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Abstract

The design of complex, high performance systems requires automation of the design process.

At the outset of automation, the focus of synthesis was to obtain small realizations that

could be implemented as integrated circuits. However, with improvements in fabrication

technology, the area of a design is of secondary importance and the performance of the

circuit is the primary criterion that the designer wishes to maximize. Circuit performance

is affected by various decisions taken during different phases of the design process.

This thesis provides an understanding of the factors that affect the delay of logic

circuits. Logic circuits are represented as an interconnection of functional units and regis

ters. To improve the speed of an initial implementation, the designer may apply different

types of optimizations. Using a set of bounded-input functions, functional units can be

implemented by circuit structures that have small depth by repeated application of local

transformations on the circuit. This phase is referred to as technology-independent opti

mization. Reduction in circuit depth usually leads to smaller delay. However, circuit speed

also depends on the choice of gates used to implement, the function. Gates differ in their

delay characteristics. To utilize this flexibility technology-dependent optimizations are re

quired. The paradigm of applying local transformations is extended to exploit the delay

characteristics of gates during optimization. In circuits that contain registers, the freedom

in positioning registers allows for further synchronous optimizations.

Prof. Alberto Sangiovanni-Vincentelli
Thesis Committee Chairman



Performance Optimization of Digital Circuits

Copyright © 1992

Kanwar Jit Singh



Acknowledgements

When I started graduate work, oh some six years ago, I was floundering through

classes trying to decide what area to work in. Within an year I had it narrowed the

possibilities to communication and computer-aided-design. It was the excellent environment

of the CAD-group and guidance from faculty that led me to join the CAD-group.

Graduate work at Berkeley been an interesting and very fruitful experience primar

ily due to my association with Professors Sangiovanni and Brayton. I am greatly indebted

to Prof. Sangiovanni-Vincentelli, my research advisor, for the support and direction that

he has provided. By giving me flexibility in deciding how my research would develop he

helped me learn the importance of a systematic approach to defining and solving problems.

I have also benefited immensely from his excellent comments on writing and presentation

style. Prof. Brayton has been a second advisor to me. His probing and insightful questions

helped me foresee some of the problems and pitfalls during the early stages of my research.

I learnt a lot from the courses on logic synthesis and circuit analysis that he taught.

Professors Jan Rabaey and Dorit Hochbaum agreed to sit on my qualifying ex

amination and helped me focus my research. I would like to thank Prof. Hochbaum for

accepting to be a member of my thesis committee.

My friends in the department, from those currently here to those who are out of

graduate school and raking in big money, have been very instrumental in making graduate

school a pleasant experience. All my current colleagues, especially Ellen Sentovich, Rajeev

Murgai, Alexander Saldanha, Luciano Lavagno and Narendra Shenoy have been very helpful

particularly during the last few months of thesis writing. Interactions with Rick McGeer

and Sharad Malik on issues of timing optimization were very productive and I thank them

for taking the time to discuss issues with me. Many thanks are are also due to Albert Wang,

Richard Rudell, Peter Moore, Rick Spickelmier, Andrea Casotto the Toms — Quarles and

Laidig — and to David Harrison for creating the software infrastructure that supports the

research in the group. If I have failed to recognize the support of my other friends in the

group, and I am sure I must have, it is only due to my haste in writing this section.

Life outside the department has been considerable fun — thanks to the wonderful

California weather, the great facilities on campus and above all my friends. I would like

to acknowledge the support of my fellow Indian graduate students who provided a strong

support network. Abjhijit Sahay, Tarun Verma, Rajeev Motwani, Ananth Jhingran, Huzur



Saran, Vedant Sampat, Arun Majumdar, G. Srini and Sharad Malik were graduate students

when I joined Berkeley. They took me under their wing and made the transition to graduate

school very easy. Jayavardhan Pandit, Pratap Khedkar, Madhu Sudan, Savita and Usha

Sahay, Diane Bailey, Sushil Verma, Sajina and Sushil Warrier have been very good friends,

always willing to help and party. Special thanks are due to my roommates over the years

— Narendra Shenoy and Arunava Majumdar — who have put up with my late night work

schedules and watching ESPN. My fleld-hockey friends and street-hockey buddies have a

been the source of many lasting friendships and I wish them well.

Last, but definitely the most important, is the support and love of my family. I

was greatly influenced by my grandfathers— Sarain Singh and Balwant Singh Nag — who

were role models to me as I was growing up. My sisters have been very supportive of all my

decisions and I wish them and their families well. The unlimited sacrifices that my parents

underwent to assure that I got a good education is a debt that I cannot repay. Mom and

Dad, this thesis is dedicated to you.



Ill

Contents

Acknowledgements i

List of Figures v

List of Tables vii

1 Introduction 1

1.1 The design process 2
1.1.1 Technology considerations 2
1.1.2 High-level synthesis 3
1.1.3 Logic synthesis 3
1.1.4 , Physical synthesis 4

1.2 Assumptions and abstractions 5
1.3 Thesis overview 6

1.3.1 Technology-independent optimizations 6
1.3.2 Technology-dependent optimizations 7
1.3.3 Synchronous circuit optimization 8

2 Background 11
2.1 Logic synthesis preview 11
2.2 Determining circuit performance 14

2.2.1 Delay models 14
2.2.2 Evaluating technology-independent delay models 18
2.2.3 Timing analysis 21

2.3 Logic optimization operations 23
2.4 State of performance optimization techniques 27

3 Technology-independent optimizations 33
3.1 Delay-reducing transformations 35

3.1.1 Timing driven simplification 35
3.1.2 Timing-driven decomposition 39
3.1.3 Timing-driven cofactoring 41
3.1.4 Generalized bypass transformation 42
3.1.5 Using the complement of the function 42



iv CONTENTS

3.2 Using local transformations to reduce delay 43
3.2.1 Computing a lower bound on delay improvement 45
3.2.2 Selecting a region to transform 51
3.2.3 Selecting local transformations 54
3.2.4 Generalization to DAG's 66

3.3 How effective is iterative improvement? 70
3.4 Results of technology-independent optimization 73

3.4.1 Description of example circuits 73
3.4.2 Choice of initial decomposition 74
3.4.3 Experiments with the proposed procedure 78
3.4.4 Comparison with other techniques 86
3.4.5 Optimization of a 32-bit adder 88

3.5 Conclusions 90

4 Technology-dependent optimizations 93
4.1 Optimization based on gate selection 97
4.2 Optimization based on fanout buffering 100

4.2.1 Buffering strategies 100
4.2.2 Top-down buffering algorithm 104
4.2.3 Comparison of buffering algorithms 109

4.3 Applying local transformations to mapped circuits 112
4.3.1 Experiments on optimizing mapped circuits 115

4.4 Conclusions 119

5 Synchronous circuit optimization 127
5.1 Timing analysis and optimization 128

5.1.1 Optimization based on timing analysis 131
5.1.2 Evaluation of sequential optimization 133

5.2 Retiming and Resynthesis 137
5.3 Finite-state machine optimization 141

5.3.1 Optimization via unrolling 112
5.3.2 Performance directed state assignment 145

5.4 Limitations of current approaches 150
5.5 Conclusions 154

6 Conclusions 155

Bibliography 157



List of Figures

2.1 Example of a Boolean network 12
2.2 Grouping signals based on arrival time 17
2.3 Delay prediction using a uniform cell-library, lib2-subset 29
2.4 Delay prediction using the MCNC lib2 cell-library 30
2.5 Effect of extracting common sub-expressions on delay 31

3.1 Decomposition procedure for a NANd-nAND representation 36
3.2 Timing-driven decomposition 40
3.3 Timing-driven cofactoring 41
3.4 Generalized bypass transformation 43
3.5 Generic optimization procedure 45
3.6 Determining the maximum delay improvement 48
3.7 Using a fixed threshold to determine critical signals 49
3.8 Procedure to determine the maximum achievable slack 50
3.9 Example of the scope of a transformation 52
3.10 Example illustrating the limitation of the selection strategy 54
3.11 Selecting transformations for the special case 59
3.12 Counter-examples to heuristic procedures 61
3.13 Exact procedure for selecting transformations 63
3.14 Procedure to generate all finite-weight cuts of a flow network 64
3.15 Example of a relevant network with a DAG structure 67
3.16 Selection procedure for DAG topology 68
3.17 Comparison of strategies used to determine transformation scope 70
3.18 Interaction of circuit structure and scope strategy 72
3.19 Iterative clustering script 86
3.20 Optimization a 32-bit serial adder 92

4.1 Alternative realizations of a 4-input AND function 94
4.2 Critical-path based buffering strategy 101
4.3 The basic buffering transformations 105
4.4 Alogoritm top-down to create fanout-trees 106
4.5 Comparison of fanout algorithms HI
4.6 Selection procedure for mapped circuits 122



VI
LIST OF FIGURES

. . . 103
4.7 Two approaches to delay optimization

1 ^15.1 Analysis-redesign loop for circuit optimization
5.2 Design scenarios for the viterbi chip
5.3 Area-delay design space for the viterbi chip 136
5.4 Pipelined circuit structure

5.5

5.6 The iterative array structure

5.7

Standard finite-state machine structure 141
The iterative array structure

FSM with a fc-hot encoding 147



Vll

List of Tables

2.1 Evaluation of technology-independent delay predictors 21

3.1 Description of example circuits 75
3.2 Comparison of techniques for decomposition into 2-input nand gates .... 77
3.3 Comparison of strategies for selecting regions to transform 79
3.4 Comparison of local transformation techniques 81
3.5 Effect of transformation depth on optimization S3
3.6 Effect of area-saving parameters 85
3.7 Comparison of clustering and critical-path restructuring 87

4.1 Effect of tree duplication on circuit delay 99
4.2 Comparison of different buffering strategies 103
4.3 Comparison of mapped delays of optimized circuits 121
4.4 Combining tree-duplications and fanout correction 123
4.5 Comparison of direct and iterative optimization strategies 124
4.6 Comparison with the LATTIS heuristic 125
4.7 Comparison of mapped and unmapped optimizations 126

5.1 Optimization via unrolling of FSM's 143
5.2 Effect of state-assignment on delay 146
5.3 Comparison of state assignment techniques 149



Vlll LIST OF TABLES

U>: !!-::

•f" :to '"'•

' i .:•.'>!!



Chapter 1

Introduction

With the advent of Integrated Circuits (IC's), system manufacturers can pack a

lot of functionality on a single chip. With present day synthesis techniques system designers

feel quite confident that the desired functionality can be effectively implemented in a small

area. But the same level of confidence is not seen in predictions about meeting the target

performance. The reason for this lack of confidence is not hard to trace. For many years

now, research on the automated synthesis of circuits has focussed primarily on reducing the

area of the design and being able to test them. This was a valid objective when the number

of transistors that could be packed into a single chip was limited. In addition, a primary

objective ofsynthesis was to improve the design timeand to ensure a correct implementation

of the design. As the technology for area-based synthesis has matured, designers are looking

to ways ofsqueezing out the last bit ofperformance from automatically synthesisized designs

to get an edge over their competitors.

In most design environments, designers synthesize an initial circuit implementing

the desired circuit functionality. Timing analysis techniques then predict the critical paths

in the circuit. These paths determine the speed of operation. If the critical paths do

not meet the performance specifications, then local changes are made manually to improve

circuit speed. This process is time consuming and typically is the bottleneck in the design

process. It is therefore important to find methods that will guarantee (with a large degree

of confidence) that synthesized circuits will meet the performance objectives.

For a design, an important metric of performance is the clocking speed. This

reflects the rate at which data can be presented to the system. Of course, in devices such

as microprocessors, the clocking speed has to be considered with caution. A small clocking
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period is meaningless if only very simple operations are performed during a cycle. The true

measure of performance in these systems is the clock period multiplied by the number of

clock cycles it takes to accomplish the task. In digital design, it is clear that the system

architecture is an important issue in performance optimization. For example, by organizing

the tasks into simpler ones (pipelining the architecture), a designer may achieve the desired

performance. However, once the architecture has been fixed, the only option available to

the designer is to optimize the logic so that the clock speed can be increased.

To put this research in perspective, it is useful to look at the overall design process

and the types of decisions made at each step to improve circuit performance.

1.1 The design process

The performance of a design is influenced by the design style used and the steps

that constitute the synthesis procedure. Synthesis is typically done in three stages — high-

level synthesis, logic synthesis and physical synthesis. In this research the focus has been

on understanding the factors that determine the delay of a circuit during the logic synthesis

stage. However, to provide a complete picture of performance optimization, the technology

considerations and the individual stages of synthesis are described briefly.

1.1.1 Technology considerations

Different design styles, such as full-custom, standard-cell based, gate-array based

and more recently programmable-device based designs, are used by different designers. The

design style affects the choice of optimization techniques and the metrics used to evaluate

the design during optimization. Full-custom designs allow freedom to modify the circuit

at the transistor level and consequently one tool that is crucial to generating high-speed

circuits is transistor sizing [19]. Transistor sizing allows a very precise control of the circuit

delay and assumes the availability of parasitic capacitances and transistor models. The

domain of full-custom circuits consistsof the fastest designs made using considerable design

time and expertise. Programmable circuits use a repetitive array of fixed devices and are

ideal for rapid prototyping of the design. However, due to the fixed architecture of such

devices, there is only a coarse control of circuit delay. In addition, the overheads that go

along with providing programmability makes these devices slow. Cell-based designs provide

a compromise where a fixed set of custom-designed gates are used in a regular layout style
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(standard-cell or gate-array). These form an important part of the semiconductor market

since they allow good control over the circuit performance and can be designed with relative

ease. This methodology is used widely in the design of application specific integrated circuits

(ASIC's). The problems being addressed in this research are primarily from the cell-based

design style although some aspects are applicable to all three design styles.

1.1.2 High-level synthesis

High-level synthesis is the process of transforming a behavioral description of a de

sign into a more concretefunctional description. The behavioral specification is typically in

the form of a Hardware Description Language, e.g. VHDL, Verilog, Ella, Hardware-C, etc.,

and consists of a program-like description of the design. The specification is transformed

into an interconnection of functional units, e.g. adders, comparators, multipliers, etc., and

an associated controller. The allocation of functional units and scheduling of operations are

directed to satisfy constraints specified by the user. These constraints may be area related

(the design should not use more than 2 adders and 1multiplier) or performance related (the

operations should be scheduled in no more than 5 cycles). These decisions affect the archi

tecture of the design and have a significant effect on the system performance. In addition

to scheduling and allocation, considerations such as pipelining, determining the granularity

of the operations are also the domain of high-level synthesis.

In this research we assume that the architecture of the system and the specification

of the functional description is fixed. This assumes a "top-down" design style where all the

high-level decisions are made prior to logic synthesis. Once the high-level decisions have

been made the implementation of each logic module must satisfy the functional and timing

specifications generated for it.

1.1.3 Logic synthesis

Transforming the functional description of the system into an interconnection of
gates is done during the logic synthesis stage. The types ofoptimizations made during this
stage are strongly dependent on the technology and the design style used to implement

the circuit. For example, the optimizations performed for cell-based designs differ from the

optimizations that are required for designs that use programmable devices. The cell-based
design methodology is becoming increasingly important as the need to market fast circuits
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in a short period oftime increases. Short design time is a result ofalgorithms that allow the

automatic synthesis and verification of the circuits. The fully-automated or "push-button"

synthesis scenario has been very successful in reducing the size of the logic implementation

so that designs with small area are generated routinely. During area minimization there is

little considerationof circuit speed so that area minimal designs often fail to meet the timing

specifications. Asa result, a largepart of the design timeis spent on fixing problems related

to timing violations. This research is directed towards alleviating the problem of circuit

redesign by considering the timing issues during the synthesis of the logic. If accepted,

this approach can reduce the need to undertake manual correction of the circuit to meet

performance constraints.

1.1.4 Physical synthesis

Once the netlist of the circuit has been designed the next important task is that of

realizing the circuit on silicon. The components need to be placed (the placement problem)

and interconnected (the routing problem). The choices made at this level of design also affect

circuit performance. As an example, a poorly placed design may place two connected gates

far apart which leads to longer wires connecting them and an increased capacitive loading

that may degrade the circuit performance. There are two broad approaches to avoid this.

The first is to impose constraints on the lengths of wires [47] and pass them on as an input

to the placement routines. By meeting these constraints, the physical design is guaranteed

to meet the projected performance. The second approach uses mathematical programming

techniques to reduce the critical path delays by controlling the placement [28, 21].

Results quoted in literature suggest that the higher the level of abstraction the

larger is the possibility of a dramatic increase in system performance. Thus architectural

decisions would impact the performance the most while optimizations at the physical design

stage have a limited scope for improving the performance. However, the further one gets

into the design process the more crucial become the optimizations since a failure to meet

the performance targets results in a redesign of all the earlier stages — a very time consum

ing process. The logic level provides a good compromise for attempting the performance

optimizations — it is early enough in the design process to allow changes to be made to the

behavioral models yet there is enough information to be able to predict system performance

after physical design.
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1.2 Assumptions and abstractions

As is clear from the previous section, the delay of a circuit is affected by many

factors. It is thus essential that when focusing on some aspect of the design process, e.g.

logic synthesis, assumptions be made about what decisions have been made and also be

able to abstract and quantify the effect of decisions yet to be made.

We assume that the following decisions have been made before the logic synthesis

process is initiated.

1. The design style and the target technology are fixed.

2. The architecture of the circuit is fixed. What we mean here is that all architectural

decisions, such as whether to implement a multiplication as a loop of partial additions

or as a combinational circuit, have been made.

3. The clocking discipline is fixed.

To model circuit delays we use the following abstractions.

1. There exists a delay model that will predict the delay of the circuit. The accuracy of

the delay prediction increases as the circuit approaches its final form.

2. The effect of layout on the delay can be estimated by including an additional delay

based on the number of gates that are driven by a gate. This estimation is pessimistic

in that the predicted delay is an upper bound on the circuit delay.

3. The delay of a circuit is determined by the longest path in the circuit. This assumption

is pessimistic in that it overestimates the circuit delay [27]. This overestimation may

lead to predicting a circuit speed that is slower than the actual one.

Optimizations performed during the logic synthesis phase affect the circuit area,

the delay and the testability of the circuit. These objectives are not independent — op

timizing one may affect the others. The work in [53] provides an excellent account of the

interaction of the three optimization criteria. The focus of this research is to develop tech

niques to reduce the circuit delay. This often entails degradation of the circuit area and

testability. Fortunately techniques exist to ensure testability without degrading circuit per

formance. As a result, it is acceptable to reduce circuit delay without regard to testability

considerations since 100% testability can be guaranteed by appropriate post-processing. As
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regards to circuit area, an attempt will be made to keep the area increase small while trying

to reduce the delay.

1.3 Thesis overview

At the logic level, the task of optimizing the performance of a circuit is partitioned,

to simplify the exposition and reduce the complexity of the problem, into several sub-

problems. One partition can be made based on the presence or absence of feedback in the

circuit. Acyclic circuits are called combinational circuits while those with feedback are called

sequential. The sequential circuits that we consider fall into the category of synchronous

sequential circuits since each cycle is required to have at least one "memory element".

Another problem decomposition is based on the circuit representation. The circuit may be

represented explicitly using gates chosen from a user-defined set or, alternately, it may be

represented using an interconnection of arbitrary functions. The representation based on

gates is the technology-dependent representation while the more abstract representation is

called the technology-independent representation.

The background material on logic synthesis and delay modeling is described in

Chapter 2. Chapters 3 and 4 are devoted to understanding the performance optimization

of combinational logic at the technology-independent and technology-dependent stages re

spectively. Synchronous circuit optimization is the subject of Chapter 5. An overview of

Chapters 3, 4 and 5 is provided next.

1.3.1 Technology-independent optimizations

Combinational circuits compute some Boolean function defined over circuit inputs.

There are many different ways of defining the circuit function. The traditional way is to

specify the function as a sum-of-products representation. This is a two-level function —

the first level consisting of and gates whose outputs are combined using an OR gate at

the second level. There are functions for which the two-level representation has size which

is exponential in the number of inputs. For such functions, a multi-level representation is

more appropriate. It consists of an acyclic interconnection of smaller functions.

The structure chosen to represent a function determines its delay. As an example,

consider the addition of two numbers. The addition can be performed either serially by

adding the carry generated from the lower order bits with the next bit or by using a parallel
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look-ahead structure. These represent, respectively, the small-but-slow and the fast-but-

large ends of the possible designs. What a designer wants is a circuit that meets the speed

requirements and has an acceptable area. To solve this problem there are two obvious

approaches — 1) start with a small circuit and then tradeoff area for better speed, and

2) start with a fast circuit and then recover area while sacrificing the speed till the design

objectives are met. Due to the unavailability of algorithms and techniques to design close

to the fastest circuit for a given function, the first approach is the only one that we can

use. Recall that current techniques can generate circuits with area close to the smallest

implementation.

Techniques used for area optimization also affect the circuit delay. This interaction

between area and delay is complex. On one hand, a smaller circuit offers smaller capacitive

loading and helps to speedup the circuit. On the other, the reduction in area is achieved

by sharing logic which results in increased delay due to greater circuit depth and increased

capacitive loading on some nodes. These conflicting aspects need to be reconciled in an

optimization procedure that can generate circuits with acceptable area and delay. Some of

the area optimizations at the technology-independent stage that will be studied are sim-

ptification of the logic function using don't cares, kernel extraction and cube extraction.

How these techniques can also be used to reduce the circuit delay will be described. Com

bining the different transformations that reduce delay into a unified algorithm is a major

contribution of this research and will be presented in Chapter 3. The proposed approach

determines a lower bound on the improvement in delay and then meets this improvement

with a increase in area.

1.3.2 Technology-dependent optimizations

After the description of a Boolean function has been converted into an interconnec

tion of functions with a small depth and acceptable area, a circuit is obtained by mapping

the functions onto a predefined set of gates. The predefined set of gates is called a cell-

library and typically contains more than onegate that can be used to implement a Boolean

function. All the gates in the library are pre-characterized so that the delay through the

gate, for a given capacitive loading at its output, can be accurately predicted.

This phase of delay optimization exploits the characteristics of the gates in the

cell library to reduce the circuit delay. An important optimization is to enable gates to
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drive a large number of signals by building fanout-trees at the outputs of the gates. In

addition to improving the circuit speed it also prevents defects like metal-migration during

circuit operation. A polynomial-time algorithm that generates fanout trees is presented in

Chapter 4. Chapter 4 also studies the interaction between the fanout-correction and the

gate-selection algorithm. Some ideas are common to the application of local transformations

at the technology-independent and technology-dependent stages. However since the delay

model used during technology-dependent optimization is more complex, different strategies

are used in the two cases to select the local transformations that will improve the circuit

performance.

1.3.3 Synchronous circuit optimization

Once the performance optimization of combinational circuits has been addressed,

the optimization of synchronous circuits can be studied. These circuits contain combina

tional logic iuterspersed with registers. The speed of operation is determined by some long

path between registers. So, it is clear that the reduction in combinational delay would

decrease the cycle-time for the system. One question that will be addressed in Chapter 5

is how to generate constraints on the combinational logic to ensure that the circuit will

operate at the desired speed. In addition to combinational resynthesis, circuit performance

may be improved by repositioning registers to better distribute the delay among the vari

ous clock phases. This technique of retiming, proposed by Leiserson [34], is applicable to

single-phase edge-triggered systems. In order to be applicable to multiple-phase designs,

positions of registers are changed in response to the distribution of delays in the circuit.

There is no reason to restrict these resynthesis and retiming techniques to be

applied independently. Wherever possible, a maximal chunk of combinational logic with

registers at its periphery can be identified. Then by resynthesis on this larger piece of

combinational logic we have greater freedom in reducing the delay and can obtain results

better than those that were possible by applying separately the techniques of retiming

and combinational resynthesis. The conditions under which a circuit can be peripherally

retimed were presented in [41]. The extension of these techniques to timing optimization

was presented in [42] and will be described in this chapter as well. This technique is also

used to optimize finite-state machines.

Finally, in Chapter 6, experiences gained during this research will be presented
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and avenues for further research described.
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Chapter 2

Background

This chapter is devoted to reviewing some basic notions in the area of logic syn

thesis and timing analysis.

2.1 Logic synthesis preview

A Boolean function is a mapping F : {0,1}" -»• {0,1}. Each of the n inputs of the

function is called a variable. The set of input conditions for which the function F evaluates

to 1 (0) is called the onset (offset). The onset is typically represented as / and the offset as

r. An incompletely specified Boolean function has the flexibility of producing a 0 or 1 at

the output under some input conditions. These inputs represent don't care conditions and

are represented by d. An incompletely specified function T represents a range of functions.

The minimum is the onset and the maximum is when the entire don't care set is included.

Thus / C T C / U d.

Boolean functions, both completely and incompletely specified, with more than

one output are called multi-output Boolean functions. The term Boolean function will

be used to describe both single and multiple-output functions, and also completely and

incompletely specified functions. When required, the exact description will be used.

Boolean functions can be represented in a variety of ways. A representation that

describes the output value for every input combination is called the truth-table and it

has a size exponential in the number of inputs. An improvement is to group together

the input combinations in the onset (or offset) into cubes that represent a conjunction of

literals (a literal is a variable or its complement). A collection of cubes that represents the
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f=ab

h=cg+df

Figure 2.1: Example of a Boolean network

function is called a cover of the function. This representation is natural when the circuit

is represented as a Programmable Logic Array (PLA) [43]. These circuits implement a

two-level structure. The first level is devoted to computing each cube (a conjunction

(AND) of the literals in the cube). The second level performs a disjunction (OR) of the

cubes that describe an output. Due to their compact representation PLAs are widely used

to implement control logic. However, for large functions, the PLA results in a slow circuit

implementation. The PLA design is also very inefficient for some classes of functions (e.g.

parity). In the quest for smaller representations and greater circuit speed logic designers

turned to multi-level circuit implementations. Rather than be restricted to two levels of

and and OR functions, these circuits allow an acyclic interconnection of general functions

of arbitrary depth.

The representation of Boolean functions as a multi-level circuit is called a Boolean

network. A Boolean network is a directed acyclic graph (DAG) consisting of vertices

(nodes) and edges. An example of a Boolean network is shown in Figure 2.1. The inputs

and outputs of the Boolean function are represented by vertices labeled primary inputs

and primary outputs and cannot be changed. The remaining vertices are internal. Each

internal vertex g is associated with a completely specified Boolean function fg and a Boolean

variable yg. The edges in the Boolean network represent the interconnection between nodes.

An edge from node g to node h implies that the function fh at node h uses as input the
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variable yg associated with the node g. Node g is called a fanin of node h while h is a

fanout of g. The set of all the fanins of h is represented as FI(h) and the set of all the

fanouts of g is represented as FO(g). The distinction between the variable at a node and

the node itself is important although frequently the same symbol is used for both. When

fh is specified in terms of its immediate fanins, it is called a local function. On the other

hand, fh is called the global function at node h when it is represented in terms of the

primary inputs of the circuit. The variables that a function explicitly depends upon is called

the support of the function. The maximum number of internal nodes on any input-output

path is called the depth of the network.

A set of primitive functions that is supplied by the user is called a cell library.

The elements of the cell library are called gates and each gate is characterized for its area

and delay. A single function may be represented multiple times in the cell library. Gates

that have the same functionality but different area/delay characteristics are called versions

of each other. A Boolean network where each of the nodes is equivalent to a specific gate

(functionally and in terms of its area and delay) is called a logic circuit. We will use

the term node to mean both a vertex in a Boolean network and a gate in a logic circuit

whenever there is no ambiguity. In that sense, a logic circuit is simply a Boolean network

in which each node is annotated with the gate that is used to implement the function at

the node. We will use the term circuit to refer to both logic circuits and Boolean networks

expecting that the context will make the interpretation clear.

The process of optimizing a Boolean function to obtain a logic circuit is typically

done in two phases. The first phase finds an alternative Boolean network that represents

the same function (or a function that lies between / and / Ud). This is the technology-

independent phase. During the next phase, the optimized circuit is implemented using

the gates in the cell-library. This operation is called technology mapping. As a result

of technology-mapping, a logic circuit is obtained. Optimizations that exploit the delay

properties of the gates in the cell-library and retain the mapped nature of the circuit are

called technology-dependent operations.

Most circuits contain, in addition to combinational logic, elements that are loosely

called "storage" or "synchronizing" elements. The presence of these elements transforms

combinational circuits (in which the output is a Boolean function of the input) into sequen

tial circuits (those in which the output is a function of the inputs and the past history).

The values stored in the storage elements are referred to as the state of the system. Se-
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quential circuits in which there is at least one storage element in every cyclic connection

of gates are called synchronous circuits if all the storage elements are controlled by a

specific set of signals called clock signals. The storage elements in synchronous designs can

be classified into two types — edge-triggered or level-sensitive [43]. For convenience we will

call edge-triggered devices flip-flops and the level-sensitive devices latches. Flip-flops out

put a value equal to the stored value until the next clock-edge which may cause the stored

value to change depending on the inputs present at the time of clocking. For latches, the

active period is defined as the time interval during which the output waveform responds to

the input waveform. During the active period the latch is "transparent" (the output follows

the input). At the instant they become inactive, they store the input value and output it

till they become active again.

2.2 Determining circuit performance

Circuit simulation is the most accurate method for determining the timing char

acteristics of the signals in a circuit (short of fabricating the circuit and measuring its

delay). Circuit simulators like SPICE [46] provide an accurate estimate of the circuit delay.

However, for large combinational circuits circuit simulation is an expensive operation and

cannot be invoked repeatedly during an optimization procedure. In addition, prior to phys

ical design, only poor estimates of the capacitive load and wire resistances are available.

Hence, using an accurate simulator at the logic level is not useful.

To address the speed of analysis and the unavailability of an accurate represen

tation for the circuit at the logic level, delay models are used to predict the delay of each

component in the circuit. The delay through a circuit is computed by combining the delays

of the components during timing analysis (Section 2.2.3). This process is fast and can be

used repeatedly during optimization.

2.2.1 Delay models

A delay-model is an equation or algorithm that predicts the delay between the

inputs and output of a gate within the context of the circuit surrounding the gate. Delay

models may be used at various levels of abstraction. As more information is available regard

ing the implementation, the delay models produce estimates of circuit delay that are closer

to the delay value obtained from circuit simulation. After technology-mapping (when the
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gates used to implement the logic are known) wecan predict the delay more accurately than

with the technology-independent representation (acyclic connection of arbitrary functions).

Some of the delay models used during synthesis are described next.

Library-based models

To estimate the delay through a gate in the cell-library, various delay models [81,

49] have been suggested to account for factors such as output loading, slow-changing input-

waveforms and resistive effects of wiring. To generate such models the user conducts a

number of simulations by varying the parameters of interest. Typical parameters used

include the output load and the slope of the input waveform. The circuit delay is then

known at a number of points in the parameter space. Curve fitting of the observed delays

to the parametric equation yields the model equation.

For many cell-libraries, the model equation is a linear equation where the delay

between an input i and the output o is a function of the output load.

d(i,o) = a{i) + P(i)x L(o)

a represents the intrinsic-delay of the gate (also called block delay) and (3 is a load-

multiplier (also called drive or output-resistance of the gate) that represents the ad

ditional delay per unit output load. L(o) is the cumulative capacitance that is driven by

the output. The library model is simply the set of precharacterized values of a and /? for

each input pin of the gate. Due to differences in the transistor configurations that charge

and discharge the load capacitance, the parameters used to compute the delay for the rising

and falling transitions at the gate output are usually different.

The library-based models require that the logic have a mapped representation.

Prior to the mapping process there is no information on what gates are used to implement

the function. In this case technology-independent models are used. These fall into two

categories — predictive models and structural models.

Predictive models

Predictive models assume that specific optimizations and mapping strategies are

applied on the function at each node in the Boolean network. How these strategies affect

the delay is then captured in terms of predictive models. A few of the predictive models
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that have been proposed are based on a mapping of each node in isolation, on a balanced

two-level decomposition of the function at a node [73] and on a timing-driven-cofactoring

of the node-function [23].

For Boolean networks that contain unmapped nodes the mapped delay model

may be used to approximate the circuit delay. To apply this model, a mapping of each

node in the network is carried out and the a and (3 values are computed by analyzing the

delays in the mapped representation of the node. Note that this mapping is performed on

a node-by-node basis and may not reflect the mapping that would be obtained if the entire

network was to be mapped. Furthermore, the mapping of each node may be performed for

minimum area or minimum delay. Based on the mapping criterion, we get mapped-a and

mapped-d delay models respectively.

The model of [73] predicts the delay of a node as

d = a0 + «i ln(ts) + a2In /

where t is the number of cubes in the two-level cover of the function at the node, s is the

maximum number of literals in any cube, / is the number of fanouts of the node and a0, a\, <i2

are constants derived from the cell library. A number of functions are generated randomly

and mapped into the target cell-library. The delay through these functions is computed

based on the library delay model. The parameters for the predictive models are chosen so

that the predicted delay has the minimum mean-square error over the observed delays. This

enables the model to predict the delay of the circuit after the Boolean network has been

mapped into a specific cell-library. Since the model equation is based on a balanced, two-

level decomposition of a node, it has some limitations. When the two-level representation

at a node is large, e.g. for the parity function, a multi-level representation usually has

smaller delay. Moreover, when the inputs arrive at widely different times, prediction based

on a balanced decomposition is pessimistic. Hence, the model is accurate only when the

functions in the Boolean network have been decomposed into smaller functions with similar

arrival times at the node inputs. This assumption is very restrictive since one of the aims

of technology-independent optimizations (using the predictive model) is to come up with a

good decomposition of the Boolean network. Thus assuming a good decomposition to start

with is unacceptable.

The timing-driven-cofactoring model (tdc) overcomes the restriction that all in

puts have similar arrival times. The inputs are divided into groups such that the signals in
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node

Group 1

Group 2 w

Group 3

Figure 2.2: Grouping signals based on arrival time

each group have similar arrival times. This creates a staggered decomposition of a node like

the one shown in Figure 2.2. The predicted delay between an input signal, say w belonging

to group 2, and the node output /, is the sum of the delays through the functions between

them (J^ and J3). Since inputs to each of the smaller functions arrive at similar times, it is

easy to predict their delay. This enables the model to predict different delay values based

on the the arrival times of the signals. However, the model has no consideration of fanout

which reduces its accuracy. In addition, for large functions this model is computationally

expensive.

The delay models of [73] and [23] have large errors when applied to logic functions

that do not fit their domain of validity. This is a major drawback since it is not known a

priori if the delay model is valid. In fact, it is clear that developing a good predictive model

is a difficult task. The different ways in which the circuit representation affects the delay

should be handled by a good model. A good model should be able to predict a delay close

to the best attainable. This means that built into the predictor is a procedure to generate

an implementation with small delay. Thus to build an "accurate" predictive algorithm one

has to solve the timing optimization problem itself!
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Structural models

In the absence of good predictive models, the only recourse is to use a delay model

that is based on the mechanisms that contribute to circuit delay. A simple observation is

that increasing the depth of the Boolean network increases the delay through the circuit.

Thus the depth of the Boolean network is an important parameter that affects the circuit

delay. The depth of the network is measured using bounded-fanin gates. Without this

restriction the depth of the network is not a good predictor of delay (since all networks

can be expressed in two-level). Results from circuit complexity [16] show that the bound

t on the fanin of each node does not change the asymptotic complexity of the function.

Typically a value t = 2 is used. The delay model that considers each gate to contribute 1

unit of delay is called the unit delay model.

In a circuit, there is additional delay since gates have to drive capacitive loads.

Capacitive loads result in a slow switching of a transistor that can contribute significantly

to the delay. Even though considerations of fanout are getting increasingly important (as

device dimensions decrease so does the current sourcing capacity leading to larger charging

times) it is difficult to model the delay contribution of the fanout. Using a linear delay model,

like the unit-fanout model that computes the delay of each gate as (l + 0.2xfanout-count),

the delay predicted for a node driving a large number of fanouts is very high. Clearly

buffering the nodes is an optimization that will certainly be performed. So, the delay

model should account for the existence of buffering algorithm and not predict a large delay.

Buffering the gates in a circuit results in every node having a limited number of fanouts.

Thus putting a bound on the number of fanouts that anode can drive, results in all bounded-

fanin nodes having similar delays. In that case the network depth is a good measure of the

circuit delay. In [26] it is shown that a network with arbitrary fanout can be replaced

by a network with bounded fanout with only a constant factor increase in depth. The

inaccuracy in modeling fanout and the result of [26] suggest that considerations of fanout

can be relegated to technology dependent optimizations and consequently using the depth

of the network (when every node has a bounded fanin) is reasonable.

2.2.2 Evaluating technology-independent delay models

To evaluate the technology-independent delay models, the true circuit delay is

compared against the delay predicted by the different models. The technology-independent
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models are used to predict the delay prior to technology-mapping for all the examples in

the benchmark set (see Section 3.4.1). The network is then mapped into the lib2 cell-

library provided with the MCNC benchmark suite and the circuit delay is measured using

the library delay model. The cell-library, lib2, has different versions for some functions. In

another experiment, in order to avoid the bias due to the presence of high-speed components,

only the slow version of each cell is retained. This reduced library is named lib2-subset.

Mapping for minimum delay is performed using the map command of sis with options to

reduce delay (-ml) and correct for large capacitive loads (-A).

Various statistics have been proposed to evaluate the delay models. The true

network delay, d,, and the predicted delay, e,-, represent the observation sets that, we want

to study. The correlation between the predicted and actual delays represents the degree by

which one delay tracks the other. For a perfect predictor, whose correlation coefficient is 1,

each value et- is linearly related to d{, i.e. et- = m x d,- + c.

One measure of "goodness" of a predictor, the Overall Relative Error (ORE), is

proposed in [73]

•«- fW
By re-expressing the observed value et- as e,- = (1 + r{)di where r, reprepresents the relative

error, the ORE may be written as

The ORE weights the relative errors with the actual delays. This emphasizes the relative

errors at the points with large rf,'s, which is desirable, since the larger delay values are the

ones that typically determine the network speed.

Another statistic that is useful in evaluating the delay models is the Maximum

Relative Error (MRE). This represents the largest percentage that the prediction differs

from the actual delay.

MRE = max
|et- - di\

di

In evaluating the ORE and the MRE, we first normalize the predicted value, e,,

to the same scale as the actual value, d{. This is done to avoid large errors that occur when

different scales are used — actual delay may be in nano-seconds whereas the network depth

(used to predict the actual delay) is an integer. Normalization is done by finding the linear
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curve (e = fhxd+c) that best fits the data. Foreach rf, value, a scaled value et- = m x d,- + c

is generated. Thus (e{ - c;) is the error between an ideal (linear) predictor i{ and the actual

values et- predicted by the delay model. In the computation of the statistics the value e, is

used instead of dt.

Figure 2.3 and Figure 2.4 show the actual circuit delay and the predicted delay

corresponding to all the models, for all the 1583 outputs in the benchmark circuits, when

lib2-subset and lib2 are used as the target libraries respectively. Also shown as the solid

line is the minimum-mean-square error linear curve through the data. In the scatter plot,

a single point may represent more than one occurrence of the same datum and because of

this, the best-fit curve sometimes appears to be different from what one might expect if

there were no multiple occurrences of data values.

Table 2.1 provides a summary of the "goodness" of each of the models. Overall,

the unit delay model using 2-input gates is the best predictor of the circuit delay at the

technology-independent level. It is also a very simple estimator. For all the other predictors,

one may attribute the poor correlation to the fact that they overestimate the delay at high-

fanout gates. The mapping uses a buffering algorithm to reduce delay. This buffering is

not accounted for in the delay models. Linear delay models are unrealistic when gates with

large fanouts are present in the circuit. This effect may have been amplified in lib2-subset

when the high power gates were removed from the library. To study the effect of a rich

library on the predictors, a realistic library, lib2, is used. The order of the predictors

remains unchanged. However, for all the predictors except the unit model, the prediction

quatity improves. This is consistent with the expectation that the presence of high-power

gates should alleviate the discrepancy between a linear model and the fanout correction

algorithms. A logarithmic model for fanout, like that of [73], results in a maximum ORE

of 0.332 which is better than the ORE for any of the linear models.

The conclusion of this experiment is that the number of levels is the best overall

predictor (based on correlation and ORE) for the true circuit delay at the technology-

independent level. However factors such as fanout-loading and the richness of the library

may result in drastic differences for specific outputs as evidenced by the large value for

the MRE. The large value for the MRE for all the models suggests that these models are

suitable only as gross estimators of delay and that they should not be used to differentiate

path lengths in unmapped networks.

The relative merit of the unit delay model, along with its generality and simplic-
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Delay
Predictor

lib2-subset lib2

Correlation ORE MRE Correlation ORE MRE

mapped-a 0.769 0.516 2.96 0.794 0.486 3.34

mapped-d 0.815 0.454 2.79 0.835 0.437 3.92

tdc 0.615 0.728 3.70 0.642 0.698 2.67

unit-fanout 0.679 0.614 2.92 0.688 0.605 3.18

unit 0.928 0.269 1.34 0.893 0.327 3.92

For MRE computation only outputs with actual delay greater than 5.0 were used.
There are 1292 (for lib2-subset) and 1208 (for lib2) such outputs.

Table 2.1: Evaluation of technology-independent delay predictors
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ity, makes it the delay model of choice when optimizing the network at the technology-

independent level.

2.2.3 Timing analysis

Once an appropriate delay-model has been chosen, the delay from the input of a

gate to its output can be computed. The notation d(g,f) is used to denote the delay from

the input g of node / to the output of node /.

A clocking scheme is the temporal-ordering of the signals that control the reg

isters in the circuit. Certain timing constraints must be satisfied [8, 70] for the circuit to

function correctly. Based on the type of registers and the delays through combinational

gates, timing analysis determines parts of the circuit that do not meet performance require

ments. This process is called timing verification and several techniques have been proposed

for it. Some techniques [77, 54, 29] are based on a path-by-path analysis which is accurate

but slow due to the exponential number of paths. During the optimization stage, a fast

analyzer is called for. To gain speed (at the expense of accuracy) many timing analyz

ers [63, 74, 76] adopt a "block-oriented" approach which is linear in circuit size. One such

analyzer that is specifically designed for use in a logic-synthesis environment is hummingbird

[76].
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It should be emphasized that timing verification is concerned only with ensuring

that the timing constraints required for correct circuit operation are satisfied. It does

not address the problem of determining if the correct functionality has been implemented.

Often, simulation is used to check if the circuit operates as desired. When the simulation

results agree with the specification, timing constraints are satisfied as well. However, since

the set of simulations may not include all input conditions, a circuit that passes a limited set

of simulations can have timing violations that were not stimulated by the simulations. Thus

timing verification is required independent of the technique used to check the functional

correctness of the circuit.

In the "block-oriented" approach only the maximum and minimum delays are

recorded. Starting at the registers, where the arrival time of the signal is known based

on when the register generates a new value, the arrival time for every node in the circuit

is computed. The arrival time of a node is interpreted as the latest time that a signal can

arrive at the output of the node. The arrival time of a node / is denoted as a(f) and

computed as follows

<*(/)= max {a(g) + d(g,f)}
geFI(f)

This process terminates when circuit outputs or the inputs of registers are reached. At that

stage the latest that the signal can arrive at the input of the register is known. This can

be checked against the timing constraint described as the setup constraint (the input must

arrive at least a certain time before the register is going to store the value). In the case of a

violation it is clear that the signal arrives later than it is required. This leads to the concept

of required time of a signal. For the inputs of registers (the output of combinational logic

blocks) the required time is set as the latest by which the signal should have arrived at

that terminal for correct circuit operation. The required time for every wire and node in

the circuit can be computed. Associated with a connection between nodes g and / is the

required time r(g,f). It represents the time value before which the signal should arrive at

the input of node / along the connection from g for the circuit to work.

r(gj) = r(f)-d(g,f)

Since node g may have fanouts to several nodes, each one of which will impose a requirement

on when the signal must be ready. The minimum of these is used as the required time for
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the signal produced by gate g. For a node g the required time is denoted as r(g) and is

r(g) = min r(g,f)

The required time computation proceeds from the circuit outputs towards the circuit inputs.

Once the two passes that compute the arrival time and required time have been computed

wecan determine the slack time at each node. The slack time at node g is s(g) = r(g)-a(g)

and at a connection from g to / is s{g,f) = r(g,f) —a(g). Any wire or node that has a

negative slack represents a violation in the timing constraint (the arrival time exceeds the

constraint imposed by the required time) and is called a critical wire or node.

In the case of latches that are transparent for some duration, two passes are not

sufficient. The coupling of latch-input and latch-output results in having to solve a set

of simultaneous equations that relate the arrival and required times [65]. By solving the

coupled simultaneous equations, a timing analysis computes, for every node and wire in the

circuit, the arrival, required and slack times. A violation of the timing constraints results

in paths with negative slacks. The circuit must be modified so that delay along the critical

paths is reduced. Delay along critical paths may be reduced by selecting faster gates or by

applying more drastic steps like changing the circuit structure. Opportunities may exist to

reposition the registers and/or modify the clocking scheme for better timing characteristics.

For designs containing latches, there may be additional violations when some paths have

length less than a specified value. These combinational paths have to slowed down to ensure

correct operation.

The next section discusses some of the transformations used to optimize combina

tional logic.

2.3 Logic optimization operations

The optimization of multi-level circuits has been a focus of considerable research.

Proceedings of the IEEE, in its February 1990 and May 1991 issues, has excellent review

papers on this subject. The focus of the optimizations has been to reduce the circuit area.

A circuit with smaller area is a more compact representation of the function and leads to

a reduction in the size of the implementation. The smaller size results in smaller wiring

delays and this is helpful in reducing the delay as well. However, technology-independent

optimizations like common sub-expression extraction and simplification may increase circuit
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depth. Also, sharing commonality may increase the fanout of the common nodes. If these

nodes lie on the slow paths, the circuit delay increases. The following sections describe some

of the operations that are used during optimization. The effect of these transformations on

the circuit delay is also described. This provides clues as to how these operations may be

adapted to help reduce circuit delay.

Simplification using don't cares

Simplification is used to find a compact representation for the Boolean function

at every node. A compact representation of a function seems to be a natural starting point

for any optimization. It is clear that by removing the redundancies from a representation

of a function the size and depth can be reduced. In a multi-level network the simplification

at a node considers the structure of the logic around it. This gives rise to don't care

conditions that can be exploited during node simplification [75]. The use of don't cares for

simplification affects the circuit delay as well.

The Satisfiability Don't Cares (SDC) represent the combinations of values that

cannot occur in the network, e.g. the input and output of an inverter cannot take on the

same value. Under these don't care combinations the local function can produce any value.

This extra flexibility can be used to reduce area. Using don't cares during simplification

often results in Boolean resubstitution [75] of one node into another. How the resubstitution

operation affects delay is described later in this section.

The Observability Don't Care set (ODC) at a node represents the conditions un

der which the signal value at a node does not influence any circuit output. Under these

conditions, the node output can be either a 1 or 0. Using the ODC's, the range of global

functions at a node can be determined. Any function within this range is permissible and

produces the correct circuit output. This flexibility leads to a number of equivalent net

works that differ in their area and delay. By choosing a function that depends on signals

with smaller arrival times, the circuit delay can be reduced [9].

Common sub-expression extraction

By extracting common-subexpressions from a number of functions, the circuit

area is reduced. However, the better the area-saving, the more places the sub-expression

fans out to. This could degrade circuit performance if there are critical paths that pass
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through the extracted common sub-expression. It is also possible that the common sub

expression selected for maximum area-saving depends on a late arriving signal. In this

case, the late arriving signal passes through more levels of logic, resulting in greater delay.

Figure 2.5 illustrates the process of extraction when one signal, namely c, arrives later

than other signals. By extracting the sub-expression common to all the functions, c passes

through more levels of logic. Extracting another sub-expression that does not contain c

provides a better delay at the cost of increased area.

The extraction of common sub-expressions is based on a sum-of-products (SOP)

representation of the functions. An alternate realization for a function is to implement its

complement and add an explicit inverter between the complement and the destinations.

The SOP representation of the complement may lead to a more compact decomposition.

Determining for each node of the network whether to implement the node-function or its

complement, so that the circuit area is reduced, is NP-complete [75]. Heuristic techniques

to choose the phase of a function (complemented or uncomplemented) are also presented in

[75]. Complementing the node-function may also lead to a representation with smallerdelay

through the node. An extra levelof inversion has to be accounted for. When a signal is being

used in both phases, no extra level of inversion is introduced. At the technology independent

stage, the inversions are represented implicitly (rather than represent the complement using

an inverter, the variable is complemented in all its occurrences) and do not affect the depth

of the circuit.

Resubstitution and Elimination

Another optimization that is similar to common sub-expression extraction is the

operation of resubstitution. The process of resubstitution involves expressing a node in

terms of another, if possible. Both the function and its complement may be substituted.

For example, given two functions F and G

F = abf + acd + ade + cdf + ef

G = ab + cd + e

F may be re-expressed using G as

F = fG + acd + ade

or as

F = adG + fG = (ad + f)G
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The first representation is called an algebraic resubstitution since no laws of Boolean

algebra are used. In fact, F and G are treated as polynomials. The second representation

uses Boolean identities (a-a = 0 and d>d = d) to further simplify the expression and is called

Boolean resubstitution. The inverseoperation of resubstitution is called elimination. It

involves removing from the expression of a node all occurrences of variables that represent

the nodes that are eliminated. Thus if node G were to be eliminated from the compact

representations of node F, we would get the initial expression for F. When all the internal

nodes are eliminated the operation is called collapsing.

Resubstitution is often used to exploit commonality between sub-expressions that

have been extracted from several functions. It appears that this transformation reduces the

delay since it decreases the total number of wires in the circuit. However, the mergingof two

nodes with the same function, only one of which lies on a long path, causes excess loading

along the long path. This leads to an increase in the delay along the long path, degrading

the performance. Since the critical paths in the circuit are not determined until technology

mapping, it is difficult to estimate the effect of this transformation at the technology-

independent level. Also, technology-dependent transformations may decide to undo the

resubstitution by duplicating some gate and driving most of the non-critical signals by one

copy, thereby reducing the load and delay along the critical path.

Since resubstitution ignores arrival time data, it may make resubstitutions that

lead to placing late arriving signals far from the outputs. Consider the previous example

and assume that node F lies on the critical path while G does not. If signal 6 arrives late,

then after resubstitution of G into F, b passes through more levels of logic. An alternate

representation for F, in which 6 passes through a smaller number of levels, would be more

favorable for delay even though it has larger area.

Repeated application of elimination, simplification, extraction and resubstitution

is used as a typical strategy to reduce circuit area. The description of the these operations

shows the complex interaction between the area and delay of the circuit. In addition the

same transformation applied on the same network may be good or bad depending on the

delay data (the arrival and required times). Since at the technology independent stage the

delay data is imprecise, it is difficult to adapt the global strategies used for area optimization

to address performance optimization. It is therefore not surprising that most techniques

developed to reduce delay use local transformations to make incremental changes to the

logic. In the following chapters reference will be made to previous work in the area of
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performance optimization to point out the important contributions of this research. The

next section provides a brief description of the workin performance optimization at the logic

level. For an extended survey of performance optimization techniques at different stages of

design the reader is referred to [1].

2.4 State of performance optimization techniques

Initial attempts at improving the delay of a circuit focussed on making local

changes only along the most critical path. [25, 11] reduce the delay by adding buffers

and decomposing an existing gate into gates containing early and late arriving signals, with

the latter being placed closer to the output. The optimizations are performed to reduce

the network depth. As is pointed out in [11], the delay of the circuit is difficult to predict

at the technology independent stage. To overcome this limitation a rule based system,

SOCRATES [5], was developed that operates on a mapped circuit. Depending on the char

acteristics of gates in the cell-library, rules were defined to transform regions of the circuit

into faster implementations. The strength of this approach is that it exploits the features of

the library and technology being used. However, the generation of the rule-base is difficult

and strategies to apply the rules may change with a change in technology.

In [12, 61] a more "global" view to the optimization problem is taken. A set of

critical paths is identified and then a set of nodes is determined such that reducing the

delay at those nodes results in better performance. The choice of the nodes at which to

change the circuit structure locally is made so as to get the most improvement in delay for

a small increase in area. Rather than using rules to generate a faster implementation, these

methods restructure the logic on the fly based on the arrival time data. The optimizations

are limited to be algebraic in nature and they do not exploit the ODC and SDC sets.

Techniques that try to reduce the depth of the circuit by exploiting don't care

conditions in the circuit are described in [6, 9]. Using the ODC, it is possible to reduce

the length of the long paths by re-expressing intermediate functions in terms of signals

with smaller arrival times. A recent attempt at timing optimization [68] forms clusters of

specified size to reduce the maximum depth of any cluster. The nodes in each cluster are

collapsed to yield network of small depth. The network is then optimized to reduce the

area without increasing the circuit depth. This constraint is enforced by restricting the

extraction, resubstitution and simplification operations so that they do not add extra levels
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of logic.

The primary aim of all the restructuring approaches is to get a good multi-level

structure of the circuit that will subsequently be mapped into a small delay implementation.

They use simple, weak models to predict circuit delay. As a result, it is difficult to be

confident that the savings observed at the technology-independent stage will be evident

after technology mapping of the optimized circuit.

To alleviate this problem, researchers have extended the basic ideas on the technology-

independent optimizations to work on mapped circuits. The works of [80] and [18] present

heuristics to address the optimization of mapped circuits taking into account the charac

teristics of the cell-library. Chapter 4 will revisit these techniques to contrast them with

the approach proposed therein. We will also show how the earlier techniques can easily

be incorporated in the proposed optimization framework and results of doing so will be

discussed.

The next chapter is devoted to understanding performance optimization at the

technology-independent level. Even though the delay model used there is the unit delay

model, the techniques described will form the cornerstone of a procedure to reduce cir

cuit delay with the minimum increase in area. The procedure can exploit different local

transformations, each of which reduces delay locally, to effect global decrease in delay.
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Experience gained from combinational logic synthesis has shown that the process

of optimizing circuit area can be decomposed into two parts — a technology-independent

optimization phase where the circuit function is represented in a multi-level structure, and

a technology dependent optimization phase where the logic equations are transformed into

an interconnection of gates chosen from the user-defined cell-library. At the technology-

independent state the optimizations aim at reducing the size of the functions used to rep

resent the circuit while the technology-dependent optimizations exploit the characteristics

of the cell-library to reduce area. The division of the synthesis process into a technology-

independent and technology-dependent part allows the designer to focus on an abstract

representation of the circuit functionality at an early stage of the design process.

The success of technology-independent procedures to reduce area can, in part, be

attributed to the availability of a good abstraction for the circuit area. The number of

literals in the factored form of a function is a good estimate of the active area required

to implement the function [36]. The literal count estimates the number of transistors re

quired to implement the function. For delay, it is not immediately obvious what is a good

abstraction at the technology-independent level. The representation that we use is a de

composition of the network into 2-input NAND gates. As was described in Section 2.2.1 the

number of levels of logic is a good predictor of delay when gates have bounded-fanout and

the library has gates of similar drive capabilities. This representation is also used widely in
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the circuit complexity literature [56] and is easy to compute. Another motivation for using

2-input nodes at the technology-independent phase is that the technology mapping proce

dure [30, 13] that follows it operates on a two-input representation of the Boolean network.

The choice of a 2-input NAND representation allows the results of technology-independent

timing optimization to be input directly to the mapping algorithms. This is important since

any other representation of the logic at the technology-independent stage would require a

decomposition step to transform the representation into 2-input nodes. If the user is not

careful in choosing the decomposition step, this could invalidate some of the optimizations

performed earlier.

The complex interaction between circuit area and delay (Section 2.3) and the dif

ficulty in estimating the delay of large Boolean expressions at the technology-independent

level (Section 2.2.1) suggests that the problem of targeting technology-independent opti

mizations towards reducing delay is a difficult one. So, rather than trying to optimize

the circuit for delay (which is difficult to estimate and optimize), it is easier to mimic the

traditional strategy used by designers to get fast circuits. The initial implementation is

optimized for area, which is important for achieving a small layout, and then incremental

changes are made to the circuit to reduce its delay. This is the opposite point of view to that

of [68] where the delay of the circuit is reduced unconditionally (without regard to area)

and then the area is reclaimed by restricting the technology-independent transformations

such that the number of levels in the circuit is not increased. The proposed approach has

a few features that distinguish it from the work of [68]. These are —

• The proposed method is incremental and can handle circuits with timing constraints

on the inputs and outputs. The approach of [68] tries to reduce the maximum

number of levels without regard to timing constraints. Often such drastic reduction

is not needed.

• The proposed approach optimizes the actual delay of the circuit (its accuracy depends

on the delay-model being used) rather than an abstraction like the circuit depth. This

is an important consideration when the timing constraints are generated after a timing

analysis. Translating the absolute delay values into number of levels is difficult.

To apply incremental changes to the area-optimized circuit, there is a need for

operations that modify an initial implementation into another realization that improves

the performance locally. Section 3.1 describes some of these and Section 3.2 develops a
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framework within which these different local optimizations can be evaluated and selected to

improve overall circuit delay. The use of these transformations and optimization strategy

is evaluated in experiments of Section 3.3 and Section 3.4.

3.1 Delay-reducing transformations

This section describes some transformations that lead to a local improvement in the

circuit delay. The transformations are generated on the fly based on the circuit configuration

to be modified. This is different from the local transformations used in rule-based systems

like LSS [11] and SOCRATES [5] that used a predefined set of transformations based on the

design style and target technology being used. The advantage of generating transformations

algorithmically is that there is no need to change these procedures when a different target

technology is considered. Each transformation restructures a part of the circuit into an

alternate form that has a smaller delay (measured as a reduction in the arrival time at the

output of the region). In describing the transformations, it is assumed that the region on

which the transformation is applied has a single output. The function computed by this

region is described in terms of the inputs to this region, not in terms of the primary inputs,

and remains unchanged after the application of the transformation.

3.1.1 Timing driven simplification

The representation of the logic function at every node is made prime and irre-

dundant to get a minimal representation. A minimal representation of the logic results

in a small area implementation. The function is represented as a two-level structure, a

sum-of-products representation, that consists of an OR gate fed by a number of and gates

representing individual cubes. By applying deMorgans laws, the OR and AND gates can

be replaced by nand gates. For this two-level NAND-NAND representation, the optimum

decomposition into 2-input gates is known (the procedure AND_OR_DECOMP of [75][page

167]). It is based on another procedure NAND.DECOMP that is used to generate the op

timum decomposition of a nand function. For clarity both these procedures are described

in Figure 3.1.

In [75] it is proved that the AND.OR-DECOMP procedure is optimum for delay

when the cubes of the function do not share any inputs i.e. the cubes have disjoint support.

For arbitrary two-level functions we would like to know how the delay after decomposition is
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AND_OR_DECOMP(/) {

for each cube c,- G / {

S{ = Ci

NAND_DECOMP(se)

}

/= Si •S2'-'STn

NAND_DECOMP(/)

}

NAND_DECOMP(/) {

if \FI{f)\ < 2 return

Let u and v be the two earliest arriving inputs

w - u - v

/* substitute w into / producing g */

g = SUBSTITUTE(/, w)

compute arrival time of w

NANDJ)ECOMP(^)

}

Figure 3.1: Decomposition procedure for a NAND-NAND representation
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affected by the simplification of the function. An interesting fact is that simplification also

helps to reduce the delay of the two-level NAND-NAND decomposition when all the inputs

have the same arrival time.

Theorem 3.1.1 A minimum literal SOP representation of a function also provides a min

imum depth solution when the implementation is a decomposition of the nand-nand struc

ture into 2-input gates and all inputs arrive at the same time.

Proof The proof is based on combinatorial merging [22] and the optimum decomposition

procedure AND.OR-DECOMP. The combinatorial merging algorithm constructs a weighted

r-ary tree that minimizes the weight of the root from a given set of integer weighted leaves

when the weight of a node is 1 + the maximum weight of its fanins. In fact, if C is the

set of leaves and w(c) is the weight of a leaf c € C, then the minimum weight that can be

assigned to the root of any r-ary tree is

riogr £ r«<«>l
cec

A greedy, recursive procedure of combining the leaves with lowest weight provides the

optimum r-ary tree. According to the AND.OR-DECOMP routine, the function / is re-

expressed as a nand-nand function, and then optimum decomposition of each cube followed

by the decomposition of the root nand function yields the best decomposition.

Consider a function / with n inputs and described as m cubes, {ci,...,cm} of

sizes ni,...,nm respectively. Let N = £n,. The arrival time at the output of cube c,

(measured in terms of the number of levels of 2-input gates) is simply [log(rc,)] since the

arrival times of the inputs are the same (w.l.o.g. assumed to be 0). The arrival time at the

output of / can be computed using the combinatorial merging algorithm to be

m

^(/)=nog2(^2n^)i)i

Simple manipulation yields

log(Ar)<^(/)<l + log(JV)

It is clear that the minimum value of N, the number of literals in the SOP representation

of /, also results in the minimum depth decomposition of the nand-nand representation

of/. •
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The result of Theorem 3.1.1 is not widely applicable due to the following assump

tions made in the proof,

1. the arrival times are equal for all inputs, and,

2. the function is implemented as a two-level nand-nand structure.

When the arrival times differ, the simplification problem for minimum delay (still

assuming a two-level tree implementation) is not the same as minimizing the number of

literals. The following function has 10 cubes containing 44 literals.

o = acde + abcdg + abdeg + abcdg + abcdg + abdfg + abcdf + acdg + bed + bef

By choosing input c to be late arriving, there are 8 cubes that are affected. If the arrival

time of c, a(c), is chosen to be 10 and all other inputs arrive at 0 then a(o) = 15 under the

assumption that a 2-input gate contributes 1 unit of delay . Another prime and irredundant

representation for the same function is shown below. It contains 45 literals and differs from

the previous one only in the first cube.

o = abdeg + abcdg + abdeg + abcdg + abcdg -f abdfg + abcdf -f acdg + bed + bef

In this representation only 7 cubes are affected by c. As a result a(o) = 14. Thus the

representation with fewer literals may not yield a 2-input nand-nand decomposition with

smaller delay.

Even though simplification for minimum delay is difficult, it is assumed that a small

area solution will also provide a small delay implementation. This is the guiding principle

used to simplify each node in the Boolean network. To achieve a small representation the

minimizer is provided with the largest possible don't care set that results from the structure

of the logic surrounding the node to be minimized. An appropriate choice of the don't care

"set can also result in a reduction in the circuit delay.

Using the Satisfiability Don't Care conditions may increase the levels in the

circuit. This occurs when the simplification process causes a Boolean resubstitution. If the

don't care set is appropriately "filtered" the simplification guarantees no increase in the

number of levels. This is done by excluding from the computation of the don't care set the

gates at the same level of the node being simplified. This will guarantee that the level of

the node does not increase. This technique was proposed in [68].
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Using the Observability Don't Care conditions can represent the function at

a node in terms of signals with smaller arrival times, thereby reducing the circuit delay.

Due to the presence of reconvergence, a function may be replaced by an alternate function

that is "permissible". The choice of the permissible function is based on the one that

will result in a reduction of delay. Earlier work of [9] lays the groundwork for the use

of permissible functions to reduce delay. Recent work [57] makes these ideas practical on

large circuits. For the specified region it is easy to generate all the supports that can

be used to represent the function. A support containing few signals and early arriving

signals is chosen to implement the function. The complexity of the function that results

from the choice of a particular support is not easily determined. However, the heuristic

works well in practice. As contrasted with other techniques, this transformation changes

the local function computed by the selected region even though the overall circuit function

is unchanged. In this work we use local transformations that do not modify the global

function at a node and so are unable exploit the ODC to simplify the logic of the selected

region.

Simplification is used to get a small representation for the function of the region

selected for transformations. Since, decomposition based transformations principally work

on a SOP representation of the function, and a small representation is useful in reducing

both the area and delay, the simplification step is important.

3.1.2 Timing-driven decomposition

As was seen in Section 2.3 the choice of sub-expressions to extract affects the circuit

delay. The heuristic used to generate a decomposition that has small delay is to place the

late arriving signals closer to the output. By keeping the early arriving signals further from

the output, the computation of part of the function can proceed before the late arriving

signal is available. The procedure for doing so is described in [61]. The decomposition

routine evaluates the divisors of the function according to the arrival time of its inputs and

the area saving that would result from extracting that divisor. The divisor with the earliest

arriving signals is extracted. The divisor is recursively decomposed following which the

original function is decomposed. The bottom-up decomposition procedure is illustrated in

Figure 3.2. Thick lines represent critical signals and dashed lines represent signals whose

arrival time is not known. If at any stage of the recursion the function has no divisors, it is
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Figure 3.2: Timing-driven decomposition

decomposed using the procedure AND.OR.DECOMP described in Figure 3.2.

For timing driven decomposition (TDD), the choice of divisors that are evaluated

affects the quality of the decomposition. In this work only algebraic divisors are used since

they are easy to enumerate. Algebraic divisors such as kernels [50] or two-cube divisors [71]
are possible candidates for extraction. The generation ofdivisors (kernels or2-cube divisors)
is based on the sum-of-products representation of the function. As the starting point, a

minimum area representation is used. Based on whether kernels or 2-cube divisors are used,

the local transformation based on timing driven decomposition is called TDD-kernel or

TDD-2cube.

The use of 2-cube divisors overcomes the limitation that some functions have

an exponential number of kernels. The number of 2-cube divisors, on the other hand, is

quadratic in the number of cubes of the function. In our system both techniques may run

into limitations — run-time limitation for kernels due to the possibility of combinatorial

explosion and memory limitation for 2-cube kernel extraction due to the poorchoice ofdata

structures in the current implementation. A timeout feature prevents a single evaluation of
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be d e

TDC

Figure 3.3: Timing-driven cofactoring

a local transformation from stalling the entire optimization.
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3.1.3 Timing-driven cofactoring

A transformation frequently used by designers is to use the latest arriving signal

as the control of a multiplexor as shown in Figure 3.3. In implementing this transformation

there is a considerable overhead in area since the structure of the circuit is duplicated.

However, it may be possible to share the logic between the two cofactored structures. Work

on the use of the cofactoring transformation includes that of [6] and recent generalizations of

the cofactoring transformations proposed in [23]. The generalized timing driven cofactoring,

TDC, proposed in [23] clusters inputs with similar arrival times and uses them as the

control of multiplexor logic. It overcomes the restriction that only one signal can be used

as the select input of the multiplexor.
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3.1.4 Generalized bypass transformation

Another local transformation is the generalized bypass transformation (GBX)

described in [45]. The basic idea is to alter the circuit structure as shown in Figure 3.4 so

that transitions do not propagate along the long paths in the circuit. To achieve this, the

condition under which the function, /, depends on the critical input, a, is determined. This

is the Boolean difference of / with respect to a.

3£ = fa ® fa

Under this condition the output follows the input (possibly with an inversion). Hence by

using the Boolean difference as the control input of a multiplexor, the function can be

either the critical input (when the Boolean difference is a 1) or the precomputed function

(precomputed for the critical signal value to be a 1 or 0 since the function is independent

of the critical signal value). In order to set the critical input to a constant along the "0"

path of the multiplexor, some gates may need to be duplicated if there are fanouts along

the path.

3.1.5 Using the complement of the function

The techniques for extracting common-subexpressions are based on a sum-of-

products representation of the function. Since it is not known a priori if the function

or its complement has a decomposition with smaller delay, it may be beneficial to try the

extraction techniques on the complement. As an example consider the function F and its

complement F shown below. The subscript on an input variable indicates a non-zero arrival

time for the input e.g. 03 indicates that input a arrives at time 3.

F = azbzc'd'e + a3f[c'd'e + b3d'egi + d'ef[g^

F = (a3g[+cgl + b3f1+d+e,y-)

For F, the representation of the complement can be implemented in smaller delay (arrival

time at output is 6) than the original function (arrival time is 8). The use of the complement

can be exploited for any technique that depends on the subcircuit function like timing-driven

decomposition. Techniques like GBX and TDCthat depend on the circuit structure do not

make use of this flexibility.
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yopfrc^

Figure 3.4: Generalized bypass transformation

3.2 Using local transformations to reduce delay

The previous sections describe some of the common technology-independent trans

formations that can be used to improve the delay locally. These transformations are local

in their scope since they operate on a part of the network. However the "degree" of locality

depends on the size of the region being transformed. For these techniques there is usually

an increase in the area of the transformed region. The natural question to ask is "How

can local transformations be applied to ensure a reduction in the delay of a

circuit at a minimal area increase ?". Before attempting to answer this, it is useful to

note the fundamental difference between area and delay in terms of the type of objective

function being optimized. Area provides an additive objective function. By that we mean

that if two circuits are combined then the area of the resultant circuit is the sum of the
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individual areas. This property allows us to optimize part of a circuit and be sure that the

area savings will be reflected as savings for the entire circuit. Delay, on the other hand,

yields a non-linear objective function. For example, on combining two circuits in parallel,

the delay is the maximum of the two. The implication is that we cannotfocus on only some

part of the circuit and improve the delay in that region. The improvement achieved there

may or may not be reflected as a reduction in circuit delay.

Applying local transformations to reduce delay is a widely used technique among

circuit designers. The earliest applications of local transformations was in rule-based sys

tems like SOCRATES [5]. This approach had the advantage that the rules could be cus

tomized for a certain design style and technology. However finding the sequence of rules

to apply was difficult and, in addition, the rules had to be modified for any change to the
technology. An alternative to the rule-based approach was proposed in the Yorktown Sili

con Compiler [12]. The notion of a critical-network was introduced. The critical-network

represents the most critical portions of the logic. The observation was made that if delay
reducing transformations are applied to a set of nodes that cut all input-output paths in
this critical network, the circuit delay is guaranteed to be reduced. Following up on these
ideas, researchers proposed heuristics to find separator sets at which specific delay reduc
ing transformations were applied [61, 45]. The nodes in the critical network are assigned
weights that represent the amount ofimprovement possible and a minimum-weight cutset
procedure is used to determine the separator-set. However, since the improvement through
a separator-set is related to the minimum weight on it and not on the cumulative weight,
using a minimum-weight cutset procedure is not a meaningful way of identifying a good
choice of nodes to transform. Furthermore, each method was limited to using a specific
transformation.

Performance optimization procedures that are based on the concept ofimproving
the delay at a set of nodes follow the outline of the the algorithm in Figure 3.5. This
is a generic algorithm that can be customized to yield specific algorithms by changing
steps 1 and 2 of the optimization loop, or by using different optimizations in step 3. In
particular the algorithms of [12, 61, 17, 45] can be described using this generic procedure
GENERIC.PERF_OPT.

The following sections are devoted to discussing in detail how a powerful op
timization system can be built by careful customization of GENERIC.PERF.OPT. The

optimization procedure will be flexible to allow the use of different local transformation in



3.2. USING LOCAL TRANSFORMATIONS TO REDUCE DELAY

GENERIC-PERF.OPTC))) {

repeat {

1. Determine critical region

2. Select separator-set of critical region

3. Apply selected local transformations

}

} until (constraints violated AND delay decreases)

45

Figure 3.5: Generic optimization procedure

a unified manner. The local transformations will be used to derive a lower bound on the

improvement possible during one iteration. The possible improvement determines the re

gion of the circuit that should be improved. More importantly, the predicted improvement

can be achieved at a small cost in circuit area by a selection procedure that uses similar ar

guments as the lower bounding technique. Bychoosing different lower-bounding techniques

and corresponding selection strategiespowerful heuristics can be built to reduce the circuit

delay with a small increase in circuit-area.

3.2.1 Computing a lower bound on delay improvement

Associated with a network rj are a set of primary outputs {Oi,...,0fc}- The

primary outputs are ordered in increasing values of their slacks, i.e. ${0\) < ... < s(Ok)-

The circuit fails to meet specification if s(0\) < 0. 0\ is called the most critical output

and its slack (which is negative) determines the amount by which the circuit needs to be

sped up. It is clear that the critical paths to 0\ should be sped up. What about the

other outputs? Imagine that the second output 02 has almost the same slack as the most

critical. If we were to concentrate on the most critical and improve it substantially, the

circuit performance would be determined by Oi- Since it had a slack almost similar to 0\
the circuit performance would be virtually unchanged. This section examines procedures

that determine the outputs that have to be sped to ensure a reduction in circuit delay.

Assume that there are p delay reducing transformations T1,..., Tp available to

the designer. At each node n in the network, the application of Tl results in a delay saving

D^^T1) and an area penalty A(n,Tl). Toevaluate the effects ofa transformation applied at
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a node, a region of the circuit rooted at the node is transformed. The selection of this region

may be specific to each transformation or may be determined by some simple method (all

nodes in the transitive-fanin of the node up to a specified distance). Section 3.2.2 examines

the issues involved in determining the region that is transformed. A transformation T*(n)

is determined to be the best transformation at node n. To determine T*(n) the designer

chooses the criterion to evaluate the transformations. It may be the transformation that

provides maximum decrease in delay or one that provides the most saving per unit increase

in area. The choice made is a greedy one, i.e. the transformation that best meets the chosen

criterion is the representative one at the node.

For the benefit criterion (one that provides maximum improvement in delay), the

best transformation T*(n) at node n has

D(n,T*(n))>D(nyT) Vi € {l,...,j>}

A(n,T[n)) < A(n, T) Vt such that D(n,T*(n)) = D(n, T{)

The maximum reduction in delay possible at a node n is thus D(n,T*(n)) and is denoted

by D(n).

Another alternative is to select the transformation that has the best benefit/cost

measure. This too represents a greedy choice of the transformation that provides the max

imum improvement in delay per unit increase in area. For this criterion the best transfor

mation T*(n) is

D(n,Tm(n))>0
D(n,T'(n)) > D(n,T') y • . M |
A{n,T*(n)) - A{n,T>) Vtfc t1'•••>£/

Whatever criterion is used to determine the best transformation at a node, the

assumption is that this represents the only possibility at the node. By keeping the best

transformation at the node as the representative one, the combinatorial explosion that

occurs when considering all possibilities is avoided. By knowing the amount of saving that

can be achieved at each node, it is possible to compute the guaranteed saving at the outputs.

The computation is based on the assumption that the transformations selected for different

nodes do not influence the savings that can be achieved at each of those nodes. For delay

models that ignore fanout, such as the number of levels in a bounded-fanin circuit, this

assumption is always valid. For delay-models where fanout is of importance, methods to

overcome this assumption will be described in the next chapter.
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Proposition 3.2.1 The arrival timefor node i can be reduced at least by 6(i), determined

by the recursive formula

s(i) = {
0 if i is a primary input

max[D(i), min {s(j, i) + 6(j)} - min s(j,i)] otherwise
j€FI{i) j€FI{i)

(3.1)

where D(i) is the delay saving at node i and s(j, i) is the slack along the edge from node j

to i.

Proof The proofis by induction on the level ofnodes in the circuit in depth-first-traversal

order from the output.

Base case: For a node i at level 0 there is no possible improvement in its delay since it is a

primary input. Hence S(i) = 0.

Induction Step: We will show that if nodes with level n-1 or less have delay improvements

of6(), then the possible improvement at any node at level n is given by the above equation.
Consider node i at level n with arrival time at its output equal to a(i) and required

time r(i). Let .;' and k be the only two inputs of i (for nodes with more than two inputs
a similar argument is applicable). Then a(i) = max[a(j) + d(j,i),a(k) + d(k,i)]. Since
j and k have level n - 1 or less, the maximum improvement in their delay is 6{j) and
6(k) respectively (induction hypothesis). For i, the new value ofthe arrival time is a'{i) =
max[a(j)-6(j)+d(j,i),a{k)-6(k)+d(k,i)]. The saving in delay at node i is thus a(i)-a'(i).
This is equal to

max[o(j) + d(j, 0» «(*) + d(*» 0]" max[o(j) - 6{j) + d(j, i),a(k) - 6(k) + d{k, i)]

Since r(t) - d(j,i) - a(j) = s{j,i) (similar condition for input &), the improvement can be

re-expressed as

max[r(i) - s(j, i),r(t) - *(*, t)] - max[r(t) - s(j, t) - 6{j), r(t) - a(fc, t) - 6(k)]

which reduces to

min[a(j, i) + 8{j),s(k,i) + 6(k)] - min[s(j,t), s(k,i)]

This gives us the saving at i ifno transformation at node i is selected. In case it is selected,
the saving at the output of i is at least D(i) (not accounting for additional savings at nodes
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Figure 3.6: Determining the maximum delay improvement

in the transitive fanin). Since the reduction 6(i) is either due to the transformation or due

to improvements at the inputs, the choice is made depending on which provides the greater

saving. This results in computing 6(i) that is the same as in Equation 3.1. •

Once the delay saving at the outputs is known, we can find out the slack $* that

can be achieved.

s* = . min (s(Oi) + 6(Oi)) (3.2)
i=l,...,k

This is illustrated in Figure 3.6. To achieve this slack the arrival time at output 0, should

be reduced by an amount A(0t) = s* - s(0{). Note that the arrival time can be reduced

by this amount since A(0,) < 6(0{). To reiterate, A represents the ampont of saving that

is desired at a node and 6 represents the saving that can be achieved at a node.

A drawback of the above computation is that every node in the network needs to be

visited to evaluate the savings in delay. For large circuits this can be very time-consuming.

To overcome similar limitations, the concept of an c-critical-network was introduced in [12].

The e-critical-network consists of all the nodes and edges in the Boolean network that have

a slack within c of the minimum slack (e is a user-specified constant) The nodes in the
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Figure 3.7: Using a fixed threshold to determine critical signals

c-critical-network may be regarded as the part of the circuit that needs to be improved

to reduce the circuit delay. The local transformations can be evaluated for all the nodes

in the c-critical-network to determine the value of 5*. Unfortunately, as illustrated by the

example in Figure 3.7, a fixed value of€, smaller than -s(0i), may yield a target value s*
that may not be achievable. The nodes in the network are shown along with their slack,
the improvement due to local transformation, and the saving that can be achieved up to

that node.

The c-critical-network is shown in bold for e = 1. Since the most critical output,

0l5 has a slack equal to -5, all nodes with a slack less than or equal to -4 are part of
the e-critical-network. Traversing the edges in the c-critical-network, b{0\) is computed

to be 3 (which exceeds the value of c). The value of the achievable slack, s*, is therefore
5* = -5 + 3 = -2 (from Equation 3.2). When the selected transformation is applied at

node X, the new slack at 0i is only -3 (determined by Y). The reason for this is that node
y was not c-critical and so not evaluated for local transformations. The above situation

arises only when the saving, 6(0,), for some output Oi exceeds the value of e chosen to

determine the c-critical-network. Rather than use a fixed value for c, we can determine its

value based on the delay information in the network. This overcomes the limitation ofusing

a fixed value. For the example at hand, the value ofccan be modified to be £(0i) generated

during the first pass. Now node Y is also included in the c-critical-network. A second pass
ofcomputing the 6-values gives new values for the savings b' at each output. The computed
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DETERMINE_MAX_IMPROVEMENT(77) {

e = user-defined small constant

pass = 1

s* = s(01)-€

do {

for each primary output 0,- of r\ with s(Oi) < $* {

compute #(0,-) using Equation 3.1

s* = min[s*,s(Oi)-6(Oi)]

}

} while ((pass++ < 2) OR is" - s{Oi) > e))

}

Figure 3.8: Procedure to determine the maximum achievable slack

saving may decrease. The larger value of c results in consideration of paths leading to

the output 0i along which less improvement is possible. In the circuit of Figure 3.7, the

value ofS'(Oi) reduces to 2 (being limited by the improvement possible at node Y) and the
maximum achievable slack, s*, is now -3. Thisexample illustrates how a two-pass algorithm

that uses an initial guess of e can be used to determine the value of s*. The procedure for

computing the maximum achievable slack is called DETERMINE.MAXJMPROVEMENT

and is described in Figure 3.8. The advantage of this procedure to compute s* is that only

the nodes along the most critical paths need to be evaluated.

Proposition 3.2.2 Procedure DETERMINE.MAXJMPROVEMENT generates the same

value ofV as that achieved by application of Equation 3.1 and Equation 3.2 over the entire
circuit.

Proof The proof proceeds by analyzing the two passes of the algorithm along with the

observation that nodes that are not considered are not relevant to the optimization. At the

end ofthe first pass let the value of the achievable slack be s\. This results in considering all

the nodes, j in the second pass that have a slack s(j) < sj. Computation of the new values

for tf's at the outputs can only yield a smaller value (since more fanins of a node will be

considered during the computation of the 6 for a node, and the contribution of the inputs
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proceeds through a min function, this contribution can only decrease). As a result the final

s* < aj. Any node i not considered in the second pass has a slack s(i) > s* > s*. For these

nodes no improvement is required since they will not be the most critical nodes even after

the transformations are carried out. Thus by not considering the nodes with s(i) > s*, the

same value of s* will be computed as would be if they were considered. •

The value of s* provides a target that can be achieved by applying selected trans

formations. This value is also used to label nodes as being relevant or non-relevant. A

node n is said to be relevant if s(n) < s*. An edge from i to j is relevant if s(i, j) < s*.

A relevant network consists of all the relevant nodes and edges. It should be noted that

the relevant network is defined with respect to some slack threshold, s*. Computation of

s* assumes that the delay improvement due to local transformations is known. All the

transformations described in Section 3.1 restructure a selected region in a manner so as

to reduce its arrival time. The next section addresses the question, "How to select the

region to be transformed ?".

3.2.2 Selecting a region to transform

The motivation for applying local transformations along the critical paths is to

reduce the length of the the critical paths. For transformations to result in local improve

ment they must be applied to an appropriate region. In the case of rule-based systems [5]

this region is clearly defined as the one on which the rule is applicable. For systems that

develop transformations on the fly there is a great deal of freedom in selecting the regions.

We will call the region on which a transformation is applied the scope of the transforma

tion. In [61], the scope was the set of nodes lying in the transitive fanin, and along the

critical paths, within a distance d of the node under consideration. This characterization

of the scope is called the d-critical-fanin-section of the node or simply the critical strat

egy. The parameter d provides control of the tradeoff between the run-time and quality. A

larger region has more options to consider leading to possibly better decompositions at the
expense of longer time required to evaluate the choices. The critical strategy is based on

the idea that a portion along the critical path could perhaps be reduced to a smaller length,

thereby providing some reduction in delay.

The example of Figure 3.9 illustrates the shortcoming of focusing only on the

critical path. The example circuit computes the conjunction of four inputs that arrive at
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scope /

indicates the most critical paths

Figure 3.9: Example of the scope of a transformation

times 1, 2, 3 and 4. Each 2-input AND gate is assumed to have a delay of one. The arrival

time at the output is therefore 6. The critical path consists of nodes B and C. Under the

critical strategy to determine the scope we collapse these nodes. This results in a 3-input

function that has inputs arriving at times 1, 4 and 4. No matter how this is decomposed

into 2-input gates the output has an arrival time of 6. However, by also considering node

A as part of the scope the output arrival time can be reduced to 5. This is achieved by the

decomposition shown on the right.

One way to choose the scope of a transformation is to perform an exhaustive

search among the possible regions. This is clearly impractical. The notion of depth appeals

to intuition as a natural way of restricting the size of the region while simultaneously

providing the transformation a reasonable portion of the critical path to reduce. One might

choose to transform the entire transitive fanin region up to a specified distance d. This

however results in large functions. Furthermore, when the non-critical region consists of

good Boolean factors that are unlikely to influence the delay, this strategy may lead to poor

decompositions when only algebraic techniques are used.
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The following strategy, compromise, is suggested as an intermediate strategy that

generates a scope whose size may be greater than the d-critical-fanin-section and may be

as large as the transitive scope. It is based on the distribution of arrival times and in

extreme cases may be reduced to either the critical or the transitive strategy. The idea is to

include non-critical nodes that may lead to a better decomposition while neglecting nodes

that appear to have been combined well. Record the minimum arrival time a for any input

to the critical path up to a depth d from the root node n. Then include any non-critical

nodes that are in the transitive fanin of n and within a distance d of n and have inputs that

arrive at or later than a. Nodes in the transitive region that have arrival time smaller than

a are already combined with early arriving inputs. This is in accordance with the guiding

heuristic for performance optimization (keep late arriving signals closer to the output) and

so there is no benefit from including these in the region to be transformed (we may in fact

lose if we are unable to recover the good Boolean factors).

If an algorithm exists for the optimum decomposition of a function then, by using

the transitive strategy with unlimited depth, a minimum delay implementation can be ob

tained. As an example of an optimum decomposition technique, [75] provides an algorithm

to decompose an AND function with arbitrary arrival times at its inputs into the optimum

treeof2-input gates. Thus to optimize anarbitrarily structured and tree, one needs to sim

ply apply the decomposition technique at theprimary outputs with unlimited scope. Rather

than consider the entire tree, is there a strategy that yields the optimum solution looking

only at an appropriate sub-tree? For the example in Figure 3.9 the compromise strategy

indeed yields the optimum solution. However, the compromise strategy is not adequate in

all cases. Figure 3.10 shows a family of circuits realizing an (2p +1) input and function with
one input arriving at m, j inputs arriving at 1and the remaining f inputs arriving at 0, for
different m > 3 and n = 2m. For this family of circuits, the compromise strategy applied

to the primary output does not yield an optimum scope. The scope generated using the

compromise strategy with unlimited depth consists of the shaded nodes. For this example,
the critical strategy generates the same scope. Redecomposition of this scope leads to an

overall delay of (m + 2). On the other hand, the optimum decomposition has a delay of

(m+1).

Figure 3.9 and Figure 3.10 are circuits .with tree topologies where the optimum

decomposition can be found only if the entire tree is collapsed. This is rather disheartening

since it suggests that local transformations may need to be at the scale of the entire circuit
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Figure 3.10: Example illustrating the limitation of the selection strategy

to guarantee optimum results, even for simple topologies like trees. On the other hand, we

do not wish to make all the improvement in a single pass. We can reduce the delay in small

steps by iteratively applying transformations. In the previous section we computed the

slack s* that can be achieved via appropriate transformation of regions selected according
to some criterion. The question remains "How to choose, from among the many

places where transformations can be applied to yield $*, sections to transform

such that the area increase is minimized ?".

3.2.3 Selecting local transformations

Once the relevant region of the circuit has been identified, appropriate transforma

tions need to be selected which will yield the desired improvement in circuit performance.
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The choice of transformations must be made carefully taking into account factors such as

the area increase and the interaction between the transformations. The area increase must

be kept small. A larger area leads to a larger layout with longer wires that cause an increase

in delay. Even though the interaction between layout and the logic is not considered explic

itly, it is important to look ahead so as not to put the layout tools in a position where they

have to improve a bad design. Another important consideration is the interaction between

the various transformations. In an ideal situation we assume that the transformations do

not affect each other. At the technology-independent stage, the unit-delay model ignores

fanout and so there is no interaction between transformations. However, in mapped circuits

this is not the case and we e will revisit the selection procedure in Section 4.3 to consider

the interaction between the transformations.

The amount of saving, 6, that can be achieved at an output differs for different

outputs. The amount of saving desired at output 0, is given by A(0t)

A(Oi) = (s* - s(Oi)) < 6(0i) (3.3)

It is thus clear that foreachoutput there exists a choice of transformations that will produce

the required saving at that output. There may be many possible alternatives and we are

interested in choosing one with the minimum area increase. The problem of selecting local

transformations to meet a target delay is defined below.

XFORM_SELECT:

Given a Boolean network 77, a constant M, and for each node n G n a delay
saving value D(n) and an area weight A(n). Also given are k primary outputs
Oi,..., Ok, each with a value A(0t). Find a set of nodes S, with ^ A(n) < M,

such that Vi = 1,..., fc, the delay at output 0t is reduced by A(0,).

The set S refers to the vertices where local transformations are applied to yield the

desired savings and is called the selection-set. A selection-set is minimal if no element of
the set can be removed while still being a selection-set. The constant M is the area increase

that results from the selected transformations and the optimization problem is interested

in minimizing the value of M. The decision problem XFORM.SELECT is NP-hard. This

is readily proved by observing that a special case of the problem XFORM.SELECT is the

Basic Circuit Implementation (BCI) problem [35] which is shown to be NP-hard even for

a chain of inverters. It is therefore unlikely that an exact algorithm will be found.
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In an attempt to make the problem tractable, researchers imposed the restriction

that only the €-critical-network should be improved by finding a set of nodes that would

improve all paths in the €-critical-network by at least €. For a directed acyclic graph, a

separator-set is a collection of nodes such that removing these nodes disconnects every

input-output path. A separator-set is a minimal separator-set if no subset is a separator-set.

The selection procedure in [12, 61] was based on finding the minimum-weight separator-

set of the c-critical-network. Nodes in the €-critical-network are given finite weights (that

reflect the ease of reducing the arrival time at the node) and the edges are given infinite

weights. Since a separator set of the €-critical-network corresponds to a finite weight vertex

cut of the 6-critical-nelwork, a minimum-weighI vertex cut can be used as the selection-set.

However, there is no guarantee that the proposed improvements will be attained or that

the area constraint will be met. Nevertheless, the use of a separator-set was an important

contribution for heuristics that followed.

As the next step, to guarantee an improvement of e with the minimum area in

crease, the node weights were based on the area increase and delay reduction at the node [39].

If the saving required at an output is e, then all nodes in the €-critical-network with a delay

improvement greater than € are assigned finite weights equal to the area penalty.

{ oo if s(n) <€and D(n) <e
w(n) = < (3.4)

( A(n) if $(n) < €and D(n) > e

Every finite-weight separator-set corresponds to a choice of nodes (each with improvement

greater than e) that improve all the input-output paths by at least c. By using the minimum-

weight separator-set the area increase is minimized. The drawback of this polynomial-time

approach is that the value of c is user-defined and arbitrary. Furthermore, in the case that

the €-critical-network does not have a finite-weight cut, this procedure is not useful.

Rather than be limited to a fixed e, we introduce the restriction that the desired

savings, A's, be computed in accordance with Equation 3.3. This restriction of the gen

eral problem is called RESTRICT_XFORM_SELECT. By doing this we are assured of

finding a selection-set that achieves the predicted delay improvement. The problem is to

find a selection-set that does so with the minimum area increase. The selection-set may not

correspond to a separator-set of the relevant network (the relevant network is simply the

c-critical-network with e = s(0i) —s*).

There is a relation between the selection-sets and the separator-sets if the circuit
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has a tree structure. As was defined earlier, a node or edge is relevant if its slack is less

than s*. A path from the input / to an output 0 is said to be relevant if all nodes and edges

along it are relevant. This definition distinguishes between the paths that have to be sped

up and those that are not relevant to improving the delay by A. To relate the selection-sets

and separator-sets, we make use of the fact that in a tree the slack is non-decreasing along

any path from the output to an input . This implies that for node y that is a fanin of node

%, s(x) < s(y). The arrival time for node x can be expressed as

a(x) = max[a(y) + d(y, z),a(z)+ d(z,x)]

where z is some other input of node x. Since the circuit structure is a tree, every node

has one fanout. The equation relating the required times is simply r(y) = r(x) - d(y,x).

Combining the two equations we get

s(x) = r(x) - a(x)

= r{y) + d(y, x) - max[a{y) + d{y, z),a{z) + d{z, x)]
= r{y) + d(y, x) + min[-(a(y) + d(y, z)),-(a{z) + d{z, x))]
= mm[(r{y) - a(j/)), (r{y) - a{z) + d(y, z) - d(z, x))]

s(x) < s(y)

The monotonicity of slacks is hinged on the fact that each node has a single output which

allows us to relate the required times by the simple equation r(y) = r(x) - d(y,x). For a

general circuit structure (a directed acyclic graph) the required time relation involves more

gates and the monotonicity of slacks cannot be guaranteed.

Theorem 3.2.1 Given a circuit that has a tree structure and a saving A desired at the

output 0 computed according to equation 3.3, for every minimal selection-set S and every

relevant path p (composed of nodes with slack s(0) + A or less), \pC\S\ = 1.

Proof

We will show that if |j» n *S| > 1, then the selection-set is not minimal. Consider

two nodes n\ and ni along any relevant input-output path such that n\ and ni belong to S
and n\ is closer to the output. Since the circuit has a tree structure, s(n\) < 3(^2). Since

this path is relevant s(n2) < s{0) + A. Also assume that D(ni) > 0 and D(n2) > 0. If this

is not the case, then there is no improvement at these nodes and they can be deleted from

the selection-set.
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There are two possibilities at node nx. The first possibility is that s(ni) + D(ni) >

s(0) + A, in which case the transformation at ni is adequate to decrease the delay along

p and 7*2 can be removed from the selection-set, and S is not minimal. After removing 712,

\pC\S\ = 1. The other case is when the transformation at n\ does not provide adequate

improvement in delay, that is D(ni) < s(0) + A - s(ni). Since the improvement predicted

at the output 0 is A, it must be the case that 6(ni) > s(O) + A - s(ni) (ni is closest to

the output and the computation of 6 proceeds via a min function). Since D{n\) < 6(n\), it

follows that for all inputs k to ni, 6(k) > s(0) + A - s(ni). Hence all relevant paths from

the inputs to ni contain at least one element which provides the adequate improvement.

Since, all paths from the input up to ni must have this property, the transformation at n\

can be removed from the selection-set and output 0 will still be improved by A. In this

case as well S is not minimal and after removing n\ from <S, \pC\ S\ = 1. •

Applying the above theorem it can be shown that a minimal selection-set is a

minimal separator-set of the relevant-subnetwork. Since \p n S\ = 1, removing the nodes

in the selection-set will disconnect every relevant path at exactly one point. Thus the

selection-set is also a separator-set.

When the circuit has multiple outputs each of which terminates a tree, and the

amount of saving desired at each output is different, we conjecture that the problem of

finding the selection-set with the minimum area increase is NP-hard. Intuitively, this is

to be expected since the choice of selection that is best for a particular output may be

incompatible with the best choices for other outputs.

When all outputs terminate trees, if all A(0,) are equal and determined by Equa

tion 3.3, the problem can be solved exactly in polynomial-time using a flow algorithm. This

algorithm is illustrated in the procedure EQUAL-SAVING.PROC of Figure3.11.

Proposition 3.2.3 The procedure EQUALJ5AVING.PR0C finds the set of transforma

tions S which achieves a delay saving A with the minimum area increase when all relevant

outputs terminate trees and have to be improved by A.

Proof Finite weights (equal to the area saving) are assigned to the nodes of the relevant

network that can potentially achieve a saving of A. The nodes that are not relevant have

a weight 0 and do not affect the size of the minimum-weight separator-set. The irrelevant

nodes that are part of the separator-set are removed at the end to generate the selection-set.
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EQUAL_SAVINGJPROC(??, A) {

for each vertex n of n {

' 0 if s(n)>s(Oi) + A
weight(n) = < oo if s(n) < s(Oi) + A and D(n) + s(n) < s(0i) + A

A(n) if s(n) < s{Oi) + A and D(n) + s(n) > s(Oi) + A

}
S' = min-weight separator-set(77)

S = S' - {x\s(x) > s(Oi) + A}

Figure 3.11: Selecting transformations for the special case

Since each output terminates a tree, according to Theorem 3.2.1 every relevant

path must have on it at least one node with finite weight. If this is not the case, then a

delay saving of A cannot be achieved at the corresponding output (the propagation of S

proceeds along a min function). Hence, a finite-weight separator-set exists for the multi-

output network. All the nodes of a minimum-weight separator-set have the property that

D(n) + s(n) > s(0i) + A, which results in the desired saving of A at all outputs. Since,

any finite-weight separator-set is adequate in reducing delay by A, and the weight of the

separator-set is simply the area increase, a minimum-weight separator-set provides the

desired saving with minimum area increase. •

Since the general problem is conjectured to be NP-hard and the special case is

polynomial we look for ways to transform the general case into the special case. To apply

the procedure EQUAL.SAVING.PROC to solve SELECT.XFORM, it is necessary to de

termine the value of A that should be used. Obvious ways of selecting A are presented as

HEURISTICS 1, 2 and 3 and cases in which these are sub-optimum will be presented.

HEURISTIC-1: Consider the minimum improvement possible.

For the relevant outputs, set the smallest delay improvement as the target improve

ment. Then use the algorithm of Figure3.ll to decide where to apply local transformations.

The shortcoming of this approach is that the delay improvement is not guaranteed to be

the maximum possible at this stage. This is clarified by Figure 3.6. The most critical out

put is 0i and the minimum improvement is predicted for output 0r. If we use a value of
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A = 6(0r) for the flow algorithm described earlier, a delay reduction ofA is guaranteed at
each output. The smallest slack would then be s(0i) - A which is less than the maximum

value ofthe minimum achievable slack (5*). Due to the small amount ofsaving guaranteed
at each step, several iterations may be required to meet the achievable target s*. As an
example, consider the circuit shown in Figure 3.12(a) where 0\ has a slack of -2 and 02
has a slack of -1. The delay improvement and area penalty of each node is indicated on

the figure. Selecting the smallest possible delta will result in the selection-set {Y, U}. Now
output 02 meets the timing constraint but 0\ does not. So another pass is required. Since
the area penalty at V is less than that at W and both will result in meeting the timing

constraint, node V is chosen. Thus the area cost is that of nodes Y, U and V namely 30.

However, a choice of optimizing node Y and W on the first iteration, reduces the circuit

delay by 2 at an area penalty of only 21. There may be some advantage of the heuristic

as well. The small choice of step-size results in examining only the most critical paths of

the circuit and thus reduces the time spent in evaluating the transformations. In addition,

since the step size is small, a smooth tradeoff may be possible.

HEURISTIC-2: Select the delta based on output slacks.

As in the case of HEURISTIC-1, the focus here is on improving the most critical

path of the circuit. The most critical output has a slack s(0i). Determine the output

Oi such that s(0.) > s(0i) and s{Oi) - s(0i) is minimum (s(0,) is the next smallest

slack value). Set the improvement to be A = min[s(0i) - s(0,),6(0i)]. The idea here
is to improve the most critical outputs by just enough till some other output becomes

more critical. In this case too, we may use a large number of iterations, each of which

decreases the delay by a small amount. The cumulative cost of these may be larger than

a single application of a more powerful transformation that reduces the delay substantially

at a reasonable cost in area. The circuit in Figure 3.12(b) demonstrates a case when this

heuristic performs badly. At each step the delay of the critical path is reduced by 2 which

makes the other morecritical. Twoiterations, the first using {U,V] and the second {W, X},

result in meeting the timing constraints at a cost of40. The same could have been achieved

by an application of transformations at Y and Z with an area penalty of 22.

HEURISTIC-3: Consider the outputs one-at-a-time.

Since outputs need to be improved by different amounts the procedure tries to

first satisfy the requirement that each output be improved by the desired amount, and as a

secondary objective, will try to keep the area increase small. This is accomplished by using
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(a)

(b)

(c)

Figure 3.12: Counter-examples to heuristic procedures.
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the algorithm of Figure 3.11 on a single critical output, starting from the most critical. For

each output only the transitive-fanin needs to be considered as the relevant network. This

procedure is guaranteed to produce the maximum value for the minimum slack. However

the area penalty may be excessive in this procedure since the choice of the separator-set for

a single output may be disjoint from those for the other outputs. The example circuit in

Figure 3.12(c) describes a situation for which the area penalty is excessive. The heuristic

chooses nodes X for output 0\ and node Y for output 02 for a cost of 24. However the

choice of U, V and W yields the same delay decrease for an area increase of 21.

From the polynomial-time heuristics described above, for the case when the cir

cuit has a tree topology, it is clear that finding a satisfactory solution to the problem

RESTRICTJCFORM.SELECT (the problem XFORM.SELECT under the assumption that

the selection procedure considers at most one transformation along a path and that the sav

ings desired at the outputs are compatible with Equations 3.3 and 3.2) will require an algo

rithm that considers different savings at each output and works on the entire network. To

develop an exact algorithm we borrow ideas from HEURISTIC-3 where we consider the best

selection for a particular output. The natural extension is to consider all selection possibili

ties for each output and then choose a set of vertices that "covers" at least one selection-set

for each output. This procedure is outlined in the algorithm EXACT_SELECT_TREE

shown in Figure 3.13.

The procedure EXACT_SELECT_TREE generates all the selection-sets for each

relevant output. This is accomplished by generating all the finite weight separator-sets

of an appropriate flow network. Then a selection function is constructed. A satisfying

assignment of this function is an assignment of l's and O's to the inputs of this function

that result in the function evaluating to be 1. The selection function is defined over a set of

variables xj,.. . ,xp, where variable x, is associated with node i in the relevant network. A

variable X{ equal to 1 in a satisfying assignment implies that the node i has been selected

as a candidate for application of a local transformation.

A separator-set that results in the desired saving A(0,) at output 0t- can be

represented as a conjunction of the variables corresponding to the nodes in the separator-

set. A valid choice of S must select at least one of the separator-sets for each output. So,

first form the functions F(i) as the disjunction of all the separator-sets that result in the

desired saving at output 0,-. A satisfying assignment of F(i) will ensure that the desired

saving is achieved at 0,-. Since S must achieve the desired saving at all the outputs, all the
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EXACT_SELECT_TREE(77, s*) {

J*=l

for each output 0, of n with «(0t) < s* {

flow(i) = flow-network for the output Oi

d = GENERATEJFEASIBLE.CUTS(flow(i))

F(i) = 0

for each separator-set c* € Ci {

F(i) = F(i) + g(i,k)

}

T = FAF(i)

}
P - min-weight-satisfying-assignmentCF)

S = {x | (x = 1) € P}

}

Figure 3.13: Exact procedure for selecting transformations
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F's need to be satisfied. This can be done finding a satisfying assignment to the selection

function J-.

t= n wo
3(Ot)<S*

A satisfying assignment of T is a valid selection-set. However, in order to find the selection-

set with the smallest area, a minimum weight satisfying assignment of T is required. It

is clear from the construction of T that it is a unate function. For the selection function

T, satisfying assignments correspond to paths from the root to the "1" vertex in the BDD

representation [7]. At a vertex labeled with variable Xi in the BDD, the "1" edge is given

a weight equal to the cost of applying the transformation at node i in the network and the

u0" edge is given a weight of 0. As was shown in [38], the minimum cost solution to the

covering problem defined by T is given by the shortest path from the root to the "1" vertex.

When traversing the shortest path starting from the "1" vertex, we record the variables ar,'s

that are reached along a "1" edge in the BDD. These variables correspond to the nodes

that are selected for transformation.
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GENERATEJ,EASIBLE_CUTS(//ou;(0t)) {

while (TRUE) {

C = mzxflov (flow(Oi))

if (C has finite weight)

suppress any node in C /* Set weight = 00*/

else {

unsuppress all nodes /* restore original weights */

suppress nodes that cover all separator-sets found

C = maxflow(//ow(0,))

if (C has finite weight)

suppress any node in C /* Set weight = 00 */

else

return ; /* no more separator-sets */

}

}

}

Figure 3.14: Procedure to generate all finite-weight cuts of a flow network

An important step in the procedure EXACT_SELECT-TREE is to find all the

relevant separator-sets in the graph. The nodes on the separator-sets of interest must have

a delay value D(n) > 0, as well as s(n) < s* and s(n) + D(n) > A(0t). Enumeration

techniques that generate all the cutsets of a graph [69, 2] are not suitable to generate the

limited number of acceptable separator-sets. In addition, the procedure should be able to

generate the valid separator-sets with small area as early as possible. Such a procedure

has the advantage that the generation of separator-sets can be stopped early to reduce
computation time.

The procedure GENERATE_FEASIBLE_CUTS generates the separator-sets of in

terest and is described in Figure 3.14. It takes as input a flow-network, flow(Oi), corre
sponding to the relevant network for output 0,- where a saving of A(0t) is desired. The

flow-network is constructed as follows. For node n in the transitive-fanin of 0, at which

s(n) < s* two vertices n* and n' are introduced in the flow network with a directed edge
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from n? to nl. Theedge isgiven a weight equal to A(n) ifs(n)+D(n) > A(0,) otherwise the

edge weight is set to oo. For all edges with s(i, j) < s* an edge with weight oo is introduced

from vertex il to jf. All the vertices that have no outgoing edge areconnected to the "sink"

vertex t and all vertices without any incoming edge are connected to the "source" vertex s

by edges of infinite weight. This construction guarantees that all the valid separator-sets of

the relevant network rooted at 0t- are present as finite weight edge cuts in the flow network

flow(Oi). The finite weight cuts are generated by repeated application of a maxflow-mincut

algorithm on the flow-network.

In order to generate a new separator-set on each application of the maxflowO

procedurte, some nodes must be disallowed from being part of a. cut. This is accomplished

by temporarily setting the node weight to oo. This is called "suppressing a node". Having

generated a separator-set one can use a backtracking mechanism to choose the node to be

suppressed next. This strategy is inefficient since it does not preclude the generation of the

same separator-set a large number of times. One way to avoid the repeated generation of a

separator-set is to find a minimum set of nodes that when suppressed will avoid the genera

tion of any of the separator-sets generated thus far. The nodes to be suppressed are found by

solving a covering problem. The separator-sets correspond to the rows of the covering ma

trix and the nodes are the columns. The matrix has an entry (u, v) if node v is a member of

the separator-set u. By suppressing the nodes in a minimum column cover of the matrix, we

ensure that the separator-sets generated thus far have an infinite weight. Thus every valid

separator-set is generated only once. The other feature of GENERATE_FEASIBLE_CUTS

is that the minimum-weight separator-set is the first one generated.

The procedure EXACT-SELECT.TREE, uses a number of sub-problems that are

known to be computationally expensive. However, these techniques can be used in a rea

sonable amount of time on a large variety of examples. The reason for this is the small

number of separator-sets that exist for each output. When the number of separator-sets

is large we can put a limit on the number of separator-sets generated. This allows us to

trade-off the computation time and the quality of the selection procedure.

It should be noted that the procedure EXACT_SELECT_TREE is based on a

sufficient condition for improving circuit delay. The sufficient condition states that in order

to improve the delay, it is sufficient to apply transformations that reduce the delay at

a separator-set by the desired amount. This condition is clearly not necessary as there

may be many transformations along a path that, when applied together, may yield the
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desired saving. One can, in principle, apply these transformations one at a time. If we

revisit the circuit in Figure 3.12(a) but this time set the value of area penalty at nodes

U and V to be 2 each, then the iterative procedure of HEURISTIC-1 (which would be

akin to choosing both U and V together), does indeed provide the required saving at

a smaller area penalty. However, the simultaneous choice of transformations requires a

careful consideration of the interactions between the transformations that is computationally

infeasible (the combinations of the transformations is exponential).

3.2.4 Generalization to DAG's

The previous section described heuristic and exact procedures for selecting a set

of local transformations that achieve a reduction in delay guaranteed by the lower-bound

technique with a small increase in area for the case when the relevant network for each output

is a tree. This is a very restrictive assumption since most circuits that have been optimized

for area have reconvergent paths. When the circuit has a directed acyclic graph (DAG)

topology, the separator-sets in the circuit do not result in the saving computed according

to the lower-bounding technique of Section 3.2.1. The circuit in Figure 3.15 illustrates this.

The lower-bound computation results in a saving of 3 at the output. However, it can easily

be seen that this can be achieved only by applying transformations at {T, X} which does

not form a separator-set of the graph.

The use of separator-set can be justified, even for DAG topologies, by using a

weaker lower-bounding technique. If the difference in slack between the inputs of a gate is

ignored while computing the saving, i.e.

S'(i) = I
0 if i is a primary input

(3.5)
max[D(i), min 6'(j)] otherwise

' j€F/(«)

then a weaker lower-bound on the improvement can be computed. Since the slacks difference

between the inputs of a gate is ignored and the lower bound is propagated via a min

procedure, it is guaranteed that if the improvement at output 0, is S'(Oi) then for each

path p from the inputs to output 0/ there is a node np along the path with local improvement

D(np) > 6'(Oi). Removing all the np nodes disconnects the output from the inputs. Thus

6'(), the weaker lower bound on the delay improvement, is met by a selection-set that is a

separator-set of the relevant network. For the circuit in Figure 3.15, the weak lower bound

predicts S'(Y) = 2. By ignoring the difference in slacks, the fact that the delay along
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Figure 3.15: Example of a relevant network with a DAG structure

the specific path {S,U,W,Y} is smaller than along the path {S,U,V,X,Y} is ignored.

A separator-set {X, W] achieves a saving of 2. If there is no saving in delay at W, i.e.

D(W) = 0, the predicted value of 6'(Y) = 0 whereas the saving computed according to

Equation 3.1 is 6(Y) = 3. This shows that the weaker lower-bound, that ignores slacks,

may be made arbitrarily poorer compared to the lower-bound that accounts for the slack

difference.

At this stage, it is appropriate to summarize the facts relating the structure of the

relevant network and the use of separator-sets for selecting transformations.

1. Using a fixed value of c and weights according to Equation 3.4, a minimum-weight

separator-set is guaranteed to achieve a saving of£at a minimum increase in area for

any circuit topology.

2. A saving A, computed according to Equation 3.3, can be achieved by a minimum

weight separator-set for a tree topology (Theorem 3.2.1).

3. For a DAG topology, a saving 6\ computed according to Equation 3.5 is achieved by

some separator-set.

4. For a DAG topology, a separator-set is not adequate to guarantee a delay saving A,

computed according to Equation 3.3.
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EXACTJSELECT_DAG(r?, {A(0t)}) {

T=l

for each output 0, of rj with s(0t) < s*{

1. propagate-saving-backwaxd(0,-, A(0,));

2. F(Ok) s build-selection-function(0t-, A(0,));

3. F = TA F(Ok)

}

P = min-weight-satisfying-assignmentC^")4.

5.

}

S = {* |(* = L) € P}

Figure 3.16: Selection procedure for DAG topology

When the relevant network is a DAG we need a selection procedure that follows

the lower-bound computation of Equation 3.1. The procedure EXACT_SELECT_DAG of

Figure 3.16 outlines the basic idea of imitating the lower-bounding technique to determine

the set of nodes to transform.

In Step 1. of the algorithm, the saving required at each primary output is prop

agated backwards through the network according to the following equation.

r(jj) = A(i)- s(i,j)- min s(i,k)
keFl(i)

A(j,i) =
0 if r(j,t)>*(j)

r(j, i) otherwise

Vj <E FI(i)

A(j) = max A(i,t)
«€FO(j)

The quantity r(j,i) computes the value of saving that is required at the connection (j, i)

if no transformation is applied at node i. When the achievable saving 6(j) is less than the

expected saving r(j, i), it must be the case that a transformation is selected at node i. Since

the larger value of r(j,i) cannot be met in the transitive fanin of j, the saving at node j

is set to zero. A value A(j, *) is computed along each fanout of j. The maximum value

of saving desired for any fanout is used as A(j), the amount of saving required up to the

output of node j. For the circuit in Figure 3.15, the savings when propagated backwards

result in A(X) = 3, A(W) = 2, A{V) = 0, A(U) = 2, A(T) = 2 and A(5) = 0.
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After the saving that is required at each node has been computed, then during

Step 2, all possible choices of nodes that lead to the desired saving are generated. This is

accomplished by building a selection function at each node. Satisfying assignments of the

selection function, F(i), represent the choicesfor transformations that result in a saving of

A(i) at node i. F(i) is computed in topological order from the inputs to the outputs.

1 if S(i) = 0

0 if A(i) < 0 and S(i) > 0

Hi) = { *+ II FU) ^ 0(0 >A(i)
jeFi(i)

JJ F(j) otherwise
JtFI(i)

At a node i, if the local saving D(i) is greater than the desired saving A(i) then the selection

function includes i as an implicant. The desired saving may also be achieved at each of

the inputs and that provides the other contribution to the selection function. It should be

noted that since A(Ok) < £(0a), the selection function at any relevant output cannot be

identically 0.

To illustrate the construction of the selection function, the selection function for

each node in Figure 3.15 is listed.

F(S) = 1
F(T) = T + 0 =T
F(U) = F(S)-F(T) =T
F(V) = 0
F(W) = W + F(U) =W + T
F(X) = X + F{V) =X
F(Y) = F(W)-F(X) =X-(W + T)

As was stated earlier, each relevant output needs to be improved by a specific

amount to ensure that the circuit delay is reduced. Thus the overall selection function is

the conjunction of the selection functions for each relevant output. After iterating over

steps 1, 2 and 3, the overall selection function T is generated.

^= n not)
s(Ok)<s*

The choice of transformations that achieves the lower bound at a minimum area*

increase is the minimum weight satisfying assignment of T. As described earlier this can be

found efficiently using a shortest-path computation on the BDD representing T. From the
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minimum-weight assignment the selection-set S is determined. For the circuit in Figure 3.15,

the minimum-weight satisfying assignment of the selection function is {X, T} that has a

cost of 9. The other satisfying assignment, {X, W} has a cost of 11.

It is interesting to note that when the circuit has a tree structure, the procedure

EXACT_SELECT_DAG produces the samesolution as the procedure EXACT_SELECT_TREE

that is based on generating separator-sets. The DAG-based procedure builds the selection

function as a multi-level function. In contrast, a separator-set represents a cube in the

representation of the selection function for an output. The enumeration of separator-sets

may be viewed as generating a two-level cover for the selection function. In that respect,

the general method is more efficient since the two-level representation may have a size that

is exponential in the size of the of multi-level representaion.

3.3 How effective is iterative improvement?

mean deviation

1.0

16 32 48

number of inputs

speed_up[611

CRITICAL

COMPROMISE

TRANSITIVE

64

Figure 3.17: Comparison of strategies used to determine transformation scope
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The use of iterative application of local transformations to reduce the circuit delay

is a heuristic procedure. To determine the power of the heuristic a comparison with an

exact algorithm is required. In the case of an and function the optimum algorithm to

decompose it into 2-input gates is known [75]. We will use this to explore the power

of local transformations in optimizing networks computing the conjunction of n inputs

with arbitrary arrival times. The initial implementation may be a serial chain of 2-input

and gates, a parallel tree or a random tree structure. For each of these circuit structures,

the inputs are assigned random arrival times. The range of arrival times is 0 to 2n. The

optimum arrival time at the output is compared with the arrival time of the circuit optimized

by iterated application of local resynthesis. The only transformation used is the timing-

driven decomposition which is optimum for an AND function. By using the best possible

local transformation the impact of the strategy used to determine transformation scope can

be studied.

Trees with different circuit structures and random arrival times acre optimized

using local transformation and the output arrival time was compared to the optimum for the

given random arrival times. Different strategies for selecting the scope of the transformion —

critical, transitive and compromise— are evaluated and the depth of the scope is limited to 3

nodes. Figure 3.17 shows the average deviation from the optimum (plotted value) as well as

the maximum deviation from the optimum (printed value) for circuits with different number

of inputs. It is clear that the selection strategy affects the quality of the result. As is to

be expected, the transitive strategy is the most effective while the most restrictive strategy,

critical, which looks only along the critical-path, is the weakest. With any of the selection

strategies, iterative improvement based on the lower bounding technique performs better

than the heuristic weighting technique of [61]. For all the experimental circuits that were

generated, iterative improvement using the transitive strategy provides a decomposition

that is no slower than 1 compared to the optimum decomposition. For other methods of

determining the transformation scope (critical and compromise), the maximum deviation

increases as the circuit size increases.

The depth of the selection region is 3 levels. As the size of the circuit increases

the transformation works on a smaller percentage of the circuit. This reduces its ability to

produce global changes through iterated application. This observation is supported by the

experimental data of Figure 3.17. When the circuit is a parallel tree with sixteen inputs

and the depth of the scope is 3, the local transformation at the root encompasses the entire
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mean deviation

0.6

# COMPROMISE

TRANSITIVE

circuit structureserial random parallel

Figure 3.18: Interaction of circuit structure and scope strategy

tree and so optimum circuits are obtained for any set of random arrival time values at the

inputs.

Another interesting observation is that the strategy used to determine transforma

tion scope is influenced by the structure of the initial circuit. The choice of looking along

the critical paths works well when the circuit has a serial structure. Due to the chain like

circuit structure, there is not much interaction between the different paths and so looking

along the critical path is a viable method. In the case of a balanced-tree structure, several

paths may have to be modified simultaneously. This is not possible if the scope is chosen

to be lie along the most critical path. Thus for parallel structures, strategies that have a

wider scope, e.g. transitive, perform better. Figure 3.18shows the mean deviation from the

optimum plotted as a function of the circuit structure for the different scope-determining

methods. The critical-path based strategy performs better on serial structures than on par

allel structures while the transitive strategy performs better on parallel circuit structures

than on serial structures. The compromise strategy is quite immune to the structure of the

initial structure.
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The above experiment avoids the possible dependence between the selection of

the scope and the quality of the local transformation. This independence is achieved since

the decomposition transformation is optimum for and gates. When the logic function

generated by collapsing the nodes in the scope is a complex sum-of-products expression,

the transformations of Section 3.1 do not produce optimum decompositions. Furthermore,

as the size of the function increases the quality of the decomposition may decrease. Thus

increasing the depth of the scope is not guaranteed to produce better optimization in the

case of general circuits.

This simple experiment demonstrates that application of local transformations

(even locally optimum transformations) under the proposed optimization procedure does

not always generate the optimum solution. It is however heartening to note that the mean

deviation from the optimum is small and that the proposed procedure produces much better

results than the heuristic strategy of [61]. It would also be interesting to evaluate a rule-

based system with the same input. This would provide a fair comparison between the power

of an algorithmic selection strategy such as the above versus the application of a sequence

of rules. Unfortunately this comparison could not be made due to lack of access to a rule

based optimization system.

3.4 Results of technology-independent optimization

The techniques for circuit restructuring based on the application of local trans

formations has been implemented as part of sis (Sequential Interactive System) that is an

environment for performing various logic synthesis operations [58]. The system provides

support for representing and manipulating Boolean functions and networks. This section

describes the results obtained by the application of the techniques described in this chapter

and compares them with other existing techniques.

3.4.1 Description of example circuits

For the purpose of validating the various ideas presented in this chapter a bench

mark set is used. Our set of benchmark circuits comes from the the 1991 MCNC logic

synthesis benchmark set [79] and some industrial designs (from AT&T and Intel). The

suggested subset of the two-level PLA examples and multi-level examples is chosen from

the MCNC benchmark examples. The industrial examples have no details of their function-
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ality but provide a valuable source of large design examples. The initial descriptions of the

examples were optimized for area using the script script.rugged provided with sis. For

the two-level examples the sis commands (resub -a; simplify -m nocorap -d) were run

before the script to avoid runtime problems. Table 3.1 shows some information about the

optimized examples including the number of inputs and outputs, the circuit size as mea

sured by the literals in factored form and also the area after a minimum area mapping using

the MCNC cell-library lib2. The source for the example and its function is also described.

In the examples where the functionalty is not known the word "Logic" is used.

3.4.2 Choice of initial decomposition

The application of local transformations to restructure a circuit is carried out on

a network composed of 2-input gates. Since the transformations try to reduce the depth

of the network, it is important to start the optimization on a network structure that has a

small depth. The operations used to decompose the network allow an area/delay tradeoff.

Some decomposition procedures used to generate the 2-input gate network are described

here in terms of the commands used in Sis .

goocLdecomp; tech_decomp -a2 Routines to generate 2-input representations are

based on the sum-of-products representation of the function. A node may have a

small factored form but a large SOP representation. good_decomp [75] is a procedure

to represent the function as an interconnection of smaller functions. Each of the

smaller functions has a small SOP representation as well. The decomposition is chosen

to find a set of functions whose interconnection requires a small area. After the

decomposition, each node is represented in terms of 2-input nand gates and inverters.

This decomposition into 2-input gates is done without regard to the arrival times

of the inputs, i.e. a balanced decomposition of each cube followed by a balanced

decomposition of the sum term is carried out. This process is called technology-

decomposition [50] since it is a precursor to the technology-mapping algorithms.

This strategy is geared towards generating a 2-input decomposition with small area.

speed-up -i At the other end of the spectrum of techniques, a decomposition procedure

that generates the smallest depth 2-input decomposition is possible. The nodes in

the network are sorted in topological order (a node appears after all its fanins). Now

timing-driven decomposition (Section 3.1.2) can be applied to each node in topological
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Example gd; td -a2 gd; el -1; sp -i sp -i
depth lits depth lits depth lits

C1355 20 812 19 820 19 820

C1908 31 784 30 800 30 810

C2670 32 1188 24 1253 24 1259

C3540 42 2053 41 2140 41 2154

C432 31 312 27 314 27 312

C6288 92 4443 90 4829 90 4829

C7552 41 3569 34 3571 34 3827

ampbpreg 19 1368 19 1497 19 1397

ampbsm 20 1105 15 1116 15 1116

amppint2 32 893 22 913 20 927

ampxhdl 18 527 16 533 16 529

bl2 7 131 7 136 8 136

b9 10 188 10 200 10 228

cordic 14 126 11 130 11 128

cps 22 1902 17 1894 17 1894

dalu 23 1570 19 1618 19 1778

des 26 6051 20 6057 19 6079

dflgrcbl 13 475 12 505 12 498

duke2 23 676 15 662 15 662

exlOlO 19 3942 19 3998 18 3930

ex4 14 839 11 944 10 1000

fconrcbl 14 346 12 361 12 361

k2 21 1687 20 1703 20 1703

kcctlcb3 10 341 9 358 9 358

misex2 10 160 7 163 7 163

misex3c 47 796 26 834 26 832

pdc 16 585 14 601 14 603

rd84 15 209 11 213 11 209

rot 25 1050 21 1093 21 1089

sbiucbl 20 383 16 395 16 395

spla 21 980 16 978 16 981

t481 23 1183 18 1159 18 1183

tfaultcbl 10 261 9 280 9 280

gd; td Decomposition targeting small area
gd; el -1; sp -i Compromise between area and delay based decompositions
sp -i Initial decomposition for small delay
depth Maximum depth of the decomposed circuit
lits Number of literals in the decomposed network

Table 3.2: Comparison of techniques for decomposition into 2-input nand gates

77



78 CHAPTER 3. TECHNOLOGY-INDEPENDENT OPTIMIZATIONS

3.4.3 Experiments with the proposed procedure

The optimization procedure developed in this chapter is a recipe that can be

tailored according to the users requirements. The parameters that guide this choice are

the cpu-time and the quality of the solution desired. The "quality" of the solution may be

measured solely on the improvement in circuit performance or it may also account for the

area increase. The following sections investigate how some of the choices affect the quality

of optimization.

Selection of the scope

This aspect was dealt with in Section 3.3 with the observation that the transitive

selection strategy was the most powerful and looking along the critical path provided the

least improvement. For the AND -trees considered therein, the area of the optimized cir

cuits was the same as that of the initial circuit. In addition, the local transformation was

optimum. Here we will evaluate the effect of the selection strategy on real circuits where

the local transformations are not optimum and where the DAG-structure results in logic

duplication. The larger the scope, the larger is the duplicated area. The local transforma

tion used here is timing-driven-decomposition of Section 3.1.2. Both the function and its

complement are evaluated to determine the best decomposition based on extracting kernels.

The depth of the scope is equal to 3. Table 3.3 describes the results of varying the selection

strategy.

Due to the wide variation in the size and depth of the circuits the arithmetic

mean is dominated by the bigger circuits. To avoid this, the geometric mean is used as the

comparison statistic. The geometric mean of data values a\,..., an is simply

(n \ i/»

II(a«)

The difference between the selection strategies is not very spectacular. On the

average, looking along the critical path, results in circuits where the decrease in levels may

be smaller than with either the transitive or the compromise strategy. For 24 of the 33

circuits, all three strategies led to the same delay decrease. In addition, for these circuits,

the area of the optimized circuits wereverysimilar. This leads us to betteve that the strategy

used to determine transformation scope is not a significant parameter in the optimization.



3.4. RESULTS OF TECHNOLOGY-INDEPENDENT OPTIMIZATION

Example critical transitive compromise

lits depth lits depth lits depth

C1355 1284 15 1284 15 1284 15

C1908 1005 22 991 22 1007 22

C2670 1360 16 1358 16 1360 16

C3540 2188 31 2246 31 2198 31

C432 586 20 528 21 592 20

C6288 5391 68 5423 69 5444 67

C7552 4240 19 4585 19 3833 21

ampbpreg 1593 14 1575 14 1571 14

ampbsm 1152 10 1148 10 1164 10

amppinl2 960 14 990 14 986 14

ampxhdl 589 11 801 10 824 10

bl2 148 6 148 6 148 6

b9 204 7 200 7 200 7

cordic 172 9 172 9 172 9

cps 1918 12 1914 12 1916 12

dalu 1727 13 1698 14 1687 13

des 6115 17 6161 17 TO TO

dflgrcbl 502 9 508 9 502 9

duke2 698 12 702 12 714 12

exlOlO 3936 14 3936 14 3936 14

ex4 944 10 944 10 944 10

fconrcbl 382 9 382 9 382 9

k2 1731 15 1735 15 1733 15

kcctlcb3 401 7 385 7 403 7

misex2 182 6 182 6 182 6

misex3c 932 21 886 22 879 22

pdc 612 11 617 11 614 11

rd84 209 11 209 11 209 11

rot 1182 15 1174 14 1179 14

sbiucbl 397 13 397 13 397 13

spla 1003 12 999 11 1002 12

t481 1189 16 1187 16 1187 16

tfaultcbl 280 8 280 8 280 8

G. MEAN 808 12.91 813 12.88 813 12.89

critical Only critical path is part of the scope
transitive Entire depth bounded transitive fanin is transformed
compromise Based on delay data, some nodes may be added to critical
depth Maximum depth of the optimized circuit
lits Number of literals in the optimized network

Table 3.3: Comparison of strategies for selecting regions to transform
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Choice of the local transformation

This experiment evaluates a number of local transformations, all in the same en

vironment, to judge which transformation technique is superior. The local transformations

that are evaluated are the two decomposition methods (based on kernels and 2-cube divi

sors), timing-driven cofactoring and the generalized bypass transformation. For each local

transformation, the critical strategy is used to determine the scope. This is due to the

fact that the bypass and cofactoring techniques work best when there is a small number of

critical inputs. The depth of the circuit to transform is restricted to 3 (to allow the kernel

based technique to execute in reasonable time). It should be pointed out that using a fixed

depth circuit for the bypass does not give the best results. Table 3.4 summarizes the results

of this experiment. Entries marked "TO" do not complete within a reasonable time.

Transformations based on the logic function (timing-driven decomposition) per

form better than techniques that are based on circuit structure (bypass and cofactor trans

formations). Also, the area increase is more for transformations that are able to reduce

delay by a larger amount. Regarding, the timing-driven decomposition techniques, ker

nelling explores a larger set of divisors, compared to 2-cube divisors, and is able to reduce

delay by a larger amount.

One unforeseen result is that the timing-driven-decomposition based on 2-cubes

(TDD-2cube) runs out of memory on more circuits than the timing-driven-decomposition

based on kernels (TDD-kernel). This was unexpected since there are far fewer 2-cube

divisors than there are kernels. Closer inspection reveals that the data-structures used in

the implementation are the cause of this. Kernelling is based on memory-efficient data

structures whereas the 2-cube divisors have overheads associated with each divisor, leading

to memory limitations.

Depth of the scope

The local transformations affect a small part of the circuit. It seems natural

that the larger the region being transformed, the larger would the improvement in a single

iteration. However, it would be at the cost of an increase in the amount of logic being

duplicated. Due to the problems of evaluating the kernel-based extraction on large functions,

the transformation chosen for this experiment is the decomposition based on 2-cube kernels.

The strategy used to select the region to transform is the compromise strategy based on the
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Example Initial TDD-kernel TDD-2cube TDC GBX

lits depth lits depth lits depth lits depth lits depth

C1355 820 19 1284 15 964 15 820 19 1188 18

C1908 800 30 1005 22 973 22 868 28 806 28

C2670 1253 24 1360 16 1342 17 1267 22 1258 18

C3540 2140 41 2188 31 2204 29 2149 33 2147 37

C432 314 27 586 20 548 21 314 27 320 26

C6288 4829 90 5391 68 5465 69 4945 88 4973 74

C7552 3571 34 4240 19 3929 20 3685 28 3771 26

ampbpreg 1497 19 1593 14 1595 14 1525 15 1503 15

ampbsm 1116 15 1152 10 1152 10 1138 12 1141 11

amppint2 913 22 960 14 974 15 943 18 941 15

ampxhdl 533 16 589 11 589 11 545 14 557 12

bl2 136 7 148 6 148 6 148 6 148 6

b9 200 10 204 7 207 7 196 8 199 7

cordic 130 11 172 9 172 9 137 10 140 9

cps 1894 17 1918 12 1918 12 1902 13 1900 11

dalu 1618 19 1727 13 1786 13 1664 15 1609 14

des 6057 20 6115 17 TO TO 6203 17 6069 17

dflgrcbl 505 12 502 9 502 9 495 12 498 11

duke2 662 15 698 12 698 12 676 13 672 13

exlOlO 3998 19 TO TO TO TO 3936 14 3936 14

ex4 944 11 944 10 958 10 918 11 915 10

fconrcbl 361 12 382 9 376 9 360 12 370 11

k2 1703 20 1731 15 1731 15 1705 16 1710 15

kcctlcb3 358 9 401 7 381 8 349 9 353 8

misex2 163 7 182 6 182 6 165 7 165 7

misex3c 834 26 932 21 869 22 820 25 831 23

pdc 601 14 612 11 621 12 611 12 612 11

rd84 213 11 209 11 209 11 209 11 209 11

rot 1093 21 1182 15 1134 16 1136 18 1113 16

sbiucbl 395 16 397 13 433 13 390 16 389 15

spla 978 16 1003 12 1005 12 976 15 986 13

t481 1159 18 1189 16 1189 16 1189 16 1186 16

tfaultcbl 280 9 280 8 280 8 278 9 285 8

G. MEAN 697 16.9 767 12.9 756 13.1 706 15.2 715 14.1

Initial Area-optimized circuit decomposed into 2-input gates
TDD-kernel Timing-driven decompositon based on kernels
TDD-2cube Timing-driven decompositon based on 2-cube divisors
TDC Timing-driven cofactoring technique
GBX Generalized bypass transformation
depth Maximum depth of the optimized circuit
lits Number of literals in the optimized network

Table 3.4: Comparison of local transformation techniques
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distribution of delay data. Different depths of the transformed region are evaluated and the

results are shown in Table 3.5. For a depth of 3, the absolute area and depth are shown.

To allow easier comparison, for depths of 2, 4 and 5 only the difference (from a depth of 3)

is shown.

As expected, increasing the scope of the transformation results in a greater reduc

tion in the number of levels accompanied with an increase in circuit area. The disconcerting

observation is that this trend is only true on the average — for some examples increasing

the scope of the transformation results in a smaller improvement. This can be attributed

to the heuristic nature of the local transformations which often degrade in quality as the

functions become large. Increasing the scope of the transformations also leads to larger

memory use and in a few cases this is prohibitive. A small scope of local transformation

brings to light the shortcoming of using local transformations to effect global change. The

examples pdc and kcctlcbS are interesting since the delay reduction with a small (d=2) and

large (d=4) depth exceeds the reduction for a depth of 3. A possible explanation may be

the heuristic nature of the decomposition. From this experiment we see that a depth of 3 (in

terms of 2-input gates) provides a good compromise to determine the scope of timing-driven

decomposition.

Area considerations

In the previous experiments, the sole consideration was to get a circuit that was as

fast as possible. The circuit area was a secondary criterion, used only to break ties between

selection-sets that provide the same amount of improvement. This section describes ways

in which the area of the optimized circuit can be kept small while still getting significant

improvement in depth.

One way of reducing the area overhead is by not using aggressive optimization

while generating a local transformation. Rather than generate the best solution, it is often

possible to generate decomposition that provide a smaller improvement in delay and are area

efficient. As an example, consider timing-driven-decomposition. While evaluating different

divisors, the area saving that results from extracting the divisor is taken into account. The

weight of a divisor, W, is a combination of the area saving, A, and a timing weight, D,

based on the distribution of the arrival times of its inputs.

W = aA + {l-a) x D
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Example d=2 d=3 d=4 d=5

A 1 A d lits depth A 1 Ad A 1 A d

C1355 256 1 964 15 TO TO TO TO

C1908 22 1 973 22 151 0 TO TO

C2670 -88 2 1342 17 -65 0 TO TO

C3540 -24 3 2204 29 148 1 131 1

C432 -206 2 548 21 TO TO TO TO

C6288 -617 1 5465 69 164 1 TO TO

C7552 -122 2 3929 20 1 1 191 1

ampbpreg -98 1 1595 14 TO TO 54 0

ampbsm -10 1 1152 10 46 0 110 0

amppint2 -25 0 974 15 89 -1 146 -2

ampxhdl -36 1 589 11 149 -1 297 -1

bl2 0 0 148 6 -5 -1 -5 -1

b9 -13 1 207 7 6 0 12 0

cordic -17 0 172 9 -42 0 -42 0

cps 4 0 1918 12 14 0 14 0

dalu -152 1 1786 13 -23 0 -58 0

des 6205* 15* TO TO TO TO TO TO

dflgrcbl 8 0 502 9 -1 0 34 -1

duke2 -12 0 698 12 30 0 22 0

exlOlO 3936* 14* TO TO TO TO TO TO

ex4 11 0 958 10 -14 0 6 0

fconrcbl 11 0 376 9 13 0 29 0

k2 -30 1 1731 15 0 0 58 0

kcctlcbS 8 -1 381 8 62 -1 -26 0

misex2 -1 0 182 6 0 0 7 0

misex3c -19 0 869 22 62 0 62 0

pdc 8 -2 621 12 23 -2 45 -2

rd84 0 0 209 11 0 0 0 0

rot -12 0 1134 16 12 -1 174 -2

sbiucbl -44 2 433 13 -33 1 26 0

spla -16 2 1005 12 33 -1 89 -1

t481 0 0 1189 16 0 0 0 0

tfaultcbl 0 0 280 8 6 0 11 0

Overall -1214 19 826 -4 1387 -8

d=2,3,4,5 Maximum depth of the region being transformed
depth, (A d) Maximum depth (difference from d = 3) of the optimized circuit
lits, (A 1) Number of literals (difference from d = 3) in the optimized network

Items marked with (*) represent absolute values in a difference column
Overall Sum of all differences.

Table 3.5: Effect of transformation depth on optimization
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where a is a fraction that controls the relative importance of area. Setting a = 0, results

in an aggressive optimization where decreasing the delay is the only criterion. At the other

extreme, setting a = 1 ignores the arrival time data and the decomposition has a small

area.

For an aggressiveoptimization strategy, the best transformation is chosen at a node

regardless of the area penalty. It is only later, during the choice of the selection-set, that

the area increase is minimized. However, by using a benefit/cost metric (see Section 3.2.1)

to select the local transformation at a node, the area spent to achieve a unit improvement

in delay can be reduced.

To isolate the effect of each of these considerations a multiple part experiment is

performed. A set of local transformations based on timing-driven-decomposition are used

— TDD-kernel, TDD-2cube, TDD-comp-kemel, TDD-comp-2cube. The latter two perform

timing-driven decomposition on the complement of the function. A "compromise" selection

strategy with depth 3 is used to determine the scope of each transformation. First the

aggressive local optimization with benefit metric is used (AGG-B). Next the benefit/cost

metric is introduced (AGG-BC). Then, the non-aggressive local transformation is evaluated

using the benefit metric (NOAGG-B). Finally, as the most area-efficient technique, the non-

aggressive optimization is used along with the benefit/cost metric (NOAGG-BC). Table 3.6

shows the results of this experiment.

The experimental observations agree with the predictions — the aggressive opti

mization and the use of the benefit based evaluation of transformations produce the best

optimization at a correspondingly larger circuit area. Using the benefit/cost evaluation im

proves the area by a very little amount. When non-aggressive optimization is used, the

increase in circuit area is smaller but the amount of delay reduction decreases. Combining

the non-aggressive optimization with the benefit/cost evaluation does not result in any fur

ther change. It should also be pointed out that the fewest iterations are required when the

benefit evaluation is used along with aggressive optimization.

In this experiment, there .is not much difference between using the benefit and the

benefit/cost evaluation schemes. The reason for this may be the coarse granularity of delay,

measured as the number of levels. Due to the discrete nature of delays, often the different

transformations lead to the same improvement in delay. In that case the benefitevaluation

method is equivalent to the benefit/cost method.



3.4. RESULTS OF TECHNOLOGY-INDEPENDENT OPTIMIZATION

Example AGG-B AGG-BC NOAGG-B NOAGG-BC

lits depth lits depth lits depth lits depth

C1355 1232 15 1232 15 836 15 836 15

C1908 1002 21 931 22 842 22 842 22

C2670 1398 16 1398 16 1322 16 1320 16

C3540 2174 30 2174 30 2216 29 2216 29

C432 480 18 480 18 466 17 466 17

C6288 5343 67 5369 67 5010 67 5010 67

C7552 4006 19 3820 20 3861 19 3861 19

ampbpreg 1588 14 1588 14 1606 14 1606 14

ampbsm 1163 10 1165 10 1154 10 1154 10

amppint2 1006 13 1006 13 999 12 999 12

ampxhdl 657 10 657 10 573 11 573 11

bl2 148 6 148 6 148 6 148 6

b9 209 6 209 6 194 8 194 8

cordic 160 8 160 8 154 10 154 10

cps 1987 11 1985 11 1920 12 1920 12

dalu 1652 13 1649 13 1668 13 1668 13

des 6113 16 TO TO 6231 16 6231 16

dflgrcbl 502 9 499 8 495 8 495 8

duke2 684 12 690 12 688 12 688 12

exlOlO TO TO TO TO 3936 14 3936 14

ex4 996 9 996 9 918 11 918 11

fconrcbl 375 9 375 9 375 9 375 9

k2 1735 15 1739 15 1727 15 1727 15

kcctlcb3 405 7 405 7 395 7 395 7

misex2 182 6 182 6 182 6 182 6

misex3c 878 21 878 21 910 20 910 20

pdc 626 10 635 10 634 10 634 10

rd84 212 10 212 10 208 10 208 10

rot 1184 13 1185 13 1142 14 1142 14

sbiucbl 421 12 412 13 401 13 401 13

spla 1012 11 1011 11 1023 11 1023 11

t481 1187 16 1187 16 1187 16 1187 16

tfaultcbl 284 8 284 8 280 8 280 8

G. MEAN 765 12.33 762 12.35 736 12.63 736 12.63

AGG-B Aggressive optimization using the Benefit metric
AGG-BC Aggressive optimization using the Benefit/Cost metric
NOAGG-B Non-aggressive optimization using the Benefit metric
NOAGG-BC Non-aggressive optimization using the Benefit/Cost metric
depth Maximum depth of the optimized circuit
lits Number of literals in the optimized network

Table 3.6: Effect of area-saving parameters
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3.4.4 Comparison with other techniques

The restructuring techniques used in the experiments do not use the don't care

information in the circuit. Previous techniques like the one in [68] rely on the use of don't

cares and on redundancy removal to reduce the area after partial collapsing of the clusters

of nodes determined by a partitioning for delay. Table 3.7 compares the results of the

two techniques in terms of the levels of logic (measured using 2-input gates) just before

mapping the two circuits. The script used for implementing the clustering techniques was

script, delay that is part of the SIS distribution and the decomposition into 2-input gates

was done using the tech-decomp command of SIS. The critical-path-restructuring was done

using only non-aggressive TDD-2cube (favoring small area implementations) with a scope

of depth 3.

do

reduce.depth -S 8 -r

redjremoval

eliminate -1 100 -1

simplify -1

full_simplify -1

sweep

decomp -q

fx -1

speed_up -m unit -i

while (delay decreases)

Figure 3.19: Iterative clustering script

The result of this experiment shows that restructuring is more effective in reducing

the depth of circuits. This is not surprising if the nature of the two techniques is studied.

Partial collapsing is a single pass operation that clusters nodes and tries to simplify them

without increasing the circuit depth. Restructuring, on the other hand, is a multi-pass

operation. For a fair comparison, multiple passes are made to allow the clustering to operate

on networks of smaller depth. The decomposition of complex nodes into 2-input gates is

done using timing-driven decomposition rather than by simple AND-OR decomposition
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Example cpr clustering multi-clust

lits depth lits depth lits depth

C1355 836 15 1064 17 1048 17

C1908 842 22 1044 30 1047 27

C2670 1320 16 TO TO

C3540 2216 29 2271 38

C432 466 17 425 32

C6288 5010 67 5329 90 4659 88

C7552 3861 19 4252 33 4313 30

ampbpreg 1606 14 1531 11

ampbsm 1154 10 1214 16 1257 12

amppint2 999 12 927 17 1031 11

ampxhdl 573 11 564 11

bl2 148 6 134 7

b9 194 8 222 9 192 9

cordic 154 10 132 12

cps 1920 12 2129 17 2034 14

dalu 1668 13 1694 16 1854 14

des 6231 16 6674 24 6685 19

dflgrcbl 495 8 511 10

duke2 688 12 704 16 739 10

exlOlO 3936 14 TO TO

ex4 918 11 939 17 911 13

fconrcbl 375 9 395 13 376 12

k2 1727 15 2273 17 2073 14

kcctlcb3 395 7 487 9 462 8

misex2 182 6 187 10 173 6

misex3c 910 20 782 32 842 21

pdc 634 10 574 12 529 10

rd84 208 10 261 14 247 14

rot 1142 14 1224 22 1228 16

sbiucbl 401 13 436 19 420 13

spla 1023 11 1055 15 1000 13

t481 1187 16 TO TO

tfaultcbl 280 8 318 9 273 8

cpr critical-path restructuring using 2-cube divisors
clustering Clustering performed using script. delay
multi-clust Multiple passes using modified script .delay of Figure 3.19
depth Maximum depth of the optimized circuit
lits Number of literals in the 2-input nand representation

Table 3.7: Comparison of clustering and critical-path restructuring
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(technology-decomposition). This change, by itself, results in fewer levels for some of the

examples in which repetition did not help. The blank entries in Table 3.7 indicate that there

was no gain from multiple passes. Figure 3.19 shows the script used to apply the clustering

process repeatedly. In only six examples (indicated in italics) the multiple-pass clustering

results in circuits with smaller area and with the same or better delay than critical-path

restructuring. This points out that the local transformations lack the optimizations that

result from exploiting the don't care conditions arising from the network structure. The

clustering technique also uses redundancy removal while the restructuring techniques do

not. The success of local restructuring in reducing the number of levels in the circuit, even

when techniques that use don't care information are not used, illustrates the power of the

selection heuristic.

3.4.5 Optimization of a 32-bit adder

The above experiments show the effectiveness of local restructuring techniques in

reducing the depth of circuits. Since, a number of local transformations are derived from op

timizations performed on arithmetic adder circuits, an interesting example circuit to study

is a 32-bit adder. Manual designs exist for small area (ripple-carry adder) and small delay

(carry-look-ahead adder). A validation of the local transformation approach would be to

generate the look-ahead adder from the slow ripple carry adder. Other types of adders like

carry-select and carry-select also use specific local transformations (cofactoring and general

ized bypass respectively) and the comparison between manual and automatically generated

structures is meaningful. The bypass adder depends on making long paths false [45] and

requires viability analysis to predict the true delay. Since the local transformation uses

static-delay analysis it is difficult to compare the results of the bypass transformation with

that of critical-path restructuring. The redundancies in the bypass adder are removed [31]

so that the static delay will also reflect the true delay.

The initial description of the 32-bit adder is a cascade of the following two-bit

adder. The carry generated in stage i - 1 is used in stage i.

Ci = c,_i • (at- + 6,) + at- •6,

Oi = a, © 6,- ® c,_i

Figure 3.20 shows the result of applying the different transformations and some

of the other adder structures (the carry-look-ahead and the carry-bypass adders). In these
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experiments wealso plot the intermediate circuits, produced after everyiteration of applying

the selected local transformations. A part of the graph has been magnified to emphasize

the region of greatest interest.

This experiment shows the effects of choosing different initial starting points,

strategies to determine the scope of transformations, use of the area saving considerations

on the series of circuit generated. At any given value of delay, the optimal solution is the

one with the least area. A good optimization strategy generates optimal structures during

its entire range. Unfortunately, there is no single method that provides the minimum area

solution over the entire range of achievable delay values.

Aggressive optimization using all the transformations and using the critical strat

egy with a depth of 3 to determine the scope of transformations provides the maximum

decrease in delay. This optimization scenario is called all:agg:trans. Typically, for a given

value ofdelay, the circuits with small area were obtained by usingtwo-cube divisor basedde

compositions that were not aggressive. Also, focusing along the critical path led to retaining

good boolean factors that were lost if broader scope was used for evaluating the transfor

mations. This area-efficient strategy is called 2c:nagg:crit. The strategy of looking along

the critical path is effective since the circuit has a single longest path. This underscores

the importance of providing a framework where different choices for the scope, the severity

and type of optimization can be easily experimented with to provide the designer a tool to

optimize the circuit.

In the case of the adder circuit it is possible to generate, automatically, cir

cuit structures that match manually-generated structures for the fast carry-look-ahead

(CLA) adder. The two configurations of look-ahead adders correspond to using 2-bit and

4-bit lookahead blocks to generate the 32 bit adder. We are not as successful in obtaining

circuit structures that match manually generated carry-bypass (CBA) adder configura

tions. The reason for this is under investigation. Possible explanations may be the choice

of scope (there is a good strategy to determine the scope [45] whereas we use a fixed depth

scope) and that the transformation is not as area efficient as it can be (adding redundancy

removal might alleviate this).

Another benefit of the proposed procedure over the heuristic restructuring of [61]

is that it is more robust to changes in the initial decomposition of the circuit into 2-input

gates. Figure 3.20 shows two different starting points that correspond to decompositions of

the ripple carry adder using the following sis commands —
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(1) good_decomp; tech_decomp -a 2

(2) good_decomp; eliminate -1; speed-up -i

Application of iterative improvement using non-aggressive TDD-2cube applied along the

critical path provides similar results when started from the different starting points.

An interesting observation is that the locus of optimal solutions is not a monotone

function. This seems to suggest that the circuit structures obtained are not the best and

that there is scope for improvement.

3.5 Conclusions

This chapter has addressed the problem of reducing the depth of circuits used

to represent logic functions. How different operations affect the circuit depth has been

described. In large circuits, that cannot be collapsed, these operations are viewed as local

transformations. Since the delay of the circuit is determined by the longest path the local

transformations have to be applied at appropriate parts of the circuit to ensure a reduction

in delay. A paradigm to apply local transformations to reduce the delay with a small area

penalty has been presented.

The framework for applying local transformations can benefit tremendously from

the proper directions of an experienced designer. In particular, insight that the designer

possesses can be used to make appropriate decisions regarding the following aspects.

1. Determine a good local transformation at a node. Currently, only the size and topol

ogy of the scope can be varied to find good local transformations.

2. Providea set of powerful transformations basedon knowledge of the circuit functional

ity. For specific arithmetic circuit functions, optimizations related to the mathematical

properties may be exploited.

3. Determine the relative importance of keeping the area increase small, based on the

constraints that the circuit must satisfy.

Experimental results are provided to discuss the tradeoffs that arise when different choices

are made for the various components of the optimization procedure. This allows a designer

to explore various alternate circuit structures for their designs. By using the iterative tech

niques it is possible to stop the optimization when timing constraints are satisfied. This
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is useful in synthesis systems which generate performance constraints for components in

the circuit. Section 5.1 will describe a procedure for generating these performance con

straints. In the absence of such a capability, the designer has to accept the area penalty

of using manually designed fast circuits even in situations where the timing constraints do

not necessitate such a fast circuit.

There are several questions that still remain unanswered. The problem of ex

pressing an incompletely specified Boolean function such that the resulting function can

be represented with a circuit of small depth has not received much attention. Current

techniques on the decomposition of Boolean functions all work with a sum-of-products rep

resentation of the fivnction. Some variant of simplification that considers the complexity of

the function along with the arrival time distribution of the inputs would be an important

contribution.

Another problem that remains is to determine a schedule for reducing the circuit

delay. During an iteration the proposed lower-bounding technique seeks to make the largest

possible reduction in delay that it can guarantee. It may be the case that a slower rate

of reducing delay may produce better results. There is a loose analogy with the cooling

schedule used during simulated annealing.

To avoid interaction between different regions, the selection procedure seeks to

provide improvement only at one segment along critical paths. By choosing to apply trans

formations at a lot of non-overlapping regions, fewer iterations may be required. In partic

ular, recent work on the optimum clustering for delay under a pin-constraint [24] for each

cluster, suggests that by using dynamic programming, the choice of transformations that

lead to maximum delay reduction in a single pass can be made. The area overhead in such

a technique could be large. Nevertheless, the approach deserves further investigation.

Finally, the focus of this chapter was to develop techniques that restructure the

logic so that it has a small depth in terms of 2-input gates. Factorslike fanout consideration

and the restricted set of gates that are available in a cell-library were ignored. The next

chapter addresses these issues and extends the ideas on the application of local transforma

tions to handle mapped circuits.
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Figure 3.20: Optimization a 32-bit serial adder
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An abstract representation of the circuit function in terms of an optimized Boolean

network has to be mapped onto a given set of gates (each with an associated function) to

be realized as a circuit. At this stage there are electrical considerations that affect the

circuit performance. The electrical characteristics of the devices (transistors), the size of

the devices and the resistive and capacitive interactions have to be modeled.

Optimization to reduce circuit delay has had success in the area of transistor sizing

[19]. The parameters to be optimized are the sizes of individual devices once the choice of

the basic functions to represent the circuit has been made. The freedom to vary the size

of each device makes the problems of placement and routing difficult and designs that use

these algorithms are very specialized, full-custom circuits. For a large percentage of ASIC

designs the preferred methodology is to use a set of precharacterized gates. Design styles

based on standard-cells, gate-arrays and sea-of-gates fall into this category. In these styles,

the freedom to size individual transistors is absent. However, since the delays of the gates is

known, it is easier to develop a good structure for the underlying transistor-netlist. As an

example, consider the implementation of a function AND-4 that computes the conjunction

of 4 signals. Figure 4.1 shows two possible circuits that realize the same function in CMOS

technology. The circuit on the left has three gates (X = AB, Y = CD and 0 = X + Y)

while the one on the right has two gates (Z = ABCD and 0 = Z). In a full-custom

design style either alternative can be improved by the application of transistor sizing. It is
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Figure 4.1: Alternative realizations of a 4-input and function

difficult to select between the two alternatives a priori. In the case of standard-cell design

style where a precharacterized library is available, it is easy to select the faster alternative.

However, the user is restricted to using a fixed set of gates. It should be mentioned that

most industrial cell-libraries provide different versions of gates. Thus there could be two

versions of a gate — a large cell that has the capacity to drive large capacitive loads and a

minimum size gate that can be used when the capacitive load is small or the function is not

on any critical path. In the case of inverters it is typical to find several different versions.

The procedure to map a Boolean network onto a set of gates has been studied

extensively. Many techniques have been proposed to minimize the area of mapped circuits.

These include direct-mapping of the function onto a gate [32], pattern-matching techniques

where a subject graph corresponding to the Boolean network is "covered" by a set of patterns

representing the gates [30, 13] and Boolean-matching methods [40] that try to find gates in

the library with the same Boolean function as nodes in the Boolean network. Among these

techniques, tree-matching methods have been applied most successfully to performance

oriented technology mapping [30, 67, 66]. Some of the extensions possible to that of [66]
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will be discussed in Section 4.1.

In circuits that have first been optimized for area it is not uncommon to find nodes

that have a large fanout. The large fanout leads to increased capacitive loading of gates

thereby reducing the circuit speed. Largefanouts may also lead to reliability problems. The

large current required to charge large capacitive loads may lead to metal migration which

results in failure of the circuit. Finally, in some technologies like bipolar circuits, there is

an intrinsic limit on the number of gates that a given gate can drive. Section 4.2 addresses

optimizations that improve delay in the presence of large fanout.

Previous work that uses restructuring to optimize mapped circuits includes that

of [80, 66, 18]. In [80] the emphasis was on restructuring the trees in the network to

reduce delay. The choice of trees to restructure was made based on a cutset procedure

that weighted the trees. Tree-mapping and fanout-optimization were combined to produce

a mapping procedure to minimize circuit delay in [66]. In the LATTIS system described

in [18] the emphasis is to evaluate a set of transformations along the most critical path of

the circuit. After evaluating a set of transformations, which retain the mapped nature of the

circuit, the one with the greatest decrease in delay per unit increase in area is selected. This

strategy is called "maximum-bang-for-the-buck". The amount of improvement is scaled by

the number of inputs and outputs that the transformation affects.

The techniques for gate-selection and fanout-optimization are based on delays in

the circuit which get modified during the course of the algorithms. This poses difficulties

when trying to integrate the techniques. Section 4.3 combines the fanout-optimization

and tree-covering with the machinery built in Section 3.2.3 to select local transformations.

This approach integrates the two techniques more closely than that in any of the previous

approaches.

Before proceeding to an evaluation of the techniques proposed for optimizing

mapped circuits, it is important to be aware of the additional considerations that are present

when dealing with mapped circuits. Recall that the technology-independent optimization

used a representation consisting of 2-input gates with implicit inversions (inversions were

not explicitly represented by inverters, just by changing the phase of the input to the node)

and the circuit delay was simply the number of nodes on the longest path. For mapped

circuits, the additional considerations are —

Complexity of the delay model For mapped circuits the delay model used is the
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library delay model (see Section 2.2.1). This model computes the pin-to-pin delay

based on the load that is being driven by the gate. During optimization it is not

adequate to simply count the levels of logic. The dependence of delay on the load

(which maybe affected by other transformations) makes the problem ofpredicting the

performance improvement a difficult one. Furthermore, the delay for the rising and

falling transition of a signal may be different. The asymmetric gate delays necessitate

keeping track of a duple of values rather than a single value. The delay model also

specifies the signal dependencies — whether the output has an inverting, non-inverting

or unknown relation to a transition at the input — so that the computation of delay

is not overly pessimistic.

Prescribed set of primitives Mapped circuits use gates from a cell-library to imple

ment a Boolean function. While optimizing a mapped circuit it is essential to retain

the mapped nature of the circuit to get accurate delay values. This is accomplished

by performing a local mapping of the region that has been transformed. Appropriate

timing constraints must be used during mapping to accurately reflect the environment

around the function. The fine granularity and uniformity of the basic blocks during

technology-independent optimization allows a fine control on the size of region being

transformed. In mapped circuits, gates have different numbers of inputs. This makes

it difficult to have a uniform size for the region being transformed. The approach we

have used is to still use the depth as a guide for the region to transform. However,

there is a user-specified limit on the size of the function being transformed. This al

lows us to avoid large run-times when large functions are generated for the application

of a local transformation.

Explicit inversions Since a mapped circuit represents an implementable circuit it

cannot have any implicit gates. The use of implicit inverters during technology-

independent optimizations bypasses the problem of determining which polarity of

function should be implemented. This problem of determining the phase (comple

mented or uncomplemented) of the function to implement is an additional aspect

that adds to the complexity of optimizing mapped circuits.

With this background of additional problems that arise when mapped circuits are

considered, the remainder of this chapter is devoted to techniques for reducing the delay of
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mapped circuits.

4.1 Optimization based on gate selection

Tree-based technology-mapping [13] has been used for both area and performance

optimization. The procedure decomposes a Boolean network into a network of 2-input

NANDgates to generate a subject graph. The subject graph is covered using a set of pattern

graphs that are generated for the gates in the cell-library. The selection of a minimum-

cost cover is based on dynamic-programming and produces the optimum solution when the

subject graph is a tree and the objective is to minimize the area. The dynamic program

ming technique is extended [51] into a two-pass technique that produces the optimal delay

implementation for a library with symmetric values for rise and fall delays.

When applied to directed-acyclic graphs, the heuristic of optimally mapping in

dividual trees for the fastest implementation is not a good one. This is due to the fact

that fast implementations contain high-power gates which result in increased capacitive

loading. A good heuristic that combines tree-mapping and fanout-optimization to solve the

performance-directed mapping of circuits is described in [66]. The heuristic makes multiple

passes over the network alternating between mapping trees and buffering multiple-fanout

gates. A limitation of the heuristic is its strong dependence on the set of trees that have been

generated before the covering step. In addition, the problem of choosing the phase in which

to generate each tree is not addressed. In this section techniques that attempt to improve

performance by addressing phase-selection and tree-decomposition will be investigated.

Statistics gathered from a large number of circuits shows that the average size of

a tree in an optimized circuit is small. From data presented in [32], the average tree has a

depth of 2.44 two-input gates and is mapped into 1.93 gates after technology-mapping. A

small tree has relatively little chance of being mapped into a faster structure. As the size

of the tree increases, the difference between a good and a bad implementation increases.

Furthermore, small trees result in relatively large number of multiple-fanout gates along

critical paths. This leads to larger loads and hence a slower circuit. The creation of

multi-fanout points also creates a decision point — whether to implement the signal or

its complement. In tree-based mapping, the choice of the phase of a function is rather

arbitrary. By having larger trees along the critical path fewer decisions have to be made,

reducing the chance of generating a poor circuit.
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Larger trees, generated by duplication of logic, can be remapped for smaller delay.

This idea was explored during the technology-mapping phase itself (Section 4.5.2 of [66])

by allowing overlap between trees. Due to the changes in fanout that result from overlap,

the prediction of delays is difficult. On the average, by using heuristic prediction methods

a delay reduction of 9% with an area increase of 44% was obtained. To reduce the area

overhead, overlap was allowed only when a node had fanout less than 5. This heuristic

reduced the area overhead to 28% and provided 8% reduction in delay. It should be noted

that allowing partial overlap of trees results in the creation of new fanout points. Further

more, when tree-overlaps are implemented as part of technology-mapping, the delay data

is inaccurate since the gate selections have not been finalized.

With these observations, and using the basic paradigm of applying local trans

formations from the previous chapter, it is possible to improve the result of technology-

mapping. After mapping the critical path is known precisely. Trees along the critical-path

may be combined into larger trees and remapped to reduce delay. The problem is to identify

what trees to collapse into one another so that a delay improvement is achieved at a small

cost in area. This problem is similar to the one addressed when technology-independent

optimization was described.

The local transformation for tree-restructuring consists of re-mapping the selected

sub-circuit for minimum delay. The scope of the transformation may be chosen based on

depth of the region or by an alternative technique. The use of tree-based mapping naturally

suggests that the scope be restricted to be a tree. The scope is determined by expanding the

tree to include nodes from trees in its fanins. The entire fanin tree is duplicated to avoid the

creation of new fanout points. This may have the disadvantage of large area-overhead but

reduces the number of multi-fanout points along the critical path, alleviating the problem of

selecting the phases of the trees. An area/delay tradeoff can be accomplished by controlling

the number of trees, along the critical paths, that are combined to generate the scope for

re-mapping.

As the number of trees duplicated along the critical path increases, there is greater

duplication of logic. This results in a larger area penalty. This is evident from the results

presented in Table 4.1. The delay improvement is 5% when the scope is 1 more tree or

2 more trees. For some examples there is a large improvement in delay. These examples

are emphasized. Even though the delay improvement is not as much as the tree-overlap

heuristic of [66] the area overhead is very small. The best improvement is 19% for tree-1
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Example delay -map tree-1 tree-2

Area Delay Area Delay Area Delay

C1355 1333 19.66 1.00 1.00 1.00 1.00

C1908 1485 31.15 1.06 0.92 1.03 0.95

C2670 2043 21.91 1.02 0.97 1.01 0.98

C3540 4003 36.76 1.01 0.99 1.05 1.00

C432 599 26.60 1.10 0.98 1.28 0.96

C6288 8132 91.08 1.00 1.00 TO TO

C7552 6243 30.60 1.00 0.98 1.01 0.97

ampbpreg 2355 18.07 1.01 0.97 TO TO

ampbsm 2060 16.27 1.02 0.90 TO TO

amppint2 1506 20.80 1.11 0.87 1.03 0.91

ampxhdl 890 13.19 1.05 0.95 1.10 0.97

bl2 220 5.66 1.00 1.00 1.00 1.00

b9 343 8.17 1.03 0.88 1.01 0.90

cordic 218 9.70 1.00 1.00 1.00 1.00

cps 3562 17.92 1.01 0.81 1.02 0.78

dalu 2624 21.19 1.02 0.91 1.03 0.90

des 9866 18.41 1.00 1.00 1.00 0.99

dflgrcbl 858 10.50 1.00 1.00 1.00 1.00

duke2 1294 17.10 1.11 0.84 1.06 0.87

exlOlO 6223 16.50 TO TO TO TO

ex4 1460 9.94 1.01 0.99 1.01 0.99

fconrcbl 657 12.24 1.02 0.87 1.13 0.78

k2 3373 19.82 TO TO TO TO

kcctlcb3 644 9.07 1.04 0.94 1.03 0.95

misex2 340 7.30 1.00 1.00 1.00 1.00

misex3c 1591 27.79 1.00 1.00 1.13 1.00

pdc 1204 11.98 1.02 0.96 1.02 0.97

rd84 402 10.78 1.00 1.00 1.00 1.00

rot 2155 18.22 1.01 0.93 1.09 0.92

sbiucbl 754 15.29 1.02 1.00 1.04 0.99

spla 1952 15.89 1.01 0.86 1.08 0.85

t481 2165 17.27 1.02 0.95 1.02 0.97

tfaultcbl 506 6.58 1.02 0.95 1.02 0.96

G.MEAN 1.02 0.95 1.04 0.95

delay-map Circuit mapped for minimum delay (map -m 1 -A)
tree-1 Combining 1 tree along the critical paths and remapping
tree-2 Combining 2 trees along the critical paths and remapping
Area area of the circuit (MCNC lib2 data divided by common divisor 464)
Delay delay of the circuit (MCNC lib2 data in nanoseconds)

Table 4.1: Effect of tree duplication on circuit delay
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and 22% for tree-2. Surprisingly, duplication of more trees leads to smaller improvement

for some examples. An observation that may explain this anomaly is that the duplication

of logic leads to increased fanout in the circuit. So it seems reasonable to follow up the

remapping of larger trees with a round of fanout-optimization. It should be mentioned

that fanout-optimization was used during the minimum-delay mapping [66] to drive large

fanout loads. For apptication in local transformations a technique is required to modify

the fanout-trees in a mapped circuit to account for the changes that have been made, e.g.

duplication of gates. The next section addresses the fanout correction problem.

4.2 Optimization based on fanout buffering

In addition to the choice of gates used to implement functions, the delay of the

circuit depends on the configuration of gates chosen to distribute a signal to its destina

tions. In optimized circuits it is not uncommon to have nodes that have a large fanout.

After mapping, these nodes drive large capacitive loads which leads to long charging times.

This reduces the circuit speed and may even result in erroneous circuit operation. The

introduction of buffers not only reduces the circuit delay, it also makes the delay values

more accurate (since the loads in the circuit after buffering would be within the range of

load values used to characterize the library models).

A gate may be required to drive different capacitive loads at several destinations

in either complemented or uncomplemented form. The time at which a signal is required

at each destination is known. The problem is to derive a distribution tree that is able to

provide the signal at its destinations before the required times by using inverters and buffers

from the cell-library. There are two problems that need to be considered — " What order

should the gates be visited?" and "How is a good fanout-tree constructed?".

These are explored in following sections.

4.2.1 Buffering strategies

This section addresses the question "What order should gates be visited for

buffering?". Section 3.7 of [66] also investigates this question. It is shown that optimizing

the fanout-trees in topological order from outputs to inputs is the best strategy to achieve

the smallest delay without consideration of area. As reported in Section 3.8.3 of [66] the

area penalty of building the best fanout-trees everywhere is large (on the average the area
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area-based.buffering(77) {

order nodes in topological order, outputs to inputs

loop: for each unvisited node v, visited in order {

mark v as visited

if (v is critical AND buffering improves delay at v) {

delay.trace(7?);

goto loop;

}

}

}

Figure 4.2: Critical-path based buffering strategy

increase is 51% compared to the minimum-area mapping). To recover area after fanout-

optimization, the non-critical sections are buffered to reduce the area while ensuring that

the delay does not increase. The area-recovery phase is not guaranteed to be optimal even

though the area is reduced substantially (the average area increase after applying area-

recovery is only 9% over the minimum-area mapping). To summarize, the approach of [66]

builds the best trees at all places and then recovers area by down-sizing non-critical gates.

We call this method delay-based buffering.

An alternative strategy called area-based buffering is described in Figure 4.2.

It builds fanout-trees only along the critical paths (critical paths may change during the

process). The rationale behind this strategy is to incur an area penalty only where it is

needed to reduce delay. It starts with a minimum-area mapping and successively reduces

the delay at the expense of increased area. This multi-pass strategy proceeds from the

output towards the inputs and builds the fanout-tree for a gate along the critical path that

has not yet been considered. Once a gate has been considered, the delay data is updated

and another gate along the critical path (possibly a different path from the previous one)

is chosen. At each stage the gate that has not been visited and is closest to the output is

chosen. By proceeding from the outputs to inputs, the required-time data at internal nodes

is updated to account for the trees generated earlier. This strategy reduces to the optimum

strategy for minimum delay if the required time constraints on the outputs are very strict.
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Then the buffering proceeds from the outputs to inputs in topological order under both
strategies.

To compare delay-based buffering with area-based buffering proposed here, we re

move all timing constraints from the outputs so that both procedures attempt to reduce the

delay of the circuit. Also, the same local fanout-optimization (described in Section 4.2.2)
is used in both procedures.

The circuit is mapped for minimum-delay without any fanout-optimization. This

is achieved by disabling the fanout-optimizations f anout_alg noalg and then mapping the

circuit for minimum delay using the sis commands map -ml -A. The option -ml minimizes

delay and the option -A keeps the area small, area-based buffering is used to improve the

circuit at the expense of increasing the circuit area. This is compared with the result of

applying delay-based buffering using the sis commands (fanout.alg top_down; map -ml

-A). Table 4.2 shows the results of this experiment

The results of this experiment are surprising, area-based buffering produces smaller

delays than delay-based buffering, while the delay-based technique outperforms the more se

lective area-based buffering in termsofcircuit area. Oncloser examination the shortcomings

of each of the strategies in achieving the desired objective can easily be explained.

Fast circuits are constructed at fanout points during delay-based buffering. By

doing so high-power gates are used increasing the capacitive loads that the fanin signals

have to drive. Subsequent area recovery may reduce the load driven by the critical signals

by down-sizing some non-critical gates. Thus area-recovery often improves the circuit delay.

However, the area recovery phase is not specifically targeted to improving circuit perfor

mance by down-sizing non-critical gates. In the caseof the critical path based approach, the

initial circuit is optimized for area so that all gates have lower capacitive loads. Buffering

along the critical path may increase the gate sizes for some gates. The non-critical signals

that do not affect circuit performance are not sized, and offer a smaller load compared to

the other strategy, leading to superior delay reduction.

The area recovery phase of delay-based buffering has the capability of down-sizing

non-critical gates to reduce circuit area. Thiscapability is not present in area-based buffering

which only builds fanout-trees along non-critical paths. Since the fanout trees built on the

initial critical path may not lie on the final critical path they may be down-sized to reduce

circuit area. The obvious solution is to use the area-recovery procedure after the critical-

paths have been buffered. The machinery to carry out this experiment is not in place.
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Example Delay-based Area-based Ratio

Area Delay Area Delay Area Delay

C1355 1176 20.35 1220 20.61 1.04 1.01

C1908 1128 32.58 1213 31.93 1.08 0.98

C2670 1629 22.48 1678 22.52 1.03 1.00

C3540 2806 37.69 2937 37.32 1.05 0.99

C432 477 27.90 532 26.99 1.12 0.97

C6288 6925 92.05 6847 92.64 0.99 1.01

C7552 4846 32.96 5053 32.37 1.04 0.98

ampbpreg 1814 20.04 1955 19.91 1.08 0.99

ampbsm 1589 16.93 1667 16.61 1.05 0.98

amppint2 1132 21.64 1188 21.10 1.05 0.98

ampxhdl 730 13.88 764 13.59 1.05 0.98

bl2 179 5.74 190 5.69 1.06 0.99

b9 288 8.35 289 8.35 1.00 1.00

cordic 183 9.70 191 9.70 1.04 1.00

cps 2583 18.84 2646 18.95 1.02 1.01

dalu 2012 22.42 2117 21.90 1.05 0.98

des 7478 20.40 7982 19.94 1.07 0.98

dflgrcbl 696 10.55 722 10.50 1.04 1.00

duke2 912 17.59 962 17.51 1.05 1.00

exlOlO 5081 17.28 5602 17.11 1.10 0.99

ex4 1122 10.12 1163 10.22 1.04 1.01

fconrcbl 537 12.96 560 12.54 1.04 0.97

k2 2677 21.03 2790 20.18 1.04 0.96

kcctlcb3 531 9.89 576 9.71 1.08 0.98

misex2 271 7.60 300 7.43 1.11 0.98

misex3c 1060 29.39 1108 28.81 1.05 0.98

pdc 866 12.16 924 12.33 1.07 1.01

rd84 294 11.73 313 11.62 1.06 0.99

rot 1551 18.44 1596 19.09 1.03 1.04

sbiucbl 550 15.57 578 15.99 1.05 1.03

spla 1467 17.03 1500 16.38 1.02 0.96

t481 1690 18.12 1806 17.34 1.07 0.96

tfaultcbl 440 6.63 452 6.58 1.03 0.99

G.MEAN - - - - 1.05 0.99
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Delay-based Building best fanout-trees, followed by area recovery
Area-based Building fanout-trees along critical paths only
Ratio Using the delay-based buffering as the base value
Area Area of the circuit (MCNC lib2 data divided by common divisor 464)
Delay Delay of the circuit (MCNC lib2 data in nanoseconds)

Table 4.2: Comparison of different buffering strategies
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However, using area-recovery along with area-based buffering should, in principle, lead to

smaller area.

4.2.2 Top-down buffering algorithm

In the above experiment, a heuristic technique is used to build the buffering trees.

In this section we describe the algorithm top_down used to build fanout trees during the

above experiment. The algorithm follows a divide-and-conquer strategy during which the

set of fanout signals is partitioned into subsets, and the process is recursively applied on

the smaller problems. This technique bears similarity to the technique used by Paulin et.

al. to decompose gates with high fanin [48].

Assume that the signal generated by gate g is distributed to several destinations.

The destination-set of gate g is FO and it consists of two parts — FO+ and FO~. FO+
consists of gates to which the signal g is distributed. The elements in FO~ receive the

complemented signal g. The inverted signal is generated by an inverting buffer denoted

by g\. Let the cardinality of the fanout sets be \FO~\ = m and \FO+\ = n. For each

destination h in the destination-set FO, we are given the values ch and r^. Ch is the

capacitive load of pin h and r/j is the required time for pin h. We use the superscripts +

and - to denote values associated with the sets FO+ and FO~ respectively. The fanouts in

both partitions are sorted by their required times i.e. rf < rJ < ••• < r+ and rj" < r^ <
'•• < rm- Assume that there are M inverting buffers in the target technology to be used

for buffering. Non-inverting buffers can be made up as cascades of inverting buffers. The

problem is to build a fanout-tree at the output of gate g such that the required time at the

input of gate g exceeds a user-specified target value TR.

The algorithm top-down builds a fanout-tree by selecting a delay reducing trans

formation at the current gate depending on the distribution of the loads and required times.

The transformations aim to reduce the required time at the input of the gate. The three

transformations used are illustrated in Figure 4.3. They are repower, transl and trans2

and we denote the required time at the input of gate g after the application of each trans

formation by i20, ill and R2 respectively.

The algorithm top-down is described in Figure 4.4. We first evaluate the required

time .R0 resulting from choosing the best available version of the gates g and gi (the re-

power transformation). Having done the obvious powering-up of gate #, the distribution of
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repower transl trans2

Figure 4.3: The basic buffering transformations
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destinations into two sets of early and late required destinations is evaluated according to

transl. The root gate and inverter g\ are used to drive the destinations where the signals

are required early. The load driven by these gates is reduced. Rlis the maximum required

time that is achieved by using this transformation for any partition into early and late desti

nations and choice of buffers. If there is no improvement as a result of transl (Rl < .R0) we

conclude that the required times have a small spread. In that case a balanced redistribution

according to trans2 is evaluated. The best configuration of added buffers is found and the

maximum value for the required time R2 is computed. Transformation trans2 is accepted

only if the required time improves, R2 > R0. Having selected either transl or trans2 ,

the algorithm will recur on the new nodes created and then again on the root node. The

routine recursion.willJielpQ is used to prune recursive calls that will not help improve the

required time at gate g.
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top_down( g, gIt FO+, FO~, TR) {

R0 = evaluate_repower($r, gi, FO+, FO~)

if (£0 > T12) return

(121, £+,£-) = evaluate-transKp, £/, FO+, FO")

if ( 121 > 120) {

create_transl_configuration(0, git E+, £~)

if (121 < T12 AND recursion.willJielp()) {

top-down CB, 6, £", £+, T12)

top_down((/f 0/, £+U{B}, £", T12)

}

} else {

(122, kj) = evaluate_trans2(5f, 9i> FO+, FO~)

if (122 > 120) {

create_trans2_configuration((7, 91* ^» 0

if (122 > T12)

top_down(#, B, \Jigi, \Jkb, TR)

}

}

}

Figure 4.4: Alogoritm top.down to create fanout-trees

Whenever the transformation transl is applied two sub-problems result. Applica

tion of trans2 results in the creation of a smaller problem. The sub-problems created are

shown in Figure 4.3 as regions enclosed in dashed lines. The algorithm can be visualized as

a recursive tree. This recursive tree is useful in analyzing the complexity of the algorithm.

The gate g that is being buffered is part of a network and consequently the point

where the delay value is computed must be clearly defined. While improving the required
time at the input of gate g it is possible to increase in the delay through a gate / that is a

fanin ofg. This may happen if g presents a larger input capacitance to /. To compute the

actual benefit ofa transformation we must account for the non-zero drive (/3(f)) ofgate /.
This captures the relevant environment for gate g and allows accurate evaluation of the im-
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provement in required time. Different values for (3(f) may lead to different transformations

being accepted. We will now describe how the transformations are evaluated and what is

the criterion used for accepting a transformation.

We first evaluate the saving resulting from choosing the best available version of

the gates (the repower transformation). This is the obvious way to get a faster circuit when

different versions of the gate being buffered are available in the target technology. This

transformation does not change the structure of the fanout-tree (all signals in FO+ are

still driven by gate g and those in FO~ by gi). The attempt here is to reduce the delay

by choosing replacement gates for g and gi that have the capability of driving large loads.

The repower transformation results in a required time i20 being achieved at the input of

gate g. If this is adequate (120 > T12) the algorithm terminates. If gate g does not have a

replacement we may decompose the gate into smaller gates which usually have better drive

capabilities (due to fewer series transistors driving the output). We may also consider a

sub-network n3 as the root of the fanout-tree (rather than a single gate g) and can apply

techniques of technology-mapping to find the best replacement sub-network for rjs driving

the specified load. Since we want to isolate the performance improvement that can be

achieved by buffering alone we restrict the root of the fanout-tree to be a single gate.

Applying transl involves partitioning the sorted set of destinations into two sets,

E and L. The set E consists of destinations where the signals is required early and the set L

contains the late required (less critical) destinations. Denote by E+ and E~ the subsets of

FO+ and FO~ that comprise the early destinations. These are driven by the gates g and g\

respectively as shown in Figure 4.3. The late required subsets are therefore L+ = FO+\E+
and L~ = FO~\E~ which are driven by inverting buffers b and B respectively. For each

partition we have different choices for the buffers <//,6 and B. For a specific configuration

the required time at the input of gate g is denoted by Rl(E+,E~,b,B,gi). We denote by

r3n n and rs the required times at the inputs of inverting buffers gi, band B respectively.

The choice of the added buffers 6 and B, the gate gj and the sets E+ and E~ is

made so as to maximize the required time at the input of gate g. The best required time

that can be achieved by an application of transl is denoted by Rl. If an application of

transl enables us to meet the target required time T12, we implement the transformation

and exit the recursion. If the target required time is not met and 121 > 120 (there is a saving

compared to the repower transformation) we accept the transformation and recur on the

problems of buffering gate B and then gate g. Recursive calls that do not help to improve
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circuit performance are eliminated by the routine recursion-wilLhelpQ. An example of

pruning recursive branches occurs in transformation transl. Whenever the required time

rs at the input of buffer B exceeds min[rj",r5/] we do not need to recur on B. Buffering

node B in an effort to increase rg beyond its current value does not influence the required

time at the input of gate g. At each stage of the recursion we know the maximum amount

that we need to save (derived from the target required time T12) and recursion terminates

when this saving is achieved. These pruning strategies result in a significant reduction in

the run-time of the fanout correction process.

By pre-computing the cumulative capacitance for partitions of FO+ and FO~,

the required time at the input of gate g can be computed in constant time for a given

configuration. The precomputation can be performed in 0(m + n). Since there are M3mn

configurations corresponding to different choices of buffers and partitions, 0(M3mn) com

putations are needed to find the maximum value of Rl. Let the time to recursively apply

the unbalanced decomposition (the transformation transl) for a problem with m signals in

negative phase and n signals in the positive phase be denoted by Tl(m, n). If \E+\ = s and

\E~\ = t, the recursive application of transl can be captured using the equation —

Tl(m,n) = 0(M3mn) + Tl(n -s,m-t) + Tl(t,s)

The solution to this equation that results in the largest run-time is Tl(m, n) = 0(M3m2n2)

for s = t = 1. If n = O(N) and m = O(N) then T1(N) = 0(M3NA). We can interpret N

as the size of the destination-set.

When there is no saving by using the transformation transl, one can infer that

the required times in the sets FO+ and FO~ are clustered together. A balanced tree as

per transformation trans2 is attempted to improve the required time at the input of g.

The transformation evaluates a multi-way split of the positive and negative destinations

to generate groups of destinations with similar cumulative capacitance. The required time

122 at the input of gate g is computed for a fc-way balanced partitioning of FO+ and a

/-way partitioning of the negative destination-set FO~. Each fc-way division of the positive

destinations is driven by an inverting buffer b. The inverter B is used to drive these k added

inverters. The /-way partition of FO~ requires that / copies of the inverting buffer gi be

used to drive the partitions. For a given (fc,/)-way decomposition of the destination-set

FO (shown in Figure 4.3) we evaluate the required time R2(l,k,gj,b,B).

With appropriate precomputation of cumulative capacitance for partitions we need
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0(M3mn) computations to find the maximum value of122. Let the time to recursively apply

the transformation trans2 for a problem with m signals in negative phase and n signals in

the positive phase be denoted by T2(m,n). T2(m, n) can be computed by solving the

equation —

T2(m,n) = 0(M3mn) + T2(k, I)

where 2 < / < y and 2 < k < £. The solution to this equation which yeilds the largest

value for T2 is T2(m,n) = 0(M3mn\og(mn)).
The more expensive recursion occurs when transl is applied. This dominates the

computational complexity. The overall complexity of the buffering procedure based on

applying delay improving transforms is therefore 0(M3m2n2). The algorithm top-down is

a polynomial-time heuristic. In practice, due to the pruning strategies that avoid needless

recursions, it is fast. At each stage in the recursion it preserves a valid buffer tree which is

better than the one at the previous stage. This allows the buffering to be done on a need-to

basis. The amount of improvement desired can be specified as T12 and the recursion stops

as soon as the desired saving has been obtained. This leads to improved run times and

prevents the unwarranted area increase that could result from building the best fanout-

tree. If the best fanout-tree is desired the target required time T12 is set to be a large

number.

4.2.3 Comparison of buffering algorithms

Chapter 3 of [66] describes a range of buffering techniques. These techniques are

heuristics that sort the required times of the destinations and build ordered trees, i.e. a

buffer, x, cannot drive another buffer, y that has a destination which has a smaller required

time that the destinations driven by x. The main difference is that the techniques of [66] are

bottom-up approaches. They determine a set of destinations to be driven by a buffer, treat

the buffer input as a new destination, and proceed by dynamic programming to generate

the fanout trees. By restricting the type and number of trees, different heuristic algorithms

are obtained. For convenience these are briefly described.

balanced The required times are ignored and a balanced tree is generated to drive the

destinations. The balanced tree has a depth of 2.

bottom_up The destinations that are required the lastest (least critical) are combined

based on the combinatorial merging algorithm [22]. The number of destinations to be
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driven by a new buffer is determined heuristically based on the buffer being evaluated.

lt_trees LT-trees are a restricted class of fanout-trees. They are useful since a polynomial-

time, dynamic programming algorithm can be used to determine the optimum fanout-

tree in this class. They use non-inverting buffers. Thus a general problem is decom

posed into two sub-problems, one for the complemented destinations and another one

for thw uncomplemented destination sets, that are solved independently.

mixedJt_trees This is an extension to the LT-trees that handle sinks of different polarities

directly and use both inverting and non-inverting buffers.

twoJevel This is similar to the balanced algorithm. However, there is consideration of

loads and required times when the destinations are assigned to the single level of

buffers added between the root and the destinations.

For the technology-mapping command in sis, it is possible to specify the type

of fanout-optimization to be used. The best results are obtained when all the heuristic

techniques are enabled. In that case, the technology-mapper can apply all the heuristics

and then pick the one that best fits the area/delay requirement at hand. By specifying a

single algorithm, the algorithms can be compared in the same setting. Figure 4.5 shows

the mean area and delay gains (geometric means) when the circuit obtained using each

algorithm in isolation is compared against the circuit where all algorithms were available.

For all the example circuits, the area and delay are normalized to the area and

delay when all the algorithms are used. By using all available algorithms, the solution

with the smallest delay is obtained. When a single algorithm is used, the delay is always

greater. Dashed lines indicate the minimum-area and the minimum-delay solution obtained

by applying a single algorithm. Among individual algorithms, the algorithm It-trees that

uses only non-inverting buffers and builds separate fanout-trees for the inverted and non-

inverted destinations provides the best delay solution. However, the area penalty is large.

In fact it is the only algorithm that results in a larger area than the minimum-delay solution.

This is to be expected since the non-inverting buffers in this library are composed of cascade

of inverters. Also, the isolation of positive and negative polarity destinations leads to

large area overhead. One would therefore expect that the algorithm mixedJt.trees that

uses inverters and interleaves the complemented and uncomplemented destinations should

reduce the area overhead. This is indeed the case (area overhead reduces from +4% to
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Figure 4.5: Comparison of fanout algorithms

-24%), however the performance of the circuit degrades considerably (from 3% worse to

34% worse). Algorithm top-down proposed in this section provides a solution that has very

low delay penalty (4% worse) as well as small area (-22% less area than the minimum-

delay solution). It is the only algorithm that performs well with regard to both and delay

considerations. The other simple algorithms have characteristics inferior to the top-down

algorithm, both in terms of area and delay.

At the start of this section, tree-duplication was listed as a source for increase

in fanout load. The delay-optimized circuits described in Table 4.1 were subjected to

fanout-correction using the top-down algorithm. For single tree duplication followed by

fanout correction, the area increase was 3% for a delay decrease of 6% compared to the

minimum-delay mapping without duplication. When up to two trees can be duplicated,

the area increase after fanout correction is 5% for a delay reduction of 7%. Thus by using
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fanout correction to overcome the additional fanouts created by tree-duplication further

improvement in delay can be obtained.

Till now we have performed optimizations that have been limited to trees. This

restriction is removed when we consider the application of general restructuring techniques

in the next section.

4.3 Applying local transformations to mapped circuits

The traditional approach towards logic optimization, both for area and delay, is to

perform appropriate technology-mapping on Boolean networks that have been optimized at

the abstract, technology-independent level. This approach is justified when the metric used

during technology-independent optimization is a good predictor for the mapped circuit as

in the case of area optimization. The number of literals in the factored-form of a function

is a good estimate of the circuit area. As was alluded to in Tabic 2.1, the predictors for

delay perform poorly. This poses a big problem as evidenced by the following experiment.

Optimized circuits from Table 3.7 are mapped for minimum delay. One would expect that

the substantial difference in depth at the technology-independent level would be reflected

in similar differences in delay for the mapped circuits. However, as Table 4.3 shows, this is

not the case. It appears that the advantage based on smaller depth has been eroded during

technology-mapping. In fact, for 19 circuits the clustering approach produces smaller delays,

while iterative improvement provides smaller delays in 11 circuits. Both techniques have

some clear winners (20 % better than the other).

Several factors could have contributed to this unpredictability. Considerations of

fanout were ignored at the technology-independent stage. The structure and interconnection

of trees (that affects the technology-mapping) was uncontrolled and not considered during

optimization. The application of transformations cause logic duplication and the effect, of

this on delay was also not considered. One approach to overcome the unpredictability of

delay between the Boolean network and the mapped circuit is to apply local transformations

on mapped circuits.

Previous sections described methods that can be used to augment the performance

of technology-mapping — tree-duplication and fanout-optimization. Both involve repeated

application of a specific local transformations on the circuit to improves the circuit per

formance. Each of these techniques addresses a different aspect of circuit performance.
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Tree-duplication can be viewed as a transformation that tries to generate a signal as early

as possible, i.e. to reduce its arrival time. It is an example of an arrival-time-based

transformation. Fanout-optimization aims at maximizing the required time at the input of

a gate and is classified as a required-time-based transformation.

The use of different delay information by restructuring and fanout techniques

makes it difficult to apply them simultaneously. Tree duplication is based on arrival time

data that may change when some gate in the circuit is buffered. Similarly, buffering is based

on required times and loads that vary with different choices of gates. Applying one type of

technique on part of the circuit and the other elsewhere results in interactions that are hard

to predict and evaluate. An attempt to combine fanout-optimization and gate selection

was made in the context of technology-mapping [66]. Alternate passes of tree-covering

and fanout-optimization were used. During tree-covering, the load at fanout points was

estimated using fanout heuristics. Experimental results showed no significant improvement

when tree-covering and fanout-optimization were applied more than once.

Rather than apply the two classes of techniques during separate passes, this section

examines an approach that combines both types of optimizations in a single iteration. For

this we use the-machinery developed in Chapter 3 to apply local transformations. The set of

transformations that work on mapped circuits replace a section of the circuit with another

structure composed of gates from the cell-library

All the local transformations described in Section 3.1 may also be viewed as

mapped transformations if the optimized sub-circuits are implemented in the target library.

This is accomplished by mapping the optimized scopes for minimum delay. Since mapping

is performed for minimum delay, a delay improvement may be achieved even when the scope

is not transformed. The mapped transformation that does not perform any optimization is

named noalg. It is intended to be used to replace a slow implementation of a function with

a faster one by changing the gates used to implement it. In addition to the transformations

that try to reduce the arrival time there are local transformations that operate on required

time data. They try to increase the required time at the input of their scope. These include

the fanout transformation that builds a fanout-tree according to the algorithm top-down at

the output of a gate to improve the required time at the gate input. Another local transfor

mation is called duplicate. It is similar to fanout but it splits the fanouts into two groups

and drives the critical destinations with a copy of the function. The required-time-based

transformations were not used at the technology-independent level due to lack of accurate
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delays as well as the absence of inverters and buffers of different strengths.

For arrival-time-based transformations the scope is determined by one of the strate

gies — critical, transitive or compromise — just as it was at the technology-independent

stage. However, due to the non-uniform size of gates, the size of the scope may vary con

siderably from node to node. When the scope spans a multiple-fanout gate, some logic

is duplicated resulting in new multi-fanout gates in the circuit. To avoid the addition of

new multiple-fanout gates in mapped circuits, the scope may be determined by considering

entire trees when traversing the logic along the critical path and in the transitive fanin

of the root gate. This strategy is called tree-based and was used in the experiment in

Section 4.1 where tree-duplication was proposed as a local transformation. We can consider

the duplication of one tree to be the same as applying the noalg transformation on a scope

determined by the tree-based strategy with a depth equal to one tree. For the required-

time-based transformations, fanout and duplicate the scope consists of the gate and all its

fanouts. This scope is transformed by either creation of a fanout-tree or by duplicating the

root gate.

Once the different transformations have been evaluated on their scopes, the guar

anteed saving at the output can be computed by using Equation 3.1. This computation

can accommodate required-time-based optimizations as well. The delay saving at gate n

as a result of a required-time-based transformation is the improvement in required time at

the input of node n. A(n) represents the area increase of the transformed scope. During

fanout-optimization, the gate at node n might be replaced by a faster gate which in turn

leads to increased load on the fanins of node n. It is important to account for this while

computing D(n), the amount of delay improvement.

The selection procedure is similar to that for the technology-independent represen

tation. A maximum achievable slack $* is computed based on the predicted improvement. A

selection-function T is derived by propagating the desired savings backward and the propa

gating selection functions forward (see Section 3.2.4). Satisfying assignments of T represent

choices of transformations that provide the required improvement. However, there is one

important factor which complicates matters for mapped circuits. The technique used to

determine 5* assumes that the transformations are made independent of other changes in

the network. When the assumption is valid the minimum-cost satisfying assignment of the

selection function is the appropriate selection set. For mapped circuits the transformations

do affect each other and the independence assumption is not valid. The set of selected trans-
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formations may have common inputs or one transformed circuit may be in the fanout of

another. Due to the interaction between transformations s* may not be achievable. Earlier

work suggests ways of overcoming this problem —

1. Evaluate the actual improvement in circuit delay by introducing the optimized sub-

circuits into the original circuit. This approach is used in [18] to evaluate transfor

mations along the critical path.

2. Recursively apply optimization to the network after the selected sub-networks are

removed [80]. The original motivation for doing so is to improve delays along non-

critical paths. In many cases this allows increased optimization along the critical path.

We wish to use the recursion to buffer gates whose fanout may have increased as a

result of applying the selected transformations.

For mapped circuits, the procedure used to select the selection-set <S is outlined

in Figure 4.6. The first step in MAPPED.SELECTION is to evaluate s*, the slack that

can be achieved assuming that there is no interaction between the transformations. This

is an upper limit for the achievable slack. The selection function T is generated for this

value of achievable slack. A fixed (user defined) number of selection-sets are produced by

generating satisfying assignments of T in order of increasing area penalty. The selection-

sets are evaluated to see if they provide improvement in circuit performance by inserting

the optimized sub-circuits into the original circuit. The selection-set with the best delay

improvement per unit area increase is accepted. In case there is no selection which results

in the desired improvement the acceptable slack is reduced. By reducing the slack a larger

selection function is generated leading to greater choices for the transformation set. For

every value of the s* that is evaluated, the transformations that have been rejected for

previous choices of s* are removed from the selection function. This is done to explore

new transformation sets and not re-evaluate previously rejected choices. R denotes the

characteristic function of the rejected selections. The value of s* is reduced as long as

no acceptable selection-set is obtained or until the improvement becomes negligible (s* —

s(Oi) <T0LERANCE).

4.3.1 Experiments on optimizing mapped circuits

The use of local transformations to reduce circuit delay is similar to the application

of transformations to reduce the circuit depth. However, mapped transformations are better
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suited to improving performance since they have an accurate notion of circuit delay. This

section is devoted to experiments that illustrate the various choices and considerations

possible when optimizing mapped circuits.

Alternating iteration vs. combined iteration

One objective of combining fanout-optimization with tree-mapping is to explore

if the tighter coupling achieves better results than alternating the optimizations. The ex
periment of Section 4.1 that applies tree-duplication followed by application of buffering is
compared with an iterative application ofboth techniques during a single pass. The results

of this experiment are summarized in Table 4.4. The combined application of buffering

and tree-duplication (dupl+buf) produces smaller improvements in delay compared to the

separate application oftree-duplication followed by fanout-optimization (dupl;buf).

Improvement everywhere vs. critical path based

The paradigm of applying mapped transformations to reduce delay can be used

to compare different strategies for mapping a circuit. The two strategies are illustrated in

Figure 4.7. The direct strategy finds an initial implementation with small delay, perhaps
with large area, and then tries to recover area while ensuring that the delay does not

increase. An example of this approach is performance-oriented technology-mapping [66].
The iterative strategy, on the other hand, starts with an area-optimized circuit and then

reduces delay by application of local transformations along critical paths at the expense

of area. An interesting question is to compare these heuristics, both of which address

the problem of optimizing the delay with a small increase in area, from different starting

conditions. A similar comparison was madein Section 4.2.1 to compare delay-based buffering

and area-based buffering strategies. The comparison here includes gate-selection as well as

fanout-optimization.

Performance-oriented technology-mapping is used as a representative of the di

rect approach. The sis command map with options to reduce delay (-ml) and recover area

(-A) implements the direct approach. For a fair comparison, the iterative approach is pro

vided only with transformations that are capable of the same optimizations as the direct

approach. This means that the local transformations are restricted to remapping a single

tree and creation of fanout-trees. The sis command speedup.alg noalg fanout specifies
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the transformations and the iterative strategy is applied using the command speed.up with

options to compute delays based on the cell-library (-m mapped) and to restrict the scope

to a single (-d 0) tree (-s tree). Table 4.5 shows the results of this experiment.

The iterative technique consistently produces the smaller circuit while the direct

technique frequently produces the smaller delay. This suggests that there is scope for

improvement in the iterative improvement procedure. On the average, technology-mapping

based on the direct approach reduced the delay by 34% with a 26% increase in area. The

iterative approach reduced the delay by 30% for a 15% area penalty. This indicates that the

improvement in delay per unit increase in area is better for the iterative procedure. The

iterative technique produces a series of circuits with different area/delay characteristics and

the optimization can be terminated when timing constraints are met. The direct approach

produces only the final optimized circuit as its output.

Some observations on this experiment, that might explain the difference in results,

arc in order. The direct technique uses estimates of fanout to control the remapping of trees

while in the iterative technique buffering and remapping of trees is done independently. This

puts the iterative strategy at a disadvantage. Furthermore, a final area-recovery step can

be applied even with the iterative strategy. This observation stems from the fact that

the critical paths may change during successive iterations, thereby resulting in unwanted

optimization on parts of the circuit that are eventually non-critical. Since area-recovery

often reduces the delay in addition to reducing the area, it is always beneficial to apply

area-recovery as a post processing operation. No post-processing is performed in this ex

periment. There may be no need to apply area-recovery after the iterative strategy if local

transformations that down-size non-critical parts can also be used.

Comparison with LATTIS

LATTIS [18] is an optimization heuristic based on selecting local transformations

along the most critical path that result in the most improvement in delay per unit area

increase. In addition to fanout-optimization, re-mapping and duplication of gates, a trans

formation that reduces the load contributed by non-critical fanouts is also suggested. This

transformation is not implemented in the current set of transformations that we use. In

addition, the PEEPHOLE transformation of [18] differs from the restructuring transforma

tions described. PEEPHOLE evaluates a number of scopes rooted at a node until the size
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of the scope exceeds a threshold, and then picks the best one. Our approach to restruc

turing uses only a fixed scope whose size is determined by the user. With these differences

in mind, we compare the heuristic of LATTIS with that of evaluating different selection

sets. The experimental settings are the same as that suggested in [18]. The delay data

provided for the benchmark examples in [18] is used to derive the maximum speedup and

the corresponding area increase. The optimization strategy that we use is to first apply

re-mapping and fanout-optimization on single trees (like in the iterative strategy of the

previous experiment). This is followed by more powerful restructuring that only considers

a scope of depth 2 along the relevant paths. The restructuring uses the transformations

noalg, divisor, fanout and duplicate and the sis command speed-up -m mapped -d

2. A cpu-limit of 4 hours was specified for the iterative procedure. The examples for which

the time limit expired are marked with an asterisk. Table 4.6 shows the maximum speedup

obtained and the resulting area increase for the two heuristic techniques.

From the experiment, it appears that the LATTIS heuristic is superior in reduc

ing delay. However, it should be mentioned that the PEEPHOLE strategy of LATTIS is

more powerful than the restructuring employed by the iterative improvement algorithm. In

addition down-sizing of the non-critical fanouts is not used in our experiment.

Mapped vs. unmapped optimization

An important reason for considering mapped transformations was that optimiza

tions at the technology-independent level do not always lead to a smaller delay. This section

explores the quality of optimizations when accurate delay data is available. The experimen

tal setup is to use the area-optimized circuits, mapped for minimum area and delay, as the

initial circuit. In the case of mapped circuits we do not need to perform the initial 2-input

gate decomposition. For the circuits mapped for minimum-area, a first pass is made using

only fanout and noalg transformations restricted to individual trees to generate a start

ing point for the restructuring techniques. The scope of transformations is limited to a

depth of 2 mapped gates. Transformations used for this experiment are noalg, divisor,

and fanout and a limit of 4 hours is set for the optimization. The result of applying

mapped transformations is compared with the result of first restructuring the logic at the

technology-independent stage and then mapping it for minimum delay.

Table 4.7 shows the results of this experiment and the results are somewhat mixed.
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The restructuring techniques initiated from the minimum-delay mapping perform better

than the two-pass iterative improvement starting from the area-mapped circuit. However,

working on the mapped circuits does not significantly improve the level of optimization.

In fact, for a substantial number of examples the delay improvement is poorer when local

transformations are applied on mapped circuits. The possible reasons for this anomaly are

elaborated on in the next section.

4.4 Conclusions

The techniques presented in this chapter show various optimizations that can be

applied on mapped circuits. The advantages of working with mapped circuits is that delay

data is accurate. This overcomes the unpredictability of optimizations at the technology-

independent stage.

The delay of mapped circuits may be improved by combining trees to allow the

tree-mapping algorithm greater flexibility in reducing the delay. The choice of fanout-trees

is also important and we have proposed an algorithm for the creation of fanout-trees that

produces solutions that are close to the minimum-area and minimum-delay solutions. The

restructuring and buffering techniques have been combined into a unified framework that

can exploit the characteristics of the gates in the cell-library to reduce the delay of logic

circuits.

Unfortunately, the results of applying local transformations on mapped circuits

are not very encouraging. The possible explanations for this are:

1. The techniques to determine the scope of the transformations are poor and this re

stricts the optimizations.

2. The current implementation is very memory intensive and results in large run-times

for evaluating the mapped transformations on large circuits.

3. The set of local transformations do not include techniques to down-size the non-critical

path nodes. This is crucial in getting out of local minima during the iteration.

4. A drawback of the procedure to select local transformations is that it terminates

whenever there is no improvement possible. Hill-climbing techniques that perturb the

circuit so that further optimization can be carried out need to be investigated. In the
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absence of a strategy that can overcome local minima, the optimization procedure is

highly sensitive to the initial starting circuit.

These issues have to be addressed to make the techniques viable.

The current set of transformations operate either on gates or on the fanout points.

It is possible that by combining both types of techniques, e.g. generating different im

plementations for the function and its complement and using the two implementations to

selectively drive the fanouts, there may be possibility of reducing delay. The current proce

dure is unable to handle such transformations, in which the scope has multiple inputs and

multiple outputs, since it is not possible to determine the local improvement at a single

node. Such general scopes are considered, for a simple delay model which ignores fanout

considerations, in the work described in [35].

Having addressed the combinational optimization problem in this and the previous

chapters it is time to turn to a more general class of circuits. This leads us to studying the

optimization of synchronous sequential circuits which is the subject of the next chapter.
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file cpr clustering Ratio

Delay Area Delay Area Delay Area

C1355 1318 17.82 1611 16.76 1.22 0.94

C1908 1354 24.40 1523 25.71 1.12 1.05

C2670 1890 16.11 TO TO

C3540 3213 32.13 3211 32.53 1.00 1.01

C432 797 18.41 662 22.61 0.83 1.23

C7552 5922 22.90 6103 24.76 1.03 1.08

C6288 8114 74.87 8211 75.43 1.01 1.01

ampbpreg 2612 16.18 2213 12.20 0.85 0.75

ampbsm 1843 11.77 1831 11.24 0.99 0.95

amppint2 1441 13.76 1370 13.09 0.95 0.95

ampxhdl 844 12.70 847 11.51 1.00 0.91

bl2 221 5.99 194 5.24 0.88 0.87

b9 304 8.12 328 6.34 1.08 0.78

cordic 222 7.71 213 9.26 0.96 1.20

cps 2924 14.96 3190 13.34 1.09 0.89

dalu 2319 15.69 2376 15.13 1.02 0.96

des 8392 16.71 8409 18.10 1.00 1.08

dflgrcbl 753 8.64 786 8.74 1.04 1.01

duke2 1104 13.18 1024 12.39 0.93 0.94

exlOlO 5422 15.87 TO TO

ex4 1224 8.61 1229 10.62 1.00 1.23

fconrcbl 590 9.00 586 10.14 0.99 1.13

k2 2975 17.07 3607 14.38 1.21 0.84

kcctlcb3 612 8.05 708 7.41 1.16 0.92

misex2 322 7.02 297 6.12 0.92 0.87

misex3c 1500 19.98 1163 18.81 0.78 0.94

pdc 1050 10.77 879 8.41 0.84 0.78

rd84 330 10.76 412 11.35 1.25 1.05

rot 1787 14.76 1739 16.55 0.97 1.12

sbiucbl 645 12.34 646 11.41 1.00 0.92

spla 1671 13.07 1655 11.19 0.99 0.86

t481 1753 15.68 TO TO

tfaultcbl 468 7.50 500 6.17 1.07 0.82

G. MEAN 1.00 0.96

cpr Critical-path-restructuring using 2-cube divisors + map -ml -A
clustering Clustering performed using script.delay
Ratio using the cpr data as the base case
Area area of the circuit (MCNC lib2 data divided by common divisor 464)
Delay delay of the circuit (MCNC lib2 data in nanoseconds)

Table 4.3: Comparison of mapped delays of optimized circuits
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MAPPED_SELECTION(77) {

S = 0 /* records the best selection */

R = 0 /* characteristic function of rejected selections */

found.good.set = FALSE

5* = compute_achievable_slack(7/)

do {

T = build_selection_function(r/, s*)

T = F-R\

for (i = 0; i < NUM.SELECTI0NS; i++) {

a = min-weight-satisfying-assignmentCJ");

if (selection_is_acceptable(a)) {

found.good.set = TRUE;

S = best_selection_so_far(5,a);

} else if (selection_degrades_performance(a)) {

# = Ra

}

}

if (NOT found.good.set) s* = (5* + s(Oi))/2

} while (NOT found.good.set AND (5* - s(0i)) > TOLERANCE)

return S;

}

Figure 4.6: Selection procedure for mapped circuits
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operation 1 level 2 level

Area Delay Area Delay

delay-map
dupl
dupl;buf
dupl+buf

1.0

1.03

1.03

1.03

1.0

0.95

0.94

0.95

1.0

1.04

1.05

1.07

1.0

0.95

0.93

0.95

delay-map Circuit mapped for minimum delay (map -m 1 -A)
dupl Duplicating trees of specified depth along the critical paths
dupl;buf Duplicating trees followed by buffering
dupl+buf Using duplication of trees and buffering as local transformations
Area Average normalized area (normalized to min-delay mapping)
Delay Average normalized delay (normalized to min-delay mapping)

Table 4.4: Combining tree-duplications and fanout correction

Delay
Iterative

approach

Direct

/"o*\ approach

Area

Figure 4.7: Two approaches to delay optimization
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file area--map Iterative Direct

Area Delay Area Delay Area Delay
C1355 914 25.42 1.22 0.89 1.29 0.80

C1908 960 39.19 1.12 0.82 1.18 0.83

C2670 1334 31.52 1.06 0.74 1.22 0.71

C3540 2273 51.44 1.07 0.77 1.23 0.73

C432 381 39.04 1.24 0.75 1.25 0.71

C7552 4087 74.44 1.05 0.46 1.19 0.44

ampbpreg 1503 33.12 1.06 0.60 1.21 0.61

ampbsm 1257 29.99 1.06 0.64 1.26 0.56

amppint2 965 32.44 1.11 0.68 1.17 0.67

ampxhdl 595 23.33 1.16 0.60 1.23 0.59

bl2 151 8.11 1.07 0.83 1.19 0.71

b9 248 8.90 1.12 0.90 1.16 0.94

cordic 128 12.04 1.06 0.96 1.43 0.81

cps 2123 36.17 1.10 0.52 1.22 0.52

dalu 1612 48.27 1.09 0.47 1.25 0.46

des 6224 126.04 1.15 0.18 1.20 0.16

dflgrcbl 587 12.93 1.03 0.93 1.19 0.82

duke2 751 21.87 1.16 0.80 1.21 0.80

exlOlO 2935 31.82 1.52 0.66 1.73 0.54

ex4 861 13.34 1.17 0.86 1.30 0.76

fconrcbl 445 14.76 1.08 0.78 1.21 0.88

k2 2184 30.94 1.09 0.67 1.23 0.68

kcctlcb3 452 12.43 1.07 0.86 1.17 0.80

misex2 201 10.48 1.18 0.85 1.35 0.73

misex3c 799 48.79 1.31 0.66 1.33 0.60

pdc 682 18.04 1.12 0.81 1.27 0.67

rd84 247 14.32 1.17 0.87 1.19 0.82

rot 1299 28.52 1.06 0.75 1.19 0.65

sbiucbl 453 22.71 1.21 0.75 1.21 0.69

spla 1129 23.62 1.13 0.74 1.30 0.72

t481 906 29.42 1.95 0.62 1.87 0.62

tfaultcbl 365 8.89 1.08 0.92 1.21 0.75

G.MEAN 1.15 0.70 1.26 0.66

area-map Area optimized circuit mapped for minimum area (map -mO)
Iterative Area optimized circuit improved by local transformations
Direct Area optimized circuit mapped for minimum delay
Area area of the circuit (MCNC lib2 data divided by common divisor 464)
Delay delay of the circuit (MCNC lib2 data in nanoseconds)

Table 4.5: Comparison of direct and iterative optimization strategies
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Example LATTIS proposed
greatest area
speedup increase

greatest area
speedup increase

C1355 0.70 2.36 0.65 1.32

C1908 0.53 1.88 0.65 1.15

C2670* 0.45 1.16 0.54 1.19

C3540 0.42 1.36 0.60 1.08

C432 0.38 2.09 0.48 1.66

C6288* 0.52 1.89 0.68 1.06

C7552* 0.23 1.22 0.47 1.12

cordic 0.81 1.23 0.82 1.21

dalu 0.31 1.16 0.61 1.20

des* 0.12 1.17 0.36 1.01

k2* 0.20 1.30 0.73 1.06

rot 0.46 1.23 0.48 1.27

t481 0.76
--

1.51 0.98 1.01

Initial

LATTIS

proposed
greatest speedup
area increase

Area optimized circuit mapped for minimum area (map -mO]
Circuit optimized using the LATTIS heuristic
Circuit optimized using local transformations
Ratio of final delay to initial delay
Ratio of finial area to initial area

For the examples marked with a * the CPU limit of 4 hours was exceeded

Table 4.6: Comparison with the LATTIS heuristic
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Example unmapped mapped-area mapped-delay
Area Delay Area Delay Area Delay

ampbpreg 2612 16.18 1723 17.75 2435 15.04

ampbsm 1843 11.77 1534 14.58 2075 14.67

amppint2 1441 13.76 1349 17.35 1706 15.48

ampxhdl 844 12.70 800 12.18 1099 10.95

bl2 221 5.99 226 5.64 240 5.35

b9 304 8.12 356 6.54 390 6.65

cordic 222 7.71 250 6.93 253 6.75

cps 2924 14.96 TO TO 3589 13.58

dalu 2319 15.69 1939 20.97 2715 17.68

des 8392 16.71 6335 49.46 TO TO

dflgrcbl 753 8.64 711 8.11 910 8.60

duke2 1104 13.18 1155 13.83 1493 13.37

ex4 1224 8.61 1144 8.83 1569 8.57

fconrcbl 590 9.00 673 8.41 802 9.08

k2 2975 17.07 2318 20.60 3382 18.29

kcctlcb3 612 8.05 657 7.51 698 7.26

misex2 322 7.02 262 7.04 369 6.64

misex3c 1500 19.98 1726 26.28 1818 23.63

pdc 1050 10.77 872 12.83 1259 10.63

rd84 330 10.76 298 11.70 440 10.41

rot 1787 14.76 1808 13.95 2439 15.05

C1355 1318 17.82 1298 20.70 1378 18.98

C1908 1354 24.40 1498 26.01 1587 26.92

C3540 3213 32.13 2725 35.19 4006 34.86

sbiucbl 645 12.34 739 15.12 865 13.52

spla 1671 13.07 1560 14.43 2034 12.68

tfaultcbl 468 7.50 518 6.03 507 6.45

C432 797 18.41 414 31.25 1093 20.37

C7552 5922 22.90 4723 43.82 6262 29.88

t481 1753 15.68 1923 16.78 2173 16.87

C2670 1884 16.11 1795 18.90 2219 18.57

exlOlO 5422 15.87 4890 19.09 TO TO

unmapped
mapped-area
mapped-delay
Area

Delay

Unmapped optimizations followed by map -ml -A
Optimizations performed on the minimum-area mapped circuit
Optimizations performed on the minimum-delay mapped circuit
Area of the circuit (MCNC lib2 data divided by common divisor 464)
Delay of the circuit (MCNC lib2 data in nanoseconds)

Table 4.7: Comparison of mapped and unmapped optimizations
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Chapter 5

Synchronous circuit optimization

The focus of previous chapters has been on synthesizing a combinational circuit

subject to timing constraints. This chapter deals with techniques to design synchronous

circuits that meet the user-specified clocking scheme.

There are two well-known approaches for optimizing synchronous circuits. The

first one is to partition the circuit into pieces of logic bounded by latches, develop timing

constraints for the combinational modules and optimize them using combinational tech

niques. The key problem here is to generate the constraints for combinational blocks and

will be discussed in Section 5.1. The second approach derives from the flexibility in repo

sitioning registers. Retiming [33] is a method to determine the locations for the registers

in a single-phase, edge-triggered circuit that minimize the clock cycle. For circuits with

multi-phase clocking and level-sensitive latches, heuristic positioning of latches has been

attempted [4]. Latches are moved in response to the slack at a node. Our approach is also

based on using the output of timing analysis to guide the optimization. In response to the

slacks in the circuit, logic can either be resynthesized or moved into a different time period.

Both combinational resynthesis and latch movement are regarded as local transformations.

The transformation that leads to performance improvement at smaller cost is selected.

Combinational resynthesis methods and retiming techniques address the optimiza

tion from separate and non-interacting perspectives. Combinational resynthesis focuses on

improving the structure of the logic without changing the positions of the latches. On the

other hand, retiming moves the registers while retaining the structure of the combinational

logic. The merger of the two techniques is called retiming-and-resynthesis (RandR) [41].

RandR is also applicable to the performance optimization of pipelined circuits and this is



128 CHAPTER 5. SYNCHRONOUS CIRCUIT OPTIMIZATION

discussed in Section 5.2.

Circuits with single-phase clocking may be viewed as finite-state machines. The

state of the machine is represented by the data stored in the registers. The state is up

dated in response to the inputs when a clock pulse is applied. Section 5.3 addresses the

optimization of such structures. The machines can be unrolled to provide greater flexibility

in their optimization. For finite-state machines that are explicitly specified as a collection

of transitions between states, the flexibility in assigning binary values to symbolic states

(state assignment) can be exploited to reduce circuit delay as well.

Finally, in Section 5.4, the need for a different type of combinational optimization

procedure is introduced. The problem of resynthesizing a circuit to meet timing constraints

can be viewed as a mathematical programming problem that provides constraints on the

delays along paths of the circuits. This results in the need for an optimization system

that can ensure that point-to-point delays are met and that specific paths meet certain

delay requirements. Currently, such an optimization system is not available to us. The

general problem of ensuring point-to-point delays can be transformed into the combinational

optimization problem based on terminal constraints (arrival and required time constraints)

that was studied in Chapters 3 and 4. Techniques for making such a transformation are

discussed.

5.1 Timing analysis and optimization

A synchronous circuit consists of combinational logic and memory elements.

Every memory elements must be either "edge triggered" or "level-sensitive". Each memory

element has a data input, a clock input and a single output. An edge-triggered memory

element, flip-flop, samples and stores the input data at the appropriate edge of the clock

signal and presents the stored value at the output. This output remains stable until the

next occurrence of the active edge. From a timing perspective, this results in decoupling the

logic on either side of a flip-flop. For a level-sensitive memory element, latch, the data at

the input is transmitted to the output during the active period of the clock. The output is

held at the data value from the time the active period ends until the start of the next active

period. Thus the input and output are not isolated during the active period. Time may

thus be "borrowed" across a latch. For correct operation of both types of memory elements,

the data signal must be stable at the input of the memory element before the latching edge



5.1. TIMING ANALYSIS AND OPTIMIZATION 129

occurs by an amount called the setup time, S. It is also required that the signal be stable

after the latching edge by an amount called the hold time, H. We assume, without loss

of generality, that level-sensitive latches are active when the clock signal is high and that

the flip-flops are triggered by a falling signal at the clock input. Thus, the falling edge of

each phase is the critical edge with respect to which setup and hold constraints must be

satisfied.

A clocking scheme, $, is a collection of / periodic signals with a common period

c and is represented by $ = (0i,02>'' *>0/)- c 1S called the clock period or the cycle

time. Associated with each phase <f>{ are two real numbers r,- and e,-, the time of occurrence

respectively of the rising and falling edges of fa (0 < (r,,e,) < c). Associated with each

phase i is its local time zone, an interval of time of length c, such that the end of the active

phase coincides with the end of the local time zone. Let 0 < e\ < e<i ••• < e\ = c; thus we

choose the global reference time frame as the last phase e\. The clocking scheme specifies a

complete ordering of the rise and fall of the phases.

For any path of purely combinational elements from a latch u clocked on phase

<j>(u) to a latch v clocked on phase <f>(v) define

_ J 0 if e^u) < e^,(u)
I 1 otherwise.

Kuv is simply a token to keep track of the fact that a cycle boundary has been crossed.

For a path p '. u\ —*• ui —• •••—*• w^, where w, is a latch on the path and each sub-path

U{ -+ w,+i contains no latches on it, the number of clock cycles available for computation
n-l

along it is ^(A'UiU.+1).

The synchronous circuit optimization problem is —

Given a circuit using a clocking scheme $ with I phases, find an implementa
tion that meets a given cycle time constraint c and has an equivalent sequential
behavior.

The problem implicitly expects that the rise and fall times for the phases are con

sistent with the clocking scheme (and possibly other clocking constraints). For a discussion

of what constitutes equivalent sequential behavior the reader is referred to [60]. In a system

design it is usually difficult to tailor individual phases of clocks. More often than not the

duty-cycle (the ratio of the active time to the clock cycle) of the phases is fixed. Under
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such constraints only the cycle time may be changed. This may be viewed as a scaling

of the clocking scheme. Depending on the design methodology, the optimization scenario

may allow for only clock scaling or may be more flexible and allow changing the individual

phases of the clocks as well.

We are interested in necessary and sufficient conditions for correct clocking for an

arbitrary multi-phase circuit. The topological structure of a circuit and the distribution of

delays within it give rise to a set of constraints called the internal clocking constraints. The

internal clocking constraints may be classified into two categories — long path constraints

and short path constraints. For a path u —• v that starts at a latch w, clocked on phase

<f>(u), and ends at a latch v, clocked on phase 4>(v), the constraints are —

long-path constraints Let p : u\ —* %2 —• • • • —• Uk be a path with latches u\,• • -Uk on

it, with each sub-path u; —*> W{+i containing no latches and the path p containing no
n-l

repeated latches then we require e^(Ufc) - r^ttl) > 5Z(A*jui+i - KUiUH1c) + S. These

are also known as the set-up constraints.

short-path constraints For every path p : u —> v, with only combinational elements on

p, we require e^) —r^^ < (duv) + (1 —Kuv)c —H. These are also called the hold

constraints.

A more detailed discussion on these constraints can be found in [64] and [59].

Techniques used to solve these constraints fall into two broad classes — mathemat

ical programming based approaches [52, 64] and relaxation based, or iterative, procedures

such as those in [76, 10] and [65]. The mathematical programming approaches are ideally

suited to find optimum clocking schemes, i.e. given the delays in the circuit, what is the

smallest clock cycle at which the circuit will operate. Although the iterative techniques can

also address optimum clocking (by repeatedly checking different values of clock cycle), they

are more suited to identifying parts of the circuit that fail to meet timing constraints. We

use the timing analyzer hummingbird [76] to identify portions of the circuit that violate

timing constraints.

In designs with level-sensitive latches, the short-path constraints also need to be

satisfied. This leads to a different problem for combinational circuits. The output should

arrive later than an early-required time and before a late-required time constraint. The

traditional approach has been to ignore the short-path constraints under the assumption
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that these paths can be slowed down by adding delays. This is certainly true if delays can

be tailored continuously as in ECL circuits [78]. When the added delay elements can take

on only discrete values, the problem of meeting long and short paths simultaneously is not

as simple. We follow the traditional approach and concentrate on ensuring that long paths

meet desired constraints and ignore the short path constraints.

5.1.1 Optimization based on timing analysis

Timing analysis is used to determine which parts of a circuit fail to meet the tim

ing constraints. These parts then need to be resynthesized. The optimization of sequential

circuits by resynthesis of combinational modules is described in the procedure ANALY-

SIS.REDESIGN.LOOP of Figure 5.1.

ANALYSISJtEDESIGNJLOOP {

Generate initial area-optimized implementation

do {

Use timing-analysis to identify slow paths

Generate performance constraints for modules with slow paths

Select one module and resynthesize

while (timing constraints are violated)

}

Figure 5.1: Analysis-redesign loop for circuit optimization

Timing constraints are easy to derive for circuits that contain only flip-flops and

logic due to the isolation between the logic on either side of a flip-flop. Furthermore, since

there is no possibility of "borrowing" time across flip-flops, the timing constraints on a com

binational sub-circuit are precisely the constraints that are needed to ensure that the setup

and hold-time constraints are satisfied for the flip-flops that surround the combinational

logic.

For circuits containing latches, the generation of constraints for the logic modules

poses an interesting problem. The slow paths may span several combinational modules and

one or more modules may have to be improved to meet the timing constraint along the

path. The problem is to partition the slack along the path into the desired improvement
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for each module. This problem is similar to the problem of distributing slacks across the

connections ofa netlist so that the layout ofthe circuit meets the delay constraint for which

several algorithms have been proposed [47, 20]. The equivalence of the two problems is as
follows — latches in the circuit are in correspondence with the nodes in the netlist and

logic modules correspond to the connections between the nodes. The Zero Slack Algorithm
(ZSA) proposed in [47] starts with computing the initial slacks in the circuit. It then
identifies the path segment with minimum non-zero slack. The excess delay (amount of

violation) is distributed uniformly among the modules on the path segment (the target
delay of the module along the path is reduced). After this the slacks are updated and the
process repeated till every connection has zero slack. At this point if the target delays

for the combinational modules are met by resynthesis then the circuit will operate at the

desired clock cycle. Several variations of the ZSA exist that differ in the way that the

excess slack is allocated among the modules. A popular heuristic is to weigh the allocation

proportional to the existing delay. The Limit Bumping Algorithm (LBA) of [20] provides
a general framework for allocating the excess slack and provides the conditions to test if a
particular schedule of allocating the excess slack will converge or not.

Another method that can be used to reduce timing violations is to movesomelogic

from the critical sections to the non-critical sections. This may be viewed as retiming some

nodes in the circuit. The essential difference between the critical path based movement

of latches and retiming is that the former is applicable to multi-phase designs as well as

circuits containing level-sensitive latches. Even for single-phase edge triggered designs the

retiming algorithm suffers from the limitation that the delay ofeach node is assumed to be

constant throughout the retiming process. In a circuit, this is not the case. As the position

of a latch changes the load that a gate drives may change leading to a change in the gate

delay. The formulation for retiming can be extended to handle accurate delay modeling.

However, doing so destroys the structure of the tableau and the resulting mathematical

programming problem cannot be solved efficiently. Theheuristic procedure ofmoving logic

across latches [4] in response to the slacks in the circuit can handle multi-phase, level-

sensitive systems as well as use accurate delay models.

The clock phases may be tailored as well to meet the target clock cycle. This is

also done based on the slacks generated by the timing analysis tool. The output of timing

analysis identifies paths that are too slow. These paths are terminated by synchronizing

elements — latches or flip-flops. The slack along the critical paths indicates the magnitude
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of the violation of a timing constraint. The clock phases that drive the synchronizing

elements terminating slow paths may be moved apart by an amount equal to the maximum

violation. By setting up a constraint graph which shows the desired separation between the

phases, we can determine if the clock cycle constraint can be met by simply adjusting the

clock phases. After a change is made to the clocking scheme, a timing analysis is carried

out to determine if more changes are required. It should be remembered that these changes

only ensure that the long-path constraints are satisfied. The short-path constraints have

been ignored throughout this discussion and have to be ensured by a post-processing phase

that introduces additional delay elements.

To choose from among the different optimizations that work to ensure that a design

meets the timing constraints, we have introduced an interactive mechanism for the timing

analyzer hummingbird and integrated it into the sis synthesis system. During the interac

tive mode, the user can guide the ANALYSIS_REDESIGN_LOOP. Some of the operations

available during interactive use include:

• Generation of maximal combinational logic clusters and queries regarding the delay

through each cluster.

• Identification of slow paths along with queries regarding the slack of a node (the slack

is a measure of violations of the timing constraints).

• Scaling of clocks and changing the duration of clock phases to ensure that timing

constraints are met.

• Generation of terminal constraints for combinational clusters, resynthesis of the clus

ters using combinational techniques.

• Incremental re-analysis after any of the above changes.

The movement of logic across latches in response to slacks is not implemented in the inter

active hummingbird interface. Repositioning the latches changes the number of latches and

combinational clusters and this prevents incremental re-analysis.

5.1.2 Evaluation of sequential optimization

In this section we evaluate the different synchronous optimizations on an ASIC chip

for speech recognition called viterbi [62]. It was designed by the DSP group at University
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Figure 5.2: Design scenarios for the viterbi chip

of California at Berkeley. The design uses single-phase clocking and all memory-elements

are edge-triggered. The specification consists of behavioral descriptions of the control and

datapaths, and the specification of how these functional blocks are interconnected. The

initial description of the design is converted into the extended-BLIF format [79] that handles

combinational and memory elements in a hierarchical fashion. Currently the conversion

process requires manual intervention.

The initial circuit description is optimized to reduce the area of the design. The

optimization is performed using the sis script script.rugged. The circuit is mapped into

the cell-library lib2.genlib that is part of the MCNC benchmark set [79]. A flip-flop and

a latch, both with delay characteristics of the inv2x inverter, are added to the cell-library to

allow the memory elements to be matched. Figure 5.2 shows a number of ways of reducing

the circuit delay. The choices available are based on the type of optimization (combinational
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optimization or retiming) and the representation on which the optimizations are applied

(on a 2-input gate description or on a mapped circuit). Unmapped representations are

indicated by shaded boxes while mapped circuits have bold edges. Boxes with dashed edges

represent sub-optimal designs. A design is called sub-optimal if there is some other design

that has a smaller area and a smaller delay. We use the notation X <a,d Y to denote that

X is an inferior design to Y with respect to area or delay. If X <a Y then Y has smaller

area than X and if X <& Y then X needs a larger cycle time than Y. A design X is

sub-optimal if there exists another design Y such that X <aY and X <d Y. We denote

the sub-optimality relation by X < Y. Every different mapped representation is labeled

with a letter. The designs may be viewed as points in a design space whose coordinates are

the circuit area and the cycle time. For each labeled design, the design coordinate is shown

in Figure 5.2. A graphical presentation of the design space is made in Figure 5.3.

By using different design scenarios, it is possible to get a range of designs that

differ in their area-delay characteristics. Designs A, B, J, H, I, F and G are optimal.

It should also be noted that a number of designs are produced when combinational timing

optimization called speed-up is applied, one after every iteration of applying local transfor

mations. Thusbetween the pairs (B, J) and (H, I) thereare a number of optimal designs.

The initial area-optimized circuit is mapped for minimum-area (A) and minimum-delay

(B). This is the range of circuits that can be obtained if the only optimization used is gate

selection and buffering. However, since the design contains arithmetic functions that can

be optimized well (e.g. ripple-carry adders) and is highly pipelined (the memory elements

may be repositioned) there is reason to believe that both retiming and combinational opti

mization will produce significant improvements. A 33% reduction in cycle time is obtained

after combinational resynthesis (J). A similar reduction is obtained if only retiming (H)

is applied to the optimized circuit. When these techniques are applied in concert further

reduction in delay is achieved. The fastest implementation obtained is the design labeled

(G). It uses an initial retiming to balance the paths between registers, followed by combi

national restructuring to decrease the number of levels of logic between latches and finally

a minimum-delay technology mapping to generate a fast implementation.

The exploration of the design-space allows us to compare different optimizations

and postulate why some design scenarios produce sub-optimal designs.

C < J Both C and J are obtained by only applying combinational restructuring. The
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Figure 5.3: Area-delay design space for the viterbi chip

optimization to produce J works on mapped circuits where accurate delay data is

available and produces better results.

D < G, K < I In this case the inferior designs, D and K, are the result of retiming

followed by combinational speed.up while the superior designs, G and I, are obtained

by first applying retiming and then combinational speedup. This result is not true in

general. The order of applying retiming and combinational resynthesis impacts the

quality of optimization.

H <d F When the logic is in 2-input gate representation there is a small granularity in

delay and the position of latches can be controlled very precisely. For mapped circuits

the coarse granularity leads to lower improvement. Another contributing factor may

be the delay model used during retiming. Retiming assumes a constant delay between
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any gate input and the output independent of the fanout load. For a gate, the delay

to the output may differ from one input to the next. Setting the gate delay to be the

maximum pin-to-pin delay increases the granularity in delay.

The resynthesis of synchronous circuits in response to timing analysis may use

either combinational restructuring techniques or it may move registers. Both techniques

are orthogonal and it is natural to ask if these two techniques can be combined to create a

powerful optimization scheme. This is addressed in the next section.

5.2 Retiming and Resynthesis

A technique to combine combinational resynthesis and retiming to address area

optimization was proposed in [41]. It is called Retiming and Resynthesis (RandR). The key

idea is to push the flip-flops to the periphery of the circuit, even if it involves temporarily

borrowing latches from the environment. This creates a larger combinational circuit that

can be resynthesized using any technique. Following the resynthesis, the borrowed flip-flops

are returned to the environment using a retiming algorithm.

Moving the flip-flops to the periphery is done by examining the path-weight

matrix. For a circuit with m inputs and n outputs the matrix has a size m x n. The

entries of the path-weight matrix, W, are

W{j = <

* if no path exists between input t and output j

if two paths between i and j have different number of flip-flops

q if all paths from i to j have q flip-flops

For a circuit to be peripherally retimed, W should have no " entries and there

should exist vectors a and /?, such that for all W{j ^ *, W{j = a[i] + (3[j\. In a peripherally

retimed circuit, there are a[i] flop-flops placed after input i and (3[j] latches placed before

output j. An entry in the a and (3 vectors may be negative. This is acceptable even

though there is no physical implementation of a negative flip-flop. The interpretation of a

negative register is that it has been temporarily borrowed from the environment. Peripheral

retiming exposes all the combinational logic as a single module that can be optimized using

combinational techniques. One concern with using RandR is that there is no control on

the delay of the circuit after the procedure has been applied. The retiming that follows

the resynthesis of the peripherally retimed circuit, inserts flip-flops to make the retiming
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"legal" i.e. returns all flip-flops that mayhave been borrowed from the environment thereby

ensuring that no edge weight in the retime graph is negative. There is no guarantee that

the cycle time will be reduced. In order to provide a guarantee on the cycle time, it stands

to reason that the resynthesis of the peripherally retimed circuit be constrained so that the

final retiming produces a circuit that meets the desired cycle time.

It is clear that only acyclic circuits can have a peripheral retiming since any cycle

(which, for a synchronous circuit, must have a flip-flop on it) will result in a " entry in W.

For acyclic circuits, there is no guarantee that a peripheral retiming exist. However, for

pipelined circuit structures like the one in Figure 5.4(a), a peripheral retiming is guaranteed

to exist (the peripheral retiming is shown in Figure 5.4(b)). The negative values represent

flip-flops that have been borrowed from the environment. For such circuit structures it is

possible to generate timing constraints on the combinational logic, C, such that meeting

these constraints ensures that the pipeline meets the desired cycle time after retiming.

A pipelined circuit, P, is described as a directed, acyclic circuit composed of a

number of combinational circuits Ci,...,C/. Each C, may have a set of primary inputs

/, and primary outputs 0{. Flip-flops are used to communicate between adjacent stages.

Timing constraints on.the inputs and outputs are used to represent delays through the logic

that generates the inputs or makes use of the circuit outputs. The timing constraints are

relative to the active-edge of the flip-flops (all flip-flops are triggered on the same clock

event). a'(i) represents the time after the clock event at which the input i is available and

r'(j) represents the time before the clock event that output j must be generated by the

pipelined circuit. The presence of inputs and outputs at different stages of the pipeline

provides greater flexibility than the traditional view of a pipeline in which inputs arrive at

the first stage and outputs are generated at the last stage.

The question arises,"What timing constraints for the combinational circuit

C will guarantee that after resynthesis and retiming the circuit will have a clock

cycle less than the target clock period c?". Clearly, if a specific path between an input

and an output meets a certain delay then flip-flops can be placed along it at appropriate

intervals to equalize the segments between successive flip-flops. The discrete nature of flip-

flop positions results in a coarse granularity with which the desired clock period can be

met. Thus, if the timing constraint for a path with / flip-flops is cl and the largest gate

delay along the path is dmax, then after positioning flip-flops at appropriate points along

the path only a clock period of c + dmax can be guaranteed. Between input If1 of stage i
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(a)

combinational
circuit,C

(b)

Figure 5.4: Pipelined circuit structure
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(with arrival time a*(If*) after the clock edge) and output 0" in stage j (with a required

time r'(Of) before the clock edge) there are (j - i) flip-flops. The time available for logic
computation between this input and output is c •(j - i —1)+ (c - a1(If-)) + (c - r'(Oj)).

Meetingthis constraint will guarantee that the (j —i) flip-flops can be placed to meet a clock

cycle of c + dmax along all paths between J-71 and 0". For every input-output pair a similar

constraint can be specified. It seems unlikely that constraints for every input-output pair

can be satisfied simultaneously. However, by translating the relative arrival and required

times into an absolute frame of reference, timing constraints for the combinational logic C

can be generated that ensure that the desired clock cycle for the pipeline can be met to

within the gate granularity dmax.

We assume that we are given a pipelined circuit P, consistingof / stages C,,..., C\
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and a desired clock cycle c along with arrival times and required times specified relative

to the clock edge. A combinational circuit C, is derived by peripheral retiming as in

Figure 5.4. The inputs ofC are in one-to-one correspondence with the inputs of P. Timing

constraint for input If of C (that corresponds to input If in stage i in P) is set to

be a(If) = a'(If) + (i - l)c and similarly the required time for output 0] of C (the
corresponding output appears in stage j in P) is set to be r(OJ) = r'(OJ) +jc. By doing
so, the timing constraints for P which were relative to the clock edge within a cycle have
been converted into the same absolute time frame.

Theorem 5.2.1 [42] If the combinational circuit C satisfies the timing constraints gener
ated above, then the corresponding pipelined circuit P can be resynthesized to have a clock

cycle ofc + dmax where dmax is the maximum delay of any gate after resynthesis ofC.

In addition to being able to solve the pipeline optimization problem via combina

tional resynthesis, it is also obvious that if the pipeline can be synthesized for a clock cycle
c, then the corresponding maximal combinational circuit C meets the timing constraints
generated above. Since the clock period c is achieved, every segment between successive

flip-flops has delay less than c. In addition paths between input and flip-flop as well as
flip-flop and output have delays such that the path delay and the terminal constraint is less

than c. Using these facts, it is clear that every path between input and output has delay
less than the terminal constraints generated for C.

The equivalence between combinational optimization and pipeline optimization

problems is a useful result. However, for more general feed-forward topologies, a peripheral
retiming is not guaranteed and the synthesis procedure (of peripheral retiming, combina
tional resynthesis with appropriate constraints and finally flip-flop insertion) is not appli
cable. Recently, a procedure to remove retiming bottlenecks in general circuits has been

proposed [15]. A retiming bottleneck is a circuit structure that prevents retiming from
achieving the desired clock cycle. The removal of retiming bottlenecks is based on the

resynthesis of the logic under timing constraints that guarantee that if the constraints are

met then a subsequent retiming will meet the desired cycle time. However, the conditions

to eliminate retiming bottlenecks are only sufficient. It should benoted that for the pipeline
optimization problem the timing constraints were both necessary and sufficient.

For specific cyclic structures we are able to use, with some modification, the

pipeline optimization procedure. This is the subject of the next section.
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Figure 5.5: Standard finite-state machine structure
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5.3 Finite-state machine optimization

A class of sequential circuits that are common in designs are finite-state machines

(FSM's). Figure 5.5 shows a FSM structure. It consists of the set of inputs, /, the outputs

0 and the set of present states PS, along with two combinational functions Aand 6. Ais

the output function map, A: J x PS -*• 0 for a Mealy machine and A: PS -*• O for a Moore

machine. The function 6 computes the next-state (NS) based on the present-state and the

input, i.e. 6 : I x PS -*• NS. The next-state during the current clock cycle becomes the

present-state during the next cycle for which a new next-state is computed. Thus, based

on the state of the machine and the inputs, the machine produces a sequence of outputs

based on a sequence of inputs. Any single-phase synchronous circuit may be viewed an

FSM. To distinguish between FSM's used as controllers and arbitrary synchronous circuits

represented as FSM's, we introduce the notion of standard FSM structure. A standard

FSM represents a structure in which there is at most one latch on any simple cycle or

simple input-output path. A simple cycle or path has no repeated edges along it.

In this section we consider only the standard FSM structure and assume that all

inputs to the combinational logic of the FSM are latched. This is certainly true for the

state inputs. The primary inputs, J, are also considered to be outputs of latches (this poses

no loss of generality since any logic preceding the inputs, in the environment of the FSM,

may be considered to be part of the FSM). The performance of the FSM is determined by
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the maximum arrival time from among the primary outputs and the next-state outputs.

5.3.1 Optimization via unrolling

At first glance it seems that the only option of optimizing standard FSM's is via
combinational resynthesis of the logic. Retiming the FSM cannot reduce the cycle time
since a standard FSM has a single register on every simple cycle. Positioning the register
anywhere along the cycle does not reduce the cycle time. Furthermore, since the structure is
cyclic, no peripheral retiming exists making the application of RandR techniques impossible.
However, on closer examination, we find that the result of Section 5.2 can be applied to the
iterative array model of afinite-state machine. To generate the iterative array representation
the logic is duplicated, along with the inputs as shown in Figure 5.6(a). In such astructure
the the registers can be moved to the boundary as shown in Figure 5.6(b). The movement
of registers to the boundary exposes a larger piece of combinational circuit that can be
optimized. After timing optimization the circuit is retimed to reduce the cycle time.

To experiment with unrolling of FSM's for performance optimization, the sug
gested subset of finite-state machines from the 1991 MCNC benchmark set [79] is used.
These FSM's are specified in symbolic form and acircuit implementation is obtained by us
ing the state-assignment program 3EDI [37]. Table 5.1 shows the results of optimization when
the FSM is unrolled for 1 time step. For each example, the original and unrolled circuits
are optimized using local transformations at the technology-independent stage (Chapter 3).
After resynthesis, retiming is applied to position registers to minimize the cycle time. The
depth refers to the maximum number of levels in the circuit after retiming.

As expected, the area increase as aresult of unrolling and resynthesis is high. There
is also aconsiderable increase the number of registers (since the inputs to the following stage
are latched). Therefore, in order to make this method practical, the area overhead needs
to be reduced. We observe that only the next state functions that have an arrival time
greater than that of the longest input-output path, need to be unrolled. If the delay is
determined by a path from input to a true output, unrolling will be of no use since such
apath will dominate the delay even after resynthesis. Another approach to reducing the
delay of unrolled circuits has been proposed by Malik et.al [3]. In that work, optimization
is performed by deleting connections along false paths in the unrolled circuit. Due to
the very local nature of optimization, the optimized circuit can be re-folded to reduce the
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original
unroll

registers
lits

depth

Example original unroll

latches lits depth latches lits depth

cse 4 353 19 42 831 16

donfile 5 163 11 41 471 9

dkl6 5 460 22 51 1132 20

dk512 4 117 7 14 221 7

exl 5 440 16 60 938 19

keyb 5 363 18 35 800 18

styr 5 874 23 44 1799 22

si 5 336 14 14 686 13

sla 5 357 15 54 758 14

tbk 5 447 17 56 1068 16

tma 5 350 15 41 715 15

Iterative improvement applied to the combinational portion of the FSM
Single stage unrolling, resynthesis followed by retiming
Number of registers
Number of literals (in 2-input gate form) in the logic
Depth of the combinational logic in 2-input gate form

Table 5.1: Optimization via unrolling of FSM's
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Figure 5.6: The iterative array structure

area overhead. We are investigating the effectiveness of re-folding when a more general

restructuring technique is used.

The optimization of FSM's to exploit multi-cycle optimizations (be it via the elim

ination of multi-cycle false paths or simply by restructuring the logic) provides a degree of

optimization that goes beyond the Retiming and Resynthesis approach. Sequential circuit

optimizations may be viewed as generating different encodings of equivalent symbolic ma

chines. Even though this view provides very little intuition as to why some techniques

work better than others, the process of assigning binary codes to the symbolic states is an

important part of synthesis. The next section describes some methods of state assignment

and their impact on circuit size and delay.
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5.3.2 Performance directed state assignment

For finite-state machines described in symbolic form, the encoding of the symbolic

states with binary values provides an additional degree of flexibility. This process is called

state-assignment and several techniques have been proposed to produce implementations

that have small area — [72] for two-level implementations and [37, 55] for multi-level repre

sentations. However, there has been no state-assignment method that addresses the delay

of the encoded circuit.

In an attempt to address this question, two extreme state-assignment methods

are compared. At the one end are minimum-width encodings that use a small number

of bits to encode the symbolic states. The other extreme is the 1-hot encoding strategy

where the length of the binary encoding is equal to the number of symbolic states. In

the case of manually described FSM's used in controllers most states have relatively few

predecessor and successor states. For such machines 1-hot encoding results in relatively

simple logic equations describing the transition from one state to another. The drawback

of 1-hot encoding is that the number of registers required to store the state of the machine

may be large.

For both types of state-assignments, using JEDI for minimum-width encoding and

using 1-hot encoding, further optimization is performed by exploiting the don't cares that

correspond to the set of unreachable states. These don't care conditions are exploited

using the SIS script script.rugged. The area-optimized circuits are then subjected to

performance improvement via local transformations to reduce their depth. TDD_2cube is

used as a local transformation with the "compromise" strategy and a depth of 3 for the

scope (refer to Chapter 3 for details). Table 5.2 shows the outcome of this experiment.

The experiment shows that 1-hot encoding results in smaller delay. Intuitively, this

is to be expected since the 1-hot encoding adds the least amount of logic to the minimum

required to compute the next-state function. Consider any state t. For t to be generated

as the output of the next-state logic, the inputs and present-state should correspond to one

of the edges that lead to state t. Thus

x(t)= £ /(M)-xW
sGpred(t)

where I(s,t) is the input condition under which a transition occurs from state s to state

t and xia) 1S a function that evaluates to 1 for state a. For a 1-hot encoding, each state
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Example JEDI 1-hot

registers lits area depth registers lits area depth

cse 4 353 385 19 16 379 507 7

donfile 5 163 203 11 24 370 562 5

dkl6 5 460 500 22 27 428 644 9

dk512 4 117 149 7 14 113 225 6

exl 5 440 480 16 20 343 503 12

keyb 5 363 403 18 19 445 597 11

stvr 5 874 914 23 30 704 944 12

si 5 336 376 14 20 592 752 11

sla 5 357 397 15 20 375 535 9

tbk 5 447 487 17 32 1307 1563 12

tma 5 350 390 15 20 245 405 9

JEDI , 1-hot Method used to assign binary codes to symbolic states
registers Number of registers used
lits Number of literals (in 2-input gate form) in the combinational logic
area equal to lits + 8 x registers
depth Depth of the combinational logic in 2-input gate form

Table 5.2: Effect of state-assignment on delay

is represented by a single variable and so the complexity of the next-state function is only
slightly more than theminimum required (the sum ofthe input conditions for the transition

to state t).

The size ofthe optimized combinational logic may be higher for the 1-hot encoding

since there are more outputs to be generated. The number ofregisters is certainly larger for

the 1-hot encoding as compared to minimum-width encodings. This results in the area of
1-hot implementations being high. As a means ofreducing the areaoverhead we would like

to reduce the number of registers while ensuring that the logic cost and the circuit delay

do not increase significantly.

An extension of the 1-hot encoding methodology is fc-hot encoding wherein each

state code has exactly k bits that are set. A simple computation helps us determine what

value ofk to use. Figure 5.7 shows how an implementation ofa machine with fc-hot encoding
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derived from a 1-hot encoded machine.

For an FSM with N states, the number of registers, M, required when A>hot codes

are used is given by the equation

< N <

Asymptotically M ~ 0(N1/k). The decoding logic consists of N functions, each of which

produces one input to the the 1-hot encoding logic (corresponding to a state). Each state

is determined by a conjunction of k variables. Thus the complexity of the decoding logic

(without any sharing of common cubes) is kN. For the encoding logic that follows the 1-hot

logic, there are M outputs to be produced from the N inputs. For every state, k of the M
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outputs are turned on. Thus, each output is turned on for approximately f ~ | states.
V *-! /

The complexity of the encoding logic is therefore MI ~ J. Since M~0(Nllk), the
output logic has a complexity that is of the order of N.

By using a fc-hot encoding, an additional area of (k + 1)N is required over the 1-
hot implementation. However, the number of registers reduced from N to N1^. Assuming
that a register has an area equal to C literals (typically C = 8), the area of the fc-hot
implementation exceeds the area ofthe 1-hot implementation by

(k-rl)N-C(N-N1^)

For a choice of C = 8 and small values of k, the area of the 2-hot implementation has
smaller total area than the 1-hot implementation. The largest reduction in area occurs
for k = 2. As is clear, there is a delay penalty associated with the fc-hot encoding. The
initial decoding logic consists of gates with k inputs. These can be represented using a
circuit of depth [log2 k]. Similarly the encoding logic consists of gates with approximately

I inputs and so the depth of the encoding logic is logarithmic in this number.

For large N, the depth of the output logic is simply (1 - l/fc)log2 JV. Thus the depth
of the circuit increases by \\og2k] + (1 - l/fc)log2 JV. The additional depth increase is
smallest for k = 2. This calculation is very approximate as it ignores that arrival times of
the outputs of the 1-hot implementation. For the case when these arrival times are skewed,
the trees generating the encoded next-states can be implemented in depth much less than
the suggested value of (1 - 1/k) log2 N.

This approximate computation suggests that 2-hot encoding ofFSM's would yield
a compromise solution, one that has depth close to that ofthe 1-hot implementation andarea

that is better than the 1-hot machine. In assigning the 2-hot codes, there is a certain degree
of optimization that can be performed. Neighboring codes are assigned to states that result
in the same next state under the same input. This allows common cubes to be extracted

from the implementation. Recall that the state-assignment program mustang [14] uses a
similar heuristic to assign codes. The difference between 2-hot encoding and mustang is
that the codes in the latter are not restricted to have only 2 bits set. Table 5.3 shows the

total area (measured as the sum of the logic and register area) and the depth of circuits



5.3. FINITE-STATE MACHINE OPTIMIZATION

Example JEDI 1-hot 2-hot

area depth area depth area depth
cse 385 19 507 7 532 10

donfile 203 11 562 5 486 9

dkl6 500 22 644 9 815 9

dk512 149 7 225 6 200 7

exl 480 16 503 12 550 11

keyb 403 18 597 11 812 12

styr 914 23 944 12 1113 12

si 376 14 752 11 813 10

sla 397 15 535 9 755 10

tbk 487 17 1563 12 1858 13

tma 390 15 405 9 425 8

JEDI , 1-hot, 2-hot Method used to assign binary codes to symbolic states
area equal to lits + 8x registers
depth Depth of optimized logic in 2-input gate form

Table 5.3: Comparison of state assignment techniques
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obtained using JEDI , 1-hot and 2-hot encodings.

For this experiment the 2-hot encoding did not exploit any optimization from as

signing codes based on the mustang heuristic. Long run-times were encountered when

optimizing circuits that were assigned binary codes using the 2-hot heuristic based on mus

tang. The reason for this is under investigation. One possible explanation may be based

on the structure of the don't care set that corresponds to the unreachable states. If the set

of reachable states is S, then the representation of the don't care set corresponding to the
unreachable states is

V li'h

Since the sum-of-products representation of such functions can be very large, the sis com

mand full_simplify fails to finish in a reasonable amount of time. Only 5 of the 11

examples finished in reasonable time when the area-saving heuristic of mustang was used

to generate 2-hot encoded implementations.
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The results of this experiment indicate that the 2-hot encoding style has area
and delay comparable to the 1-hot encoded machine (assuming that a register has an area

equivalent to 8 literals). The depth ofthe circuits encoded using JEDI is consistently larger.
The reason for this may be twofold — the next-state equations are more complex and
the greater sharing between the next-state functions (that results in smaller area) leads to
greater depth of the optimized network. Surprisingly, the 2-hot encoding has area worse
than the 1-hot encoding. Apart from not using the area-saving heuristic to assign 2-hot
codes we also note that the asymptotic computation does not hold when the machines have

a small number of states. The 2-hot implementation was not generated from the 1-hot

implementation by appending the encoding and decoding logic. Instead, 2-hot codes for

the states were used to generate the initial two-level description of the logic which was
subsequently optimized. It is unclear how the state-assignment affected the subsequent
performance optimization.

5.4 Limitations of current approaches

In previous sections we formulated the combinational optimization problem by
specifying performance constraints in the form ofinput arrival times and output required
times. This formulation is adequate when there are only flip-flops in the design. The
clocking scheme gives rise to arrival and required time constraints for the combinational

logic bounded by flip-flops. In designs containing level-sensitive latches, logic paths extend
over multiple cycles and it is the total delay along a path that determines whether timing
constraints are met or not. Section 5.1 described briefly the constraints that need to be met

for proper circuit operation of level-sensitive circuits.

If short-path constraints are ignored then the long-path constraints lead to con

straints between latch outputs and latch inputs. For a piece ofcombinational logic with m
inputs and n outputs, the point-to-point specification of constraints consists of mn values.

Cij is the constraint on the longest path between input J, and output Oj. In the absence
of point-to-point optimization, we would like to set appropriate terminal constraints (ar
rival and required times) such that meeting the terminal constraints will ensure that the
point-to-point constraints are met.

One way of doing so is to assign all the inputs an arrival time of 0. The output
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Oj is assigned a required time

r(Oj) = . min c{j Vj = {1,..., n}
t€{l,...,m>

However, this may drastically overconstrain the problem. We would like the optimization

problem specified by the terminal constraints to be "similar" to the one posed by the point-

to-point formulation. Since there are only m + n terminal constraints compared to mn

point-to-point constraints, the terminal constrained problem has a smaller feasible region

that is contained in the feasible region for the point-to-point constrained problem.

It is possible to treat the arrival and required times as variables and then determine

the values that provide the greatest flexibility in optimization by solving a mathematical

programming problem. If at- represents the arrival time of input /,- and rj represents the

required time for output Oj, then in order to satisfy the point-to-point constraint between

/,• and Oj we require that

(rj - a{) < cij V(t\ j)|e,-j < oo

These inequalities need to be satisfied for any set of terminal constraints to be consistent

with the point-to-point constraints. For each solution to the inequalities, we derive a mea

sure of how much the terminal constraints overconstrain the optimization compared to the

point-to-point constraints. The delay between an input-output pair, rftJ, is less than rj —a{.

We would like this delay to be as close to the constraint. In other words we would like

to keep c^ - rj + a, small. Since there are many valid input-output pairs, we consider

the objective function to minimize the sum of this difference. This poses a linear objective

function. This formulation is called CAV (Cumulative Absolute Violation) and its linear

program formulation is

subject to

min 5Z (cu + ai ~ rj)
(*\J)|cO<°°

(rj - a,) < dj V(i, j)|ctj < oo

a, > 0 i = {l,...,m}

rj>0 j = {l,...,n}

Example

Consider the following set of point-to-point constraints for a circuit with three inputs and

three outputs. The c^ values are specified in arbitrary delay units (du).
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cij h h h

Ox 4 2 6

o2 6 1 4

Oz 4 3 6

If all the inputs are given arrival time equal to 0, then the required times at the outputs

are forced to be r(0\) = 2, r(02) = 1, r(0$) = 3. The total overconstraining that this

causes adds up to 16 du. On the other hand, solving the linear program formulation results

in the solution a(Ii) = 2, a(I2) = 3, a(I3) = 3, r(Oi) = 5, r(02) = 4, r(Oi) = 5 with

an objective value of 6. Thus this assignment of terminal constraints overconstrains the

original problem by only 6 du. The path between I\ and Oi has been constrained the worst

— a target constraint t\i = 6 has been reduced to a path constraint of 2 du (r(02) ~ a>{h)

= 2). Such a severe overconstraining (the new target is 33% of the actual constraint) may

not be desirable. One way to avoid this is to introduce scaling factors into the objective

function. The objective function

min £ (oi-o-Vey

results in the problem CPV (Cumulative Percentage Violation) since it minimizes the per

centage violations. For the above example, the CPV formulation gives the same solution as

the CAV formulation.

A linear sum of the violations provides an objective function that judges the total

violation. This may result in severly overconstraining some paths. In practice, it is possible

to achieve only a certain degree of speedup along a path. Therefore an alternative objective

may be to minimize the maximum absolute violation (MAV) or to minimize the maximum

percentage violation (MPV). The problem MAV results in the following mathematical pro

gramming problem

subject to

min max (ctJ- + a,- —rj)
(»'.i)|cij<oo

(rj-- a,-) < Cij V(i,i)|ctJ < oo

a, > 0 t = {l,...,m}

rj>0 j = {l,...,7l}

By setting ctJ + a,- —rj to be another variable A',-j and introducing a parameter p that
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exceeds all the Ii\j values, this problem can be rewritten as a linear program.

minp

subject to

0<(Kij)<p V(i,i)|ctj < oo

(Kij) = c^ + ai - rj V(i, j)\cij < oo

at > 0 i = {l,...,m}

rj>0 j = {l,...,n]

When applied to the example in this section, the MAV formulation produces the following

terminal constraints — a(h) = 0, a(I2) = 3, a(I3) = 0, r(Oi) = 4, r(02) - 4, r(Oi) =

4. The maximum violation for any path is just 2 du as opposed to the 4 du for the CTV

and CPV formulations. The total violation, over all paths, increases from 6 du to 9 du.

This solution has the drawback that between J2 and O3, a delay constraint of 3 has been

replaced by a constraint of 1 (a 66% decrease in the constraint).

The maximum percentage violation can be reduced to 44% by using the MPV

formulation. The MPV formulation is identical to the MAV formulation except that the

constraint relating p and A\j's is replaced by

0 < Kij < pcij V(i,i)|c,j < 00

The solution for the MPV formulation is to set a(h) = 0, a(I2) = 2.33, a(I3) = 0, r(Oi)

= 3.44, r(02) = 3.33,r(Oi) = 4. The total violation increases to 11. However, using these

terminal constraints, no path is constrained by more than 44% over the point-to-point

constraints.

The above experiments and formulations provide two different objectives that can

be used to judge the quality of the terminal constraints in approximating the point-to-point

constraints. The CAV formulation is useful as a measure of getting the circuit into a config

uration that has the least violation. It may result in severly overconstraining some paths.

This can be overcome using the MPV formulation which will reduce the overconstraining to

be a small fraction of the current constraint. Since it is difficult to judge the potential for

reducing delays along specific paths, there is no straightforward way of determining which

formulation will be more likely to succeed.
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5.5 Conclusions

The optimization of synchronous circuits is the key problem that is addressed in

this thesis. The techniques of combinational logic resynthesis developed in the previous

chapters are used to reduce the cycle time of a synchronous circuit. For general cyclic cir

cuits the generation of constraints on combinational logic is done using heuristic techniques

whereas in the case of pipelined circuits the timing constraints on the combinational logic

are tight, i.e. those constraints are necessary and sufficient to meet the desired cycle-time

for the pipeline.

The need for a more general "point-to-point" optimization is introduced. This

type of optimization procedure can address multi-cycle paths that have not been addressed

in this chapter. Short-path constraints have also been ignored in this discussion. The

presence of such constraints results in ensuring that the delay along specific paths lie within

a range. The lower limit of this range is required to satisfy short-path constraints while the

upper-limit ensures that the long-path constraints will be satisfied. The presence of two-

sided constraints on path delays requires accurate delay computation. We have used the

topological delay as an approximation of circuit delay. More accurate delay computation

that accounts for the variability in gate delays and the logic functionality of gates [44] needs

to be used. This complicates the analysis problem and the optimization problem under such

conditions is overwhelmingly difficult.

To explore the full range of synchronous circuit optimization — the reposition

ing of registers, modification of the clocking scheme or re-encoding the symbolic machine

— a change in design methodology may be required. The use of these optimizations may

be restricted by the design-methodology used at a particular design site. As an example,

consider the repositioning of registers. This optimization may not be allowed when simula

tion data for a design has been designed based on specific latch positions. By moving the

latches the simulation data may be invalidated. Design methodologies may constrain the

degree to which synchronous optimizations can be applied. However, for designers of high-

performance systems who want to explore the full range.of optimizations, these techniques

offer considerable advantage over the traditional synthesis techniques of only modifying the

combinational logic.



155

Chapter 6

Conclusions

The main contribution of this research has been to develop an understanding of

the factors that affect the circuit delay. This understanding has allowed us to build an

optimization procedure that can exploit the many different techniques available to reduce

the circuit delay at different stages of synthesis.

The application of delay improving local transformations (those that provide an

improvement in delay locally) to affect a global decrease in delay has been proposed. The

proposed algorithm to improve the circuit delay can identify the parts of a circuit that have

to be improved to guarantee a decrease in delay and is able to predict the amount of im

provement that is possible. A set of transformations that meet this predicted improvement

with a small cost in area can be selected. The application of local transformations presents

a framework in which different optimization techniques can be simultaneously leveraged to

reduce circuit area. This flexibility allows a circuit designer to use the power of all the

existing techniques to improve the performance of their circuits. It should be mentioned

that local transformations may be used to reduce the depth of an abstract representation

of a function or to minimize the delay of a mapped circuit. In the latter case the local

transformations also include buffering techniques that enable a gate to drive a large num

ber of destinations without a significant loss in speed. A top-down algorithm that generates

fanout-trees with close to the minimum area and delay has been proposed. It outperforms

other techniques suggested in the literature if the area-delay product is used as the com

parison measure. However, improvements to existing procedure are required to make the

application of local transformations on mapped circuits competitive with other heuristics

like that of [18].
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For circuits containing memory elements, an additional degree offlexibility is avail

able since the registers may be repositioned without changing the circuit functionality. The

different techniques that are available to get a circuit that can be clocked faster — opti
mization ofcombinational logic, moving registers and changing the clocking scheme —can

all be treated as transformations that exploit the slack along a path to reduce the violation

ofthe timing constraints. For circuits that have special structures like pipelines or standard
FSM structures, optimizations that exploit that these structures are presented. For pipeline

circuits, the latches can be moved to the periphery of the circuit to expose the maximum

amount of combinational logic to timing optimization techniques. Finite-state machines

may be unrolled over several time periods to create greater opportunities for optimization.

The techniques presented in this thesis augment the manual improvement tech

niques currently used by designers. Although no theoretical bounds can be proved on the

quality ofthecircuits generated, experimental results indicate that the techniques are useful
in improving the delay ofsynthesized circuit. The optimization of an entire ASIC chip has
been performed to demonstrate the application ofthe proposed techniques to improve the
performance of the design.

In conclusion, logic synthesis enables designers to

design circuits fast

and the current research adds to the capability by being able to
design fast circuits.
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