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Abstract

Sheath waves have been investigated analytically and with particle simulation for an unu'lag-
netized two dimensional plasma slab with periodic boundary conditions in y and conducting
walls at z == 0, L;. Analytically treating the sheath as a vacuum layer, the sheath wave bears a
resemblance to plasma vacuum surface waves. The simulations are in agreement with the the- V
ory for both bulk Bohm Gross waves and edge sheath waves, with some unanswered questions.
Some waves that were expected did not show up, at least, where we thought they should be.
Hence, improvements were made in the initialization (a better quiet start), in the diagnostics
(especially the spectra in frequency), and in the excitation (ability to pulse). It has become clear
that this problem, seeking both sheath (or surface) and bedy waves in a bounded system, needs
far more attention, in analysis (non-uniform density included) and in simulation, especially in
diagnostics. Hence, this report is to be treated as a start on the problem. The problem is not
dropped, as the understanding of such waves (in 2d and 3d) is very important, for both basic
sheath understanding and for applications, such as plasma control via excitation of sheath or
pre-sheath waves.

1 Introduction

It is well known that there is a great variety of waves in a plasma that is well neutralized (n; ~ n,.)
and does not have sharp gradients in field or density quantities. Waves also exist at the plasma
edge or sheath where there is large charge imbalance (n; # n.) and where the gradient scale lengths
are on the order of the electron Debye length in the unmagnetized case, or on the order of the ion
gyroradius in the magnetized case. These waves have received less attention in the literature. This
paper is a report on electrostatic waves propagating along the unmagnetized plasma edge or sheath.
Both analytic theory and computer simulation are used to study the sheath waves. The computer

simulation may be viewed as an computer experiment as the simulation model is constructed from



first principal physics with a minimum of approximations or assumptions.

Before we start on the two dimensional theory and simulations, let us review the results of one
dimensional simulations [1]. The one dimensional simulations are bounded by perfectly conducting
walls which are connected by an external RLC circuit with optional voltage and current sources
(see Fig. la). The simplest boundary conditions for which sheath formation is observed is the short
circuit where the reference potential or voltage on both walls is set to zero. The device is initially
filled with warm electrons at a density n.o. The electrons have a full Maxwellian velocity distribution
at a temperature T;. The ions are treated as an immobile background with a density njo = neo so

that the system is initially neutral. The device length is about 50\ p..

During the first few time steps of the simulation, some of the faster electrons flow to both walls
(see Fig. 1b and 1c)and are lost, leaving a net positive charge in the plasma near the walls. The
potential in the center rises to edmidate = few T; (see Fig. 1d). The remaining electrons are trapped
by the repelling fields of the sheaths at the absorbing walls (see Fig. le). The sheath, with enforced
uniform ion density, is sometimes called a “matrix sheath”. Oscillations in @middie are observed at a
frequency close to wp, (see Fig. 1f and 1g). Oscillations are observed in the external current at the
series resonant frequency(2] associated with the ky, = 0 (cutoff) asymmetric mode (see Fig. 1h and
1i). We also found that some slow particles are t.rapped in localized phase space vortices, possibly
due to standing Bohm-Gross waves.

Repeating the same initial conditions in a model with mobile ions (protons) give much the same
results except that both species gradually went to the walls.

The two-dimensional computer experiment is expected to behave much the same way. What
we have done is to find waves propagating near and along the wall (not allowed in the 1d model),
separate from bulk plasma waves. Plasma surface waves in general may be excited when the plasma
is in contact with another medium, e.g., a vacuum or a conducting wall. Classical examples of these
waves include the Gould-Trivelpiece (G-T) modes in plasma filled waveguides [3]. A sheath waveisa
surface wave specific to the case of a plasma bounded by a conducting wall. This wave is somewhat
similar to the surface wave occuring at a vacuum plasma interface [4, 5].

Recent interest involving surface waves has been motivated by anomalous impurity concentrations
and edge heating observed in tokamak ion Bernstein wave experiments [6]. A possible explanation for
the observed anomaly has been given as an additional class of waves near the antenna, sheath-plasma
waves(SPW), which propagate on the high-voltage rf sheath driven by the antenna [7]. The L-H
mode transition observed in tokamaks, controllable by biases on divertor plates, implies edge plasma
control of the bulk plasma (n and T.) profiles[9]. Sheath waves also may have effects on sheath
formation in plasma processing chambers and thus merit further study. And, of course, sheath and
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Figure 1: 1d bounded simulation model and result. Fig lc. Snapshot of electron density vs. xatz > 0.
Fig le. Snapshot of electric field vs. x, showing the electric field is almost zero in the bulk plasma.
Fig 1d. Snapshot of potential vs. x, showing sheaths adjacent to the walls.
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pre-sheath waves may determine bulk plasma behavior, in other ways yet to be identified.

Sheath waves are the result of charge imbalance when electrons collide with the sheath potential.
We have begun our sheath wave studies by developing a theory for the case of an unmagnetized
electrostatic plasma bounded by conducting walls. The sheath waves are assumed to propagate
parallel to the walls and the time-average plasma sheath potential drops are perpendicular to the
walls. In the plasma bulk, Bohm Gross waves are expected. We have also developed a two dimen-
sional particle simulation that can check our theory. The code is sufficiently general to treat other
problems besides unmagnetized sheath waves.

The plan of this paper is as follows. In the second section, we develop a the kinetic theory of
sheath waves. In the third section, we describe the simulation model for the unmagnetized, bounded
plasma. In the fourth section, we compare theory and simulation results for waves in the bulk and
in the sheath. In the fifth section, we make some concluding remarks.

2 Kinetic Theory for Unmagnetized Sheath Waves

We assume a uniform two dimensional plasma of width L bounded by two static sheaths of width A
as indicated on Fig. 2. The system is bounded in the z direction by two parallel conducting plates.
The static sheaths are modeled as vacuum layers for the electrons, i.e., the electrons are assumed
to be reflected on entering the sheath. The ions are treated as immoble with uniform density no,
wall to wall. This contrasts with Decyk and Dawson’s model (where A — o0) because although
both models have electron reflection, our model has a finite sheath width A. It is the consideration
of the sheath that also contrasts this model with the Gould-Trivelpiece model for waveguide modes
where A—0. The sheath waves propagate in the y direction and so the y boundary is taken to be

of infinite extent, i.e. periodic over one or more wavelengths.

The linearized kinetic equation for the perturbed electron distribution function f, perturbed
about a Maxwellian F,,, and the equation for the perturbed electrostatic potential ¢? in the plasma
region may be written

af . Of e OFm _
E-Fv'a?-*';V‘ﬁ"ﬁ-oa (1)
V3P(z) = 4ﬂ'e/fd30, (2)

where ¢ = ¢P+4¢" is the superposition of the particular solution of Poisson’s equation (superscript p)
and the homogeneous solution of Laplace’s equation (superscript v). Only the particular solution is
given by Eq. (2). The homogenous solution will be similar to the solution of the perturbed potential
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Figure 2: Model for the 2d sheath plasma wave calculations, showing a plasma of length L
bounded by sheaths of width A.



in the sheath region. In the sheath region, the perturbed potential satisfies the equation
vip =0. (3)

Assuming an unperturbed electron number density no only in the plasma region gnd short circuit
boundary conditions, the unperturbed potential takes the usual parabolic form in the ion only
sheath regions (called “matrix sheath”) and flat in the plasma region. The unperturbed functions

are constant in y.

Reflecting boundary conditions for the electron distribution function are
f(z=A,9,050y,0;) = f(z = Ay, —vz, vy, 05), : (4)

fz=L+A,y,vs, vy, v)=fz=L+A,y, —0s, Uy, vs). (5)

Boundary conditions for the electric potential ¢ are that ¢ and 4/8z must be continuous at z = A
andz=L+Aand ¢ =0at z=0and z = L+ 2A for the short circuit boundary condition.
Boundary conditions in y are periodic.

To proceed analytically, we assume that any perturbed function a has the form a(z,y,t) =
a(z)ei*s9-v*), Note that periodicity in y is automatically satisfied by k, = 2nw/Ly. The solution
to Eq. (3) for the potential in the sheath region is ¢ = ¢(z)e’(*»¥=“*) where

#(z) = Asinh(kyz),0 < z < A, (6)

and .

¢(z) = Dsinh[ky(L +2A - z)},L+ A <z < L +2A. (7

Note that these solutions satistfy the short circuit boundary conditions. The homogeneous, or

vacuum part, of the potential in the plasma region has a similar form to Egs. (6) and (7):

¢'(z) = Be~*v(z-4) + Cekv(e-L-8) (8)

We take the particle reflection conditions, Eqs. (4) and (5), into account by assuming that a
particle moves freely along z and })y continuing the potential ¢P(z) as an even function beyond
the two end surfaces at z = A and z = L + A. If a particle is reflected, it would have seen the
same poten_tial going from the reflection plane as it would going towards the reflection plane. This
is accomplished by continuing ¢? as an even function and therefore periodically along the entire x
axis. We expand (for the even solutions) the potential ¢P(z) in a Fourier series on the interval ( A,
L+ A). ‘

PE)= Y alks)cos(ks(z - A)). (9)

ky=n»/L=0



Thus the solution in the plasma region becomes

[ -]
¢(z) = Be~%(*=2) | Cekrlz-L-0) 4 Z a(kg) cos(ks(z — A)). (10)
kg=nx/L=0
For all sums over k,, the k; = 0 term should be multiplied by 0.5. Alternatively, we could write
#(=) in this region as

b@)= Y d(ks)cos(ka(z - A)). (11)

ke=nx/L=0
The relation between a(k;) and ¢(k,) is easily shown to be

é(ks) = a(ks) + e~*vL cos(k, L)][B + Ccos(k; L)). (12)

IE Bi-
By applying the technique of integrating along the unperturbed trajectories of Vlasov’s equation,
Eq. (1), and using the form of ¢ given by Eq. (11), the perturbed distribution function f becomes

(8]

- eFm < i(ka(3-0))+kyy—-wt) EsVz cO8(k< L)
f(&,5,8) = -3 _E;H.ﬁ(k,)e ’ s (13)

Next, f(Z, 7,t) is integrated over velocity space and used in Poisson’s equation, Eq. (2), with the
form of ¢P given by Eq. (9). The result is
a(ks) = $(k2)[1 - e(k,w)), (14)
where €(k,w) is the dielectric function for an infinite plasma
e(k,w) = 1+ who[1 +CZ(Q)]/K* v, ¢ = w/V2kvre (18)
and Z(() is plasma dispersion function.

Equation (12) may be used in Eq. (14) to obtain

a(ks) = (1/e(k,w) — 1)12_' :: 2[1 - e ¥+ cos(k, L))[B + C cos(k:L)). (16)
Substituing Eq. (16) into Eq. (10), two homogeneous equations for the two unknowns B and C may
be obtained by matching the Eq. (10) and Eqs. (6) and (7) at the vacuum-plasma interfaces z = A
and z = L + A. The boundary conditions are ¢(z) a.nd < to be continuous, which yields

B=+C (17)

and

D(k,u) = tanh(k, &) + 2 ) m ~0 (18)

k: =nz/L =-00

n = even, odd



where we have used 1+ cos(k;L) = 0,2, é(k,w) is an even function of k; and the relation

i 1 _ -,{‘r,coth(i',i), even | (19)
B +k | & taoh(34F), odd

k; =nw/L =-o0

n = even,odd

The upper sign in Eq. (17) corresponds to modes which are symmetric about the midplane of the
slab. For this mode only even values of n appear in the sum in Eq. (18). The lower sign in Eq. (17)
corresponds to asymmetric mode and for it only odd values of n appear in the sum in Eq. (18).

Equation (18) is a general formula for the dispersion relation of the plasma oscillation in the
presence of two conducting walls. We seek a complex frequency solution, w = w(ky) + i7(ky) of
Eq. (18) first in the long-wavelength limit so that kyAp. < 1. In this limit, the plasma dispersion
function reduces to

2 2 k3,2 23 1w -t
e(k,w)=1- %«;ﬁ - %iww‘_"h + ,-\/;;F:.;Tﬂe o (20)
e

Let us look first at w < wp,, from Eqs. (18) and (19), we obtain

th(Xzk) — E2 coth(2t
D(ky,w) = tanh(k;A) + ———{ (:L) T (: L (21)
¢ | tanh(=%*) — X tanh(=%")

w

where

=k 4+ 3—wz—((..)2 -w?) (22)
TV U 3wied, Pl

Comparing the sheath wave with the surface wave occuring at a vacuum-plasma interface, (i. e.,
A — 00), the main difference is that vacuum dielectric constant € is coth(kyA) in the sheath wave
case instead of €g = 1. Furthermore, Ref. [4] uses a warm electron fluid model of the plasma while
we use a fully kinetic model. This results in differences in the last terms of Eqs. (21) and (22) when
compared to similar equations in Ref. [4]. From Eq. (21) we obtain the following dispersion relation:

J3

I S P AT tanhkAtanhk—’é). 23
N \/1+coth(5z£)coth(k,A)( 2 ’D\/ () taah(3 )

for the symmetric sheath wave modes and

Y. . S— (1 + ?k,ap,\/zanh(k,A) coth(fyz—l' ) . (24)

\/1 + tanh(X2E) coth(kyA)

for the asymmetric sheath wave modes. Egs. (23) and (24) have been plotted on Fig. 3 as a solid
curve and a dotted curve, respectively, for L = 38Ap. and A = 2Ap..
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Figure 3: Disperson relations for electron waves calculated from kinetic theory and the simulation
results. Bolim-Gross waves are shown as a dashed curve (k; = 0), top, asymmetric sheath waves as a
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which also is &, Ly/2 = 0.42,



In the limit k,A >> 1 and kyL >> 1, both symmetric and asymmetric modes merge and the
semi-infinite vacuum-plasma (or isolated slab) electron surface wave results are recovered [8]:

. w= % (1 + ?k,:\p,) . (25)

We find that the collisionless damping of the sheath waves in the limit kyL > 1 is the same as the

semi-infinite vacuum case [5):
/2
Yo = Wpe ;k,z\pc. (26)

In the opposite limit, kyA € 1 and kyL < 1, we find from Eq. (23) and (24) that the symmetric
mode frequency goes to zero and asymmetric mode frequency becomes the plasma series resonance(2]

=w ‘/ (27)
\/ 1+ 3% A
(The series resonance was observed in 1d simulations shown earlier in Figure 1.)

In the cold plasma approximation, comparing sheath waves in a planar system with Gould-
Trivelpiece (G-T) waves in a plasma waveguide, we find that both waves are generally the same.
For both symmetric sheath waves in a slab and circularly symmetric G-T waves in a pipe, wave
propagation occurs fromw =0 tow = % Asymmetric sheath waves in a slab and G-T waves in a
pipe with an m = 1 mode angular variation both have the same high frequency limit w = ”ﬁ and
exhibit a lower cutoff frequency. The lower frequency limit of G-T waves is [3]

W= ——r (28)
1+ e

where a and b are the radii of the plasma column and the conducting cylinder, respectively. The
lower frequency limit of sheath waves in a slab is given by Eq. (27). The lower frequency limit of
sheath waves in a slab is much lower than wp, since generally A € L. The lower frequency limit of
G-T waves is much lower than w,, only if a ~ b. It is worth noting that A for the sheath waves is self
consistently determined by plasma properties and wall conditions at equilibrium and that electron
reflection boundary conditions are satisfied by equilibrium sheath potential.

Equations (18), (20) and (22) lead to the frequency and the spatial damping for the sheath waves
because 73 in Eq. (22) may be positive. Equations (18), (20), and (22) lead to the frequency and
the z wavenumber k; for bulk waves because 7> may be negative. Thus, if w > wpe, Eq. (20) gives
the usual Bohm-Gross plasma waves which have also been plotted on Fig. 3 as the dashed curve
(for k; = 0). The propagating bulk waves satisfy the usual infinite plasma dispersion relation

3
w=wh, + -2-(k§ + k3)v3.,, (29)



where k; = /=77 is determined by Eqs.(18), (20) and (22) as

14 12(k3 4+ k2)A3, -1
m(%f) = -:i canh(k,A)\/ L 4 eanh(ﬁ'zi‘) : (30)
y »/1 +12(k3 + k3)A3, +1

It is clear from inspection that this equation has an infinite number of roots k;. The spacing between
them is about 3. In the 1d model, k=0, Eqs. (29) and (30) reduce to standing Bohm-Gross waves.

3 Simulation Model for Unmagnetized Sheath Waves

Particle simulation is used to model the plasma because kinetic effects are accounted for naturally. In
particle simulation, superparticles, each representing a large number of actual plasma particles, are
moved in phase space according to particle equations of motion. The particles are used to calculate
charge and current densities which are source terms in Maxwell’s equations and the resulting fields

are self consistently used in the particle equations of motion.

‘Sheath and bulk waves are modeled in by placing superparticle electrons, each representing a
large number of actual electrons, and a uniform ion background with density no between tw;': shorted
conducting walls (wall to wall). The electrons are initially uniform in space with density no and
Maxwellian in velocity with temperature T,. The computational cycle is as follows:

e Given the field on a numerical grid in space, the superparticle electrons are advanced in phase
space by the usual leap frog numerical form of the equations of motion. Linear weighting is
used to determine the electric field at each electron.

e The electrons that actually go into the wall are deleted from the list of superparticles and the
change in wall chh.rge is calculated. Note that with a conducting wall, wall charge is uniform
in y, but the induced surface charge density is not, due to the non-uniform distribution in y
of the charge density, inside the plasma.

e The electrons that remain in the region between the two walls are used to compute the electron
charge density at each grid point using linear weighting.

e The total charge density, electrons and background, is then used as the RHS of Poisson’s
equation. The equation is solved with the boundary conditions periodic in y and ¢ = 0 at the
conducting walls.

o The electric field is calculated form the potential using the finite difference version of E=-V¢
except at the walls where Gauss’ Law is used to determine E. Then, the cycle repeats.
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Because the fields and potential are taken to be periodic in the y direction, it is possible to solve
Poisson’s equation using fast Fourier transforms in the y direction to speed up computation and give
spectral diagnostics[10]. The charge density is transformed in the y direction for every z coordinate.
Then, only a one dimensional tridiagonal matrix inversion is required to solve the transformed form
of the Poisson equation for each ky mode. Boundary conditions are accounted for in the k; = 0
mode. Finally, an inverse transform is done for every z coordinate to give the poientia.l on the z,y
grid.

The above algorithm is time explicit which means the highest physical frequency in the system
must be resolved by the numerical method or numerical instability will result. For this case, the
highest frequency is near the electron plasma frequency giving the constraint wp.At < 2, where At

is the simulation time step.

It was previously mentioned that each superparticle represents a large number of actual particles.
For good statistics, the superparticle should represent the smallest number of actual particles with
in the limits of computational feasibility. For example, if the actual system contains 101 particles,
then for 10000 superparticles, each superparticle represents 108 real particles. To get better repre-
sentation, one may want to go to 40000 superparticles but this may be prohibitive in term of CPU
charges. The majority of CPU time is taken up in particle pushing and weighting. The time taken

to solve Poisson’s equation and compute diagnostics is relatively trivial.

The code PDP2 was used to simulate the plasma. It is similar to one dimensional plasma
simulation codes [1] but with the y periodic dimension added. PDP2 may be executed in a window
environment such as XGRAFIX on workstations. This allows the viewing of physics as it happens.

4 Comparison of Simulation and Theory for Sheath Waves

4.1 The first results with a random number generator for particle loading

Results were computed for the initial parameters of electron density no = 1 x 1015/m?, T, = leV,
and a system length L, = L + 2A = 0.01m, i.e., 42Ap., between the walls. For these parameters,
the measured sheath width was 2.0Ap.. kyAp. was varied by changing the input paramei:er Ly since
ky = 2x/Ly. (We only measure the longest wavelength mode as it has the least noise.) A 64 x64 grid
was used to resolve Ap.. A time step size was used such that wp,At = 0.0892. For each simulation,
10000 superparticle electrons were used so that there were 25 superparticles per cell at ¢ = 0. Real

electron masses were used. The ions are uniform and immobile, at density no = 1 x 10'5/m3.

To compare with theory, ¢ was Fourier transformed in y for a specific location in z, either in
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the sheath to measure sheath waves, or in the bulk to measure bulk plasma waves. The magnitude
#(ky)* ¢(ky) produces a signal in time which can be Fourier transformed to determine frequency.
Peaks that appear on the frequency spectrum are located at twice the actual frequency since a
transform of a quantity similar to field energy is done. Figure 3 gives the comparison of theory
and simulation for various values of kyAp., where the dots are the particle simulation results. Since
there is an uncertainty in the location of the sheath-plasma interface, we have measured the sheath
waves at z = 2)\p. and at z = 1.5)p, (Fig. 3) in the sheath with identical results. The comparison
is quite good for both the bulk Bohm Gross waves (upper branch) and the asymmetric sheath waves
(lower branch) independent of where the measurement is taken. The simulations show a tendency to
favor the asymmetric sheath waves. We have no points for the symmetric sheath wave for small k,.
For the bulk waves, we took k; = 0 (effectively one dimensional) in Eq. (29) to draw the analytic
curve in Fig. 3. This was done because we measured waves in the simulation at a specific location
in z thus throwing out any information about the particular k. In principal, one could instead
take Fourier transforms in z and y and keep track of a particular k;,k, pair in time to measure the
corresponding w for comparison to Eq. (29).

Figure 3 gives the frequency spectrum for sheath and bulk modes respectively. The sheath wave
measurements were taken at z = 1.5Ap, for the kyAp. = 0.15 run. Figure 5 is a snapshot of ¢
contours and ¢ versus z,y at a specific time for the kyAp. = 0.15 run. To check the simulation
accuracy, the simulation for k,Ap, = 0.1 was run with 40000 superparticle electrons. The same
frequencies for the sheath and bulk modes were recovered. '

Our simulations indicate that the electron density is non zero in the sheath region as shown
on Fig. lc. Our analytic model requires a zero electron density in the sheath. Because of the
inhomogeneity of the electron density can any new modes of surface oscillations arise? A previous
surface wave study has shown that if the function of electron density with respect to the spatial
variable (z in our case) is monotone, only the known surface waves of the form given by Eq. (25)
exist [12]. The monotone density variation is consistent with our simulation results. Furthermore,
simulation results also indicated that the monotone density variation does not effect our analytic
model. Therefore, it would seem that not only Eq. (25) is valid, but also our entire theory is valid.
If the function of density has an extremum, different potential surface modes can also exist [12].

4.2 The recent results with a quiet start (particle loading) and discussions

The results presented in Section 4.1 were obtained over a year ago, and appear to fit much of
the predicted dispersion. However, we took a closer look and discovered that we did not have
the well known Gould-Trivelpiece waves for a warm, bounded, unmagnetized plasma; such could
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be the low frequency symmetric mode branch in the theory, but no frequencies were obtained for
these wavenumbers. Also, while the main dipole resonance was found (the asymmetric mode, or
series resonance), the additional dipole resonances ( Tonks-Dattner or Parker-Nickel-Gould) were
not found. Some new scaling was tried, confirming what was already obtained.

Looking closer, we found that the presumed quiet start (particle loading at ¢ = 0) was not as
quiet what we wanted, that a quieter start was possible, which was implemented. We also found
that our use of the FFT for obtaining the power spectra for, say, potential at a given z, y or at
a given z for one value of ky, was not as good as we could make it, so that was improved. The
" next step was to try repeat the first results of 1991 with a random number generator; this we were
unable to do in detail. Hence, the 1991 results, while presented in Section 4. 1, are given, but not
confirmed.

With the improved version of PDP2, we tried a number of excitations in order to obtain the
dispersion. We were becoming more and more uneasy that there may not a simple frequency-
wavenumber dispersion plot for this model, which, after all, is an inhomogenous medium, with
zero-order density a f\}nction of x. That is, in the simplest way of thinking, there may be waves
‘associated with bulk plasma (which cannot be found if our “probes” are in the sheath), and vice
versa, waves localized in the sheath ( which may not be found with our “probes” are in the bulk
plasma). No matter, as far as the validity of the simulation is concerned; what waves there are will
show up and it is up to us identify them.

We tried several approaches, much as if we were doing a laboratory experiment. We will give
these results briefly, as they were done in roughly one day (with quite a few days of run-up tries).

First, we drove the plasma with a potential varing at 64 frequencies, at two z, y locations, one
near the sheath edée and one in the bulk. We then looked at the potential downstream, at the
same z;s, but about L,/2 away, expecting a signal to reach there about T = Ly/(2vr.), where we
guessed that the group velocity might be on the order of vr.. We made copies of the time records
of the exciting and received potentials, and compared them, looking for a possible phase shift, or
time delay, due to a finite propagation time. We could “see” (or imagine) such, but decided that
we would need to work out a detailed correlation technique in two dimensions in order to make the
measurements acceptable. (There have been some very good plasma probing techniques done lately
on such; we merely need to copy these.)

Second, we tried pulsing on and off a DC potential, with the same probes. We pick up no obvious
reception of the pulse at some time T later (except for a prompt reception, taken to be the vacuum
response, due to solving Poisson’s equation and not the full E&M Maxwell set), as shown in Fig. 6.
We repeated the same, with a pulse in the charge density, which worked somewhat better, but with
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no conclusive results.

Third, we pulsed on five cycles of RF at roughly twice wpe, and looked for the response down-
stream. The results are shown in Fig. 7. For ky = 0, we saw very clear results; in the bulk region,
the potential had a very strong response at about wp,; in the sheath region, we saw a very strong
response at about wpe/2, taken to be either the series resonance or that at the local wp.. For the
smallest non-zero wavenumber, kyLy = 27, we could not make out any clear-cut response. Fig. 8
shows the same spectra as in Fig. 7, at a later time interval, without the five cycles of 2w, excitation.
The conclusion from these two figures is that the Bohm-Gross waves appear in the bulk, but not in
the sheath region, and the sheath waves appear in the sheath, but not in the bulk.

Lastly, back to what was done in 1991, we looked at the spectra of the potential with no drive.
(There is sufficient noise in the system to drive all natural responses). We have observed the plasma
and the series resonance responses in 1d simulations; the ky = 0 results in 2d must give the same,
and did. For the smallest wavenumber, ky Ly, = 27, we could not make out any clear-cut response,
a large disappointment indeed.

5 Conclusion

We have found electrostatic surface waves between the sheath and plasma interface. It can be seen
that PDP2 simulations and theory compare fairly well for both sheath waves and Bohm-Gross waves
in the bulk for our simple model for ky = 0. But there is no conclusive comparisons for ky # 0. The
simulations must have better wave-detecting diagnostics, such as spatial correlations. The theory
must allow for spatial variation of the zero-order density, as done in 1d by Parker, Nickel and Gould.
At least, we have given it a good try, and left something for those who are to follow. The next step
is to study sheath waves for a magnetized sheath.
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