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Abstract

The design of a harmonic generator for use in conjunction with a Nd*:YAG
laser, in a novel deep-UV optical lithography source, is discussed in detail.
The design strategy used for this application can be generalized and applied to
the design methodology of any multi-stage nonlinear optical system. The main
issues addressed are nonlinear materials and parameters, conversion efficiencies,
power balancing, polarization constraints, and heat flow management.



1 Introduct’ion

The quest for ever smaller feature sizes in semiconductor circuits leads to the de-
sire for ever shorter wavelengths in patterning. Optical lithography continues to be
the least expensive method for patterning wafers and several generations of optical
lithography remain to be developed in pursuit of these smaller wavelengths. The
standard ultraviolet wavelength used today in industry is the I-line of a mercury arc
lamp with a wavelength of 365nm. The next generation deep-UV wavelength under
development is 248nm produced by the KrFl eximer laser. This system can deliver
minimum linewidths of around 0.35 microns. 213nm is proposed as a succeeding and
perhaps final generation of optical lithographic wavelengths. The minimum linewidth
obtained using 213nm is expected to be approximately 0.18 microns.

The 213nm lithography source consists of a solid state Nd*:YAG laser with a wave-
length of 1064nm followed by nonlinear frequency conversion optics which quintuple
the frequency, producing 213nm radiation. This laser source has several advantages.
Unlike the eximer lasers, the Nd*:YAG laser can be seeded providing a very narrow
frequency bandwidth on the order of 0.1 pm. This narrow bandwidth is also essential
for allowing the use of refractive optics. The narrow bandwidth is required because
the imaging optics cannot be chromatically corrected since there is only one refrac-
tive optical material available at this deep-UV wavelength. The Nd*+:YAG laser is
also advantageous because it is a solid state laser and thus it is low maintenance and
avoids the hazards associated with toxic gases. The ND+:YAG laser system will also
have a comparably small footprint, an important consideration in the expensive clean
room environment. Another reason 213nm is an attractive wavelength is that the
IR absorption edge of fused silica, the only presently available deep-UV material for
imaging optics, begins around 200nm. Even a small absorption is detrimental to the
image quality given the large thickness of fused silica used and the sensitivity of the
alignment in the patterning. At the 213nm wavelength the refractive imaging op-
tics are still feasible, while the shorter frequency is a significant advance in achieving
smaller patterns.

The first generation 213nm system was constructed by [Partlo 92] and is a 0.25
Watt, flashlamp-pumped, 10 Hz, Nd*:YAG laser followed by a fifth harmonic gen-
erator. The harmonic generator consists of three nonlinear crystals. The first is a
type IT KD*P doubling crystal producing the second harmonic. The second stage
is a type II KD*P crystal cut for generating the third harmonic. A waveplate is
needed between the second and third stages to correct the polarizations of the second
and third harmonics with respect to each other. The final crystal is a type I BBO
mixing crystal which mixes the second and the third harmonics to produce the fifth



l Parameter " Old System | New System Before SBS | After SBS I

Repitition Rate [Hz] I 10 . 1000 1000
Average Power [Watts] 4.1 50 35
 Pulse Energy [J] 0.41 0.05 T 0.035
Pulse Duration |ns] 8 5 ~ 1.0
Beam Diameter [mm)] 6 3-5 ‘ 3-5
Peak Pulse Power [MW/cm?] || 180 50 ~ 200

Table 1: A comparison of the first and second generation systems, including the
effects of the SBS pulse compression optics.

harmonic. With this system the patterning of 0.2 micron lines and spaces has been
demonstrated. The new laser system will be a diode-pumped, seeded, Q-switched,
Nd+:YAG laser with SBS (Stimulated Brillouin Scattering) pulse compression optics,
followed by the harmonic generator. The new laser will have a repetition rate of 1000
Hz, with 50 Watts in the infrared, which after pulse compression will decrease to
around 35 Watts. The pulse width will be shortened from 5ns to approximately 1 ns
using the SBS compression optics. The pulse compression is necessary to increase the
peak pulse power for efficient harmonic conversion in the harmonic generator. The
output power in the fifth harmonic (213nm) should be on the order of a few Watts.
Table 1 compares the parameters of the first and second generation lasers.

The design of the harmonic generator is the topic of this report. There are several
motivations for a redesign of the nonlinear optics. The first and foremost is the desire
for better management of heat flow. The current system already reveals problems
associated with heating in the BBO crystal. The new system will have a higher
average power and thus the heating is expected to be much more critical. The new
system will also be designed to take the power balancing between the various stages
into consideration. Finally, new materials will be considered. The primary goal of
the harmonic generator is to achieve the highest possible efficiency in converting the
fundamental into the fifth harmonic. In the new system the goal is to maintain or
improve the conversion efficiency even with increased average power and the same
peak pulse power.

The first section will give an overview of the basic ideas on harmonic generation.
Next several nonlinear materials will be discussed and the nonlinear parameters of
the appropriate materials are calculated. Using the parameters calculated in section
three, section four goes on to calculate the conversion efficiencies of the materials and



nonlinear interactions of interest. The whole system is then considered and balance
of power between the different harmonics is examined in section five. At this point
several designs are proposed and polarizations are considered. The final section deals
with the heating problems and the design of a prism beam compressor to deal with
the problem.

2 Background

Nonlinear optical phenomena were first discovered and utilized with the advent of
the laser. The laser was a necessary precursor since nonlinear phenomena are only
observable at the high intensities unique to the laser. In the everyday world only the
linear interactions of light and matter are observed. These interactions can be simply
modeled as follows. Light can be viewed as an oscillating electric field, and matter as
a collection of electric dipoles. When a material is subjected to an oscillating electric
field of normal intensity, the dipoles in the material will oscillate in response to the
applied field at the frequency of the field. The dipoles will then radiate a field at the
frequency of oscillation. This description accounts for the linear optical phenomena,
such as transmission of light through glass, with which we are familiar.

For high intensity fields the situation is more complex. The dipoles, in addition
to oscillating at the fundamental frequency, will also oscillate at harmonics of the
fundamental frequency. The following equation shows the polarization response P as
a function of the electric field E, where yx is the susceptibility of the medium:

P =¢eo(xVE + x®E? + x®E 4+ ... 4). (1)

Generally the first term is a sufficient approximation for describing what occurs under
normal illumination. At high intensity, however, the higher orders become important.
In particular the harmonic generation phenomena are due to the squared term of the
electric field. In the case of second harmonic generation one input frequency w is used
and the dipole will oscillate at twice the fundamental frequency 2w thus generating
the second harmonic. In frequency mixing there will be two input frequencies w; and
wq, which beat together causing the dipole to oscillate and thus radiate at the sum
frequency w3 = w; + w;. [Butcher 90, § 1]

Another way of looking at nonlinear interactions is the quantum mechanical pho-
ton picture. From this viewpoint frequency doubling consists of two photons in the
material combining to produce one photon at twice the frequency. Since the energy
of each photon is 4w, the frequency of the created photon must be 2w according to
the consevation of energy principle. For the frequency mixing case, one photon at
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frequency w;, and one photon at frequency w, are annihlated and replaced by one
photon at frequency ws. Again by the conservation of energy principle the sum fre-
quency generation relation is w3 = wy + wp. This picture illustrates the same result
as the dipole model. [Yariv 89, §17.6)

For an efficient transfer of power into a higher harmonic during frequency gen-
eration, the different frequency waves must travel in phase. However, the nonlinear
crystal is a dispersive medium (the index of refraction is dependent on frequency).
There will be destructive interference between the waves because they travel at dif-
ferent velocities and become out of phase (phase mismatched). The phase mismatch
will limit the conversion efficiency. A technique known as phase matching is used to
correct for these normal dispersion effects in the nonlinear crystal. To accomplish
phase matching, a crystal which is highly birefrigent is needed. A birefringent ma-
terial has two different indices of refraction in orthogonal directions. The ordinary
index of refraction n, is independent of orientation, while the extraordinary index
n.[0] is dependent upon the direction of propagation. The crystal is cut in such a way
that the different frequency waves will travel at the same velocity and thus remain in
phase. The dispersion of the material is compensated for by the angle tuning of the
crystal. [Hon 79] Phase matching greatly limits the choice of nonlinear crystals. It is
particularly difficult to find a material which is sufficiently birefrigent to compensate
for the dispersion at high frequencies. The following section deals with the selection
of appropriate nonlinear materials and calculating their nonlinear properties.

3 Evaluation of Nonlinear Materials and
Parameters

3.1 Materials

Materials are a very important consideration in the design of nonlinear optics. New
materials are continuously being developed. Some of the important requirements for a
suitable nonlinear material are a high nonlinearity, high damage threshold, reasonable
angular acceptance, no absorption, and the availability of the material in question.

Many popular nonlinear materials were found to have unacceptable damage thresh-
olds for our application, or simply not have a interaction at the required frequencies.
The materials under consideration for working with the Nd+:YAG harmonic frequen-
cies were KDP, KD*P, KTP, BBO and LBO. Additionally two fundamental kinds of
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phase matching, critical and noncritical, are considered.

Potassium dihydrogen phosphate (KDP) is one of the first used and still quite
common materials for harmonic generation. [Eimeral 87c] Unfortunately KDP has an
absorption edge in the IR right around the Nd*:YAG wavelength, and this absorption
precludes its use. This absorption eliminates the use of KDP for any of the interactions
since in our simple design the fundamental beam travels through all the crystals in
the system. The IR absorption edge can be pushed deeper by deuteration of > 90%.
The deuterated form, KD*P is a strong candidate for many of the interactions as it
has a fair nonlinear coefficient balanced by a large angular acceptance. KD*P has
a damage threshold of between 3 and 5 GW/cm* which is well above our projected
peak power of .2 GW/cm?. This material was examined in detail and seems to be the
best choice for many of the desired interactions. There is also a temperature tuned
interaction doubling the second harmonic which will be discussed in the following
section dealing with efficiencies.

Potassium titanyl phosphate (KTP) has a high nonlinear coefficient, and would
seem to be the ideal choice for doubling, but unfortunately suffers optical damage at
high average powers. In [Tyminski 90] it is shown that at room temperature “dark
tracks” appear in the material at average powers of 20W. These “dark tracks” are
accompanied by increasing absorption and degrade the conversion efficiency finally
destroying the crystal. In the system currently under design we expect to use around
35W of average power and thus we must eliminate this material a a potential can-
didate. If the crystal is heated to about 170°C the “dark tracks” can be avoided
but astigmatism of the intensity profile and degradation of the beam occurs even at
20W. Thus KTP was eliminated from the useful nonlinear materials for this particular
application.

Beta barium borate (BBO), a recently introduced negatively uniaxial material,
is the only suitable material for the 1 + 4 — 5 or 2 + 3 — 5 mixing interactions
of the Nd*:YAG harmonics. BBO is a very promising material for many of the
other interactions as well [Eimeral 87b]. BBO has a high damage threshold of 13.5 +
2GW/cm? for a 1 ns pulse at 1064nm and 7.0 £ 1GW/cm? for a lns pulse at 532nm
[Chen 86]. While BBO has a high nonlinear coupling it has the drawback of having
a small angular acceptance. This material was considered in great detail for use in
generating all of the required harmonics.

A final material under consideration is LBO. This material is primarily interesting
in the capacity of a noncritically phase matched (NCPM) doubler for generating the
second harmonic [Ukachi 90]. As a critically phase matched material, BBO is a
better choice both due to a higher nonlinear coefficient and in terms of cost and



availability, but LBO may offer higher conversion efficiencies as a NCPM doubler.
In fact what seems to be the limiting factor for LBO is the difficulty in obtaining
a high quality material. This material should definitely be kept in mind for future
use as the availability of high quality materials should increase and make it a feasible
alternative. With this in mind the temperature tuning characteristics are calculated
in the chapter dealing with efficiencies.

In summary, for the first doubling stage KD*P, BBO and NCPM LBO will be
considered in greater depth. For the second stage the materials of interest are KD*P,
BBO and NCPM KD*P. For the final stage which mixes to produce the fifth harmonic,
BBO is the only available material. The following section describes in detail the
calculation of the relevant nonlinear parameters, and the next chapter describes the
conversion efficiency calculations.

3.2 Calculating Nonlinear Parameters

This section delineates the equations for calculating the nonlinear parameters for
critically phase matched interactions. The nonlinear parameters are used to calculate
the theoretical conversion efficiencies for the various nonlinear reactions and materi-
als shown in the next chapter. These parameters allow a comparison of the differ-
ent materials and nonlinear interactions independent of the crystal geometry. Using
Eimeral’s methodology the angular sensitivity of a crystal can be compensated for
by focusing and thus adjusting the input intensity. Thus it is important to calculate
a “figure of merit” which can be used to compare different crystals. The parameters
for the interactions of interest for BBO and KD*P were calculated and tabulated in
Table 2 and Table 3. Both BBO and KD*P are negative uniaxial materials, in other
words, the extraordinary index of refraction is less than or equal to the ordinary in-
dex of refraction, and there is only one optic axis. The noncritically phase matched
interactions will be addressed in the chapter on efficiencies.

The phase matching angle is the angle, with respect to the optic axis, at which
the incoming light must enter the crystal in order to be properly phase matched
[Hon 79]. This angle is derived from the combination of the index ellipsoid equation
and the type of phase matching requirement. The phase matching angle depends on
the ordinary and extraordinary indices of refraction of the particular material. The
following equation gives the phase matching angle for type I phase matching.
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For type III phase matching the following equation applies.
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The different “type”s of phase matching refer to the polarization restrictions on
the incoming light waves. For type I phase matching, both input waves must be
polarized in the n, direction, and the output wave will be polarized along the n.
direction. In type II phase matching, the lowest frequency wave enters along the n,
axis and the equal or higher frequency wave must enter along the other axis. The
wave will again exit along the n. axis. Type III phase matching is the reverse of
type II phase matching. Type III is relatively rare since the crystal must be highly
birefringant to accomplish this type of phase matching.

The angular sensitivity is a measure of how large the phase mismatch becomes
with deviations from the phase matching angle [Eimeral 87b]. The phase mismatch
is the non-zero difference between the propagation vectors of the three waves. The
angular sensitivity is derived by writing the phase mismatch relation in terms of the
frequency and the indices of refraction. Then the derivative of the phase mismatch is
taken with respect to the angle. By remembering that the ordinary index is constant
reguardless of direction we can set the derivative of n, to zero. The relationship for
Type I phase matching can be then written as

_ 2 | sin[fn] cos[0,,)[1/n%; — 1/n%;]
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The more complex relation describing the angular sensitivity for type II phase match-
ing is

Be = 2T7r sin[6] cos[6) c(1/n% —1/nd,) _ a(1/nd, —1/n3,) (6)

. . ’
e S s

where
W) = aw,, wp = bw,, w3 = cw,.

The type III angular sensitivity relation is the same as the type II equation except b
is substituted for a and n., is substituted for n.;.

The angular bandwidth is defined as the FWHM of the output intensity vs. angle,
centered on the phase matching angle. [Eimeral 87b]

AO = 4A¢ ’ (7)
ﬂtheta
where
A =1.392.

The effective nonlinear coupling for a particular nonlinear reaction is described by
the nonlinear coefficient for that reaction. The nonlinear coefficients are determined
by the crystal structure of the particular material. For BBO [Eimeral 87b)] the effec-
tive nonlinear coefficient can be calculated for type I interactions using the following
equation '

d.ys = da sin[f] — dy; cos[8] cos[3¢). (8)
For type II phase matching the relation is
dess = di; cos[f)?sin[3¢] 9)
where
dy = 1.6 +0.4pm/V,
ds;
—| < 0.05,
1
and
¢ = 45°.

The nonlinear coefficients for KD*P take a different form since the crystal structure
of KD*P differs from BBO. The values in the chart for KD*P were taken from the
paper by Eimeral on KDP and its isomorphs [Eimeral 87c, p 111].



Frequency || Mixing | Type | Om Pe AO Br AT | d.gy C Py

1/cm*rad [rad 1074 | 1/Cecm | C | pm/V Gw-3 | Gw

02
GW-!

2w 1+1 | 1 | 229 10900 510 | 0.1 | 50.6 | 1.07 266 ]0.19] 7.08
T+1 M | 32.6 | 7080.3 7.86 0.15 [37.1| 0.80 2.06 |0.13 | 4.24
3w 1+2 I 31.1 | 20479.4 2.71 0.36 | 15.5 | 1.01 3.72 [0.34] 1387
1+2 1T 38.2 | 15968.4 3.48 042 [ 133 0.70 267 |040 ][ 7.15
1+2 1T | 59.7 5398.7 10.3 0.42 [ 133 0.29 1.11 [ 0.27 | 1.23
[ 4w || 2+2 T _[47.6 | 329828 | 168 | 14 [3.98] 082 | 305 [0.79 | 15.63
[[T2+2 11 84.7 | 3138.0 17.7 0.137 | 40.6 | 0.01 0.05 45 | 0.003
1+3 | 40.3 | 33747.0 1.65 14 3.98 | 0.91 438 [0.67] 19.14
1+3 T | 46.6 | 26633.3 2.08 0.21 27 | 0.53 264 |1.15] 6.96
| 143 II1 None | L _ 1 ]
5w 1+4 I 51.1 | 47955.2 | 1.16 034 [162 0.77 | 448 ] 1.30 | 20.03
" 1+4 | II | 57.2 | 371679.3 1.48 0274 [ 2031 0.33 | 1.99 |4.07| 3.95
" 1+4 IIT | None
2+3 1 69.5 | 29878.9 1.86 0.34 |[16.2] 0.47 2.76 | 1.33 | 7.60

([2+3 II | None

[ 2+3 III | None

Table 2: Table of parameters for BBO

The nonlinear coupling parameter, useful in calculating the threshold power and
drive is calculated as following

_ 62728 dejj
- )\o,/nlngna’

where n; are the appropriate indices of refraction for the particular interaction taking
place, and d.g; is in pm/V, ), is in ym, and C is in GW~1/2.

c (10)

The threshold power is the minimum power which allows for a reasonable conver-

sion efficiency.
X2
Pa= (252) (11)

The drive is a parameter independent of the crystal geometry which can be used
as a “figure of merit” in comparing different materials and interactions is calculated
as follows

70 = C*%1. (12)




[ Frequency |[ Mixing | Type | Om Be AO Br AT | doyy C Py, C*
1/cm*rad | rad 10-4 | 1/Cem | C | pm/V | GW-3 | GW | GW-!
2w 1+1 | I [229] 10900 | 5.0 011 [50.6] 1.07 | 2.66 [0.19] 7.08 |
" 141 I 32.6 7080.3 7.86 0.15 37.1 | 0.80 2.06 0.13 ] 4.24
3w 142 1 31.1 | 20479.4 2.71 0.36 1565 | 1.01 3.72 0.34 1_3.87
" 1+2 i 38.2 15968.4 3.48 0.42 13.3 0._’{0 2.67 040 | 7.15
142 111 99.7 5398.7 10.3 0.42 13.3 | 0.29 1.11 0.27 | 1.23

Table 3: Table of parameters for KDP

A final property of nonlinear interaction to be considered is the walk-off. Walk-off
occurs when the phase-matching is accomplished at at an angle off the optic axis.
In this situation there is a small angle between the power flow in the first harmonic
and the power flow in the second harmonic. This walk-off will cause the volume, over
which further harmonic generation can occur, to decrease as the two beams separate.
The formula describing this situation is as follows

—arctan'l[ﬁ(L i)]sin[20] (13)
P= 2 'n2 nd e

where p is the walk-off angle. While in some cases this parameter may be critical, in
the case for BBO and KD*P the angular sensitivity are much greater problems that
the walk-off.

4 Calculating Crystal Efficiencies

One of the most important criteria for choosing a particular crystal or interaction is
the conversion efficiency. The conversion efficiency is simply the amount of harmonic
power generated compared to the amount of input power. There are several commonly
used methods for calculating the conversion efficiencies.

One method of calculating the conversion efficiency is described in [Eimeral 87b).
This method is only valid for low efficiency crystals because depletion is not taken
into account. The dephasing is taken into account by including the unavoidable phase
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mismatch term Ak. The equation for the maximum conversion efficiency 9mqz is

sin? [2AKl]
Tmaz = T~ TA T (14)

where 7, is the drive (described in the previous section), ! is the crystal length, and Ak
is the phase mismatch due to the natural divergence of the beam. This simple formula
is only valid for crystals with a drive less than 1 (5, < 1). For higher efficiencies the
depletion of power in the crystal must be taken into account or else the results are
severely over optimistic.

A more rigorous method used for high power systems (n, > 1), can be found
in [Eimeral 87a). This approximation takes into account the depletion of the pump
power but not the dephasing, i.e. this approximation assumes Ak is zero.

NMmaz = tanh? ‘\/7% (15)

where again 7, is the drive.

The exact solution must be used in the high efficiency case where both dephasing
and depletion are important. The exact solution also yields an optimum length for
the crystal which the approximations do not [Eimeral 87a]. The exact solution is

§2
4,

1 -
NMmaz = ta,nh2 [5 tanh 1(371[2’7¢1>/2a 1+ ])] (16)

Where sn is a Jacobi elliptic function, 7, is the drive and
1
6 = Akl (17)
2
Figure 1 compares the different methods for calculating efficiencies.

Because of the high power, the exact Jacobian solution was applied to find accurate
conversion efficiencies of all the interactions under consideration. For the efficiency
calculations the intensity was assumed to be 180 MW /cm?, the pulse diameter was
assumed to be 0.6 cm, and all other values were taken from the parameter tables in
chapter three. Figure 2 compares the maximum conversion efficiencies versus crystal
lengths for all interactions of interest for the first stage doubling crystal. Figure 3
compares the maximum conversion efficiencies versus crystal lengths for all the in-
teractions for the second stage in either quintupling scheme. Figure 4 compares the
maximum conversion efficiencies vs. lengths for the possible, stage three, fifth har-
monic crystals. Table 4 tabulates, for each stage, the different interaction possibilities
and their maximum conversion efficiencies and corresponding crystal lengths. Using
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Figure 1: Three methods for calculating efficiencies.
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Figure 2: Efficiencies for the first stage doubling crystal.
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Figure 3: Efficiencies for the second stage crystals.
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Figure 4: Efficiencies for the third stage fifth harmonic crystals.
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Stage 1

Crystal || Mixing | Type | Length [cm] | 7maz [%0)
BBO 141 I 0.97 43.5
BBO 141 II 1.35 49.5
KD*P | 141 I 3.1 24
KD*P || 1+1 II 3.3 60

Stage 2

Crystal || Mixing | Type | Length [cm] | 7maez [%)
BBO [2+2] I | 043 21
BBO 142 I 0.60 33.4
BBO 1+2 I1 0.78 31
BBO 1+2 | III 2.10 38
KD*P | 1+ 2 I 1.7 37
KD*P || 142 II 1.8 58

Stage 3

Crystal | Mixing | Type | Length [cm] | 7maz [%
BBO 144 I 0.32 15
BBO | 1+4 | 0 0.45 6
BBO 243 I 0.5 14.3

Table 4: Maximum efficiencies and corresponding crysta.i lengths.
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these figures, the maximum attainable efficiencies of each critically phase-matched
crystal, and the length required to attain this length, can easily be compared.

The conversion efficiencies for two noncritically phase matched (NCPM) crystals
were also calculated. In the case of NCPM crystals, the phase matching angle 0,,
is 90°, such that the indices of refraction are n, in both directions and the angular
sensitivity is eliminated. Dephasing is caused by temperature sensitivity as opposed
to angular sensitivity. The noncritically phase-matched crystal is tuned by heating it
to a specific temperature instead of a very precise angle [Hon 79]. The two noncrit-
ically phase-matched crystals which are applicable to the two quintupling schemes
under consideration are LBO for the first stage doubling in either scheme, and KD*P
for doubling the second harmonic to create the fourth harmonic. The efficiencies
were calculated using the exact Jacobian equation where the angular sensitivity was
replaced by the temperature sensitivity.

The noncritically phase matched LBO crystal has type I phase-matching at a
temperature of 140°C. The temperature sensitivity value for LBO was calculated to
be 14.69 C-'cm™? from a temperature bandwidth reported in [Ukachi 90], the d.yy
value used was 0.765 pm/V, and from these values a ¢ parameter of 1.94 GW-1/2
was calculated. The index of refraction used was 1.6 . The curves in Figure 5
show the result for several AT values as these depend on absorption in the material
and at this time we have no hard data to determine what that value will be. One
problem particular to LBO is that the material is biaxial and the expansion coefficients
are quite different along the different axes. This causes mechanical difficulties with
applied anti-reflection coatings.

The NCPM KD*P crystal used for doubling the second harmonic to produce the
fourth harmonic has type I phase matching at 40.6°C. A temperature sensitivity value
of 0.149 C~'cm™! was calculated from a temperature bandwidth value of 6.7 C-cm
in [Hon 79]. The values of d.y; = .367 pm/V and ¢ = 2.02 GW-/2 were taken
from [Eimeral 87c]. The indices of refraction were also obtained from [Eimeral 87c].
Figure 6 shows the efficiency versus length curves for several values of AT across the
crystal face.  The concern with using a noncritically phase-matched crystal in the
new high power system is that the temperature differential across the crystal face will
be too high for good phase matching. This problem may, in large part be reduced by
the slab geometry idea discussed in section seven, but should be examined with care
before committing to using one of these crystals.
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Figure 5: Efficiency curves for a NCPM LBO doubler with different temperature
differentials. '
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5 Balancing

The primary goal of the nonlinear optics is to achieve the highest possible conversion
efficiency in converting the fundamental Nd+:YAG frequency into the fifth harmonic
frequency. This goal is not achieved by simply maximizing the conversion efficiency
of each doubling or mixing stage. Instead the conversion efficiencies of the various
stages must be balanced in order to achieve overall maximum conversion efficiency.
This can be illustrated by an extreme case. If, in scheme B, the conversion efficiency
of the first crystal is 100%, then the overall conversion efficiency drops to 0%. Since
no power remains in the first harmonic to combine with the second harmonic in
the second crystal, there is no generation of the third harmonic which is necessary
to the generation of the fifth harmonic. Thus if too much power is removed from
any of the important lower harmonic frequencies, the efficiency of the overall system
may be degraded. In order to determine the optimum power balancing, the balancing
relationships for each of the two possible schemes is derived. Once the power balancing
requirements are known for each of the schemes, the efficiencies of the individual
crystals can be calculated and the balancing taken into consideration to decide which
of the two possible schemes will give the maximum overall conversion efficiency.

There are two types of relations which are needed in order to derive the power
balancing relations. The first type is the nonlinear power equation, and the second
type is the conservation of power equation.

The nonlinear power equations for frequency doubling [Yariv 89, page 393] show
that the power generated in the second harmonic is proportional to the input power
squared. The nonlinear power relation for frequency mixing [Yariv 89, page 427]
shows that the power generated in the highest frequency is proportional to the power
in each of the input frequencies. In both cases the proportionality constants are
dependent on the frequency, the nonlinear coefficient, the indices of refraction, and the
crystal geometry. It must be noted that these nonlinear relations are approximations,
used in this case to enable a good estimate of the balancing. At high efficiencies
this approximation is no longer accurate, since the pump depletion is neglected. For
a rigorous treatment of this problem at high intensities, the Jacobian formulation
should be applied and solved with numerical techniques.

The conservation of power relations follow from the well known conservation of
energy principle. Assuming no power loss within the crystal, the total amount of
power exiting the crystal is the same as the total power entering the crystal.

The power balancing for the harmonic generation scheme using the fourth har-
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Figure 7: Definitions for the 1 + 4 — 5 scheme for fifth harmonic generation.

monic is straightforward, depending only on the conversion efficiency of the first
crystal. The following definitions are needed in the derivation: P,, is the input power
into the first crystal, P, is the power remaining in the first harmonic after the first
crystal, P, is the power in the second harmonic, P is the power remaining in the first
harmonic after the second stage, P, is the power remaining in the second harmonic
after the second stage, P, is the power in the fourth harmonic, and lastly P; is the
power in the fifth harmonic. Figure 7 is a block diagram illustrating these power
definitions.

The power relation is derived by utilizing the three nonlinear relations, one for
each of the three crystal stages.

P, = oF}
P4 = 62P22
P5 = C3P1,P4

Two conservation of power relationships are also needed in the derivation. The first
describes the power conservation of the first crystal, while the second is a statement
of the premise that none of the first harmomc power is lost when passing through the
second crystal.

Pl = -Pin—P2
P’l,= P1

The above five equations are used to obtain the expression for the output power in
the fifth harmonic, Ps, in terms of the input power, P;,, and the nonlinear constants
c1, ¢z, and c3. The equation thus obtained is

Ps = 616263 n(l cll’;n). (18)
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Figure 8: Power balancing relationship for the 1 +4 — 5 scheme.

In order to relate this equation to the efficiency of the first crystal, we must make
use of the nonlinear power relation of the first crystal again. By dividing both sides
of the equation by P,,, we can see that the right hand side becomes the conversion
efficiency of the first crystal e.

Py
P

Next substitute this relation into equation for P; to obtain the final form of the
equation.

= Pin = €

P5 = 626263.133‘(1 - 6) (19)

From the graph of Ps vs. ¢, Figure 8, notice that the output power increases with
increasing conversion efficiency of the first crystal, until reaching a maximum of about
65%. After this point, the conversion efficiency of the system drops rapidly to 0%
as the available first harmonic power diminishes and the mixing reaction in the third
stage is depleted. Thus we should strive to get a conversion efficiency in the first
crystal as close to, without exceeding 65% as possible. In practice it is quite difficult
if not impossible to reach 65% efficiency, so this system is limited by the achievable
efficiency of the crystals rather then the power balancing. In this scheme for fifth
harmonic generation, the second stage efficiency should be maximized for generation
of the fourth harmonic, since any power remaining in the second harmonic is wasted.
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Figure 9: Definitions for the 2 + 3 — 5 scheme for fifth harmonic generation.

The last stage should also be maximized as the only harmonic of interest is the fifth
harmonic.

The power balancing for the scheme utilizing the third harmonic is more complex
than the scheme using the fourth harmonic since the fifth harmonic power is depen-
dent on the conversion efficiencies of both the first and second crystals. For deriving
the power balancing relations for the second scheme, we will use the following defini-
tions illustrated in Figure 9: P,, is the total incident power, P, is the power in the
first harmonic after the first stage, P; is the power in the second harmonic after the
first stage, P} is the power left in the first harmonic after the second stage, P, is the
power left in the second harmonic after the second stage, P is the power in the third
harmonic, Ps is the power in the fifth harmonic.

The three nonlinear power relations describing the interactions in the three crystal
stages are:

P, = aF;
P3 = CzPl P2
P5 = Cs.P 3P£ .
The conservation relation describing the power flow in the first crystal is
P 1 = -Pin - P, 2

The final conservation relation encompasses two ideas. The first concept is that
the power remaining in the second harmonic after the second stage is equivalent to
the initial power in the second harmonic minus the amount of power from the second
harmonic converted into the third harmonic. This idea shown in equation form is

P, = P, —(fraction of power contributed by P;) Ps.
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The second concept deals with the idea that one photon in the first harmonic (w; )
and one photon in the second harmonic ( w2 ) are annihilated to create one photon
in the third harmonic ( ws ) [Yariv 89, §17.6]. We can look at this idea from the

perspective of individual photon energies. We can write this as
hws = Awy + hw;.

Substituting the knowledge that w, is just twice the frequency of w;, since we are
doing second harmonic generation, we can see

hws = hw; + 2hw;.
Rewriting in terms of energies we obtain
E; = E, +2E,.

From these relations we can conclude that 2/3 of the energy in the third harmonic is
contributed by the second harmonic. The final conservation relation is thus

P, = P— -§-P3.

Combining the above nonlinear and conservation power relations we can solve for P
in terms of P;, and the nonlinear constants c;, ¢z, and c3. The resulting equation is

Ps = eyesPS[1 — ey Pl — gczp,.n (1= ciP)]. (20)

This relation can be simplified by letting

a = aPFq
ﬂ = c2Pin-
The final equation is
Ps = csa?BP2[1 - al[l - gﬁ(l —a)]. (21)

In order to relate the above equation to the conversion efficiencies of the first and
second crystals, we must look back at the first nonlinear power relation. Dividing
both sides of the equation by P,, and recognizing the definition of « in the result, we
can obtain the conversion efficiency of the first crystal, €;.

E— =Py = a=q. (22)
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Relating o and S to the conversion efficiency of the second crystal is a bit more
complex. Use the nonlinear power relation for the second crystal and substitute in «
and S to obtain

P3 = c2a-Pin(}Din - aPt'n)-

Noting that the power incident on the second crystal is equivalent to the power
incident on the first crystal we can obtain the efficiency of the second crystal by
dividing both sides of the above equation by Pi,.

P
P,
Figure 10 is a parametric plot of the total power in the fifth harmonic as a function

of the conversion efficiency of the second crystal (e;). Each curve is for a different
value of the conversion efficiency of the first crystal (e;).

=fao(l-a) = & (23)

From these curves an interesting limitation can be observed. For a given first stage
efficiency there is an optimum second stage efficiency. The system efficiency increases
with increasing efficiencies in the first crystal. The optimum second stage efficiency
arises from the fact that the second harmonic is required in the third stage to create
the fifth harmonic. If the efficiency of the second stage is too high, the second har-
monic will be depleted and not enough will be left over to have reasonable conversion
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in the third stage. For a system with a low efficiency first stage the balancing can be
a significant limitation in the overall system efficiency. This limitation will become
apparent in any case where the second stage happens to have a higher maximum
conversion efficiency than the first stage. To obtain the highest system efficiency the
second stage must be actually be detuned to have a lower efficiency than the first
stage. The conversion efficiency should be maximized in the third stage, since the
production of the fifth harmonic is the goal.

6 Design Comparisons

There are a variety of approaches to fifth harmonic generation from the fundamental
Nd+:YAG frequency. To select a “best” or “optimum” approach the system con-
straints must be addressed. The system efficiency depends on the attainable efficiency
of each stage; the polarization requirements for the desired type of phase matching;
and the power balancing between harmonics. Figure 11 and Figure 12 map out the
design possibilities for the 1 +4 — 5 and the 2+ 3 — 5 schemes. The first column in
both figures illustrates the three highest efficiency crystals available for the doubling
stage. The middle column shows the possibilities for the second stage. In Figure 11
two doubling crystal choices are shown, one is noncritically phase matched KD*P and
the other choice is a relatively low efficiency BBO type I crystal. In Figure 12 there
are also two choices for the second stage illustrated. One is a very high efficiency
KD*P type II crystal, and the other is a lower efficiency BBO type III crystal. The
final column in both figures illustrates the only reasonable choice for their respective
interactions. Once the crystal choices have been laid out, the polarization require-
ments of each of the harmonics and their orientation with respect to each other must
be considered. The n, and n. axes of the crystals are labeled and the necessary
orientation of the different harmonics are also labeled.

6.1 Polarization Effects

An interesting polarization effect, intrinsic to the type II doubling crystal, limits the
amount of useful power in the first harmonic. As was discussed before, the type
IT phase matched crystal needs one wave polarized along the n, axis and one wave
polarized along the n. axis. In the case of a doubling crystal, the input wave can be
circularly polarized or linearly polarized oriented at 45° to the n, and n. axes for type
II phase matching [Mach. 76]). The generated second harmonic will propagate along
the n. axis, and the first harmonic output power will be evenly split along the two
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Figure 11: Possible 1 4+ 4 — 5 schemes illustrating crystal choices for each stage and
polarizations of the harmonics.
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axes. In the absence of exacting length and temperature data the prediction of the
polarization of the first harmonic exiting the doubler crystal is impossible to predict.
Because the crystal itself is a highly birefringent material, it will act as a waveplate.
The final polarization depends on the thickness of the crystal and an immeasurably
small change in the thickness of the crystal will change the final polarization. The
important result of this waveplate action is that the fundamental beam will have its
power split along the two axes and it is not possible to rotate it to be polarized along
one axis or the other with respect to the generated harmonic since the polarization
is unknown. This will limit the power available in the first harmonic at later stages.
Only 71% of the first harmonic power, remaining after the doubling stage, will be
usable. For this reason the apparently less efficient type I BBO crystal actually has
a higher effective efficiency for the system as a whole. This problem does not extend
to mixing crystals, since the different frequency waves are linearly polarized, aligned
with only one of the n, or n. axes.

6.2 Design Options

Keeping the system constraints for this particular design in mind, consider the 144 —
5 quintupling scheme, illustrated in Figure 11, in more detail. The first stage crystal
choices are the KD*P type II doubler, the BBO type I doubler or the NCPM LBO
type I doubler. Due to the waveplate effect described above, the KD*P and the BBO
crystals have nearly equivalent conversion efficiencies. The BBO crystal is a more
robust material in terms of optical damage and heating tolerance. The third crystal
LBO is very attractive alternative since it has potentially very high efficiencies as it is a
noncritically phase matched interaction. A high quality LBO crystal is unfortunately
difficult to obtain at this time. In the future, as alternative sources of LBO crystals
become available, it would likely be a clear choice for this application. The two
second stage choices are either a KD*P NCPM crystal or a low efficiency BBO type
I crystal. The BBO crystal is a poor choice because of its low conversion efficiency.
There are questions about the benefit of using the noncritically phase matched crystal
for this high average power application. If the KD*P crystal suffers absorption, the
heating could increase the phase mismatch, reducing the efficiency. For the third and
final stage the type I BBO crystal is the obvious choice, since the alternative has
unacceptably low efficiency. For this scheme of quintupling, the power balancing is
not an issue since the first crystal conversion efficiency is well below the threshold for
power depletion.

For the quintupling scheme illustrated in Figure 12, the first stage considerations
are the same as those described in Figure 11. The second stage is a mixing stage
and there are two choices apparent for this interaction. The type III crystal has an
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advantage of allowing the polarizations of the second and third harmonics to be par-
allel and thus no waveplate will be needed for the system. The drawbacks to using
this crystal are two-fold. This crystal has much lower efficiency, and additionally
this interaction requires a very long crystal which is expensive and prone to heating
problems. The second possible crystal is a KD*P type II mixer. This crystal is very
attractive as it is a well known material with very high conversion efficiency. For the
third and final stage, there is only one crystal, a BBO type I mixing crystal. An
additional consideration for the scheme using the 3rd harmonic is power balancing.
Power balancing has a significant effect on this system, since the calculated efficiency
of the second stage is much higher than that of the first stage. Unfortunately the
power balancing requires the second crystal to have slightly lower efficiency for opti-
mum system conversion efficiency (see §5). In this case the second crystal must be
detuned in order to increase system conversion efficiency. Thus, a high first crystal
efficiency is vital to a high efficiency system. If the first crystal efficiency could be
increased, the second crystal would not need to be as drastically detuned and the
total system efficiency would increase.

These design configurations omit an important consideration, heat flow manage-
ment. Methods for dealing with this additional constraint are discussed in the fol-
lowing section.

7 Beam Compression Optics

There are two purposes for compressing the output light from the Nd+:YAG laser
source. The first reason is simply to increase the peak power density while not signif-
icantly increasing the angular divergence of the beam in the angularly sensitive direc-
tion. The second reason for beam compression is to improve heat flow, thus reducing
the temperature-induced phase mismatch. The design of the optics, to accomplish
beam compression depends heavily on the specific system under consideration, since
the divergence matching of the particular stages and/or the dispersion of different
harmonic frequencies must be addressed.

7.1 Power Density

Generally the benefit derived from homogeneously compressing the input beam to
increase the peak power density is counteracted by the increased divergence caused
by the focusing. The increased divergence detracts from the the phase matching,
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reducing the conversion efficiency, by exactly the same factor as the increased power
from symmetric beam compression increases the conversion efficiency. The net effect
is that for higher power density a shorter crystal is needed to regain the original
conversion efficiency. But if the compression is done in only one direction, in particular
the direction less sensitive to angular divergence, we can increase the power density
without increasing the divergence and thus derive a net benefit. The n, direction is
the nonsensitive direction because the index of refraction is constant with respect to
the angle of propagation along the n, direction. One problem which is evident with
this method, is that the nonsensitive direction for a particular stage is not necessarily
parallel to the nonsensitive direction of the preceeding stage. These problems will be
further discussed in the design of the beam compression optics.

7.2 Heat Flow Management

One of the motivations for redesigning the nonlinear optics is to improve heat man-
agement. In the current low average power system, heating problems are revealed
in the BBO fifth harmonic crystal [Partlo 92]. In the new higher average power sys-
tem, heating is expected to be a critical issue. The precise cause of heating depends
on the crystal in question. For KD*P the absorption decreases with the amount of
deuteration, but the crystal cannot be 100% deuterated, so some residual absorption
may cause problems at high average powers. In BBO the source of the absorption is
unknown, but whatever the cause, heating is a significant problem at high average
powers. Temperature differences across the face of the nonlinear crystal will cause
changes in the index of refraction which in turn alter the phase matching conditions.
The temperature difference causes the crystal to be correctly phase matched over only
a portion of the crystal area, thus reducing the crystal’s conversion efficiency. Since
the crystal is a very good insulator the temperature difference cannot be affected
by heating the crystal in an oven. Maintaining the average crystal temperature is
important for stability, but the temperature profile within the crystal can only be
changed by changing the crystal geometry. The heat flow in two general geometries,
the rod and the slab, were examined.

The temperature profile in an infinite rod with radius a is described by the fol-
lowing equation from [Carslaw 59]

Pina
= 1@ =), (24)

where the temperature T, due to the absorption in the volume of the solid, as a func-
tion of radial position r is given in terms of P, the incident power, o the absorption
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Figure 13: Temperature profile of an infinite rod.

coefficient, and k the conductivity of the material. The rod is assumed to be infinite
in length, have the outside surfaces maintained at a constant temperature (0°K in
this case), and have volumetric heating at a constant rate due to absorption. The
resulting temperature profiles for rods of different radii are graphed in Figure 13.
Note that the center temperature is constant with respect to the radius of the rod,
as can also be seen by looking at the above equation when r = 0.

Pina
47k

Since altering the rod geometry has no effect on the temperature differential, the
temperature difference between the center and the edge of the rod, the rod geometry
does not offer any improvement in reducing the phase mismatch. We can only change
the gradient not the magnitude of the temperature differential.

T=

= constant. (25)

Since the rod geometry does not allow for improved management of heat flow, an
alternative geometry is examined. The heat flow in an infinite slab with thickness ¢
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Figure 14: Temperature profiles for infinite slabs at various widths.

and width L [Carslaw 59] can be given by

_ Pina
T 4ktL

where P, is the incident power, « is the absorption coeflicient, k is the conductivity,
and z is the displacement in the width direction. The temperature profiles of slabs
with different widths are shown in Figure 14. To obtain the information of interest,
we again look at the variation of the center temperature with respect to the geometry
of the solid.

Pina

i (-Iti), z=0 (27)

This result shows that the center temperature is dependent on the geometry of the
solid. The center temperature is linearly dependent on the thickness of the slab for a
slab of constant width. From this result we see that we can improve the temperature
differential across the crystal face by increasing the aspect ratio.

(L2 - 32)1 (26)

T=
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In conclusion, the heat flow equations reveal that a slab geometry is preferable for
reducing the phase mismatching in the crystal due to temperature variations across
the crystal face. In the new harmonic generator quintupling system we plan to aim for
a compression ratio of 3:1 to 4:1, which must match the aspect ratio of the nonlinear
crystals in order to fill the crystal with the input beam. The precise ratio will be
determined by the limitations of the beam compression optics which are described in
detail in the following section.

7.3 Design of Beam Compressor

The design and positioning of an appropriate beam compressor depends upon the
relative orientations of the polarizations of the angularly sensitive axis after each
nonlinear stage in the harmonic generator. A system in which the beam compressor
can be placed in front of the first stage is preferable, although it is clear from Fig-
ure 11 and Figure 12 that the sensitive and nonsensitive axes are seldom conveniently
aligned. When the beam compressor can be placed before the harmonic generator,
all three stages derive the benefit of improved heat extraction and higher peak power,
and the additional complication of dealing with more than one frequency can be
avoided. Even with the stringent polarization requirements there are several case
where the beam compressor can be placed prior to the nonlinear optics. For example
consider the scheme in Figure 12, if the first harmonic beam is compressed, the sec-
ond stage, which is highly efficient, may still give acceptable conversion even with the
increased divergence of the first harmonic. An alternative to accepting the divergence
mismatch is to design a waveplate to rotate both beams by 90 degrees, in effect reori-
enting the polarizations into the optimum position. A third design which allows for
the beam compressor to come before the harmonic generator utilizes a noncritically
phase matched (NCPM) crystal as a doubler. For a system with a NCPM crystal,
both directions are non-sensitive. This additional degree of freedom reguarding beam
compression is an additional reason for interest in noncritically phase matched crys-
tals. In particular, the LBO NCPM doubling crystal is an attractive option. In some
cases however, the beam compressor must. be placed after the first nonlinear stage. In
this situation the dispersion of the two different frequency beams becomes an impor-
tant consideration. The same basic beam compressor may be used in either position,
but some designs may require additional components to rotate the polarizations to
the proper positions.

The beam compressor consists of one or more right angle prisms. The prism is
designed so the light enters along the surface normal of one side of the prism, and exits
the slanted side, refracted at large angle compressing the beam in the process. The
prism is illustrated in Figure 15. The beam enters the prism normal to the surface in
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Figure 15: Single prism beam compressor.

order to minimize the surface reflection loss. The prism is cut so that the rays will exit
at Brewster’s angle which essentially eliminates reflection losses at the back surface.
At Brewster’s angle one polarization has 0% reflection loss while the other polarization
has significant reflection losses. Figure 16 illustrates the reflection loss versus angle
with respect to the surface normal for both the R, and R, polarizations[Fowles 89].
The Brewster’s angle is defined as

0p = tan—l(nglass), (28)

where 14,4, is the index of refraction of the prism material. Analyzing the geometry
and applying Snell’s Law, the demagnification of the beam passing through the prism
can be shown to be as follows

t_2 = = i = cos(¢glcss)
t M cos(Pair) ’
where ¢, is the width of the compressed beam, ¢, is the width of the input beam, M

is the magnification of the beam, and @i, and @gqss are the angles with respect to
the surface normal in the air and glass. These quantities are labelled in Figure 15.

(29)

The remaining design variable is the index of refraction of the prism material.
Changing the index of refraction will alter the Brewster’s angle and thus the mag-
nification. Figure 17 is a design graph showing the magnification versus reflection
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Figure 16: Reflection losses for both the R, and R, polarizations versus the angle of
the beam with respect to the surface normal. 85 denotes Brewster’s angle.

36




Reflectance [%]

1.5¢
A3
~ny
/]
& 1.25
&
y
e \3
v [
e
0.75¢

o/ 5+

AA‘Q‘A* é

1.4 1.6 1.8 2.2 2.4

Magnification

Figure 17: Design graph for single prism with varying indices of refractions and angles.

losses for different indices of refraction. The point at which the reflectance losses go
to 0% indicate the beam is refracted at exactly Brewster’s angle. Figure 17 indicates
that the angle can deviate from Brewster’s angle, changing the magnification, with-
out great reflection losses. The magnification values indicate that two or more prisms
will be required to attain the desired compression factor (3—4). If in the two-prism
beam compressor, the second prism is placed inverted with respect to the first, the
exiting beam will be emitted parallel to to the original beam, thus assisting in the
alignment of the system as a whole. For.a system in which the beam compressor is
placed prior to the first nonlinear stage, a virtually lossless, two-prism, compressor
can be constructed to give the desired demagnification ratio.

If the beam compression optics must be placed between the first and second stages,
the presence of both the fundamental and second harmonics increases the complexity
of the analysis. Since the index of refraction of the glass is frequency dependent,
Brewster’s angle will differ for the two frequencies. This dispersion will cause the
different frequency beams to diverge, gradually reducing the overlap of the beams and
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Figure 18: Two prism beam compressor.

therefore the amount of area over which the mixing interaction occurs. An additional
benefit of a two-prism system is that the divergence will be less than a single prism
system. The two-prism beam compressor is illustrated in Figure 18. The divergence
angles are exaggerated for illustration.

The angular divergence between the fundamental and the second harmonic beams
can be calculated and shown to be dependent on the difference in the index of refrac-
tion at the two frequencies An. Using Snell’s Law, the definition of Brewster’s angle

and geometry, the expression for the divergence of the two beams Afp can be shown
to be

Abp = 0% — 6%

= og] - sin'l [(nglass + An)Sinleglcss -

sin™![ sin[sin~[sin[01ass) (Tglass + An)] — 05]1]],

Nglass + An
where ng,,s is the index of refraction of glass at the fundamental frequency, 6% is
Brewster’s angle at the fundamental frequency, and 63 is the exit angle of the second
harmonic. Figure 19 shows 0p versus An for three materials with different indices.
SF11 is a high index glass, BK7 is a commonly used glass, and SiO, is fused silica.
The divergence problem eliminates the use of materials with high An because the 0p
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Figure 19: Graph showing divergence of beams with respect to the index of refraction
difference for three materials, SF11, BK7, and fused silica.
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becomes too large. For this reason, a material such as fused silica is a good choice,
even though the magnification factor is lower.

It is interesting to note that the divergence for a two-prism system is lower than
the divergence of a single prism system. In the first prism the divergence is caused
purely by dispersion. In the two-prism system the situation is more complex. Since
the two beams are traveling at different angles, the second prism can only be aligned
normal to one of the beams. Assuming the surface is aligned for the fundamental
frequency, the second harmonic will strike the second prism at an angle to the surface
normal and be refracted inside the second prism. The beam will be bent closer to
normal incidence. While the higher frequency beam will be bent more at the output
face of the prism, it has a greater angle to overcome to begin with. The net effect is
that the angle due to dispersion alone will be partially overcome by non-normal angle
inside the prism and the divergence is reduced.

For the case where a compression ratio of 1:4 or higher is desired, three prisms may
be required. A fortuitous side-effect of using three prisms is that the divergence is even
further reduced. Figure 20 shows the orientation of the three-prism beam compressor
and an exaggerated rendition of the divergence effects on the two frequency beams.
With the third prism, the second harmonic beam will actually be over corrected
causing the Afp to be negative. Figure 21 is a graph of Afp with respect to An for
fused silica.

In summary, we have discussed two motivations for beam compression along one
axis — increase peak power density and reduced temperature profile — and the design
of a component to accomplish the task. The position of the compressor is an impor-
tant issue. While it is desirable to place the beam compressor before the harmonic
generation, polarization considerations may dictate placement inside the harmonic
generator. Inside the harmonic generator the divergence of the fundamental and
higher harmonic frequencies must be considered and minimized to avoid detracting
from the conversion efficiency.

8 Conclusion

The design of a fifth harmonic generator for use with a Nd*+:YAG source laser is
discussed in detail. Together the laser and nonlinear optics form a 213nm source for
optical lithography capable of pattering lines and spaces as small as 0.18 microns.
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Figure 20: The three-prism beam compressor.

The design strategy for this particular system can be generalized to a design
methodology for any multi-stage nonlinear optical system. The design problem can
be broken down into several steps. One task is to assess the available materials elim-
inating those inappropriate to the particular system requirements. The nonlinear
parameters need to be calculated for the frequencies, interactions, and power levels
of interest, culminating in two particularly useful parameters, the nonlinear coupling
parameter ¢ and the drive 7,. Another step in the design involves using 7, and ¢
to calculate the nonlinear conversion efficiencies for each crystal. For low efficiency
crystals, the depletion or dephasing may be disregarded and a simple efficiency ap-
proximation will suffice. In situations, such as the fifth harmonic generator under
consideration, where both the dephasing and pump depletion are significant, the Ja-
cobian efficiency formula should be used. The Jacobian formulation has the additional
benefit of giving an optimum length for the crystal. A first pass approximation of the
power balancing can shed light on another system constraint. The balancing analysis
shows that for some schemes power balancing may not be an important issue, while
for other schemes balancing can be a real limiting factor and thus must be carefully
considered.

By constructing a diagram which incorporates the information gathered about
efficiencies, waveplate effects, balancing, and polarization requirements, a comparison
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Figure 21: The divergence of the three beams with respect to the difference in the
index of refraction for fused silica for the three-prism beam compressor.
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can easily be made among the various fifth harmonic generation schemes. In analyzing
the benefits and limitations of each scheme the additional constraint of involving heat
flow is also taken into account. A slab geometry proves to have better heat flow
characteristics, than the traditional rod or square geometry. In order to implement
the slab geometry crystals, the beam entering the crystals must be shaped to have
the same aspect ratio as the crystal slab. The polarizations within the system apply
an additional constraint. Since, in order to preserve the low divergence of the beam,
we wish to compress in only the nonsensitive direction for each crystal, the beam
compressor needs to be carefully designed. To maintain high efficiency in the harmonic
generator, the beam compressor must have low reflectivity and, if placed after the
first stage, must not allow much divergence of the two frequency beams. With the
design of an appropriate beam compressor, the final harmonic generator design can
be completed and implemented.

For the specific application detailed in this paper, the scheme using the second
and third harmonics to produce the fifth harmonic looks most promising. In this basic
scheme, the BBO type I doubler is the best choice for the first stage, until the LBO
NCPM doubler becomes available. The prism beam compressor would then follow
the first stage with the BBO or precede the first stage with the LBO. In the position
following the first stage, an appropriate use of waveplates is needed to properly orient
the polarizations. The second stage will be the type II KD*P crystal since it is a
clear efficiency winner. The only choice for the last stage in this scheme is the BBO
type I crystal.

Future work will focus on actually implementing the fifth harmonic generator
for use in optical lithographic imaging. Additional work on the theory needs to be
done to more rigorously treat the balancing problem, probably by using numerical
methods to solve the Jacobian formulas for the efficiencies. The practical problem of
the polarization rotators for the prism beam compressor also needs to be resolved.
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Appendix

The following files are Mathematica files used in generating several of the tables and
figures included in this report. Section A contains the file used to generated the non-
linear parameters tabulated in Chapter 3. Section B has sample files for calculating
conversion efficiencies for both the critically and noncritically phase matched crystals,
using the jacobian equation as discussed in Chapter 4. Section C of the appendix
includes the heat flow formulas detailed in section 7.2.

A Calculating Nonlinear Parameters

(* Mathematica file for generating nonlinear optical parameters ¥*)
(* All values for a 1 cm long BBO crystal with 100MW pk power*)

(* Constants *)

nol := 1.65510 (* indices of refraction for ordinary no and *)
nel := 1,54254 (* extraordinary ne axes. The numeral refers *)
no2 := 1,65510 (* to the frequency w, where wl <= w2 < w3. *)
ne2 := 1,54254

no3 := 1,67493

ne3 := 1,55552

a :=1 (* scaling factors *)

b :=1

c := 2

(* Phase matching angle - theta ¥*)

(* Type I *)

avn := 1/c (a nol + b no2)

thetal := ArcSin([Sqrt[ (1/avn*2 - 1/no3“2)/(1/ne3“2 - 1/no372)]1}

(* Type II *)

(* This parameter must be calculated using : *)

(* Solve[lhs == rhs, theta]. *)

lhs(theta_] := 1/Sqrt[(Cos[theta]”*2/(no3)~2) + (Sin[theta]”~2/(ne3)"2)]

rhs[theta ] := 1/¢c ( b no2 +
a 1/Sqgrt[Cos[theta]l”~2/(nol)~2 + Sin[theta]”2/(nel)"2)])
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(* Type III *)
(* note: 1lhs is the same for both type II and type III *)

rhsIII(theta_] := 1/c ( a nol + b 1/Sqrt[Cos[theta]l*2/(no2)~2 + Sin([theta]”*2/(ne2)”*
(* Angular sensitivity - beta: *)

(* Type I *)

betaI[theta_] := N[2 Pi ¢/ (1.064 10~(-4)) Sin[theta] Cos[theta] (1l/ne3*2 -
1/no372) / ( (Cos[theta)”2/no3~2) + (Sin[theta]”*2/ne372))*1.5]

(* Type II ¥*)

betalI[theta_] := N[2 Pi / (1.064 10~(-4)) Sin[theta] Cos[theta] (c (1/ne3*2 -
1/no372)/( (Cos[theta]”~2/no3”2) + (Sin[theta]”~2/ne3%2))~1.5 -~ a (1/nel”2 -
1/nol1%2)/( (Cos[theta]”2/nol”2) + (Sin[theta]”~2/nel”2))%1.5)]

(* Type III *)

betalIlI[theta_] := N[2 Pi/ (1.064 10~(-4)) Sin[theta] Cos[theta]

(2 (1/ne372 - 1/no372)/( (Cos[thetal”2/no372) + (Sin{theta]”2/ne372))*1.5

- b (1/ne222 - 1/no272)/( (Cos[theta]”~2/no2%22) + (Sin[theta]”2/ne2~2))71.5)]
(* Angular bandwidth (FWHM) - delta theta *)

delth[beta_] := 4 1.39156 / beta

(* d effective - units of pm/Volt¥*)

deffI[theta ] := .080 Sin[theta) -~ 1.6 Cos[theta]

deffII[theta_] := 1.6 Cos[theta]*2

(* Threshold Power - use the appropriate ccX for the type of phase matching X*)
(* cc corresponds to the ¢ parameter with units GW~(-1/2) 1064 is *)
(* the wavelenght in microns *)

ccI[deff_ ) := 5.456 deff / (1.064 Sgrt[nol no2 ne3])

ccII[deff_ ] := 5.456 deff / (1.064 Sqrt[nel no2 ne3])

ccIII[deff ] := 5.456 deff / (1.064 Sqrt[nol ne2 ne3))

power [cc_,beta_] := (beta 1.064 10~(-4) / cc)*2

(* Drive - for Intensity = 100 1076 watts/cm“Z*)

drive[cc_] := cc”2 100 1076
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B Calculating Conversion Efficiencies

B.1 Critically Phase Matched Crystals

(* This routine calculates and plots the jacobian formulation for the
conversion efficiency versus crystal length. *)

(* Constants *)

c 1= 2,66 (* GW~(-1/2) ¥*)
intensity := 0.18 (* GW/cm”*2 *)
beta := 10900 (* angular sensitvity *)

(* 1/ (cm-rad) *)
lambda := 1.064 107-4 (* cm *)

g := 1.0 (* beam quality factor *)
ws := 0.6 (* beam diameter *)
(* cm *)

(* Equations *)
dk := beta lambda g/ws (* Phase mismatch *)
nofl_] := ¢*2 172 intensity (* drive *)
(* Jacobian Efficiency Equation *)
eta3[l_]:= Tanh[0.5 ArcTanh|
JacobiSN([2 Sqrt(no[l]l],1 + (.5 dk 1)~2/(4 no(l])]]1]1~2
(* Plotting Routine *)

jacobplot := Plot[eta3(1]),{1,0,1},PlotRange->{0,.5},PlotLabel->
"BBO Type I Doubling",AxesLabel->{"Length","%"}]
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B.2 Noncritically Phase Matched Crystals

(* Mathematica file for generating the efficiency vs. length for *)
(* the noncritically phase-matched LBO doubler. *)

(* Constants *)

c :=1.94 (* GW~(-1/2) *)
intensity := 0.2 (* GW *)
betat := 14.6912 (* 1/ (C-cm) *)
deltat := .1 (* degrees C *)
lambda := 1.064 10”-4 (* cm *)
q :=1.0 (* quality factor *)
ws := 0.4 (* diameter cm *)

(* Equations *)

dk := betat deltat (* phase mismatch *)
no[l_] := c*2 12 intensity (* drive *)

(* Efficiency Calculation *)

eta[l_J]:= Tanh([0.5 ArcTanh[JacobiSN[2 Sqgrt[no[l]},1 + (.5 dk 1)72/(4 no[1l])]]11"2

(* Plotting Command *)
jacobplot := Plot[eta[l],{l,O,S},PlotRange->{{0;2},{0,1}},PlotLabe1->FontForm[

"LBO Type I NCPM Doubler",“Bold",14],AxesLabe1—>{FontForm["Length","Bold",14],
FontForm(["%", "Bold", 14]}]
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C Calculatihg Heat Flow

(* Heat flow in cylinder and slab geometries*)

k := .08 (1/100) (* conductivity [W/cm*K] *)
alpha := .32 (* absorption coefficient *)
power := .25 (* power ([W] *)
t := .4 (* thickness [cm] *)

(* Volumetric heat flow into cylinder - Carslaw pg. 191%)
tempV[r_,R_] := (power alpha)/(Pi R*"2 4 k t) ( R*2-r*2)

tempVplot := Plot[tempV[x,R], {x,0,R}, PlotLabel->"Temp vs. Radius in a
Cylinder"™, AxesLabel->{"Radius", "Temperature"}]

trdelplot := Plot[tempV([O0,R], {R,0,2}, PlotLabel->"Temperature @ center
vs. Radii", AxesLabel->{"cylinder radius","Center Temp"},PlotRange->{0,3}]

(* Volumetric heat flow in a slab -L < x < L - Carslaw pg. 130 steady state*)

tempX[x_,L ] := (power alpha)/(2 (2 L) t k) (L*"2 - x"2)
tempt [thick_] := (power alpha)/(2 (2 L) thick k) (L*2)

txdelplot := Plot[tempX[0,L],{L,0,2},PlotLabel->"Temp at center vs Slab
Thickness", AxesLabel->{"Thickness","Temp at Center"}]

tempXplot := Plot(tempX[x,L], {x,-L,L}, PlotRange->all, PlotLabel->"Temp vs.
thickness in slab"]

slabthicplot := Plot[tempt([th],{th,0,10}]
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