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ABSTRACT

We consider the problem of allocating a large fixed number of buffers among the nodes of a tandem

of last-come-first-served queues with general service time distributions and Poisson external arrivals so as

to optimize some performance criterion associated with the time to buffer overflow, such as maximizing

its mean or maximizing the probability that it exceeds some value. This problem has been studied in the

context of Jackson networks, where it was shown that a simple rule of thumb achieves an allocation that is

close to the optimal allocation. The rule of thumb was this : allocate the buffers in inverse proportion to

the logarithms of the effective service rates at the nodes. Here effective service rate denotes the ratio of the

service rate to the stationary arrival rate.

In this paper, we show that the same rule of thumb achieves a nearly optimal buffer allocation for

the model considered above when the service time distributions satisfy an exponential tail condition. This

should not be too surprising in view of the fact that the present model has a formof stationary probability

distribution for the queue lengths that is identicalto the Jackson network case, and that the rule of thumb

roughly has the effect ofminimizing the stationary probability ofa 'boundary' set corresponding to a buffer

overflow. In fact, the same reasoning should lead us to expect the result to hold more generally for all

product-form networks, but this remains a conjecture at present.
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1. Introduction

Networksof queuesarecommonlyused as.models for the queueing processes taking place in manufactur

ingsystems, computer networks, and communication networks. An important problem in these applications

is how best to allocate buffer spaces among the nodes of the network so as to avoid frequent overflows.

Indeed, buffer overflow often has catastrophic consequences in the applications above.

In this paper we address the problem using an asymptotic approach. That is, we assume that the

number of buffers to be allocated is relatively large. Our network model will be a tandem of last-come-first-

served queues with general independent and identically distributed (i.i.d.) service times and Poisson input.

This is a particular example of a class of networks called product form queueing networks [5], which have

a particularly simple form of stationary probability distributions, and hence are popular in many modeling

applications. The problem studied is how to allocate a fixed number N of buffer spaces among the nodes of

the network so as to optimize some performance criterion associated with the time to buffer overflow, such

as maximizing its mean or maximizing the probability that it exceeds some .value.

In the context of the Jackson network model, this problem has been studied by several researchers.

A rule of thumb for that case is proposed in [1], and analyzed there and in [2]. Several simulation based

approaches have also been tried, see, for example [3], [4], and [6,7] . Here, we make a start in the direction

of extending the results in [1] to product from queueing networks.

In [1] the following rule of thumb for this problem was considered: allocate the buffers in inverse

proportion to the logarithms of the effective service rates at the nodes, where effective service rate means

the ratio of the service rate to the stationary arrival rate in the network with infinite buffers. It was shown

there that this rule of thumb is accurate to within a constant times log N as the number, N of buffers to

be allocated becomes large. That is, for any reasonable cost function associated with the time to buffer

overflow, the allocation that is optimal for this cost function is within a constant times log TV of the rule of

thumb. One way to interpret this result is that the size of the search space to determine the actual buffer

allocation is reduced from TV**"-1 to (log N)d, where d denotes the number of nodes in the network.

Our contribution in this workis to obtainthe identical result in the case of tandems of M/G/1-LCFS

queues, that is, queues with general i.i.d. service times, last-come-first-served queueing discipline, and Poisson

external arrivals into the first queue in the tandem. We need to assume, however, that the service time

distributions satisfy an exponential tail condition.



In Section 2 we introduce some notation and state the problem more formally. We state our main

theorem in Section 3 and use it to obtain our result about the approximate optimality of the rule of thumb.

Section 4 deals with the proofof the theorem stated in Section 3. Section 5 contains some concluding remarks

and discusses what seem to be promising directions for further investigation.

2. Problem formulation

The model we consider in this paper is a collection of d nodes or service centers, connected in series with

no feedback. Customers arrive from the external worldinto the first queue according to a Poissonprocess of

rate A. On completing service at node t, 1 < i < d— 1, the customer enters node i+1. On completing service

at node d, the customer leavesthe system. Service times are assumed to have a general distribution, i.i.d. at

each node, independent from node to node, and also independent of the arrival process. The mean service

time at node * is defined to be 1//Zj. We define the quantity p\ = \/m and assume that pi < 1 for all i.

This is a natural requirement if the network is to operatefor reasonably long periods of time without buffer

overflow. Theservice discipline at the nodes is assumed to be last-come-first-served (LCFS). In particular,

if a customer enters a queue while a service is taking place, then the service in progress is interrupted and

the server starts work on the new customer. After completing service on new arrivals, the server resumes

service on the interrupted customer, that is, the service already delivered to that customer is not wasted.

Let X(t) = ((Qi(t)t Bi(t)),..., (Qd(t), Bd(t))) denote the state process. Here Qt(t) isthe queue length
at node i including the customer undergoing service, and Bi(t) is thevector ofservice times already delivered

to the customers currently at node t. We construct the stochastic process X(t) ona sample space consisting

ofa Poisson arrival processes, i.i.d. sequences ofservice requirements at the individual nodes, handed out to

customers in the order oftheir arrival, assumed to beindependent from node to node and also independent

of the arrival process. We define the filtration T\ to be the sigma algebra generated by (Xa,0 < s < t). It
follows that the residual service time vector Yi(t) for the customers in queue i at time t satisfies

m(t)\?t] = E\Yi(t)\Bi(t)} (2.1)

It also follows from the above construction that {{X(t),?t),t> 0) is a Markov process.

It is known for this model that the network is stable under the assumption pi < 1 for all i,1 < i < d.

Furthermore, the stationary distribution of the number ofcustomers in the system has a particularly simple
form, [5], and is given by

d

T(*i,...,sd) =nA>f(l-/>i) (2.2)
»=i

3



We shall need the following assumption about the residual service time distribution :

E\Y(t)\B(t)]<0 (2.3)

where /? is a deterministic constant that does not depend on B(t). Here B(t) denotes the amount ofservice

already delivered to a customer is some queue, and Y(t) the residual service that needs to be deUvered

to that customer. In other words, the mean residual service time is uniformly bounded irrespective of the

amount of service already delivered. It can be shown that this assumption is equivalent to the assumption

that the moment generating function of the service timedistribution is finite in an open neighborhood of 0.

We are interested in the problem of assigning N buffers to the nodes of this network so as to op

timize some cost function associated to the time to buffer overflow of the network started empty. Call

(JV*i, #2,. ..,Nd) an allocation if ]T)t_i Ni = N and each JVj is a positive integer. Given an allocation, define

the set B as follows:
B = {(xi,..., Xd): xt = Ni +1 for some1 < i < dt

Xj < Nj for allj # *', 1 < »< d.)

We call B the boundary for this allocation. Then, the time for a buffer overflow to occur in the system

started empty is the same as the time for the Markov chainX(t), started at the origin, to hit the set B. We

shall show that, for any performance measure associated with this time, the rule of thumb stated below is

approximately optimal.

3. Main result

The following rule of thumb was considered in [1]: Given N buffers, allocate roughly piN buffers to

node », where the fraction pt is such that c= p< log -p is a constant independent ofi, and J2i-iPi == *• ^
was shown there that if (N\,. ..,Nd) is an optimal allocation, it must be close to the rule of thumb in the

sense that

\Ni-PiN\<K\ogN, l<i<d (3.1)

for a constant K independent of N, and large enough N. More precisely, if any allocation differs from the

rule of thumb by more than the above amount along a subsequence of N —• oo, it performs worse than the

rule of thumb along that subsequence. We show the identical result to be true for our model as well.

We now introduce some notation, a denotes an infinite subset of the positive integers. We write

lim^ _ w for N going to oo along the subsequence a. Given two functions f(N) and g(N) on the positive

integers, we write f(N) = oa(g(N)) if lim^ y^ $$ =0. We write f(N) =w„(0W) if 9(N) =oa(f(N)).
Finally, all logarithms are assumed to be to the base 2.



Let T have the distribution of the time to buffer overflow when the system is started empty. This

depends on N and the buffer allocation but this dependence will be suppressed from the notation. In the

next section, we prove the following theorem:

Theorem : For any buffer allocation scheme (JVi,...,Wd), £?=i-W = N, let g(N) = mini(£)N'. Then,
for any subsequence a and any r(N) such that r(N) = Oa(g(N)), we have

lim P(T<t(N)) = 0 (3.2)
N?oo

On the other hand, for any T(N) such that T(N) = u><>(Ng(N)), we have

lim P(T<T(N)) = 1 (3.3)
Nrroo

Here we use this theorem to justify the rule of thumb stated above. This short argument is identical to

that in [1] but is repeated for the convenienceof the reader.

For any bufferallocation (N\,...,JVj), denote 2~eNNg(N) by h2(N). Here cis the constant defined in

the statement of the rule of thumb. Suppose liminfjv_+00 2~eNNg(N) = 0. Then there is a subsequence a

such that 2~cNNg(N) = o„(l). Then also h(N) = 0,(1). If T and T* havethe distribution of the time to

buffer overflow for this buffer allocation scheme and for the rule of thumb respectively, then we have

lim P(T<2cNh(N)) = lim P(T< ^ffl) =l- (3.4)
n r oo jv r oo n\N)

by (3.3), whereas

lim P(T < 2cNh(N)) = 0 (3.5)
N -? oo

by (3.2). Clearly the buffer allocation scheme iseventually worse than the rule of thumbalong a. Modifying

the scheme along <r by replacing it with the rule of thumb is an improvement for large enough N. This

suggests that any reasonable buffer allocation scheme must satisfy

liminf2~cNNg(N) > c
JV?oo

for some e > 0. It is a straightforward calculation to see that this implies that

|JVt-p,iV|</nogiV (3.6)

for all sufficiently large JV, for all t =1,...,d, where K = £?=iO°S j;)'1- m tnis 8ense> tne rule of thumb
is approximately optimal.



4. Proof of Theorem

Consider any buffer allocation (JVi,...,Nd), £?=i Nt = N, and the associated boundary B as defined

in Section 2. Let a denote the probability that X(t), the Markov chain denoting the vector queue length

process starting at the origin, hits B before returning to zero.

or = Po(X(t) hits B before returning to 0)

Let ic(B) denote the stationary probability of the set S, i.e.

tt(£)=5>(X) (4.1)
X€B

where ir(x) is given in (2.2). We now relate a to the time to buffer overflow using pathwise probabilistic

arguments. The approach closely follows that in [1].

Consider a path of the process starting at 0 and ending when it hits B for the first time. Call this time

T. The path consists of a certain number of cycles, u, where the process returns to 0 without hitting B, and

a last segment where it hits B before returning to 0. The v cycles defined above are i.i.d., independent of i/,

and v is a geometric random variable; these assertions are a simple consequence of the fact that the network

evolution regenerates when it hits 0 because of the assumption of Poisson arrivals. Thus, we have

P(v = k) = a{l-a)k (4.2)

and

Ev =}—?-. (4.3)
a v '

Let 6 have the distribution of the time taken to return to 0, starting from 0 and conditioned on not

visiting B. Let 6i, 62,... be i. i. d with the distribution of 6. Let A have the distribution of the time to hit

By starting from 0 and conditioned on not returningto 0. Also assume that A is independent of (6n,n > 1).

Then, we also have
V

T'^fc +A (4.4)
*=i

where T is the time X(t) first hits B, and £ denotes equality in distribution. In particular,

ET=1—^E6 +EA
a

=i [(1 - a)E6 +aEA]. (4.5)

It is easy to see that (1 —a)E6 + aEA is the mean time taken to either return to 0 or visit B, starting from

0. This time is stochastically dominated by the mean time to return to 0 starting from 0 in the network with
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infinite buffers. Call this latter time To. Clearly, the distribution of To is independent of N and the buffer

allocation, and it is easy to verify that To has finite mean and variance. Then, from (4.5),

and so, by Markov's inequality,

ET < -ET0. (4.6)
~ or

ET 1PfTZrmz^K^ETo. (4.7)

Also observe that 6 stochastically dominates an exponential random variable of mean A-1. Indeed, if the

network is empty, we have to wait at least that long for an arrival. From (4.2) and (4.4), and since an

independent geometric sum of independent exponential random variables is exponential, it follows that T

stochastically dominates an exponential random variable of mean J=*. Hence

P(T <r(N)) <l-exp (~a^P) • (4.8)

Notice that a is a function of N and the buffer allocation though the dependence has been suppressed

in the notation. Keeping this in mind, we consider a subsequence a and a corresponding sequence of buffer

allocations. Then, from (4.7) we see that

r(N) = u><r(a-1) =* P(T>r(N))-;0 (4.9)

Likewise, from (4.8) we observe that,

t(N) = o^a-1) =» P(T < r(N)) 7 0 (4.10)

It now remains to relate a to the quantity g(N) defined in the last section.

Consider a busy cycle started with the network empty and ending when the network empties again

after having had customers. Notice that at the end of a busy cycle the network regenerates because of the

assumption of Poisson arrivals. In other words, the future evolution of the network after it becomes empty

is independent of its entire past. It then follows that the paths of the system during its busy cycles are i.i.d.,

and hence, by a standard regenerative argument, we have:

. m mean time spent in B in a busy cycle
"(B) = £„T„ +A-i (411>

where JEbTo denotes the mean time for the network to return to 0 after having had a customer. But the

mean time spent in £ in a busy cycle is the the product of or and the mean time spent in B until the network



empties, starting in the conditional hitting distribution on B. Here a is the probabilityof hitting B in a

busy cycle, as defined earlier.

Observe that the set B is entered because of an arrival into some queue, and can be left only when the

number in this queue decreases by one. Because of the LCFS service disciphne, this takes time at least

equal to the total service time ofthe entering customer. Therefore, the mean timespent in B starting from

the conditionalhitting distribution until the system empties, is at least equal to the mean service time of

the customer entering the queue that undergoes an overflow. Hence

Observe also that the mean time spent in B starting from the conditional hitting distribution, until

the system empties, is dominated by the mean time for the system to empty starting from the conditional

hitting distribution. In the lemma below, we show that, if the system is started with an arbitrary initial

number of customers M, then the mean time for it to empty is dominated by a constant times M, where

the constant will depend on the network parameters. When the queue length process hits B, it is clear from

the definition of B that the number of customers in the system is at most N + 1. Using the lemma below, it

then follows that the mean time to empty starting from the conditional hitting distribution on Bis at most

a constant times N. Consequently,

ws^k (413)
for some constant k.

Note that EoTq is A_1+ the mean busy period length in the corresponding network with infinite buffers

and, since the network is stable, it is some finite constant which doesn't depend on N. It is therefore clear

from (4.12) and (4.13) that

h?p.<a<k2*(B) (4.14)
where ki,k2 are constants that don't depend on N. It is also easily seen from (2.1) and the definition ofB
that

fcitfW"1 < <B) < Ajy(JV)-1

for some constants ki,k2. Substituting this in (4.14) gives

kl9(N) < a-1 < k2Ng(N) (4.15)

for some constants *i and k2. Finally, the theorem is easily seen tofollow from (4.9), (4.10) and (4.15).
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Lemma : The mean time for a stable tandem of LCFS queues with Poisson arrivals to empty, when started

with a total of N customers initially in the system, is bounded above by a constant times N, provided the

exponential tail condition on the service time distribution stated in (2.3) holds. The constant may depend

on the network parameters.

Proof: The proof of the lemma is by induction on the number of nodes in the tandem. We first establish

the basis case, which is d = 1.

Color the customers initially in queue blue, and color new arrivals red. It is clear from the LCFS nature

of service discipline that blue customers are worked on only when there are no red customers in the queue.

Thus, the process of red customers is seen to evolve like the process of the same LCFS queue, started empty.

Since the queue was assumed to be stable, the process of red customers has regenerative i.i.d. busy cycles of

finite mean length. Every busy period is followed by a random exponential time of mean 1/A during which

no red customers arrive, and therefore blue customers are served. Define So = 0. For k > 1, let T* denote

the first time after Sjt-i that a red customer enters the system, and 5* the first time after 7* that the system

is empty of red customers. Let tt = T* —St-i and «* = Sk —T*. Define

k Q(0)

K=inf{*>0:£>>]T;X}
t=l 1=1

where Y{ is the residual service time needed for the £h customer initially in queue. Let r denote the time

for the queue to empty. Then it is clear from above that

Q(o) «-i

i=l i=l

where, furthermore, the «,• are i.i.d., distributed like the length of a busy period, and independent of k.

Therefore
Q(0)

E[r\Fo] = 2 ^PiPb] +E[k - \\TQ]E[8i] (4.16)
issl

Now condition on Y1%V *»* = 3/> an^ observe that
k

P(k >k)= P($2U <y)< ea*E[e-aU)k
»=i

for all a > 0, where the inequality is by Chernoff's inequality. Using the fact that U is distributed like an

exponential with parameter A, a consequence of the assumption of Poisson arrivals, and summing over kf

and choosing a to be 1/y for simplicity, we get on averaging over y,

Q(0)

E[K\r0]<e(l +\E(52Yi\r0])
t=i
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Finally, by our assumption on the residual service times, it follows that

E[K\Fo]<e(l + \0Q(O))

Substituting this in (4) and using the assumption on the residual service times once more gives

E[t\To] < eE[si\-r 0(1 + XeE[Si])Q(0)

Observing that Q(0) = N, that r = 0 if N = 0, and that E[si], the mean busy period, is some finite constant

independent of N, now gives the desired result, viz.,

E[t\F0] < cN

for some constant c. The total number of arrivals during this period is the sum of (« —1) i.i.d. random

variables, independent also of k, each of which is the numberof arrivals during some busy period. Hence, it

is easily seen that the number of arrivals is also bounded in mean by a constant times N.

We now proceed with the induction step. Suppose that the result is true when there are d or fewer

queues in the tandem. Consider a tandem of d + 1 queues. Define

d

rd = inf{O0:^gi(<) = 0}
$=i

to be the first time that the first d queues are allempty. Since the subsytem consisting of the first d queues

is a stable LCFS tandem with Poisson input, the induction hypothesis implies that,

d

E[Td\^o]<c^2Qi(0) (4.17)
»=i

for some constant c. Furthermore,
d+l

Qd+i(rd) <]T Qi(0) +A(rd) (4.18)
*=i

where A(t) denotes the total number of arrivals upto time t. But, bythe induction hypothesis again,

d

E[A(Td)\^o]<cY^Qi(0) (4.19)
i=l

for some constant c. At time rj, the system consists ofsome number Qd+ifa) ofcustomers in queue d+l

and the remaining queues are empty. Color these customers blue and color new arrivals red. Consider the

following modified system, where blue customers are worked on only when there are no red customers in

any of the queues. If the modified process is constructed on the same sample space as the original process,

that is, corresponding to the same external arrivals, service time assignments, and the same residual service

10



times assigned to customers originally in the system at time r^, then it is easy to see that the original system

becomes empty no later than the modified system (and possibly earlier). If we let r denote the time to

empty in the original system, and r' in the modified system, then r ^r1. We shall now estimate r' —Td. As

in the single queue case, this can be written as a sum

*-** = £ Y« +J> (4.20)
<=i t=i

where
k Qd+l(Td)

k=inf{* >0:]£*,• > JV tf} (421)
*=i »=i

Here «,- is the length of the Ith busy periodof the entiresystem of d+l queues,and U the length of the Ith idle

period, which is exponentially distributed with mean A-1. Consequently, the s,- are i.i.d. and independent

of k. Furthermore, since the tandem is known to be stable, the «j have finite mean. Also, the U are i.i.d.,

independent of the a,-. Hence, exactly the same arguments as in the case of a single queue suffice to show

that

E[r' - Td\rTA] < cQd+i(rd) (4.22)

It now follows from (4.18), (4.19), and (4.22) that

d+l

^[r,-r<l|^o]<c5^Q,(0)
»=i

and since r < r1, that
d+l

E[r-r4^<c^2Qt(0) (4.23)

Finally, putting (4.17) and (4.23) together gives

d+l

E[T\r0]<cY,Qi(0) (4.24)
»=i

It is also easy to see that the total number of arrivals during [r^, t') is the sum of (k —l)i.i.d. random

variables of finite mean, and hence that the mean number of arrivals during [r^, t') is bounded by a constant

times Y^iZi Qi(fy (since the last is anupper bound onthe mean of /c, analogously to the single queue case).

Combining this with (7) and using the fact that t<t' gives

d+l

£[A(t)|*U<c£q,(0) (4.25)
»=i

for some constant c. Finally note that N = £?ii Q<(0). This completes the proof of the induction step,

and hence the theorem is proved.
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5. Conclusions

We have extended the validity of a rule of thumb for optimal bufferallocation, suggested in [1] for Jackson

networks, to a tandem of general LCFS queues with Poisson arrivals when the service time distributions

satisfy an exponential tail condition. This is a start in the direction of extending the result to general

product-form networks, and it is hoped that the techniques introduced in this paper will be helpful towards

that end.

The reason that the problem is much more difficult than in the case of Jackson networks is that quasi-

reversible networks lack an important monotonicity property. Increasing the number of customers initially in

the system does not necessarily increase the amount of work done in the system upto an arbitrary time. For

example, in the case of LCFS networks, the extra customers may cause extra pre-empts and thus prevent

work from moving smoothly through the system. Hence, the techniques developed for Jackson networks

don't carry over to our problem. In particular, the method used to prove the Lemma in Section 4 is very

different from that used in [1] to establish a similar lemmafor Jackson networks. A study of this problem, in

addition to helping extend the buffer allocationresult, may yieldvaluableinsights into the dynamic behavior

of quasi-reversible networks.

The result on optimalityof the buffer allocation heuristic was strengthened in [2] for the caseofJackson

networks. It is an open problem whether the stronger result holds in the case of product-form networks,

with or without feedback.
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