®,u € R™,y € R!. Furthermore f(z) and the columns and rows
of G(z), h(z) are smooth.

Following the technique in [Krener et al., 1987], we seek a coordinate
change in the state space and output space along with state feedback such
that the resulting linear plant will agree with (14) up to an error term of
O(z?*!, zPu) (i.e. terms of O(zP*!) and O(zPu)).

This is similar to a problem investigated by Poincaré :

When can we transform
& = Azt fHz)+ Plz)+--- (15)
to the linear equation
§ = As (16)
through a change of coordinates of the form
z = s+ ¢(s)+¢8s) +--- (17)

where fI'] and ¢} are vector valued homogeneous polynomials of degree r
(i.e. ff)(z) and #)(z) would only contain O(z") terms)?

Poincaré gave necessary conditions on the eigenvalues of A for such a
transformation to result in a linear equation (see [Arnold, 1983] chapter 5).
From a control standpoint this problem is not very interesting since we have
the extra freedom to choose u.

So let us consider the MIMO control system defined in (14). Suppose
that this system can be expanded as

& = Az + Bu+ fA(z)+ GW(z)u+ 0(z3, z%u)

y = Cz+hl¥(z)+0(z%) (18)

Apply quadratic changes in the state space and output space
z = z-¢(z) (19)
w = y-1y) (20)

to obtain
2 = Az+ Bu+ fA(z) + GM(z)u
- [Az + Bu, ¢[2](z)] + O(z3, z%u)
w = Cz+h(2)+C¢ld(2)
- 1¥(w)+0(z%) (21)

6

where [Az+Bu, ¢[2](z)]‘ is the Lie bracket of Az + Bu and ¢l%(z) and

([f(2),9(2)]= g-g- f(z) - -g-fg(z)). Note that z agrees with z up through
order 1 terms, hence they may be interchanged as the argument of a homo-
geneous polynomial of degree 1 or greater and included in the O(z3,z%u)

term. A similar scenario holds for » and v defined below. Now, apply state
feedback of the form

v = ofl(z)+ (I+8M(z)) (22)
to obtain
: = Az+ Bv+ RiP(z,u) + 0(23, z%0)
w = Cz+ RA(z,w)+ 0(z) (23)
where
B\(z,u) = fA(z)+GU(2)u
- [Az+Bu,¢[2](z)]
+ B (of(2) + (2)u)
Rz, w) = #(z) + C4l(z) - 4P(w) (24)
The equation
RP(z,u) = 0 (25)

is referred to as the controller homological equation of degree 2. If equation
(25) can be solved then we get

2 = Az+ Bv+0(23, 2%u) (26)
Further, suppoée this system can be expanded as

: = Az+ Bv+ fl(z)

+ GE2)v + 0(24, 22u) (27)

We could repeat the above computations with
z = z-¢¥z) (28)
v = ol¥(a)+ (I +p¥(z))r (29)

7

to get a system which is linear up to O(2%, 23u).
In general we have

& = Az+ Bu+ fif(z)

+ GPY(z)u+ O(zP*,z%u) (30)
with change of coordinates
= z - ¢Fl() (31)
alPl(z) + (1 + BP~Y(z)) (32)
which yields
2 = Az+ Bv+ RP(z,u) + O(zPt!, zPu) (33)
where

RP(z,u) = fPl(z)+ Glr-Y(z)u
- [Az+ Bu,¢[1°](z)]
+ B (oP(2) + 8P U(2)u)
(34)
The equation
R¥(z,u) = 0 (35)

is the controller homological equation of degree p.
In contrast to section 2.1, this method attempts to linearize the state
space equations rather than the input-output map.

2.2.1 Solution of Controller Homological Equation
Equation (35) is a system of

n+p-1 n+p-—2
(0)75

linear equations in

(m+n)("+”‘1) +m2("+”‘2)
p

p-1

8

=]
B
o
e
2
=
&
=
S
id
B

unknowns |

2[1[2] 10

312 N 27 27
432 88 106
812 352 332
932 lr 648 621

Table 1: Problem size for various systems

n\ _ n!
m |~ (n—m)m!’

p is the linearization order, n, m are the dimensions of the state space and
input space. Typical problem sizes are given in table 1.

Typically this system of equations is either underdetermined or overde-
termined. Solutions may be computed using the singular value decomposi-
tion to obtain the minimum coefficient size or minimize the coefficients of
the remainder term R, i.e.

unknowns, where

o Underdetermined

#!
min || of?)
ﬂ[r])
¢ Overdetermined
min lR[”]|)

2.2.2 Controller Implementation

In addition to linea.riza.tion,. one must also stabilize the plant. A subtle point
that needs to be addressed is: at what point in the design should we place
the eigenvalues of A with the standard state feedback control law

Fz4+v

(where v is the redefined input)? There are two possibilities:

1. on the original system

2. on the transformed system

If we apply state feedback to the original system and GlP~1] # 0, we gain
another O(z?) term, but we know its value (GIP~1Fz) and can include it in
f¥l. Whereas, if we apply it to the transformed system and RPP)(z,u) # 0,
we may introduce another O(z?) term to our system from which we just
removed most O(z?) terms and we have no way to remove this new term.
So, it is clear that one should apply state feedback before the transformation.

With this choice made, the iterations to compute the controller become:

1. Choose state feedback to place the poles of A:

v = Fz+v (36)

2. Calculate ¢/P)(z), alfl(z), and gP-1)(z) for the system

¢ = Az+ Bv+ fIP(z)
+ GP-Y(z)y + O(2P*, 2Pu) (37)

where flPl(z) = flPl(z) 4+ Glr-Y(z)Fz
3. Define the coordinate change and feedback
= z-¢P(z)

'z) = aPl(z) + (1 + gE=(z))r (38)
and set
w = y—1Py) (39)
We can estimate z by
(= Ai+Bu+ L(w-C3) (40)

3 The AP_ LIN Toolbox

The AP. LIN toolbox is a stand-alone set of programs all implemented in
standard C to run on any UNIX platform. The notion of using individual
programs for each task was partly inspired by the toolbor mind-set intro-
duced in [Wette and Laub, 1986]. This differs from the approach taken in

10

Figure 1: The AP_ LIN Toolbox Flow

[Krener et al., 1991], which carries through the higher order linear approxi-
mation control design in a M ATLAB based package.

The heart of the toolbox is the polynomial system approximator which
is discussed in section 3.1. As seen in figure 1 the toolbox can accept various
input forms from CACSD packages and symbolic packages along with user
defined subroutines. Other input forms will be added as time and resources
permit. From these system descriptions the system approximator will then
give back a polynomial system.

This polynomial system may be viewed (via IATgX) or we may simulate
the approximate system to check the validity of the spline fit. We may also
create (based on the approximate system) the two controllers mentioned
previously and generate C subroutines which may included in a simulation
or executed on a real-time controller.

Currently there is a SunWindows interface to the various routines. In
the future we plan to use X as the standard window system for the user-
interface, but one can always use the simple UNIX command line sequences
from a dumb terminal to perform the desired operations.

11

3.1 Polynomial System Approximator

The polynomial system approximator creates a multivariate spline fit of
arbitrary order of

= f(z)+G(z)u
y = h(z)

to the system

= f(z)+é(z)u
= h(z)

where f(z), h(z) are vector valued polynomials in z and G(z) is a matrix
of polynomials in z.

As stated previously, the approximation code accepts numerous input
forms such as MATRIX x, Mathematica, and user generated subroutines
in C or FORTRAN. The spline fit can be about an input trajectory or a
prescribed state trajectory and the computations can be made parallel for
increased speed.

3.1.1 Computation of Coefficients for Spline Approximation

For each f;, hi, G;;

i (n+i—1)

=1 ¢
parameters must be identified, where o is the order of the approximation,
and n is the dimension of the state space. (m + 2) singular value decompo-
sitions must then be computed to get the closest approximation in a least
square sense.

One can easily see from table 2 that the number of parameters to be
identified becomes quite large, but this is only if we take a black-boz ap-
proach. Typically we will know the structure of our system and how the
nonlinear terms come in and which state variables the nonlinear functions
depend on. So, a more reasonable scenario is to have a system which is
mostly linear except for a few nonlinear terms which are a function of a
small subset of the state variables. In this case we would get a much more
reasonable problem size.

12

| n | o || no. parameters |

22 2
2[4] 8
33 18
43 60
8|2 660

Table 2: Number of parameters to be identified for various systems

Figure 2: Backlash system from SystemBuild

4 Computation of Exact Linearization Control
Law

The computation of the exact linearization control law is straight forward
once the system has been approximated by a polynomial system. AP. LIN
basically caries through the calculations in section 2.1. AP- LIN also does
carry through the calculations for mimo systems.

In doing these computations several core routines that handle basic op-
erations on polynomials were developed such as multivariate polynomial
addition, multiplication, and differentiation. The existence of these func-
tions will speed development in the future as almost all algorithms will use
these core routines.

5 Examples

In this section we give a couple of examples to show some the capabilities
of the AP_ LIN toolbox. Since the toolbox is still in its infancy, we have
not had a chance to work through an extensive number of systems. A more
thorough undertaking on more realistic examples will be forthcoming. All
system and controller equations we generated by AP_ LIN in BTpXform.

13

5.1 Backlash Example

In figure 2 we have a SystemBuild block generated within MATRIXx.
This super — block represents a simple model of backlash in a gear train. We
have two states and a nonlinearity (dead-zone) sandwiched between them.
Note that this system is not controllable when z; lies in the dead-zone region.

I we approximate this system with a third order polynomial system
about a sinusoidal trajectory and ask for the system equations in ETgXform
we get

System Spline Model

&= f(z)+g(z)u

and
y = h(z)
where z € R?, y € R!, and u € R!. With

flz) = [3.1.30%13]

9(z) = [(1)]
h(z) = [.’Bg]

These set of equations are expected since the dead-zone can be reason-
ably approximated by a cubic function. The results of two simulations com-
paring the approximate system to the actual system about two trajectories
is given in figure 3. The approximation comes extremely close in both cases
and can be used as a model to base our control design on in this region. In
fact it was so hard to differentiate the approximate and the actual system
that we had to add the error plots.

Unfortunately finding a control law is not trivial since an exact lin-
earization control law will have a singularity at z; = 0 and the Jacobian
linearization of the approximate system is not controllable, hence the higher
order linearization will not yield anything fruitful. We may apply the exact
linearization control law with a preload function to avoid the singularity
(i.e. if [[z1]] < 6 then use 2; = esgn(z,) in the control law). This controller
is essentially high gain and therefore not very robust and we only present

14

oot [r"\\ IF“\ oo i
yoood 1 o e Y LR
g YT iy
e ey 411881
o / 000008 fi— '
007 Trud t:mc .00002% .w. t:mo
o i ,
004 _/— . oo Mlﬂl ' fl‘l |
Vo . E ooocos Ly BN,
001 b -.o0000s LA IV {
0 / -.00001 v' I
e ™

Figure 3: Third order approximation to the backlash system

it to continue through the example. Results of a simulation to track an
offset sinusoid through the dead-zone region is given in figure 4. The actual
position (the dashed line) comes reasonably close, less than the dead-zone
region, to tracking the desired position (the solid line).

5.2 Simple Two Dimensional System

Consider the system

#; = sin(zs)
352 = u
y = n (41)

Let us run the system through the system approximator with a trajectory
about the origin. We retrieve the third order polynomial system

3
N z
.'52 = U
y = o (42)

15

014

012 Vo Va¥ O\

3 4
[A / A
o1 N 4 : a

=2
S——
.
—" e
u'."‘
.
— -
i~
=

17 I \v \v4
L)
.002 2
3
L/
o.lll . 1 ALl Lodod A . A0 2 1 11 1 3 . |
o 8 1 1.8 2 2.8 3 38 .
Ume

Figure 4: Modified exact linearization controller

Note that this system is the same as the system one would get by simply
replacing sin(z;) with the first two terms in the Taylor series expansion for
sin(+).

If we proceed through the exact linearization calculations on our actual
system we get

il = sin(zg)
j = cos(z2)u
v

= cos(zz) (43)

It should be noted that this control law has a singularity at z; = +n%. Now
if we proceed through the exact linearization algorithm on our polynomial
system we get

- g%
y = T2 6
2
= T2
j = u(l 2)
1
R A (44)
(t-2)

This control law has a singularity at z, = ++/2. The higher order lineariza-
tion methodology will give us

#(z) = [;’_
6
(45)
ata](z) = 0
ﬂ[zl(z) = 0
where
z = z+4M(2) (46)
v = afl(z)+ (I+89(z)) v (47)
This coordinate change yields
n+ % - %+
z = (48)

@+%—§+%~%ﬁ

which has only O(z,v)* terms and higher. If we then close the loop with a
linear control law on both nonlinear controllers based on the approximation
and simulate the step response we get very similar results as seen in figure
5.

This last example shows two different nonlinear control approaches to
a problem with about the same results. One can envision a case where
perhaps the exact linearization control law had an unavoidable singularity
and the higher order linear approximation control scheme was stable in this
neighborhood. The moral is that the design engineer must have options

to turn to since there is not currently one omni-powerful methodology for
nonlinear systems.

5.3 Ball and Beam Example

Figure 6 represents the so called ball and beam system which is comprised
of a ball riding on a track. The control input is the torque of a motor at the
center of the track which rotates the beam causing the ball to move accord-
ingly. The equations for the system may be written (after a redefinition of
the input) as:

17

Step Regponse

020 T T T T T T T

IS | f7

x, (radians)
e
°

005 H

°
-
~
w
»
@
@
~
®
©
e

Figure 5: Step response of both nonlinear controller

Figure 6: Ball and Beam

18

1 zo 0
&2 2123 — gsinzs : 0
573 T4 0
4 0 1
y = n

where z = (21, z3, 23, 24)T := (r,#,6,0)T
This system may be approximated by AP. LIN as:

System Spline Model

¢ = f(z) +9(z)u
and
Yy = h(z)
where z € R4, y € R, and » € R. With

T2
-9.8 1.6z3° 2
f(z) = z3 + zza + z124
4
0
0
0
9(z) = |,
1
h(z) = [zI]

(49)

The z;74% term causes the system to have relative degree 3, hence we
would have unobservable dynamics if we used an exact linearization con-
trol law on this model. Unfortunately these dynamics are not minimum
phase, this we may not achieve asymptotic tracking. If we, however, ignore
this term in the computation of the linearizing control law, then we would
have a relative degree 4 system, and hence no zero dynamics. This further

approximation is valid if z4 remains small.

19

It is quite easy to make this additional approximation (just set the term
to zero) and have AP. LIN churn through the calculations to create the
linearizing control law. The calculation took less than 20 msec on a Sparc-
Station 1. The control law as created by AP_ LIN is given below.

Input-Ouput Linearizing Controller
zeRY, yeR, and ueR,
And the system has relative degree of 4
7 u=-A"Y(z)B(z) + A7 (z)v
Where

Az) = [-98+49z5" |
B(z) = [9.873z42]
And the diffeomorphism:
)1 n
| _ T3
i |~ | —9.823+1.6z3°
n® —9.824 + 4.923%24

Defines the linearizing change of coordinates.

If we now ask AP_ LIN to generate a C subroutine for the controller so
we may simulate the system, then we get the results shown in figure 7 for
the ball position (z,) tracking a sinusoid, (the solid line and the dashed line,
respectively).

The AP_ LIN toolbox gives us a platform to rapidly include nonlinear
control schemes since we restrict ourselves in the end to polynomial systems.
The data structures and manipulation routines have all been written to
handle the multivariate polynomials. Hence we may easily implement other
nonlinear algorithms such as the nonlinear regulator ([Byrnes and Isidori,
1990]), orthe approximate control methods discussed in [Hauser et al., 1988],
or even some adaptive schemes such as [Sastry and Isidori, 1987) and [Teel et

al., 1991]. Thus we can give the control designer the options and flexibility
necessary.

20

1.2

.
.

Desired y and y
1
w

o 1 a2 3 4 s [] ? 8 9 10
time (sec)

Figure 7: Tracking Results for the Ball and Beam

6 Real-time Control

In table 3 we have summarized the time it takes for the computation of the
approximation and to compute the higher order linearization control law on
various computer systems for different problem sizes. It should be noted that
these are all UNIX workstations running in a multi-user environment. In a
real time setting the times would be even smaller. The code was compiled
using the standard C' compiler provided by the computer manufacturer and
with the default level of optimization. The machine labeled 552-i860is a Sun
SparcStation 2 with an Intel i860 array processor connected toit. For this set
up the singular value decomposition was ported to the array processor and
was solely executed on it. For the smaller problems the overhead involved in
setting up the shared memory and passing the data dominated the timing
figures, but as the problem became larger the speed of the i860 dominated.

The computation of the exact linearization controller on all platforms
took 10 msec. The speed of execution is due to the nature of the com-
putation {mainly multiply and additions). So if on were to use the exact
linearization control law then the main computational load will be in the
system approximation which can be made much more manageable if we use
our knowledge of the system and do not take a black boz approach.

21

System with 2 states, one input and output
Approximation
Time (msec)

Order | Par. || DEC 5000 | SUN 4/370 | SS2 | S52-i860
3 10 35 60 40 60
4 15 98 220 110 110
5 21 230 510 240 230
13 105 46981 47270 32160 | 21860

Controller Computation
Time (msec)
Order || DEC 5000 | SUN 4/370 | SS2 | SS2-i860
3 32 70 50 70
4 74 160 90 90
5 133 260 150 140

Table 3: Computation time for various processors

It is quite clear that for small problems we could currently do the ap-
proximation and create a control law in real-time. With more optimization
and faster (perhaps parallel) processing power one will be able to handle
even larger problems.

So one may envision a scenario as depicted in figure 8 where we have a
controller running at some fixed rate and at a slower time scale we have the
system approximator gathering the inputs, states, and outputs to create an
approximation of the system in its current operating region. This approxi-
mation is then feed to a another processor which will compute a new control
law and update the controller.

7 Conclusion

In this paper, we have presented a toolbox for nonlinear control system
design. The AP_ LIN toolbox can currently approximate a system to a
polynomial system and then carry through the computations to input-output
linearize a class of systems or compute another control law which renders a
system linear up to arbitrary order error terms. New modules can be easily
incorporated and will allow the control designer the flexibility to choose
amongst them as more design schemes are added.

We have also shown that for small size problems it is currently feasible

22

Plant

Controller

14

Figure 8: Real-time control diagram

to implement a system approximator and routines to compute control laws
in a real-time setting. As processor speeds continue to climb we will be able
to handle larger and larger size problems.

8 Acknowledgements

The author would like to thank Sunil Shah of Integrated Systems Inc. for
his input, support, and encouragement to develop this package, Art Krener
at UC Davis for his guidance and motivation, and George Meyer at the
NASA Ames Research Center for allowing the author to spend one summer
at Ames to work on a similar package for flight control.

References

[Arnold, 1983] V. Arnold. Geometrical Methods in the Theory of Ordinary
Differential Equations. Springer-Verlag, 1983.

23

[Byrnes and Isidori, 1990] C. Byrnes and A. Isidori. Output regulation
of nonlinear systems. IEEE Transactions on Automatic Control, 35,
No.2:131-140, 1990.

[Hauser et al., 1988] J. Hauser, S.S. Sastry, and G. Meyer. Nonlinear con-
troller design for flight control systems. Technical Report UCB/ERL
M88/76, Electronics Research Laboratory, University of California, Berke-
ley, 94720, 1988.

[Isidori, 1989] A. Isidori. Nonlinear Control Systems: An Introduction.
Springer-Verlag, 1989.

(Krener et al., 1987] A. Krener, S. Karahan, M. Hubbard, and R. Frezza.
Higher order linear approximations to nonlinear control systems. In 26th
IEEE Conference on Decision and Control, pages 519-523, December
1987.

[Krener et al., 1991] A. Krener, M. Hubbard, S. Karahan, A. Phelps, and
B. Maag. Poincaré ’s linearization method applied to the design of non-
linear compensators. Technical report, Institute of Theoretical Dynamics,
University of California at Davis, Davis, CA 95616, 1991.

[Meyer, 1990] G. Meyer. Application of brunowsky forms in multi-mode
flight control. In 1990 American Control Conference, May 1990.

[Sastry and Isidori, 1987] S.S. Sastry and A. Isidori. Adaptive control of
linearizable systems. Technical Report UCB/ERL MS87/53, Electronics
Research Laboratory, University of California, Berkeley, 94720, June 1987.

[Teel et al., 1991] A.R. Teel, R.R. Kadiyala, P.V. Kokotovic, and S.S. Sas-
try. Indirect techniques for adaptive input output linearization of nonlin-
ear systems. International Journal of Control, 53, No. 1:193-222, 1991.

[Wette and Laub, 1986] M. Wette and A. Laub. Software practices in
computer-aided control systems design: A need for tool-based systems.
In IEEE Control Systems Society Third Symposium on Computer-Aided
Control System Design, pages 25-30, September 1986.

24

A Manual Pages for the AP_ LIN Package

25

CLEAN_PARAM(1) USER COMMANDS CLEAN_PARAM(1)

NAME

clean_param — clean up relatively small terms in polynomial strings in an AP_LIN configuration file
SYNOPSIS

clean_param [-c cutoff tolerance] [-f file]
DESCRIPTION

clean_param takes the output from create_model(1), poincare(l), spline_hyper(1), spline_usr(1) and
creates a new configuration file as described below.

OPTIONS

—¢ cutoff tolerance; Use cutoff tolerance as the tolerance to determine which variables are relatively
small (compared to other elements in a single polynomial string) and should not be set to zero. The default
is 1.0e-06.

—f file; Use the file named file as the file which contains the system configuration data created by
create_model(1), poincare(1), spline_usr(1), spline_hyper(1)

SEE ALSO
create_model(1), poincare(1), spline_hyper(1), spline_usr(1)

AUTHOR
Raja R. Kadiyala, Dept. of EECS U.C. Berkeley. email: raja@robotics.berkeley.edu

BUGS
None known yet ...

Sun Release 4.1 Last clmixge: 20 Dec 1991 . 1

CONFIG2LATEX (1) USER COMMANDS CONFIG2LATEX (1)

NAME

config2latex — create latex from an AP_LIN configuration file
SYNOPSIS

config2latex [-c cutoff tolerance) [-i input file) [-0 output file]
DESCRIPTION

config2latex takes the output from create_model(l), linearize(l), poincare(l), spline_hyper(l),
spline_usr(1) and creates a latex file of the configuration file.

OPTIONS
—c cutoff tolerance; Use cutoff tolerance as the tolerance to determine which variables are relatively
small (compared to other elements in a single polynomial string) and should not be printed. The default is
1.0e-06.

—i input file; Use the file named input file as the file which contains the system configuration data created
by create_model(1), linearize(1), poincare(1), spline_usr(1), spline_hyper(1) The default is standard
input.

—o output file; Use output file as the file to save to; the default is standard output.

SEE ALSO
create_model(1), linearize(1), poincare(1), spline_hyper(1), spline_usr(1)

AUTHOR
Raja R. Kadiyala, Dept. of EECS U.C. Berkeley. email: raja@robotics.berkeley.edu

BUGS
None known yet ...

Sun Release 4.1 Last change: 20 Dec 1991 1

CREATE_MODEL(1) USER COMMANDS CREATE_MODEL (1)

NAME
create_model — multivariate spline fitting front end script
SYNOPSIS
]mm.mdelfomanﬂe (-a][-d][-iinput file] [-n number of poinis] [-0 output file] [-p power] [4] [-v
DESCRIPTION
create_model takes a nonlinear model described by a MATRIXx HyperBuild file and creates a polynomial
approximation of arbitrary order to the following system
x’ = f(x) + G(x)u
' y=hx)
where f(x) and h(x) are vectors of polynomials and G(x) is a matrix of polynomials. The approximation for
f(x) will contain all terms of order p and below except for order 0 terms, while the approximation for G(x)
will contain all order (p-1) and lower terms. This behavior may be changed by using the "all terms’ option
(see below). The spline fit is about some prescribed trajectory defined by the data in the variables t and u in
the MATRIXx fsave'd file input file. The system is first simulated with the input specified in the input file
and then knot points are uniformly picked as the points to use for the least square fit. If the input-output
spline option is picked then the system is approximated by
y=h()
and we must have the variables t and u in the input file. The output is then saved in the file ourpws file
which is system.config by default. This file may then be run through filters config2latex(1) to create latex
of the approximate system or create_usr(1) to create a usr code file which may be simulated to check the
‘validity of the approximation. Controllers may be created by using poincare(l) or linearize(1).
create_model is actually a ﬁontendscnpttotheacuml spline routine, spline_hyper. The typical user will
almost 2 always spline fit models using create_model.

OPTIONS
fortran file; Use the file named fortran file as the source code file which contains the HyperBuild file to be
spline fit. This argument is required.

—a Tums on all terms mode which will calculate all possible terms for f(x) and G(x).

—d Turns on debug mode which will print cut more verbose information on what create_model is doing.
This argument is optional.

—i input file; Use the file named input file as the file which contains the MATRIXx stored data of the tra-
jectory to spline fit about. This file is created by the fsave command within MATRIXx and will contain the
variables t and u. This argument is optional.

—n num pts; Use num pts as the number of knot points to be used in the spline fit. This argument is
optional.

—-o output file; Use output file as the file to save to; the default is system.config. This argument is
optional.

—p power; Use power as the order of the polynomial fit. This argument is optional.
—t Time the spline operation. This argument is optional.

-v Do an input-output spline fit as described above. This argument is optional.

Sun Release 4.1 Last change: 20 Dec 1991 1

CREATE_MODEL(1) USER COMMANDS CREATE_MODEL (1)

FILES
/amp/tmp+ temporary files created

SEE ALSO
clean_param(1), config2latex(1), create_usr(1), linearize(1), poincare(1), spline_hyper(1), spline_usr(1)

AUTHOR
Raja R. Kadiyala, Dept. of EECS U.C. Berkeley. email: raja@robotics.berkeley.edu

BUGS
The error checking for improper data is poor (trust is put in the user to use the software properly ...)

Sun Release 4.1 Last change: 20 Dec 1991 2

CREATE_USR(1) USER COMMANDS CREATE_USR(1)

NAME
create_usr — create a C usr code block from an AP_LIN configuration file
SYNOPSIS
create_usr (-i input file] (-0 output file]
DESCRIPTION
create_usr takes an AP_LIN configuration file and creates a C subroutine, in standard MATRIXx usr code

block format. The created code is a subroutine representation of the AP_LIN configuration file. This sub-
routine may then be simulated to test the validity of the approximation.

OPTIONS
-i input file; Use the file named input file as the file which contains the AP_LIN configuration file The
default is standard input.
—o output file; Use output file as the file to save to; the default is standard output.

SEE ALSO
create_model(1), linearize(1), poincare(1), spline_hyper(1), spline_usr(1)

AUTHOR
Raja R. Kadiyala, Dept. of EECS U.C. Berkeley. email: raja@robotics.berkeley.edu

BUGS
None known yet ...

Sun Release 4.1 Last change: 12 Dec 1991 1

LINEARIZE (1) USER COMMANDS LINEARIZE (1)

NAME
linearize - input output linearize a system described by an AP_LIN configuration file

SYNOPSIS
linearize [-c cutoff tolerance] [-i input file } [-0 output file] (-t]

DESCRIPTION
linearize takes the output from create_model(1), spline_usr(1), spline_hyper(1) and creates a controller
that yields the original system input output linear

OPTIONS
—c cutoff tolerance; Use cutoff tolerance as the tolerance to determine which variables are relatively
small (compared to other elements in a single polynomial string) and should not be set to zero. The default
is 1.0e-06. ,

-i input file; Use the file named input file as the file which contains the system configuration data created
by create_model(1), spline_usr(1), spline_hyper(1) The default is standard input.

-o output file; Use output file as the file to save to; the default is standard output.

SEE ALSO
create_model(1), poincare(1), spline_hyper(1), spline_usr(1)

AUTHOR
Raja R. Kadiyala, Dept. of EECS U.C. Berkeley. email: raja@robotics.berkeley.edu

BUGS
None known yet ...

Sun Release 4.1 Last change: 20 Dec 1991 1

POINCARE(1) USER COMMANDS POINCARE (1)

NAME
poincare — reduce a system described by an AP_LIN configuration file to linear system up to arbitrary order
SYNOPSIS)
poincare [-i input file] [-1 linearization level] [-0 ousput file] [-t]
DESCRIPTION
poincare takes the output from create_model(1), spline_usr(1), spline_hyper(1) and creates a controller
that yields the original system linear up to an arbitrary order (see Krener et al., 1987 26th IEEE Conference
on Decision and pages 519-523) for a description of the theory.

OPTIONS
~i input file; Use the file named input file as the file which contains the system configuration data created
by create_model(1), spline_usr(1), spline_hyper(1) The default is standard input.

-1 linearization level; Use linearization level as the order of linearity for the system (i.e. if we had poin-
care -1 3 then our resulting system with the control generated would be linear up through order 3 terms.
The default is 2.

—o output file; Use output file as the file to save to; the default is the file control.config

SEE ALSO
' create_model(1), linearize(1), spline_hyper(1), spline_usr(1)

AUTHOR
Raja R. Kadiyala, Dept. of EECS U.C. Berkeley. email: raja@robotics.berkeley.edu

BUGS
None known yet ...

Sun Release 4.1 Last change: 20 Dec 1991 1

SPLINE_HYPER(1) USER COMMANDS SPLINE_HYPER(1)

NAME
spline_hyper — multivariate spline fitting routine

SYNOPSIS
spline_byper [-a] [-d] [-ffortranﬁle 1 [-i input file] [-n number of points] [-0 output file) (-p power] [-s
number of states] [-t] [-v] [-z number of tmps]

DESCRIPTION
spline_hyper takes a nonlinear model described by a MATRIXx HyperBuild file and creates a polynomial
approximation of arbitrary order to the following system

= f(x) + G(x)u
y=h(x)
where f(x) and h(x) are vectors of polynomials and G(x) is a matrix of polynomials. The approximation for
f(x) will contain all terms of order p and below except for order 0 terms, while the approximation for G(x)
will contain all order (p-1) and lower terms. This behavior may be changed by using the *all terms’ option
(see below). The spline fit is about some prescribed trajectory defined by the data in the variables t and u in
the MATRIXx fsave'd file input file. The system is first simulated with the input specified in the input file
and then knot points are uniformly picked as the points to use for the least square fit. If the input-output
spline option is picked then the system is approximated by
y=h(w)

and we must have the varigbles ¢ and u in the input file. The output is then saved in the file output file
which is system.config by default. This file may then be run through filters config2latex(1) to create latex’
of the approximate system or create_usr(1) to create a usr code file which may be simulated to check the
validity of the approximation. Controllers may be created by using poincare(1) or linearize(1). It should
be noted that the typical user will never use spline_hyper, but would use instead the front end shell script
create_model which calls spline_hyper with the correct options. This command is only on the SUN ver-
sion and is not available on the DEC version. DEC users should use create _model instead.

OPTIONS
—a Tums on all terms mode which will calcuiate all possible terms for f(x) and G(x).

—d Turns on debug mode which will print out more verbose information on what spline_hyper is doing.
This argument is optional.

—f fortran file; Use the file named fortran file as the source code file which contains the HyperBuild file to
be spline fit. This argument is required.

—i input file; Use the file named input file as the file which contains the MATRIXx stored data of the tra-
jectory to spline fit about. This file is created by the fsave command within MATRIXx and will contain the
variables t and u. This argument is optional.

—n num pts; Use num pts as the number of knot points to be used in the spline fit. This argument is
optional.

-0 output file; Use output file as the file to save to; the default is system.config. This argument is
optional.

—p power; Use power as the order of the polynomial fit; the default is 2. This argument is optional.
—s num_states; Use num_states to set the number of states in the model. This argument is required.
~t Time the spline operation. This argument is optional.

—v Do an input-output spline fit as described above. This argument is optional.

Sun Release 4.1 Last change: 20 Dec 1991) 1

SPLINE_HYPER(1) USER COMMANDS SPLINE_HYPER (1)

-z num_tmps; Use mum_tmps as the number of temporary variables used by the system. This argument is
required.

FILES
/tmp/tmp# temporary files created

SEE ALSO
clean_param(1), config2latex(1), create_model(1), create_usr(1), linearize(1), poincare(1), spline_usr(1)

AUTHOR
Raja R. Kadiyala, Dept. of EECS U.C. Berkeley. emdil: raja@robotics.berkeley.edu

BUGS _
The error checking for improper data is poor (trust is put in the user to use the software properly ...)

Sun Release 4.1 Last change: 20 Dec 1991 2

SPLINE_USR(1) USER COMMANDS SPLINE_USR(1)

NAME
spline_usr — multivariate spline fitting routine
SYNOPSIS
spline_usr [-a] [-c code file] [-] [-i inpus file] [k] [-n number of points] [-0 output file] [-p power] [-r
routine name] [-8 number of states) (-t] [-u number of inputs] [-v] [-y number of vutputs)
DESCRIPTION
spline_usr takes a nonlinear model described by a MATRIXx usr code file and creates a polynomial
approximation of arbitrary order to the following system
x’ = f(x) + G(x)u
y=h(x)
where f(x) and h(x) are vectors of polynomials and G(x) is a matrix of polynomials. The approximation for
f(x) will contain all terms of order p and below except for order O terms, while the approximation for G(x)
will contain all order (p-1) and lower terms. This behavior may be changed by using the ’all terms’ option
(see below). The spline fit is about some prescribed trajectory defined by the data in the variables t and u in
the MATRIXXx fsave'd file input file. The system is first simulated with the input specified in the input file
and then knot points are uniformly picked as the points to use for the least square fit. If the input-output
spline option is picked then the system is approximated by
y=h(u)
and we must have the variables ¢ and u in the input file. The output is then saved in the file output file
which is system.config by default. If we are in data mode (-d) then the variables y and u must be in the
input file and we simply spline fit the input output data without need for a code file.

The outfile system.config may then be run through filters config2latex(1) to create latex of the approximate

system or create_usr(1) to create a usr code file which may be simulated to check the validity of the
approximation. Controllers may be created by using poincare(1) or linearize(1).

OPTIONS
—a Tums on all terms mode which will calculate all possible terms for f(x) and G(x).

—c code file; Use the file named code file as the source code file which contains the usr subroutine to be
spline fit. This argument is required.

—d Turns on data mode creates an input output spline based on the data in the variables y and u in the input
file. This argument is optional.

~i input file; Use the file named input file as the file which contains the MATRIXx stored data of the tra-
jectory to spline fit about. This file is created by the fsave command within MATRIXx and will contain the
variables t and u. This argument is optional.

—k Turns on state space fitting (i.e. specify which knot point to use in the least squares approximation. This
argument is optional.

—n num pts; Use num pts as the number of knot points to be used in the spline fit. This argument is
optional.

—o output file; Use output file as the file to save to; the default is system.config. This argument is
optional.

—p power; Use power as the order of the polynomial fit; the default is 2. This argument is optional.

-s num_states; Use num_states to set the number of states in the model. This argument is required.

Sun Release 4.1 Last change: 20 Dec 1991 1

SPLINE_USR(1) USER COMMANDS SPLINE_USR(1)

—t Time the spline operation. This argument is optional.
—u num_inputs; Use mum_inputs as the number of inputs for the system. This argument is required.
—v Do an input-output spline fit as described above. This argument is optional.

-y num_outputs; Use num_outputs as the number of outputs for the system. This argument is required.

ftmp/tmp* temporary files created. SMATRIXX/src/usrOl.c for template file for usr code subroutine.

SEE ALSO
clean_param(1), config2latex(1), create_model(1), create_usr(1), linearize(1), poincare(1), spline_hyper(1)

AUTHOR
Raja R. Kadiyala, Dept. of EECS U.C. Berkeley. email: raja@robotics.berkeley.edu

BUGS
The error checking for improper data is poor (trust is put in the user to use the software properly ...)

Sun Release 4.1 Last change: 20 Dec 1991 _ 2

