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ABSTRACT

We investigate the synchronization to a common frequency and phase in systems of
many coupled digital phase locked loops. We study cases where the internal frequencies
are identical for all loops and when they are different. In both cases we observe that
synchronization to a common frequency is possible in a range of the parameter space. We
find an analytical expression for the synchronization frequency when the communication
between loops is in two directions. Synchronizationin phase occurs only when the internal
frequencies of the loops are identical. We study the transient convergence to the locked
state in the ring, double ring and global coupling configurations. We also discuss the
influence of a multiperiodic or chaotic loop on the dynamics of the system. Our results
may have applications to the problem of network synchronization.



I. INTRODUCTION

Coupled oscillators are common in many scientific areas, including communications,

optics, engineering, chemical reactions, biology, etc. This type of system has attracted

much attention (see, for example, [1-6] and references therein), beginning with Winfree[l]
who discovered that a class of coupled oscillators with different internal frequencies sud

denly synchronize to a common frequency when the coupling between oscillators exceeds a

critical value. Winfree and others suggested that these models could give insight into the

behavior of coupled biological rhythms, such as swarms of fireflies that flash in synchrony,

synchronous firing of cardiac pacemaker cells, groups of women whose menstrual cycles

become synchronized, etc.[l]
The synchronization of oscillators has important practical applications in electronic

systems. For example, in the design of microwave systems the power of many devices

may be combined through synchronization to achieve power that increases quadratically

with the number of oscillators. In this case the oscillators must have not only the same

frequency, but should also have a phase difference small compared to 2ir. Similar needs are

found in electrical power generators, coupled lasers, Josephson junction arrays, etc. An

other important application of synchronization is related to a network of clocks distributed

geographically in different locations, where it is necessary to have the same time for all

clocks. For this type of application, electronic devices such as phase locked loops (PLL's)
have been studied [7].

In most of the previous work on self-synchronization of coupled oscillators it has been

assumed that the coupling between them is smooth, that is, their dynamics is governed by

ordinary differential equations. This is the case of PLL's[7] and some models for biological
rhythms[l-5]. Recently a new model was introduced where the interactions between oscil
lators are episodic[6]. It was shown that in this model the oscillators can synchronize if
they have identical internal frequencies. Here we study coupled digital phase locked loops

(DPLL's) where the interactions are also episodic. However, we find that the oscillators
can synchronize even when they have different internal frequencies.

The study of DPLL's started with Gil and Gupta [8]. They showed that a single
first order DPLL is governed by a nonlinear difference equation, which displays regular

and chaotic behavior. After this work, some studies on DPLL's have been reported[8-ll],
but always limited to a single loop, where the interest is the synchronization of the loop
to the phase and frequency of a periodic incoming signal. Recently we have studied the

self-synchronization of coupled DPLL's[12,13]. We investigated a system of two coupled
loops and found regions of periodic, quasiperiodic and chaotic behavior; the boundaries

between synchronized and chaotic orbits were also determined in our work.

Here we consider the problem of large networks of DPLL's. We study networks with

and without variability in their component elements. Our attention is concentrated on
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three types of geometries, namely, ring, double ring and global coupling. The paper is
organized as follows: In section II we review the properties of one and two coupled DPLL's,
and present new results for the coupled system. In section III we develop the formalism for
many interconnected devices in the three configurations mentioned above. In section IV
we investigate the effect of a biperiodic or chaotic loop in the network of DPLL's. Section
V gives the conclusions and discussion of problems to be considered.

II. ONE AND TWO LOOPS

A single, first order, digital phase locked loop consists of a sample and hold (SH) and a
variable frequency oscillator (VFO). A schematic representation of a DPLL can be seen in
Fig. 1. The VFO runs with an internal frequency Q, in the absence of an input signal. Its

output is given by v(t) = Asinwt, where w is its instantaneous frequency. When v(t) = 0
with a positive slope, the VFO sends a signal to the SH and a sample v(tk) is taken from
the input signal. The frequency of the VFO at this instant is adjusted according to

«' = a + bv(tk), (1)

where b is the gain of the VFO. As a consequence there is possibility of locked behavior

when the VFO samples at a constant phase value. In the original papers on DPLL's[8,9] the
period, not the frequency, was adjusted according to a linear function of the sampled value.
However, the case we consider here is easier to implement in laboratory experiments[11,13].

The dynamical behavior of a single DPLL, governed by Eq. (1), was studied in detail
in [10,11]. It was shown that when the input signal of a single loop is a sinusoid with
frequency u and amplitude A, then the time evolution of the phase difference between the

input signal and the VFO output is described by the circle map

«'»«>-«''>+o+>SW (2)
This map belongs to a family of circle maps which have been studied extensively in the
past[14]. It exhibits periodic, quasiperiodic and chaotic behavior.

We will be concerned in this paper with coupled DPLL's, where the input of a loop
is given by a combination of the outputs of the other loops. Each loop i has its own set of
parameters ft,- and 6,-. We start by analyzing two coupled DPLL's where the input to one

loop is the output of the other loop, and vice-versa. This system was investigated in [12]
for the case where the loops have the same internal frequency. Here we study the more
general case where the loops can have different internal frequencies, as well as distinct
gains. A schematic representation of the system is shown in Fig. 2. In the dynamical



evolution, every time that one of the VFO signals crosses zero with a positive slope this

oscillator sends a signal to its SH and a sample is taken from the output of the other loop.
The loop that samples switches its frequency to a new value determined by Eq. (1).

The equations that govern the dynamics of the loops are

wj = fti + 61A2 sm<j>2, (<f>i = 0), (3a)

u>2 = ft2 + b2Ai sin fa, (<f>2 = 0). (36)

The gain 6,- of the VFO i appears always multiplied by the amplitude Aj (j ^ i) of the
input signal. Thus without loss of generality we can take Aj = 1. Also, dividing both
equations by one of the center frequencies, say ft2, the parameters and variables become

dimensionless. We keep the same notation and simply take ft2 = 1, having in mind that

now we are working with normalized dimensionless quantities. In this way, we have

u>J = fti + 61 sin^2, {<t>\ = 0), (4a)

J2 = 1+ b2 sin fa, (</>2 = 0). (46)

We consider that the gains are positively defined. Since the frequencies of these time

discrete systems are also positive we must have 61 < fti and 62 < 1. The initial condition

necessary to evolve the system is the phase difference between loops, because the initial
frequencies are their respective center frequencies, if we consider that before t = 0 the
loops were uncoupled.

When the loops synchronize to a common frequency u>8 we have u>i = w2 = w5 and

$1(^2 = 0) = —^2(^1 = 0) = A$a. Putting this into Eqs. (4), we obtain

w- ~ l/fc+i/j, (5)
and

A*--B",(&fi)- (6)
From Eq. (6) one also sees that the synchronization is possible only if

6i+62>|fti-l|. (7)

If 61 + 62 is smaller than the critical value determined by Eq. (7), then the synchroniza
tion does not occur, and quasiperiodic behavior is observed. As 61 and/or 62 increase,
bifurcations to higher period orbits are observed, which are followed by a chaotic regime.



The parameter values where the first bifurcation occurs can be obtained analytically via a
linear stability analysis [13]. The dynamics of the locked state is governed by the eigenvalue

27r 27r(6i H-62)cosA^a bib2A</>a(2ir —A<j>a)cos2 A<j>a /0x
A = —; 5 , [p)

2ir-A<f>a u>a u23

where u)a and A<f>a are given by Eqs. (5) and (6), respectively. The synchronized state is
stable if |A| < 1 and Eq. (7) is also satisfied. When A = 0 the system has its maximum
stability. In this situation the orbit is called superstable. At A = —1 the first bifurcation

occurs. There are two possible solutions for the phase difference between the loops sat

isfying Eq. (6), namely, </>a and it —<f>a; however, as discussed in [13], the second one is
unstable, because it always gives A > 1. If the center frequencies of the loops are identi
cal, that is, fti = ft2 = 1, then the above expression for the bifurcation point simplifies

to 6J + 6J = 1/7T, since ua = 1 and A<j>a = 0. The maximum stability is attained at
6J + 6| = l/(27r), where the superscript symbol indicates the superstable value.

For small deviations from the equilibrium the transient time the system takes to

synchronize can be estimated in the following way. Let A^o denote the initial phase

difference between the two loops, and A(f>n the phase difference at the n-th iteration. In

the linear approximation the distance from the fixed point en = |A^n — A^s| evolves
according to

e» = e0|A|n, (9)

where A is given by Eq. (8). Then we have

n^^P- (10)
log |A|

From Eq. (8) we find that for 6i and 62 fixed A is greater in a system where the two center
frequencies are different, when compared with the same quantity in a system where they

are identical. Consequently, from Eq. (10) we find that the transient is smaller in the first
case.

We show in Fig. 3 an example of a bifurcation diagram for a coupled loop system

where we consider 6 = 61 = 62 and fti = 1.2. The quantity plotted is u>i vs. 6. As 6

increases we observe a quasiperiodic regime, which is followed by a synchronized regime,

bifurcations, and chaos. Eqs. (7) and (8), with |A| = 1, correctly determine the beginning
and end, respectively, of the stability of the synchronized regime. We have evolved our

system numerically according to the algorithm given in [11,12].
In [12] we investigated the bifurcation sequence that precedes the chaotic regime for

a system where the center frequencies of both loops were identical. We found that the

period doubling bifurcation that precedes the chaotic regime is governed by Feigenbaum's

exponents, which are identical to the exponents observed in the logistic map [15].



In Fig. 4 we show the regions in the 6 vs. ft plane where the motion is periodic for

the case where the coupling between the loops has the same strength in both directions,

that is, 6 = 61 =62. We characterized the motion as periodic (white part) if after 1000
iterations the orbit returns to the initial point within a radius of e = 10~6. A transient
of 3000 iterations was discarded. The regular motion can be characterized by a winding

number W defined by[14]

In the case of a periodic orbit the winding number is a rational; if the motion is quasiperi-

odic it will be an irrational number. The regions of periodic motion form the so-called

"Arnold tongues" and are labelled in Fig. 4 by the corresponding winding numbers.

Quasiperiodic motion is expected to be present in the region where 6 is small. The tongue

1/1 is the one where the loops are in synchrony to a common frequency, and its limiting
borders are determined by Eqs. (6) and (8) with A = —1.

III. MANY COUPLED OSCILLATORS

We now turn our attention to populations of many coupled oscillators. In such a

system, every time that a VFO signal crosses zero with a positive slope the SH in that

loop takes a sample from the combined outputs of the other VFO's to which it is connected.

The input to the i-th sampler is assumed to be given by a linear combination of the VFO
outputs of the other loops, that is,

1 N
*(*0 =-£«y*Wi(*<)). (12)

ni i=i

where n* = 2j=i a**i *s *^e number of loops from which loop i receives input. The matrix
A = [a,j] is called the interconnection matrix for the system. If loop i receives input from
loop j then atJ- = 1. Otherwise a,j = 0. We consider an = 0.

The value s(t{) is used to adjust the frequency of the i-th VFO according to

w{ = ft,- + bis(ti). (13)

For systems with more than two coupled DPLL's analytical expressions for the phase
difference between loops and asymptotic frequencies are difficult to find for a general con
figuration. The results we present with respect to many coupled DPLL's follow basically
from numerical simulations. However, we can easily derive the expression for the synchro
nization frequency for configurations where the coupling between any pair of loops is in



both directions. If synchronization in frequency occurs then we have for all loops w{ = w6
From Eqs. (12) and (13) we obtain

Wa = fti + —V aij sin(^), (fa = 0). (14)
Tli £-r

Using Eq. (14) and summing over all the loops, we have

^ TT^2 =^ aii sin^' (15)
t *' * ij

If between two loops that are connected the communication exists in both directions, i.e, if
atj = 1 then aji = 1, then the right-hand sideof Eq. (15) vanishes. This happens because
in the synchronized state </>j(</>i —0) = —<t>i(4>j ~ 0) and sin(*) is an odd function. Thus
the synchronization frequency can easily be obtained from Eq. (15) as a weighted average
of the ftj's,

c* = r' \ . (i6)
Y,inilhi'

This expression for the synchronization frequency remains unchanged if sin(*) is replaced
by any odd periodic function. Synchronization to a common frequency and phase is not
always possible in coupled DPLL's, as well as in other types of coupled oscillators. It
depends on the configuration of the system and on its internal parameters, as we will see

in the following sections. We study two kinds of systems:

i) Oscillators with identical center frequencies

If all the oscillators have the same center frequency, i.e. ft,- = ft, then we observe

synchronization for the configurations we studied in a range of the parameter space, with
the phase difference between the loops being zero. From Eq. (14) we conclude immediately
that u>a = ft, as expected. As discussed in the previous paragraphs we can make ft = 1 in

our numerical calculations without losing generality.

Our studies here are concentrated in the three basic types of configurations shown

in Fig. 5, that is, (a) ring, (b) double ring, and (c) global coupling. The elements of
the connection matrices for these configurations are given, respectively, by: (a) a,-j- = 1 if
j = i —1, with aitN = 1; (b) aij = 1 if j = i ± 1, with ai,jv = a/y^i = 1; and (c)atJ- = 1 if
i ^ j. Otherwise, a,j = 0. We denote by N the number of loops in the system.

In this section we consider that all loops have the same gains b = 6,-. Systems with

variability in the gains will be discussed in Section IV. The parameter region where the



synchronized state is stable depends on the configuration of the system. Let us say that

it is stable for 6 in the interval 6C < 6 < 6*. When the center frequencies are all identical

6C = 0 in all the configurations studied. When 6 is larger than 6* bifurcations and chaos

appear. This is in contrast with the coupled analog PLL's studied in [7] where the existence
of bifurcations and chaos has not been reported. We numerically studied systems with N

varying from 2 to 200 and observed the following: For the ring configuration the first

bifurcation occurs always at 6* = 1/27T for any number of loops. This result was derived
analytically for N = 2 in section II. As N is increased we observe from the numerical

simulations that this value remains the same. Just beyond the critical value 6*, there

appears a periodic regime whose period is found numerically to be given by N2. This
period refers to the number of samplings that makes the system return to a given state

in frequency as well as in phase difference. By further increasing the gain more complex

bifurcations occur which are followed by chaos.

For a double ring system the critical gain where the first bifurcation occurs is also given

by 6J = 1/27T, for N large. If N is odd and small, 6J differs from this value, converging to
it as the size of the system increases, as shown in Fig. 6 (squares). As the gain increases
beyond this critical value, there appears a bifurcation with period 2iV, where more than
one basin of attraction is found for N sufficiently large. This bifurcation is followed by
more complex bifurcations and then by a chaotic regime.

In a global coupling configuration we find numerically that 6* seems to converge
for large N to b* = 1/7T, as seen in Fig. 6 (triangles). The attractor that follows the
synchronized state has period 2N and has multiple basins of attraction, for N sufficiently
large. Beyond this bifurcation more complex bifurcations appear as the gain is increased,
which are followed by chaos.

Although the attractor for the synchronized state is the same for all the configurations,
the transient time to lock strongly depends on the geometry of the system. To study the
transient to the locked state when the system is slightly perturbed we do the following. We
initiate the system with each loop having an instantaneous frequency equal to its respective
center frequency and an initial phase randomly distributed in the interval <j>i G [0,0.05].
We calculate the number of sampling times n per loop that brings the system to the final
attractor within a radius e, that is, when

Jji 52("i-»s)2<*- (17)
V *=i,JV

We find that n is well approximated by the equation

n«Aloge + £, (18)

where, as in Eq. (10), we can interpret A = l/log|A| and B = -log(e0)/log|A|, with A
the least stable eigenvalue. Here we concentrate our analysis on the transient time related
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to the linear regime. If the initial perturbations are large enough the values for A and B
changes as c decreases, showing the crossover from the nonlinear to the linear regime, as
observed in a single second-order DPLL [10]. These studies for our system are currently
under investigations and will be reported in the future.

A plot of n versus e generally shows some small fluctuations which can be smoothed by
averaging n over some few realizations with different initial conditions. Thus we average n
over 20 realizations and vary e from 10~10tol0~4. We use a least square fit to calculate A
in a 10 loop system for the ring, double ring and global couplings. The plot of A versus 6
over the region where the synchronized state is stable is shown in Fig. 7. In the geometries
studied B is of order of A and shows the same qualitative dependence on 6. Since less

negative values for A and B imply smaller transients, we conclude that the system is most
stable at the maximum of the curves shown in Fig. 7. The maximum occurs, both for

A and B and for both double ring and global coupling geometries, at b3 w b*/2 w 0.14,
where b* is the bifurcation point of a 10 loop system in the global coupling geometry. For

a system of two coupled DPLL's we showed in Section II that the superstable cycle occurs
exactly at 6*/2. This result seems to hold for a system with any number of loops with
global coupling and double ring configurations. Forthe ring geometry, the superstable cycle
occurs at 6 « 0.8, which corresponds approximately to 6*/2, where 6* is the bifurcation

point in the ring geometry.

We observe that for the one-way ring and global coupling case A and B are approx

imately symmetric with respect to the 6 value where the orbit is superstable. Whereas

these parameters are quite asymmetric in the double ring geometry. This happens because,

although the 6 value for the superstable orbit is approximately the same in double ring

and global coupling, the bifurcation points for the two systems are very different as Fig. 6

shows.

The goodness of the fit of n by Eq. (18) can be evaluated by the quantity x2 =
7 St'=i p[n(c») —Alog€i —B]2, where P is the number of e values used in the fitting (we
use P = 20) . We find that on the average x 1S less than 5% of A in the three geometries.

We also study the transient as a function of the size of the system. We find that in

the three geometries A versus N varies as

A ~ Na. (19)

In Fig. 8 we show A versus N for ring (circles), double ring (squares) and global couphng
(triangles) with 6 = 0.12. We find that for N large enough a « 0 for global couphng.
Consequently, in this geometry, as N gets large the number of sampling times per loop

for the system to attain the locked state within a given accuracy does not depend on the

system size. On the other hand, A increases extremely fast in the one-way ring and double
ring cases. We find the same value of a for these two geometries, i.e., is a w 2.0, for any 6
in the region where the locked state is stable.



ii) Oscillators with different internal frequencies

We now consider populations of DPLL's which have different internal frequencies, that
is, different ft's. In this case, synchronization to a common frequency occurs over a range
of the parameter space. The transition to the synchronized state occurs suddenly when the
gains attain a critical value and it is similar to the transition that occurs in the oscillators
studied in [1-5], which are governed by ODE's. For configurations where the communica
tion between loops occurs in both directions the synchronizing frequency is given by Eq.
(16). Now, a phase difference between loops will occur at the synchronized state. So, what
we see is a weaker form of synchronization, which is called "phase locking" [6], where the
oscillators run with the same frequency and a phase difference between them. For this type
of system synchronization is possible only if the gains 6,- are large enough. Considering
that |sm(-)| < 1, we obtain from Eq. (15) that in the synchronized state

ITT?! *n< (20>bi/rii

that is, for any i the relation 6,- > |wa —ftj| must be satisfied. FVom the above expressions,
we find that the lower bound for 6C, where bc denotes the critical value of 6 where the

synchronization occurs, is given by 6 = max(|u;a —ft,|).

In the configurations studied we see that, beyond the synchronized state, as the gain 6

increases there appears a bifurcation at a critical value b*. More bifurcations and a chaotic

regime is observed by increasing 6.

We did numerical simulations for the ring, double ring and global couphng geometries

with ft randomly distributed in the interval [1 —A; 1 + A], with A = 0.1, and the gains
being the same for all loops. The bifurcations that appear at 6* have period JV2, 2N and
2N for the ring, double ring and global coupling, respectively, as in the cases of the systems

with identical center frequencies. We observe that a plot of 6* versus JV is qualitatively

similar to Fig. 6, with 6* now being slightly greater (about 3%) than the corresponding
points in Fig. 6.

With respect to 6C, we find for the ring and global coupling configurations that 6C w

0.12, for JV sufficiently large. For the double ring geometry 6C increases with JV, and at
JV « 13 it collapses with 6J. Thus no synchronized state for JV large is observed in this
geometry. In other words, the double ring geometry does not sustain synchronization in

frequency for large chains when there exists a variability in the internal frequencies of

the loops. For 6 < 6J and JV large there appears a form of weak synchronization in the
chain, where groups of neighboring oscillators run at the same average frequency, but not

necessarily with a fixed phase relationship. In systems with a double ring configuration we
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calculated the average frequency of each loop i

"< =^ £ »i> (21)mi . *-J
J=l,m,-

where m,- is the number of sampling times of loop i. We found that u>i presents frequency

plateaux, as in the caseof the oscillators studied in [16]. We illustrate this phenomenon by
showing in Fig. 9, w,- vs. i for a system of 200loops, 6 = 0.16 and m,- w 500. The widths of
the plateaux decrease for decreasing 6. Therefore, a large system with double ring geometry
with a significant variability in the center frequencies may present local synchronization
of the oscillators to the same average frequency, but not a time independent common

frequency for all loops.

For the ring geometry, even though the number of connections is smaller than in the
double ring case we always find synchronization in frequency (phase locking ) for large
chains in a range of 6, however at the expenses of long transients to the locked state.

We calculated the transient in a similar way as we did for the system with identical

center frequencies. Beginning with the system in the steady state we perturb the phases
of each loop by adding a small increment randomly chosen in the interval A^ 6 [0,0.05].
Then we calculate the number of sampling times per loop that takes the system to a

locked state within a radius e defined according to Eq. (17). We observed that the average
transient n also obeys Eq. (18) for the three geometries studied. We show A versus 6 in
Fig. 10 for a particular realization of the ftj's distributed in the interval [0.9,1.1] specified
above in a system with JV = 10. For double ring and global couplings the maximum of

A and B occurs at 6 « 0.17, which is half of the 6 value for the bifurcation point in the

global couphng geometry. Now the curves of A versus 6 are not symmetric with respect to

their maximum. For the ring geometry the most stable state occurs for 6 slightly greater
than its corresponding 6C. We measure the goodness of the fitting \ °f n versus A by Eq.

(18) and find that x 1S on the average less than 5% of A in the three geometries.
For global coupling we observe that the number of samplings per loop increases slightly,

with some fluctuations, as JV increases. For the one-way ring A ~ JV2, as in the cases of
the systems with identical internal frequencies. The results of A versus JV for the three

geometries with 6 = 0.13 are shown in Fig. 11. The double ring results stop when

synchronization is lost for large JV.

IV. SYNCHRONIZATION TO BIPERIODIC OR CHAOTIC LOOP

In this section we investigate systems of self-synchronized DPLL's where one of the

loops has its parameters changed in such a way that it becomes multiperiodic or even

11



chaotic. A loop can present a multiperiodic or chaotic orbit if, for example, the gain

associated with that loop is large enough or if its center frequency is small enough.

We concentrate our attention on systems where the center frequencies are identical

for all loops, ft = 1. We observe similar results if we vary the center frequency of one loop

by a sufficient amount, keeping the gains of all loops identical. Consider the gains of the

loops identical 6f = 0.1, with exception of one loop, say loop 1, which will have a larger

6. Take for example 6i = 0.35 in a chain of 10 loops. We find that for ring, double ring

and global coupling, not only does loop 1 change its state, but each loop has its frequency

oscillating between two values, as shown in Fig. 12. In the one-way ring geometry (Fig.
12(a)) for each loop the difference between successive loop frequencies decreases as the
loop gets far from loop 1. The communication here is only in one direction and by the

inherent properties of phase locked loops, the output of a loop is found to be closer to a

periodic cycle than the input signal. In this way, for i large the loop is practically locked

to a unique frequency. If we denote by Aw,- the difference between the two asymptotic

frequencies associated with loop t, u> = w,(l) and u = Wj(2), then we find that, for this
particular value of the parameters, Au;,/At<;,+i converges to 2.1905... as i increases. For
the double ring case (Fig. 12(b)), for the same values of the parameters considered in
the ring geometry, we also observe that all loops have a frequency with period two. The

communication in this case is in two directions, and it is observed that the loops synchronize

in pairs. That is, loops 2 and 9, have exactly the same output as well as the pairs 3 and 8,

4 and 7, 5 and 6. This is expected since loops 2 and 9, and the other pairs have the same

input. Therefore they will have the same output. In the global couphng case, we also find
that the frequencies of each loop are biperiodic. Since in this configuration, any loop, by
symmetry, is equivalent to any other one, with the exception of loop 1, all the loops will

have the same output, as shown in Fig. 12(c).

We can calculate the average value of the deviation of the asymptotic frequencies

«j(l) and u>i(2) of the loops where i ^ 1, with respect to their frequencies (u;a = ft = 1)
in the locked state, that is Aw = p(jj_1) £«=2,N Ej=i,p lw»0) ~ ^l» where P is two for
the case of a 2-cycle. In this way, we find which configuration on the average will present
the smallest deviation from the desired locked state. As expected, the global configuration
presents the smallest Au7, followed by the double ring and one-way ring configurations.
The respective values of Au>/ft are 0.56%, 1.17% and 1.23%.

If we increase the gain of loop 1 in such a way that it presents a 4-cycle orbit we

observe, in this case also, the other loops will present the same periodicity, i.e. period 4.
Increasing the gain of the loop 1 to 6i = 0.7, we find chaotic behavior for this loop, as well
as for the other loops, in the three configurations considered above. We show the results of
our simulations in Fig. 13. Although figures do not distinguish between quasiperiodic and
chaotic motion, a more careful analysis by calculating the Liapunov[17] exponents shows

12



that indeed the dynamics of all loops are chaotic.

For the one-way ring configuration the amplitude of the chaotic orbit decreases as the

loop index increases, as we would expect in a phase locked loop system with communication
only in one direction. For the double ring configuration the loops synchronize in pairs, as
in the case described above where the loops have a 2-cycle. So, even with an input that
is chaotic and the initial conditions are different, due the symmetry of the configuration,
a perfect chaotic synchronization is observed between loops that have the same input.
Note that if another chaotic loop is added in the system, the symmetry will be broken
and the chaotic synchronization between pairs of loops will not be observed. The smallest

amplitude of chaotic motion is found in the loops which are the farthest from the one with

large 6. For the global couphng configuration, as discussed above, all the loops (excluding
loop 1) are equivalent. Therefore all the loops have identical outputs. In other words, they
are synchronized. In this configuration the weight of the chaotic signal in the input signal
is given by 1/JV. Thus, as we increase the system size, we observe that the amplitude of
the chaotic motion in the loops with z ^ 1 decreases.

We also calculated the quantity Au;, as defined above, in order to quantitatively

obtain the deviation of the loop frequencies from the frequency of synchronization in the
locked state (a>a = ft = 1). Now, the sum over j is made on 1000 sampling times of
loop i, i.e., P = 1000. We find that for global couphng, double ring, and one-way ring
geometries, AuF/ft is, respectively, 0.63%, 0.97% and 1.70%. So, the global couphng is the
best configuration to filter the chaotic signal.

V. CONCLUSIONS

We have shown that populations of nonuniformily sampled digital phase locked loops
can synchronize with a common frequency over a range of parameters. The synchronized
frequency can be obtained analytically for configurations where the coupling between the
loops that are connected occurs in both directions. In common with other coupled oscillator
systems, if the spread in frequencies is not too large, there are transitions with increasing
coupling from quasiperiodicy to a locked state and finally to chaos.

We studied the cases where the center frequencies are identical for all loops, and when
they are spread. We found for both cases that the transient from a weakly perturbed
state to the synchronized state and the parameter range where it is stable depend on the
configuration of the system, with the time to lock improving with the number of couplings
for a fixed number of coupled devices JV. The time to lock is approximately constant for
large N in the global coupling geometry, whereas in the one-way ring and double ring
it varies as JV2. For large N the synchronization in the double ring geometry may not
occur if the center frequencies are spread. Among the geometries studied, global couphng

13



showed the shortest transient to the locked state and the largest parameter region where
the synchronization is possible.

If the gain of one of the loops has a sufficiently large 6, we found that the synchroniza
tion to a unique frequency is destroyed. If the large 6 loop is multiperiodic, then each loop
will have the same periodicity as the loop with the large gain, but with decreased spread
in frequencies. If the loop with large 6 is chaotic, then all other loops will also be chaotic,
but with decreased frequency spread. As expected, the average spread in frequencies from

a locked state is smaller if the loops are globally coupled. For global coupling all loops
except for the intrinsicly chaotic one are synchronized together.

Extensions to this study include determining nonlinear transient behavior, the investi

gation the effect of noise in the system, a comparison of the advantages and disadvantages

of analog versus digital phase locked loops for network synchronization, and experimental

investigations of self-synchronized DPLL's.
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Fig. 5. Schematic representation of
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