
 

 

 

 

 

 

 

 

 

Copyright © 1992, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



THEORY AND SIMULATION OF PLASMA

SHEATH WAVES

by

X. Q. Xu, G. DiPeso, V. Vahedi, and C. K. Birdsall

Memorandum No. UCB/ERL M92/148

15 December 1992



THEORY AND SIMULATION OF PLASMA

SHEATH WAVES

by

X. Q. Xu, G. DiPeso, V. Vahedi, and C. K. Birdsall

Memorandum No. UCB/ERL M92/148

15 December 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



THEORY AND SIMULATION OF PLASMA

SHEATH WAVES

by

X. Q. Xu, G. DiPeso, V. Vahedi, and C. K. Birdsall

Memorandum No. UCB/ERL M92/148

15 December 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Theory and Simulation of Plasma Sheath Waves

X. Q. Xu, G. DiPeso, V. Vahedi, C. K. Birdsall

Electronics Research Laboratory

University of California, Berkeley, California 94720

Abstract

Sheath waves have been investigated analytically and with particle simulation for an unmag

netized two dimensional plasma slab with periodic boundary conditions in y and conducting

walls at * = 0, Lx> Analytically treating the sheath as a vacuum layer, the sheath wave bears a

resemblance to plasma vacuum surface waves.. The simulations are in agreement with the the

ory for both bulk Bohm Gross waves and edge sheath waves, with some unanswered questions.

Some waves that were expected did not show up, at least, where we thought they should be.

Hence, improvements were made in the initialization (a better quiet start), in the diagnostics

(especially the spectra in frequency), and in the excitation (ability to pulse). It has become clear

that this problem, seeking both sheath (or surface) and body waves in a bounded system, needs

far more attention, in analysis (non-uniform density included) and in simulation, especially in

diagnostics. Hence, this report is to be treated as a start on the problem. The problem is not

dropped, as the understanding of such waves (in 2d and 3d) is very important, for both basic

sheath understanding and for applications, such as plasma control via excitation of sheath or

pre-sheath waves.

1 Introduction

It is well known that there is a great variety of waves in a plasma that is well neutralized (nt- czne)

and does not have sharp gradients in field or density quantities. Waves also exist at the plasma

edge or sheath where there is large charge imbalance {n% £ ne) and where the gradient scale lengths

are on the order of the electron Debye length in the unmagnetized case, or on the order of the ion

gyroradius in the magnetized case. These waves have received less attention in the literature. This

paper is a report on electrostatic waves propagating along the unmagnetized plasma edge or sheath.

Both analytic theory and computer simulation are used to study the sheath waves. The computer

simulation may be viewed as an computer experiment as the simulation model is constructed from



first principal physics with a minimum of approximations or assumptions.

Before we start on the two dimensional theory and simulations, let us review the results of one

dimensional simulations [1]. The one dimensional simulations are bounded by perfectly conducting

walls which are connected by an external RLC circuit with optional voltage and current sources

(see Fig. la). The simplest boundary conditions for whichsheath formation is observed is the short

circuit where the reference potential or voltage on both walls is set to zero. The device is initially

filledwith warm electrons at a density ne0. The electronshave a full Maxwellian velocity distribution

at a temperature Te. The ions are treated as an immobile background with a density n,-0 = neo so

that the system is initially neutral. The device length is about 50Ape«

During the first few time stepsof the simulation, some of the faster electrons flow to both walls

(see Fig. lb and lc)and are lost, leaving a net positive charge in the plasma near the walls. The

potential in the center rises to e<j>middie ^ few T« (see Fig. Id). The remaining electrons are trapped

by the repelling fields of the sheaths at the absorbing walls (see Fig. le). The sheath, with enforced

uniform ion density, is sometimes calleda "matrix sheath". Oscillations in <f>middie are observed at a

frequency close to wpc (see Fig. If and lg). Oscillations are observed in the external current at the

series resonant frequency[2] associated with the k9 = 0 (cutoff) asymmetric mode (see Fig. lh and

li). We also found that some slow particles are trapped in localized phase space vortices, possibly

due to standing Bohm-Gross waves.

Repeating the same initial conditions in a model with mobile ions (protons) give much the same

results except that both species gradually went to the walls.

The two-dimensional computer experiment is expected to behave much the same way. What

we have done is to find waves propagating near and along the wall (not allowed in the Id model),

separate from bulk plasmawaves. Plasma surface waves in general may be excited when the plasma

is in contact with another medium, e.g., a vacuum or a conducting wall. Classical examples of these

waves includethe Gould-Trivelpiece (G-T) modesin plasma filled waveguides [3]. A sheath waveis a

surface wavespecific to the case of a plasma bounded by a conducting wall. This waveis somewhat

similar to the surface wave occuring at a vacuum plasma interface [4, 5].

Recent interest involving surfacewaveshas been motivated by anomalousimpurity concentrations

and edge heatingobserved in tokamakion Bernstein wave experiments [6]. A possible explanationfor

the observed anomaly has been given as an additional classof wavesnear the antenna, sheath-plasma

waves(SPW), which propagate on the high-voltage rf sheath driven by the antenna [7]. The L-H

mode transition observed in tokamaks, controllable by biases on divertor plates, implies edge plasma

control of the bulk plasma (n and Te) profiles[9]. Sheath waves also may have effects on sheath

formation in plasma processing chambers and thus merit further study. And, of course, sheath and
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pre-sheath waves may determine bulk plasma behavior, in other ways yet to be identified.

Sheath waves are the result ofcharge imbalance when electrons collide with the sheath potential.
We have begun our sheath wave studies by developing a theory for the case ofan unmagnetized
electrostatic plasma bounded by conducting walls. The sheath waves are assumed to propagate

parallel to the walls and the time-average plasma sheath potential drops are perpendicular to the
walls. In the plasma bulk, Bohm Gross waves are expected. We have also developed a two dimen

sional particle simulation that can check our theory. The code is sufficiently general to treat other

problems besides unmagnetized sheath waves.

The plan of this paper is as follows. In the second section, we develop a the kinetic theory of

sheathwaves. In the third section, wedescribe the simulation model for the unmagnetized,bounded

plasma. In the fourth section, we compare theory and simulation results for waves in the bulk and

in the sheath. In the fifth section, we make some concluding remarks.

2 Kinetic Theory for Unmagnetized Sheath Waves

We assume a uniform two dimensional plasmaof width L bounded by two static sheaths of width A

as indicated on Fig. 2. The system is bounded in the x direction by two parallel conducting plates.

The static sheaths are modeled as vacuum layers for the electrons, i.e., the electrons are assumed

to be reflected on entering the sheath. The ions are treated as immoble with uniform density no,

wall to wall. This contrasts with Decyk and Dawson's model (where A —• oo) because although

both models have electron reflection, our model has a finite sheath width A. It is the consideration

of the sheath that also contrasts this model with the Gould-Trivelpiece model for waveguide modes

where A —• 0. The sheath waves propagate in the y direction and so the y boundary is taken to be

of infinite extent, i.e. periodic over one or more wavelengths.

The linearized kinetic equation for the perturbed electron distribution function /, perturbed

about a Maxwellian Fm, and the equation for the perturbed electrostatic potential <fP in the plasma

region may be written

*+"'!? +!?*'-& =°' (1)
V24>P(x) =4ve[f<Pv, (2)

where <f> = 4?+<i>v is the superposition of the particular solution of Poisson's equation(superscript p)

and the homogeneous solution of Laplace's equation (superscript v). Only the particular solution is

given by Eq. (2). The homogenous solution will besimilar to the solution of the perturbed potential



Figure 2: Model for the 2d sheath plasma wave calculations, showing aplasma of length I
bounded by sheaths of width A.



in the sheath region. In the sheath region, the perturbed potential satisfies the equation

V20 = 0. (3)

Assuming an unperturbed electron number density no only in the plasma region and short circuit

boundary conditions, the unperturbed potential takes the usual parabolic form in the ion only

sheath regions (called "matrix sheath") and fiat in the plasma region. The unperturbed functions

are constant in y.

Reflecting boundary conditions for the electron distribution function are

/(x = A, y1vxivjnv,) = f(x = A, y, -v91v9,vx), (4)

/(« = L + A, y, t>», vw, vz) = /(x = L + A, y, -t>„ t>„ vx). (5)

Boundary conditions for the electric potential 4 are that <f> and d<f>/dx must be continuous at x = A

and x = L + A and 4 = 0 at x = 0 and x = L + 2A for the short circuit boundary condition.

Boundary conditions in y are periodic.

To proceed analytically, we assume that any perturbed function a has the form a{x^y^t) =

a(x)e,(fc»s,~w'). Note that periodicity in y is automatically satisfied by kv = 2nir/Ly. The solution

to Eq. (3) for the potential in the sheath region \s <j> —0(x)e,^*»J'~u'̂ where

<f>(x) = Asinh(Jb9x), 0 < x < A, (6)

and .

4>{x) = I?sinh[Jb,(I + 2A - x)],L + A < x < X + 2A. (7)

Note that these solutions satistfy the short circuit boundary conditions. The homogeneous, or

vacuum part, of the potential in the plasma region has a similar form to Eqs. (6) and (7):

*'(x) = £e-*»<*-A> +Cek*l—L-A\ (8)

We take the particle reflection conditions, Eqs. (4) and (5), into account by assuming that a

particle moves freely along x and by continuing the potential ^(x) as an even function beyond

the two end surfaces at x = A and x = L + A. If a particle is reflected, it would have seen the

same potential going from the reflection plane as it would going towards the reflection plane. This

is accomplished by continuing 4? as an even function and therefore periodically along the entire x

axis. We expand (for the even solutions) the potential ^(x) in a Fourier series on the interval ( A,

X + A).

*P(x)= f) a(*,)cos(*,(*-A)). (9)
ka=nit/L=0



Thus the solution in the plasma region becomes

00

^(x) =£e"M*-A) +Cefc,(*-L-A) + £ a(kjCQS(ks(x _ A)). (io)
*„=n*/£sO

For all sums over k9i the ib* = 0 term should be multiplied by 0.5. Alternatively, we could write'

<j>(x) in this region as

0(x)= f) 0(Jb,)cos(Jb,(x-A)). (11)
fcx=n»/L=0

The relation between o(Jfe») and <f>(ks) is easily shown to be

4>(ks) =a(*x) +||§[1 - e-*"x cos(*,I)][£ +Ccos(Jb,£)]. (12)

By applying the technique of integrating along the unperturbed trajectories ofVlasov's equation,

Eq. (1), and using the form of 4 given by Eq. (11), the perturbed distribution function / becomes

[5]

/(*,*«) =-^=- £ «y^«~*»+M—toSfGsQ (13)
e *,=nir/I=0 * *

Next, /(x, v,i) is integrated over velocity space and used in Poisson's equation, Eq. (2), with the

form of 4? given by Eq. (9). The result is

a(*.) = *(*,)[l-€(*,«)], (14)

where e(Jb,w) is the dielectric function for an infinite plasma

«(*,«) =1+«J,[1 +C^(C)]/k24e, C=<*/V2kVTc (15)

and Z(C) is plasma dispersion function.

Equation (12) may be used in Eq. (14) to obtain

a(ks) =(l/*(*,a;) - 1)|^[1 - e'** cos{k,L)][B +Ccos(*,£)]. (16)
Substituing Eq. (16) into Eq. (10), two homogeneous equations for the two unknowns B and C may

be obtained by matching the Eq. (10) and Eqs. (6) and (7) at the vacuum-plasma interfaces x = A

and x = L+ A. The boundary conditions are 0(x) and §£ tobe continuous, which yields

B = ±C (17)

and

D(t,«) =tanh(t,A) +̂ f) P^j=° <18)
ks = mc/L = —oo

n = even, odd



where we have used 1± cos(JbxX) = 0,2, €(k,u) isan even function of ks and the relation

f _J_ =J £«•<"(¥). — \ (19)
^ ki +kl \ ^-tanh(^), odd J

Jfc* =s rvKJL ——oo

n = even, odd

The upper sign in Eq. (17) corresponds to modes which are symmetric about the midplane of the

slab. For this mode only even values of n appear in the sum in Eq. (18). The lower signin Eq. (17)

corresponds to asymmetric mode and for it only odd values of n appear in the sumin Eq. (18).

Equation (18) is a general formula for the dispersion relation of the plasma oscillation in the

presence of two conducting walls. We seek a complex frequency solution, w = u>{k9) + *7(*») °f

Eq. (18) first in the long-wavelength limit so that ky\De < 1. In this limit, the plasmadispersion

function reduces to

<*-)-l-$-!^+.*SJpfc (20)
Let us look first at w < wpe, from Eqs. (18) and (19), we obtain

1 f coth(^)-**coth(^) 1 , ,D(k9,u) =tanh(fc,A +-V{ **' I V' >=<> (21)1-2* { tanh(^)-Vtanh(^l) J

where

Comparing the sheath wave with the surface wave occuring at a vacuum-plasma interface, (i. e.,

A —♦> oo), the main difference is that vacuum dielectric constant eo is coth(£9A) in the sheath wave

case instead of eo = 1. Furthermore, Ref. [4] uses a warm electron fluid model of the plasma while

we use a fully kinetic model. This results in differences in the last terms of Eqs. (21) and (22) when

compared to similar equations in Ref. [4]. FromEq. (21) we obtain the followingdispersion relation:

u) = , y, f1+̂ k9\DJtaah(k9A) tanh(^) ). (23)
^l +coth(^)coth(Jb,A) V l V * J

for the symmetric sheath wave modes and

u = -7= ?5 (1 +̂ k9\DJtanh(k9A)coth(*g)) . (24)
^l +tanh(^)coth(Jbj,A) V l V Z /

for the asymmetric sheath wave modes. Eqs. (23) and (24) have been plotted on Fig. 3 as a solid

curve and a dotted curve, respectively, for L —38A£>e and A = 2Xoe»



3

L/Xd 38.000 A/Ad 2.000

kyAd

Figure 3: Disperson relations for electron waves ^atmi?^ from kinetic theory and the simulation
results. Bohm-Gross waves are shown asa dashed curve (ft.=0), top, asymmetric sheath waves asa
solid curve, symmetric sheath waves as a dotted curve. The simulation results axe dots. The Bohm-

Gross waves were measured atx=I«/2. The sheath waves were measured atx =2A©.. {Mi -»©o,
ArAo. =42,64x64 grid, L=*38Xo., A=2Ao. and 10000 particles). The smallest k,Xo is 0.02,
which alsois kyL^H=0.42.



In the limit JkyA » 1 and k9L » 1, both symmetric and asymmetric modes merge and the

semi-infinite vacuum-plasma (or isolated slab) electron surface wave results are recovered [8]:

u=^(1+t*'Ad«)- (25)
We find that the collisionless damping of the sheath waves in the limit k9L ~>Iib the same as the

semi-infinite vacuum case [5]:

7. =WpeJ-*,Ape. (26)

In the opposite limit, k9A < 1 and k9L < 1,we find from Eq. (23) and (24) that the symmetric

mode frequency goes to zero andasymmetric mode frequency becomes the plasma series resonance[2]

u —
Upe /2A

(The series resonance was observed in Id simulations shownearlier in Figure 1.)

In the cold plasma approximation, comparing sheath waves in a planar system with Gould-

Trivelpiece (G-T) waves in a plasma waveguide, we find that both waves are generally the same.

For both symmetric sheath waves in a slab and circularly symmetric G-T waves in a pipe, wave

propagation occurs from u> =0 tou> = ^£. Asymmetric sheath waves ina slab and G-T waves ina
pipe with an m = 1mode angular variation both have the same high frequency limit u = ^j~ and

exhibit a lower cutoff frequency. The lower frequency limit of G-T waves is [3]

«=-?=%=?• <28>

where a and 6 are the radii of the plasma column and the conducting cylinder, respectively. The

lower frequency limit of sheath waves in a slab is given by Eq. (27). The lower frequency limit of

sheath waves in a slab is much lower than Wpe since generally A <C L. The lower frequency limit of

G-T waves is much lower than u>pc only if a a 6. It is worthnoting that A for the sheath wavesis self

consistently determined by plasma properties and wall conditions at equilibrium and that electron

reflection boundary conditions are satisfied by equilibrium sheath potential.

Equations (18), (20) and (22) lead to the frequency and the spatial damping for the sheath waves

because r3 in Eq. (22) may be positive. Equations (18), (20), and (22) lead to the frequency and

the x wavenumber Jfe* for bulk waves because r3 may be negative. Thus, if u > u>pe, Eq. (20) gives

the usual Bohm-Gross plasma waves which have also been plotted on Fig. 3 as the dashed curve

(for ks = 0). The propagating bulk waves satisfy the usual infinite plasma dispersion relation



where Jb* = >/—r2 is determined by Eqs.(18), (20) and (22) as

mm>. *U^v^ggi^-i+^¥)), (30)
2 *» l ^l +tt^J +fc^ +l 2 J

It is clear from inspection that this equation has an infinite number ofroots ks. The spacing between

them isabout *f. In the Id model, Jby=0, Eqs. (29) and (30) reduce tostanding Bohm-Gross waves.

3 Simulation Model for Unmagnetized Sheath Waves

Particle simulation is used to model the plasma because kinetic effects are accounted for naturally. In

particle simulation, superpartides, each representing a large number of actual plasma particles, are

moved in phase space according to particle equations of motion. The particles are used to calculate

charge and current densities which are source terms in Maxwell's equations and the resulting fields

are self consistently used in the particle equations of motion.

Sheath and bulk waves are modeled in by placing superparticle electrons, each representing a

large number of actual electrons, and a uniform ion backgroundwith density no between two shorted

conducting walls (wall to wall). The dectrons are initially uniform in space with density no and

Maxwellian in velocity with temperature Te. The computational cyde is as follows:

• Given the field on a numerical grid in space, the superparticle electrons are advanced in phase

space by the usual leap frog numerical form of the equations of motion. Linear weighting is

used to determine the dectric field at each dectron.

• The dectrons that actually go into the wall are deleted from the list of superpartides and the

change in wall charge is calculated. Note that with a conducting wall, wall charge is uniform

in y, but the induced surface charge density is not, due to the non-uniform distribution in y

of the charge density, inside the plasma.

• The dectrons that remain in the region between the two walls are used to compute the electron

charge density at each grid point using linear weighting.

• The total charge density, dectrons and background, is then used as the RHS of Poisson's

equation. The equation is solved with the boundary conditions periodic in y and 4> = 0 at the

conducting walls.

• The dectric field is calculated form the potential using the finite difference version of E = —V0

except at the walls where Gauss' Law is used to determine E. Then, the cyde repeats.
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Because the fields and potential are taken to be periodic in the y direction, it is possible to solve

Poisson'a equation using fast Fourier transforms inthe ydirection to speed upcomputation and give

spectral diagnostics[10]. The charge density istransformed inthe y direction for every x coordinate.
Then, only a one dimensional tridiagonal matrix inversion is required to solve the transformed form

of the Poisson equation for each k9 mode. Boundary conditions are accounted for in the k9 = 0
mode. Finally, an inverse transform is done for every x coordinate to give the potential on the x, y

grid-

The above algorithm is time explicit which means the highest physical frequency in the system

must be resolved by the numerical method or numerical instability will result. For this case, the

highest frequency is near the electron plasma frequency giving the constraint upeAt < 2, where At

is the simulation time step.

It was previously mentioned that each superparticle represents alarge number ofactual particles.

For good statistics, the superparticle should represent the smallest number ofactual particles with
in the limits ofcomputational feasibility. For example, if the actual system contains 10l° particles,
then for 10000 superpartides, each superparticle represents 106 real particles. To get better repre

sentation, one maywant to go to 40000 superpartides but this may be prohibitive in term of CPU

charges. The majority of CPU time is taken up in particle pushing and weighting. The time taken

to solvePoisson's equationand compute diagnostics is rdatively trivial.

The code PDP2 was used to simulate the plasma. It is similar to one dimensional plasma

simulation codes [1] but with the y periodic dimension added. PDP2 may be executed in a window

environment such as XGRAFIX on workstations. This allows the viewing of physics as it happens.

4 Comparison of Simulation and Theory for Sheath Waves

4.1 The first results with a random number generator for particle loading

Results were computed for the initial parameters ofelectron density n0 = 1 x 1015/m3, Te = leF,
and a system length La = L+ 2A = 0.01m, i.e., 42Ai>e, between the walls. For these parameters,

the measured sheath widthwas 2.0ADe. k9Xoe was varied by changing the input parameter L9 since

Jb- = 2t/L9. (We only measure the longest wavelength mode as it has the least noise.) A 64 x64 grid
was used to resolve Aj}e. A time step sizewas used such that u>peAt = 0.0892. For each simulation,

10000 superparticle electrons were used so that there were 2.5 superpartides per cell at t = 0. Real

electron masses were used. The ionsare uniform and immobile, at density n<> = 1 x 1015/m3.

To compare with theory, <ft was Fourier transformed in y for a specific location in x, either in
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the sheath to measure sheath waves, or in the bulk to measure bulk plasmawaves. The magnitude

<f>(k9)m 4(k9) produces a signal in time which can be Fourier transformed to determine frequency.
Peaks that appear on the frequency spectrum are located at twice the actual frequency since a

transform of a quantity similar to field energy is done. Figure 3 gives the comparison of theory

andsimulation for various values of k9\oei where the dots are the particle simulation results. Since

there is an uncertainty in the location of the sheath-plasma interface, we have measured the sheath

waves at x = 2A0e and at x = l.SXoe (Fig. 3) in the sheath with identical results. The comparison

is quite good for both the bulk BohmGross waves (upper branch) and the asymmetric sheath waves

(lower branch) independent ofwhere themeasurement is taken. The simulations show a tendency to

favor the asymmetric sheath waves. We have no points for the symmetric sheath wave for smallk9.

For the bulk waves, we took ks = 0 (effectively one dimensional) in Eq. (29) to draw the analytic

curve in Fig. 3. This was done because we measured waves in the simulation at a specific location

in x thus throwing out any information about the particular kx. In principal, one could instead

take Fourier transforms in x and y and keep track of a particular ksik9 pair in time to measure the

corresponding <j for comparison to Eq. (29).

Figure 3 gives the frequency spectrum for sheath and bulk modes respectively. The sheath wave

measurements were taken at x = 1.5Ai>c for the k9Xoe = 0.15 run. Figure 5 is a snapshot of 0

contours and 4 versus x, y at a specific time for the k9Xoe = 0.15 run. To check the simulation

accuracy, the simulation for k9Xoe = 0.1 was run with 40000 superparticle electrons. The same

frequences for the sheath and bulk modes were recovered.

Our simulations indicate that the electron density is non zero in the sheath region as shown

on Fig. lc. Our analytic modd requires a zero dectron density in the sheath. Because of the

inhomogendty of the electron density can any new modes of surface oscillations arise? A previous

surface wave study has shown that if the function of dectron density with respect to the spatial

variable (x in our case) is monotone, only the known surface waves of the form given by Eq. (25)

exist [12]. The monotone density variation is consistent with our simulationresults. Furthermore,

simulation results also indicated that the monotone density variation does not effect our analytic

modd. Therefore, it would seem that not only Eq. (25) is valid, but also our entire theory is valid.

If the function of density has an extremum, different potential surface modes can also exist [12].

4.2 The recent results with a quiet start (particle loading) and discussions

The results presented in Section 4.1 were obtained over a year ago, and appear to fit much of

the predicted dispersion. However, we took a closer look and discovered that we did not have

the well known Gould-Trivdpiece waves for a warm, bounded, unmagnetized plasma; such could
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be the low frequency symmetric mode branch in the theory, but no frequencies were obtained for
these wavenumbers. Also, while the main dipole resonance was found (the asymmetric mode, or

series resonance), the additional dipole resonances ( Tonks-Dattner or Parker-Nickd-Gould) were
not found. Some new scaling was tried, confirming what was already obtained.

Looking doser, we found that the presumed quiet start (partide loading at t = 0) was not as

quiet what we wanted, that a quieter start was possible, which was implemented. We also found
that our use of the FFT for obtaining the power spectra for, say, potential at a given x, y or at

a given x for one value of k9, was not as good as we could make it, so that was improved. The
next step was to try repeat the first results of 1991 witha random number generator; this we were

unable to do in detail. Hence, the 1991 results, while presented in Section 4. 1, are given, but not

confirmed.

With the improved version of PDP2, we tried a number of excitations in order to obtain the

dispersion. We were becoming more and more uneasy that there may not a simple frequency-

wavenumber dispersion plot for this model, which, after all, is an inhomogenous medium, with

zero-order density a function of x. That is, in the simplest way of thinking, there may be waves

associated with bulk plasma (which cannot be found if our "probes" are in the sheath), and vice

versa, waves localized in the sheath ( which may not be found with our "probes'" are in the bulk

plasma). No matter, as far as the validity of the simulation isconcerned; what waves there are will

show up and it is up to us identify them.

We tried several approaches, much as if we were doing a laboratory experiment. We will give

these results briefly, as they were done in roughly one day (with quite a few days of run-up tries).

First, we drove the plasma with a potential varing at 64 frequencies, at two x, y locations, one

near the sheath edge and one in the bulk. We then looked at the potential downstream, at the

same x's, but about L9/2 away, expecting a signal to reach there about T = L9/(2?re), where we
guessed that the group velodty might be on the order of vre. We made copies of the time records

of the exciting and received potentials, and compared them, looking for a possible phase shift, or

time delay, due to a finite propagation time. We could "see" (or imagine) such, but dedded that

we would need to work out a detailed correlation technique in two dimensions in order to make the

measurements acceptable. (There have been some very good plasma probing techniques done lately

on such; we merely need to copy these.)

Second, we tried pulsing on andoffa DCpotential, with the sameprobes. We pickup no obvious

reception of the pulse at some timeT later (except for a prompt reception, taken to be the vacuum

response, due to solving Poisson's equation and not the full E&M Maxwell set), as shown in Fig. 6.

We repeated thesame, with a pulse in the charge density, which worked somewhat better, but with
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no conclusive results.

Third, we pulsed on five cydes of RF at roughly twice u>p«, and looked for the response down

stream. The results are shown in Fig. 7. For Jby = 0, we saw very dear results; in the bulk region,

the potential had a very strong response at about upe; in the sheath region, we saw a very strong

response at about u;pc/2, taken to be either the series resonance or that at the local o?^. For the

smallest non-zero wavenumber, k9L9 = 2flr, we could not makeout any clear-cut response. Fig. 8

showsthe same spectraas in Fig. 7, at a later time interval, without the five cydes of 2wpe exdtation.

The condusion from these two figures is that the Bohm-Gross waves appear in the bulk, but not in

the sheath region, and the sheath waves appear in the sheath, but not in the bulk.

Lastly, back to what was done in 1991, we looked at the spectra of the potential with no drive.

(There is suffident noisein the system to drive allnatural responses). We haveobserved the plasma

and the series resonance responses in Id simulations; the Jb, = 0 results in 2d must give the same,

and did. For the smallest wavenumber, k9L9 —2tt, we could not make out any clear-cut response,

a large disappointment indeed.

5 Conclusion

We have found electrostatic surface waves between the sheath and plasma interface. It can be seen

that PDP2 simulations and theory compare fairly well for both sheath waves and Bohm-Gross waves

in the bulk for our simplemodd for k9 = 0. But there is no conclusive comparisons for k9 £ 0. The

simulations must have better wave-detecting diagnostics, such as spatial correlations. The theory

must allow for spatial variationof the zero-order density, as done in Id by Parker, Nickel and Gould.

At least, we have given it a good try, and left something for those who are to follow. The next step

is to study sheath waves for a magnetized sheath.
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